Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2019406.2019409acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

A level-set method for skinning animated particle data

Published: 05 August 2011 Publication History

Abstract

In this paper, we present a straightforward, easy to implement method for particle skinning---generating surfaces from animated particle data. We cast the problem in terms of constrained optimization and solve the optimization using a level-set approach. The optimization seeks to minimize the thin-plate energy of the surface, while staying between surfaces defined by the union of spheres centered at the particles. Our approach skins each frame independently while preserving the temporal coherence of the underlying particle animation. Thus, it is well-suited for environments where particle skinning is treated as a post-process, with each frame generated in parallel. We demonstrate our method on data generated by a variety of fluid simulation techniques and simple particle systems.

Supplementary Material

JPG File (p17-bhatacharya.jpg)
MOV File (p17-bhatacharya.mov)

References

[1]
{APKG07} Adams B., Pauly M., Keiser R., Guibas L. J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3 (2007), 48.
[2]
{BC02} Bærentzen J. A., Christensen N. J.: Interactive modelling of shapes using the level-set method. International Journal of Shape Modelling 8, 2 (2002), 79--97.
[3]
{BGOS06} Bargteil A. W., Goktekin T. G., O'Brien J. F., Strain J. A.: A semi-lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1 (2006).
[4]
{Bli82} Blinn J. F.: A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3 (1982), 235--256.
[5]
{Blo94} Bloomenthal J.: An implicit surface polygonizer. In Graphics Gems IV. Academic Press Professional, Inc., 1994, pp. 324--349.
[6]
{BS05} Bobenko A. I., Schröder P.: Discrete willmore flow. In Symposium on Geometry Processing (2005), pp. 101--110.
[7]
{CS99} Chopp D. L., Sethian J. A.: Motion by intrinsic laplacian of curvature. Interfaces and Free Boundaries 1 (1999), 1--18.
[8]
{DG98} Desbrun M., Gascuel M.-P.: Active implicit surface for animation. In Graphics Interface (1998), pp. 143--150.
[9]
{DMSB99} Desbrun M., Meyer M., Schröder P., Barr A. H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In The Proceedings of ACM SIGGRAPH (1999), pp. 317--324.
[10]
{EMF02} Enright D. P., Marschner S. R., Fedkiw R. P.: Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3 (2002), 736--744.
[11]
{FF01} Foster N., Fedkiw R.: Practical animation of liquids. In the Proceedings of ACM SIGGRAPH 2001 (2001), pp. 23--30.
[12]
{GBB09} Gerszewski D., Bhattacharya H., Bargteil A. W.: A point-based method for animating elastoplastic solids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Aug 2009).
[13]
{HK05} Hieber S. E., Koumoutsakos P.: A lagrangian particle level set method. J. Comput. Phys. 210, 1 (2005), 342--367.
[14]
{HP07} Hildebrandt K., Polthier K.: Constraint-based fairing of surface meshes. In The Proceedings of the Eurographics symposium on Geometry processing (Aire-la-Ville, Switzerland, Switzerland, 2007), Eurographics Association, pp. 203--212.
[15]
{HTNM06} Hamano R., Tsumura N., Nakaguchi T., Miyake Y.: Rigid core particle: stabilization technique in large time step fluid simulation. In ACM SIGGRAPH 2006 Research posters (New York, NY, USA, 2006), SIGGRAPH '06, ACM.
[16]
{Kob96} Kobbelt L.: Discrete fairing. In The Proceedings of the IMA Conference on the Mathematics of Surfaces (1996), pp. 101--131.
[17]
{KSK09} Kim D., Song O.-Y., Ko H.-S.: Stretching and wiggling liquids. ACM Trans. Graph. 28 (December 2009), 120:1--120:7.
[18]
{LC87} Lorensen W. E., Cline H. E.: Marching cubes: A high resolution 3d surface construction algorithm. In The Proceedings of ACM SIGGRAPH (1987), pp. 163--169.
[19]
{MU9} Müller M.: Fast and robust tracking of fluid surfaces. In The Proceedings of the Symposium on Computer Animation (New York, NY, USA, 2009), ACM, pp. 237--245.
[20]
{MCG03} Müller M., Charypar D., Gross M.: Particle-based fluid simulation for interactive applications. In The Proceedings of the Symposium on Computer Animation (2003), pp. 154--159.
[21]
{MCZ07} Museth K., Clive M., Zafar N. B.: Blobtacular: surfacing particle system in "pirates of the caribbean 3". In SIGGRAPH '07: ACM SIGGRAPH 2007 sketches (New York, NY, USA, 2007), ACM, p. 20.
[22]
{NM06} Nielsen M. B., Museth K.: Dynamic tubular grid: An efficient data structure and algorithms for high resolution level sets. J. Sci. Comput. 26, 3 (2006), 261--299.
[23]
{OF03} Osher S., Fedkiw R.: The Level Set Method and Dynamic Implicit Surfaces. Springer-Verlag, New York, 2003.
[24]
{PTB*03} Premože S., Tasdizen T., Bigler J., Lefohn A., Whitaker R.: Particle-based simulation of fluids. Computer Graphics Forum 22, 3 (2003), 401--410.
[25]
{Ree83} Reeves W. T.: Particle systems---a technique for modeling a class of fuzzy objects. ACM Trans. Graph. 2, 2 (1983), 91--108.
[26]
{SBH09} Sin F., Bargteil A. W., Hodgins J. K.: A point-based method for animating incompressible flow. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Aug 2009).
[27]
{Set99} Sethian J. A.: Level Set Methods and Fast Marching Methods, 2 nd ed. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge, U.K., 1999.
[28]
{Sim90} Sims K.: Particle animation and rendering using data parallel computation. In The Proceedings of ACM SIGGRAPH (New York, NY, USA, 1990), ACM, pp. 405--413.
[29]
{SKS01} Schneider R., Kobbelt L., Seidel H.-P.: Improved bi-laplacian mesh fairing. In Mathematical Methods for Curves and Surfaces. Vanderbilt University, 2001, pp. 445--454.
[30]
{SS07} Shen C., Shah A.: Extracting and parametrizing temporally coherent surfaces from particles. In The Proccedings of ACM SIGGRAPH (sketches) (2007), p. 66.
[31]
{SSP07} Solenthaler B., Schläfli J., Pajarola R.: A unified particle model for fluid-solid interactions. Journal of Visualization and Computer Animation 18, 1 (2007), 69--82.
[32]
{Tau95} Taubin G.: A signal processing approach to fair surface design. In The Proceedings of ACM SIGGRAPH (New York, NY, USA, 1995), ACM, pp. 351--358.
[33]
{TWBO03} Tasdizen T., Whitaker R., Burchard P., Osher S.: Geometric surface processing via normal maps. ACM Trans. Graph. 22, 4 (2003), 1012--1033.
[34]
{WBH*07} Wardetzky M., Bergou M., Harmon D., Zorin D., Grinspun E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des. 24, 8--9 (2007), 499--518.
[35]
{Wil08} Williams B.: Fluid Surface Reconstruction from Particles. Master's thesis, University of British Columbia, 2008.
[36]
{WMKG07} Wardetzky M., Mathur S., Kälberer F., Grinspun E.: Discrete laplace operators: no free lunch. In The Proceedings of Eurographics symposium on Geometry processing (2007), pp. 33--37.
[37]
{WT08} Wojtan C., Turk G.: Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (2008), 1--8.
[38]
{WTGT09} Wojtan C., Thürey N., Gross M., Turk G.: Deforming meshes that split and merge. ACM Trans. Graph. 28, 3 (2009), 1--10.
[39]
{WW94} Welch W., Witkin A.: Free-form shape design using triangulated surfaces. In The Proceedings of ACM SIGGRAPH (New York, NY, USA, 1994), ACM, pp. 247--256.
[40]
{YT10} Yu J., Turk G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-Ville, Switzerland, Switzerland, 2010), SCA '10, Eurographics Association, pp. 217--225.
[41]
{ZB05} Zhu Y., Bridson R.: Animating sand as a fluid. ACM Trans. Graph. 24, 3 (2005), 965--972.
[42]
{Zha04} Zhao H.: A fast sweeping method for eikonal equations. Mathematics of Computation 74 (2004), 603--627.
[43]
{ZOF01} Zhao H., Osher S., Fedkiw R.: Fast surface reconstruction using the level set method. In IEEE Workshop on Variational and Level Set Methods (2001), pp. 194--202.

Cited By

View all
  • (2024)Reconstruction of Implicit Surfaces from Fluid Particles using Convolutional Neural NetworksProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1111/cgf.15181(1-13)Online publication date: 21-Aug-2024
  • (2023)Tiled Characteristic Maps for Tracking Detailed Liquid SurfacesComputer Graphics Forum10.1111/cgf.1463841:8(231-242)Online publication date: 20-Mar-2023
  • (2022)Particle Merging-and-SplittingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.309377628:12(4546-4557)Online publication date: 1-Dec-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '11: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
August 2011
297 pages
ISBN:9781450309233
DOI:10.1145/2019406
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 August 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. constrained smoothing
  2. fluid simulation
  3. level-set methods
  4. particle skinning
  5. particle systems
  6. surface smoothing

Qualifiers

  • Research-article

Funding Sources

Conference

SCA '11
Sponsor:
SCA '11: The ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2011
August 5 - 7, 2011
British Columbia, Vancouver, Canada

Acceptance Rates

Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)18
  • Downloads (Last 6 weeks)1
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Reconstruction of Implicit Surfaces from Fluid Particles using Convolutional Neural NetworksProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1111/cgf.15181(1-13)Online publication date: 21-Aug-2024
  • (2023)Tiled Characteristic Maps for Tracking Detailed Liquid SurfacesComputer Graphics Forum10.1111/cgf.1463841:8(231-242)Online publication date: 20-Mar-2023
  • (2022)Particle Merging-and-SplittingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.309377628:12(4546-4557)Online publication date: 1-Dec-2022
  • (2022)Adapted SIMPLE Algorithm for Incompressible SPH Fluids With a Broad Range ViscosityIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.305578928:9(3168-3179)Online publication date: 1-Sep-2022
  • (2019)A Unified Multiple-Phase Fluids Framework Using Asymmetric Surface Extraction and the Modified Density ModelSymmetry10.3390/sym1106074511:6(745)Online publication date: 2-Jun-2019
  • (2019)A robust volume conserving method for character-water interactionProceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1145/3309486.3340244(1-12)Online publication date: 26-Jul-2019
  • (2019)CD-MPMACM Transactions on Graphics10.1145/3306346.332294938:4(1-15)Online publication date: 12-Jul-2019
  • (2018)Direct raytracing of particle-based fluid surfaces using anisotropic kernelsProceedings of the Symposium on Parallel Graphics and Visualization10.5555/3293524.3293525(1-12)Online publication date: 4-Jun-2018
  • (2018)Extended Narrow Band FLIP for Liquid SimulationsComputer Graphics Forum10.1111/cgf.1335137:2(169-177)Online publication date: 22-May-2018
  • (2018)Projective Peridynamics for Modeling Versatile Elastoplastic MaterialsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2017.275564624:9(2589-2599)Online publication date: 1-Sep-2018
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media