WO2022118875A1 - セルロース繊維の湿潤シート及び成形体の製造方法 - Google Patents
セルロース繊維の湿潤シート及び成形体の製造方法 Download PDFInfo
- Publication number
- WO2022118875A1 WO2022118875A1 PCT/JP2021/044065 JP2021044065W WO2022118875A1 WO 2022118875 A1 WO2022118875 A1 WO 2022118875A1 JP 2021044065 W JP2021044065 W JP 2021044065W WO 2022118875 A1 WO2022118875 A1 WO 2022118875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellulose
- wet sheet
- pulp
- less
- thickness
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 229920003043 Cellulose fiber Polymers 0.000 title description 61
- 229920002678 cellulose Polymers 0.000 claims abstract description 252
- 239000001913 cellulose Substances 0.000 claims abstract description 251
- 239000000835 fiber Substances 0.000 claims abstract description 158
- 238000000034 method Methods 0.000 claims abstract description 58
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 239000002121 nanofiber Substances 0.000 claims description 116
- 239000002002 slurry Substances 0.000 claims description 78
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- 230000018044 dehydration Effects 0.000 claims description 30
- 238000006297 dehydration reaction Methods 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 22
- 230000003750 conditioning effect Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 9
- 229920001410 Microfiber Polymers 0.000 abstract 2
- 239000003658 microfiber Substances 0.000 abstract 2
- 235000010980 cellulose Nutrition 0.000 description 237
- 239000000047 product Substances 0.000 description 63
- 239000002994 raw material Substances 0.000 description 33
- 229920001131 Pulp (paper) Polymers 0.000 description 29
- 206010016807 Fluid retention Diseases 0.000 description 27
- 239000006185 dispersion Substances 0.000 description 26
- 239000000123 paper Substances 0.000 description 24
- 238000009826 distribution Methods 0.000 description 22
- 239000002655 kraft paper Substances 0.000 description 20
- 239000002245 particle Substances 0.000 description 20
- 238000011282 treatment Methods 0.000 description 18
- 238000001035 drying Methods 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- 239000002609 medium Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- 239000011121 hardwood Substances 0.000 description 10
- 239000011122 softwood Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000012736 aqueous medium Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 235000001727 glucose Nutrition 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 150000004676 glycans Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 206010061592 cardiac fibrillation Diseases 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- 230000002600 fibrillogenic effect Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 238000010009 beating Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- -1 phosphorus oxo acid Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 244000000626 Daucus carota Species 0.000 description 2
- 235000002767 Daucus carota Nutrition 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000219146 Gossypium Species 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- XJJFYOGDNOXLPI-UHFFFAOYSA-H P(=O)([O-])([O-])[O-].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].P(=O)([O-])([O-])[O-] Chemical compound P(=O)([O-])([O-])[O-].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].P(=O)([O-])([O-])[O-] XJJFYOGDNOXLPI-UHFFFAOYSA-H 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 241000186514 Warburgia ugandensis Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical compound [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 229920001276 ammonium polyphosphate Polymers 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- DNCQWNWCEBTKGC-UHFFFAOYSA-N azane;phosphorous acid Chemical compound N.N.OP(O)O DNCQWNWCEBTKGC-UHFFFAOYSA-N 0.000 description 1
- NDKBVBUGCNGSJJ-UHFFFAOYSA-M benzyltrimethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)CC1=CC=CC=C1 NDKBVBUGCNGSJJ-UHFFFAOYSA-M 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- XBMOWLAOINHDLR-UHFFFAOYSA-N dipotassium;hydrogen phosphite Chemical compound [K+].[K+].OP([O-])[O-] XBMOWLAOINHDLR-UHFFFAOYSA-N 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- ZRRLFMPOAYZELW-UHFFFAOYSA-N disodium;hydrogen phosphite Chemical compound [Na+].[Na+].OP([O-])[O-] ZRRLFMPOAYZELW-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 150000002304 glucoses Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000003944 halohydrins Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- SNKMVYBWZDHJHE-UHFFFAOYSA-M lithium;dihydrogen phosphate Chemical compound [Li+].OP(O)([O-])=O SNKMVYBWZDHJHE-UHFFFAOYSA-M 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- ATGAWOHQWWULNK-UHFFFAOYSA-I pentapotassium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [K+].[K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O ATGAWOHQWWULNK-UHFFFAOYSA-I 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- OQZCJRJRGMMSGK-UHFFFAOYSA-M potassium metaphosphate Chemical compound [K+].[O-]P(=O)=O OQZCJRJRGMMSGK-UHFFFAOYSA-M 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 235000019828 potassium polyphosphate Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 150000003214 pyranose derivatives Chemical group 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007652 sheet-forming process Methods 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- KIMPPGSMONZDMN-UHFFFAOYSA-N sodium;dihydrogen phosphite Chemical compound [Na+].OP(O)[O-] KIMPPGSMONZDMN-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- VKFFEYLSKIYTSJ-UHFFFAOYSA-N tetraazanium;phosphonato phosphate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])([O-])=O VKFFEYLSKIYTSJ-UHFFFAOYSA-N 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- MVGWWCXDTHXKTR-UHFFFAOYSA-J tetralithium;phosphonato phosphate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-]P([O-])(=O)OP([O-])([O-])=O MVGWWCXDTHXKTR-UHFFFAOYSA-J 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XWKBMOUUGHARTI-UHFFFAOYSA-N tricalcium;diphosphite Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])[O-].[O-]P([O-])[O-] XWKBMOUUGHARTI-UHFFFAOYSA-N 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- CELVKTDHZONYFA-UHFFFAOYSA-N trilithium;phosphite Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])[O-] CELVKTDHZONYFA-UHFFFAOYSA-N 0.000 description 1
- VMFOHNMEJNFJAE-UHFFFAOYSA-N trimagnesium;diphosphite Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])[O-].[O-]P([O-])[O-] VMFOHNMEJNFJAE-UHFFFAOYSA-N 0.000 description 1
- PUVAFTRIIUSGLK-UHFFFAOYSA-M trimethyl(oxiran-2-ylmethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1CO1 PUVAFTRIIUSGLK-UHFFFAOYSA-M 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- NCPXQVVMIXIKTN-UHFFFAOYSA-N trisodium;phosphite Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])[O-] NCPXQVVMIXIKTN-UHFFFAOYSA-N 0.000 description 1
- YSGSDAIMSCVPHG-UHFFFAOYSA-N valyl-methionine Chemical compound CSCCC(C(O)=O)NC(=O)C(N)C(C)C YSGSDAIMSCVPHG-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21J—FIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
- D21J3/00—Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/16—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
- D21H11/18—Highly hydrated, swollen or fibrillatable fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H15/00—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
- D21H15/02—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21J—FIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
- D21J3/00—Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
- D21J3/12—Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds of sheets; of diaphragms
Definitions
- the present invention relates to a method for producing a wet sheet of cellulose fibers and a molded product.
- Nanotechnology aimed at obtaining new physical properties that are different from the properties of a single substance by refining the substance to the nano level has been attracting attention.
- Nanotechnology is also applied to cellulosic raw materials, and cellulose fine fibers obtained by chemically treating and crushing pulp to the nano level are expected to be used for various purposes because of their excellent strength and elasticity.
- a molded product produced by slurrying cellulose fine fibers and drying / molding them is useful as a versatile material because it has high strength and is a reusable organic resource. Is.
- Patent Document 1 is "a method for forming a CNF, which comprises filling a die containing a cellulose nanofiber (CNF) using a steam permeation means and applying a load to the slurry containing CNF to concentrate the slurry.”
- CNF cellulose nanofiber
- the document describes "a CNF molding method capable of easily adjusting drying conditions, having no shrinkage or cracking, and stably obtaining a CNF molded product having a highly advanced three-dimensional structure with high productivity, and a CNF obtained by the molding method. The purpose is to provide a molded body.
- the main problem to be solved by the present invention is a wet sheet that is hard to break in manufacturing a molded body, has a stable shape, and is easy to handle in processing, and a molded body manufactured from the wet sheet.
- the purpose is to provide a manufacturing method.
- Patent Document 1 Since the slurry contains a large amount of water, it is difficult to determine its shape.
- Patent Document 1 the slurry is placed on a porous body, the upper part of the slurry is covered with another porous body, and the slurry is crushed by applying pressure to the two porous bodies.
- the method of drying is adopted. In this method, when pressure is applied to the slurry in the direction of gravity, a compact with a small thickness difference is formed, but when pressure is applied in a direction other than the direction of gravity, the concentration of the slurry is biased due to its own weight. Since it is generated, a molded body having a considerable thickness difference is molded. Further, when the slurry having an uneven concentration is dried, fracture occurs due to the difference in shrinkage rate.
- the molded body has sufficient dehydration property.
- the wet sheet is tangible, has a water content of 60% by mass or more, and has a thickness in the above range, it can be easily deformed and can be processed into a stable shape. Further, the wet sheet is fixed so that pulp and cellulose fine fibers do not move freely in the wet sheet unlike a slurry. In addition, the wet sheet is less likely to break due to the flow of the slurry when the molded product is manufactured, and the bulkiness is not relatively large, so that the wet sheet is easy to handle in processing. ..
- the cellulose fine fibers consist of at least one of cellulose nanofibers and microfibrillated cellulose having a larger average fiber diameter than the cellulose nanofibers.
- the wet sheet of the first aspect consist of at least one of cellulose nanofibers and microfibrillated cellulose having a larger average fiber diameter than the cellulose nanofibers.
- the cellulose fine fibers used for the wet sheet may be cellulose nanofibers, microfibrillated cellulose, or a mixture of cellulose nanofibers and microfibrillated cellulose.
- the wet sheet is not sufficiently water-retaining with pulp alone, but is provided with water-retaining because it contains at least one of cellulose nanofibers and microfibrillated cellulose having excellent water retention. It has become.
- Thickness change rate ((thickness of wet sheet after applying 100 kPa pressure in the thickness direction for 1 second)-(thickness of wet sheet after applying 100 kPa pressure in the thickness direction for 5 seconds)) ⁇ (in the thickness direction) Wet sheet thickness after applying 100 kPa pressure for 1 second)
- the wet sheet of this embodiment is difficult to be deformed in the thickness direction, and breakage due to the deformation in the thickness direction occurs in manufacturing the molded product. The effect of being difficult is achieved. Further, since the wet sheet is less likely to be deformed in the thickness direction, partial unevenness is less likely to occur even when pressed and heated, and a homogeneous molded body can be produced.
- the solid content concentration of the cellulose fine fibers is 10% by mass or more.
- the molded body containing cellulose fine fibers has relatively high strength. Since the wet sheet of this embodiment contains the above-mentioned concentration of cellulose fine fibers, a molded product having sufficient strength can be produced from the wet sheet.
- a heating and pressurizing step of heating and pressurizing a wet sheet to obtain a molded product is provided.
- the wet sheet has pulp and cellulose fine fibers having an average fiber diameter of 10,000 nm or less, has a water content of 60% by mass or more, and has a thickness of 0.5 mm or more and 10 mm or less.
- a method for manufacturing a molded product is provided.
- Pulp and cellulose fine fibers are materials that form a wet sheet, and do not move freely like materials that form a slurry. In the case of a slurry, the shape of the entire slurry is deformed by its own weight during processing, but since this embodiment is a wet sheet, pulp and cellulose fine fibers forming the wet sheet are fixed in the wet sheet and the concentration is biased. Is unlikely to occur, so that breakage is unlikely to occur during processing, and a homogeneous molded body can be manufactured.
- the wet sheet has a water content of 60% by mass or more and a thickness of 0.5 mm or more and 10 mm or less.
- the slurry is processed into a sheet in the processing step to obtain a wet sheet.
- the wet sheet is in the form of a sheet, and its shape does not easily change due to its own weight.
- the cellulose fine fibers consist of at least one of cellulose nanofibers and microfibrillated cellulose having a larger average fiber diameter than the cellulose nanofibers.
- the thickness change rate obtained from Equation 1 shown below is 0.4 or less.
- Thickness change rate ((thickness of wet sheet after applying 100 kPa pressure in the thickness direction for 1 second)-(thickness of wet sheet after applying 100 kPa pressure in the thickness direction for 5 seconds)) ⁇ (in the thickness direction) Wet sheet thickness after applying 100 kPa pressure for 1 second)
- the solid content concentration of the cellulose fine fibers is 10% by mass or more.
- the dehydration step is a step performed without substantially heating.
- the moisture content changes locally in the wet sheet, and the moisture content of the entire wet sheet may become uneven.
- vaporization due to evaporation of water is less likely to occur, so that it is possible to prevent uneven concentration of cellulose fine fibers.
- a wet sheet that is hard to break in manufacturing a molded product, has a stable shape, and is easy to handle in processing, and a method for manufacturing a molded product manufactured from the wet sheet. ..
- the embodiment of the present invention is an example of the present invention.
- the scope of the present invention is not limited to the scope of the present embodiment.
- the wet sheet of this embodiment has pulp and cellulose fine fibers having an average fiber diameter of 10,000 nm or less, has a water content of 60% by mass or more, and has a thickness of 0.5 mm or more and 10 mm or less.
- Cellulose fine fibers may refer to cellulose nanofibers (hereinafter, may be referred to as “CNF”) and microfibrillated cellulose (hereinafter, “MFC”) having an average fiber diameter larger than that of the cellulose nanofibers. .) Consists of at least one of them.
- CNF cellulose nanofibers
- MFC microfibrillated cellulose
- Pulp Pulp is attached to the wet sheet and has a role of improving the dehydration of the wet sheet.
- the water content of the wet sheet can be kept within a desired range.
- the content ratio of pulp and cellulose fine fibers in the wet sheet the strength of the molded product can be kept within a desired range.
- the pulp used in this embodiment one type or two or more types can be selected and used from the raw material pulps of cellulose nanofibers described later.
- the pulp it is preferable to use pulp containing lignin, more preferably mechanical pulp, and particularly preferably BTMP. The use of these pulps further improves the dehydration of the cellulose fiber slurry.
- the pulp used in this embodiment is the same as the pulp used for cellulose fine fibers.
- the two have a high affinity, the outflow of cellulose fine fibers can be suppressed in the process of pressurizing the slurry to obtain a wet sheet, dehydration is facilitated, and the time spent in the process is short. I'm done.
- the above pulp may be unbeaten pulp or beaten pulp.
- unbeaten pulp When unbeaten pulp is used, the dehydration efficiency can be increased.
- the beaten pulp When the beaten pulp is used, the cellulose fine fibers are easily entangled with the pulp, the outflow of cellulose nanofibers and microfibrillated cellulose can be suppressed, and the number of hydrogen bond points is relatively large. It is possible to increase the strength and the like.
- the degree of beating of pulp can be measured by freeness, and the freeness of pulp is, for example, 200 to 800 ml, preferably 350 to 780 ml, and more preferably 400 to 750 ml.
- the freeness of the pulp exceeds 800 ml, the dehydration property of the wet sheet is improved, but it is easily broken when it is processed into a molded product or the like, and the fibers become rigid and the pulp and the cellulose fine fibers are integrated. There is a risk that the density will not improve.
- the freeness of the pulp is less than 200 ml, the dehydration property of the wet sheet may not be sufficiently improved, and the rigidity of the pulp fiber itself may be lowered, so that the wet sheet may not be able to maintain the sheet shape.
- Pulp freeness is a value measured in accordance with JIS P8121-2 (2012).
- the average fiber diameter of pulp can be adjusted depending on which type of pulp is selected and the degree of defibration.
- the average fiber diameter (average fiber width; average diameter of single fiber) of pulp is preferably more than 10 to 100 ⁇ m, more preferably more than 10 to 80 ⁇ m, and particularly preferably more than 10 to 60 ⁇ m.
- the average fiber diameter of the pulp is within the range, the dehydration property of the wet sheet is further improved by setting the pulp content within the range described later.
- the average fiber diameter of pulp can be measured by a fiber analyzer "FS5" manufactured by Valmet.
- the fiber analyzer "FS5" can measure the length and width of the cellulose fiber with high accuracy by image analysis when the diluted cellulose fiber passes through the measurement cell inside the fiber analyzer.
- the pulp content (solid content concentration) in the wet sheet is preferably 0.1 to 20% by mass, more preferably 0.5. It is -12% by mass, particularly preferably 1.0 to 8% by mass. If the content is less than 0.1% by mass, it takes time to dehydrate the wet sheet, which may lead to a decrease in productivity. Further, when the content (solid content concentration) exceeds 20% by mass, the content of cellulose fine fibers and the like is relatively reduced when the molded product or the like is manufactured from the wet sheet, so that the strength of the molded product or the like is relatively reduced. May not be guaranteed.
- Cellulose nanofibers have a large number of hydrogen bond points of cellulose fibers, and when mixed with a medium such as water or an organic solvent, they are said to have the property of dispersing and forming a three-dimensional network structure.
- This three-dimensional network structure is formed by mutual cellulose nanofibers forming the skeleton of the three-dimensional network structure, and although it is difficult to express, for example, a three-dimensional lattice like a jungle gym (however, the three-dimensional lattice is a regular arrangement). However, it may be an irregular arrangement).
- the inside of the three-dimensional lattice formed of the cellulose nanofibers becomes voids.
- Cellulose nanofibers can be obtained, for example, by defibrating (miniaturizing) plant-derived raw material pulp.
- the raw material pulp for cellulose nanofibers include wood pulp made from broadleaf trees, coniferous trees, etc., non-wood pulp made from straw, bagas, cotton, hemp, carrot fiber, etc., used tea paper, used envelope paper, and used magazine paper.
- DIP used paper pulp
- the above-mentioned various raw materials may be in the state of a pulverized product called, for example, a cellulosic powder.
- wood pulp in order to avoid contamination with impurities as much as possible.
- wood pulp for example, one kind or two or more kinds can be selected and used from chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP) and the like.
- the hardwood kraft pulp may be hardwood bleached kraft pulp, hardwood unbleached kraft pulp, or hardwood semi-bleached kraft pulp.
- the softwood kraft pulp may be softwood bleached kraft pulp, unbleached softwood kraft pulp, or semi-bleached softwood kraft pulp.
- thermomechanical pulp examples include stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemi-grand pulp (CGP), thermo-grand pulp (TGP), and ground pulp (GP).
- SGP stone ground pulp
- PGW pressurized stone ground pulp
- RGP refiner ground pulp
- CGP chemi-grand pulp
- TGP thermo-grand pulp
- GP ground pulp
- TMP thermomechanical pulp
- CMP chemithermomechanical pulp
- RMP refiner mechanical pulp
- BTMP bleached thermomechanical pulp
- Cellulose nanofibers may be pretreated prior to defibration.
- the raw material pulp may be mechanically pre-beaten, or the raw material pulp may be chemically modified.
- the method of preliminary beating is not particularly limited, and a known method can be used.
- Pretreatment of raw pulp by chemical method includes, for example, hydrolysis of polysaccharide with acid (eg, sulfuric acid) (acid treatment), hydrolysis of polysaccharide with enzyme (enzyme treatment), swelling of polysaccharide with alkali (alkali treatment). ), Oxidation of polysaccharides with an oxidizing agent (for example, ozone, etc.), Reduction of polysaccharides with a reducing agent (reduction treatment), Oxidation with a TEMPO catalyst (oxidation treatment), Anionization by phosphate esterification or carbamate formation, etc. (Anion treatment), cationization (cation treatment) and the like can be exemplified.
- acid eg, sulfuric acid
- enzyme treatment e.g., enzyme treatment
- swelling of polysaccharide with alkali alkali treatment
- Oxidation of polysaccharides with an oxidizing agent for example, ozone, etc.
- Reduction treatment Reduction of poly
- the pulp When the pulp is treated with alkali, the hemicellulose and the hydroxyl group of the cellulose are partially dissociated, and the molecules are anionized to weaken the intramolecular and intermolecular hydrogen bonds, which are easily deflated to promote the dispersion of the cellulose fibers. ..
- alkali used for the alkali treatment examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, aqueous ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide and the like.
- examples include organic alkali. From the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
- Enzyme treatment, acid treatment, and oxidation treatment can lower the water retention of cellulose nanofibers, increase the crystallinity, and increase the homogeneity. In this respect, if the degree of water retention of the cellulose nanofibers is low, dehydration is likely to occur, and the dehydration property of the wet sheet is improved.
- the raw material pulp is subjected to enzyme treatment, acid treatment, or oxidation treatment, the hemicellulose and the amorphous region of cellulose contained in the pulp are decomposed, and as a result, the energy of the micronization treatment can be reduced, and the uniformity and dispersibility of the cellulose fine fibers can be reduced. Can be improved.
- the dispersibility of the cellulose fibers contributes to the homogeneity of the molded product or the like when, for example, a molded product or the like is produced from the cellulose fiber slurry.
- the pretreatment is performed, the average fiber diameter of the cellulose nanofibers becomes small, and as a result, the aspect ratio of the cellulose nanofibers is lowered. Therefore, it is preferable to avoid excessive pretreatment.
- cellulose nanofibers modified by introducing anionic functional groups by anionization As cellulose nanofibers modified by introducing anionic functional groups by anionization, cellulose nanofibers esterified with phosphoroxo acid, carbamateized cellulose nanofibers, and hydroxyl groups of pyranose rings are directly oxidized to carboxyl groups. Examples thereof include cellulose nanofibers.
- Cellulose nanofibers modified by introducing anionic functional groups have relatively high dispersibility. It is presumed that this is because the anionic functional group locally causes a charge bias, and this anionic functional group easily forms a hydrogen bond with water or an organic solvent in the dispersion liquid.
- esterification with phosphoroxo acid which is an example of anionization
- the fiber raw material can be made finer, and the produced cellulose nanofibers have a large aspect ratio, excellent strength, and high light transmittance and viscosity. Will be.
- Esterification with a phosphorus oxo acid can be carried out, for example, by the method described in JP-A-2019-199671.
- the esterification reaction with a phosphoric acid proceeds by adding a solution having a pH of less than 3.0 consisting of an additive containing at least one of a phosphoric acid and a phosphoric acid metal salt to the cellulose fiber and heating the cellulose fiber.
- additives include phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium polyphosphate, lithium dihydrogen phosphate, trilithium trilithium phosphate, and dihydrogen phosphate.
- Each of these additives can be used alone or in combination of two or more.
- phosphonic acids it is preferable to use phosphonic acids as a part or all of the phosphorus oxo acids. It is preferable to use phosphonic acids because the yellowing of the cellulose fibers is prevented, so that the color of the molded product is not affected easily.
- Cellulose fiber has a structure in which glucose is a constituent unit and a plurality of glucoses are polymerized.
- the ester group of the phosphorus oxo acid is substituted with one particular glucose and may not be substituted with another glucose. Further, the ester group of the phosphorus oxo acid may be substituted and introduced at a plurality of places in a specific glucose.
- Examples of the cellulose nanofibers into which a cationic functional group has been introduced by the cation treatment include cellulose nanofibers into which a group having a cation such as ammonium (for example, quaternary ammonium), phosphonium, and sulfonium has been introduced, but the present invention is not limited to this. ..
- Examples of the method for introducing a group having a cation include a method in which a reactant and a catalyst are reacted with a cellulose fiber under a solvent. If the reaction temperature is 10 ° C. or higher, 90 ° C. or lower, and the reaction time is 10 minutes or longer and 10 hours or shorter, the introduction is promoted.
- Examples of the reaction product include glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrite, and halohydrin types thereof.
- Examples of the catalyst include sodium hydroxide, potassium hydroxide and the like. Water or alcohol can be used as the solvent, and alcohol having 4 or less carbon atoms can be exemplified as the alcohol.
- the reaction product may be preferably 5% by mass or more, more preferably 10% by mass or more with respect to 100% by mass of the cellulose fiber.
- the catalyst is preferably 0.5% by mass or more, more preferably 1% by mass or more with respect to 100% by mass of the cellulose fibers.
- the amount of the cationic substituent introduced into the cellulose fiber can be adjusted depending on the presence or absence of the reactant and the catalyst and the type of the solvent. Assuming that glucose (for example, a glucopyranose ring) of a cellulose fiber is one structural unit, it is preferable that 0.01 to 0.4 cationic substituents are introduced per structural unit. Below this range, the effect of introducing a cationic functional group, that is, the easy fiber defibration effect is poor. If it exceeds this range, excessive swelling and dissolution of cellulose nanofibers may occur.
- Cellulose fiber defibration can be performed by the defibration device / method shown below.
- the defibration is, for example, one or more of a high-pressure homogenizer, a homogenizer such as a high-pressure homogenizer, a grinder, a stone mill type friction machine such as a grinder, a conical refiner, a refiner such as a disc refiner, and various bacteria. It can be done by selectively using the means of. However, it is preferable to defibrate the cellulose fibers by using a device / method for miniaturizing with a water stream, particularly a high-pressure water stream.
- the dimensional uniformity and dispersion uniformity of the obtained cellulose nanofibers are very high.
- a grinder that grinds between rotating grindstones it is difficult to uniformly refine the cellulose fibers, and in some cases, there is a possibility that undissolved fiber lumps may remain.
- a grinder used for defibrating cellulose fibers for example, there is a mass colloider of Masuko Sangyo Co., Ltd.
- a device for miniaturizing with a high-pressure water flow for example, Sugino Machine Limited's Starburst (registered trademark) and Yoshida Kikai Kogyo Co., Ltd.'s Nanovater (registered trademark) are available.
- a high-speed rotary homogenizer used for defibrating cellulose fibers there is Clairemix-11S manufactured by M-Technique.
- the present inventors have defibrated cellulose fibers by a method of grinding between rotating grindstones and a method of miniaturizing with a high-pressure water flow, respectively, and when each of the obtained fibers is observed under a microscope, the high-pressure water flow is used. It has been found that the fibers obtained by the miniaturization method have a more uniform fiber width.
- the dispersion liquid of cellulose fibers is pressurized to, for example, 30 MPa or more, preferably 100 MPa or more, more preferably 150 MPa or more, particularly preferably 220 MPa or more (high pressure conditions), and the pore diameter is 50 ⁇ m or more. It is preferable to use a method of ejecting the fiber from the nozzle of No. 1 and reducing the pressure so that the pressure difference is, for example, 30 MPa or more, preferably 80 MPa or more, more preferably 90 MPa or more (decompression condition). Pulp fibers are defibrated by the cleavage phenomenon caused by this pressure difference.
- the high-pressure homogenizer refers to a homogenizer having the ability to eject a slurry of cellulose fibers at a pressure of, for example, 10 MPa or more, preferably 100 MPa or more.
- a high-pressure homogenizer When the cellulose fibers are treated with a high-pressure homogenizer, collisions between the cellulose fibers, pressure difference, microcavitation and the like act, and the cellulose fibers are effectively defibrated. Therefore, the number of defibration treatments can be reduced, and the production efficiency of cellulose nanofibers can be improved.
- the high-pressure homogenizer it is preferable to use one in which a slurry of cellulose fibers collides with each other in a straight line.
- a counter-collision type high-pressure homogenizer microwavefluidizer / MICROFLUIDIZER®, wet jet mill.
- microfluidizer / MICROFLUIDIZER® wet jet mill.
- two upstream flow paths are formed so that the pressurized cellulose fiber slurries collide with each other at the confluence. Further, the cellulose fiber slurry collides with each other at the confluence, and the collided cellulose fiber slurry flows out from the downstream flow path.
- the downstream flow path is provided perpendicular to the upstream side flow path, and a T-shaped flow path is formed by the upstream side flow path and the downstream side flow path.
- a counter-collision type high-pressure homogenizer When such a counter-collision type high-pressure homogenizer is used, the energy given by the high-pressure homogenizer is converted to the collision energy to the maximum, so that the cellulose fibers can be defibrated more efficiently.
- Cellulose nanofibers obtained by defibration can be dispersed in an aqueous medium and stored as a dispersion liquid prior to mixing with microfibrillated cellulose or pulp. It is particularly preferable that the total amount of the aqueous medium is water (aqueous dispersion). However, the aqueous medium may be another liquid that is partially compatible with water. As the other liquid, for example, lower alcohols having 3 or less carbon atoms can be used.
- the lower limit of the average fiber diameter (average fiber width; average diameter of single fibers) of the cellulose nanofibers is 10 nm or more, preferably 15 nm or more, and more preferably 20 nm or more.
- the upper limit of the average fiber diameter of the cellulose nanofibers is 100 nm or less, preferably 90 nm or less, and more preferably 80 nm or less. If the average fiber diameter of the cellulose nanofibers is less than the lower limit of 10 nm, the dehydration property of the wet sheet may decrease.
- the average fiber diameter of the cellulose nanofibers is set to 100 nm or less, which is the upper limit, the cellulose fibers are sufficiently miniaturized, the wet sheet has a dense structure, and the physical properties are excellent.
- the cellulose fine fibers contained in the wet sheet may be only cellulose nanofibers, only microfibrillated cellulose, or both cellulose nanofibers and microfibrillated cellulose.
- the dehydration property of cellulose fine fibers is superior to that of microfibrillated cellulose than that of cellulose nanofibers.
- the average fiber diameter of cellulose nanofibers can be adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
- the method for measuring the average fiber diameter of cellulose nanofibers is as follows. First, 100 ml of an aqueous dispersion of cellulose nanofibers having a solid content concentration of 0.01 to 0.1% by mass is filtered through a membrane filter made of Teflon (registered trademark), and the solvent is once with 100 ml of ethanol and three times with 20 ml of t-butanol. Replace. Next, it is freeze-dried and coated with osmium to prepare a sample. This sample is observed with an electron microscope SEM image at a magnification of 3,000 to 30,000 times depending on the width of the constituent fibers.
- the average fiber length (average length of single fibers) of the cellulose nanofibers is, for example, 0.3 to 2000 ⁇ m, preferably 0.4 to 200 ⁇ m, and more preferably 0.5 to 20 ⁇ m. If the average fiber length is less than 0.3 ⁇ m, the drainage and drying properties are lowered, and it becomes difficult to form a three-dimensional network structure between the cellulose nanofibers, so that the reinforcing effect may be lowered. When the average fiber length exceeds 2000 ⁇ m, the cellulose fibers are entangled with each other more and it is difficult to form a homogeneous three-dimensional network structure.
- the average fiber length can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, etc.
- the method of measuring the average fiber length of cellulose nanofibers is the same as in the case of the average fiber diameter, and the length of each fiber is visually measured.
- the average fiber length is the medium length of the measured value.
- the aspect ratio of the cellulose nanofibers has a lower limit of 3 or more, preferably 6 or more, more preferably 10 or more, and an upper limit of 150,000 or less, preferably 120,000 or less, more preferably 100,000 or less. .. If the aspect ratio of the cellulose nanofibers is less than 3, the cellulose nanofibers are not expected to have fibrous properties. If the aspect ratio of the cellulose nanofibers exceeds 150,000, the prepared cellulose fiber slurry has a high viscosity, which may make it difficult to manufacture a wet sheet.
- the aspect ratio is a value obtained by dividing the average fiber length of the cellulose nanofibers by the average fiber width of the cellulose nanofibers. It is considered that the larger the aspect ratio is, the more places in the fiber are caught, so that the reinforcing effect is improved, but on the other hand, the more caught, the less the ductility of the molded product or the like.
- the peak value in the pseudo particle size distribution curve of the cellulose nanofibers is preferably one peak.
- the cellulose nanofibers have high uniformity in fiber length and fiber diameter, easily form a dense three-dimensional structure, and the produced molded body has excellent physical characteristics.
- the cellulose fiber slurry is excellent in drying property and dehydration property.
- the cellulose nanofibers have one peak in the pseudo particle size distribution curve, it is particularly preferable that the smaller the variation (dispersion) in the fiber length and / or the fiber diameter of the cellulose nanofibers, the easier the formation of the three-dimensional network structure.
- the full width at half maximum of the peak is, for example, 250 ⁇ m or less, preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m. If the full width at half maximum of the peak exceeds 250 ⁇ m, the cellulose fibers may not be sufficiently miniaturized, and the molded product may not have a dense three-dimensional network structure, resulting in deterioration of physical properties. There is a risk of inviting.
- a method such as increasing the number of miniaturization treatments can be mentioned.
- the peak value of the cellulose nanofibers has, for example, a lower limit of 1 ⁇ m or more, preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. If the peak value is less than 1 ⁇ m, the fibers may be excessively defibrated, and the drainage and drying properties of the wet sheet or the molded product are not excellent.
- the peak value of the cellulose nanofibers may be, for example, an upper limit of 100 ⁇ m or less, preferably 80 ⁇ m or less, and more preferably 60 ⁇ m or less. If the peak value exceeds 100 ⁇ m, the defibration of the fiber may be insufficient, and the uniformity of the fiber diameter and the fiber length may be inferior.
- the peak value in the pseudo particle size distribution curve of the cellulose nanofiber is a value measured according to ISO-13320 (2009).
- a volume-based particle size distribution of an aqueous dispersion of cellulose nanofibers is investigated using a particle size distribution measuring device (a laser diffraction / scattering type particle size distribution measuring device manufactured by Seishin Corporation).
- the medium diameter of the cellulose nanofibers is measured from this distribution. This medium diameter is used as the peak value.
- the peak value in the pseudo particle size distribution curve of cellulose nanofibers and the middle diameter of the pseudo particle size distribution can be adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
- the pulp viscosity of the defibrated cellulose nanofibers is preferably 1 cP or more, and more preferably 2 cP or more. If the pulp viscosity is less than 1 cP, the aggregation of cellulose nanofibers may not be sufficiently suppressed.
- the deflated cellulose nanofibers can be mixed with water to form an aqueous dispersion.
- This cellulose nanofiber aqueous dispersion has a viscosity, and this viscosity can be evaluated by the B-type viscosity.
- the B-type viscosity even if the dispersion of cellulose nanofibers is obtained from a specific raw material in the same manufacturing process, the viscosity differs depending on the concentration of the cellulose nanofibers, and the higher the concentration, the higher the viscosity.
- the B-type viscosity of the aqueous dispersion of cellulose nanofibers is preferably 10 to 4000 cP, more preferably 80 to 3000 cP, and particularly preferably 100 to 2000 cP.
- the aqueous dispersion having a B-type viscosity of less than 10 cP has poor dispersibility of cellulose nanofibers, and may not be sufficiently mixed with microfibrillated cellulose or pulp.
- the aqueous dispersion having a B-type viscosity of more than 4000 cP has poor dehydration of a slurry or a wet sheet obtained by mixing this aqueous dispersion with microfibrillated cellulose or pulp.
- the B-type viscosity (solid content concentration 1% (w / w)) of the dispersion liquid of cellulose nanofibers is a value measured in accordance with "Method for measuring liquid viscosity" of JIS-Z8803 (2011).
- the B-type viscosity is the resistance torque when the dispersion liquid is stirred, and the higher it is, the more energy is required for stirring.
- the measurement temperature of the B-type viscosity is 25 ° C.
- the crystallinity of the cellulose nanofibers is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more. If the crystallinity is less than 50%, the strength and heat resistance of the molded product may be insufficient.
- the crystallinity of the cellulose nanofibers is preferably 100% or less, more preferably 90% or less, and particularly preferably 85% or less.
- the strength is ensured in the process of producing a wet sheet, a molded product, or the like from the cellulose fiber slurry.
- the crystallinity of the cellulose nanofibers can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, and miniaturization treatment.
- the crystallinity is a value measured by the X-ray diffraction method in accordance with the "general rule of X-ray diffraction analysis" of JIS-K0131 (1996).
- the cellulose nanofibers have an amorphous portion and a crystalline portion, and the crystallinity means the ratio of the crystalline portion to the entire cellulose nanofibers.
- the water retention of the cellulose nanofibers is, for example, 90 to 600%, preferably 200 to 500%, and more preferably 240 to 460%. If the water retention level of the cellulose nanofibers is less than 90%, the dispersibility deteriorates, and the cellulose nanofibers, the microfibrillated cellulose, and the pulp may not be mixed with each other. When the water retention rate exceeds 600%, the prepared slurry has poor drainage and dryness.
- the water retention level of the cellulose nanofibers can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
- the degree of water retention of cellulose nanofibers is JAPAN TAPPI No. It is a value measured according to 26 (2000).
- the content (solid content concentration) of the cellulose nanofibers in the wet sheet is, for example, 0 to 39.6% by mass, preferably 10 to 38% by mass, and more preferably 12 to 36% by mass. If the content is within the range, the cellulose nanofibers are appropriately dispersed in the wet sheet, which is preferable. Further, even when a molded product or the like is produced from a wet sheet, the cellulose nanofibers are appropriately dispersed in the molded product or the like, which is preferable. If the content exceeds 39.6% by mass, the drainage and drying properties are not good.
- Microfibrillated cellulose has many hydrogen bond points of cellulose fibers, has dehydration property, and disperses when mixed with a medium such as water or an organic solvent.
- Microfibrillated cellulose is a fiber that can be produced by defibrating raw pulp and has a larger average fiber diameter than cellulose nanofibers.
- Microfibrillated cellulose can be obtained, for example, by defibrating (miniaturizing) plant-derived raw material pulp.
- the raw material pulp for microfibrillated cellulose include wood pulp made from broadleaf trees, coniferous trees, etc., non-wood pulp made from straw, bagas, cotton, hemp, carrot fiber, etc., used tea paper, used envelope paper, magazines, etc.
- DIP used paper pulp
- the above-mentioned various raw materials may be in the state of a pulverized product called, for example, a cellulosic powder.
- wood pulp in order to avoid contamination with impurities as much as possible.
- wood pulp for example, one kind or two or more kinds can be selected and used from chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP) and the like.
- the hardwood kraft pulp may be hardwood bleached kraft pulp, hardwood unbleached kraft pulp, or hardwood semi-bleached kraft pulp.
- the softwood kraft pulp may be softwood bleached kraft pulp, unbleached softwood kraft pulp, or semi-bleached softwood kraft pulp.
- thermomechanical pulp examples include stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemi-grand pulp (CGP), thermo-grand pulp (TGP), and ground pulp (GP).
- SGP stone ground pulp
- PGW pressurized stone ground pulp
- RGP refiner ground pulp
- CGP chemi-grand pulp
- TGP thermo-grand pulp
- GP ground pulp
- TMP thermomechanical pulp
- CMP chemithermomechanical pulp
- RMP refiner mechanical pulp
- BTMP bleached thermomechanical pulp
- defibrating cellulose nanofibers can be applied to the method of defibrating raw material pulp into microfibrillated cellulose.
- defibration into microfibrillated cellulose does not make the average fiber diameter as small as defibration into cellulose nanofibers.
- the microfibrillated cellulose obtained by defibration can be dispersed in an aqueous medium and stored as a dispersion liquid prior to being mixed with cellulose nanofibers or pulp. It is particularly preferable that the total amount of the aqueous medium is water (aqueous solution). However, the aqueous medium may be another liquid that is partially compatible with water. As the other liquid, for example, lower alcohols having 3 or less carbon atoms can be used.
- the raw material pulp is defibrated so that the physical characteristics of the obtained microfibrillated cellulose have a desired value or evaluation as shown below.
- the method for measuring various physical properties of microfibrillated cellulose is the same as that for cellulose nanofibers and pulp.
- the average fiber diameter (average fiber width; average diameter of single fibers) of the microfibrillated cellulose is more than 100 nm, preferably 200 nm or more, and more preferably 300 nm or more.
- the upper limit of the average fiber diameter of microfibrillated cellulose is 10,000 nm or less, preferably 5000 nm or less, and more preferably 3000 nm or less. If the average fiber diameter of microfibrillated cellulose is 100 nm or less, the dehydration property of the wet sheet may decrease and it becomes difficult to distinguish it from cellulose nanofibers, so it should be avoided. If the average fiber diameter of the microfibrillated cellulose exceeds the upper limit of 10,000 nm, the fineness of the cellulose fiber may be insufficient.
- the average fiber diameter of microfibrillated cellulose can be adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
- the method for measuring the average fiber diameter of microfibrillated cellulose is as follows. First, 100 ml of an aqueous dispersion of microfibrillated cellulose having a solid content concentration of 0.01 to 0.1% by mass is filtered through a membrane filter made of Teflon (registered trademark), once with 100 ml of ethanol, and three times with 20 ml of t-butanol. Replace with solvent. Next, it is freeze-dried and coated with osmium to prepare a sample. This sample is observed with an electron microscope SEM image at a magnification of 3,000 to 30,000 times depending on the width of the constituent fibers.
- the average fiber length (average length of single fibers) of microfibrillated cellulose is, for example, 10 to 1000 ⁇ m, preferably 30 to 700 ⁇ m, and more preferably 50 to 500 ⁇ m. If the average fiber length is less than 30 ⁇ m, the drainage and dryness may be lowered, and the reinforcing effect of the manufactured wet sheet, molded body, or the like may be lowered. When the average fiber length exceeds 1000 ⁇ m, the cellulose fibers are more entangled with each other and the dispersibility is lowered.
- the average fiber length can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, etc.
- the method of measuring the average fiber length of microfibrillated cellulose is the same as in the case of the average fiber diameter, and the length of each fiber is visually measured.
- the average fiber length is the medium length of the measured value.
- the aspect ratio of the microfibrillated cellulose has a lower limit of 3 or more, preferably 5 or more, more preferably 10 or more, and an upper limit of 10,000 or less, preferably 7,000 or less, more preferably 5000 or less. good. If the aspect ratio of the microfibrillated cellulose is less than 3, the microfibrillated cellulose is not expected to have fibrous properties. If the aspect ratio of the microfibrillated cellulose exceeds 10,000, the prepared cellulose fiber slurry has high viscosity, which may make it difficult to manufacture a wet sheet.
- the aspect ratio is a value obtained by dividing the average fiber length of the microfibrillated cellulose by the average fiber width of the microfibrillated cellulose. It is considered that the larger the aspect ratio is, the more places in the fiber are caught, so that the reinforcing effect is improved, but on the other hand, the more caught, the less the ductility of the molded product or the like.
- the peak value in the pseudo-particle size distribution curve of microfibrillated cellulose is preferably one peak.
- the microfibrillated cellulose has high uniformity of fiber length and fiber diameter, easily forms a dense three-dimensional structure, and the produced molded body has excellent physical characteristics.
- the cellulose fiber slurry is excellent in drying property and dehydration property.
- the microfibrillated cellulose has one peak in the pseudo-particle size distribution curve
- the full width at half maximum of the peak is, for example, 250 ⁇ m or less, preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m.
- the cellulose fibers may not be sufficiently miniaturized, and the molded product may not have a dense three-dimensional network structure, resulting in deterioration of physical properties. There is a risk of inviting.
- a method such as increasing the number of miniaturization treatments can be mentioned.
- the peak value of microfibrillated cellulose may have, for example, a lower limit of 1 ⁇ m or more, preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more. If the peak value is less than 1 ⁇ m, the fibers may be excessively defibrated, and the drainage and drying properties of the wet sheet or the molded product are not excellent.
- the peak value of microfibrillated cellulose may be, for example, an upper limit of 110 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 90 ⁇ m or less. If the peak value exceeds 110 ⁇ m, the defibration of the fiber may be insufficient, and the uniformity of the fiber diameter and the fiber length may be inferior.
- the peak value in the pseudo-particle size distribution curve of microfibrillated cellulose is a value measured according to ISO-13320 (2009).
- a volume-based particle size distribution of an aqueous dispersion of microfibrillated cellulose is investigated using a particle size distribution measuring device (a laser diffraction / scattering type particle size distribution measuring device manufactured by Seishin Co., Ltd.).
- the medium diameter of microfibrillated cellulose is measured from this distribution. This medium diameter is used as the peak value.
- the peak value in the pseudo-particle size distribution curve of microfibrillated cellulose and the middle diameter of the pseudo-particle size distribution can be adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
- the pulp viscosity of the defibrated microfibrillated cellulose is preferably 1 cP or more, and more preferably 2 cP or more. If the pulp viscosity is less than 1 cP, the aggregation of microfibrillated cellulose may not be sufficiently suppressed.
- the crystallinity of the microfibrillated cellulose is preferably 45% or more, more preferably 55% or more, and particularly preferably 60% or more. If the crystallinity is less than 45%, the strength and heat resistance of the molded product may be insufficient.
- the crystallinity of the microfibrillated cellulose is preferably 90% or less, more preferably 88% or less, and particularly preferably 86% or less.
- the strength is guaranteed in the process of producing a wet sheet, a molded product, or the like from a slurry of cellulose fibers.
- microfibrillated cellulose can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, and miniaturization treatment.
- the crystallinity is a value measured by the X-ray diffraction method in accordance with the "general rule of X-ray diffraction analysis" of JIS-K0131 (1996).
- the microfibrillated cellulose has an amorphous portion and a crystalline portion, and the crystallinity means the ratio of the crystalline portion to the entire microfibrillated cellulose.
- the degree of water retention of the microfibrillated cellulose is, for example, 10 to 500%, preferably 50 to 450%, and more preferably 90 to 400%. If the water retention level of the microfibrillated cellulose is less than 10%, the dispersibility deteriorates, and the microfibrillated cellulose, the microfibrillated cellulose, and the pulp may not be mixed with each other. When the water retention rate exceeds 500%, the prepared slurry has poor drainage and dryness.
- the degree of water retention of microfibrillated cellulose can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
- the degree of water retention of microfibrillated cellulose is JAPAN TAPPI No. It is a value measured according to 26 (2000).
- the fibrillation rate of the microfibrillated cellulose is preferably 0.5% or more, more preferably 1.0% or more, and particularly preferably 1.5% or more.
- the fibrillation rate is preferably 10% or less, more preferably 9% or less, and particularly preferably 8% or less. If the fibrillation rate exceeds 10%, the contact area with water becomes too large, which may make dehydration difficult. On the other hand, if the fibrillation rate is less than 0.5%, there are few hydrogen bonds between the fibrils, and there is a possibility that a strong three-dimensional network structure cannot be formed.
- the freeness of the microfibrillated cellulose is preferably 200 ml or less, more preferably 150 ml or less, and particularly preferably 100 ml or less. If the freeness of the microfibrillated cellulose exceeds 200 ml, the microfibrillated cellulose exceeds the upper limit of the average fiber diameter of 10 ⁇ m, and there is a possibility that the effect on strength cannot be sufficiently obtained.
- microfibrillated cellulose is a value measured in accordance with JIS P8121-2 (2012).
- the content (solid content concentration) of the microfibrillated cellulose in the wet sheet is, for example, 0 to 39.6% by mass, preferably 10 to 38% by mass, and more preferably 12 to 36% by mass. If the content is within the range, the microfibrillated cellulose is preferably dispersed in the wet sheet, which is preferable. Further, even when a molded product or the like is produced from a wet sheet, microfibrillated cellulose is preferably dispersed in the molded product or the like. If the content exceeds 39.6% by mass, the drainage and drying properties are not good.
- the wet sheet is made from a cellulose fiber slurry in which pulp is mixed with at least one of cellulose nanofibers and microfibrillated cellulose. The method for manufacturing the wet sheet will be described later.
- the conventional CNF molded product disclosed in Japanese Patent Application No. 2017-19529 is in the form of a flat sheet.
- the wet sheet of this embodiment is tangible but easily deformed, can temporarily maintain a desired shape, and is useful as a material for molded bodies having various three-dimensional shapes. .. Various physical properties of the wet sheet are shown below.
- the water content of the wet sheet is preferably 60% by mass or more, more preferably 63% by mass or more, and further preferably 65% by mass or more.
- the upper limit of the water content is not particularly limited, but if it is 90% by mass or less, unevenness in thickness that tends to occur in the molded product during production is suppressed, and the molded product having uniform strength is preferable.
- the moisture content of the wet sheet can be measured by JIS P 8203 (2010).
- the thickness of the wet sheet is preferably 0.5 mm or more, more preferably 0.8 mm or more, still more preferably 1 mm or more, and preferably 10 mm or less, more preferably 9 mm or less, still more preferably 8 mm or less. It should be. If the thickness of the wet sheet is less than 0.5 mm, the wet sheet is easily torn. When the thickness of the wet sheet exceeds 10 mm, the molded product produced by pressurization and heating tends to have uneven thickness.
- the wet sheet has a thickness of 0.5 mm or more and 10 mm or less and a water content of 60% by mass or more, and even if the thickness is 0.5 mm or more and 10 mm or less, the water content is 60. If it is less than% by mass, it becomes difficult to bend or bend the wet sheet, and it becomes difficult to form the molded body into a three-dimensional shape.
- the thickness of the wet sheet can be measured by JIS P 8118 (2014).
- the thickness change rate indicates the degree of ease of compression in the thickness direction of the wet sheet, and the lower the value, the less likely it is to be compressed.
- the thickness becomes uneven. It can be said that there are few and it is hard to break. The higher the thickness change rate of the wet sheet, the more easily it is compressed, and the more easily it is deformed when heated or pressed, so that the molded body is likely to be broken.
- Thickness change rate ((thickness of wet sheet after applying 100 kPa pressure in the thickness direction for 1 second)-(thickness of wet sheet after applying 100 kPa pressure in the thickness direction for 5 seconds)) ⁇ (in the thickness direction) Wet sheet thickness after applying 100 kPa pressure for 1 second)
- the thickness change rate can be adjusted as appropriate, but if it is preferably 0.4 or less, more preferably 0.35 or less, and even more preferably 0.3 or less, unevenness in thickness is reduced and it becomes difficult to break.
- the thickness change rate can be measured as follows. The entire sides of the wet sheet are covered with a film, a pressure of 100 kPa is applied in the thickness direction for 1 second, and the thickness of the wet sheet is measured. Further, a pressure of 100 kPa is applied in the thickness direction for 4 seconds, and the thickness of the wet sheet is measured. The measurement can be performed under atmospheric pressure and at room temperature (5 to 30 ° C., particularly 25 ° C., 1 atm).
- the blending ratio of the pulp and the cellulose fine fibers contained in the wet sheet may be, for example, 1:99 to 50:50, preferably 5:95 to 30:70, and more preferably 10:90 to 20:80.
- the blending ratio of the cellulose nanofibers and the microfibrillated cellulose is, for example, 100: 0 to 0: 100, preferably 80:20 to 20:80, and more preferably 70:30 to 30:70.
- the wet sheet has a water retention property of preferably 250 to 4000 g / m 2 , more preferably 500 to 3000 g / m 2 , when the wet sheet is dispersed in an aqueous medium to prepare a dispersion liquid having a concentration of 1.5%. be. If the water retention is less than 250 g / m 2 , the wettability is poor, and if it exceeds 4000 g / m 2 , the wet sheet may not be able to maintain its shape.
- the wet sheet is obtained by dehydrating and drying the wet sheet under the conditions of 1 to 50 MPa and 100 to 150 ° C. to increase the density, and the density of the molded body is preferably 0.8 to 1.5 g / m 3 . It is more preferably 0.9 to 1.4 g / m 3 , and particularly preferably 1.0 to 1.3 g / m 3 . If the density is less than 0.8 g / m 3 , it is likely to break in the process of molding the molded product, and if it is more than 1.5 g / m 3 , it may be difficult to handle in processing.
- the wet sheet may contain cellulose fine fibers in an amount of more than 0% by mass in terms of solid content concentration, but is preferably 10% by mass or more, more preferably 11% by mass or more, still more preferably 12% by mass. When it is contained in% or more, the strength of the molded product becomes higher.
- the upper limit of the cellulose fine fibers contained in the wet sheet is not particularly limited, but is preferably 39.6% by mass or less, more preferably 38% by mass or less in terms of solid content concentration because pulp is also contained. It is good.
- the manufacturing method comprises a conditioning step 10 for preparing the slurry, a forming step 20 for forming the wet sheet, and a heating and pressurizing step 30 for pressurizing the wet sheet while heating it. These steps will be described in sequence.
- pulp P and cellulose fine fibers are mixed with an aqueous medium W to prepare the slurry S. This is an example of getting.
- the solid content concentration of the cellulose fibers (that is, the total amount of pulp P and cellulose fine fibers) contained in the slurry is preferably 1.0 to 10.0% by mass, more preferably 1.2 to 7.0% by mass. Particularly preferably, it is 1.4 to 5.0% by mass.
- the solid content concentration of the cellulose fibers is less than 1.0% by mass, the fluidity is high, and there is a high possibility that the cellulose fibers will flow out in the subsequent forming step 20.
- the solid content concentration of the cellulose fibers that is, the total amount of pulp P and cellulose fine fibers contained in the slurry exceeds 10.0% by mass, the fluidity is significantly lowered and the processability is deteriorated. Therefore, for example. In the process of manufacturing a wet sheet, unevenness in thickness is likely to occur, and it may be difficult to obtain a uniform wet sheet.
- the total amount of the medium (water-based medium) W such as water is water.
- the water-based medium W may be another liquid that is partially compatible with water.
- the other liquid for example, lower alcohols having 3 or less carbon atoms, ketones having 5 or less carbon atoms, and the like can be used.
- the cellulose fiber slurry preferably has a water retention capacity of 250 to 4000 g / m 2 and more preferably 500 to 3000 g / m 2 by appropriately adjusting the pulp content. ..
- the larger the water retention the easier it is to dehydrate the slurry, but if the water retention exceeds 4000 g / m 2 , the dispersibility deteriorates, and it is difficult for the produced molded product to be homogeneous. If the water retention is less than 250 g / m 2 , the dehydration process does not sufficiently dehydrate, or it takes a long time to dehydrate, resulting in deterioration of productivity.
- the water retention of the cellulose fiber slurry is a value measured according to TAPPI T 701 pm-01 (2001).
- the measurement procedure was as follows: (1) A PCTE filter was placed on a filter paper for water retention measurement (dry weight was measured in advance). (2) The above-mentioned (1) was sandwiched between special jigs, and a measurement sample (slurry) was charged. (3) Measurement (processing) was performed under the measurement conditions described later. (4) The PCTE filter was removed from the filter paper, and the weight of the filter paper was measured. (5) The water retention was calculated by the following formula (2).
- the prepared slurry of cellulose fibers is dehydrated by sandwiching the slurry between two opposing net-like sheets and pressurizing the slurry to form the slurry into a wet sheet.
- the net-like sheet 12 is laminated in order from the bottom inside the tubular formwork 13 placed on the table, and the slurry 11 is filled therein.
- the filled slurry 11 is covered with the mesh sheet 14 from above. If the mold 13 is a porous member, dehydration is promoted, and the time spent in the wet sheet forming step 20 can be shortened.
- Slurry 11 dehydrates due to its own weight or relatively weak pressure. After this, the pressure 19 on the slurry may be increased stepwise or continuously. In this step, the water in the slurry 11 flows out through the reticulated sheets 12 and 14. Since the initial pressure 19 applied in this step is very weak, the slurry 11 is maintained at a high viscosity, and the outflow of cellulose fine fibers can be suppressed. On the other hand, when dehydration progresses and the concentration of the slurry 11 increases, the fluidity decreases, so that even if a stronger pressure 9 is applied to the slurry 11, the cellulose fine fibers are unlikely to flow out.
- this forming step 20 it is preferable to apply a pressure 19 of 2.5 kPa or less at the initial stage.
- a pressure exceeding 2.5 kPa is applied in the initial stage, cellulose fine fibers tend to flow out from the slurry 11. If a mesh sheet with finer meshes is used, the outflow of cellulose fine fibers can be suppressed even if a pressure exceeding 2.5 kPa is applied in the initial stage, but in this case, the overall dehydration efficiency may decrease.
- the pressure in this early stage may be substantially atmospheric pressure. Further, the pressure may be due only to the weight of the mesh sheet 14.
- the mold 13 After pressurizing the slurry 11 at a pressure of 50 kPa or more for 10 minutes or more, the mold 13 can be removed to obtain a wet sheet.
- Heating and pressurizing process In the heating and pressurizing step 30, dehydration / drying and densification are performed under the conditions of 1 to 50 MPa and 100 to 150 ° C. to obtain a molded product X.
- the molded product X obtained as described above has a density of preferably 0.8 to 1.5 g / m 3 , more preferably 0.9 to 1.4 g / m 3 , and particularly preferably 1.0 to 1. It is 1.3 g / m 3 . If the density of the compact X is less than 0.8 g / m 3 , the strength may be considered to be sufficient due to the decrease in hydrogen bond points.
- the density of the molded product X is a value measured in accordance with JIS-P-8118: 1998.
- Additives such as antioxidants, corrosion inhibitors, light stabilizers, ultraviolet absorbers, heat stabilizers, dispersants, defoamers, slime control agents, preservatives and the like are added to the cellulose fiber slurry S, if necessary. Can be added.
- the wet sheet of this embodiment can be used as a material for a three-dimensional molded body.
- raw material pulp (LBKP, moisture content 97% by mass) and cellulose nanofibers (LBKP, moisture content 97% by mass) are mixed as cellulose fibers, and the solid content concentration of the LBKP cellulose nanofibers is 3% by mass.
- a fiber slurry was prepared.
- the LBKP cellulose nanofibers were obtained by pre-beating the raw material pulp (moisture content: 97% by mass) with a refiner and defibrating with a high-pressure homogenizer.
- This LBKP cellulose nanofiber was an aqueous dispersion having a concentration of 3% by mass based on the solid content.
- the obtained LBKP cellulose nanofibers had an average fiber diameter of 30 nm and a crystallinity of 75%.
- a mixture of this LBKP cellulose nanofiber aqueous dispersion, pulp and a stirrer was centrifuged at 8500 rpm for 10 minutes with a centrifuge (HITACHI, cooling centrifuge CR22N) to obtain a concentrated mixture.
- This concentrated mixture had a solid content concentration of 5% by mass of LBKP cellulose nanofibers.
- LBKP cellulose nanofiber aqueous dispersion and diluted water are added to this concentrated mixture, and the mixture is stirred and defoamed with a rotation / revolution mixer (Awatori Rentaro) at 2000 rpm for 3 minutes to achieve a solid content concentration of 5% by mass. Slurry was obtained.
- the slurry of the above (1) is coated on the 300 mesh wire mesh (lower wire mesh), and another 300 mesh wire mesh (upper wire mesh) is put on the slurry from above the slurry, and the wire mesh is covered. It was made into a laminate composed of a slurry and a wire mesh.
- the slurry sandwiched between the upper wire mesh and the lower wire mesh was pressurized to obtain a wet sheet.
- Test Example 1 is a wet sheet obtained by placing a 5 kg weight on the upper wire mesh for 10 seconds
- Test Example 2 is a wet sheet obtained by placing a 5 kg weight on the upper wire mesh for 5 minutes
- the wet sheet obtained by applying pressure at .41 MPa for 5 minutes was designated as Test Example 3.
- the wet sheets (Test Examples 1 to 3) were test pieces having a length of 10 cm, a width of 10 cm, and a thickness of 0.2 cm, respectively.
- both sides of the wet sheet were covered with a resin film having a thickness of 0.04 mm to form a covering.
- This covering was placed on a support base, and a pressure of 100 kPa was applied to the covering in the thickness direction for 1 second to measure the thickness.
- a pressure of 100 kPa was applied in the thickness direction for 4 seconds to measure the thickness, and the thickness change rate was determined.
- the solid content concentration (mass%) of the LBKP cellulose nanofibers was measured.
- JIS, TAPPI and other tests and measurement methods shown above are carried out at room temperature, especially at 25 ° C., at atmospheric pressure, especially at 1 atm.
- the present invention can be used as a molded product of cellulose fiber and a method for producing the same.
- Preparation process 20 Wet sheet forming process 30 Heating and pressurizing process S Slurry P Pulp W Medium such as water X Molded body
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Paper (AREA)
Abstract
Description
(第1の態様)
パルプと、平均繊維径が10000nm以下のセルロース微細繊維を有し、
含水率が60質量%以上であり、厚みが0.5mm以上、10mm以下である、
ことを特徴とする湿潤シート。
前記セルロース微細繊維が、セルロースナノファイバーと当該セルロースナノファイバーよりも平均繊維径が大であるミクロフィブリル化セルロースのうちの少なくとも一方からなる、
第1の態様の湿潤シート。
以下に示す式1から求まる厚み変化率が0.4以下である、
第1又は第2の態様の湿潤シート。
[式1]
厚み変化率=((厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み)-(厚み方向に100kPaの圧力を5秒間加えた後の湿潤シートの厚み))÷(厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み)
前記セルロース微細繊維の固形分濃度が10質量%以上である、
第1~第3の態様のいずれかの態様の湿潤シート。
湿潤シートを加熱及び加圧して成形体を得る加熱加圧工程を備え、
前記湿潤シートは、パルプと、平均繊維径が10000nm以下のセルロース微細繊維を有し、含水率が60質量%以上であり、厚みが0.5mm以上、10mm以下となるものである、
ことを特徴とする成形体の製造方法。
パルプと、平均繊維径が10000nm以下のセルロース微細繊維を混合してスラリーを調成する調成工程と、
対向する2枚の網状シートで前記スラリーを挟んで加圧して脱水し、当該スラリーを湿潤シートに形成する形成工程と、
前記湿潤シートを加熱及び加圧して成形体を得る加熱加圧工程を備え、
前記湿潤シートは、含水率が60質量%以上であり、厚みが0.5mm以上、10mm以下となるものである、
ことを特徴とする成形体の製造方法。
前記セルロース微細繊維が、セルロースナノファイバーと当該セルロースナノファイバーよりも平均繊維径が大であるミクロフィブリル化セルロースのうちの少なくとも一方からなる、
第5又は第6の態様の成形体の製造方法。
以下に示す式1から求まる厚み変化率が0.4以下である、
第5~第7の態様のいずれかの態様の成形体の製造方法。
[式1]
厚み変化率=((厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み)-(厚み方向に100kPaの圧力を5秒間加えた後の湿潤シートの厚み))÷(厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み)
前記セルロース微細繊維の固形分濃度が10質量%以上である、
第5~第8の態様のいずれかの態様の成形体の製造方法。
前記脱水工程は、実質加熱しないで行う工程である、
第5~第9の態様のいずれかの態様の成形体の製造方法。
パルプは、湿潤シートに備わり、湿潤シートの脱水性を向上させる役割を有する。湿潤シートに含まれるパルプの量を調節することで、湿潤シートの含水率を所望の範囲内にすることができる。また、湿潤シートにおけるパルプとセルロース微細繊維の含有割合を調節することで、成形体としたときの強度を所望の範囲内にすることができる。
次に、湿潤シートに含まれるセルロースナノファイバーについて以下に詳述する。セルロースナノファイバーは、セルロース繊維の水素結合点を多数有し、水や有機溶剤等の媒体に混ぜると、分散して、三次元ネットワーク構造を形成する性質があるとされている。この三次元ネットワーク構造は、セルロースナノファイバーが相互に三次元ネットワーク構造の骨格となって形成され、表現が難しいが例えば、ジャングルジムのような立体格子状(ただし、立体格子は、規則的な配列であっても、不規則な配列であってもよい)の形態となると推測される。このセルロースナノファイバーで形成された立体格子の内部は、空隙となる。
セルロースナノファイバーの平均繊維径(平均繊維幅。単繊維の直径平均。)は、下限が10nm以上、好ましくは15nm以上、より好ましくは20nm以上である。セルロースナノファイバーの平均繊維径の上限は100nm以下、好ましくは90nm以下、より好ましくは80nm以下である。セルロースナノファイバーの平均繊維径が下限である10nm未満だと湿潤シートの脱水性が低下するおそれがある。セルロースナノファイバーの平均繊維径を上限である100nm以下とすると、セルロース繊維の微細化が十分になされており、湿潤シートが緻密な構造となり、物性に優れたものとなる。
まず、固形分濃度0.01~0.1質量%のセルロースナノファイバーの水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
セルロースナノファイバーの平均繊維長(単繊維の長さの平均)は、例えば0.3~2000μm、好ましくは0.4~200μm、より好ましくは0.5~20μmである。平均繊維長が0.3μm未満であると、濾水性や乾燥性が低下し、またセルロースナノファイバー相互の三次元ネットワーク構造が形成されにくくなり、補強効果が低下するおそれがある。平均繊維長が2000μmを上回ると、セルロース繊維相互の絡み合いが多くなり、均質な三次元ネットワーク構造が形成され難い。
湿潤シートから成形体等を製造する場合において、当該成形体等の延性をある程度保持しつつ強度を向上させることが好ましい。この観点より、セルロースナノファイバーのアスペクト比は、下限が3以上、好ましくは6以上、より好ましくは10以上であり、上限が、150000以下、好ましくは120000以下、より好ましくは100000以下であるとよい。セルロースナノファイバーのアスペクト比が3未満だと、セルロースナノファイバーは、繊維状としての性質が期待されない。セルロースナノファイバーのアスペクト比が150000を超えると、調成されたセルロース繊維スラリーの粘性が高く、湿潤シートの製造が困難になるおそれがある。
セルロースナノファイバーの擬似粒度分布曲線におけるピーク値は、1つのピークであるのが好ましい。1つのピークである場合、セルロースナノファイバーは、繊維長及び繊維径の均一性が高く、緻密な立体構造を形成しやすく、製造される成形体が物性の優れたものとなる。また、セルロース繊維スラリーの乾燥性、脱水性に優れる。
解繊したセルロースナノファイバーのパルプ粘度は、1cP以上であるのが好ましく、2cP以上であるのがより好ましい。パルプ粘度が1cP未満だと、セルロースナノファイバーの凝集を十分に抑制することができないおそれがある。
解繊したセルロースナノファイバーは、水に混ぜて水分散液の状態にしておくことができる。このセルロースナノファイバー水分散液は粘度を有し、この粘度はB型粘度で評価できる。B型粘度については、特定の原料から同一の製造工程で得られたセルロースナノファイバーの分散液であっても、セルロースナノファイバーの濃度により粘度が異なり、高濃度ほど高粘度となる。セルロースナノファイバーの水分散液(固形分濃度1%(w/w))のB型粘度は、好ましくは10~4000cP、より好ましくは80~3000cP、特に好ましくは100~2000cPである。B型粘度が10cPを下回る同水分散液は、セルロースナノファイバーの分散性が乏しく、ミクロフィブリル化セルロースやパルプと混ぜ合わせても十分に混じり合わないおそれがある。B型粘度が4000cPを上回る同水分散液は、この水分散液とミクロフィブリル化セルロースやパルプと混ぜ合わせて得られたスラリーや湿潤シートの脱水性が乏しいものとなる。
セルロースナノファイバーの結晶化度は、50%以上であるのが好ましく、55%以上であるのがより好ましく、60%以上であるのが特に好ましい。結晶化度が50%未満であると、成形体の強度、耐熱性が不十分であるおそれがある。
セルロースナノファイバーの保水度は、例えば、90~600%、好ましくは200~500%、より好ましくは240~460%である。セルロースナノファイバーの保水度が90%を下回ると、分散性が悪化し、セルロースナノファイバーとミクロフィブリル化セルロース、パルプが相互に混じり合わないおそれがある。同保水度が600%を上回ると、調成したスラリーが濾水性や乾燥性に乏しいものとなる。
次に、湿潤シートに含まれるミクロフィブリル化セルロースについて以下に詳述する。ミクロフィブリル化セルロースは、セルロース繊維の水素結合点を多数有し、脱水性を備え、水や有機溶剤等の媒体に混ぜると分散する。ミクロフィブリル化セルロースは、原料パルプを解繊して製造することができ、セルロースナノファイバーよりも平均繊維径が大である繊維である。
ミクロフィブリル化セルロースの平均繊維径(平均繊維幅。単繊維の直径平均。)は、100nm超、好ましくは200nm以上、より好ましくは300nm以上である。ミクロフィブリル化セルロースの平均繊維径の上限は10000nm以下、好ましくは5000nm以下、より好ましくは3000nm以下である。ミクロフィブリル化セルロースの平均繊維径が100nm以下だと湿潤シートの脱水性が低下するおそれがあるし、セルロースナノファイバーとの区別がつき難くなるので避けるべきである。ミクロフィブリル化セルロースの平均繊維径が上限である10000nmを超えると、セルロース繊維の微細化が不十分であるおそれがある。
まず、固形分濃度0.01~0.1質量%のミクロフィブリル化セルロースの水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
ミクロフィブリル化セルロースの平均繊維長(単繊維の長さの平均)は、例えば10~1000μm、好ましくは30~700μm、より好ましくは50~500μmである。平均繊維長が30μm未満であると、濾水性や乾燥性が低下し、製造された湿潤シートや成形体等の補強効果が低下するおそれがある。平均繊維長が1000μmを上回ると、セルロース繊維相互の絡み合いが多くなり、分散性が低下する。
湿潤シートから成形体等を製造する場合において、当該成形体等の延性をある程度保持しつつ強度を向上させることが好ましい。この観点より、ミクロフィブリル化セルロースのアスペクト比は、下限が3以上、好ましくは5以上、より好ましくは10以上であり、上限が、10000以下、好ましくは7000以下、より好ましくは5000以下であるとよい。ミクロフィブリル化セルロースのアスペクト比が3未満だと、ミクロフィブリル化セルロースは、繊維状としての性質が期待されない。ミクロフィブリル化セルロースのアスペクト比が10000を超えると、調成されたセルロース繊維スラリーの粘性が高く、湿潤シートの製造が困難になるおそれがある。
ミクロフィブリル化セルロースの擬似粒度分布曲線におけるピーク値は、1つのピークであるのが好ましい。1つのピークである場合、ミクロフィブリル化セルロースは、繊維長及び繊維径の均一性が高く、緻密な立体構造を形成しやすく、製造される成形体が物性の優れたものとなる。また、セルロース繊維スラリーの乾燥性、脱水性に優れる。
解繊したミクロフィブリル化セルロースのパルプ粘度は、1cP以上であるのが好ましく、2cP以上であるのがより好ましい。パルプ粘度が1cP未満だと、ミクロフィブリル化セルロースの凝集を十分に抑制することができないおそれがある。
ミクロフィブリル化セルロースの結晶化度は、45%以上であるのが好ましく、55%以上であるのがより好ましく、60%以上であるのが特に好ましい。結晶化度が45%未満であると、成形体の強度、耐熱性が不十分であるおそれがある。
ミクロフィブリル化セルロースの保水度は、例えば、10~500%、好ましくは50~450%、より好ましくは90~400%である。ミクロフィブリル化セルロースの保水度が10%を下回ると、分散性が悪化し、ミクロフィブリル化セルロースとミクロフィブリル化セルロース、パルプが相互に混じり合わないおそれがある。同保水度が500%を上回ると、調成したスラリーが濾水性や乾燥性に乏しいものとなる。
湿潤シートにおけるミクロフィブリル化セルロースの含有率(固形分濃度)は、例えば、0~39.6質量%、好ましくは10~38質量%、より好ましくは12~36質量%である。当該含有率の範囲であればミクロフィブリル化セルロースが湿潤シートに適度に分散したものとなり好ましい。また、湿潤シートから成形体等を製造した場合でも、ミクロフィブリル化セルロースが成形体等に適度に分散したものとなるので好ましい。当該含有率が39.6質量%を超えると、濾水性や乾燥性が良いものとならない。
湿潤シートは、セルロースナノファイバーとミクロフィブリル化セルロースの少なくともいずれか一方と、パルプが混合されたセルロース繊維スラリーから製造される。湿潤シートの製造方法は後述する。
[式(1)]
厚み変化率=((厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み)-(厚み方向に100kPaの圧力を5秒間加えた後の湿潤シートの厚み))÷(厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み)
湿潤シートに含まれるパルプとセルロース微細繊維の配合比は、例えば、1:99~50:50、好ましくは5:95~30:70、より好ましくは10:90~20:80とするとよい。また、セルロースナノファイバーとミクロフィブリル化セルロースの配合比は、例えば、100:0~0:100、好ましくは80:20~20:80、より好ましくは70:30~30:70とするとよい。
湿潤シートは、当該湿潤シートを水系媒体中に分散させ、濃度1.5%の分散液としたときの保水性が、好ましくは250~4000g/m2、より好ましくは500~3000g/m2である。保水性が250g/m2を下回ると湿潤性に乏しく、4000g/m2を超えると湿潤シートは形状を保てなくなるおそれがある。
湿潤シートは、湿潤シートを1~50MPa、100~150℃の条件で、脱水・乾燥して高密度化し、成形体としたときの密度が、好ましくは0.8~1.5g/m3、より好ましくは0.9~1.4g/m3、特に好ましくは1.0~1.3g/m3である。当該密度が0.8g/m3を下回ると、成形体を成形する過程で破断し易くなり、1.5g/m3を上回ると加工する上での取り扱いが困難になるおそれがある。
次に、湿潤シート及び成形体の製造方法を説明する。製造方法は、スラリーを調成する調成工程10、湿潤シートを形成する形成工程20、湿潤シートを加熱しつつ加圧する加熱加圧工程30からなる。これら工程を順次説明する。
スラリーの調成工程10では、図2に示すようにパルプPと、セルロース微細繊維(セルロースナノファイバーC及び/又はミクロフィブリル化セルロースM)を、水系媒体Wに混ぜて調成してスラリーSを得る一例である。
[式(2)]
保水性(g/m2)=(脱水後の濾紙重量-濾紙乾燥重量)×1250
調整されたセルロース繊維のスラリーは形成工程20で、対向する2枚の網状シートで前記スラリーを挟んで加圧して脱水し、当該スラリーを湿潤シートに形成する。形成工程20では、図1を参照しつつ説明すると、台の上に置かれた筒状の型枠13の内部に網状シート12を下から順に積層し、その上にスラリー11を充填する。充填されたスラリー11に上から網状シート14を被せる。なお、型枠13は多孔質部材であると、脱水が促進され、湿潤シートの形成工程20に費やす時間を短縮できる。
加熱加圧工程30では、1~50MPa、100~150℃の条件で、脱水・乾燥、高密度化して、成形体Xとする。
(1)まず、セルロース繊維として原料パルプ(LBKP、水分率97質量%)、セルロースナノファイバー(LBKP、水分率97質量%)を混合し、LBKPセルロースナノファイバーの固形分濃度が3質量%のセルロース繊維のスラリーを調成した。LBKPセルロースナノファイバーは、原料パルプ(水分率97質量%)をリファイナーで予備叩解し、高圧ホモジナイザーで解繊して得た。このLBKPセルロースナノファイバーは、固形分基準で濃度3質量%の水分散液であった。得られたLBKPセルロースナノファイバーは、平均繊維径30nm、結晶化度75%であった。このLBKPセルロースナノファイバー水分散液とパルプと攪拌機にて混合した混合物を遠心分離機(HITACHI、冷却遠心分離機CR22N)で8500rpm、10分間、遠心分離して濃縮混合物を得た。この濃縮混合物はLBKPセルロースナノファイバーの固形分濃度が5質量%であった。この濃縮混合物に、LBKPセルロースナノファイバー水分散液、希釈水を加えたものを、自転公転ミキサー(あわとり練太郎)にて2000rpm、3分間、撹拌・脱泡して固形分濃度が5質量%のスラリーを得た。
(2)300メッシュの金網(下部金網)上に、上記(1)のスラリーを塗工して、そのスラリーの上方から、別の300メッシュの金網(上部金網)をそのスラリーに被せて、金網とスラリーと金網とで構成された積層物とした。
(3)上部金網と下部金網とで挟まれた当該スラリーを加圧して、湿潤シートを得た。ここで、積層物を下部金網が下、上部金網が上になるように支持台に乗せた。上部金網に5kgの重しを10秒間乗せて得た湿潤シートを試験例1、上部金網に5kgの重しを5分間乗せて得た湿潤シートを試験例2、上部金網を下部金網方向に0.41MPaで5分間圧力を加えて得た湿潤シートを試験例3とした。湿潤シート(試験例1~3)は、それぞれ長さ10cm、幅10cm、厚み0.2cmの試験片とした。
(4)湿潤シート(試験例1~3)の試験片それぞれについて、湿潤シートの両面全体を、厚み0.04mmの樹脂フィルムで覆い、被覆物とした。この被覆物を支持台に乗せて、この被覆物に対して、厚み方向に100kPaの圧力を1秒間加えて厚みを測定した。加えて、同様に厚み方向に100kPaの圧力を4秒間加えて厚みを測定し、厚み変化率を求めた。
(5)また、試験例1~3について、LBKPセルロースナノファイバーの固形分濃度(質量%)を測定した。
上記に示すJISやTAPPIその他の試験、測定方法は特段断りがない場合は、室温、特に25℃、大気圧中、特に1atmで行っている。
20 湿潤シートの形成工程
30 加熱加圧工程
S スラリー
P パルプ
W 水等の媒体
X 成形体
Claims (10)
- パルプと、平均繊維径が10000nm以下のセルロース微細繊維を有し、
含水率が60質量%以上であり、厚みが0.5mm以上、10mm以下である、
ことを特徴とする湿潤シート。 - 前記セルロース微細繊維が、セルロースナノファイバーと当該セルロースナノファイバーよりも平均繊維径が大であるミクロフィブリル化セルロースのうちの少なくとも一方からなる、
請求項1に記載の湿潤シート。 - 以下に示す式1から求まる厚み変化率が0.4以下である、
請求項1又は請求項2に記載の湿潤シート。
[式1]
厚み変化率=((厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み)-(厚み方向に100kPaの圧力を5秒間加えた後の湿潤シートの厚み))÷(厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み) - 前記セルロース微細繊維の固形分濃度が10質量%以上である、
請求項1~請求項3のいずれか1項に記載の湿潤シート。 - 湿潤シートを加熱及び加圧して成形体を得る加熱加圧工程を備え、
前記湿潤シートは、パルプと、平均繊維径が10000nm以下のセルロース微細繊維を有し、含水率が60質量%以上であり、厚みが0.5mm以上、10mm以下となるものである、
ことを特徴とする成形体の製造方法。 - パルプと、平均繊維径が10000nm以下のセルロース微細繊維を混合してスラリーを調成する調成工程と、
対向する2枚の網状シートで前記スラリーを挟んで加圧して脱水し、当該スラリーを湿潤シートに形成する形成工程と、
前記湿潤シートを加熱及び加圧して成形体を得る加熱加圧工程を備え、
前記湿潤シートは、含水率が60質量%以上であり、厚みが0.5mm以上、10mm以下となるものである、
ことを特徴とする成形体の製造方法。 - 前記セルロース微細繊維が、セルロースナノファイバーと当該セルロースナノファイバーよりも平均繊維径が大であるミクロフィブリル化セルロースのうちの少なくとも一方からなる、
請求項5又は請求項6に記載の成形体の製造方法。 - 以下に示す式1から求まる厚み変化率が0.4以下である、
請求項5~請求項7のいずれか1項に記載の成形体の製造方法。
[式1]
厚み変化率=((厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み)-(厚み方向に100kPaの圧力を5秒間加えた後の湿潤シートの厚み))÷(厚み方向に100kPaの圧力を1秒間加えた後の湿潤シートの厚み) - 前記セルロース微細繊維の固形分濃度が10質量%以上である、
請求項5~請求項8のいずれか1項に記載の成形体の製造方法。 - 前記脱水工程は、実質加熱しないで行う工程である、
請求項5~請求項9のいずれか1項に記載の成形体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180074942.2A CN116457531A (zh) | 2020-12-02 | 2021-12-01 | 纤维素纤维的湿润片材和成型体的制造方法 |
EP21900626.9A EP4257745A4 (en) | 2020-12-02 | 2021-12-01 | WET FILM MADE OF CELLULOSE FIBERS AND METHOD FOR PRODUCING A MOULDED BODY |
US18/038,119 US20240003095A1 (en) | 2020-12-02 | 2021-12-01 | Wet cellulose fiber sheet and method for producing cellulose fiber molded body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-200476 | 2020-12-02 | ||
JP2020200476A JP2022088181A (ja) | 2020-12-02 | 2020-12-02 | セルロース繊維の湿潤シート及び成形体の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022118875A1 true WO2022118875A1 (ja) | 2022-06-09 |
Family
ID=81853243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/044065 WO2022118875A1 (ja) | 2020-12-02 | 2021-12-01 | セルロース繊維の湿潤シート及び成形体の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240003095A1 (ja) |
EP (1) | EP4257745A4 (ja) |
JP (1) | JP2022088181A (ja) |
CN (1) | CN116457531A (ja) |
WO (1) | WO2022118875A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012111063A (ja) * | 2010-11-22 | 2012-06-14 | Eidai Co Ltd | 木質繊維板の製造方法及び木質繊維板 |
JP2016094683A (ja) | 2014-11-14 | 2016-05-26 | 中越パルプ工業株式会社 | Cnfの成形方法及びその成形方法によって得られるcnf成形体 |
JP2017190529A (ja) | 2017-07-04 | 2017-10-19 | パンパシフィック・カッパー株式会社 | 銅製錬における電気・電子部品屑の処理方法 |
JP2018534393A (ja) * | 2015-10-14 | 2018-11-22 | ファイバーリーン テクノロジーズ リミテッド | 3d成形可能なシート材料 |
US20190047273A1 (en) * | 2016-03-23 | 2019-02-14 | Stora Enso Oyj | Board with improved compression strength |
JP2019183350A (ja) * | 2018-04-17 | 2019-10-24 | 栗原紙材株式会社 | パルプモールド成形体の製造方法 |
JP2019199671A (ja) | 2018-05-18 | 2019-11-21 | 大王製紙株式会社 | セルロース微細繊維及びその製造方法 |
WO2020071120A1 (ja) * | 2018-10-05 | 2020-04-09 | 大王製紙株式会社 | セルロース繊維の成形体及びその製造方法 |
JP2020059962A (ja) * | 2018-10-05 | 2020-04-16 | 大王製紙株式会社 | セルロース繊維の成形体及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10311000A (ja) * | 1997-05-09 | 1998-11-24 | Oji Paper Co Ltd | パルプモールド及びその製造方法 |
WO2014196357A1 (ja) * | 2013-06-03 | 2014-12-11 | 王子ホールディングス株式会社 | 微細繊維含有シートの製造方法 |
JP7021893B2 (ja) * | 2016-10-13 | 2022-02-17 | 大王製紙株式会社 | セルロースナノファイバー成形体 |
JP2018199872A (ja) * | 2017-05-26 | 2018-12-20 | 栗原紙材株式会社 | 積層パルプモールドの製造方法および積層パルプモールド製造装置 |
JP7077111B2 (ja) * | 2018-04-10 | 2022-05-30 | 日本製紙株式会社 | パルプモールド |
JP7265333B2 (ja) * | 2018-10-05 | 2023-04-26 | 大王製紙株式会社 | セルロース繊維の成形体の製造方法 |
JP7449045B2 (ja) * | 2019-04-25 | 2024-03-13 | 大王製紙株式会社 | セルロース繊維の成形体及びその製造方法 |
-
2020
- 2020-12-02 JP JP2020200476A patent/JP2022088181A/ja active Pending
-
2021
- 2021-12-01 WO PCT/JP2021/044065 patent/WO2022118875A1/ja active Application Filing
- 2021-12-01 CN CN202180074942.2A patent/CN116457531A/zh active Pending
- 2021-12-01 EP EP21900626.9A patent/EP4257745A4/en active Pending
- 2021-12-01 US US18/038,119 patent/US20240003095A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012111063A (ja) * | 2010-11-22 | 2012-06-14 | Eidai Co Ltd | 木質繊維板の製造方法及び木質繊維板 |
JP2016094683A (ja) | 2014-11-14 | 2016-05-26 | 中越パルプ工業株式会社 | Cnfの成形方法及びその成形方法によって得られるcnf成形体 |
JP2018534393A (ja) * | 2015-10-14 | 2018-11-22 | ファイバーリーン テクノロジーズ リミテッド | 3d成形可能なシート材料 |
US20190047273A1 (en) * | 2016-03-23 | 2019-02-14 | Stora Enso Oyj | Board with improved compression strength |
JP2017190529A (ja) | 2017-07-04 | 2017-10-19 | パンパシフィック・カッパー株式会社 | 銅製錬における電気・電子部品屑の処理方法 |
JP2019183350A (ja) * | 2018-04-17 | 2019-10-24 | 栗原紙材株式会社 | パルプモールド成形体の製造方法 |
JP2019199671A (ja) | 2018-05-18 | 2019-11-21 | 大王製紙株式会社 | セルロース微細繊維及びその製造方法 |
WO2020071120A1 (ja) * | 2018-10-05 | 2020-04-09 | 大王製紙株式会社 | セルロース繊維の成形体及びその製造方法 |
JP2020059962A (ja) * | 2018-10-05 | 2020-04-16 | 大王製紙株式会社 | セルロース繊維の成形体及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4257745A4 |
Also Published As
Publication number | Publication date |
---|---|
US20240003095A1 (en) | 2024-01-04 |
CN116457531A (zh) | 2023-07-18 |
EP4257745A1 (en) | 2023-10-11 |
JP2022088181A (ja) | 2022-06-14 |
EP4257745A4 (en) | 2024-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Santucci et al. | Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse | |
Ang et al. | Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption | |
JP6613771B2 (ja) | 微細繊維状セルロース含有物 | |
CN107531910B (zh) | 干混可再分散纤维素长丝/载体产品及其制备方法 | |
EP3312217B1 (en) | Process for the production of a paint composition using nano-fibrillar cellulose gels | |
CN107805851B (zh) | 磷酸酯化微细纤维素纤维及其制造方法 | |
US11814794B2 (en) | Cellulose fiber molded product and method for manufacturing the same | |
WO2015074120A1 (en) | Nanocellulose | |
CN103502529A (zh) | 高长径比纤维素纳米长丝及其生产方法 | |
JP2012057285A (ja) | 微細植物繊維含有紙シート | |
Zheng | Production of fibrillated cellulose materials-Effects of pretreatments and refining strategy on pulp properties | |
WO2022118875A1 (ja) | セルロース繊維の湿潤シート及び成形体の製造方法 | |
WO2023095421A1 (ja) | セルロース粒子及びセルロース粒子分散液 | |
JP7499593B2 (ja) | セルロース繊維の成形体及びその製造方法 | |
JP2022088181A5 (ja) | ||
JP7365796B2 (ja) | セルロース繊維の成形体及びその製造方法 | |
JP7388824B2 (ja) | セルロース繊維の成形体及びその製造方法 | |
JP2014227535A (ja) | 複合材料及びその製造方法 | |
JP7265333B2 (ja) | セルロース繊維の成形体の製造方法 | |
JP7346018B2 (ja) | セルロース繊維スラリーの製造方法 | |
JP7244247B2 (ja) | セルロース繊維のスラリー | |
JP2024014423A (ja) | セルロース繊維成形体の製造方法 | |
Lähdeniemi et al. | Manufacturing of microfibrillated cellulose from never-dried microcrystalline cellulose using Masuko grinder | |
JP2024128402A (ja) | 調理用シート | |
JP2020059934A (ja) | セルロース繊維のスラリー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21900626 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180074942.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18038119 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021900626 Country of ref document: EP Effective date: 20230703 |