Nothing Special   »   [go: up one dir, main page]

WO2021125247A1 - 粘着剤、粘着テープ、電化製品、車載部材、及び固定方法 - Google Patents

粘着剤、粘着テープ、電化製品、車載部材、及び固定方法 Download PDF

Info

Publication number
WO2021125247A1
WO2021125247A1 PCT/JP2020/047065 JP2020047065W WO2021125247A1 WO 2021125247 A1 WO2021125247 A1 WO 2021125247A1 JP 2020047065 W JP2020047065 W JP 2020047065W WO 2021125247 A1 WO2021125247 A1 WO 2021125247A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
mass
sol
adhesive
Prior art date
Application number
PCT/JP2020/047065
Other languages
English (en)
French (fr)
Inventor
寛幸 片岡
寛生 山本
絢 足立
知浩 肥田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021555373A priority Critical patent/JP7203244B2/ja
Priority to US17/785,178 priority patent/US20230043508A1/en
Priority to KR1020227020105A priority patent/KR20220115950A/ko
Priority to EP20902895.0A priority patent/EP4079517A4/en
Priority to CN202080087138.3A priority patent/CN114829533A/zh
Publication of WO2021125247A1 publication Critical patent/WO2021125247A1/ja
Priority to JP2022208874A priority patent/JP2023036859A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J131/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid, or of a haloformic acid; Adhesives based on derivatives of such polymers
    • C09J131/02Homopolymers or copolymers of esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/354Applications of adhesives in processes or use of adhesives in the form of films or foils for automotive applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to an adhesive, an adhesive tape, an adhesive sheet, an adhesive, an electric appliance having an adhesive tape or an adhesive sheet, an in-vehicle member, and a fixing method using the adhesive or the adhesive tape.
  • an adhesive tape having an adhesive layer made of an adhesive has been widely used for fixing various parts in electric appliances, vehicles, houses, building materials, and the like.
  • a pressure-sensitive adhesive a pressure-sensitive adhesive containing an acrylic polymer containing a constituent unit derived from an acrylic (meth) acrylate such as 2-ethylhexyl acrylate or n-butyl acrylate as a main component is known (for example, Patent Document 1, Patent Document 1, 2).
  • Low-temperature stickability requires high fluidity in a low-temperature environment, while in order to improve holding power in a high-temperature environment, cohesive force in a high-temperature environment is required. , It can be difficult to meet both of these characteristics. Furthermore, although it is generally difficult for adhesives to increase the adhesive strength of adherends with low polarity, many in-vehicle members and parts of electrical appliances have low polarity, such as polyolefin resins typified by polypropylene resin. Since they are used, it is necessary to increase the adhesive force to a low-polarity adherend in these applications.
  • the acrylic pressure-sensitive adhesive containing a constituent unit derived from n-butyl acrylate which is generally used in the past, has a holding power at a high temperature, a low-temperature stickability, a polyolefin resin, and the like. It has been found that any of the adhesive properties to low-polarity adherends can be improved.
  • alkyl (meth) acrylates having a small number of carbon atoms, such as n-butyl acrylate are produced from petroleum and cannot sufficiently improve the carbon content (that is, bio-rate) derived from living organisms.
  • the present invention provides an adhesive and an adhesive sheet capable of improving the holding power at high temperature, the low temperature stickability, and the adhesiveness to a low-polarity adherend such as a polyolefin resin while increasing the biorate.
  • the challenge is to provide.
  • the gist of the present invention is the following [1] to [32].
  • the adhesive according to any one.
  • Tg glass transition temperature
  • An adhesive tape provided with an adhesive layer made of the adhesive according to any one of the above [1] to [9].
  • An electric appliance is constructed by using the adhesive according to any one of the above [1] to [9] or the adhesive tape according to any one of the above [10] to [12].
  • the pressure-sensitive adhesive according to any one of the above [1] to [9] is provided, and the peak top molecular weight (Mtp) of the sol of the pressure-sensitive adhesive by gel permeation chromatography (GPC) is 137,000 or more and 300,000 or less.
  • Mw represents the weight average molecular weight of the sol of the pressure-sensitive adhesive by GPC
  • R sol represents the sol content of the pressure-sensitive adhesive
  • D represents the dispersity of the sol of the pressure-sensitive adhesive by GPC.
  • a pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive containing a biological component, wherein the peak top molecular weight (Mtp) of the sol component of the pressure-sensitive adhesive by gel permeation chromatography (GPC) is 137,000 or more and 300,000 or less, and the pressure-sensitive adhesive.
  • Mtp peak top molecular weight
  • the pressure-sensitive adhesive is at least one monomer selected from the group consisting of the monomer (A2) represented by the following general formula (4) and the monomer (B2) represented by the following general formula (5).
  • R 4 represents H or CH 3
  • R 5 represents -C n H 2n + 1
  • n represents an integer of 7 to 20
  • the pressure-sensitive adhesive and the pressure-sensitive adhesive sheet of the present invention all of the holding power at high temperature, the low-temperature stickability, and the adhesiveness to a low-polarity adherend are improved while increasing the bio-rate.
  • the pressure-sensitive adhesive of the present invention contains a polymer (X1).
  • the polymer (X1) is at least one monomer (Y1) selected from the group consisting of the monomer (A1) represented by the following general formula (1) and the monomer (B1) represented by the following general formula (2). ) Derived from the constituent units.
  • the term "monomer (Y1)” is also used to collectively explain a monomer (A1) and a monomer (B1).
  • R 1 represents H or CH 3
  • R 2 represents ⁇ C n H 2n + 1
  • n represents an integer of 7-14
  • m represents an integer of 6 to 13.
  • the present invention by containing at least one of the monomer (A1) and the structural unit derived from the monomer (B1), it becomes easy to adjust tan ⁇ (23 ° C.), which will be described later, to an appropriate range, and the holding power at a high temperature can be easily adjusted. , Low temperature stickability, and adhesion to low-polarity adherends are also facilitated.
  • the monomer (A1) and the monomer (B1) can be easily produced from biological raw materials, and the biorate, which will be described later, can be easily increased.
  • the polymer (X1) may contain a structural unit derived from one or both of the monomer (A1) and the monomer (B1), but preferably contains a structural unit derived from the monomer (A1).
  • the polymer (X1) has a structural unit derived from the monomer (A1), it becomes easy to adjust tan ⁇ (23 ° C.) within a desired range, and it also has a holding power at a high temperature, a low temperature stickability, and a low polarity. Adhesion to the adherend is also easily improved.
  • the alkyl group of R 2 in the formula (1) (-C n H 2n + 1 ) and the alkyl group of R 3 in the formula (2) (-C m H 2m + 1 ) may be linear or branched.
  • a linear chain is preferable from the viewpoint of facilitating the range of tan ⁇ (23 ° C.) to an appropriate range.
  • n in R 2 is preferably 7 to 10, and more preferably 7.
  • R 1 is H in the formula (1).
  • the polymer (X1) preferably contains a structural unit derived from the monomer (A1) in which n in the general formula (1) is 7 to 10 and R 2 is linear, and n is 7. Moreover, it is more preferable to contain a structural unit derived from the monomer (A1) in which R 2 is linear, and it is further preferable that R 1 is H in the monomer (A1) in this case.
  • the monomer (A1) examples include n-heptyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, n-decyl (meth) acrylate, and 2-octyl (meth). Examples thereof include acrylate, n-nonyl (meth) acrylate, undecyl (meth) acrylate, tetradecyl (meth) acrylate, and myristyl (meth) acrylate. These monomers (A1) may be used alone or in combination of two or more. Specific examples of the monomer (B1) include vinyl caprate, vinyl laurate, vinyl caprylate, vinyl nonanoate and the like.
  • These monomers (B1) may be used alone or in combination of two or more.
  • n-heptyl (meth) acrylate is preferable, and n-heptyl acrylate is more preferable.
  • the use of n-heptyl (meth) acrylates tends to improve retention at high temperatures, low temperature stickability, and adhesion to low polarity adherends by keeping tan ⁇ (23 ° C.) in the appropriate range.
  • (meth) acrylate is used as a term meaning one or both of acrylate and methacrylate, and other similar terms are also used.
  • R 2 and R 3 are preferably carbons derived from living organisms. By using carbon of biological origin for R 2 and R 3 , the biorate described later can be increased.
  • Monomers (A1) and (B1), each of which is a biological carbon in R 2 and R 3, are obtained by using saturated fatty acids or unsaturated fatty acids collected from animals and plants as raw materials, and alcoholizing and esterifying them. It is inexpensive and easily available.
  • the content of the structural unit derived from the monomer (Y1) (that is, at least one monomer selected from the monomer (A1) and the monomer (B1)) is 48% by mass or more in the polymer (X1). If this content is less than 48% by mass, it becomes difficult to adjust tan ⁇ (23 ° C.) to an appropriate range. In addition, it becomes difficult to improve the holding power at high temperature, the low temperature stickability, and the adhesiveness to a low-polarity adherend while increasing the bio-rate. From the viewpoint of adjusting tan ⁇ (23 ° C.) within a desired range and improving the various performances described above while increasing the biorate, the content of the structural unit derived from the monomer (Y1) is 70% by mass or more.
  • the content of the structural unit derived from the monomer (Y1) is preferably 99% by mass or less, more preferably 98% by mass or less, and 97.5% by mass, for example, in order to contain a predetermined amount of the functional group-containing monomer described later. The following is more preferable.
  • the monomer (A1) preferably contains n-heptyl (meth) acrylate.
  • the content of the structural unit derived from n-heptyl (meth) acrylate in the polymer (X1) is 48% by mass or more from the viewpoint of tan ⁇ (23 ° C.) and from the viewpoint of improving the various performances described above while increasing the biorate. Is more preferable, 70% by mass or more is more preferable, 80% by mass or more is further preferable, and 90% by mass or more is particularly preferable.
  • the content of the structural unit derived from n-heptyl (meth) acrylate is preferably 99% by mass or less, more preferably 98% by mass or less, and further preferably 97.5% by mass or less.
  • the polymer (X1) preferably contains a structural unit derived from another monomer other than the above-mentioned monomer (A1) and monomer (B1).
  • the other monomer is preferably a monomer having a polymerizable carbon-carbon double bond such as a vinyl group and a (meth) acryloyl group.
  • a monomer containing a polar group hereinafter, also referred to as “polar group-containing monomer (C)” is preferable. Since the polymer (X1) contains a structural unit derived from the polar group-containing monomer (C), it becomes easy to increase the adhesive strength of the pressure-sensitive adhesive, which provides holding power at high temperature, low-temperature stickability, and low-polarity adherend.
  • the polar group is a functional group having an active hydrogen, and specific examples thereof include a carboxy group, a hydroxyl group, an amino group, and an amide group.
  • the polar group may be a functional group capable of reacting with a cross-linking agent described later.
  • the polar group-containing monomer (C) may be used alone or in combination of two or more.
  • Examples of the polar group-containing monomer (C) include a carboxy group-containing monomer (hereinafter, also referred to as “carboxy group-containing monomer (C1)”) and a hydroxyl group-containing monomer (hereinafter, “hydroxyl group-containing monomer (C2)”). It is preferable to contain any of these), and it is more preferable to use these in combination.
  • Examples of the carboxy group-containing monomer (C1) include acrylic acid, methacrylic acid, crotonic acid and the like. Among these, at least one selected from the group consisting of acrylic acid and methacrylic acid is preferable, and acrylic acid is more preferable.
  • the content of the structural unit derived from the carboxy group-containing monomer (C1) in the polymer (X1) is preferably 0.5 to 10% by mass. By setting the content of the constituent unit derived from (C1) within the above range, the adhesive strength of the pressure-sensitive adhesive is appropriately increased, and the holding power at high temperature, low-temperature stickability, and adhesion to a low-polarity adherend are obtained. It becomes easier to improve the sex. From these viewpoints, the content of the structural unit derived from the carboxy group-containing monomer (C1) is more preferably 1 to 8% by mass, further preferably 2 to 6% by mass.
  • Examples of the hydroxyl group-containing monomer (C2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxy.
  • Examples thereof include (meth) acrylate having a hydroxyl group such as butyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, and 6-hydroxyhexyl (meth) acrylate, and allyl alcohol.
  • (meth) acrylate having a hydroxyl group is preferable, and 2-hydroxyethyl (meth) acrylate is more preferable.
  • the content of the structural unit derived from the hydroxyl group-containing monomer (C2) in the polymer (X1) is preferably 0.1 to 15% by mass, preferably 0.05 to 10% by mass, from the viewpoint of improving various performances of the pressure-sensitive adhesive. , 0.1-5% by mass is more preferable.
  • the hydroxyl group-containing monomer (C2) is preferably used in combination with the carboxy group-containing monomer (C1), and the content of the structural unit derived from the hydroxyl group-containing monomer (C2) when used in combination is 0.01 to 5% by mass. Is preferable, 0.05 to 2% by mass is more preferable, and 0.1 to 0.9% by mass is further preferable.
  • the adhesive strength of the adhesive can be improved even in a small amount in this way, and the holding power at high temperature, low temperature stickability, and adhesiveness to low-polarity adherends can be improved. It becomes easy to improve.
  • Examples of the monomer containing an amide group include isopropyl (meth) acrylamide and dimethylaminopropyl (meth) acrylamide.
  • a monomer other than the functional group-containing monomer may be used, and an alkyl (meth) acrylate other than the compound represented by the general formula (1) can be mentioned.
  • alkyl (meth) acrylates examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, and n-hexyl (meth) acrylate. ) Alkyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, 5,7,7-trimethyl-2- (1,3,3-trimethyl) having 1 to 6 carbon atoms in an alkyl group such as acrylate.
  • alkyl (meth) acrylates having about 15 to 24 carbon atoms such as esters of butyl) octanol-1 and (meth) acrylic acid, behenyl (meth) acrylates, and arachidyl (meth) acrylates.
  • examples of other monomers include aromatics such as (meth) acrylate having an alicyclic structure such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, benzyl (meth) acrylate, and 2-phenoxyethyl (meth) acrylate.
  • (Meta) acrylate having a ring monomer having an epoxy group such as glycidyl (meth) acrylate, monomer having a nitrile group such as (meth) acrylonitrile, 2-butoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, Examples include styrene.
  • Monomers other than the polar group-containing monomer may be used alone or in combination of two or more.
  • the other monomer preferably contains carbon derived from a living organism from the viewpoint of improving the biorate, which will be described later, but may be a monomer derived from petroleum without containing carbon derived from a living organism.
  • the weight average molecular weight (Mw) of the polymer (X1) is preferably 200,000 to 1,000,000.
  • the weight average molecular weight (Mw) is 200,000 or more, the shear strength of the pressure-sensitive adhesive can be increased and the holding power of the pressure-sensitive adhesive under high temperature can be increased. Further, when it is set to 1 million or less, the adhesive strength of the pressure-sensitive adhesive is improved, and it becomes easy to improve the low-temperature adhesiveness, the adhesiveness to a low-polarity adherend, and the like. From these viewpoints, the weight average molecular weight (Mw) is more preferably 300,000 or more, further preferably 400,000 or more, still more preferably 900,000 or less, still more preferably 800,000 or less.
  • the weight average molecular weight (Mw) can be appropriately adjusted by appropriately selecting the amount of the polymerization initiator used, the polymerization conditions such as the polymerization temperature, the polymerization method, and the like.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the polymer (X1) is the main component of the adhesive.
  • the content of the polymer (X1) in the pressure-sensitive adhesive is, for example, 50% by mass or more, preferably 60% by mass or more, and more preferably 65% by mass or more in order to impart appropriate adhesive performance.
  • the polymer (X1) in the pressure-sensitive adhesive is preferably 99% by mass or less, and further 95% by mass or less so that a predetermined amount of components other than the polymer (X1) such as a tackifier and a cross-linking agent can be blended in the pressure-sensitive adhesive. It is preferable, and more preferably 92% by mass or less.
  • the polymer (X1) can be obtained by radically reacting a mixture of the above-mentioned raw material monomers in the presence of a polymerization initiator.
  • the radical reaction method is not particularly limited, and examples thereof include living radical polymerization and free radical polymerization. According to the living radical polymerization, a copolymer having a more uniform molecular weight and composition as compared with the free radical polymerization can be obtained, the formation of low molecular weight components and the like can be suppressed, and the cohesive force of the pressure-sensitive adhesive is increased. ..
  • the polymerization method is not particularly limited, and conventionally known methods can be used. Examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like. Of these, solution polymerization is preferable because it is easy to synthesize.
  • reaction solvent examples include ethyl acetate, toluene, methyl ethyl ketone, methyl sulfoxide, ethanol, acetone, diethyl ether and the like. These reaction solvents may be used alone or in combination of two or more.
  • the above-mentioned polymerization initiator is not particularly limited, and examples thereof include organic peroxides and azo compounds.
  • organic peroxides include 1,1-bis (t-hexyl peroxy) -3,3,5-trimethylcyclohexane, t-hexyl peroxypivalate, t-butylperoxypivalate, 2,5.
  • examples of the above-mentioned polymerization initiator include an organic tellurium polymerization initiator.
  • the organic telluride polymerization initiator is not particularly limited as long as it is generally used for living radical polymerization, and examples thereof include organic telluride compounds and organic telluride compounds.
  • an azo compound may be used as the polymerization initiator for the purpose of promoting the polymerization rate.
  • the pressure-sensitive adhesive of the present invention preferably contains a pressure-sensitive adhesive in addition to the polymer (X1).
  • a pressure-sensitive adhesive in addition to the polymer (X1).
  • the tackifier By containing the tackifier, the stickiness of the pressure-sensitive adhesive is improved. In addition, it becomes easy to improve the adhesiveness to a low-polarity adherend. Further, for example, by adding a tackifier so that the glass transition temperature (Tg) is equal to or lower than the upper limit value described later, the low temperature stickability is improved.
  • tackifier examples include rosin-based resins such as rosin-based resins and polymerized rosin-ester resins, rosin-based tackifiers such as hydrogenated rosin-based resins, and terpene-based adhesives such as terpene-based resins and terpene phenol-based resins.
  • rosin-based resins such as rosin-based resins and polymerized rosin-ester resins
  • rosin-based tackifiers such as hydrogenated rosin-based resins
  • terpene-based adhesives such as terpene-based resins and terpene phenol-based resins.
  • examples thereof include an imparting agent, a Kumaron inden-based resin, an alicyclic saturated hydrocarbon-based resin, a C5-based petroleum resin, a C9-based petroleum resin, and a C5-C9 copolymer-based petroleum resin.
  • These tackifier resins may be used alone or
  • rosin-based tackifiers and terpene-based tackifiers are preferable. These tackifiers can be easily synthesized from biological raw materials, and the biorate can be easily improved.
  • the rosin-based tackifier is derived from a natural resin such as pine fat
  • the terpene-based tackifier is derived from plant essential oils and the like.
  • a rosin-based tackifier is particularly suitable. By using the rosin-based tackifier, it becomes easy to improve the adhesiveness to a low-polarity adherend such as a polyolefin resin typified by polypropylene resin.
  • the softening point of the tackifier is preferably 120 ° C. or higher.
  • the above-mentioned polymer (X1) tends to have a relatively low glass transition temperature and tends to have a low holding power at high temperatures, but when used in combination with a tackifier having a relatively high softening point, it has a holding power at high temperatures. Can be prevented from becoming low.
  • the softening point of the tackifier is more preferably 130 ° C. or higher, further preferably 140 ° C. or higher.
  • the softening point of the pressure-sensitive adhesive is preferably 165 ° C. or lower, more preferably 160 ° C. or lower, and even more preferably 155 ° C. or lower, from the viewpoint of imparting appropriate adhesive performance to the pressure-sensitive adhesive.
  • the softening point can be measured according to JIS K2207.
  • the content of the pressure-sensitive adhesive is not particularly limited, but is preferably 10 to 50 parts by mass with respect to 100 parts by mass of the polymer (X1).
  • the content of the tackifier is at least the above lower limit value, it becomes easy to improve the low-temperature adhesiveness and the adhesiveness to a low-polarity adherend. Further, by setting it to the above upper limit value or less, it is possible to prevent the holding power from being lowered at a high temperature. From the above viewpoint, the content of the tackifier is more preferably 12 to 40 parts by mass, further preferably 15 to 35 parts by mass, and particularly preferably 18 to 30 parts by mass.
  • the pressure-sensitive adhesive of the present invention preferably contains a cross-linking agent and is cross-linked. That is, the pressure-sensitive adhesive is preferably one obtained by cross-linking a pressure-sensitive adhesive composition containing a cross-linking agent in addition to the above-mentioned polymer (X1) or polymer (X1) and a pressure-sensitive adhesive.
  • the cross-linking agent may cross-link the pressure-sensitive adhesive, for example, by reacting with the polar group of the polymer (X1).
  • the cross-linking agent include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents. Among these, at least one selected from the group consisting of an isocyanate-based cross-linking agent and an epoxy-based cross-linking agent is preferable, and an isocyanate-based cross-linking agent is more preferable.
  • the isocyanate-based cross-linking agent is not particularly limited as long as it is a compound having two or more isocyanate groups in one molecule.
  • tolylene diisocyanate and trimethylolpropane tolylene diisocyanate adducts are preferable.
  • isocyanate-based cross-linking agents include various polyisocyanate compounds such as Coronate L-45 and Coronate L-55E (manufactured by Toso), Buret polyisocyanate compounds such as Sumijour N (manufactured by Sumitomo Bayer Urethane), and Death.
  • Polyisocyanate compounds having an isocyanurate ring such as module IL, HL (manufactured by Bayer AG), coronate EH (manufactured by Nippon Polyurethane Industry Co., Ltd.), Sumijour L (manufactured by Sumitomo Bayer Urethane Co., Ltd.), Coronate L, Coronate HL (manufactured by Nippon Polyurethane Industry Co., Ltd.) ) And the like, such as adduct polyisocyanate compounds.
  • the epoxy-based cross-linking agent is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule, and for example, diglycidyl aniline, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether. 1,6-Hexanediol diglycidyl ether, glycerin diglycidyl ether, trimethylpropan triglycidyl ether, 1,3-bis (N, N-diglycidyl aminoethyl) cyclohexane, N, N, N', N'- Examples thereof include tetraglycidyl-m-xylene diamine. Examples of commercially available epoxy-based cross-linking agents include E-AX and E-5C (manufactured by Soken Chemical Co., Ltd.). One type of cross-linking agent may be used alone, or two or more types may be used in combination.
  • the blending amount of the cross-linking agent in the pressure-sensitive adhesive may be appropriately changed according to the type of the polymer (X1), desired physical properties such as the degree of cross-linking, etc., but is, for example, 0.1 with respect to 100 parts by mass of the polymer (X1). It is about 20 parts by mass, preferably 0.4 to 8 parts by mass, and more preferably 0.7 to 4 parts by mass.
  • the degree of cross-linking of the pressure-sensitive adhesive of the present invention is preferably 10 to 70%. By setting the degree of cross-linking within the above range, it becomes easy to improve the holding power at high temperature, the low temperature stickability, the adhesiveness to a low-polarity adherend, and the like. From such a viewpoint, the degree of cross-linking of the pressure-sensitive adhesive is more preferably 20% or more, further preferably 30% or more, still more preferably 60% or less, still more preferably 50% or less.
  • the degree of cross-linking of the pressure-sensitive adhesive is indicated by the gel fraction, and the measuring method thereof is as shown in Examples. The degree of cross-linking of the pressure-sensitive adhesive can be appropriately adjusted by changing the blending amount of the cross-linking agent or the like.
  • the pressure-sensitive adhesive of the present invention may contain additives such as a silane coupling agent, an antioxidant, an ultraviolet inhibitor, a plasticizer, an emulsifier, a softening agent, a filler, a pigment, and a dye, if necessary. Good. As these additives, it is preferable to select a biological material as much as possible from the viewpoint of increasing the biorate.
  • ⁇ Storage modulus> (Tan ⁇ (23 ° C))
  • the pressure-sensitive adhesive of the present invention is G "(23 ° C.) / G'(23 ° C.), where G'(23 ° C.) is the storage elastic modulus at 23 ° C. and G" (23 ° C.) is the loss elastic modulus at 23 ° C. ) Is tan ⁇ (23 ° C.) of 0.8 to 1.3.
  • tan ⁇ (23 ° C.) is less than 0.8 or more than 1.3, all of the holding power at high temperature, low temperature stickability, and adhesiveness to low-polarity adherends such as polyolefin resin are exhibited. It becomes difficult to meet.
  • tan ⁇ (23 ° C.) is preferably 0.85 or more, more preferably 0.88 or more, preferably 1.2 or less, more preferably 1.1 or less, and further preferably 1.0 or less. ..
  • tan [delta (23 ° C.), the kind of the monomer component used in the polymer (X1), can be adjusted by such an amount, for example, monomers (A1), (B1) Equation (1) of, R 2, R in (2)
  • monomers (A1), (B1) Equation (1) of, R 2, R in (2) By making 3 linear or reducing the values of n and m, tan ⁇ (23 ° C.) tends to increase.
  • Tg glass transition temperature
  • Tg glass transition temperature
  • It can also be adjusted by the molecular weight of the polymer (X1). For example, when the molecular weight of the polymer (X1) is reduced, the value of tan ⁇ (23 ° C.) tends to decrease.
  • logG'(23 ° C.) [Pa] is preferably 4.8 to 5.5.
  • logG'(23 ° C.) [Pa] is more preferably 4.85 to 5.4, still more preferably 4.9 to 5.3.
  • logG'(80 ° C.) [Pa] is preferably 4.1 to 4.8.
  • logG'(80 ° C.) [Pa] is more preferably 4.15 to 4.75, and even more preferably 4.2 to 4.7.
  • logG'(0 ° C.) [Pa] is preferably 5.0 to 6.5.
  • logG'(0 ° C.) [Pa] is more preferably 5.4 to 6.4, still more preferably 5.5 to 6.3.
  • logG'(0 ° C.) [Pa] means the logarithm of the storage elastic modulus represented by the unit "Pa". Other similar expressions are synonymous.
  • the storage elastic modulus G'at 0 ° C., 23 ° C., and 80 ° C. can be adjusted by the type and amount of the monomer component used in the polymer (X1). By setting the content and the like as described above, it becomes easy to adjust within the above range. Further, the storage elastic modulus G'at each temperature can be adjusted by the weight average molecular weight and the degree of cross-linking. For example, when the weight average molecular weight and the degree of cross-linking are increased, the storage elastic modulus G'at each temperature tends to increase. Furthermore, it can be adjusted by the molecular weight distribution. For example, the storage elastic modulus G'tends to increase when the molecular weight distribution is narrowed and to decrease when the molecular weight distribution is widened.
  • the glass transition temperature (Tg) of the pressure-sensitive adhesive of the present invention is preferably 15 ° C. or lower. By setting the temperature to 15 ° C. or lower, tan ⁇ (23 ° C.) can be easily increased, and the holding power at high temperature and the low temperature stickability can be easily improved. From these viewpoints, the glass transition temperature (Tg) is preferably 10 ° C. or lower, more preferably 5 ° C. or lower.
  • the glass transition temperature (Tg) of the pressure-sensitive adhesive is not particularly limited, but from the viewpoint of improving the holding power at high temperatures, for example, ⁇ 40 ° C. or higher, preferably ⁇ 28 ° C. or higher, more preferably ⁇ 25 ° C.
  • the glass transition temperature (Tg) can be adjusted by the type and amount of the monomers constituting the polymer (X1).
  • the type and amount of the tackifier can also be adjusted. For example, by using a tackifier having a high softening point or increasing the amount of the tackifier, the glass transition temperature (Tg) can be adjusted. Is likely to be high.
  • the glass transition temperature (Tg) can also be adjusted by adding fine particles or the like.
  • the storage elastic modulus G'and the loss elastic modulus G'at each of the above temperatures are values obtained by measuring under the measurement conditions described in Examples described later using a polymer dynamic viscoelasticity measuring device.
  • (23 ° C.) is a value obtained from the measured storage elastic modulus G'(23 ° C.) and loss elastic modulus G "(23 ° C.) at 23 ° C.
  • the glass transition temperature (Tg) is measured by using a polymer dynamic viscoelasticity measuring device under the measurement conditions described in Examples described later.
  • the pressure-sensitive adhesive of the present invention preferably has a carbon content of biological origin (hereinafter, also referred to as "bio-rate") of 40% by mass or more.
  • bio-rate a carbon content of biological origin
  • Bio-based products can save petroleum resources by using renewable organic resources, reduce carbon dioxide emissions from combustion of petroleum-derived products, and reduce the burden on the environment. From these viewpoints, the biorate is more preferably 50% by mass or more, and further preferably 60% by mass or more. Further, the higher the bio-rate, the better, and it may be 100% by mass or less.
  • Biological carbon contains a certain proportion of radioactive isotopes (C-14), whereas petroleum-derived carbon contains almost no C-14. Therefore, the biorate can be calculated by measuring the concentration of C-14 contained in the pressure-sensitive adhesive or the pressure-sensitive adhesive tape described later. Specifically, it can be measured according to ASTM D6866, which is a standard used in many bioplastic industries.
  • the pressure-sensitive adhesive of the present invention preferably has a peeling limit value of 400 gf ⁇ s or more of the pressure-sensitive adhesive tape at 23 ° C. measured by a tack test.
  • the tack test is performed as follows. First, the adhesive tape is placed on a plate of a tack tester (for example, TAC-1000 manufactured by Reska Co., Ltd.) set at 23 ° C. with the adhesive layer facing up. The non-measurement surface of the adhesive tape is lined with a film such as a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • a cylindrical stainless steel probe having a diameter of 5 mm is pressed against the adhesive tape at a probe temperature of 23 ° C., a pressing speed of 2 mm / s, and a pressing load of 100 gf, and is held in that state for 0.1 seconds. After that, the probe is pulled up at a pulling speed of 0.2 mm / s. The force applied to the adhesive tape during this period is measured.
  • the adhesive constitutes the adhesive tape has been described, but even when the adhesive does not form the adhesive, the adhesive is similarly placed on the plate set at 23 ° C. of the tack tester. It is good to measure in the same way.
  • the peeling limit value is an integral from the time T 1 at which the force indicates 0 to the time at which the maximum force (peak top) is indicated in the force-time curve indicating the force applied to the adhesive tape at 23 ° C. measured by the tack test. Means a value. In the tack test, when the probe is pressed against the adhesive tape, the force-time curve goes down, and then when the probe is started to be pulled up, the force-time curve goes up. The integrated value from the time T 1 at which the force indicates 0 to the time T 2 at which the maximum force (peak top) is indicated is calculated, and this is used as the peeling limit value.
  • peeling limit value By adjusting the peeling limit value to the above range, peeling of the adhesive tape can be suppressed even under a high temperature and high humidity condition and a situation where a restoring force is applied.
  • the preferable lower limit of the peeling limit value is 450 gf ⁇ s, and the more preferable lower limit is 500 gf ⁇ s.
  • the upper limit of the peeling limit value is not particularly limited.
  • the pressure-sensitive adhesive of the present invention may be formed from, for example, a pressure-sensitive adhesive composition prepared.
  • the pressure-sensitive adhesive composition comprises components for forming a pressure-sensitive adhesive, and specifically, in addition to the polymer (X1), contains a pressure-sensitive adhesive, a cross-linking agent, and other additives to be blended as needed. To do.
  • the pressure-sensitive adhesive composition may be diluted with a diluting solution such as an organic solvent.
  • the diluting solution may be the solvent used when synthesizing the polymer (X1), or may be added after synthesizing the polymer (X1).
  • the pressure-sensitive adhesive composition may be crosslinked by heating and drying, if necessary, to become a pressure-sensitive adhesive.
  • the adhesive is usually used for an adhesive tape or the like, and may form an adhesive layer.
  • the adhesive tape of the present invention is an adhesive tape provided with an adhesive layer made of the above-mentioned adhesive.
  • the adhesive tape may be a non-support tape having no base material or an adhesive tape having a base material, but is preferably an adhesive tape having a base material.
  • the adhesive tape may be referred to as an adhesive sheet as described later.
  • the non-support tape is a double-sided adhesive tape that is used in the state of a single layer of an adhesive layer without having a base material.
  • the pressure-sensitive adhesive tape having a base material includes a base material and an adhesive layer provided on at least one surface of the base material.
  • the adhesive tape may be used as a double-sided adhesive tape by providing adhesive layers on both sides of the base material, or may be used as a single-sided adhesive tape by providing an adhesive layer on only one side of the base material. May be good.
  • a release sheet may be appropriately attached to the surface of the exposed adhesive layer to protect it.
  • the release sheet is formed by applying a release agent to at least one surface of the release sheet base material to form a release surface, and the release sheet may be attached so that the release surface is in contact with the pressure-sensitive adhesive layer.
  • at least one of the adhesive layers may be composed of the above-mentioned adhesive of the present invention.
  • the base material used for the adhesive tape is not particularly limited, but is preferably any of a resin film, a non-woven fabric, or a foam.
  • the resin components constituting the resin film include polyethylene terephthalate (PET), polyethylene furanoate (PEF), polylactic acid (PLA), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and poly.
  • Polyester (PES) such as butylene succinate (PBS), polyethylene (PE), polypropylene (PP), polyolefin such as ethylene vinyl acetate copolymer (EVA), polyurethane (PU), triacetyl cellulose (TAC), polyamide ( PA) and the like.
  • the resin film is preferably a polyethylene terephthalate film (PET film).
  • PET film has good mechanical strength and can properly support the pressure-sensitive adhesive layer.
  • a product having a high bio-rate is commercially available, and the bio-rate as an adhesive tape is likely to be high.
  • the non-woven fabric may be a non-woven fabric composed of a resin component, or may be a non-woven fabric using fibers other than the resin component such as pulp.
  • the non-woven fabric using fibers other than the resin component may be formed of the fibers other than the resin component alone, or may be formed of both the fibers other than the resin component and the resin fibers.
  • the resin component for example, those listed as the resin components constituting the above-mentioned resin film may be appropriately selected and used.
  • a non-woven fabric using pulp a product having a high bio-rate is commercially available, and it is easy to increase the bio-rate as an adhesive tape.
  • examples of the foam include a polyolefin resin foam using a polyolefin resin such as PE, PP, and EVA as a resin component, and a polyurethane foam using a polyurethane resin.
  • the resin component constituting the resin film, the non-woven fabric, and the foam for example, a resin derived from petroleum, a resin derived from animals and plants, and a resin derived from both petroleum and animals and plants may be used. It is preferable to contain at least a resin derived from animals and plants in order to make it a base product.
  • the base material is a PET film
  • PET derived from animals and plants may be used.
  • the polyolefin resin constituting the foam may be derived from animals and plants.
  • the thickness of the base material is not particularly limited, but is preferably 1 to 2000 ⁇ m, for example.
  • the suitable range of the thickness of the base material varies depending on the type of the base material used.
  • the base material is a resin film or a non-woven fabric
  • it is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m. ..
  • the thickness of these base materials is preferably 50 to 2000 ⁇ m. Within the above range, it is possible to exhibit high impact resistance and high flexibility to adhere and bond the adherends along the shape of the adherend.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but may be, for example, about 5 to 200 ⁇ m, preferably 10 to 100 ⁇ m. When the thickness of the pressure-sensitive adhesive layer is within this range, the obtained pressure-sensitive adhesive tape can exhibit sufficient adhesive strength.
  • the total thickness of the adhesive tape (total thickness of the base material and the adhesive layer) is preferably 10 to 400 ⁇ m. When the total thickness of the adhesive tape is within this range, the obtained adhesive tape can exhibit sufficient adhesive strength.
  • the adhesive tape of the present invention preferably has a deviation amount of 500 ⁇ m or less, more preferably 400 ⁇ m or less, further preferably 300 ⁇ m or less, and 250 ⁇ m or less as measured by a cohesive force test at 23 ° C. Is particularly preferable.
  • the pressure-sensitive adhesive of the present invention preferably has a deviation amount of 1200 ⁇ m or less, more preferably 1000 ⁇ m or less, and further preferably 800 ⁇ m or less at 80 ° C. measured by a cohesive force test.
  • the amount of deviation is the amount of deviation that occurs when a predetermined load is applied in the shearing direction for 3 minutes, and a detailed measurement method will be described later.
  • the ratio of is defined as the displacement displacement recovery rate (%).
  • the displacement displacement recovery rate (%) is preferably 50% or less, more preferably 40% or less, further preferably 30% or less, and preferably 5% or more. It is more preferably% or more, and further preferably 15% or more.
  • the amount of deviation can be measured by a cohesive force test using a minute shear displacement displacement measuring test device (manufactured by Asahi Seiko Co., Ltd., shear creep measuring device, NST1) shown in FIG. Specifically, it is as follows. First, the release sheet on one side of the double-sided adhesive tape to be tested was peeled off, and a corona-treated polyethylene terephthalate (PET) film was attached to the surface of one exposed adhesive layer of the double-sided adhesive tape. Then, it is cut into a width of 1 cm and a length of 12 cm to obtain a test piece 5. The temperature controller 4 of the device is set to 23 ° C. or 80 ° C., and is left to stand until it stabilizes at the set temperature.
  • PTT polyethylene terephthalate
  • the temperature controller 4 may be a combination of two or more temperature controllers as appropriate.
  • the other release sheet of the test piece 5 is peeled off from its end by about 3 cm to remove it, and the exposed adhesive layer is attached to the adherend 3 so that the adhesive area is 5 mm ⁇ 20 mm.
  • the release sheet 8 remains attached to the pressure-sensitive adhesive layer 7 at a portion other than the end portion.
  • the surface of the other exposed adhesive layer 7 of the test piece 5 is attached to the adherend 3 so that the adhesive area is 5 mm ⁇ 20 mm.
  • the adherend 3 is made of SUS.
  • a quartz block 2 (chromium-deposited on quartz glass) whose end face is mirror-treated is placed on the sticking surface.
  • the mirror-processed surface 10 of the end surface of the block 2 is irradiated with laser light from a laser interferometer 1 (for example, "SI-F1" manufactured by KEYENCE).
  • the test piece 5 is attached to a wire connecting to a 200 g weight 6, and left in that state to keep the temperature constant for 5 minutes. After 5 minutes, the load of the weight 6 is applied to the test piece 5 to apply a horizontal shear load to the test piece 5. Three minutes after the load is applied, the displacement of the block 2 on the test piece 5 is detected by the laser interferometer 1, and the detected value is used as the displacement amount of the adhesive.
  • the load is applied as described above, the load is removed after 3 minutes have passed, and the amount of displacement (after load removal) after 3 minutes has passed after the load has been removed is measured, and measured before the load is removed as described above.
  • the amount of deviation is defined as the amount of deviation (before load removal), and the amount of deviation (after removal of load) / amount of deviation (before removal of load) ⁇ 100 (%) is defined as the displacement recovery rate (%).
  • the amount of deviation (after the load is removed) is measured by the laser interferometer 1 in the same manner as the amount of deviation (before the load is removed).
  • the specific calculation method of the displacement displacement recovery rate (%) is as follows.
  • Displacement recovery rate (%) (displacement displacement ( ⁇ m) 3 minutes after load removal) / (displacement displacement ( ⁇ m) 3 minutes after load loading) ⁇ 100
  • the same method may be used for the single-sided adhesive tape except that the PET film is not attached to the surface of one of the adhesive layers.
  • the double-sided adhesive tape can be similarly measured even with a non-support tape having no base material.
  • the double-sided adhesive tape may be used in the same manner by omitting the peeling step and the like.
  • the pressure-sensitive adhesive tape of the present invention preferably has a bio% of 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more. Further, the higher the bio-rate, the better, and it may be 100% by mass or less.
  • the adhesive tape generally has a different biorate depending on each component (for example, the adhesive layer and the base material). Therefore, the bio-ratio may be calculated by obtaining the bio-ratio of each constituent member and weighting the mass of each constituent member by a weighted average.
  • the method for producing the adhesive tape is not particularly limited, and the adhesive tape can be produced by a conventionally known production method.
  • a pressure-sensitive adhesive composition diluted with an organic solvent or the like is prepared, the pressure-sensitive adhesive composition is applied onto a support such as a release sheet, and if necessary, it is heated and dried. , The pressure-sensitive adhesive layer may be formed.
  • the pressure-sensitive adhesive composition is applied to the release sheet, it may be applied on the release surface of the release sheet.
  • the pressure-sensitive adhesive layer formed on the support such as a release sheet is further attached to the base material to obtain an adhesive tape having the base material.
  • the pressure-sensitive adhesive composition may be directly applied to the base material, heated and dried as needed to obtain a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer on the base material.
  • an adhesive layer may be formed on both sides of the base material by any of the above methods.
  • the pressure-sensitive adhesive composition can be applied to a release sheet, and if necessary, heated and dried to form a pressure-sensitive adhesive layer.
  • a release sheet may be further attached to the formed pressure-sensitive adhesive layer to protect the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer may be peeled off from the release sheet before use.
  • the use of the pressure-sensitive adhesive and the pressure-sensitive adhesive tape of the present invention is not particularly limited, but it is preferably used in electric appliances and vehicle applications.
  • electric appliances it is preferable that they are used for fixing the parts constituting the electric appliances.
  • electrical appliances it is preferable to fix the parts to each other with an adhesive or an adhesive tape. Therefore, the present invention also provides an electric appliance provided with the above-mentioned pressure-sensitive adhesive or pressure-sensitive adhesive tape.
  • the electrical appliances are not particularly limited, and examples thereof include portable electronic devices, various displays such as televisions, washing machines, refrigerators, dishwashers, vacuum cleaners, printers, and various audio devices.
  • in-vehicle members include in-vehicle panels such as ceiling panels, door panels, and instrument panels, car air conditioners, door trims, vibration damping members, emblems, decorative films, and water blocking members. Be done.
  • the in-vehicle member may be fixed to the vehicle via, for example, an adhesive or an adhesive tape. Therefore, the present invention also provides an in-vehicle member provided with the above-mentioned pressure-sensitive adhesive or pressure-sensitive adhesive tape.
  • Electric appliances and the inside of vehicles may be exposed to high temperatures, but the adhesive of the present invention exerts high holding power even in a high temperature environment, so it is possible to stably fix parts of electric appliances and in-vehicle members. it can.
  • assembling of electric appliances and vehicles may be performed in a cold region, and even if it is performed in a cold region, an adhesive or an adhesive tape can be easily attached to an electric appliance part or an in-vehicle member. Therefore, the assembleability is good.
  • parts of electrical appliances, in-vehicle members, etc. may be composed of polyolefin resins typified by polypropylene resin and have low polarity, but even if these are low polarity, the adhesive of the present invention or If an adhesive tape is used, it can be attached with high adhesive strength.
  • the pressure-sensitive adhesive sheet of the present invention includes a pressure-sensitive adhesive containing a plant-derived component.
  • the polymer (X2) contained in the pressure-sensitive adhesive may contain a plant-derived monomer component as a constituent unit.
  • components other than the polymer (X2) such as the tackifier may also contain plant-derived components. Without a pressure-sensitive adhesive containing plant-derived components, it is difficult to increase the bio-rate of the pressure-sensitive adhesive sheet.
  • the peak top molecular weight (Mtp) of the sol content of the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention is 137,000 or more and 300,000 or less, and the sol content (R sol ) of the pressure-sensitive adhesive is 90% by mass or less.
  • the glass transition temperature (Tg) of the pressure-sensitive adhesive is 5 ° C. or lower.
  • the peak top molecular weight (Mtp) of the sol of the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention by GPC is 137,000 or more and 300,000 or less. If the peak top molecular weight is less than 137,000, the holding power at high temperature and the adhesiveness to a low-polarity adherend may be deteriorated. Further, if the peak top molecular weight is larger than 300,000, the adhesiveness to a low-polarity adherend may be deteriorated. From such a viewpoint, the peak top molecular weight is preferably 138,000 or more and 220,000 or less, and more preferably 138,000 or more and 200,000 or less.
  • the peak top molecular weight of the sol of the pressure-sensitive adhesive by GPC is the value of the molecular weight that becomes the peak top in the molecular weight distribution obtained by GPC measurement, and can be measured by the method described in Examples described later.
  • the peak top molecular weight (Mtp) of the sol component by GPC is the peak top molecular weight of the sol component of the main component polymer by GPC, and does not include the peak derived from the tackifier (TF).
  • the peak top molecular weight of the sol of the pressure-sensitive adhesive by GPC can be adjusted by changing the molecular weight and molecular weight distribution of the polymer constituting the pressure-sensitive adhesive, changing the blending amount of the cross-linking agent, or blending a low molecular weight component such as an oligomer. It can be adjusted by doing.
  • the sol fraction (R sol ) of the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention is 90% by mass or less. If the sol fraction (R sol ) of the pressure-sensitive adhesive is higher than 90% by mass, the holding power at high temperature may be deteriorated.
  • the sol fraction (R sol ) of the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention is preferably 45% by mass or more and 75% by mass or less. When the sol fraction (R sol ) is 45% by mass or more, the adhesiveness to a low-polarity adherend can be further improved while increasing the bio-ratio.
  • the holding power at high temperature can be further improved while increasing the bio-ratio.
  • the sol fraction (R sol ) is more preferably 50% by mass or more and 70% by mass or less, still more preferably 55% by mass or more and 70% by mass or less, and even more preferably 58% by mass. % Or more and 70% by mass or less.
  • the sol fraction (R sol ) can be measured by the method described in Examples described later.
  • the sol fraction (R sol ) is determined by changing the molecular weight and molecular weight distribution of the polymer constituting the pressure-sensitive adhesive by the polymerization method, changing the blending amount of the cross-linking agent, or blending a low molecular weight component such as an oligomer. Can be adjusted by.
  • the glass transition temperature (Tg) of the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention is 5 ° C. or lower. If the glass transition temperature (Tg) is higher than 5 ° C., the low-temperature stickability may deteriorate. From such a viewpoint, the glass transition temperature (Tg) is preferably 2.5 ° C. or lower, more preferably 0 ° C. or lower, and further preferably -1 ° C. or lower.
  • the upper limit of the glass transition temperature (Tg) range is not particularly limited, but is preferably ⁇ 20 ° C. or higher, more preferably ⁇ 18 ° C. or higher, and further, from the viewpoint of improving the holding power at high temperatures.
  • the glass transition temperature (Tg) can be measured by the method described in Examples described later.
  • the glass transition temperature (Tg) can be adjusted by the type and amount of the monomers constituting the polymer of the pressure-sensitive adhesive. Further, the type and amount of the tackifier can be adjusted. For example, by using a tackifier having a high softening point or increasing the amount of the tackifier, the glass transition temperature (Tg) can be adjusted. Is likely to be high.
  • the glass transition temperature (Tg) can also be adjusted by adding fine particles or the like.
  • the hardness (S) represented by the following general formula (3) in the pressure-sensitive adhesive of the pressure-sensitive adhesive sheet of the present invention is preferably 50,000 or more and 180,000 or less.
  • Hardness and softness (S) is a parameter representing the softness of the pressure-sensitive adhesive. When the hardness (S) is within a predetermined range, the pressure-sensitive adhesive exhibits excellent adhesive performance without being too soft or too hard.
  • S Mw ⁇ R sol / D (3)
  • Mw represents the weight average molecular weight of the sol of the pressure-sensitive adhesive by GPC
  • R sol represents the sol content of the pressure-sensitive adhesive
  • D represents the dispersity of the sol of the pressure-sensitive adhesive by GPC. Represent.
  • the holding power at high temperature and the adhesiveness to a low-polarity adherend can be further improved while increasing the biorate.
  • the hardness and softness (S) is 180,000 or less, the holding power under high temperature can be further improved while increasing the biorate.
  • the hardness and softness (S) is more preferably 55,000 or more and 120,000 or less, and further preferably 60,000 or more and 112,000 or less.
  • the hardness and softness (S) can be measured by the method described in Examples described later.
  • the hardness and softness (S) are adjusted by changing the molecular weight and molecular weight distribution of the polymer constituting the pressure-sensitive adhesive by the polymerization method, changing the blending amount of the cross-linking agent, and blending a low molecular weight component such as an oligomer. can do.
  • the dispersity (D) of the sol component in the pressure-sensitive adhesive of the pressure-sensitive adhesive sheet of the present invention by GPC is preferably 1.6 or more and less than 3.
  • the dispersity (D) is 1.6 or more, it is possible to further improve the adhesiveness to the low-polarity adherend while increasing the biorate. Further, when the dispersity (D) is less than 3, the holding power at high temperature can be further improved while increasing the biorate.
  • the dispersity (D) is more preferably 1.8 or more and less than 3, still more preferably 1.9 or more and less than 3, and even more preferably 2.0 or more and less than 3.
  • the degree of dispersion (D) can be measured by the method described in Examples described later.
  • the dispersity (D) of the sol component by GPC is the dispersity of the sol component of the polymer as the main component by GPC, and does not include the molecular weight due to the peak derived from the tackifier (TF).
  • the dispersity (D) can be adjusted by changing the molecular weight of the polymer constituting the pressure-sensitive adhesive, changing the blending amount of the cross-linking agent, or blending a low molecular weight component such as an oligomer by a polymerization method.
  • the weight average molecular weight (Mw) of the sol of the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention by GPC is preferably 190000 or more and 700,000 or less.
  • the weight average molecular weight (Mw) is 190,000 or more and 700,000 or less, it is possible to further improve the holding power at high temperature and the adhesiveness to a low-polarity adherend while increasing the biorate.
  • the weight average molecular weight (Mw) is more preferably 200,000 or more and 600,000 or less, further preferably 220,000 or more and 550000 or less, and even more preferably 240000 or more and 460000 or less.
  • the weight average molecular weight (Mw) can be measured by the method described in Examples described later. Further, the weight average molecular weight (Mw) of the sol component by GPC is the weight average molecular weight of the sol component of the polymer as the main component by GPC, and does not include the molecular weight due to the peak derived from the tackifier (TF).
  • the weight average molecular weight (Mw) is adjusted by changing the molecular weight and molecular weight distribution of the polymer constituting the pressure-sensitive adhesive by the polymerization method, changing the blending amount of the cross-linking agent, or blending a low molecular weight component such as an oligomer. be able to.
  • the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention preferably has a carbon content of biological origin (hereinafter, also referred to as "bio-rate") of 51% by mass or more.
  • bio-rate a carbon content of biological origin
  • the pressure-sensitive adhesive can be made into a "bio-based product".
  • Bio-based products can save petroleum resources by using renewable organic resources, reduce carbon dioxide emissions from combustion of petroleum-derived products, and reduce the burden on the environment. From these viewpoints, the biorate is more preferably 55% by mass or more, and further preferably 60% by mass or more. Further, the higher the bio-rate, the better, and it may be 100% by mass or less. Since the method for measuring the biorate has been described in the item of the first invention, it will be omitted.
  • the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention preferably contains a polymer (X2).
  • the polymer (X2) is at least one monomer (Y2) selected from the group consisting of the monomer (A2) represented by the following general formula (4) and the monomer (B2) represented by the following general formula (5). ) Derived from the constituent units.
  • the term "monomer (Y2)” is also used to collectively explain a monomer (A2) and a monomer (B2).
  • R 4 represents H or CH 3
  • R 5 represents ⁇ C n H 2n + 1
  • n represents an integer of 7 to 20
  • m represents an integer of 6 to 13.
  • the monomer (A2) represented by the general formula (4) is different from the monomer (A1) represented by the general formula (1) in that n represents an integer of 7 to 20, and the general formula (5) is used.
  • the monomer (B2) represented by is the same as the monomer (B1) represented by the general formula (2).
  • the holding power at a high temperature, the low temperature stickability, and the adhesiveness to a low-polarity adherend can be obtained. It becomes easier to improve.
  • the monomer (A2) and the monomer (B2) can be easily produced from biological raw materials, and the biorate, which will be described later, can be easily increased.
  • the polymer (X2) may contain a structural unit derived from one or both of the monomer (A2) and the monomer (B2), but preferably contains a structural unit derived from the monomer (A2).
  • the polymer (X2) has a structural unit derived from the monomer (A2), it is easy to improve the holding power at high temperature, the low temperature stickability, and the adhesiveness to a low-polarity adherend.
  • the alkyl group of R 5 in the formula (4) (-C n H 2n + 1 ) and the alkyl group of R 6 in the formula (4) (-C m H 2m + 1 ) may be linear or branched.
  • the linear shape is preferable from the viewpoint of holding power at high temperature, low temperature stickability, and adhesiveness to a low-polarity adherend.
  • the holding power at high temperatures, low temperature bondability, and from the viewpoint of easily improving the adhesion to low polarity adherends n represents 7 to 18 preferably in R 5, and more preferably from 7 to 14, 7 Is even more preferable.
  • R 4 is H in the formula (4).
  • the polymer (X2) is, in general formula (4) n is 7-18 in, and it is preferable that R 5 contains a constitutional unit derived from monomer (A2) is a straight-chain, with n is 7, Moreover, it is more preferable to contain a structural unit derived from the monomer (A2) in which R 5 is linear, and it is further preferable that R 4 is H in the monomer (A2) in this case.
  • the monomer (A2) examples include n-heptyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, n-decyl (meth) acrylate, and 2-octyl (meth). Examples thereof include acrylate, n-nonyl (meth) acrylate, n-undecyl (meth) acrylate, n-tetradecyl (meth) acrylate (myristyl (meth) acrylate), and n-octadecyl (meth) acrylate. These monomers (A2) may be used alone or in combination of two or more.
  • the monomer (B2) examples include vinyl caprate, vinyl laurate, vinyl caprylate, vinyl nonanoate and the like. These monomers (B2) may be used alone or in combination of two or more.
  • n-heptyl (meth) acrylate, n-tetradecyl (meth) acrylate and n-octadecyl (meth) acrylate are preferable, and n-heptyl (meth) acrylate is more preferable.
  • n-heptyl acrylate is even more preferred.
  • n-heptyl (meth) acrylates n-tetradecyl (meth) acrylates and n-octadecyl (meth) acrylates improves retention at high temperatures, low-temperature stickability, and adhesion to low-polarity adherends. It will be easier to make it.
  • (meth) acrylate is used as a term meaning one or both of acrylate and methacrylate, and other similar terms are also used.
  • R 5 and R 6 are carbons derived from living organisms, particularly plants. By using carbon of biological origin for R 5 and R 6 , the biorate described later can be increased.
  • Monomers (A2) and (B2), each of which is a biological carbon in R 5 and R 6, are obtained by using saturated fatty acids or unsaturated fatty acids collected from animals and plants as raw materials and alcoholizing and esterifying them. It is inexpensive and easily available.
  • the content of the structural unit derived from the monomer (Y2) (that is, at least one monomer selected from the monomer (A2) and the monomer (B2)) is 48% by mass or more in the polymer (X2). Is preferable.
  • this content is 48% by mass or more, it is easy to improve the holding power at high temperature, the low temperature stickability, and the adhesiveness to a low-polarity adherend while increasing the biorate.
  • the content of the structural unit derived from the monomer (Y2) is more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass. The above is even more preferable.
  • the content of the structural unit derived from the monomer (Y2) is preferably 99% by mass or less, more preferably 98% by mass or less, and 97.5% by mass, for example, in order to contain a predetermined amount of the functional group-containing monomer described later. The following is more preferable.
  • the monomer (A2) is at least one (meth) acrylate selected from the group consisting of n-heptyl (meth) acrylate, n-tetradecyl (meth) acrylate and n-octadecyl (meth) acrylate. Is preferably included.
  • the content of the structural units derived from these (meth) acrylates in the polymer (X2) is preferably 48% by mass or more, more preferably 70% by mass or more, from the viewpoint of improving the above-mentioned various performances while increasing the biorate. 80% by mass or more is more preferable, and 90% by mass or more is particularly preferable.
  • the content of the structural units derived from these (meth) acrylates is preferably 99% by mass or less, more preferably 98% by mass or less, and further preferably 97.5% by mass or less.
  • the monomer (A2) preferably contains n-heptyl (meth) acrylate, and is n as the main monomer from the viewpoint of tan ⁇ (23 ° C.) and from the viewpoint of improving the above-mentioned various performances while increasing the biorate.
  • -It is more preferable to contain heptyl (meth) acrylate.
  • the content of the structural unit derived from n-heptyl (meth) acrylate in the polymer (X2) is preferably 48% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass or more. Mass% or more is particularly preferable.
  • the content of the structural unit derived from n-heptyl (meth) acrylate is preferably 99% by mass or less, more preferably 98% by mass or less, and further preferably 97.5% by mass or less.
  • the n-heptyl (meth) acrylate is preferably n-heptyl acrylate.
  • the polymer (X2) preferably contains a structural unit derived from another monomer other than the above-mentioned monomer (A2) and monomer (B2).
  • the other monomer is preferably a monomer having a polymerizable carbon-carbon double bond such as a vinyl group and a (meth) acryloyl group.
  • a monomer containing a polar group hereinafter, also referred to as “polar group-containing monomer (C)” is preferable. Since the polymer (X2) contains a structural unit derived from the polar group-containing monomer (C), it becomes easy to increase the adhesive strength of the pressure-sensitive adhesive, which provides holding power at high temperature, low-temperature stickability, and low-polarity adherend.
  • the polar group is a functional group having an active hydrogen, and specific examples thereof include a carboxy group, a hydroxyl group, an amino group, and an amide group.
  • the polar group may be a functional group capable of reacting with a cross-linking agent described later.
  • the polar group-containing monomer (C) may be used alone or in combination of two or more. Since the polar group-containing monomer (C) is the same as that described in the item of the first invention, the description thereof will be omitted.
  • the weight average molecular weight (Mw) of the polymer (X2) is preferably 200,000 or more and 1.1 million or less.
  • the weight average molecular weight (Mw) is 200,000 or more, the shear strength of the pressure-sensitive adhesive can be increased and the holding power of the pressure-sensitive adhesive under high temperature can be increased. Further, when it is 1.1 million or less, the adhesive strength of the pressure-sensitive adhesive is improved, and it becomes easy to improve the low-temperature adhesiveness and the adhesiveness to a low-polarity adherend.
  • the weight average molecular weight (Mw) is more preferably 300,000 or more, further preferably 400,000 or more, still more preferably 1.05 million or less, still more preferably 1 million or less.
  • the weight average molecular weight (Mw) can be appropriately adjusted by appropriately selecting the amount of the polymerization initiator used, the polymerization conditions such as the polymerization temperature, the polymerization method, and the like.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the polymer (X2) is the main component of the adhesive.
  • the content of the polymer (X2) in the pressure-sensitive adhesive is, for example, 50% by mass or more, preferably 60% by mass or more, and more preferably 65% by mass or more in order to impart appropriate adhesive performance.
  • the polymer (X2) in the pressure-sensitive adhesive is preferably 99% by mass or less, and further 95% by mass or less so that a predetermined amount of components other than the polymer (X2) such as a tackifier and a cross-linking agent can be blended in the pressure-sensitive adhesive. It is preferable, and more preferably 92% by mass or less.
  • the low molecular weight component of the polymer (X2) is the sol component
  • the above characteristics of the sol component of the pressure-sensitive adhesive can be adjusted by changing the molecular weight and molecular weight distribution of the polymer (X2) by the polymerization method. Further, by changing the blending amount of the cross-linking agent, the low molecular weight component of the polymer (X2) remains in the pressure-sensitive adhesive without cross-linking. Can be adjusted.
  • the low molecular weight component of the polymer (X2) include oligomers derived from monomers that are raw materials for the polymer (X2).
  • the polymer (X2) can be obtained by radically reacting a mixture of the above-mentioned raw material monomers in the presence of a polymerization initiator. As a result, the molecular weight distribution of the polymer (X2) can be considerably widened, and the sol fraction can be increased.
  • the radical reaction method is not particularly limited, and examples thereof include free radical polymerization and living radical polymerization. According to the free radical polymerization, the molecular weight distribution can be widened as compared with the living radical polymerization, whereby the amount of low molecular weight components produced can be increased.
  • the sol content of the pressure-sensitive adhesive can be further increased, and while the biorate is increased, the holding power at high temperature, the low-temperature stickability, and the adhesiveness to a low-polarity adherend are further improved.
  • the polymerization method is not particularly limited, and conventionally known methods can be used. Examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like. Of these, solution polymerization is preferable because it is easy to synthesize. Since the method for producing the polymer (X2) is the same as the method for producing the polymer (X1) described in the item of the first invention, the description thereof will be omitted.
  • a low molecular weight component (Z) may be added to the polymer obtained by the above-mentioned production method to obtain a polymer (X2).
  • a polymer (X2) As described above, by changing the molecular weight and molecular weight distribution of the polymer (X2) by the polymerization method, the above-mentioned characteristics of the sol content of the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention can be adjusted within the above-mentioned range.
  • the low molecular weight component (Z) also has a function as a tackifier.
  • the low molecular weight component (Z) is preferably an oligomer of a monomer that is a raw material of the polymer (X2). Therefore, the low molecular weight component (Z) is selected from at least a group consisting of the monomer (A2) represented by the above-mentioned general formula (4) and the monomer (B2) represented by the above-mentioned general formula (5).
  • n-heptyl (meth) acrylate, tetradecyl (meth) acrylate and octadecyl (meth) acrylate are preferable, and n-heptyl (meth) acrylate is preferable.
  • Acrylate is more preferable, and n-heptyl acrylate is further preferable.
  • n-heptyl (meth) acrylate oligomer tetradecyl (meth) acrylate oligomer and octadecyl (meth) acrylate oligomer are preferable, and n-heptyl (meth) acrylate oligomer is more preferable, and n-. Heptyl acrylate oligomers are even more preferred.
  • the content of the low molecular weight component (Z) in the polymer (X2) is not particularly limited, and may be appropriately adjusted so that various properties of the gel fraction are within the above range.
  • the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention preferably contains a pressure-sensitive adhesive in addition to the polymer (X2).
  • the tackifier added to the polymer (X2) is the same as the tackifier added to the polymer (X1) described in the item of the first invention, except for the content as described below, and thus the description thereof is omitted. To do.
  • the content of the pressure-sensitive adhesive is not particularly limited, but is preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polymer (X2).
  • the content of the tackifier is at least the above lower limit value, it becomes easy to improve the low-temperature adhesiveness and the adhesiveness to a low-polarity adherend. Further, by setting it to the above upper limit value or less, it is possible to prevent the holding power from being lowered at a high temperature.
  • the content of the tackifier is more preferably 12 parts by mass or more and 40 parts by mass or less, and further preferably 14 parts by mass or more and 30 parts by mass or less.
  • the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention preferably contains a cross-linking agent and is cross-linked. That is, the pressure-sensitive adhesive is preferably one obtained by cross-linking a pressure-sensitive adhesive composition containing a cross-linking agent in addition to the above-mentioned polymer (X2) or polymer (X2) and a pressure-sensitive adhesive.
  • the cross-linking agent added to the polymer (X2) is the same as the cross-linking agent added to the polymer (X1) described in the item of the first invention, except for the blending amount as described below, and thus the description thereof will be omitted.
  • the blending amount of the cross-linking agent in the pressure-sensitive adhesive may be appropriately changed according to the type of the polymer (X2), desired physical properties such as the degree of cross-linking, etc., but in the second invention, with respect to 100 parts by mass of the polymer (X2).
  • it is 0.1 parts by mass or more and 20 parts by mass or less, preferably 0.5 parts by mass or more and 8 parts by mass or less, and more preferably 0.6 parts by mass or more and 4 parts by mass or less.
  • the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention contains, if necessary, additives such as a silane coupling agent, an antioxidant, an ultraviolet inhibitor, a plasticizer, an emulsifier, a softening agent, a filler, a pigment, and a dye. May be.
  • additives such as a silane coupling agent, an antioxidant, an ultraviolet inhibitor, a plasticizer, an emulsifier, a softening agent, a filler, a pigment, and a dye. May be.
  • additives it is preferable to select a biological material as much as possible from the viewpoint of increasing the biorate.
  • the pressure-sensitive adhesive in the pressure-sensitive adhesive sheet of the present invention may be formed from, for example, a pressure-sensitive adhesive composition prepared.
  • the pressure-sensitive adhesive composition comprises components for forming a pressure-sensitive adhesive.
  • the pressure-sensitive adhesive composition preferably contains the above-mentioned polymer (X2).
  • the pressure-sensitive adhesive composition may further contain a pressure-imparting agent, a cross-linking agent, other additives, and the like, if necessary.
  • the pressure-sensitive adhesive composition may be diluted with a diluting solution such as an organic solvent.
  • the diluting solution may be the solvent used when synthesizing the polymer (X2), or may be added after synthesizing the polymer (X2).
  • the pressure-sensitive adhesive composition may be crosslinked by heating and drying, if necessary, to become a pressure-sensitive adhesive.
  • the pressure-sensitive adhesive is used for the pressure-sensitive adhesive sheet of the present invention.
  • the heating temperature at the time of cross-linking is not particularly limited, but is, for example, 90 ° C. or higher and 130 ° C. or lower, preferably 100 ° C. or higher and 120 ° C. or lower.
  • the heating time is, for example, 30 seconds or more and 10 minutes or less, preferably 1 minute or more and 5 minutes or less. Further, in order to further proceed the cross-linking reaction, it is preferable to cure the pressure-sensitive adhesive after drying it.
  • the curing temperature is preferably 20 ° C. or higher and 60 ° C. or lower, and more preferably 30 ° C. or higher and 50 ° C. or lower.
  • the curing time is preferably 1 day or more and 10 days or less, and more preferably 2 days or more and 5 days or less.
  • the pressure-sensitive adhesive sheet of the present invention is provided with the above-mentioned pressure-sensitive adhesive, and specifically, is provided with a pressure-sensitive adhesive layer made of the above-mentioned pressure-sensitive adhesive.
  • the pressure-sensitive adhesive sheet may be a pressure-sensitive adhesive sheet having no base material or a pressure-sensitive adhesive sheet having a base material, but a pressure-sensitive adhesive sheet having a base material is preferable.
  • the pressure-sensitive adhesive sheet having no base material is, for example, a non-support tape.
  • the non-support tape is a double-sided adhesive tape that is used in the state of a single layer of an adhesive layer without having a base material.
  • the pressure-sensitive adhesive sheet having a base material is, for example, an pressure-sensitive adhesive tape.
  • the adhesive tape comprises a substrate and an adhesive layer provided on at least one surface of the substrate.
  • the adhesive tape may be a double-sided adhesive tape in which adhesive layers are provided on both sides of the base material, or may be a single-sided adhesive tape in which the adhesive layer is provided on only one side of the base material. ..
  • at least one adhesive layer may be composed of the above-mentioned adhesive.
  • a release sheet may be appropriately attached to the surface of the exposed adhesive layer to protect it.
  • the release sheet is formed by applying a release agent to at least one surface of the release sheet base material to form a release surface, and the release sheet may be attached so that the release surface is in contact with the pressure-sensitive adhesive layer.
  • the base material used for the pressure-sensitive adhesive sheet is not particularly limited, but is preferably any of a resin film, a non-woven fabric, or a foam. Since the base material used for the pressure-sensitive adhesive sheet is the same as the base material for the pressure-sensitive adhesive tape described in the item of the first invention, the description thereof will be omitted.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but may be, for example, about 5 ⁇ m or more and 200 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less. When the thickness of the pressure-sensitive adhesive layer is within this range, the obtained pressure-sensitive adhesive sheet can exhibit sufficient adhesive strength.
  • the total thickness of the pressure-sensitive adhesive sheet (total thickness of the base material and the pressure-sensitive adhesive layer) is preferably 10 ⁇ m or more and 2200 ⁇ m or less. When the total thickness of the pressure-sensitive adhesive sheet is within this range, the obtained pressure-sensitive adhesive sheet can exhibit sufficient adhesive strength.
  • the pressure-sensitive adhesive for the pressure-sensitive adhesive sheet of the present invention preferably has a peeling limit value of 90 gf ⁇ s or more at 23 ° C. as measured by a tack test.
  • the tack test is performed as follows. First, an adhesive layer with a thickness of 50 ⁇ m is applied to a PET substrate having a thickness of 23 ⁇ m on a plate set to 23 ° C. of a tack tester (for example, TAC-1000 manufactured by Reska) so that the adhesive layer is on top. And put the adhesive tape on it. Fix the tape from above with the sample holder attached to the tack tester.
  • a cylindrical stainless steel probe having a diameter of 5 mm is pressed against the adhesive tape at a probe temperature of 23 ° C., a pressing speed of 5 mm / s, and a pressing load of 100 gf, and is held in that state for 10 seconds. After that, the probe is pulled up at a pulling speed of 5 mm / s. The force applied to the adhesive tape during this period is measured.
  • the adhesive constitutes the adhesive tape has been described, but even when the adhesive does not form the adhesive, the adhesive is similarly placed on the plate set at 23 ° C. of the tack tester. It is good to measure in the same way.
  • the peeling limit value is an integral value from the time T1 at which the force indicates 0 to the time indicating the maximum force (peak top) in the force-time curve indicating the force applied to the adhesive tape at 23 ° C. measured by the tack test. Means. In the tack test, when the probe is pressed against the adhesive tape, the force-time curve goes down, and then when the probe is started to be pulled up, the force-time curve goes up. The integrated value from the time T1 at which the force indicates 0 to the time T2 at which the maximum force (peak top) is indicated is calculated, and this is set as the peeling limit value.
  • the preferable lower limit of the peeling limit value is 100 gf ⁇ s, and the more preferable lower limit is 110 gf ⁇ s. Further, the upper limit of the peeling limit value is not particularly limited.
  • the pressure-sensitive adhesive sheet of the present invention preferably has a bio% of 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more. Further, the higher the bio-rate, the better, and it may be 100% by mass or less.
  • the pressure-sensitive adhesive sheet generally has a different biorate depending on each component (for example, the pressure-sensitive adhesive layer and the base material). Therefore, the bio-ratio may be calculated by obtaining the bio-ratio of each constituent member and weighting the mass of each constituent member by a weighted average.
  • the method for producing the pressure-sensitive adhesive sheet is not particularly limited, and the pressure-sensitive adhesive sheet can be produced by a conventionally known production method. Since the method for manufacturing the adhesive sheet is the same as the method for manufacturing the adhesive tape described in the item of the first invention, the description thereof will be omitted.
  • the use of the pressure-sensitive adhesive sheet of the present invention is not particularly limited, but it is preferably used in electric appliances and vehicle applications. Since the method for producing the adhesive sheet is the same as the use of the adhesive and the adhesive tape described in the item of the first invention, the description thereof will be omitted.
  • the present invention may be a combination of the first invention and the second invention.
  • the pressure-sensitive adhesive composition solution prepared in each example is molded so that the finally obtained sample shape has a thickness of 0.1 mm, a width of 0.6 mm, and a length of 10 mm. Then, it was prepared by heating and drying under the same conditions as when the pressure-sensitive adhesive layer was formed in each example.
  • the weight average molecular weight (Mw) of the polymer (X1) was measured by a GPC apparatus "HLC822GPC" (manufactured by Tosoh Corporation) and determined by polystyrene conversion. Specifically, the obtained polymer (X1) is diluted 50-fold with tetrahydrofuran (THF), and the obtained diluent is filtered through a filter (material: polytetrafluoroethylene, pore diameter: 0.2 ⁇ m) and measured. Samples were prepared.
  • This measurement sample was supplied to a gel permeation chromatograph (2690 Separations Model manufactured by Waters), GPC measurement was performed under the conditions of a sample flow rate of 1 ml / min and a column temperature of 40 ° C., and the polymer (X1) was converted into polystyrene. The molecular weight was measured to determine the weight average molecular weight.
  • One side of the double-sided adhesive tape cut to a width of 25 mm and a length of 100 mm according to JIS Z-1528 "Double-sided adhesive tape" is a polypropylene plate (manufactured by Takiron) with a thickness of 2 mm, a width of 50 mm, and a length of 100 mm at 0 ° C. , PP1300) so that the adhesive length is 75 mm.
  • a 2 kg roller was reciprocated once at 0 ° C. and pressure-bonded to prepare an adhesive test piece. The obtained adhesive test piece was left in an atmosphere of 0 ° C.
  • the peel strength was measured. Based on the result of peel strength, the low temperature stickability was evaluated according to the following evaluation criteria. A: The peel strength is 5N / 25mm or more. B: The peel strength is 3N / 25mm or more and less than 5N / 25mm. C: Less than 3N / 25mm.
  • One side of the double-sided adhesive tape cut to a width of 25 mm and a length of 100 mm according to JIS Z-1528 "Double-sided adhesive tape" is a polypropylene plate with a thickness of 2 mm, a width of 50 mm, and a length of 100 mm at 23 ° C. and 50% RH. It was bonded to (TP1300 manufactured by Takiron Co., Ltd.) so that the adhesive length was 75 mm. After backing the other surface of the double-sided adhesive tape with a PET film, a 2 kg roller was reciprocated once at 23 ° C. and 50% RH to crimp it to prepare an adhesive test piece. The obtained adhesive test piece was left to stand in an atmosphere of 23 ° C.
  • the peel strength was 15 N / 25 mm or more.
  • B The peel strength is 10 N / 25 mm or more and less than 15 N / 25 mm.
  • C The peel strength is less than 10 N / 25 mm.
  • one side of the double-sided adhesive tape cut to a width of 25 mm and a length of 100 mm is adhered to a cold-rolled stainless steel plate (SUS304 plate) having a thickness of 1.5 mm, a width of 25 mm and a length of 100 mm at 23 ° C.
  • the length was 25 mm
  • the double-sided adhesive tape having a length of 75 mm was attached by shifting in the length direction so as to protrude from the end of the SUS304 plate.
  • a 2 kg roller was reciprocated once and crimped to prepare an adhesive test piece.
  • the adhesive test piece After leaving the obtained adhesive test piece in an atmosphere of 23 ° C. and 50% RH for 20 minutes, the adhesive test piece is placed vertically on a constant temperature dryer at 40 ° C. with the protruding double-sided adhesive tape side facing down. I hung up for a while. Next, a load of 1 kg was applied to the lower end of the double-sided adhesive tape, and the tape was vertically suspended at 40 ° C. for 24 hours, and the deviation distance (mm) of the bonded portion after 1 hour was measured. The evaluation was based on the following evaluation criteria based on the deviation distance. A: The deviation distance is less than 0.5 mm. B: The deviation distance is 0.5 mm or more and less than 2 mm. C: The deviation distance is 2 mm or more.
  • n-heptyl acrylate is a compound in which R 2 is a biological carbon in the general formula (1), and was prepared by an esterification reaction between acrylic acid and n-heptyl alcohol.
  • the n-heptyl alcohol was prepared by cracking ricinoleic acid derived from castor oil as a raw material.
  • Example 1 [Synthesis of polymer (X1)] Ethyl acetate was added as a polymerization solvent to the reaction vessel, and after bubbling with nitrogen, the reaction vessel was heated while flowing nitrogen to start reflux. Subsequently, a polymerization initiator solution obtained by diluting 0.1 parts by mass of azobisisobutyronitrile with ethyl acetate 10 times as a polymerization initiator was put into the reaction vessel, and n-heptyl acrylate (HA (C7)) 96. 9 parts by mass, 2.9 parts by mass of acrylic acid (AAc), and 0.2 parts by mass of 2-hydroxyethyl acrylate (HEA) were added dropwise over 2 hours.
  • AAc acrylic acid
  • HOA 2-hydroxyethyl acrylate
  • the pressure-sensitive adhesive was collected from the pressure-sensitive adhesive layer of the obtained double-sided adhesive tape, and the degree of cross-linking and the bio-rate were measured. Further, a measurement sample was prepared from the pressure-sensitive adhesive composition solution, and the storage elastic modulus G', the loss elastic modulus G', and the glass transition temperature (Tg) were measured. The PP adhesive strength and the holding power under high temperature were evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same procedure as in Example 1 was carried out except that the blending amounts of the tackifier (TF) and the cross-linking agent were changed to the parts by mass shown in Table 1.
  • Example 4 In the production of the polymer (X1), the same procedure as in Example 1 was carried out except that the polymerization reaction time was changed to 5 hours.
  • Example 5 In the production of the polymer (X1), the time of the polymerization reaction was changed to 5.5 hours. Further, the same procedure as in Example 1 was carried out except that the blending amount of the cross-linking agent was changed to the mass part shown in Table 1.
  • Example 6 Except that the blending amount of the monomer when preparing the polymer (X1) was changed to the ratio shown in Table 1, and the blending amount of the tackifier (TF) and the cross-linking agent was changed to the parts by mass shown in Table 1. It was carried out in the same manner as in Example 1.
  • Molecular weight is the weight average molecular weight (Mw).
  • the mass part of the monomer is a value when the total amount of the monomers blended when synthesizing the polymer (X1) is 100 parts by mass.
  • the polymer (X1) can be considered to contain the structural units derived from each of the monomers listed in Table 1 in the amounts listed in Table 1.
  • the blending amount of the tackifier (TF) and the cross-linking agent is parts by mass with respect to 100 parts by mass of the polymer (X1).
  • the pressure-sensitive adhesive contains a polymer (X1) containing a predetermined amount or more of a constituent unit derived from the monomer (A1), and tan ⁇ (23 ° C.) is set to 0.8 to 1.3.
  • the holding power at high temperature, the low-temperature stickability, and the adhesiveness to a low-polarity adherend (polypropylene resin) were all improved.
  • the polymer (X1) did not contain a predetermined amount or more of the structural unit derived from the monomer (A1), or tan ⁇ (23 ° C.) was out of the range, so that the biorate was high.
  • the obtained sample solution is supplied to gel permeation chromatography (GPC, for example, "e2695” manufactured by Waters), tetrahydrofuran (THF) is used as the mobile phase, the sample flow rate is 1 mL / min, and the column temperature is 40 ° C.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the GPC measurement was performed in 1 and the molecular weight distribution of the polystyrene-equivalent molecular weight was measured.
  • As the column for example, two “GPC KF-806L” manufactured by shodex were connected in series and used. From the obtained molecular weight distribution curve, the peak top molecular weight (Mtp) of the sol of the pressure-sensitive adhesive by GPC was calculated.
  • the peak due to GPC derived from the tackifier (TF) was not included. Therefore, the peak top molecular weight (Mtp) of the sol of the pressure-sensitive adhesive by GPC is the peak top molecular weight of the sol of the polymer which is the main component of the pressure-sensitive adhesive by GPC.
  • the hardness and softness (S) were calculated from the obtained weight average molecular weight (Mw), dispersity (D) and sol fraction (R sol).
  • the peak due to GPC derived from the tackifier (TF) was not included. Therefore, the weight average molecular weight (Mw) and the degree of dispersion (D) of the sol of the pressure-sensitive adhesive are the weight-average molecular weight and the degree of dispersion of the sol of the polymer which is the main component of the pressure-sensitive adhesive.
  • the glass transition temperature (Tg) was measured by the same method as the method for measuring the glass transition temperature (Tg) of the first example.
  • the deviation distance (mm) of the bonded portion after 1 hour was measured by the same method as the holding force under high temperature of the first embodiment.
  • the evaluation was based on the following evaluation criteria based on the deviation distance.
  • n- heptyl acrylate, R 5 in the general formula (2) is a compound which is carbon derived from a plant, was prepared by an esterification reaction between acrylic acid n- heptyl alcohol.
  • the n-heptyl alcohol was prepared by cracking ricinoleic acid derived from castor oil as a raw material.
  • ⁇ Other monomers Acrylic acid (AAc): 2-hydroxyethyl acrylate (HEA) manufactured by Nippon Shokubai Co., Ltd .: ⁇ Adhesive imparting agent (TF)> manufactured by Osaka Organic Chemical Industry Co., Ltd. Polymerized rosin ester resin, hydroxyl value 46, softening point 150 ° C., plant-derived carbon content 95% by mass ⁇ Crosslinking agent> Polyisocyanate cross-linking agent
  • Example 7 [Synthesis of polymer (X2)] Ethyl acetate was added as a polymerization solvent to the reaction vessel, and after bubbling with nitrogen, the reaction vessel was heated while flowing nitrogen to start reflux. Subsequently, a polymerization initiator solution obtained by diluting 0.1 parts by mass of azobisisobutyronitrile with ethyl acetate 10 times as a polymerization initiator was put into the reaction vessel, and n-heptyl acrylate (HA (C7)) 96. 9 parts by mass, 2.9 parts by mass of acrylic acid (AAc), and 0.2 parts by mass of 2-hydroxyethyl acrylate (HEA) were added dropwise over 2 hours.
  • AAc acrylic acid
  • HOA 2-hydroxyethyl acrylate
  • a polymerization initiator solution obtained by diluting 0.1 part by mass of azobisisobutyronitrile with ethyl acetate 10 times as a polymerization initiator was put into the reaction vessel again, and the polymerization reaction was carried out for 3.5 hours to carry out the polymerization reaction.
  • a (X2) -containing solution was obtained.
  • the weight average molecular weight of the obtained polymer (X2) was measured and found to be 500,000.
  • [Making double-sided adhesive tape] To 100 parts by mass of the polymer (X2), 25 parts by mass of the tackifier and 2.4 parts by mass of the cross-linking agent were added to the obtained polymer (X2) -containing solution to prepare a pressure-sensitive adhesive composition solution.
  • the pressure-sensitive adhesive composition solution was applied to the peeled surface of the peeling sheet whose one side was peeled off, heated at 100 ° C. for 3 minutes and dried to form a pressure-sensitive adhesive layer. ..
  • the obtained pressure-sensitive adhesive layer was transferred to both sides of a non-woven fabric as a base material to obtain a double-sided pressure-sensitive adhesive tape having pressure-sensitive adhesive layers on both sides of the base material.
  • the adhesive was collected from the adhesive layer of the obtained double-sided adhesive tape, and the peak top molecular weight (Mtp), weight average molecular weight (Mw), dispersity (D), sol fraction (R sol ), and hardness (S) were obtained. ) And the biorate were measured. In addition, a measurement sample was prepared from the pressure-sensitive adhesive composition solution, and the glass transition temperature (Tg) was measured. Further, using a double-sided adhesive tape, PP adhesive strength, holding power at high temperature, and low temperature stickability were evaluated. The evaluation results are shown in Table 2.
  • Example 8 The same procedure as in Example 1 was carried out except that the blending amounts of the tackifier (TF) and the cross-linking agent were changed to the parts by mass shown in Table 1.
  • Example 10 to 14 In the production of the polymer (X2), the time of the polymerization reaction was changed to change the weight average molecular weight of the polymer (X2) from 500,000 to 800,000. Further, the blending amounts of the tackifier (TF) and the cross-linking agent were changed to the parts by mass shown in Table 1. Other than that, it was carried out in the same manner as in Example 1.
  • Example 15 to 17 In the production of the polymer (X2), the time of the polymerization reaction was changed to change the weight average molecular weight of the polymer (X2) from 500,000 to 1,000,000. Further, the blending amounts of the tackifier (TF) and the cross-linking agent were changed to the parts by mass shown in Table 1. Other than that, it was carried out in the same manner as in Example 1.
  • Example 5 The same procedure as in Example 1 was carried out except that the blending amounts of the tackifier (TF) and the cross-linking agent were changed to the parts by mass shown in Table 1.
  • Molecular weight is the weight average molecular weight (Mw).
  • the mass part of the monomer is a value when the total amount of the monomers blended when synthesizing the polymer (X2) is 100 parts by mass.
  • the polymer (X2) can be considered to contain the structural units derived from each of the monomers listed in Table 1 in the amounts listed in Table 1.
  • the blending amount of the tackifier (TF) and the cross-linking agent is parts by mass with respect to 100 parts by mass of the polymer (X2).
  • the peak top molecular weight (Mtp) of the sol of the pressure-sensitive adhesive by gel permeation chromatography (GPC) is 137,000 or more and 300,000 or less, and the sol content of the pressure-sensitive adhesive (R sol ) is 90% by mass or less.
  • the glass transition temperature (Tg) of the pressure-sensitive adhesive was 5 ° C. or lower.
  • the peak top molecular weight (Mtp) of the sol of the pressure-sensitive adhesive by gel permeation chromatography (GPC) was out of the range of 137,000 or more and 300,000 or less, or the sol content of the pressure-sensitive adhesive (R sol). ) was higher than 90% by mass, or the glass transition temperature (Tg) of the pressure-sensitive adhesive was higher than 5 ° C. Therefore, it was not possible to improve the adhesiveness to the low-polarity adherend (polypropylene resin), the holding power at high temperature, and the low-temperature stickability while increasing the biorate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

下記一般式(1)で表されるモノマー(A1)、及び下記一般式(2)で表されるモノマー(B1)からなる群から選択される少なくとも1種のモノマー(Y)由来の構成単位を48質量%以上含有するポリマー(X1)を含有し、23℃における貯蔵弾性率をG'(23℃)における損失係数をG"(23℃)とすると、G"(23℃)/G'(23℃)で求められるtanδ(23℃)が0.8~1.3である粘着剤。 式(1)中、R1がH又はCH3を表し、R2が-CnH2n+1を表し、nが7~14の整数を表す。式(2)中、R3は-C(=O)CmH2m+1を表し、mは7~13の整数を表す。これにより、バイオ率を高くしつつ、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性を良好にする。

Description

粘着剤、粘着テープ、電化製品、車載部材、及び固定方法
 本発明は、粘着剤、粘着テープ、粘着シート、粘着剤、粘着テープ又は粘着シートを有する電化製品及び車載部材、並びに、粘着剤又は粘着テープを用いた固定方法に関する。
 従来から、電化製品、車両、住宅及び建材などにおいて各種の部品を固定するために、粘着剤よりなる粘着剤層を備える粘着テープが広く用いられている。粘着剤としては、2-エチルヘキシルアクリレート、n-ブチルアクリレートなどのアクリル(メタ)アクリレート由来の構成単位を主成分とするアクリル系ポリマーを含有する粘着剤が知られている(例えば、特許文献1、2参照)。
特開2015-021067号公報 特開2015-120876号公報
 近年、各企業の生産拠点のグローバル化により、粘着テープを用いた組み立ても様々な環境下で行われるようになっている。例えば、電化製品や車載部材などの高温環境下でも性能が求められる製品も、寒冷地において組み立てられることがあり、粘着剤に高温下における高い保持力と、低温下でも容易に被着体に貼り付けられる低温貼り付け性が求められることがある。
 低温貼り付け性は、低温環境下における高い流動性を必要とする一方で、高温下での保持力を向上させるためには、高温環境下における凝集力を必要するが、一般的な粘着剤は、これら両方の特性を満たすことが難しいことがある。さらに、粘着剤は一般的に極性の低い被着体には接着力を高くしにくいが、車載部材や電化製品の部品は、ポリプロピレン樹脂に代表されるポリオレフィン系樹脂などの極性の低い樹脂が多く使用されているため、これら用途では、極性の低い被着体に対する接着力を高くする必要がある。
 一方で、石油資源の枯渇や、石油由来製品の燃焼による二酸化炭素の排出が問題視されている。そこで、医療分野や包装材料分野を中心に、石油由来材料に代えて生物由来材料を用いることにより、石油資源を節約する試みがなされるようになってきている。このような試みは、あらゆる分野に波及してきており、粘着剤や粘着テープの分野でも生物由来材料の使用が求められるようになっている。
 本発明者らの検討によると、従来汎用的に使用されるn-ブチルアクリレート由来の構成単位を主成分とするアクリル系粘着剤は、高温下における保持力、低温貼り付け性、及びポリオレフィン樹脂などの低極性の被着体に対する接着性のいずれも良好にできることがあることが判明している。しかし、n-ブチルアクリレートなどの炭素数が小さいアルキル(メタ)アクリレートは、石油由来で製造され、生物由来の炭素の含有率(すなわち、バイオ率)を十分に向上させることができない。
 そこで、本発明は、バイオ率を高くしつつも、高温下における保持力、低温貼り付け性、及びポリオレフィン樹脂などの低極性の被着体に対する接着性のいずれも良好にできる粘着剤及び粘着シートを提供することを課題とする。
 本発明者らは、鋭意検討の結果、粘着剤に使用されるポリマーのモノマー成分を所定のものとし、かつtanδ(23℃)を特定の範囲内とすることで上記課題を解決できることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の[1]~[32]を要旨とする。
[1]下記一般式(1)で表されるモノマー(A1)、及び下記一般式(2)で表されるモノマー(B1)からなる群から選択される少なくとも1種のモノマー(Y)由来の構成単位を48質量%以上含有するポリマー(X1)を含有し、
 23℃における貯蔵弾性率をG’(23℃)、損失弾性率をG”(23℃)とすると、G” (23℃)/G’(23℃)で求められるtanδ(23℃)が0.8~1.3である粘着剤。
Figure JPOXMLDOC01-appb-C000003

 式(1)中、RがH又はCHを表し、Rが-C2n+1を表し、nが7~14の整数を表す。式(2)中、Rは-C(=O)C2m+1を表し、mは6~13の整数を表す。
[2]前記ポリマー(X1)の重量平均分子量が20万~100万である上記[1]に記載の粘着剤。
[3]架橋度が10~70%である上記[1]又は[2]に記載の粘着剤。
[4]0℃における貯蔵弾性率をG’(0℃)とすると、logG’(0℃)[Pa]が5.0~6.5である上記[1]~[3]のいずれか1つに記載の粘着剤。
[5]23℃における貯蔵弾性率をG’(23℃)とすると、logG’(23℃)[Pa]が4.8~5.5である上記[1]~[4]のいずれか1つに記載の粘着剤。
[6]80℃における貯蔵弾性率をG’(80℃)とすると、logG’(80℃)[Pa]が、4.1~4.8であることを上記[1]~[5]のいずれか1つに記載の粘着剤。
[7]ガラス転移温度(Tg)が15℃以下である上記[1]~[6]のいずれか1つに記載の粘着剤。
[8]生物由来の炭素の含有率が40質量%以上である上記[1]~[7]のいずれか1つに記載の粘着剤。
[9]粘着付与剤をさらに含む上記[1]~[8]のいずれか1つに記載の粘着剤。
[10]上記[1]~[9]のいずれか1つに記載の粘着剤からなる粘着剤層を備える粘着テープ。
[11]基材をさらに備え、前記粘着剤層が前記基材の少なくとも一方の面に設けられる、上記[10]に記載の粘着テープ。
[12]前記基材が、不織布、ポリエチレンテレフタレートフィルム、及び発泡体から選択されるいずれかである上記[11]に記載の粘着テープ。
[13]上記[1]~[9]のいずれか1つに記載の粘着剤、又は上記[10]~[12]のいずれか1つに記載の粘着テープを用いて、電化製品を構成する部品、又は車載部材を固定する固定方法。
[14]上記[1]~[9]のいずれか1つに記載の粘着剤を備え、前記粘着剤のゾル分のゲルパーミエーションクロマトグラフィ(GPC)によるピークトップ分子量(Mtp)が137000以上300000以下であり、前記粘着剤のゾル分率(Rsol)が90質量%以下であり、前記粘着剤のガラス転移温度(Tg)が5℃以下である粘着シート。
[15]前記粘着剤における下記一般式(3)で表される硬軟度(S)が50000以上180000以下である上記[14]に記載の粘着シート。
  S=Mw×Rsol/D     (3)
 式(3)中、Mwが前記粘着剤のゾル分のGPCによる重量平均分子量を表し、Rsolが前記粘着剤におけるゾル分率を表し、Dが前記粘着剤のゾル分のGPCによる分散度を表す。
[16]前記粘着剤のゾル分のGPCによる分散度(D)が1.6以上3未満である上記[14]又は[15]に記載の粘着シート。
[17]前記粘着剤のゾル分のGPCによる重量平均分子量(Mw)が190000以上700000以下である上記[14]~[16]のいずれか1つに記載の粘着シート。
[18]前記粘着剤のゾル分率(Rsol)が45質量%以上75質量%以下である上記[14]~[17]のいずれか1つに記載の粘着シート。
[19]前記粘着剤のガラス転移温度(Tg)が2.5℃以下である上記[14]~[18]のいずれか1つに記載の粘着シート。
[20]前記粘着剤のバイオ率が51%以上である上記[14]~[19]のいずれか1つに記載の粘着シート。
[21]前記ポリマー(X1)において、n-ヘプチル(メタ)アクリレート由来の構成単位の含有量が48質量%以上である上記[20]に記載の粘着シート。
[22]生物由来成分を含む粘着剤を備える粘着シートであって、前記粘着剤のゾル分のゲルパーミエーションクロマトグラフィ(GPC)によるピークトップ分子量(Mtp)が137000以上300000以下であり、前記粘着剤のゾル分率(Rsol)が90質量%以下であり、前記粘着剤のガラス転移温度(Tg)が5℃以下である粘着シート。
[23]前記粘着剤における下記一般式(3)で表される硬軟度(S)が50000以上180000以下である上記[22]に記載の粘着シート。
  S=Mw×Rsol/D     (3)
 式(3)中、Mwが前記粘着剤のゾル分のGPCによる重量平均分子量を表し、Rsolが前記粘着剤におけるゾル分率を表し、Dが前記粘着剤のゾル分のGPCによる分散度を表す。
[24]前記粘着剤のゾル分のGPCによる分散度(D)が1.6以上3未満である上記[22]又は[23]に記載の粘着シート。
[25]前記粘着剤のゾル分のGPCによる重量平均分子量(Mw)が190000以上700000以下である上記[22]~[24]のいずれか1つに記載の粘着シート。
[26]前記粘着剤のゾル分率(Rsol)が45質量%以上75質量%以下である上記[22]~[25]のいずれか1つに記載の粘着シート。
[27]前記粘着剤のガラス転移温度(Tg)が2.5℃以下である上記[22]~[26]のいずれか1つに記載の粘着シート。
[28]前記粘着剤のバイオ率が51%以上である上記[22]~[27]のいずれか1つ請求項22~27のいずれか1項に記載の粘着シート。
[29]前記粘着剤が、下記一般式(4)で表されるモノマー(A2)、及び下記一般式(5)で表されるモノマー(B2)からなる群から選択される少なくとも1種のモノマー(Y2)由来の構成単位を48質量%以上含有するポリマー(X2)を含有する上記[22]~[28]のいずれか1つに記載の粘着シート。
Figure JPOXMLDOC01-appb-C000004

 式(4)中、RがH又はCHを表し、Rが-C2n+1を表し、nが7~20の整数を表し、式(5)中、Rは-C(=O)C2m+1を表し、mは6~13の整数を表す。
[30]前記ポリマー(X2)において、n-ヘプチル(メタ)アクリレート由来の構成単位の含有量が48質量%以上である上記[29]に記載の粘着シート。
[31]上記[1]~[9]のいずれか1つに記載の粘着剤、又は上記[10]~[12]のいずれか1つに記載の粘着テープ、又は上記[14]~[30]のいずれか1つに記載の粘着シートを備える電化製品。
[32]上記[1]~[9]のいずれか1つに記載の粘着剤、上記[10]~[12]のいずれか1つに記載の粘着テープ、又は上記[14]~[30]のいずれか1つに記載の粘着シートを備える車載部材。
 本発明の粘着剤及び粘着シートによれば、バイオ率を高くしつつ、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性のいずれもが良好になる。
微小せん断ずれ変位測定試験装置を用いた凝集力試験の概略、及びA部拡大図を示す。
<<第1の発明>>
 以下、本発明の第1の発明について実施形態を用いて詳細に説明する。
<粘着剤>
[ポリマー(X1)]
 本発明の粘着剤は、ポリマー(X1)を含有する。ポリマー(X1)は、下記一般式(1)で表されるモノマー(A1)、及び下記一般式(2)で表されるモノマー(B1)からなる群から選択される少なくとも1種のモノマー(Y1)由来の構成単位を含有する。なお、本明細書において、用語「モノマー(Y1)」は、モノマー(A1)及びモノマー(B1)を纏めて説明するためにも使用する。
Figure JPOXMLDOC01-appb-C000005

式(1)中、RはH又はCHを表し、Rは-C2n+1を表し、nは7~14の整数を表す。式(2)中、Rは-C(=O)C2m+1を表し、mは6~13の整数を表す。
 本発明では、モノマー(A1)、及びモノマー(B1)由来の構成単位の少なくともいずれかを含有することで、後述するtanδ(23℃)を適切な範囲に調整しやすくなり、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性も良好にしやすくなる。また、モノマー(A1)及びモノマー(B1)は、生物由来原料から製造しやすく、後述するバイオ率を高くしやすくなる。
 ポリマー(X1)は、モノマー(A1)及びモノマー(B1)のうちの一方又は両方のモノマー由来の構成単位を含有すればよいが、モノマー(A1)由来の構成単位を含有することが好ましい。ポリマー(X1)がモノマー(A1)由来の構成単位を有すると、tanδ(23℃)を所望の範囲内に調整しやすくなり、また、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性も良好にしやすくなる。
 式(1)におけるRのアルキル基(-C2n+1)、及び式(2)におけるRのアルキル基(-C2m+1)は、直鎖状であってもよく、分岐鎖状であってもよいが、tanδ(23℃)を適切な範囲にしやすくする観点から直鎖状が好適である。また、tanδ(23℃)を適切な範囲にしやすくする観点から、Rにおけるnは7~10が好ましく、7がより好ましい。また、粘着性能を良好にする観点から、式(1)においてRはHであることが好ましい。
 したがって、ポリマー(X1)は、一般式(1)におけるnが7~10で、かつRが直鎖状であるモノマー(A1)由来の構成単位を含有することが好ましく、nが7で、かつRが直鎖状であるモノマー(A1)由来の構成単位を含有することがより好ましく、この場合におけるモノマー(A1)はRがHであることがさらに好ましい。
 上記モノマー(A1)としては、具体的には例えば、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、n-デシル(メタ)アクリレート、2-オクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、ウンデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ミリスチル(メタ)アクリレート等が挙げられる。これらのモノマー(A1)は単独で用いてもよく、2種以上を併用してもよい。
 また、モノマー(B1)としては、具体的には例えば、カプリン酸ビニル、ラウリン酸ビニル、カプリル酸ビニル、ノナン酸ビニル等が挙げられる。これらのモノマー(B1)は単独で用いてもよく、2種以上を併用してもよい。
 上記したモノマー(A1)、(B1)の中では、n-ヘプチル(メタ)アクリレートが好ましく、中でもn-ヘプチルアクリレートがより好ましい。n-ヘプチル(メタ)アクリレートを使用すると、tanδ(23℃)を適切な範囲にすることで、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性を向上させやすくなる。
 なお、本明細書では、(メタ)アクリレートとは、アクリレート及びメタクリレートの一方又はこれら両方を意味する用語として使用し、他の類似する用語も同様である。
 また、上記一般式(1)、(2)において、R及びRは、生物由来の炭素であることが好ましい。R及びRを生物由来の炭素とすることで後述するバイオ率を高くできる。R及びRそれぞれが生物由来の炭素であるモノマー(A1)、(B1)は、動植物等から採取される飽和脂肪酸や不飽和脂肪酸を原料として、これをアルコール化、エステル化することにより、安価かつ容易に入手することが可能である。
 本発明においてモノマー(Y1)(すなわち、モノマー(A1)及びモノマー(B1)から選択される少なくとも1種のモノマー)由来の構成単位の含有量は、ポリマー(X1)において48質量%以上である。この含有量が48質量%未満であると、tanδ(23℃)を適切な範囲に調整しにくくなる。また、バイオ率を高くしつつ、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性の全てを良好にすることが難しくなる。
tanδ(23℃)を所望の範囲内に調整し、かつバイオ率を高くしながらも、上記した各種性能を向上させる観点から、モノマー(Y1)由来の構成単位の含有量は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。また、モノマー(Y1)由来の構成単位の含有量は、例えば後述する官能基含有モノマーを所定量含有させるために、99質量%以下が好ましく、98質量%以下がより好ましく、97.5質量%以下がさらに好ましい。
 また、モノマー(A1)は、上記のとおり、n-ヘプチル(メタ)アクリレートを含むことが好ましい。ポリマー(X1)においてn-ヘプチル(メタ)アクリレート由来の構成単位の含有量は、tanδ(23℃)の観点、及びバイオ率を高くしつつ上記した各種性能を向上させる観点から、48質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。また、n-ヘプチル(メタ)アクリレート由来の構成単位の含有量は、99質量%以下が好ましく、98質量%以下がより好ましく、97.5質量%以下がさらに好ましい。
 ポリマー(X1)は、上記モノマー(A1)、モノマー(B1)以外の、他のモノマー由来の構成単位を含有することが好ましい。他のモノマーは、ビニル基、(メタ)アクリロイル基などの重合性の炭素-炭素二重結合を有するモノマーであるとよい。他のモノマーとしては、極性基を含有するモノマー(以下、「極性基含有モノマー(C)」ともいう)が好ましい。ポリマー(X1)が極性基含有モノマー(C)由来の構成単位を含有することで、粘着剤の粘着力を高めやすくなり、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性なども向上させやすくなる。
 極性基としては、活性水素を有する官能基であり、具体的には、カルボキシ基、水酸基、アミノ基、アミド基等が挙げられる。極性基は、後述する架橋剤と反応可能な官能基であってもよい。極性基含有モノマー(C)は1種単独で使用してもよいし、2種以上を併用してもよい。
 極性基含有モノマー(C)としては、カルボキシ基を含有するモノマー(以下、「カルボキシ基含有モノマー(C1)」ともいう)、及び水酸基を含有するモノマー(以下、「水酸基含有モノマー(C2)」ともいう)のうちいずれかを含有することが好ましく、これらを併用することがより好ましい。
 カルボキシ基含有モノマー(C1)としては、アクリル酸、メタアクリル酸、クロトン酸等が挙げられる。これらの中では、アクリル酸及びメタアクリル酸からなる群から選ばれる少なくとも1種が好ましく、アクリル酸がより好ましい。
 ポリマー(X1)におけるカルボキシ基含有モノマー(C1)由来の構成単位の含有量は、0.5~10質量%が好ましい。(C1)由来の構成単位の含有量を上記範囲内とすることで、粘着剤の粘着力が適切に高くなり、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性などを向上させやすくなる。これら観点から、カルボキシ基含有モノマー(C1)由来の構成単位の含有量は、1~8質量%がより好ましく、2~6質量%がさらに好ましい。
 水酸基含有モノマー(C2)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等の水酸基を有する(メタ)アクリレート、アリルアルコール等が挙げられる。これらの中でも、水酸基を有する(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレートがより好ましい。
 ポリマー(X1)における水酸基含有モノマー(C2)由来の構成単位の含有量は、粘着剤の各種性能を向上させる観点から、0.1~15質量%が好ましく、0.05~10質量%が好ましく、0.1~5質量%がさらに好ましい。また、水酸基含有モノマー(C2)は、カルボキシ基含有モノマー(C1)と併用することが好ましく、併用する場合の水酸基含有モノマー(C2)由来の構成単位の含有量は、0.01~5質量%が好ましく、0.05~2質量%がより好ましく、0.1~0.9質量%がさらに好ましい。カルボキシ基含有モノマー(C1)と併用する場合には、このように少量でも粘着剤の粘着力などを向上させ、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性などを向上させやすくなる。
 また、アミド基を含有するモノマーとしては、イソプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等が挙げられる。
 モノマー(A1)、(B1)以外の他のモノマーとしては、官能基含有モノマー以外を使用してもよく、一般式(1)で示される化合物以外のアルキル(メタ)アクリレートが挙げられる。そのようなアルキル(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレートなどのアルキル基の炭素数が1~6のアルキル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、5,7,7-トリメチル-2-(1,3,3-トリメチルブチル)オクタノール-1と(メタ)アクリル酸とのエステル、ベヘニル(メタ)アクリレート、アラキジル(メタ)アクリレート等の炭素数15~24程度のアルキル(メタ)アクリレートが挙げられる。
 また、他のモノマーとしては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどの脂環構造を有する(メタ)アクリレート、ベンジル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレートなどの芳香環を有する(メタ)アクリレート、グリシジル(メタ)アクリレート等のエポキシ基を有するモノマー、(メタ)アクリロニトリル等のニトリル基を有するモノマー、2-ブトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、スチレン等が挙げられる。
 極性基含有モノマー以外の他のモノマーも、単独で用いてもよく、2種以上を併用してもよい。
 上記他のモノマーは、後述するバイオ率を向上させる観点から、生物由来の炭素を含むものであることが好ましいが、生物由来の炭素を含まず、石油由来のモノマーであってもよい。
 ポリマー(X1)の重量平均分子量(Mw)は、20万~100万であることが好ましい。
重量平均分子量(Mw)を20万以上とすると、粘着剤のせん断強度などを高めて、粘着剤の高温下における保持力を高くできる。また、100万以下とすると、粘着剤の粘着力を良好にして、低温貼り付け性、低極性の被着体に対する接着性などを向上させやすくなる。
 これら観点から、重量平均分子量(Mw)は、30万以上がより好ましく、40万以上がさらに好ましく、また、90万以下がより好ましく、80万以下がさらに好ましい。
 重量平均分子量(Mw)は、重合開始剤の使用量、重合温度等の重合条件、重合方法などを適宜選択することにより適宜調整できる。
 なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定した標準ポリスチレン換算の重量平均分子量である。
 ポリマー(X1)は、粘着剤において主成分となるものである。粘着剤におけるポリマー(X1)の含有量は、適切な粘着性能を付与するために、例えば50質量%以上、好ましくは60質量%以上、より好ましくは65質量%以上である。また、粘着付与剤、架橋剤などのポリマー(X1)以外の成分を粘着剤に所定量配合できるように、粘着剤におけるポリマー(X1)は、99質量%以下が好ましく、95質量%以下がさらに好ましく、92質量%以下がさらに好ましい。
(ポリマー(X1)の製造方法)
 ポリマー(X1)は、上記原料となるモノマーの混合物を重合開始剤の存在下にてラジカル反応させることによって得ることができる。
 ラジカル反応の方式は特に限定されず、例えば、リビングラジカル重合、フリーラジカル重合等が挙げられる。リビングラジカル重合によれば、フリーラジカル重合と比較してより均一な分子量及び組成を有する共重合体が得られ、低分子量成分等の生成を抑えることができ、上記粘着剤の凝集力が高くなる。重合方法は特に限定されず、従来公知の方法を用いることができる。例えば、溶液重合(沸点重合又は定温重合)、エマルジョン重合、懸濁重合、塊状重合等が挙げられる。なかでも、合成が簡便であることから、溶液重合が好ましい。
 重合方法として溶液重合を用いる場合、反応溶剤として、例えば、酢酸エチル、トルエン、メチルエチルケトン、メチルスルホキシド、エタノール、アセトン、ジエチルエーテル等が挙げられる。これらの反応溶剤は単独で用いてもよく、複数を併用してもよい。
 上記重合開始剤は特に限定されず、例えば、有機過酸化物、アゾ化合物等が挙げられる。上記有機過酸化物として、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート等が挙げられる。上記アゾ化合物として、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル等が挙げられる。これらの重合開始剤は単独で用いてもよく、複数を併用してもよい。
 また、リビングラジカル重合の場合には、上記重合開始剤として、例えば、有機テルル重合開始剤が挙げられる。上記有機テルル重合開始剤は、リビングラジカル重合に一般的に用いられるものであれば特に限定されず、例えば、有機テルル化合物、有機テルリド化合物等が挙げられる。なお、リビングラジカル重合においても、上記有機テルル重合開始剤に加えて、重合速度の促進を目的として上記重合開始剤としてアゾ化合物を用いてもよい。
[粘着付与剤]
 本発明の粘着剤は、上記ポリマー(X1)に加えて、粘着付与剤を含有することが好ましい。粘着付与剤を含有することで、粘着剤の粘着性が向上する。また、低極性の被着体に対する接着性なども良好にしやすくなる。さらに、例えばガラス転移温度(Tg)を後述する上限値以下となるように粘着付与剤を含有させることで低温貼り付け性が良好になる。
 粘着付与剤としては、例えば、ロジン系樹脂、重合ロジンエステル樹脂などのロジンエステル系樹脂、水添ロジン系樹脂等のロジン系粘着付与剤や、テルペン系樹脂、テルペンフェノール系樹脂等のテルペン系粘着付与剤や、クマロンインデン系樹脂、脂環族飽和炭化水素系樹脂、C5系石油樹脂、C9系石油樹脂、C5-C9共重合系石油樹脂等が挙げられる。これらの粘着付与樹脂は単独で用いてもよいし、2種以上を併用してもよい。
 上記した中では、ロジン系粘着付与剤、テルペン系粘着付与剤が好ましい。これら粘着付与剤は、生物由来原料から容易に合成でき、バイオ率を向上しやすくなる。例えば、ロジン系粘着付与剤は、松脂等の天然樹脂に由来し、また、テルペン系粘着付与剤は、植物の精油等に由来する。また、粘着付与剤としては、特にロジン系粘着付与剤が好適である。ロジン系粘着付与剤を使用することで、ポリプロピレン樹脂に代表されるポリオレフィン系樹脂などの低極性の被着体に対する接着性を優れたものにしやすくなる。
 粘着付与剤の軟化点は、120℃以上が好ましい。上記したポリマー(X1)は比較的ガラス転移温度が低くなる傾向にあり、高温時における保持力が低くなりやすいが、軟化点が比較的高い粘着付与剤と併用することで、高温時における保持力が低くなることを防止できる。そのような観点から、粘着付与剤の軟化点は、130℃以上がより好ましく、140℃以上がさらに好ましい。また、粘着付与剤の軟化点は、粘着剤に適切な粘着性能を付与する観点から、165℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。なお、軟化点はJIS K2207に準拠して測定することができる。
 粘着剤が粘着付与剤を含む場合、粘着付与剤の含有量は特に限定されないが、ポリマー(X1)100質量部に対して、10~50質量部が好ましい。粘着付与剤の含有量を上記下限値以上とすると、低温貼り付け性及び低極性の被着体に対する接着性を良好にしやすくなる。また、上記上限値以下とすることで、高温下における保持力が低下することを防止できる。以上の観点から、粘着付与剤の含有量は、12~40質量部がより好ましく、15~35質量部がさらに好ましく、特に好ましくは18~30質量部である。
[架橋剤]
 本発明の粘着剤は、架橋剤が配合され、架橋されることが好ましい。すなわち、粘着剤は、上記したポリマー(X1)、又はポリマー(X1)及び粘着付与剤に加えて、架橋剤を含有する粘着剤組成物を架橋したものであることが好ましい。架橋剤は、例えばポリマー(X1)が有する極性基との反応により、粘着剤を架橋させてもよい。
 架橋剤としては、例えばイソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。これらの中でも、イソシアネート系架橋剤及びエポキシ系架橋剤からなる群から選ばれる少なくとも1種が好ましく、イソシアネート系架橋剤がより好ましい。
 イソシアネート系架橋剤は、1分子中に2個以上のイソシアネート基を有する化合物であれば特に限定されず、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、トリメチロールプロパンのトリレンジイソシアネート付加物等が挙げられる。これらの中でも、トリレンジイソシアネート、トリメチロールプロパンのトリレンジイソシアネート付加物が好ましい。
 イソシアネート系架橋剤の市販品としては、コロネートL-45、コロネートL-55E(東ソー社製)等の各種ポリイソシアネート化合物、スミジュールN(住友バイエルウレタン社製)等のビューレットポリイソシアネート化合物、デスモジュールIL、HL(バイエルAG社製)、コロネートEH(日本ポリウレタン社製)等のイソシアヌレート環を有するポリイソシアネート化合物、スミジュールL(住友バイエルウレタン社製)、コロネートL、コロネートHL(日本ポリウレタン社製)等のアダクトポリイソシアネート化合物等が挙げられる。
 エポキシ系架橋剤は、1分子中に2個以上のエポキシ基を有する化合物であれば特に限定されず、例えば、ジグリシジルアニリン、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1、6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、1,3-ビス(N,N-ジグリシジルアミノエチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等が挙げられる。
 エポキシ系架橋剤の市販品としては、例えば、E-AX、E-5C(綜研化学社製)等が挙げられる。
 架橋剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 粘着剤における架橋剤の配合量は、ポリマー(X1)の種類、架橋度などの所望する物性などに応じて適宜変更すればよいが、ポリマー(X1)100質量部に対して、例えば0.1~20質量部、好ましくは0.4~8質量部、より好ましくは0.7~4質量部である。
(架橋度)
 本発明の粘着剤の架橋度は、10~70%であることが好ましい。架橋度を上記範囲内とすることで、高温下における保持力、低温貼り付け性、低極性の被着体に対する接着性などを良好にしやすくなる。このような観点から、粘着剤の架橋度は、20%以上がより好ましく、30%以上がさらに好ましく、また、60%以下が好ましく、50%以下がさらに好ましい。粘着剤の架橋度は、ゲル分率で示され、その測定方法は、実施例に示す通りである。粘着剤の架橋度は、架橋剤の配合量などを変更することで適宜調整できる。
[その他の添加剤]
 本発明の粘着剤は、必要に応じて、シランカップリング剤、酸化防止剤、紫外線防止剤、可塑剤、乳化剤、軟化剤、充填剤、顔料、染料等の添加剤等を含有していてもよい。これらの添加剤としても、バイオ率を高める観点から、可能な範囲で生物由来の材料を選択することが好ましい。
<貯蔵弾性率>
(tanδ(23℃))
 本発明の粘着剤は、23℃における貯蔵弾性率をG’(23℃)、及び23℃における損失弾性率をG”(23℃)とすると、G”(23℃)/G’(23℃)で表されるtanδ(23℃)が0.8~1.3である。tanδ(23℃)が0.8未満となったり、1.3を超えたりすると、高温下における保持力、低温貼り付け性、及びポリオレフィン樹脂などの低極性の被着体に対する接着性の全てを満たすことが難しくなる。これら観点から、tanδ(23℃)は、0.85以上が好ましく、0.88以上がより好ましく、また、1.2以下が好ましく、1.1以下がより好ましく、1.0以下がさらに好ましい。
 tanδ(23℃)は、ポリマー(X1)に使用されるモノマー成分の種類、量などにより調整でき、例えば、モノマー(A1)、(B1)の式(1)、(2)におけるR、Rを直鎖にしたり、n、mの値を小さくしたりすることで、tanδ(23℃)が大きくなる傾向になる。さらに、粘着付与樹脂やモノマー配合を調整し、ガラス転移温度(Tg)を-255~15℃の範囲内にすることによってもtanδ(23℃)を所望の範囲内に調整しやすくなる。また、ポリマー(X1)の分子量によっても調整でき、例えば、ポリマー(X1)の分子量を小さくすると、tanδ(23℃)の値が小さくなる傾向にある。
(23℃における貯蔵弾性率)
 23℃における貯蔵弾性率をG’(23℃)とすると、logG’(23℃)[Pa]は、好ましくは4.8~5.5である。logG’(23℃)[Pa]を上記範囲内とすることで、常温下における粘着特性を向上させ、例えば常温下における低極性の被着体に対する接着性を良好にしやすくなる。このような観点から、logG’(23℃)[Pa]は、より好ましくは4.85~5.4、さらに好ましくは4.9~5.3である。
(80℃における貯蔵弾性率)
 80℃における貯蔵弾性率をG’(80℃)とすると、logG’(80℃)[Pa]は、好ましくは4.1~4.8である。logG’(80℃)[Pa]を上記範囲内とすることで、高温下における凝集力などが良好となり、高温下における粘着性及び保持力を向上させることができる。このような観点から、logG’(80℃)[Pa]は、より好ましくは4.15~4.75、さらに好ましくは4.2~4.7である。
(0℃における貯蔵弾性率)
 0℃における貯蔵弾性率をG’(0℃)とすると、logG’(0℃)[Pa]は、好ましくは5.0~6.5である。logG’(0℃)[Pa]を上記範囲内とすることで、低温貼り付け性を良好にしやすくなる。そのような観点から、logG’(0℃)[Pa]は、より好ましくは5.4~6.4、さらに好ましくは5.5~6.3である。
 なお、logG’(0℃)[Pa]とは、単位「Pa」で表される貯蔵弾性率の対数を意味する。他の同様の表現も同義である。
 0℃、23℃、及び80℃における貯蔵弾性率G’は、ポリマー(X1)に使用されるモノマー成分の種類、量などにより調整でき、例えば、モノマー(A1)、モノマー(B1)の種類、含有量などを上記説明したとおりに設定することで上記範囲内に調整しやすくなる。また、各温度における貯蔵弾性率G’は、重量平均分子量、架橋度によっても調整でき、例えば重量平均分子量や架橋度を高くすると各温度における貯蔵弾性率G’は高くなる傾向となる。さらには、分子量分布によっても調整できる。例えば、貯蔵弾性率G’は、分子量分布を狭くすると上がり、広くすると下がる傾向にある。
(ガラス転移温度(Tg))
 本発明の粘着剤のガラス転移温度(Tg)は、好ましくは15℃以下である。15℃以下とすることで、tanδ(23℃)を大きくしやすくなり、高温下における保持力、低温貼り付け性なども良好となりやすい。これら観点から、ガラス転移温度(Tg)は、好ましくは10℃以下、より好ましくは5℃以下である。粘着剤のガラス転移温度(Tg)は、特に限定されないが、高温下における保持力を向上させる観点などから、例えば-40℃以上、好ましくは-28℃以上、より好ましくは-25℃以上、さらに好ましくは-20℃以上である。
 ガラス転移温度(Tg)は、ポリマー(X1)を構成するモノマーの種類、量により調整できる。また、粘着付与剤の種類、量などでも調整でき、例えば、粘着付与剤として軟化点を高いものを使用したり、その粘着付与剤の量を多くしたりすることで、ガラス転移温度(Tg)が高くなりやすい。ガラス転移温度(Tg)は、さらに、微粒子などを添加することによっても調整できる。
 上記各温度における貯蔵弾性率G’、損失弾性率G”は、高分子動的粘弾性測定装置を使用して、後述する実施例記載の測定条件にて測定して得た値である。tanδ(23℃)は、測定された23℃における貯蔵弾性率G’(23℃)および損失弾性率G”(23℃)から求めた値である。また、ガラス転移温度(Tg)は、高分子動的粘弾性測定装置を使用して、後述する実施例記載の測定条件にて測定される。
(バイオ率)
 本発明の粘着剤は、生物由来の炭素の含有率(以下、「バイオ率」ともいう)が40質量%以上であることが好ましい。一般的にバイオ率40質量%以上が「バイオベース製品」であることの目安となる。バイオベース製品は、再生可能な有機資源を使用することで石油資源を節約でき、また、石油由来製品の燃焼による二酸化炭素の排出量を減らすことができ、環境への負荷を低減できる。これら観点からバイオ率は50質量%以上がより好ましく、60質量%以上であることがさらに好ましい。また、バイオ率は、高ければ高いほどよく、100質量%以下であればよい。
 生物由来の炭素には一定割合の放射性同位体(C-14)が含まれるのに対し、石油由来の炭素にはC-14がほとんど含まれない。そのため、バイオ率は、粘着剤または後述する粘着テープに含まれるC-14の濃度を測定することによって算出することができる。具体的には、多くのバイオプラスチック業界で利用されている規格であるASTM D6866に準じて測定することができる。
(タック値)
 本発明の粘着剤は、タック試験により測定した23℃における粘着テープの剥離限界値が400gf・s以上であることが好ましい。なお、タック試験は、次のようにして行われる。
 まず、タック試験機(例えば、レスカ社製のTAC-1000等)の23℃に設定したプレート上に、粘着剤層が上になるようにして粘着テープを載せる。なお、粘着テープの非測定面は、例えばポリエチレンテレフタレート(PET)フィルム等のフィルムで裏打ちされる。次いで、粘着テープに対して、プローブ温度23℃、押付け速度2mm/s、押付け荷重100gfで直径5mmの円柱状のステンレス製のプローブを押付け、その状態で0.1秒間保持する。その後、引き上げ速度0.2mm/sでプローブを引き上げていく。この間の粘着テープにかかる力を測定する。
 なお、以上の説明は、粘着剤が粘着テープを構成する場合の例を説明したが、粘着テープを構成しない場合も同様にタック試験機の23℃に設定したプレート上に粘着剤を配置して同様に測定するとよい。
 上記剥離限界値とは、上記タック試験により測定した23℃における粘着テープにかかる力を示す力-時間曲線において、力が0を示す時間Tから最大力(ピークトップ)を示す時間までの積分値を意味する。タック試験において、粘着テープに対してプローブを押付けると、力-時間曲線は下降し、その後、プローブを引き上げ始めると、力-時間曲線は上昇していく。力が0を示す時間Tから最大力(ピークトップ)を示す時間Tまでの積分値を算出し、これを剥離限界値とする。
 上記剥離限界値を上記範囲に調整することにより、高温高湿下かつ復元力がかかる状況下でも粘着テープの剥離を抑制することができる。上記剥離限界値の好ましい下限は450gf・s、より好ましい下限は500gf・sである。また、上記剥離限界値の上限は特に限定されない。
(粘着剤の作製)
 本発明の粘着剤は、例えば粘着剤組成物を調製し、粘着剤組成物より形成さればよい。粘着剤組成物は、粘着剤を形成するための成分からなり、具体的にはポリマー(X1)に加えて、必要に応じて配合される粘着付与剤、架橋剤、その他の添加剤などを含有するものである。粘着剤組成物は、有機溶剤等の希釈溶液により希釈されていてもよい。希釈溶液は、ポリマー(X1)を合成するときに使用した溶媒でもよいし、ポリマー(X1)を合成した後に加えられたものでもよい。
 粘着剤組成物は、必要に応じて加熱して乾燥などすることで架橋され、粘着剤となるとよい。粘着剤は、通常は粘着テープなどに使用されるものであり、粘着剤層を構成するとよい。
<粘着テープ>
 本発明の粘着テープは、上記粘着剤からなる粘着剤層を備える粘着テープである。粘着テープは、基材を有しないノンサポートテープあってもよいし、基材を有する粘着テープであってもよいが、基材を有する粘着テープであることが好ましい。なお、粘着テープは後述の通り粘着シートということがある。
 ノンサポートテープは、基材を有さずに、粘着剤層単層の状態で使用される両面粘着テープである。基材を有する粘着テープは、基材と、基材の少なくとも一方の面に設けられる粘着剤層とを備える。この場合、粘着テープは、基材の両面に粘着剤層が設けられ、両面粘着テープとして使用されてもよいし、基材の片面のみに粘着剤層が設けられ、片面粘着テープとして使用されてもよい。各粘着テープにおいて、露出する粘着剤層の表面には、適宜剥離シートが貼付されて保護されてもよい。剥離シートは、剥離シート基材の少なくとも一方の面に剥離剤が塗布されて剥離面となるものであり、剥離面が粘着剤層に接触するように貼付されるとよい。
 なお、基材の両面に粘着剤層を有する両面粘着テープでは、少なくとも一方の粘着剤層が上記した本発明の粘着剤で構成されればよい。
[基材]
 粘着テープに使用される基材は、特に限定されないが、樹脂フィルム、不織布、又は発泡体のいずれかであることが好ましい。
 樹脂フィルムを構成する樹脂成分としては、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンフラノエート(PEF)、ポリ乳酸(PLA)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリブチレンサクシネート(PBS)等のポリエステル(PES)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン酢酸ビニル共重合体(EVA)などのポリオレフィン、ポリウレタン(PU)、トリアセチルセルロース(TAC)、ポリアミド(PA)等が挙げられる。これら樹脂成分は、1種単独で使用してもよいし、2種以上を併用してもよい。樹脂フィルムとしては、上記した中では、ポリエチレンテレフタレートフィルム(PETフィルム)が好ましい。PETフィルムは、機械強度が良好であり、粘着剤層を適切に支持できる。また、PETフィルムは、バイオ率が高い製品が商業的に入手可能であり、粘着テープとしてのバイオ率も高くしやすくなる。
 不織布としては、樹脂成分よりなる不織布であってもよいし、パルプなどの樹脂成分以外の繊維を使用した不織布であってもよい。樹脂成分以外の繊維を使用した不織布は、樹脂成分以外の繊維単独で形成されてもよいし、樹脂成分以外の繊維と樹脂繊維の両方より形成されてもよい。樹脂成分としては、例えば、上記した樹脂フィルムを構成する樹脂成分として列挙されたものから適宜選択して使用すればよい。また、パルプを使用した不織布は、バイオ率が高い製品が商業的に入手可能であり、粘着テープとしてのバイオ率も高くしやすくなる。
 また、発泡体を基材として使用する場合、発泡体は、樹脂成分としてPE、PP、EVAなどのポリオレフィン樹脂を使用したポリオレフィン樹脂発泡体、ポリウレタン樹脂を使用したポリウレタン発泡体などが挙げられる。
 樹脂フィルム、不織布、及び発泡体を構成する樹脂成分は、例えば、石油由来の樹脂、動植物由来の樹脂、石油及び動植物の両方に由来する樹脂のいずれを使用してもよいが、粘着テープをバイオベース製品とするために、動植物由来の樹脂を少なくとも含むことが好ましい。例えば、基材がPETフィルムである場合には、動植物由来のPETを使用すればよい。また、基材としてポリオレフィン樹脂発泡体などを使用する場合などには、発泡体を構成するポリオレフィン樹脂に動植物由来のものを使用すればよい。
 各粘着テープにおいて、基材の厚さは、特に限定されないが、例えば、1~2000μmであるとよい。また、基材の厚さの好適な範囲は、使用する基材の種類によって異なり、例えば基材が樹脂フィルム、不織布である場合には、好ましくは1~100μm、より好ましくは5~50μmである。これら基材の厚さを5~100μmとすることで、柔軟性を損なうことなく粘着テープに一定の機械強度を付与できる。
 また、基材が発泡体である場合には、基材の厚さは、好ましくは50~2000μmである。上記範囲内となることで高い耐衝撃性を発揮しながら、被着体の形状に沿って密着させて貼り合わせる高い柔軟性を発揮することができる。
 各粘着テープにおいて、粘着剤層の厚さは、特に限定されないが、例えば5~200μm程度であればよく、好ましくは10~100μmである。粘着剤層の厚みがこの範囲内であると、得られる粘着テープは充分な粘着力を発揮することができる。
 また、粘着テープの総厚さ(基材と粘着剤層の厚さの合計)は、10~400μmであることが好ましい。粘着テープの総厚みがこの範囲内であると、得られる粘着テープは、充分な粘着力を発揮することができる。
 (凝集力)
 本発明の粘着テープは、凝集力試験により測定した23℃におけるズレ量が500μm以下であることが好ましく、400μm以下であることがより好ましく、300μm以下であることがさらに好ましく、250μm以下であることが特に好ましい。また、本発明の粘着剤は、凝集力試験により測定した80℃におけるズレ量が1200μm以下であることが好ましく、1000μm以下であることがより好ましく、800μm以下であることがさらに好ましい。23℃及び80℃におけるズレ量が上記のように小さくなると、粘着剤層の凝集力が大きくなり、常温下、及び高温下における保持力が向上する。
 なお、上記ズレ量は、3分間せん断方向に所定の荷重を作用させたときに発生するズレ量であり、詳しい測定方法は後述する。
 また、上記のとおりに3分間せん断方向に荷重を作用させた後、上記ズレ量(荷重除去前のズレ量)に対する、荷重を除去して回復したときのズレ量(荷重除去後のズレ量)の割合は、ずれ変位回復率(%)と定義される。ずれ変位回復率(%)は、50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましく、また、5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましい。回復率が、上記のような範囲になると、粘着テープを圧着した際の被着体への追従性がよくなり、貼付け性や粘着力が向上する。
 ズレ量は、図1に示した微小せん断ずれ変位測定試験装置(旭精工社製、剪断クリープ測定装置、NST1)を用いた凝集力試験により測定できる。具体的には以下の通りである。
 まず、試験対象となる両面粘着テープの一方の面の剥離シートを剥がし、両面粘着テープの一方の露出した粘着剤層の表面にコロナ処理を施したポリエチレンテレフタレート(PET)フィルムを貼り付けた。その後、幅1cm×縦12cmにカットして試験片5とする。装置の温調器4を23℃又は80℃に設定し、設定温度で安定するまで放置する。温調器4は、2以上の温調器を適宜組み合わせてもよい。
 試験片5の他方の剥離シートをその端部から3cm程度剥がして除去し、露出した粘着剤層を、接着面積が5mm×20mmになるよう被着体3に貼り付ける。この際、剥離シート8は、端部以外の部分において粘着剤層7に貼付されるままである。試験片5の他方の露出した粘着剤層7の表面を、接着面積が5mm×20mmになるよう被着体3に貼り付ける。被着体3はSUS製である。
 貼り付け面上に端面を鏡面処理した石英製のブロック2(石英ガラスにクロム蒸着したもの)を載せる。ブロック2の端面の鏡面処理面10には、レーザー干渉計1(例えば、キーエンス製「SI-F1」)からのレーザー光が照射されるようにする。
 試験片5を200gのおもり6につなぐワイヤーにとりつけ、その状態で放置し、5分間恒温化する。5分後に試験片5におもり6の荷重を加えて、試験片5に対し水平方向へのせん断負荷を与える。荷重を加えてから3分後において、レーザー干渉計1によって試験片5上のブロック2の変位を検出し、その検出値を粘着剤のズレ量とする。
 また、上記のとおりに荷重を加え、3分経過後に荷重を除去し、荷重除去した後のさらに3分経過後のズレ量(荷重除去後)を測定して、上記のとおり荷重除去前に測定したズレ量をズレ量(荷重除去前)として、ズレ量(荷重除去後)/ズレ量(荷重除去前)×100(%)をずれ変位回復率(%)とする。なお、ズレ量(荷重除去後)は、ズレ量(荷重除去前)と同様にレーザー干渉計1で測定する。ずれ変位回復率(%)の具体的な算出方法は、以下の通りである。
 ずれ変位回復率(%)=(荷重除去3分後のずれ変位(μm))/(荷重負荷3分後のずれ変位(μm))×100
 なお、以上の説明は、両面粘着テープにおけるズレ量の測定方法を示したが、片面粘着テープでも一方の粘着剤層表面にPETフィルムを貼り付けることを省略する以外同様に行うとよい。また、両面粘着テープは、基材を有しないノンサポートテープでも同様に測定できる。また、両面粘着テープは、剥離シートが粘着剤層に貼付されていない場合には、その剥離する工程などを省略して同様に行うとよい。
(粘着テープのバイオ率)
 本発明の粘着テープは、上記した粘着剤と同様の観点から、バイオ率が40質量%以上であることが好ましく、50質量%以上がより好ましく、60質量%以上であることがさらに好ましい。また、バイオ率は、高ければ高いほどよく、100質量%以下であればよい。なお、粘着テープは、一般的に各構成部材(例えば、粘着剤層、及び基材)によってバイオ率が異なる。そのため、バイオ率は、各構成部材のバイオ率を求め、各構成部材の質量を重み付けとして加重平均により算出するとよい。
(粘着テープの製造方法)
 粘着テープの製造方法は特に限定されず、従来公知の製造方法により製造することができる。例えば、まず、必要に応じて有機溶剤などで希釈された粘着剤組成物を用意し、粘着剤組成物を剥離シートなどの支持体上に塗布して、必要に応じて加熱して乾燥して、粘着剤層を形成すればよい。剥離シートに粘着剤組成物を塗布する場合には、剥離シートの剥離面上に塗布するとよい。剥離シートなどの支持体上に形成した粘着剤層は、さらに基材に貼り合わせて、基材を有する粘着テープが得られる。また、粘着剤組成物を基材に直接塗布して必要に応じて加熱して乾燥することで、基材上に粘着剤層を設けた粘着テープを得てもよい。
 なお、両面粘着テープを作成する場合には、上記いずれかの方法で基材の両面それぞれに粘着剤層を形成すればよい。
 また、ノンサポートテープを製造する場合には、剥離シートに粘着剤組成物を塗布して、必要に応じて加熱して乾燥して、粘着剤層を形成することで得ることができる。この場合、形成された粘着剤層には、剥離シートをさらに貼り合わせて、粘着剤層を保護してもよい。ノンサポートテープでは、粘着剤層は、剥離シートから剥離されて使用されるとよい。
(粘着剤の用途)
 本発明の粘着剤及び粘着テープの用途は特に限定されないが、電化製品、車両用途において使用されることが好ましい。例えば電化製品においては、電化製品を構成する部品の固定に使用されることが好ましい。具体的には、電化製品において、部品同士を粘着剤又は粘着テープにより固定させるとよい。したがって、本発明は、上記粘着剤又は粘着テープを備える電化製品も提供するものである。電化製品としては、特に限定されないが、携帯電子機器、テレビなどの各種ディスプレイ、洗濯機、冷蔵庫、食器用洗浄機、掃除機、プリンタ、各種オーディオ機器などが挙げられる。
 また、車両用途では、例えば、車載部材の固定に使用することが好ましい。車載部材としては、車両用内装材が挙げられ、例えば、天井パネル、ドアパネル、インストルメントパネルなどの車載用パネル、カーエアコン、ドアトリム、制振部材、エンブレム、加飾フィルム、止水部材などが挙げられる。車載部材は、例えば粘着剤又は粘着テープを介して車両に固定されるとよい。したがって、本発明は、上記粘着剤又は粘着テープを備える車載部材も提供するものである。
 電化製品及び車両内部は、高温に晒されることがあるが、本発明の粘着剤は、高温環境下でも高い保持力を発揮するので、電化製品の部品や車載部材を安定的に固定させることができる。一方で、電化製品及び車両の組み立ては、寒冷地で行われることがあるが、寒冷地で行われても、粘着剤又は粘着テープを容易に電化製品の部品又は車載部材に貼り付けることができるので、組み立て性が良好となる。さらに、電化製品の部品、又は車載部材などは、ポリプロピレン樹脂に代表されるポリオレフィン系樹脂などから構成され低極性であることがあるが、これらが低極性であっても、本発明の粘着剤又は粘着テープを使用すれば、高い接着力で貼り付けることができる。
<<第2の発明>>
 以下、本発明の第2の発明について実施形態を用いて詳細に説明する。
[粘着シート]
 本発明の粘着シートは、植物由来成分を含む粘着剤を備えたものである。例えば、後述するように粘着剤に含有するポリマー(X2)は、植物由来のモノマー成分を構成単位として含むとよい。また、粘着付与剤などのポリマー(X2)以外の成分も、植物由来成分を含有してもよい。植物由来成分を含む粘着剤を備えていないと、粘着シートのバイオ率を高くすることは難しい。
(粘着剤)
 本発明の粘着シートにおける粘着剤のゾル分のゲルパーミエーションクロマトグラフィ(GPC)によるピークトップ分子量(Mtp)が137000以上300000以下であり、上記粘着剤のゾル分率(Rsol)が90質量%以下であり、上記粘着剤のガラス転移温度(Tg)が5℃以下である。これにより、粘着シートのバイオ率を高くし、かつ低温貼り付け性を良好にしつつ、高温下における保持力、及び低極性の被着体に対する接着性のいずれも良好にすることができる。
<ゾル分のピークトップ分子量(Mtp)>
 本発明の粘着シートにおける粘着剤のゾル分のGPCによるピークトップ分子量(Mtp)は、137000以上300000以下である。上記ピークトップ分子量が137000未満であると、高温下における保持力及び低極性の被着体に対する接着性が悪化する場合がある。また、上記ピークトップ分子量が300000よりも大きいと、低極性の被着体に対する接着性が悪化する場合がある。このような観点から、上記ピークトップ分子量は、好ましくは138000以上220000以下であり、より好ましくは138000以上200000以下である。なお、粘着剤のゾル分のGPCによるピークトップ分子量は、GPC測定により得られた分子量分布において、ピークトップとなる分子量の値であり、後述の実施例に記載の方法で測定することができる。また、ゾル分のGPCによるピークトップ分子量(Mtp)は、主成分であるポリマーのゾル分のGPCによるピークトップ分子量であり、粘着付与剤(TF)由来のピークは含めないものとする。
 粘着剤のゾル分のGPCによるピークトップ分子量は、重合方法により粘着剤を構成するポリマーの分子量及び分子量分布を変えたり、架橋剤の配合量を変えたり、オリゴマー等の低分子量成分を配合したりすることにより調整することができる。
<ゾル分率(Rsol)>
 本発明の粘着シートにおける粘着剤のゾル分率(Rsol)は90質量%以下である。粘着剤のゾル分率(Rsol)が90質量%よりも高いと、高温下における保持力が悪くなる場合がある。そして、本発明の粘着シートにおける粘着剤のゾル分率(Rsol)は、好ましくは45質量%以上75質量%以下である。上記ゾル分率(Rsol)が45質量%以上であると、バイオ率を高くしつつ、低極性の被着体に対する接着性をさらに改善することができる。また、上記ゾル分率(Rsol)が75質量%以下であると、バイオ率を高くしつつ、高温下における保持力をさらに改善することができる。このような観点から、上記ゾル分率(Rsol)は、より好ましくは50質量%以上70質量%以下であり、さらに好ましくは55質量%以上70質量%以下であり、よりさらに好ましくは58質量%以上70質量%以下である。なお、上記ゾル分率(Rsol)は、後述の実施例に記載の方法で測定することができる。また、ゾル分率(Rsol)は、重合方法により粘着剤を構成するポリマーの分子量及び分子量分布を変えたり、架橋剤の配合量を変えたり、オリゴマー等の低分子量成分を配合したりすることにより調整することができる。
<ガラス転移温度(Tg)>
 本発明の粘着シートにおける粘着剤のガラス転移温度(Tg)は5℃以下である。上記ガラス転移温度(Tg)が5℃よりも高いと、低温貼り付け性が悪くなる場合がある。このような観点から、上記ガラス転移温度(Tg)は、好ましくは2.5℃以下であり、より好ましくは0℃以下であり、さらに好ましくは-1℃以下である。上記ガラス転移温度(Tg)の範囲の上限値は特に限定されないが、高温下における保持力を向上させる観点などから、好ましくは-20℃以上であり、より好ましくは-18℃以上であり、さらに好ましくは-17℃以上である。なお、上記ガラス転移温度(Tg)は、後述の実施例に記載の方法で測定することができる。また、ガラス転移温度(Tg)は、粘着剤のポリマーを構成するモノマーの種類、量により調整できる。さらに、粘着付与剤の種類、量などでも調整でき、例えば、粘着付与剤として軟化点を高いものを使用したり、その粘着付与剤の量を多くしたりすることで、ガラス転移温度(Tg)が高くなりやすい。ガラス転移温度(Tg)は、さらに、微粒子などを添加することによっても調整できる。
<硬軟度(S)>
 本発明の粘着シートの粘着剤における下記一般式(3)で表される硬軟度(S)は、好ましく50000以上180000以下である。硬軟度(S)は粘着剤の柔らかさを表すパラメータである。硬軟度(S)が所定範囲内であると、粘着剤は、柔らかすぎることなく、硬すぎることなく、優れた粘着性能を示す。
  S=Mw×Rsol/D     (3)
 式(3)中、Mwが前記粘着剤のゾル分のGPCによる重量平均分子量を表し、Rsolが前記粘着剤におけるゾル分率を表し、Dが前記粘着剤のゾル分のGPCによる分散度を表す。
 硬軟度(S)が50000以上であると、バイオ率を高くしつつ、高温下における保持力、及び低極性の被着体に対する接着性をさらに良好にすることができる。また、硬軟度(S)が180000以下であると、バイオ率を高くしつつ、高温下における保持力をさらに良好にすることができる。このような観点から、硬軟度(S)は、より好ましくは55000以上120000以下であり、さらに好ましくは60000以上112000以下である。なお、硬軟度(S)は、後述の実施例に記載の方法で測定することができる。また、硬軟度(S)は、重合方法により粘着剤を構成するポリマーの分子量及び分子量分布を変えたり、架橋剤の配合量を変えたり、オリゴマー等の低分子量成分を配合したりすることにより調整することができる。
<分散度(D)>
 本発明の粘着シートの粘着剤におけるゾル分のGPCによる分散度(D)は、好ましくは1.6以上3未満である。分散度(D)が1.6以上であると、バイオ率を高くしつつ、低極性の被着体に対する接着性をさらに良好にすることができる。また、分散度(D)が3未満であると、バイオ率を高くしつつ、高温下における保持力をさらに良好にすることができる。このような観点から、分散度(D)は、より好ましくは1.8以上3未満であり、さらに好ましくは1.9以上3未満であり、よりさらに好ましくは2.0以上3未満である。なお、分散度(D)は、後述の実施例に記載の方法で測定することができる。また、ゾル分のGPCによる分散度(D)は、主成分であるポリマーのゾル分のGPCによる分散度であり、粘着付与剤(TF)由来のピークによる分子量は含めないものとする。
 分散度(D)は、重合方法により粘着剤を構成するポリマーの分子量を変えたり、架橋剤の配合量を変えたり、オリゴマー等の低分子量成分を配合したりすることにより調整することができる。
<重量平均分子量(Mw)>
 本発明の粘着シートにおける粘着剤のゾル分のGPCによる重量平均分子量(Mw)は、好ましくは190000以上700000以下である。上記重量平均分子量(Mw)が190000以上700000以下であると、バイオ率を高くしつつ、高温下における保持力及び低極性の被着体に対する接着性をさらに改善することができる。このような観点から、上記重量平均分子量(Mw)は、より好ましくは200000以上600000以下であり、さらに好ましくは220000以上550000以下であり、よりさらに好ましくは240000以上460000以下である。なお、重量平均分子量(Mw)は、後述の実施例に記載の方法で測定することができる。また、ゾル分のGPCによる重量平均分子量(Mw)は、主成分であるポリマーのゾル分のGPCによる重量平均分子量であり、粘着付与剤(TF)由来のピークによる分子量は含めないものとする。
 重量平均分子量(Mw)は、重合方法により粘着剤を構成するポリマーの分子量及び分子量分布を変えたり、架橋剤の配合量を変えたり、オリゴマー等の低分子量成分を配合したりすることにより調整することができる。
<バイオ率>
 本発明の粘着シートにおける粘着剤は、生物由来の炭素の含有率(以下、「バイオ率」ともいう)が51質量%以上であることが好ましい。バイオ率51質量%以上とすることで、粘着剤を「バイオベース製品」とすることができる。バイオベース製品は、再生可能な有機資源を使用することで石油資源を節約でき、また、石油由来製品の燃焼による二酸化炭素の排出量を減らすことができ、環境への負荷を低減できる。これらの観点からバイオ率は55質量%以上がより好ましく、60質量%以上であることがさらに好ましい。また、バイオ率は、高ければ高いほどよく、100質量%以下であればよい。なお、バイオ率の測定方法は、第1の発明の項目で説明したので、省略する。
<ポリマー(X2)>
 本発明の粘着シートにおける粘着剤は、ポリマー(X2)を含有することが好ましい。ポリマー(X2)は、下記一般式(4)で表されるモノマー(A2)、及び下記一般式(5)で表されるモノマー(B2)からなる群から選択される少なくとも1種のモノマー(Y2)由来の構成単位を含有する。なお、本明細書において、用語「モノマー(Y2)」は、モノマー(A2)及びモノマー(B2)を纏めて説明するためにも使用する。
Figure JPOXMLDOC01-appb-C000006

式(4)中、RはH又はCHを表し、Rは-C2n+1を表し、nは7~20の整数を表す。式(5)中、Rは-C(=O)C2m+1を表し、mは6~13の整数を表す。なお、一般式(4)で表されるモノマー(A2)は、nは7~20の整数を表す点で、一般式(1)で表されるモノマー(A1)と異なり、一般式(5)で表されるモノマー(B2)は、一般式(2)で表されるモノマー(B1)と同じものである。
 本発明では、モノマー(A2)、及びモノマー(B2)由来の構成単位の少なくともいずれかを含有することで、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性を良好にしやすくなる。また、モノマー(A2)及びモノマー(B2)は、生物由来原料から製造しやすく、後述するバイオ率を高くしやすくなる。
 ポリマー(X2)は、モノマー(A2)及びモノマー(B2)のうちの一方又は両方のモノマー由来の構成単位を含有すればよいが、モノマー(A2)由来の構成単位を含有することが好ましい。ポリマー(X2)がモノマー(A2)由来の構成単位を有すると、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性を良好にしやすくなる。
 式(4)におけるRのアルキル基(-C2n+1)、及び式(4)におけるRのアルキル基(-C2m+1)は、直鎖状であってもよく、分岐鎖状であってもよいが、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性の観点から直鎖状が好適である。また、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性を良好にしやすくする観点から、Rにおけるnは7~18が好ましく、7~14がより好ましく、7がさらに好ましい。また、粘着性能を良好にする観点から、式(4)においてRはHであることが好ましい。
 したがって、ポリマー(X2)は、一般式(4)におけるnが7~18で、かつRが直鎖状であるモノマー(A2)由来の構成単位を含有することが好ましく、nが7で、かつRが直鎖状であるモノマー(A2)由来の構成単位を含有することがより好ましく、この場合におけるモノマー(A2)はRがHであることがさらに好ましい。
 上記モノマー(A2)としては、具体的には例えば、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、n-デシル(メタ)アクリレート、2-オクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-ウンデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート(ミリスチル(メタ)アクリレート)、n-オクタデシル(メタ)アクリレート等が挙げられる。これらのモノマー(A2)は単独で用いてもよく、2種以上を併用してもよい。
 また、モノマー(B2)としては、具体的には例えば、カプリン酸ビニル、ラウリン酸ビニル、カプリル酸ビニル、ノナン酸ビニル等が挙げられる。これらのモノマー(B2)は単独で用いてもよく、2種以上を併用してもよい。
 上記したモノマー(A2)、(B2)の中では、n-ヘプチル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート及びn-オクタデシル(メタ)アクリレートが好ましく、中でもn-ヘプチル(メタ)アクリレートがより好ましく、n-ヘプチルアクリレートがさらに好ましい。n-ヘプチル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート及びn-オクタデシル(メタ)アクリレートを使用すると、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性を向上させやすくなる。
 なお、本明細書では、(メタ)アクリレートとは、アクリレート及びメタクリレートの一方又はこれら両方を意味する用語として使用し、他の類似する用語も同様である。
 また、上記一般式(4)、(5)において、R及びRは、生物、特に植物由来の炭素であることが好ましい。R及びRを生物由来の炭素とすることで後述するバイオ率を高くできる。R及びRそれぞれが生物由来の炭素であるモノマー(A2)、(B2)は、動植物等から採取される飽和脂肪酸や不飽和脂肪酸を原料として、これをアルコール化、エステル化することにより、安価かつ容易に入手することが可能である。
 本発明においてモノマー(Y2)(すなわち、モノマー(A2)及びモノマー(B2)から選択される少なくとも1種のモノマー)由来の構成単位の含有量は、ポリマー(X2)において48質量%以上であることが好ましい。この含有量が48質量%以上であると、バイオ率を高くしつつ、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性の全てを良好にすることが容易になる。
 バイオ率を高くしながらも、上記した各種性能を向上させる観点から、モノマー(Y2)由来の構成単位の含有量は、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がよりさらに好ましい。また、モノマー(Y2)由来の構成単位の含有量は、例えば後述する官能基含有モノマーを所定量含有させるために、99質量%以下が好ましく、98質量%以下がより好ましく、97.5質量%以下がさらに好ましい。
 また、モノマー(A2)は、上記のとおり、n-ヘプチル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート及びn-オクタデシル(メタ)アクリレートからなる群から選択される少なくとも1種の(メタ)アクリレートを含むことが好ましい。ポリマー(X2)においてこれら(メタ)アクリレート由来の構成単位の含有量は、バイオ率を高くしつつ上記した各種性能を向上させる観点から、48質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。また、これら(メタ)アクリレート由来の構成単位の含有量は、99質量%以下が好ましく、98質量%以下がより好ましく、97.5質量%以下がさらに好ましい。
 また、モノマー(A2)は、n-ヘプチル(メタ)アクリレートを含むことが好ましく、tanδ(23℃)の観点、及びバイオ率を高くしつつ上記した各種性能を向上させる観点から、主モノマーとしてn-ヘプチル(メタ)アクリレートを含むことがより好ましい。ポリマー(X2)においてn-ヘプチル(メタ)アクリレート由来の構成単位の含有量は、具体的には、48質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。また、n-ヘプチル(メタ)アクリレート由来の構成単位の含有量は、99質量%以下が好ましく、98質量%以下がより好ましく、97.5質量%以下がさらに好ましい。なお、n-ヘプチル(メタ)アクリレートは、n-ヘプチルアクリレートであることが好ましい。
 ポリマー(X2)は、上記モノマー(A2)、モノマー(B2)以外の、他のモノマー由来の構成単位を含有することが好ましい。他のモノマーは、ビニル基、(メタ)アクリロイル基などの重合性の炭素-炭素二重結合を有するモノマーであるとよい。他のモノマーとしては、極性基を含有するモノマー(以下、「極性基含有モノマー(C)」ともいう)が好ましい。ポリマー(X2)が極性基含有モノマー(C)由来の構成単位を含有することで、粘着剤の粘着力を高めやすくなり、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性なども向上させやすくなる。
 極性基としては、活性水素を有する官能基であり、具体的には、カルボキシ基、水酸基、アミノ基、アミド基等が挙げられる。極性基は、後述する架橋剤と反応可能な官能基であってもよい。極性基含有モノマー(C)は1種単独で使用してもよいし、2種以上を併用してもよい。なお、極性基含有モノマー(C)は、第1の発明の項目で説明したものと同様であるので、説明は省略する。
 ポリマー(X2)の重量平均分子量(Mw)は、20万以上110万以下であることが好ましい。重量平均分子量(Mw)を20万以上とすると、粘着剤のせん断強度などを高めて、粘着剤の高温下における保持力を高くできる。また、110万以下とすると、粘着剤の粘着力を良好にして、低温貼り付け性、低極性の被着体に対する接着性などを向上させやすくなる。
 これら観点から、重量平均分子量(Mw)は、30万以上がより好ましく、40万以上がさらに好ましく、また、105万以下がより好ましく、100万以下がさらに好ましい。
 重量平均分子量(Mw)は、重合開始剤の使用量、重合温度等の重合条件、重合方法などを適宜選択することにより適宜調整できる。
 なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定した標準ポリスチレン換算の重量平均分子量である。
 ポリマー(X2)は、粘着剤において主成分となるものである。粘着剤におけるポリマー(X2)の含有量は、適切な粘着性能を付与するために、例えば50質量%以上、好ましくは60質量%以上、より好ましくは65質量%以上である。また、粘着付与剤、架橋剤などのポリマー(X2)以外の成分を粘着剤に所定量配合できるように、粘着剤におけるポリマー(X2)は、99質量%以下が好ましく、95質量%以下がさらに好ましく、92質量%以下がさらに好ましい。
 ポリマー(X2)の低分子量成分がゾル分となるので、重合方法によりポリマー(X2)の分子量及び分子量分布を変えることにより、粘着剤のゾル分の上記特性を調整することができる。また、架橋剤の配合量を変えることにより、ポリマー(X2)の低分子量成分が架橋せずに粘着剤中に残るので、架橋剤の配合量を変えることにより、粘着剤のゾル分の上記特性を調整することができる。ポリマー(X2)の低分子量成分には、例えば、ポリマー(X2)の原料となるモノマー由来のオリゴマーが挙げられる。
<ポリマー(X2)の製造方法>
 ポリマー(X2)は、上記原料となるモノマーの混合物を重合開始剤の存在下にてラジカル反応させることによって得ることができる。これにより、ポリマー(X2)の分子量分布をかなり広くすることができ、ゾル分率を高くすることができる。
 ラジカル反応の方式は特に限定されず、例えば、フリーラジカル重合、リビングラジカル重合等が挙げられる。フリーラジカル重合によれば、リビングラジカル重合と比較して分子量分布を広くすることができ、これにより低分子量成分の生成量を大きくすることができる。その結果、上記粘着剤のゾル分をより増やすことができ、バイオ率を高くしつつも、高温下における保持力、低温貼り付け性、及び低極性の被着体に対する接着性のいずれもさらに良好にできる。重合方法は特に限定されず、従来公知の方法を用いることができる。例えば、溶液重合(沸点重合又は定温重合)、エマルジョン重合、懸濁重合、塊状重合等が挙げられる。なかでも、合成が簡便であることから、溶液重合が好ましい。なお、ポリマー(X2)の製造方法は、第1の発明の項目で説明したポリマー(X1)の製造方法と同様であるので、説明は省略する。
 本発明の粘着シートにおける粘着剤では、上記製造方法により得られたポリマーに、低分子量成分(Z)を加えてポリマー(X2)としてもよい。上述したように、重合方法によりポリマー(X2)の分子量及び分子量分布を変えることにより、本発明の粘着シートにおける粘着剤のゾル分の上記特性を上述の範囲内に入るよう調整することができる。しかし、低分子量成分(Z)を用いても、本発明の粘着シートにおける粘着剤のゾル分の上記特性を上述の範囲内に入るよう調整できる。また、低分子量成分(Z)は粘着付与剤としての機能も有する。
 低分子量成分(Z)は、上記ポリマー(X2)の原料となるモノマーのオリゴマーであることが好ましい。したがって、低分子量成分(Z)は、上述の一般式(4)で表されるモノマー(A2)、及び上述の一般式(5)で表されるモノマー(B2)からなる群から選択される少なくとも1種のモノマー(Y2)由来の構成単位を含有するオリゴマーであることが好ましい。なお、低分子量成分(Z)に用いられるモノマーは、上述のポリマー(X2)の項目で既に説明したので、低分子量成分(Z)に用いられるモノマーの説明は省略する。
 ポリマー(X2)と同様に、上記したモノマー(A2)、(B2)の中で、n-ヘプチル(メタ)アクリレート、テトラデシル(メタ)アクリレート及びオクタデシル(メタ)アクリレートが好ましく、中でもn-ヘプチル(メタ)アクリレートがより好ましく、n-ヘプチルアクリレートがさらに好ましい。したがって、低分子量成分(Z)は、n-ヘプチル(メタ)アクリレートオリゴマー、テトラデシル(メタ)アクリレートオリゴマー及びオクタデシル(メタ)アクリレートオリゴマーが好ましく、中でもn-ヘプチル(メタ)アクリレートオリゴマーがより好ましく、n-ヘプチルアクリレートオリゴマーがさらに好ましい。
 ポリマー(X2)における低分子量成分(Z)の含有量は、特に限定されず、ゲル分率の各種特性が上記範囲内となるように適宜調整すればよい。
<粘着付与剤>
 本発明の粘着シートにおける粘着剤は、上記ポリマー(X2)に加えて、粘着付与剤を含有することが好ましい。なお、ポリマー(X2)に加える粘着付与剤は、以下で述べるとおり含有量を除いて、第1の発明の項目で説明したポリマー(X1)に加える粘着付与剤と同様であるので、説明は省略する。
 粘着剤が粘着付与剤を含む場合、粘着付与剤の含有量は特に限定されないが、ポリマー(X2)100質量部に対して、10質量部以上50質量部以下が好ましい。粘着付与剤の含有量を上記下限値以上とすると、低温貼り付け性及び低極性の被着体に対する接着性を良好にしやすくなる。また、上記上限値以下とすることで、高温下における保持力が低下することを防止できる。以上の観点から、第2の発明では、粘着付与剤の含有量は、12質量部以上40質量部以下がより好ましく、14質量部以上30質量部以下がさらに好ましい。
<架橋剤>
 本発明の粘着シートにおける粘着剤は、架橋剤が配合され、架橋されることが好ましい。すなわち、粘着剤は、上記したポリマー(X2)、又はポリマー(X2)及び粘着付与剤に加えて、架橋剤を含有する粘着剤組成物を架橋したものであることが好ましい。なお、ポリマー(X2)に加える架橋剤は、以下で述べるとおり配合量を除いて、第1の発明の項目で説明したポリマー(X1)に加える架橋剤と同様であるので、説明は省略する。
 粘着剤における架橋剤の配合量は、ポリマー(X2)の種類、架橋度などの所望する物性などに応じて適宜変更すればよいが、第2の発明では、ポリマー(X2)100質量部に対して、例えば0.1質量部以上20質量部以下、好ましくは0.5質量部以上8質量部以下、より好ましくは0.6質量部以上4質量部以下である。
<その他の添加剤>
 本発明の粘着シートにおける粘着剤は、必要に応じて、シランカップリング剤、酸化防止剤、紫外線防止剤、可塑剤、乳化剤、軟化剤、充填剤、顔料、染料等の添加剤等を含有していてもよい。これらの添加剤としても、バイオ率を高める観点から、可能な範囲で生物由来の材料を選択することが好ましい。
<粘着剤の作製>
 本発明の粘着シートにおける粘着剤は、例えば粘着剤組成物を調製し、粘着剤組成物より形成されればよい。粘着剤組成物は、粘着剤を形成するための成分からなる。粘着剤組成物は、好ましくは上述のポリマー(X2)を含む。粘着剤組成物は、必要に応じて、粘着付与剤、架橋剤、その他の添加剤などをさらに含有してもよい。粘着剤組成物は、有機溶剤等の希釈溶液により希釈されていてもよい。希釈溶液は、ポリマー(X2)を合成するときに使用した溶媒でもよいし、ポリマー(X2)を合成した後に加えられたものでもよい。
 粘着剤組成物は、必要に応じて加熱して乾燥などすることで架橋され、粘着剤となるとよい。粘着剤は、本発明の粘着シートに使用されるものである。架橋する際の加熱温度を適宜設定することで、ゾル分のピークトップ分子量を適宜調整できる。
 架橋時の加熱温度としては、特に限定されないが、例えば90℃以上130℃以下、好ましくは100℃以上120℃以下である。また、加熱時間は、例えば30秒以上10分以下、好ましく1分以上5分以下である。また、架橋反応をさらに進行させるために、粘着剤を乾燥した後、養生することが好ましい。養生温度は、好ましくは20℃以上60℃以下であり、より好ましくは30℃以上50℃以下である。また、養生時間は、好ましくは1日以上10日以下であり、より好ましくは2日以上5日以下である。
<粘着シート>
 本発明の粘着シートは、上記粘着剤を備えたものであり、具体的には上記粘着剤からなる粘着剤層を備えるものである。粘着シートは、基材を有しない粘着シートであってもよいし、基材を有する粘着シートであってもよいが、基材を有する粘着シートであることが好ましい。
 基材を有しない粘着シートは、例えばノンサポートテープである。ノンサポートテープは、基材を有さずに、粘着剤層単層の状態で使用される両面粘着テープである。基材を有する粘着シートは、例えば粘着テープである。粘着テープは、基材と、基材の少なくとも一方の面に設けられる粘着剤層を備える。この場合、粘着テープは、基材の両面に粘着剤層が設けられた両面粘着テープであってもよいし、基材の片面のみに粘着剤層が設けられ、片面粘着テープであってもよい。
 なお、基材の両面に粘着剤層を有する両面粘着テープでは、少なくとも一方の粘着剤層が上記した粘着剤で構成されればよい。
 粘着シートにおいて、露出する粘着剤層の表面には、適宜剥離シートが貼付されて保護されてもよい。剥離シートは、剥離シート基材の少なくとも一方の面に剥離剤が塗布されて剥離面となるものであり、剥離面が粘着剤層に接触するように貼付されるとよい。
[基材]
 粘着シートに使用される基材は、特に限定されないが、樹脂フィルム、不織布、又は発泡体のいずれかであることが好ましい。なお、粘着シートに使用される基材は、第1の発明の項目で記載されていた粘着テープの基材と同様であるので、説明は省略する。
 粘着シートにおいて、粘着剤層の厚さは、特に限定されないが、例えば5μm以上200μm以下程度であればよく、好ましくは10μm以上100μm以下である。粘着剤層の厚みがこの範囲内であると、得られる粘着シートは充分な粘着力を発揮することができる。
 また、粘着シートの総厚さ(基材と粘着剤層の厚さの合計)は、10μm以上2200μm以下であることが好ましい。粘着シートの総厚みがこの範囲内であると、得られる粘着シートは、充分な粘着力を発揮することができる。
(タック値)
 本発明の粘着シートの粘着剤は、タック試験により測定した23℃における粘着テープの剥離限界値が90gf・s以上であることが好ましい。なお、タック試験は、次のようにして行われる。
 まず、タック試験機(例えば、レスカ社製のTAC-1000等)の23℃に設定したプレート上に、厚み23μmのPET基材に50μmの厚みで粘着層を塗り、粘着層が上になるようにして粘着テープを載せる。タック試験機に付いているサンプル抑えで上からテープを固定する。次いで、粘着テープに対して、プローブ温度23℃、押付け速度5mm/s、押付け荷重100gfで直径5mmの円柱状のステンレス製のプローブを押付け、その状態で10秒間保持する。その後、引き上げ速度5mm/sでプローブを引き上げていく。この間の粘着テープにかかる力を測定する。
 なお、以上の説明は、粘着剤が粘着テープを構成する場合の例を説明したが、粘着テープを構成しない場合も同様にタック試験機の23℃に設定したプレート上に粘着剤を配置して同様に測定するとよい。
 上記剥離限界値とは、上記タック試験により測定した23℃における粘着テープにかかる力を示す力-時間曲線において、力が0を示す時間T1から最大力(ピークトップ)を示す時間までの積分値を意味する。タック試験において、粘着テープに対してプローブを押付けると、力-時間曲線は下降し、その後、プローブを引き上げ始めると、力-時間曲線は上昇していく。力が0を示す時間T1から最大力(ピークトップ)を示す時間T2までの積分値を算出し、これを剥離限界値とする。
 上記剥離限界値を上記範囲に調整することにより、高温高湿下かつ復元力がかかる状況下でも粘着テープの剥離を抑制することができる。上記剥離限界値の好ましい下限は100gf・s、より好ましい下限は110gf・sである。また、上記剥離限界値の上限は特に限定されない。
<バイオ率>
 本発明の粘着シートは、上記した粘着剤と同様の観点から、バイオ率が40質量%以上であることが好ましく、50質量%以上がより好ましく、60質量%以上であることがさらに好ましい。また、バイオ率は、高ければ高いほどよく、100質量%以下であればよい。なお、粘着シートは、一般的に各構成部材(例えば、粘着剤層、及び基材)によってバイオ率が異なる。そのため、バイオ率は、各構成部材のバイオ率を求め、各構成部材の質量を重み付けとして加重平均により算出するとよい。
(粘着シートの製造方法)
 粘着シートの製造方法は特に限定されず、従来公知の製造方法により製造することができる。なお、粘着シートの製造方法は、第1の発明の項目で記載されていた粘着テープの製造方法と同様であるので、説明は省略する。
(粘着シートの用途)
 本発明の粘着シートの用途は特に限定されないが、電化製品、車両用途において使用されることが好ましい。なお、なお、粘着シートの製造方法は、第1の発明の項目で記載されていた粘着剤及び粘着テープの用途と同様であるので、説明は省略する。
 本発明は、第1の発明及び第2の発明を組み合わせたものであってもよい。
 以下、本発明を実施例により説明するが、本発明は実施例の範囲に限定されない。
<<第1の実施例>>
[測定及び評価方法]
 各物性の測定、及び評価は以下の要領で行った。
<弾性率>
 各温度における貯蔵弾性率G’、損失弾性率G”及びガラス転移温度(Tg)は、高分子動的粘弾性測定装置「itkDVA-200」(アイティー計測制御社製)により下記条件にて測定した。
  測定モード:せん断
  昇温速度:5℃/分
  測定温度範囲:-30~150℃
  設定歪み:0.1%
  振動数:10Hz
 測定試料は、本実施例、比較例では、各例で調製した粘着剤組成物溶液を、最終的に得られる試料形状が厚み0.1mm、幅0.6mm、長さ10mmとなるように成形し、各例における粘着剤層の形成時と同じ条件で加熱乾燥することにより作製した。
<重量平均分子量>
 ポリマー(X1)の重量平均分子量(Mw)は、GPC装置「HLC822GPC」(東ソー社製)により測定し、ポリスチレン換算値で求めた。具体的には、得られたポリマー(X1)をテトラヒドロフラン(THF)によって50倍希釈して得られた希釈液をフィルター(材質:ポリテトラフルオロエチレン、ポア径:0.2μm)で濾過し、測定サンプルを調製した。この測定サンプルをゲルパーミエーションクロマトグラフ(Waters社製、2690 Separations Model)に供給して、サンプル流量1ミリリットル/min、カラム温度40℃の条件でGPC測定を行い、ポリマー(X1)のポリスチレン換算の分子量を測定して、重量平均分子量を求めた。
<架橋度>
 粘着剤(試料)をW1(g)採取し、採取した試料を酢酸エチル中に23℃にて24時間浸漬した際の不溶解分を200メッシュの金網で濾過した。金網上の残渣を110℃の条件下で1時間乾燥し、乾燥後の質量W2(g)を測定し、下記式によりゲル分率(架橋度)を算出した。
  ゲル分率(質量%)=100×W2/W1
<バイオ率>
 粘着剤のバイオ率はASTM 6866に準拠して測定した。
<低温貼り付け性>
 JIS Z-1528「両面粘着テープ」に準じ、幅25mm、長さ100mmに裁断した両面粘着テープの一方の面を、0℃下で厚み2mm、幅50mm、長さ100mmのポリプロピレン板(タキロン社製、PP1300)に接着長さが75mmとなるように貼り合わせた。両面粘着テープの他方の面をPETフィルムでバッキングした後、0℃下で2kgローラーを1往復させて圧着し接着試験片を作成した。得られた接着試験片を0℃の雰囲気下に60分間放置した後、インストロン試験機を用いて、0℃環境下で引張り速度200mm/分で引張り、剥離角度180°でポリプロピレン板から剥離し、剥離強度(N/25mm)を測定した。剥離強度の結果に基づき、低温貼り付け性を以下の評価基準で評価した。
  A:剥離強度が5N/25mm以上である。
  B:剥離強度が3N/25mm以上5N/25mm未満である。
  C:3N/25mm未満である。
<PP粘着力>
 JIS Z-1528「両面粘着テープ」に準じ、幅25mm、長さ100mmに裁断した両面粘着テープの一方の面を、23℃、50%RH下で厚み2mm、幅50mm、長さ100mmのポリプロピレン板(タキロン社製、PP1300)に接着長さが75mmとなるように貼り合わせた。両面粘着テープの他方の面をPETフィルムでバッキングした後、23℃、50%RH下で2kgローラーを1往復させて圧着し接着試験片を作成した。得られた接着試験片を23℃、50%RHの雰囲気下に20分間放置した後、インストロン試験機を用いて、引張り速度200mm/分で引張り、剥離角度180°でポリプロピレン板から剥離して、23℃で剥離強度(N/25mm)を測定した。剥離強度の結果に基づき、PP粘着力を以下の評価基準で評価した。
  A:剥離強度が15N/25mm以上である。
  B:剥離強度が10N/25mm以上15N/25mm未満である。
  C:剥離強度が10N/25mm未満である。
<高温下における保持力>
 JISZ-1528に準じ、幅25mm、長さ100mmに裁断した両面粘着テープの一方の面を、23℃で厚み1.5mm、幅25mm、長さ100mmの冷間圧延ステンレス鋼板(SUS304板)に接着長さが25mmとなり、長さ75mm分の両面粘着テープがSUS304板の端部からはみ出すように、長さ方向においてずらして貼り合わせた。その後、両面粘着テープの他方の面をPETフィルムでバッキングした後、2kgローラーを1往復させて圧着し接着試験片を作成した。
 得られた接着試験片を23℃、50%RHの雰囲気下に20分間放置した後、接着試験片のはみ出した両面粘着テープ側を下側にして、40℃の恒温乾燥機中で鉛直に1時間懸垂した。次いで、両面粘着テープの下端に1kgの荷重を懸けて40℃、24時間鉛直に懸垂し、1時間後の接着部分のズレ距離(mm)を測定した。ズレ距離により、以下の評価基準で評価した。
  A:ズレ距離が0.5mm未満である。
  B:ズレ距離が0.5mm以上2mm未満である。
  C:ズレ距離が2mm以上である。
 実施例、比較例で使用した成分は、以下のとおりである。
<モノマー(A1)>
(主モノマー)
n-ヘプチルアクリレート(HA(C7)):
 n-ヘプチルアクリレートは、一般式(1)においてRが生物由来の炭素である化合物であり、アクリル酸とn-ヘプチルアルコールとのエステル化反応により調製した。n-ヘプチルアルコールは、ひまし油由来のリシノール酸を原料として、これをクラッキングすることによって調製した。
(コモノマー)
2-エチルヘキシルアクリレート(2EHA):三菱ケミカル社製
<他のモノマー>
ブチルアクリレート(BA):三菱ケミカル社製
アクリル酸(AAc):日本触媒社製
2-ヒドロキシエチルアクリレート(HEA):大阪有機化学工業社製
<粘着付与剤(TF)>
 重合ロジンエステル樹脂、水酸基価46、軟化点150℃、生物由来炭素含有率95質量%
<架橋剤>
 ポリイソシアネート系架橋剤、東ソー社製、「コロネートL-45」
(実施例1)
[ポリマー(X1)の合成]
反応容器内に、重合溶媒として酢酸エチルを加え、窒素でバブリングした後、窒素を流入しながら反応容器を加熱して還流を開始した。続いて、重合開始剤としてアゾビスイソブチロニトリル0.1質量部を酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に投入し、n-ヘプチルアクリレート(HA(C7))96.9質量部、アクリル酸(AAc)2.9質量部、2-ヒドロキシエチルアクリレート(HEA)0.2質量部を2時間かけて滴下添加した。滴下終了後、重合開始剤としてアゾビスイソブチロニトリル0.1質量部を酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に再度投入し、4時間重合反応を行い、ポリマー(X1)含有溶液を得た。得られたポリマー(X1)について、重量平均分子量を測定したところ、60万であった。
[両面粘着テープの作製]
 得られたポリマー(X1)含有溶液に、ポリマー(X1)100質量部に対して架橋剤0.8質量部、粘着付与剤15質量部を加え、粘着剤組成物溶液を調製した。この粘着剤組成物溶液を、一方の面が剥離処理した剥離シートの剥離面に、粘着剤組成物溶液を塗布して、加熱して乾燥させて、粘着剤層を形成した。得られた粘着剤層を基材としての不織布の両面に転写して、基材の両面に粘着剤層が設けられた両面粘着テープを得た。
 得られた両面粘着テープの粘着剤層より粘着剤を採取して架橋度及びバイオ率を測定した。また、粘着剤組成物溶液より測定試料を作成して貯蔵弾性率G’、損失弾性率G”及びガラス転移温度(Tg)を測定した。さらに、両面粘着テープを用いて、低温貼り付け性、PP接着力、及び高温下における保持力を評価した。評価結果を表2に示す。
(実施例2、3)
 粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した以外は実施例1と同様に実施した。
(実施例4)
 ポリマー(X1)の製造において重合反応の時間を5時間に変更した以外は実施例1と同様に実施した。
(実施例5)
 ポリマー(X1)の製造において重合反応の時間を5.5時間に変更した。さらに、架橋剤の配合量を表1に記載の質量部に変更した以外は実施例1と同様に実施した。
(実施例6)
 ポリマー(X1)を作成する際のモノマーの配合量を表1に示す割合に変更し、かつ粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した以外は実施例1と同様に実施した。
(比較例1)
 ポリマー(X1)の製造において重合反応の時間を7時間に変更した。さらに、粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した以外は実施例1と同様に実施した。
(比較例2)
 ポリマー(X1)の製造において重合反応の時間を2.5時間に変更した。さらに、粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した以外は実施例1と同様に実施した。
(比較例3)
 ポリマー(X1)を作成する際のモノマーの種類、及び配合量を表1に示すとおりに変更し、かつ粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した以外は実施例1と同様に実施した。
Figure JPOXMLDOC01-appb-T000007

※分子量は、重量平均分子量(Mw)である。
※モノマーの質量部は、ポリマー(X1)を合成する際に配合されたモノマー全量を100質量部としたときの値である。ポリマー(X1)は、表1に記載の各モノマー由来の構成単位を表1に記載の量で含むとみなすことができる。
※粘着付与剤(TF)及び架橋剤の配合量は、ポリマー(X1)100質量部に対する質量部である。
Figure JPOXMLDOC01-appb-T000008
 以上の各実施例では、粘着剤が、モノマー(A1)由来の構成単位を所定量以上含むポリマー(X1)を含み、かつtanδ(23℃)を0.8~1.3にすることで、高温下における保持力、低温貼り付け性、及び低極性の被着体(ポリプロピレン樹脂)に対する接着性がいずれも良好となった。それに対して、各比較例では、ポリマー(X1)がモノマー(A1)由来の構成単位を所定量以上含まず、あるいは、tanδ(23℃)が範囲外であったためであったため、バイオ率を高くしつつ、高温下における保持力、低温貼り付け性、及び低極性の被着体(ポリプロピレン樹脂)に対する接着性の全てを良好にすることはできなかった。
<<第2の実施例>>
[測定及び評価方法]
 各物性の測定、及び評価は以下の要領で行った。
<ピークトップ分子量(Mtp)>
 粘着テープから採取した粘着剤をテトラヒドロフラン(THF)に漬け、室温で24時間振蘯浸漬を行った。その後、200メッシュのフィルターで上記粘着剤のサンプルを取出し、浸漬液をフィルターで濾過し、得られた濾液を、上記粘着剤のゾル分を含むサンプル溶液とした。得られたサンプル溶液を、ゲルパーミエーションクロマトグラフィ(GPC、例えばWaters社製「e2695」)に供給して、移動相にテトラヒドロフラン(THF)を使用し、サンプル流量1mL/min、カラム温度40℃の条件でGPC測定を行い、ポリスチレン換算分子量の分子量分布を測定した。カラムとしては、例えば、shodex社製「GPC KF-806L」を2本直列に接続して用いた。得られた分子量分布曲線から、粘着剤のゾル分のGPCによるピークトップ分子量(Mtp)を算出した。なお、粘着付与剤(TF)由来のGPCによるピークは含めないものとした。したがって、粘着剤のゾル分のGPCによるピークトップ分子量(Mtp)は、粘着剤の主成分であるポリマーのゾル分のGPCによるピークトップ分子量である。
<重量平均分子量(Mw)、分散度(D)、ゾル分率(Rsol)及び硬軟度(S)、>
 上述のピークトップ分子量(Mtp)の測定と同様にして、GPCを用いて、粘着剤のゾル分の重量平均分子量及び数平均分子量を測定した。そして、得られた重量平均分子量を数平均分子量で割り算してゾル分の分散度(D)を算出した。また、以下の方法によりゲル分率を測定し、100質量%からゲル分率を引き算して、ゾル分率(Rsol)を算出した。以上、得られた重量平均分子量(Mw)、分散度(D)及びゾル分率(Rsol)から硬軟度(S)を算出した。なお、粘着付与剤(TF)由来のGPCによるピークは含めないものとした。したがって、粘着剤のゾル分の重量平均分子量(Mw)及び分散度(D)は、粘着剤の主成分であるポリマーのゾル分の重量平均分子量及び分散度である。
 粘着剤(試料)をW1(g)採取し、採取した試料をTHF中に23℃にて24時間浸漬した際の不溶解分を200メッシュの金網で濾過した。金網上の残渣を110℃の条件下で1時間乾燥し、乾燥後の質量W2(g)を測定し、下記式によりゲル分率を算出した。
  ゲル分率(質量%)=100×W2/W1
<ガラス転移温度(Tg)>
 第1の実施例のガラス転移温度(Tg)の測定方法と同様な方法で、ガラス転移温度(Tg)を測定した。
<バイオ率>
 粘着剤のバイオ率はASTM 6866に準拠して測定した。
<弾性率>
 各温度における貯蔵弾性率G’、及び損失弾性率G”は、第1の実施例の弾性率の測定方法と同じ条件で測定した。なお、各温度における貯蔵弾性率G’、損失弾性率G”、及びtanδは、一部の実施例、比較例の結果のみを示す。
<PP粘着力>
 第1の実施例のPP粘着力と同様な方法で、23℃の剥離強度(N/25mm)を測定した。剥離強度の結果に基づき、PP粘着力を以下の評価基準で評価した。
  A:剥離強度が13N/25mm以上である。
  B:剥離強度が10N/25mm以上13N/25mm未満である。
  C:剥離強度が10N/25mm未満である。
<高温下の保持力>
 第1の実施例の高温下の保持力と同様な方法で、1時間後の接着部分のズレ距離(mm)を測定した。ズレ距離により、以下の評価基準で評価した。
  A:ズレ距離が0.5mm以下である。
  B:ズレ距離が0.5mm超1mm未満である。
  C:ズレ距離が1mm以上である。
<低温貼り付け性>
 第1の実施例の低温貼り付け性と同様な方法で、低温貼り付け性を評価した。
 実施例、比較例で使用した成分は、以下のとおりである。
<モノマー(A2)>
(主モノマー)
n-ヘプチルアクリレート(HA(C7)):
 n-ヘプチルアクリレートは、一般式(2)においてRが植物由来の炭素である化合物であり、アクリル酸とn-ヘプチルアルコールとのエステル化反応により調製した。n-ヘプチルアルコールは、ひまし油由来のリシノール酸を原料として、これをクラッキングすることによって調製した。
<他のモノマー>
アクリル酸(AAc):日本触媒社製
2-ヒドロキシエチルアクリレート(HEA):大阪有機化学工業社製
<粘着付与剤(TF)>
 重合ロジンエステル樹脂、水酸基価46、軟化点150℃、植物由来炭素含有率95質量%
<架橋剤>
 ポリイソシアネート系架橋剤
(実施例7)
[ポリマー(X2)の合成]
反応容器内に、重合溶媒として酢酸エチルを加え、窒素でバブリングした後、窒素を流入しながら反応容器を加熱して還流を開始した。続いて、重合開始剤としてアゾビスイソブチロニトリル0.1質量部を酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に投入し、n-ヘプチルアクリレート(HA(C7))96.9質量部、アクリル酸(AAc)2.9質量部、2-ヒドロキシエチルアクリレート(HEA)0.2質量部を2時間かけて滴下添加した。滴下終了後、重合開始剤としてアゾビスイソブチロニトリル0.1質量部を酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に再度投入し、3.5時間重合反応を行い、ポリマー(X2)含有溶液を得た。得られたポリマー(X2)について、重量平均分子量を測定したところ、50万であった。
[両面粘着テープの作製]
 得られたポリマー(X2)含有溶液に、ポリマー(X2)100質量部に対して粘着付与剤25質量部、架橋剤2.4質量部を加え、粘着剤組成物溶液を調製した。この粘着剤組成物溶液を、一方の面が剥離処理した剥離シートの剥離面に、粘着剤組成物溶液を塗布して、100℃で3分加熱して乾燥させて、粘着剤層を形成した。得られた粘着剤層を基材としての不織布の両面に転写して、基材の両面に粘着剤層が設けられた両面粘着テープを得た。
 得られた両面粘着テープの粘着剤層より粘着剤を採取して、ピークトップ分子量(Mtp)、重量平均分子量(Mw)、分散度(D)、ゾル分率(Rsol)、硬軟度(S)及びバイオ率を測定した。また、粘着剤組成物溶液より測定試料を作製してガラス転移温度(Tg)を測定した。さらに、両面粘着テープを用いて、PP接着力、高温下における保持力、及び低温貼り付け性を評価した。評価結果を表2に示す。
(実施例8、9)
 粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した以外は実施例1と同様に実施した。
(実施例10~14)
 ポリマー(X2)の製造において重合反応の時間を変更して、ポリマー(X2)の重量平均分子量を、50万から80万に変更した。さらに粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した。それ以外は実施例1と同様に実施した。
(実施例15~17)
 ポリマー(X2)の製造において重合反応の時間を変更して、ポリマー(X2)の重量平均分子量を、50万から100万に変更した。さらに粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した。それ以外は実施例1と同様に実施した。
(比較例4)
 ポリマー(X2)の製造において重合反応の時間を変更して、ポリマー(X2)の重量平均分子量を、50万から80万に変更した。さらに粘着付与剤(TF)の配合量を表1に記載の質量部に変更した。それ以外は実施例1と同様に実施した。
(比較例5)
 粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した以外は実施例1と同様に実施した。
(比較例6)
 ポリマー(X2)の製造において重合反応の時間を変更して、ポリマー(X2)の重量平均分子量を、50万から120万に変更した。さらに粘着付与剤(TF)、及び架橋剤の配合量を表1に記載の質量部に変更した。それ以外は実施例1と同様に実施した。
(比較例7)
 架橋剤の配合量を表3に記載の質量部に変更した以外は実施例1と同様に実施した。
Figure JPOXMLDOC01-appb-T000009

※分子量は、重量平均分子量(Mw)である。
※モノマーの質量部は、ポリマー(X2)を合成する際に配合されたモノマー全量を100質量部としたときの値である。ポリマー(X2)は、表1に記載の各モノマー由来の構成単位を表1に記載の量で含むとみなすことができる。
※粘着付与剤(TF)及び架橋剤の配合量は、ポリマー(X2)100質量部に対する質量部である。
Figure JPOXMLDOC01-appb-T000010
 以上の各実施例では、粘着剤のゾル分のゲルパーミエーションクロマトグラフィ(GPC)によるピークトップ分子量(Mtp)が137000以上300000以下であり、粘着剤のゾル分率(Rsol)が90質量%以下であり、粘着剤のガラス転移温度(Tg)が5℃以下であった。その結果、低極性の被着体(ポリプロピレン樹脂)に対する接着性、高温下における保持力、及び低温貼り付け性がいずれも良好となった。それに対して、各比較例では、粘着剤のゾル分のゲルパーミエーションクロマトグラフィ(GPC)によるピークトップ分子量(Mtp)が137000以上300000以下の範囲から外れていたか、粘着剤のゾル分率(Rsol)が90質量%よりも高いか、または、粘着剤のガラス転移温度(Tg)が5℃よりも高かった。このため、バイオ率を高くしつつ、低極性の被着体(ポリプロピレン樹脂)に対する接着性、高温下における保持力、及び低温貼り付け性の全てを良好にすることはできなかった。

Claims (25)

  1.  下記一般式(1)で表されるモノマー(A1)、及び下記一般式(2)で表されるモノマー(B1)からなる群から選択される少なくとも1種のモノマー(Y)由来の構成単位を48質量%以上含有するポリマー(X1)を含有し、
     23℃における貯蔵弾性率をG’(23℃)、損失弾性率をG”(23℃)とすると、G” (23℃)/G’(23℃)で求められるtanδ(23℃)が0.8~1.3である粘着剤。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、RがH又はCHを表し、Rが-C2n+1を表し、nが7~14の整数を表す。式(2)中、Rは-C(=O)C2m+1を表し、mは6~13の整数を表す。
  2.  前記ポリマー(X1)の重量平均分子量が20万~100万である請求項1に記載の粘着剤。
  3.  架橋度が10~70%である請求項1又は2に記載の粘着剤。
  4.  0℃における貯蔵弾性率をG’(0℃)とすると、logG’(0℃)[Pa]が5.0~6.5である請求項1~3のいずれか1項に記載の粘着剤。
  5.  23℃における貯蔵弾性率をG’(23℃)とすると、logG’(23℃)[Pa]が4.8~5.5である請求項1~4のいずれか1項に記載の粘着剤。
  6.  80℃における貯蔵弾性率をG’(80℃)とすると、logG’(80℃)[Pa]が、4.1~4.8であることを請求項1~5のいずれか1項に記載の粘着剤。
  7.  ガラス転移温度(Tg)が15℃以下である請求項1~6のいずれか1項に記載の粘着剤。
  8.  生物由来の炭素の含有率が40質量%以上である請求項1~7のいずれか1項に記載の粘着剤。
  9.  粘着付与剤をさらに含む請求項1~8のいずれか1項に記載の粘着剤。
  10.  請求項1~9のいずれか1項に記載の粘着剤からなる粘着剤層を備える粘着テープ。
  11.  基材をさらに備え、前記粘着剤層が前記基材の少なくとも一方の面に設けられる、請求項10に記載の粘着テープ。
  12.  前記基材が、不織布、ポリエチレンテレフタレートフィルム、及び発泡体から選択されるいずれかである請求項11に記載の粘着テープ。
  13.  請求項1~9のいずれか1項に記載の粘着剤、又は請求項10~12のいずれか1項に記載の粘着テープを用いて、電化製品を構成する部品、又は車載部材を固定する固定方法。
  14.  請求項1~9のいずれか1項に記載の粘着剤を備え、
     前記粘着剤のゾル分のゲルパーミエーションクロマトグラフィ(GPC)によるピークトップ分子量(Mtp)が137000以上300000以下であり、
     前記粘着剤のゾル分率(Rsol)が90質量%以下であり、
     前記粘着剤のガラス転移温度(Tg)が5℃以下である粘着シート。
  15.  生物由来成分を含む粘着剤を備える粘着シートであって、
     前記粘着剤のゾル分のゲルパーミエーションクロマトグラフィ(GPC)によるピークトップ分子量(Mtp)が137000以上300000以下であり、
     前記粘着剤のゾル分率(Rsol)が90質量%以下であり、
     前記粘着剤のガラス転移温度(Tg)が5℃以下である粘着シート。
  16.  前記粘着剤における下記一般式(3)で表される硬軟度(S)が50000以上180000以下である請求項15に記載の粘着シート。
      S=Mw×Rsol/D     (3)
     式(3)中、Mwが前記粘着剤のゾル分のGPCによる重量平均分子量を表し、Rsolが前記粘着剤におけるゾル分率を表し、Dが前記粘着剤のゾル分のGPCによる分散度を表す。
  17.  前記粘着剤のゾル分のGPCによる分散度(D)が1.6以上3未満である請求項15又は16に記載の粘着シート。
  18.  前記粘着剤のゾル分のGPCによる重量平均分子量(Mw)が190000以上700000以下である請求項15~17のいずれか1項に記載の粘着シート。
  19.  前記粘着剤のゾル分率(Rsol)が45質量%以上75質量%以下である請求項15~18のいずれか1項に記載の粘着シート。
  20.  前記粘着剤のガラス転移温度(Tg)が2.5℃以下である請求項15~19のいずれか1項に記載の粘着シート。
  21.  前記粘着剤のバイオ率が51%以上である請求項15~20のいずれか1項に記載の粘着シート。
  22.  前記粘着剤が、下記一般式(4)で表されるモノマー(A2)、及び下記一般式(5)で表されるモノマー(B2)からなる群から選択される少なくとも1種のモノマー(Y2)由来の構成単位を48質量%以上含有するポリマー(X2)を含有する請求項15~21のいずれか1項に記載の粘着シート。
    Figure JPOXMLDOC01-appb-C000002

     式(4)中、RがH又はCHを表し、Rが-C2n+1を表し、nが7~20の整数を表し、式(5)中、Rは-C(=O)C2m+1を表し、mは6~13の整数を表す。
  23.  前記ポリマー(X2)において、n-ヘプチル(メタ)アクリレート由来の構成単位の含有量が48質量%以上である請求項22に記載の粘着シート。
  24.  請求項1~9のいずれか1項に記載の粘着剤、又は請求項10~12のいずれか1項に記載の粘着テープ、又は請求項14~23のいずれか1項に記載の粘着シートを備える電化製品。
  25.  請求項1~9のいずれか1項に記載の粘着剤、請求項10~12のいずれか1項に記載の粘着テープ、又は請求項14~23のいずれか1項に記載の粘着シートを備える車載部材。
PCT/JP2020/047065 2019-12-18 2020-12-16 粘着剤、粘着テープ、電化製品、車載部材、及び固定方法 WO2021125247A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021555373A JP7203244B2 (ja) 2019-12-18 2020-12-16 粘着剤、粘着テープ、電化製品、車載部材、及び固定方法
US17/785,178 US20230043508A1 (en) 2019-12-18 2020-12-16 Adhesive agent, adhesive tape, electrical appliance, onboard member, and securing method
KR1020227020105A KR20220115950A (ko) 2019-12-18 2020-12-16 점착제, 점착 테이프, 전자 제품, 차재 부재, 및 고정 방법
EP20902895.0A EP4079517A4 (en) 2019-12-18 2020-12-16 ADHESIVE, TAPE, ELECTRICAL DEVICE, BOARD ELEMENT AND FASTENING METHOD
CN202080087138.3A CN114829533A (zh) 2019-12-18 2020-12-16 粘接剂、胶带、电器产品、车载部件及固定方法
JP2022208874A JP2023036859A (ja) 2019-12-18 2022-12-26 粘着剤、粘着テープ、電化製品、車載部材、及び固定方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-228528 2019-12-18
JP2019228528 2019-12-18
JP2020-159983 2020-09-24
JP2020159983 2020-09-24

Publications (1)

Publication Number Publication Date
WO2021125247A1 true WO2021125247A1 (ja) 2021-06-24

Family

ID=76477654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047065 WO2021125247A1 (ja) 2019-12-18 2020-12-16 粘着剤、粘着テープ、電化製品、車載部材、及び固定方法

Country Status (6)

Country Link
US (1) US20230043508A1 (ja)
EP (1) EP4079517A4 (ja)
JP (2) JP7203244B2 (ja)
KR (1) KR20220115950A (ja)
CN (1) CN114829533A (ja)
WO (1) WO2021125247A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023013532A1 (ja) * 2021-08-05 2023-02-09
JP7321343B1 (ja) 2022-09-13 2023-08-04 日東電工株式会社 両面粘着シート
JP7321344B1 (ja) 2022-09-13 2023-08-04 日東電工株式会社 粘着シート
JP7321342B1 (ja) 2022-09-13 2023-08-04 日東電工株式会社 剥離ライナー付き両面粘着シート
JP7387824B1 (ja) 2022-07-04 2023-11-28 日東電工株式会社 粘着シート
KR20240093800A (ko) 2021-10-25 2024-06-24 닛토덴코 가부시키가이샤 점착제 조성물, 점착제, 점착 시트 및 표면 보호 필름

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846236B2 (ja) * 1980-03-05 1983-10-14 日東電工株式会社 感圧性接着剤組成物
JP2010037463A (ja) * 2008-08-06 2010-02-18 Nitto Denko Corp ポリエステル、ポリエステル組成物、粘着剤組成物、粘着剤層及び粘着シート
JP2011088961A (ja) * 2009-10-20 2011-05-06 Nitto Denko Corp 両面粘着シート
JP2014152198A (ja) * 2013-02-05 2014-08-25 Soken Chem & Eng Co Ltd 粘着シート
JP2014531500A (ja) * 2011-09-26 2014-11-27 スリーエム イノベイティブ プロパティズ カンパニー (メタ)アクリル系エラストマー材料を有する多層感圧接着剤フィルム
JP2015209527A (ja) * 2014-04-30 2015-11-24 積水フーラー株式会社 制振性ホットメルト粘着剤及び制振材
JP2016000774A (ja) * 2014-06-11 2016-01-07 大日本印刷株式会社 粘着シートおよびそれを用いた貼合体
JP2019047075A (ja) * 2017-09-07 2019-03-22 日東電工株式会社 半導体ウエハ保護用粘着テープ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987601A (ja) * 1995-09-25 1997-03-31 Sekisui Chem Co Ltd アクリル系粘着剤組成物及び粘着テープ
JP5448409B2 (ja) * 2008-10-16 2014-03-19 日東電工株式会社 粘着剤組成物および粘着シート
US8137807B2 (en) * 2010-03-26 2012-03-20 3M Innovative Properties Company Pressure-sensitive adhesives derived from 2-alkyl alkanols
JP2016521306A (ja) * 2013-04-15 2016-07-21 スリーエム イノベイティブ プロパティズ カンパニー (メタ)アクリレート基及びオレフィン基を有する架橋剤を含む接着剤並びに方法
JP5348343B1 (ja) * 2013-04-25 2013-11-20 東洋インキScホールディングス株式会社 感圧式接着剤組成物、及びそれを用いてなる感圧式接着シート
JP2015021067A (ja) 2013-07-19 2015-02-02 Dic株式会社 熱伝導性粘着テープ、物品及び画像表示装置
US20160200895A1 (en) * 2013-09-06 2016-07-14 3M Innovative Properties Company Acid-modified epoxidized vegetable oil and (meth)acrylic copolymer curable or cured compositions
JP6367598B2 (ja) 2013-11-22 2018-08-01 日東電工株式会社 両面粘着シート
TWI837777B (zh) * 2015-03-11 2024-04-01 日商住友化學股份有限公司 黏著劑組成物、黏著劑層及附黏著劑層之光學構件
US20210395575A1 (en) * 2018-06-19 2021-12-23 Sekisui Chemical Co., Ltd. Adhesive agent, adhesive tape, and method for affixing electronic components or vehicle-mounted components
JP7290019B2 (ja) * 2018-09-07 2023-06-13 Dic株式会社 粘着テープ及び物品
JP7271169B2 (ja) * 2018-12-27 2023-05-11 日東電工株式会社 粘着シート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846236B2 (ja) * 1980-03-05 1983-10-14 日東電工株式会社 感圧性接着剤組成物
JP2010037463A (ja) * 2008-08-06 2010-02-18 Nitto Denko Corp ポリエステル、ポリエステル組成物、粘着剤組成物、粘着剤層及び粘着シート
JP2011088961A (ja) * 2009-10-20 2011-05-06 Nitto Denko Corp 両面粘着シート
JP2014531500A (ja) * 2011-09-26 2014-11-27 スリーエム イノベイティブ プロパティズ カンパニー (メタ)アクリル系エラストマー材料を有する多層感圧接着剤フィルム
JP2014152198A (ja) * 2013-02-05 2014-08-25 Soken Chem & Eng Co Ltd 粘着シート
JP2015209527A (ja) * 2014-04-30 2015-11-24 積水フーラー株式会社 制振性ホットメルト粘着剤及び制振材
JP2016000774A (ja) * 2014-06-11 2016-01-07 大日本印刷株式会社 粘着シートおよびそれを用いた貼合体
JP2019047075A (ja) * 2017-09-07 2019-03-22 日東電工株式会社 半導体ウエハ保護用粘着テープ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079517A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013532A1 (ja) * 2021-08-05 2023-02-09 積水化学工業株式会社 粘着テープ
JPWO2023013532A1 (ja) * 2021-08-05 2023-02-09
JP7385053B2 (ja) 2021-08-05 2023-11-21 積水化学工業株式会社 粘着テープ
KR20240093800A (ko) 2021-10-25 2024-06-24 닛토덴코 가부시키가이샤 점착제 조성물, 점착제, 점착 시트 및 표면 보호 필름
JP7387824B1 (ja) 2022-07-04 2023-11-28 日東電工株式会社 粘着シート
JP2024006794A (ja) * 2022-07-04 2024-01-17 日東電工株式会社 粘着シート
JP7321344B1 (ja) 2022-09-13 2023-08-04 日東電工株式会社 粘着シート
JP7321342B1 (ja) 2022-09-13 2023-08-04 日東電工株式会社 剥離ライナー付き両面粘着シート
WO2024057558A1 (ja) * 2022-09-13 2024-03-21 日東電工株式会社 剥離ライナー付き両面粘着シート
WO2024057560A1 (ja) * 2022-09-13 2024-03-21 日東電工株式会社 粘着シート
WO2024057559A1 (ja) * 2022-09-13 2024-03-21 日東電工株式会社 両面粘着シート
JP2024040999A (ja) * 2022-09-13 2024-03-26 日東電工株式会社 両面粘着シート
JP2024040998A (ja) * 2022-09-13 2024-03-26 日東電工株式会社 剥離ライナー付き両面粘着シート
JP2024041000A (ja) * 2022-09-13 2024-03-26 日東電工株式会社 粘着シート
JP7321343B1 (ja) 2022-09-13 2023-08-04 日東電工株式会社 両面粘着シート

Also Published As

Publication number Publication date
US20230043508A1 (en) 2023-02-09
EP4079517A1 (en) 2022-10-26
JP7203244B2 (ja) 2023-01-12
JPWO2021125247A1 (ja) 2021-06-24
EP4079517A4 (en) 2023-12-27
CN114829533A (zh) 2022-07-29
JP2023036859A (ja) 2023-03-14
KR20220115950A (ko) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2021125247A1 (ja) 粘着剤、粘着テープ、電化製品、車載部材、及び固定方法
JP7449138B2 (ja) 感圧粘着剤組成物及び粘着テープ
JP7197662B2 (ja) 粘着剤組成物、粘着テープ、電子機器部品又は車載部品の固定方法、及び、電子機器部品又は車載部品の製造方法
JP6037349B2 (ja) 粘着テープ
JP2009221324A (ja) 光学部材用粘着剤およびこれを利用した光学部材用保護フィルム
JP7128389B1 (ja) 粘着テープ、電子機器部品又は車載機器部品の固定方法、及び、電子機器又は車載機器の製造方法
TW201823341A (zh) 樹脂組合物、樹脂層、及積層片
JP2023003416A (ja) 粘着テープ、電化製品、車載部材及び固定方法
JP7306560B1 (ja) 加飾シート用粘着剤組成物、およびそれを用いた加飾シート、該加飾シートを含む加飾構造体ならびにその製造方法。
JP2020019928A (ja) 粘着剤および粘着シート
JP2020019867A (ja) 粘着剤および粘着シート
JP7128390B1 (ja) 粘着テープ、電子機器部品又は車載機器部品の固定方法、及び、電子機器又は車載機器の製造方法
WO2022270565A1 (ja) 粘着剤組成物、及び、粘着テープ
JP2023003413A (ja) 粘着テープ
JP2023042843A (ja) 粘着剤および粘着シート
WO2022202774A1 (ja) 粘着テープ、電子機器部品又は車載機器部品の固定方法、及び、電子機器又は車載機器の製造方法
JP7427855B1 (ja) 加飾シート用粘着剤組成物、加飾シート、加飾構造体およびその製造方法
WO2022202778A1 (ja) 粘着テープ、電子機器部品又は車載機器部品の固定方法、及び、電子機器又は車載機器の製造方法
JP2023003305A (ja) 粘着テープ
TW202436575A (zh) 黏著帶
JP2023003414A (ja) 粘着テープ、電子機器及び車載部材
TW202313730A (zh) 黏著帶
WO2023042789A1 (ja) 粘着剤組成物および粘着シート
JP2023003415A (ja) 粘着テープ
JP2021123715A (ja) 粘着剤組成物、粘着剤、粘着シート、および粘着付与剤用ポリエステル系樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902895

Country of ref document: EP

Effective date: 20220718