Nothing Special   »   [go: up one dir, main page]

Di Ambil Perhitungan Sambungan Saja

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 54

PT.

Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk.
PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
Page 1 of 73
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015

PT. Perusahaan Gas Negara (Persero) Tbk.

PELAKSANAAN KERJASAMA
PENINGKATAN KEHANDALAN JARINGAN UNTUK PENYALURAN GAS WILAYAH PASURUAN DAN
MOJOKERTO

Contract No.
055600.PK/HK.02/PMO/2014

Issued For
C 11-06-2015 IMM AB AGK
Construction
Issued For
B 05-06-2015 IMM AB AGK
Approval
A Issued For Review 04-06-2015 IMM AB AGK

PRP’D CHK’D APV’D


EMPLOYER’S
REV DESCRIPTION DATE EMPLOYER
PERSONNEL
CONTRACTOR
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 2 of 54

REVISION HISTORICAL SHEET

Rev. Date Description

A 04-06-2015 Issued For Review

B 05-06-2015 Issued For Approval

0 11-06-2015 Issued For Construction


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 3 of 54

TABLE OF CONTENTS

1.
GENERAL 4

1.1 Introduction ................................................................................................................................ 4


1.2 Code, Standard and Specifications ............................................................................................ 4
1.3 Codes and Standar .................................................................................................................... 4
1.4 References ................................................................................................................................ 4
1.5 Unit of Measurement ................................................................................................................. 4
1.6 Modeling, analysis and calculation methode ............................................................................. 5
1.7 Quality of Material ...................................................................................................................... 5
2. STRUCTURAL DESIGN CONCEPT ........................................................................................... 5
2.1 Steel Modeling ........................................................................................................................... 5
2.2 Dead Load ................................................................................................................................. 6
2.3 Live Load ................................................................................................................................... 7
3. SEISMIC AND WIND LOAD ....................................................................................................... 8
3.1 Wind Load ................................................................................................................................. 8
3.2 Seismic Load ........................................................................................................................... 15
3.3 Load Combination .................................................................................................................... 20
4. RESULT AND CONCLUTION ................................................................................................... 21
5. DESIGN OF STEEL STRUCTURE ........................................................................................... 25
5.1. Sagrod and Purlin Desin ......................................................................................................... 25
5.2. Tie Rod Bracing Design .......................................................................................................... 32
5.3. Connection Rafter to Rafter .................................................................................................... 35
5.4. Connection Beam to Column .................................................................................................. 40
5.5. Connection Rafter to Column ................................................................................................. 45
5.6. Connection Column to Baseplate............................................................................................ 50
6. DESIGN OF CONCRETE STRUCTURE ................................................................................... 53
6.1. Concrete Modeling .................................................................................................................. 53
6.2. Reinforcement Design for Sloof .............................................................................................. 54
6.3. Reinforcement Design for Sub - Column................................................................................. 59
6.4. Metering Slab Foundation........................................................................................................ 64
6.5. Foundation Footplat................................................................................................................. 68
6.6. Punching Shear....................................................................................................................... 70
6.7. Check Capacity Pile................................................................................................................. 72
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 4 of 54
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 5 of 41

1. GENERAL

1.1 Introduction

PT Perusahaan Gas Negara (Persero) Tbk., intends to execute the PENINGKATAN KEHANDALAN
JARINGAN UNTUK PENYALURAN GAS WILAYAH PASURUAN MOJOKERTO PROJECT which is located at
Japanan, Java Island.
1.2 Codes, Standard And Specifications

The Contractor shall work in accordance with the requirements specified herein and the applicable
requirements of the latest edition of the following referenced Codes and Standards, unless otherwise approved
by the Employer.
1.3 Codes And Standard

ACI 117 Standard Tolerances for Concrete Construction and Material


ACI-301 Specifications for Structural Concrete for Building
ACI-302.1R Guide for Concrete Floor and Slab Construction
ACI 315 Manual of Standard practice for Detailing reinforced concrete structure
ASTM C94 Standard Specification for Ready Mixed Concrete
SNI 03-2847-2002 Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung
SNI 03-1729-2002 Tata Cara Perencanaan Struktur Baja Untuk Bangunan Gedung
SNI-1726-2002 Standar Perencanaan Gempa Untuk Bangunan Gedung
SNI-2052-2002 Standar Nasional Indonesia Baja Tulangan beton
ASCE-07-10 American Society of Civil Engineer : Minimum Design Loads For
Building Other Structure
1.4 Reference

MJPN-PGAS-3514-CV-DB-001 Civil and Structural Design Basis

MJPN-PGAS-3514-CV-SP-001 Design Spec. For Building and Architectural

MJPN-PGAS-3514-CV-SP-006 Design Spec. For Steel Structure

1.5 Unit Of Measurement

SI Unit Customary Unit shall be used for all design, drawing and specification.

1.6 Modeling, Analysis And Calculation Method

Modeling, analysis and calculation of Structure for Metering Building in Japanan Offtake Station
used Program StaadPro v8i and Microsoft Excel.

1.7 Quality of material


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 6 of 41

a. Concrete
Concrete Structure f ’c = 27.6 Mpa = 276 kg/cm2
Concrete Foundation f’c = 35 Mpa = 350 kg/cm2
b. Reinforcing bar ASTM A615
Deformed Bars fy = 400 Mpa = 4000 kg/cm2
Plain Bars fy = 240 Mpa = 2400 kg/cm2
c. Steel Structure
ASTM A36 fy = 240 Mpa = 2400 kg/cm2

2. STRUCTURAL DESIGN CONCEPT

2.1 Steel Modeling

CNP

R
4m
B
4m
UNP
4m
4m
8m 4m
H

4m

Image 2.1 Modeling

Table 2.1 Dimention

No. Member Dimention Material

1. Column (C) H 250x250x9x14 mm Steel ASTM A36

2. Beam (B) WF 250x125x6x9 mm Steel ASTM A36


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 7 of 41

3. Rafter (R) WF 250x125x6x9 mm Steel ASTM A36

4. Channel UNP U 150x75x6.5 mm Steel ASTM A36

5. Channel CNP C 150x65x20x3.2 mm Steel ASTM A36

6. Track Stank 16 mm Steel ASTM A36

2.2 Dead Load

Image 2.2 Dead Load

2.1.1 Dead Load (DL)

Roofing
Total length of Rafter (L) = 5.32 m
Distance between purlin (S) = 1.1 m
Use purlin L/S = 5.32/1.1 = 4.8 use = 5 + 1 = 6 purlin

Weight of purlin C 150x65x20x3.2 Wpr = 7.52 kg/m’


Total weight of purlin = (Npr x Wpr)/L
= (6 x 7.52 kg/m)/5.32 = 8.48 kg/m’

Weight of roofing corrugated steel sheet 0.7mm


Ws = 10kg/m2
Weight of fascia = 0.5 x 18.48 = 9.24kg/m’
Weight sagrood wsg = 5% x 8.48 kg/m2 = 0.424
Total load of roof = 8.48+ 10 + 0.424 = 18.672 kg/m2
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 8 of 41

2.3 Live Load (LL)

Roof = 100 kg/m2

Image 2.3 Live Load

3. SEISMIC AND WIND LOAD DATA

3.1 Wind Load (w)


Building Category = IV
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 9 of 41

Table 3.1 Wind Directionality Factor ( Kd )


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 10 of 41

Table 3.2 Wind Height Ground Level ( Kz )

Calculation :
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 11 of 41

Basic wind 33.33 mps


Basic wind speed
speed V
V =
= mps
Exposure Category = D
Exposure Category =
Gust effect 0.85
Gust effect factor
factor G
G =
=
Length of 20 m
Length of Building
Building B
B =
= m
Width of 8 m
Width of Building
Building L
L =
= m
Height of 6 m
Height of Building
Building h
h == m
Velocity pressure Exposure
Velocity pressure Exposure Coefficients
Coefficients Kz = 1.08
Topographic Faktor Kzt = 1
Topographic Faktor
wind directionality kd = 0.85
wind directionality factor
factor
Velocity pressure
Velocity pressure
qz = 0,613 Kz Kzt Kd V 2 I

Height of Kz Exposure
qz (kg/m 2 )
Building (m) D
6 1.03 68.56

Wind Load
Wind Load X
X Direction
Direction

L 20.0
L 20.0 = = 2.50
B
B 8.0
8.0
All Value
All Value
Cp = 0.8 for
for windward
windward Wall
Wall
Cp -0.7 Side Wall
Cp = -0.3 for Leeward Wall
for Leeward Wall
Cp -0.7
Cp -0.7 Side
Side Wall
Wall

Design Wind Pressure


P = qz . G. Cp - qi (Gcpi)
Design Wind pressure Windward Wall
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 12 of 41

Design Wind Pressure


Design
P = qz Wind Pressure
. G. Cp - qi (Gcpi)
P = qz Wind
Design . G. Cp - qi (Gcpi)
pressure Windward Wall
Design Wind pressure Windward Wall
Height above qz.G.Cp - qi (Gcpi) P used
Cp G Gcpi
level (m) (kg/m2) (kg/m2)

1.45 0.8 0.85 0.55 8.913


84.332
1.45 0.8 0.85 -0.55 84.332
Design Wind pressure Leeward Wall
Design Wind pressure Leeward Wall

Height above qz.G.Cp - qi (Gcpi) P used


Cp G Gcpi
level (m) (kg/m2) (kg/m2)

6 -0.3 0.85 0.55 -55.193


55.193
6 -0.3 0.85 -0.55 20.226
Design Wind pressure side Wall
Design Wind pressure side Wall

Height above qz.G.Cp - qi (Gcpi) P used


Cp G Gcpi
level (m) (kg/m2) (kg/m2)

6 -0.7 0.85 0.55 -78.504


78.504
6 -0.7 0.85 -0.55 -3.085
All Value
All Value for windward Wall
Cp = 0.8 for windwardWall
for Leeward Wall
Cp = -0.5 for Leeward Wall
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 13 of 41

Wind Load Z Direction


Wind Load Z Direction
L 8.0 = 0.40
LB 8.0
20.0 =
B Value
All 20.0
All
CpValue
= 0.8 for windward Wall
Cp = -0.5 for windward
for Wall
Leeward Wall
Cp -0.7 Sidefor Leeward
Wall Wall
Cp -0.7
Design Wind Side Wall
Pressure
Design
P = qz Wind Pressure
. G. Cp - qi (Gcpi)
P = qz . G. Cp - qi (Gcpi)
Design Wind pressure Windward Wall
Design Wind pressure Windward Wall
Height above qz.G.Cp - qi (Gcpi) P used
Cp G Gcpi
level (m) (kg/m2) (kg/m2)

1.45 0.8 0.85 0.55 8.913


84.332
1.45 0.8 0.85 -0.55 84.332
Design Wind pressure Leeward Wall
Design Wind pressure Leeward Wall
Height above qz.G.Cp - qi (Gcpi) P used
Cp G Gcpi
level (m) (kg/m2) (kg/m2)

6 -0.5 0.85 0.55 -66.848


66.848
6 -0.5 0.85 -0.55 8.570
Design Wind pressure side Wall
Design Wind pressure side Wall

Height above qz.G.Cp - qi (Gcpi) P used


Cp G Gcpi
level (m) (kg/m2) (kg/m2)

6 -0.7 0.85 0.55 -78.504


78.504
6 -0.7 0.85 -0.55 -3.085
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 14 of 41

Wind Load X Direction

A P used
Wind X Column
m2 (kg/m)
Windward C1 5.8 489.12
Wall C12 5.8 489.12
C1 & C12 2 -157.01
C2 & C11 4 -314.02
C3 & C10 4 -314.02
Side Wall
C4 &C9 4 -314.02
C5 & C8 4 -314.02
C6 & C7 2 -157.01
C6 4 220.77
Leeward
C7 4 220.77

Wind Load Z Direction

Length P used
Wind Z Column
Area (m) (kg/m)
C1 & C12 4 314.02
Sidewall
C6 & C7 4 314.02
Windward C7 14.5 1222.81
Wall C8 14.5 1222.81
C1 2 133.70
C2 4 267.39
C3 4 267.39
Leeward
C4 4 267.39
C5 4 267.39
C6 2 133.70
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 15 of 41

Image 3.1 Wind - X Direction

Image 3.2 Wind - Z Direction


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 16 of 41

3.2 Seismic Load

Earthquake calculation according to SNI 1726-2012


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 17 of 41

Image 3.3 Seismic Zone


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 18 of 41

Image 3.4 Seismic Response Coefficients

Image 3.5 Seismic Response Coefficients


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 19 of 41

3,4 Earthquake Load


Earthquake load based on SNI 03-1726-2012, with design pararameter such as:
Project Location = Pasuruan, West Java
Risk Category = IV
Important Factor = 1
SDS = 0,607
Height of Building = 4
Soil Type = Tanah Lunak (E)

Tabel 3. Data NSPT


No. Start El. End El. d (m) NSPT d / NSPT
1 0 2 2 4 0,50
2 2 4 2 2 1,00
3 4 6 2 1 2,00
4 6 8 2 1 2,00
5 8 10 2 1 2,00
6 10 12 2 32 0,06
7 12 14 2 30 0,07
8 14 16 2 55 0,04
9 16 19 3 60 0,05
10 19 60
S 19 7,72

N = d/(d/NSPT)
= 2 < 15  Soft Clay Soil
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 20 of 41

seismic load at main building


V = Cs.W c
Cs = SDS / (R/I)
V = the total design lateral force or shear at the base ( ton )
Wc = Beban total
C = Seismic coefficient
1.50
I = Important Factor =
3,5
R = Ductility Factor =
0,607
SMS = parameter percepatan respons =

CS=SDS /(R/ I )=¿ 0.607/(3.5/1.5) =0.26

Wc=Ʃfy=7637.46 kg

V =CS x Wc=0.26 x 7637.46=1987 kg/ Ʃkolom

¿ 1987 /12=166 kg x 2.4=403.6 kg

Image 3.6 Seismic Load direction – x


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 21 of 41

Image 3.7 Seismic Load direction – y

3.3 Load Combination


Loading combination from ASD and LRFD. The following is loading combination which be generated in
StaadPro analysis program :

Concrete Design
Load Comb. 101 1.4 D
Load Comb. 102 1.20 D + 1.60 L + 0,5 Lr
Load Comb. 103 1,2 D + 1.60 Lr + L or 0,5 W
Load Comb. 104 1,2 D + 1.60 Lr + L + or 0,5 Wx
Load Comb. 105 1,2 D + 1.60 Lr + L or 0,5 Wx
Load Comb. 106 1.20 D + Wx + L + 0,5 Lr
Load Comb. 107 1.20 D + Wz + L + 0,5 Lr
Load Comb. 108 1.20 D + Vx + 0,3 Vz + L
Load Comb. 109 1.20 D + Vz + 0,3 Vx + L
Load Comb. 110 0,9 D + Wx
Load Comb. 111 0,9 D + Wz
Load Comb. 112 0,9 D + Vx + 0,3 Vz
Load Comb. 113 0,9 D + Vz + 0,3 Vx
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 22 of 41

Unfactored Load Combination


Load Comb. 201 1.0 D
Load Comb. 202 1.00 D + 1.00 L
Load Comb. 203 1.00 D + 1.00 Lr
Load Comb. 204 1.00 D + 0,75 L + 0,75 Lr
Load Comb. 205 1.00 D + 0,6 Wx or 0,7 E
Load Comb. 206 1.00 D + 0,6 Wz 0r 0,7 E
Load Comb. 207 1.00 D + 0,6 Wor 0,7 Vx + 0,3 Vz
Load Comb. 208 1.00 D + 0.6 W or 0,7 Vz + 0,3 Vx
Load Comb. 209 1.00 D + 0.75 L + 0,45 Wx + 0,75 Lr
Load Comb. 210 1.00 D + 0.75 L + 0.45 Wz + 0.75 Lr
Load Comb. 211 1.00 D + 0.75 L + 0,525 Vx + 0,3 Vz
Load Comb. 212 1.00 D + 0,75 L + 0,525 Vz + 0,3 Vx
Load Comb. 213 0,6 D + 0,6 Wx
Load Comb. 214 0,6 D + 0,6 Wz
Load Comb. 215 0,6 D + 0,7 Vx + 0,3 Vz
Load Comb. 216 0,4 D + 0,7 Vz + 0,3 Vx

4. RESULT AND CONCLUSION

Image 4.1 Axial Force Diagram


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 23 of 41

Image 4.2 Diagram Momen

Image 4.3 Steel Ratio


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 24 of 41

Table 4.1 deflection


 Column

Allowable = L/400
= 3800/400
= 9,5 mm > 7 mm (max. Displacement from StaadPro)  Ok

 Beam

Allowable = L/240
= 4000/240
= 16,67 mm > 14 mm  (max. Displacement from StaadPro)  Ok

 Rafter
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 25 of 41

Allowable = L/240
= 4260/240
= 17,75 mm > 13 (max. Displacement from StaadPro)  Ok

 Kantilever

Allowable = L/240
= 1100/240
= 4,58 mm > 2 (max. Displacement from StaadPro)  Ok

5. DESIGN OF STEEL STRUCTURE


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 26 of 41
PERHITUNGAN GORDING DAN SAGROD
5.1 Sagrod and Purlin design calculation

A.
A.Data
DATABahan
BAHAN

Tegangan leleh baja (yield stress ), fy = 240 MPa


Tegangan tarik putus (ultimate stress ), fu = 400 MPa
Tegangan sisa (residual stress ), fr = 70 MPa
Modulus elastik baja (modulus of elasticity ), E= 200000 MPa
Angka Poisson (Poisson's ratio ), u= 0.3

B. Data Profil Baja

B. DATA PROFIL BAJA Lip Channel : C 150.65.20.3,2


ht = 150 mm
b= 65 mm
a= 20 mm
t= 3.2 mm
A = 956.7 mm2
4
I x = 3320000 mm
4
I y = 538000 mm
3
Sx = 44300 mm
3
Sy = 12200 mm
rx = 58.9 mm
ry = 23.7 mm
c= 21.1
Berat profil, w= 7.52 kg/m
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 27 of 41

Faktor reduksi kekuatan untuk lentur, fb = 0.90


Faktor reduksi kekuatan untuk geser, ff = 0.75
Diameter sagrod, d= 10 mm
Jarak (miring) antara gording, s= 1000 mm
Panjang gording (jarak antara rafter), L1 = 4000 mm
Jarak antara sagrod (jarak dukungan lateral gording), L2 = 600 mm
Sudut miring atap, a= 20 

C. Section Property

G = E / [ 2 * (1 + u) ] = 76923.08 MPa
h = ht - t = 146.80 mm
J = 2 * 1/3 * b * t + 1/3 * (ht - 2 * t) * t + 2/3 * ( a - t ) * t3 =
3 3 4
3355.44 mm
I w = I y * h2 / 4 =
6
2.899E+09 mm
X1 = p / Sx * √ [ E * G * J * A / 2 ] = 11143.90 MPa
X2 = 4 * [ Sx / (G * J) ]2 * I w / I y =
2 2
0.00063 mm /N
Zx = 1 / 4 * ht * t2 + a * t * ( ht - a ) + t * ( b - 2 * t ) * ( ht - t ) =
3
36232 mm
2 2 3
Zy = ht*t*(c - t / 2) + 2*a*t*(b - c - t / 2) + t * (c - t) + t * (b - t - c) = 21100 mm

G= modulus geser, Zx = modulus penampang plastis thd. sb. x,


J= Konstanta puntir torsi, Zy = modulus penampang plastis thd. sb. y,
Iw = konstanta putir lengkung, X1 = koefisien momen tekuk torsi lateral,
h= tinggi bersih badan, X2 = koefisien momen tekuk torsi lateral,

D. Gording Load

 Dead Load

No Material Berat Satuan Lebar Q


(m) (N/m)
1 Total load of roof 186.7 N/m' 186.7
2 Weight of fascia 92.4 N/m' 92.4
Total beban mati, QDL = 279.1 N/m
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 28 of 41

 Live Load

Beban hidup akibat beban air hujan diperhitungkan setara dengan beban genangan air
2
setebal 1 inc = 25 mm. qhujan = 0.025 * 10 = 0.25 kN/m
Jarak antara gording, s= 1 m
Beban air hujan, qhujan * s * 103 = 250 N/m
Beban hidup merata akibat air hujan, QLL = 250 N/m
Beban hidup terpusat akibat beban pekerja, PLL = 1000 N

E. Factored Load

Beban merata, Qu = 1.2 * QDL + 1.6 * QLL = 734.92 N/m


Beban terpusat, Pu = 1.6 * PLL = 1600.00 N
Sudut miring atap, a= 0.35 rad
-3
Beban merata terhadap sumbu x, Qux = Qu * cos a *10 = 0.6906 N/mm
Beban merata terhadap sumbu y, Quy = Qu * sin a *10-3 = 0.2514 N/mm
Beban terpusat terhadap sumbu x, Pux = Pu * cos a = 1503.51 N
Beban terpusat terhadap sumbu y, Puy = Pu * sin a = 547.23 N
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 29 of 41

F. Factored Moment and Shear

Panjang bentang gording terhadap sumbu x, Lx = L1 = 4000 mm


Panjang bentang gording terhadap sumbu y, Ly = L2 = 600 mm
Momen akibat beban terfaktor terhadap sumbu x,
Mux = 1/8 * Qux * Lx2 + 1/4 * Pux * Lx = 2884706 Nm
Momen pada 1/4 bentang, MA = 2163529 Nm
Momen di tengah bentang, MB = 2884706 Nm
Momen pada 3/4 bentang, MC = 2163529 Nm
Momen akibat beban terfaktor terhadap sumbu y,
Muy = 1/8 * Quy * Ly2 + 1/4 * Puy * Ly = 93396 Nmm
Gaya geser akibat beban terfaktor terhadap sumbu x,
Vux = Qux * Lx + Pux = 4266 N
Gaya geser akibat beban terfaktor terhadap sumbu y,
Vuy = Quy * Ly + Puy = 698 N

G. Local Buckling

Pengaruh tekuk lokal (local buckling) pada sayap :


Kelangsingan penampang sayap, l=b/t = 20.313
Batas kelangsingan maksimum untuk penampang compact ,
lp = 170 / √ f y = 10.973
Batas kelangsingan maksimum untuk penampang non-compact ,
lr = 370 / √ ( f y - f r ) = 28.378
Momen plastis terhadap sumbu x, Mpx = f y * Zx = 8695665 Nmm
Momen plastis terhadap sumbu y, Mpy = f y * Zy = 5064115 Nmm
Momen batas tekuk terhadap sumbu x, Mrx = Sx * ( f y - f r ) = 7531000 Nmm
Momen batas tekuk terhadap sumbu y, Mry = Sy * ( f y - f r ) = 2074000 Nmm
Momen nominal penampang untuk :
b. Penampang non-compact , lp <  lr
→ Mn = Mp - (Mp - Mr) * ( l - lp) / ( l r - lp)

l > lp dan l < lr


Berdasarkan nilai kelangsingan sayap, maka termasuk penampang non-compact
Momen nominal penampang terhadap sumbu x dihitung sebagai berikut :
non-compact : Mn = Mp - (Mp - Mr) * ( l - lp) / ( lr - lp) = 8070711 Nmm
Momen nominal terhadap sumbu x penampang
non-compact
: Mnx = 8070711 Nmm
Momen nominal penampang terhadap sumbu y dihitung sebagai berikut :
non-compact : Mn = Mp - (Mp - Mr) * ( l - lp) / ( lr - lp) = 3459632 Nmm
Momen nominal terhadap sumbu y penampang
non-compact
: Mny = 3459632 Nmm
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 30 of 41

H. Lateral Buckling

Momen nominal komponen struktur dengan pengaruh tekuk lateral, untuk :


a. Bentang pendek : L  Lp
→ Mn = Mp = f y * Zx
Panjang bentang maksimum balok yang mampu menahan momen plastis,
Lp = 1.76 * ry * √ ( E / f y ) = 1204 mm
Tegangan leleh dikurangi tegangan sisa, fL = fy - fr = 170 MPa
Panjang bentang minimum balok yang tahanannya ditentukan oleh momen kritis tekuk
torsi lateral, Lr = ry * X1 / f L * √ [ 1 + √ ( 1 + X2 * f L2 ) ] = 3610 mm
Koefisien momen tekuk torsi lateral,
Cb = 12.5 * Mux / ( 2.5*Mux + 3*MA + 4*MB + 3*MC ) = 1.14
Momen plastis terhadap sumbu x, Mpx = f y * Zx = 8695665 Nmm
Momen plastis terhadap sumbu y, Mpy = f y * Zy = 5064115 Nmm
Momen batas tekuk terhadap sumbu x, Mrx = Sx * ( f y - f r ) = 7531000 Nmm
Momen batas tekuk terhadap sumbu y, Mry = Sy * ( f y - f r ) = 2074000 Nmm
Panjang bentang terhadap sumbu y (jarak dukungan lateral), L = L2 = 600 mm
L < Lp dan L < Lr
 Termasuk kategori : bentang pendek
Momen nominal terhadap sumbu x dihitung sebagai berikut :
Mnx = Mpx = f y * Zx = 8695665 Nmm
Momen nominal thd. sb. x untuk : bentang pendek Mnx = 8695665 Nmm
Mnx > Mpx
Momen nominal terhadap sumbu x yang digunakan, Mnx = 8695665 Nmm
Momen nominal terhadap sumbu y dihitung sebagai berikut :
Mny = Mpy = f y * Zy = 5064115 Nmm
Momen nominal thd. sb. y untuk : bentang pendek Mny = 5064115 Nmm
Mny > Mpy
Momen nominal terhadap sumbu y yang digunakan, Mny = 5064115 Nmm
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 31 of 41

I. Moment Resistance

Momen nominal terhadap sumbu x :


Berdasarkan pengaruh local buckling , Mnx = 8070711 Nmm
Berdasarkan pengaruh lateral buckling , Mnx = 8695665 Nmm
Momen nominal terhadap sumbu x (terkecil) yg menentukan, Mnx = 8070711 Nmm
Tahanan momen lentur terhadap sumbu x,  f b * Mnx = 7263640 Nmm
Momen nominal terhadap sumbu y : fb = 1.111111
Berdasarkan pengaruh local buckling , Mny = 3459632 Nmm
Berdasarkan pengaruh lateral buckling , Mny = 5064115 Nmm
Momen nominal terhadap sumbu y (terkecil) yg menentukan, Mny = 3459632 Nmm
Tahanan momen lentur terhadap sumbu y,  f b * Mny = 3113669 Nmm
Momen akibat beban terfaktor terhadap sumbu x, Mux = 2884706 Nmm
Momen akibat beban terfaktor terhadap sumbu y, Muy = 93396 Nmm
Mux / ( f b * Mnx ) = 0.3971
Muy / ( f b * Mny ) = 0.0300
Syarat yg harus dipenuhi : Mux / ( f b * Mnx ) + Muy / ( f b * Mny ) ≤ 1.0
Mux / ( f b * Mnx ) + Muy / ( f b * Mny ) = 0.4271 < 1.0 AMAN (OK)

J. Shear Resistance

Ketebalan plat badan tanpa pengaku harus memenuhi syarat,


h/t  6.36 *  ( E / fy )
45.88 < 183.60  Plat badan memenuhi syarat (OK)

Gaya geser akibat beban terfaktor terhadap sumbu x, Vux = 4266 N


2
Luas penampang badan, Aw = t * ht = 480 mm
Tahanan gaya geser nominal thd.sb. x, Vnx = 0.60 * f y * Aw = 69120 N
Tahanan gaya geser terhadap sumbu x,  f f * Vnx = 51840 N
f f = 1.333333
Gaya geser akibat beban terfaktor terhadap sumbu y, Vuy = 698 N
2
Luas penampang sayap, Af = 2 * b * t = 416 mm
Tahanan gaya geser nominal thd.sb. y, Vny = 0.60 * f y * Af = 59904 N
Tahanan gaya geser terhadap sumbu x,  f f * Vny = 44928 N
Vux / ( f f * Vnx ) = 0.0823
Vuy / ( f f * Vny ) = 0.0155
Syarat yang harus dipenuhi :
Vux / ( f f * Vnx ) + Vuy / ( f f * Vny )  1.0
Vux / ( f f * Vnx ) + Vuy / ( f f * Vny ) = 0.0978 < 1.0 AMAN (OK)
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 32 of 41

K. Shear Interaction and Resistance Control

Sayarat yang harus dipenuhi untuk interakasi geser dan lentur :


Mu / ( f b * Mn ) + 0.625 * V u / ( f f * Vn )  1.375

Mu / ( f b * Mn ) = Mux / ( f b * Mnx ) + Muy / ( f b * Mny ) = 0.4271


Vu / ( f f * Vn ) = Vux / ( f f * Vnx ) + Vuy / ( f f * Vny ) = 0.0978
Mu / ( f b * Mn ) + 0.625 * Vu / ( f f * Vn ) = 0.4883
0.4883 < 1.375  AMAN (OK)

L. Tension Sagrod Resistance

Beban merata terfaktor pada gording, Quy = 0.2514 N/mm


Beban terpusat terfaktor pada gording, Puy = 547.23 N/m
Panjang sagrod (jarak antara gording), Ly = L2 = 600 m
Gaya tarik pada sagrod akibat beban terfaktor,
Tu = Quy * Ly + Puy = 698 N
Tegangan leleh baja, fy = 240 MPa
Tegangan tarik putus, fu = 400 MPa
Diameter sagrod, d= 10 mm
2
Luas penampang brutto sagrod, Ag = p / 4 * d 2 = 78.54 mm
2
Luas penampang efektif sagrod, Ae = 0.90 * Ag = 70.69 mm

Tahanan tarik sagrod berdasarkan luas penampang brutto,


f * Tn = 0.90 * Ag * f y = 16965 N
Tahanan tarik sagrod berdasarkan luas penampang efektif,
f * Tn = 0.75 * Ae * f u = 21206 N
Tahanan tarik sagrod (terkecil) yang digunakan,  f * Tn = 16965 N
Syarat yg harus dipenuhi : Tu  f * Tn
698 < 16965  AMAN (OK)
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 33 of 41

5.2 Tie Rod Bracing Design

Gaya tarik pada track stank akibat beban terfaktor,


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 34 of 41

Gaya tarik pada track stank akibat beban terfaktor, Tu = 488.77 N

PLAT SAMBUNG DATA PLAT SAMBUNG


Tegangan leleh baja, fy = 240 MPa
Tegangan tarik putus, f up = 400 MPa
Tebal plat sambung, tp = 8 mm
Lebar plat sambung, Lp = 50 mm
TRACK STANK DATA TRACK STANK
Tegangan leleh baja, fy = 240 MPa
Tegangan tarik putus, fu = 400 MPa
Diameter track stank, dt = 16 mm
BAUT DATA BAUT
Jenis baut, Tipe A-325
Tegangan leleh baja, fy = 740 MPa
Tegangan tarik putus, f ub = 825 MPa
Diameter baut, db = 16 mm
Jumlah baut, n= 2 unit
LAS SUDUT DATA LAS SUDUT
Tipe, Mutu : E7013
Tegangan tarik putus logam las, f uw = 390 MPa
Tebal las, tw = 4 mm
Panjang las, Lw = 100 mm

1. TAHANAN TARIK PLAT


2
Luas penampang bruto, Ag = tp * Lp = 400.00 mm
2
Luas penampang efektif, Ae = tp * [ Lp - ( db + 2 ) ] = 256.00 mm
Tahanan tarik plat berdasarkan luas penampang brutto,
f * Tn = 0.90 * Ag * f y = 86400 N
Tahanan tarik plat berdasarkan luas penampang efektif,
p
f * Tn = 0.75 * Ae * f u = 76800 N
Tahanan tarik plat (terkecil) yang digunakan, f * Tn = 76800 N
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 35 of 41

2. TAHANAN TARIK TRACK STANK


Ag = p / 4 * dt2 =
2
Luas penampang bruto, 201.06 mm
2
Luas penampang efektif, Ae = 0.90 * Ag = 180.96 mm

Tahanan tarik track stank berdasarkan luas penampang brutto,


f * Tn = 0.90 * Ag * f y = 43429 N
Tahanan tarik track stank berdasarkan luas penampang efektif,
p
f * Tn = 0.75 * Ae * f u = 54287 N
Tahanan tarik plat (terkecil) yang digunakan, f * Tn = 43429 N

3. TAHANAN GESER BAUT DAN TUMPU PLAT


Faktor reduksi kekuatan geser baut, ff = 0.75
Kondisi sambungan baut geser tunggal, m= 1
Faktor pengaruh ulir pada bidang geser, r1 = 0.4
Luas penampang 1 baut, Ab = p / 4 * db2 = 201.06
b
Tahanan geser baut, f f * Vn = f f * r1 * m * Ab * f u * n = 99526 N
p
Tahanan tumpu plat, f f * Rn = 2.4 * f f * db * tp * f u * n = 92160 N
Tahanan sambungan baut (terkecil), f f * Vn = 92160 N
4. TAHANAN LAS
Tegangan tarik putus plat, f up = 400 MPa
Tegangan tarik putus logam las, f uw = 390 MPa
f up > f uw  Kuat tarik sambungan, fu = 390 MPa
Tahanan las sudut,
f f * Rnw = 0.75 * tw * ( 0.60 * f u ) * Lw = 70200 N

5. REKAP TAHANAN SAMBUNGAN


No Tahanan sambungan f * Tn
berdasarkan kekuatan (N)
1 Plat 76800
2 Track stank 43429
3 Baut 92160
4 Las 70200
Tahanan sambungan terkcil 43429

Gaya tarik pada track stank akibat beban terfaktor, Tu = 488.77 N


Syarat yg harus dipenuhi :
Tu  f * Tn
489 < 43429  AMAN (OK)
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 36 of 41

5.3 Connection Rafter to Rafter

a) Shear Checking

1. Allowable bolt shear

Ab = 3.14*82 = 200.96 mm2

V =

= 0.75 x 0.5 x 825 N/mm2 x 200.96 mm2

= 62172 N = 6.21 ton

q1 = n x FV

q1 = 10 x 6.21 ton = 62.1 ton

where : n = number of bolt

FV = M16 = 16mm HS Bolt shear capacity


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 37 of 41

2. Allowable welding shear

q 2=
[ a
√2 ]
x(2 D−3 tf −3r ) x 0.4 x Fe70xx

q 2=
[√ 0.6
2 ]
x (2 x 20−3 x 0.8−3 x 1.1) x 0.4 x 4.826=28.09 ton

Where : tw=6mm, tf=9mm, r=12mm, D=250mm (IWF 250x125x6x9)

Fe70xx = yield of welding = 4.825 t/cm2

a = thickness welding = 0.6 cm

3. Allowable beam shear

q3 = (D – 2tf) x tw x 0.4 x Fy

q3 = (25cm – 2x0.9cm) x 0.6cm x 0.4x 2.4ton/cm2 = 13.36 ton

4. Actual shear from staad

VS = 0.807 ton

5. Ratio
Vs
ratio=
min(q 1 , q 2 , q 3)

0.807
ratio= =0.060
13.36

ratio = 0.06 ≤ 1................OK


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 38 of 41

b) Momen Checking

1. Allowable momen by bolt

M1 = 6 x Ta x 25cm

M1 = 6 x 9.5 ton x 25cm = 14.25 ton.m

where : 6 = number of bolt tension

Ta = 1 M16 HS Bolt tension

2. Allowable moment by welding connection

M2 = Swf x 0.66 Fe70xx = 972.29cm3 x 0.66 x 4.826 ton/cm2 = 30.96 ton.m

Where :
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 39 of 41

Swf = Static moment of welding

( ) ( )
3
1 a a 2 1 a
Swf =6 x x Bf x ( ) +4 x Bf x x H +2x x x¿¿
12 √2 √2 12 √2

Swf =6 x
1
12
x 12.5 x
0.6 3
√2 ( )
+ 4 x 12.5 x
0.6
√2 ( ) 1
x 252+ 2 x x
0.6
12 √2 ( )
x ¿¿

Swf = 972.29 cm3

3. Actual momen from staad

Mz = 1.34 ton-m

4. Ratio
Mz
ratio=
min(M 1, M 2)

Mz 1.34
Ratio= = =0.09 ≤ 1.................OK
min(M 1 , M 2) 14.25

c) Plat thickness checking

Me = 1/6bp x tp2 x Fb

Me = 1/6bp x tp2 x 0.75 x 240

Me = 1/6 x tp2 x 180

1
x bp x 180
1 6
=
tp
2
Me

2 Me
tp =
1
x bp x 180
6

tp=
√ Me
30 x bp
=

7.047
30 x 15.04
=0.125 cm

Control : tp ≤ thickness.......0.125cm ≤ 1.6cm...............OK


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 40 of 41

where : αm = CaCb . (Af/Aw)1/3 . (Pe/db)1/4


Ca = constant = 1.13
Cb = (bfb / bp)1/2
bp = bfb + 2.5 cm (maximum effective width)
Fb = 0.75Fy
tp = end plate thickness
Ff = flange force
Me = extreme fibre bending moment in end plate
Pe = effective bolt distance from top of beam flange
= a1 - db/4 - 0.707*g
Pf = bolt distance from top of beam flange (a1)
bfb = beam flange width in end plate
g = fillet weld size or reinforcement of groove weld

αm x Ff x Pe 1.21 x 5.56 ton x 4.17 cm


Me= = =7.047 ton . cm
4 4
1 1 1 1
Af 3 Pe 4 11.25 3 4.17 4
αm=Ca x Cb x ( ) x ( ) =1.13 x 0.911 x ( ) x( ) =1.21
Aw db 13.92 1.6

Ca=1.13

Cb=
√ Bf
Bf +1∈¿
=
√ 12.5 cm
12.5 cm+2.54 cm
=0.911cm ¿

Af =Bf +tf =12.5 cm x 0.9 cm=11.25 cm

Aw=( D−2 x tf ) x tw =( 25 cm−2 x 0.9 ) x 0.6=13.92

M 134 ton . cm
Ff = = =5.56 ton
D−tf 25 cm−0.9 cm

Pe=a− ( db4 )−0.707 x g=5 cm−( 1.64cm )−0.707 x 0.6=4.17 cm


bp=Bf +1∈¿ 12.5 cm+1∈¿15.04 cm
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 41 of 42

5.4 Connection Beam to Column

a) Shear Checking

1. Allowable bolt shear

Ab = 3.14*82 = 200.96 mm2

V =

= 0.75 x 0.5 x 825 N/mm2 x 200.96 mm2

= 62172 N = 6.21 ton

q1 = n x FV

q1 = 3 x 6.21 ton = 18.63 ton

where : n = number of bolt

FV = M16 = 16mm HS Bolt shear capacity


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 42 of 43

2. Allowable welding shear

q 2=
[√ a
2 ]
x(2 D−3 tf −3r ) x 0.4 x Fe70xx

q 2=
[ 0.6
√2 ]
x (2 x 25−3 x 0.9−3 x 1.2) x 0.4 x 4.826=35.78 ton

Where : tw=6mm, tf=9mm, r=12mm, D=250mm (IWF 250x125x6x9)

Fe70xx = yield of welding = 4.825 t/cm2

a = thickness welding = 0.6 cm

3. Allowable beam shear

q3 = (D – 2tf) x tw x 0.4 x Fy

q3 = (25cm – 2x0.9cm) x 0.6cm x 0.4x 2.4ton/cm2 = 13.36 ton

4. Actual shear from staad

VS = 0.806 ton

5. Ratio
Vs
ratio=
min(q 1 , q 2 , q 3)

0.806
ratio= =0.060
13.36

ratio = 0.06 ≤ 1................OK


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 43 of 44

b) Momen Checking

1. Allowable momen by bolt

M1 = 3 x Ta x 25cm

M1 = 3 x 9.5 ton x 25cm = 7.125 ton.m

where : 3 = number of bolt tension

Ta = 1 M16 HS Bolt tension

2. Allowable moment by welding connection

M2 = Swf x 0.66 Fe70xx = 972.29cm3 x 0.66 x 4.826 ton/cm2 = 30.96 ton.m

Where :

Swf = Static moment of welding


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 44 of 45

( ) ( )
3
1 a a 2 1 a
Swf =6 x x Bf x ( ) +4 x Bf x x H +2x x x¿¿
12 √2 √2 12 √2

Swf =6 x
1
12
x 12.5 x
0.6 3
√2 ( )
+ 4 x 12.5 x
0.6
√2 ( ) 1
x 252+ 2 x x
12
0.6
√2 ( )
x ¿¿

Swf = 972.29 cm3

3. Actual momen from staad

Mz = 1.34 ton-m

4. Ratio
Mz
ratio=
min(M 1, M 2)

Mz 1.34
Ratio= = =0.188 ≤ 1.................OK
min(M 1 , M 2) 7.125

c) Plat thickness checking

Me = 1/6bp x tp2 x Fb

Me = 1/6bp x tp2 x 0.75 x 240

Me = 1/6 x tp2 x 180

1
x bp x 180
1 6
=
tp
2
Me

2 Me
tp =
1
x bp x 180
6

tp=
√ Me
30 x bp
=

7.047
30 x 15.04
=0.125 cm

Control : tp ≤ thickness.......0.125cm ≤ 1.6cm...............OK


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 45 of 46

where : αm = CaCb . (Af/Aw)1/3 . (Pe/db)1/4


Ca = constant = 1.13
Cb = (bfb / bp)1/2
bp = bfb + 2.5 cm (maximum effective width)
Fb = 0.75Fy
tp = end plate thickness
Ff = flange force
Me = extreme fibre bending moment in end plate
Pe = effective bolt distance from top of beam flange
= a1 - db/4 - 0.707*g
Pf = bolt distance from top of beam flange (a1)
bfb = beam flange width in end plate
g = fillet weld size or reinforcement of groove weld

αm x Ff x Pe 1.21 x 5.56 ton x 4.17 cm


Me= = =7.047 ton . cm
4 4
1 1 1 1
Af 3 Pe 4 11.25 3 4.17 4
αm=Ca x Cb x ( ) x ( ) =1.13 x 0.911 x ( ) x( ) =1.21
Aw db 13.92 1.6

Ca=1.13

Cb=
√ Bf
Bf +1∈¿
=
√ 12.5 cm
12.5 cm+2.54 cm
=0.911cm ¿

Af =Bf +tf =12.5 cm x 0.9 cm=11.25 cm

Aw=( D−2 x tf ) x tw =( 25 cm−2 x 0.9 ) x 0.6=13.92

M 134 ton . cm
Ff = = =5.56 ton
D−tf 25 cm−0.9 cm

Pe=a− ( db4 )−0.707 x g=5 cm−( 1.64cm )−0.707 x 0.6=4.17 cm


bp=Bf +1∈¿ 12.5 cm+1∈¿15.04 cm
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 46 of 47

5.5 Connection Rafter to Column

a) Shear Checking

1. Allowable bolt shear

Ab = 3.14*82 = 200.96 mm2

V =

= 0.75 x 0.5 x 825 N/mm2 x 200.96 mm2

= 62172 N = 6.21 ton

q1 = n x FV

q1 = 10 x 6.21 ton = 62.1 ton

where : n = number of bolt

FV = M16 = 16mm HS Bolt shear capacity


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 47 of 48

2. Allowable welding shear

q 2=
[√ a
2 ]
x(2 D−3 tf −3r ) x 0.4 x Fe70xx

q 2=
[ 0.6
√2 ]
x (2 x 25−3 x 0.9−3 x 1.2) x 0.4 x 4.826=35.78 ton

Where : tw=6mm, tf=9mm, r=12mm, D=250mm (IWF 250x125x6x9)

Fe70xx = yield of welding = 4.825 t/cm2

a = thickness welding = 0.6 cm

3. Allowable beam shear

q3 = (D – 2tf) x tw x 0.4 x Fy

q3 = (25cm – 2x0.9cm) x 0.6cm x 0.4x 2.4ton/cm2 = 13.36 ton

4. Actual shear from staad

VS = 0.807 ton

5. Ratio
Vs
ratio=
min(q 1 , q 2 , q 3)

0.807
ratio= =0.060
13.36

ratio = 0.06 ≤ 1................OK


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 48 of 49

b) Momen Checking

1. Allowable momen by bolt

M1 = 6 x Ta x 25cm

M1 = 6 x 9.5 ton x 25cm = 14.25 ton.m

where : 6 = number of bolt tension

Ta = 1 M16 HS Bolt tension

2. Allowable moment by welding connection

M2 = Swf x 0.66 Fe70xx = 972.29cm3 x 0.66 x 4.826 ton/cm2 = 30.96 ton.m

Where :
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 49 of 50

Swf = Static moment of welding

( ) ( )
3
1 a a 2 1 a
Swf =6 x x Bf x ( ) +4 x Bf x x H +2x x x¿¿
12 √2 √2 12 √ 2

Swf =6 x
1
12
x 12.5 x
0.6 3
√2 ( )
+ 4 x 12.5 x
0.6
√2 ( ) 1
x 252+ 2 x x
0.6
12 √2 ( )
x ¿¿

Swf = 972.29 cm3

3. Actual momen from staad

Mz = 1.34 ton-m

4. Ratio
Mz
ratio=
min(M 1, M 2)

Mz 1.34
Ratio= = =0.09 ≤ 1.................OK
min(M 1 , M 2) 14.25

c) Plat thickness checking

Me = 1/6bp x tp2 x Fb

Me = 1/6bp x tp2 x 0.75 x 240

Me = 1/6 x tp2 x 180

1
x bp x 180
1 6
=
tp
2
Me

2 Me
tp =
1
x bp x 180
6

tp=
√ Me
30 x bp
=

7.047
30 x 15.04
=0.125 cm

Control : tp ≤ thickness.......0.125cm ≤ 1.6cm...............OK


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 50 of 51

where : αm = CaCb . (Af/Aw)1/3 . (Pe/db)1/4


Ca = constant = 1.13
Cb = (bfb / bp)1/2
bp = bfb + 2.5 cm (maximum effective width)
Fb = 0.75Fy
tp = end plate thickness
Ff = flange force
Me = extreme fibre bending moment in end plate
Pe = effective bolt distance from top of beam flange
= a1 - db/4 - 0.707*g
Pf = bolt distance from top of beam flange (a1)
bfb = beam flange width in end plate
g = fillet weld size or reinforcement of groove weld

αm x Ff x Pe 1.21 x 5.56 ton x 4.17 cm


Me= = =7.047 ton . cm
4 4
1 1 1 1
Af 3 Pe 4 11.25 3 4.17 4
αm=Ca x Cb x ( ) x ( ) =1.13 x 0.911 x ( ) x( ) =1.21
Aw db 13.92 1.6

Ca=1.13

Cb=
√ Bf
Bf +1∈¿
=
√ 12.5 cm
12.5 cm+2.54 cm
=0.911cm ¿

Af =Bf +tf =12.5 cm x 0.9 cm=11.25 cm

Aw=( D−2 x tf ) x tw =( 25 cm−2 x 0.9 ) x 0.6=13.92

M 134 ton . cm
Ff = = =5.56 ton
D−tf 25 cm−0.9 cm

Pe=a− ( db4 )−0.707 x g=5 cm−( 1.64cm )−0.707 x 0.6=4.17 cm


bp=Bf +1∈¿ 12.5 cm+1∈¿15.04 cm
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 51 of 52

5.6 Connection Column to Baseplat

H 250 x 250 x 9 x 14
Profil = H 250 x 250 (D=250mm, Bf=250mm, tw=9mm, tf=14mm)
Base plate = 300 x 300 x 20 (B=300mm, N=300mm, thk=20mm)
g = 6mm (welding)
Anc. Bolt = 4-M22
a = 150 mm
b = 150 mm

Compression checking
1. Allowable IWF column compression
P1 = A x 0.6Fy = 92.18 cm2 x 0.6 x 2.4ton/cm2 = 132.73 ton
2. Allowable compress of weld
P2 = Fp x B x N
= 240 x 0.30 x 0.30
= 21.6 ton
Where =
Fp = tp2 x 0.25 x fy/m2
= 202 x 0,25 x 2,4
= 240
3. Allowable compress of weld
g
P 3= x ( 2 D+4 xBf −2 tw ) x 0.6 F e70xx
√2
PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 52 of 53

0.6
P 3= x ( 2 x 25+ 4 x 25−2 x 0.9 ) x 0.6 x 4.826=182.06 ton
√2
4. Actual compress from staad
P4 = 2.32 ton
P4 2.32
ratio= = =0.107 Ratio ≤ 1.........OK
min(P 1 , P 2 , P 3) 21.6

Shear Checking

1. Allowable IWF column shear

Q1 = (D-2tf) x tw x 0.4Fy = (25cm-2x1.4cm) x 0.9cm x 0.4 x 2.4 = 19.18 ton

2. Allowable anchor bolt shear

Q2 = n. Fv = 4 x 11.75 = 47.01 ton

where

Ab = 3.14*112 = 379.9 mm2

V =

= 0.75 x 0.5 x 825 N/mm2 x 379.9 mm2

= 117531 N = 11.75 ton

3. Allowable shear of weld


g
Q 3= x 2 x ( D−2 xtf ) x 0.4 x Fe 70 xx
√2
0.6 cm t
Q 3= x 2 x ( 25−2 x 1.4 ) x 0.4 x 4.826 2 =36.36 ton
√2 cm

4. Actual shear from staad

Q 4=√ Fx2 + Fz 2=√ 2.712+ 0.0022=2.71 ton

5. Ratio

Q4 2.71
ratio= = =0.141 ≤ 1...............OK
min(Q 1 ,Q 2 ,Q 3) 19.18

Thickness of base plate


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 53 of 54

tp=2 k
√ fp
Fy
=2 x 5

0.0025
2.4
=0.32cm

Control ..... tp ≤ thickness......0.32 ≤ 2 cm....OK

Where :

k =max ( B−0.82 xBf , N −0.95


2
xD
)=max ( 30 cm−0.82 x 25 cm , 30 cm−0.95
2
x 25 cm
)
k =max ( 5 cm ,3.125 cm) =5 cm

P4 2.32 ton t
fp= = =0.0025 2
BxN 30 cmx 30 cm cm

6. DESIGN OF CONCRETE STRUCTURE

Table Reaction Summary output upper structure


PT. Connusa Energindo
PT. PERUSAHAAN GAS
NEGARA
(Persero) Tbk. PT. PGAS Solution

CALCULATION FOUNDATION AND STRUCTURE FOR METERING BUILDING


Document No. Rev. Date
MJPN-PGAS-3514-CV-CA-001 0 11/06/2015
Page 54 of 55

6.1 Concrete Modeling

Dead Load
Self weight -1
From shelter Fx = 527 kg
Fy = 3010 kg
Fz = 1080 kg
Mx = 16561 kgm
My = 11212 kgm

You might also like