WO2020220676A1 - 高空气稳定性无机硫化物固体电解质及其制备方法与应用 - Google Patents
高空气稳定性无机硫化物固体电解质及其制备方法与应用 Download PDFInfo
- Publication number
- WO2020220676A1 WO2020220676A1 PCT/CN2019/123481 CN2019123481W WO2020220676A1 WO 2020220676 A1 WO2020220676 A1 WO 2020220676A1 CN 2019123481 W CN2019123481 W CN 2019123481W WO 2020220676 A1 WO2020220676 A1 WO 2020220676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte material
- solid electrolyte
- sulfide
- solid
- inorganic sulfide
- Prior art date
Links
- 229910052945 inorganic sulfide Inorganic materials 0.000 title claims abstract description 37
- 239000002203 sulfidic glass Substances 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 105
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 20
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000007787 solid Substances 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 3
- 229910052718 tin Inorganic materials 0.000 claims abstract description 3
- 239000002001 electrolyte material Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 12
- 238000000227 grinding Methods 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 abstract description 55
- 239000003792 electrolyte Substances 0.000 abstract description 26
- 239000007784 solid electrolyte Substances 0.000 description 39
- 238000000498 ball milling Methods 0.000 description 20
- 229910001416 lithium ion Inorganic materials 0.000 description 16
- 239000006104 solid solution Substances 0.000 description 15
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 14
- 239000012071 phase Substances 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 229910018091 Li 2 S Inorganic materials 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- 238000001354 calcination Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Inorganic materials [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000013112 stability test Methods 0.000 description 4
- 229910005839 GeS 2 Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910003480 inorganic solid Inorganic materials 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- -1 sulfide ions Chemical class 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002227 LISICON Substances 0.000 description 1
- 229910020346 SiS 2 Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002226 superionic conductor Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G17/00—Compounds of germanium
- C01G17/006—Compounds containing germanium, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G19/00—Compounds of tin
- C01G19/006—Compounds containing tin, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G30/00—Compounds of antimony
- C01G30/002—Compounds containing antimony, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G30/00—Compounds of antimony
- C01G30/002—Compounds containing antimony, with or without oxygen or hydrogen, and containing two or more other elements
- C01G30/003—Compounds containing antimony, with or without oxygen or hydrogen, and containing two or more other elements containing halogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present disclosure belongs to the technical field of lithium ion batteries, and in particular relates to a method for improving the air stability of an inorganic sulfide solid electrolyte, the obtained material and its application field in an all-solid lithium secondary battery.
- lithium ion secondary batteries Since its commercialization in the early 1990s, lithium ion secondary batteries have developed rapidly due to their advantages such as high energy density and long service life.
- currently commonly used lithium-ion batteries are liquid-phase batteries, which contain flammable organic electrolytes, so there are serious safety hazards.
- the frequent occurrence of safety accidents on liquid-phase lithium-ion power batteries has greatly restricted the further use of this system.
- the use of non-flammable inorganic solid materials as the electrolyte of lithium-ion batteries can not only eliminate the leakage of organic electrolyte during battery use and the safety hazards caused by thermal runaway inside the battery, but also under extreme conditions such as high temperature and low temperature use. Further enhance the value of lithium secondary batteries and expand their application areas. Therefore, the development of an inorganic solid electrolyte with high stability and high lithium ion conductivity is the key content of the development of a lithium secondary battery with high safety.
- oxide solid electrolyte and sulfide solid electrolyte are oxide solid electrolyte and sulfide solid electrolyte (Kerman K, Luntz A, Viswanathan V, et al. practical challenges hindering the development of solid state Li ion batteries[J].Journal of The Electrochemical Society,2017,164(7):A1731-A1744.).
- the oxide solid electrolyte is mainly based on Li 2 O-LaO-ZrO 2 , Li 2 OB 2 O 3 , Li 2 O-LiCl and other systems (Thangadurai V, Narayanan S, Pinzaru D.
- Garnet-type solid-state fast Li ion conductors for Li batteries critical review[J].Chemical Society Reviews,2014,43(13):4714-4727), but generally the ion conductance is low.
- the electronegativity of sulfide ions in the sulfide electrolyte is smaller, and the binding force to cations is lower; at the same time, the radius of sulfide ions is larger, which is beneficial to the migration of lithium ions. Therefore, the ion conductance of sulfide electrolyte is higher than that of oxide.
- the Li 10 GeP 2 S 12 material discovered in 2010 (the room temperature ion conductance is as high as 12mS cm -1 , Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J].Nature materials,2011,10(9 ):682) and Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 discovered in 15 years (room temperature ion conductance is as high as 25mS cm -1 , Kato Y, Hori S, Saito T et al.
- the structure of the solid solution phase can adjust the lithium ion migration channel in the sulfide electrolyte material and the binding force of sulfide ions to cations, etc., to control the ionic conductivity of the material, thereby obtaining a higher ion conductivity Inorganic sulfide electrolyte material. Furthermore, the structure of the solid solution phase can also change its electronic structure to improve its chemical properties, thereby achieving better stability in the air, and the possibility of mass use in an air environment/dry room.
- the purpose of the present disclosure is to provide a method for improving the air stability of an inorganic sulfide electrolyte and the application of the material obtained by the method in an all-solid lithium secondary battery.
- the method is simple and effective, the obtained material is simple to prepare, the production cost is low, and at the same time it has good air stability and high lithium ion conductivity. It is expected to solve the practical application of inorganic sulfide electrolyte as high-performance all-solid-state lithium secondary battery electrolyte problem.
- the research of the present disclosure found that using Sb to replace part or all of the P elements in the sulfide electrolyte can form an inorganic sulfide solid electrolyte material with a solid solution phase structure, thereby obtaining higher air stability and higher ion mobility.
- the obtained material has better air stability and can be used in all-solid lithium secondary batteries.
- the present disclosure provides an inorganic sulfide electrolyte material represented by the following formula (I),
- M is one or more of Ge, Si, Sn, 0.01 ⁇ a ⁇ 1; preferably, 0.01 ⁇ a ⁇ 0.2.
- a may be selected from 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3, 0.4, or 1.
- the inorganic sulfide electrolyte material represented by formula (I) is Li 10 Ge (P 0.99 Sb 0.01 ) 2 S 12 , Li 10 Ge (P 0.975 Sb 0.025 ) 2 S 12 , Li 10 Ge (P 0.925 Sb 0.075 ) 2 S 12 , Li 10 Ge (P 0.9 Sb 0.1 ) 2 S 12 , Li 10 Ge (P 0.875 Sb 0.125 ) 2 S 12 , Li 10 Sn (P 0.95 Sb 0.05 ) 2 S 12 or Li 10 Si (P 0.95 Sb 0.05 ) 2 S 12 .
- the present disclosure also provides an inorganic sulfide electrolyte material represented by the following formula (II),
- X is one or more of F, Cl, Br, and I, 0.01 ⁇ a ⁇ 1; preferably, 0.025 ⁇ a ⁇ 0.2.
- a may be selected from 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.5, or 1.
- the inorganic sulfide electrolyte material represented by the formula (II) is Li 6 (P 0.975 Sb 0.025 )S 5 Cl or Li 6 (P 0.95 Sb 0.05 )S 5 Cl.
- the present disclosure also provides an inorganic sulfide electrolyte material represented by the following formula (III),
- a is selected from 0.05, 0.1, 0.2 or 0.3.
- inorganic sulfide electrolyte materials of the present disclosure can be prepared according to conventional techniques in the art.
- the required raw materials can be mixed according to the ratio and then ground, and then heat-treated to obtain the sulfide electrolyte material represented by the above formula (I), (II) (III).
- the grinding time is preferably greater than 3 hours; and/or the heat treatment temperature is preferably greater than 300°C and less than 600°C; and/or the heat treatment temperature is preferably greater than 230°C and less than 600°C.
- the present disclosure is a solid solution phase type sulfide solid electrolyte material.
- the obtained inorganic sulfide solid electrolyte material has better air stability. Furthermore, by adjusting the ratio of P and Sb elements in the solid solution, the lithium ion conductivity of the material can be further adjusted. And can exceed the conductivity of other existing solid electrolytes and organic liquid electrolytes.
- any one of the above-mentioned sulfide solid electrolyte materials is a crystalline type, an amorphous type, and a crystal-amorphous composite type.
- the working temperature of any of the above-mentioned sulfide solid electrolyte materials is -100 to 300°C.
- the present disclosure also provides the application of any of the above-mentioned sulfide solid electrolyte materials in the preparation of all-solid lithium secondary batteries.
- the present disclosure provides an all-solid-state lithium secondary battery, including a positive electrode, an electrolyte material, and a negative electrode.
- the electrolyte material is the sulfide electrolyte material described in the above solution or the sulfide electrolyte material prepared by the above solution.
- the present disclosure uses Sb to replace part or all of the P elements in the sulfide electrolyte to form an inorganic sulfide solid electrolyte material with a solid solution phase structure, thereby achieving higher air stability and higher ion mobility.
- the present disclosure provides a novel method for improving the air stability of sulfide based on element substitution. The method is simple and effective. The obtained sulfide electrolyte can be protected without any coating or additives. Stable storage under air conditions.
- This type of material is simple to prepare and has low production cost; at the same time, the obtained inorganic sulfide solid electrolyte material has controllable ion conductivity and has excellent performance when used as an inorganic electrolyte and electrode material additive in an all-solid lithium battery.
- the obtained inorganic sulfide solid electrolyte material has better air stability, which can further realize the use of sulfide solid electrolyte material in the drying room, simplify the production process of solid battery and reduce production costs .
- the inorganic sulfide solid electrolyte material By adjusting the ratio of P and Sb in the inorganic sulfide solid electrolyte material, it is easy to adjust the crystal structure and electronic structure of the material, thereby further improving the electrical conductivity of the material.
- the inorganic sulfide solid electrolyte materials of this type of solid solution phase structure a part of the electrolyte material reaches or exceeds the conductivity of the existing sulfide solid electrolyte.
- Figure 2 is a partial x-ray diffraction pattern obtained by the system in Example 1;
- Figure 4 is a graph of the relationship between the ion conductivity of the material obtained in Example 1 and the a value
- Figure 6 is a partial x-ray diffraction pattern obtained by the system in Example 2.
- Example 8 is a diagram of the relationship between the ion conductivity of the material obtained in Example 2 and the a value
- Fig. 14 is an XRD comparison chart of Li 6 (P 0.975 Sb 0.025 )S 5 Cl material in Application Example 1 before and after air exposure;
- Fig. 15 is an XRD comparison diagram of Li 6 (P 0.9 Sb 0.1 )S 5 Cl material in Application Example 1 before and after exposure to air;
- Figure 18 is a graph of the ion conductance of Li 6 (P 0.975 Sb 0.025 )S 5 Cl and Li 6 (P 0.9 Sb 0.1 )S 5 Cl materials with temperature changes in application example 1 and the current at a constant external voltage of 0.3V- Time diagram
- Figure 19 is an XRD comparison diagram of Li 10 Ge(P 0.875 Sb 0.125 ) 2 S 12 material before and after exposure to air in Application Example 2;
- Figure 20 shows the Li 10 Ge (P 0.975 Sb 0.025 ) 2 S 12 , Li 10 Ge (P 0.925 Sb 0.075 ) 2 S 12 , Li 10 Ge (P 0.9 Sb 0.1 ) 2 S 12 and Li 10 Ge( P 0.875 Sb 0.125 ) 2 S 12 solid electrolyte material before and after exposure to air ion conductance changes;
- FIG. 21 is a charge and discharge curve diagram of a solid solution phase Li 10 Ge (P 0.99 Sb 0.01 ) 2 S 12 solid electrolyte material obtained in Application Example 3 applied to an all-solid Li-LiCoO 2 secondary battery.
- Figure 2 is the X-ray diffraction pattern obtained under the system with different a values, where a from top to bottom is 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3, 0.4 and 1.
- Figure 4 is a graph showing the relationship between the ion conductance and a value of the solid solution phase sulfide electrolyte material obtained under this system.
- Figure 6 shows the X-ray diffraction patterns obtained with different values of a under the system, where a is 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.5 and 1 from top to bottom.
- FIG. 7 It can be obtained from Fig. 7 that the ion conductance of this material is 2.5 millisiemens per centimeter at 25 degrees Celsius, and the activation energy is 18.4 kilojoules per mole.
- Figure 8 is a graph showing the relationship between the ion conductance and a value of the solid solution phase sulfide electrolyte material obtained under this system. It is found from Fig. 8 that when the value of a is 0.05 (ie Li 6 (P 0.95 Sb 0.05 )S 5 Cl solid electrolyte material), the system material has the highest room temperature ion conductance, which is 2.9 millisiemens per centimeter, which is higher than that under the same conditions. The room temperature ion conductance (1.3 millisiemens per centimeter) of the non-solid phase Li 6 PS 5 Cl material obtained below is higher.
- the calcination temperature is controlled by program temperature rise, from room temperature to 550 degrees Celsius in 4 hours, and keep it at this temperature for 4 hours, then control the temperature to 50 degrees Celsius for 4 hours to obtain Li 10 Sn(P 0.95 Sb 0.05 ) 2 S 12 Solid electrolyte material.
- Fig. 9 is an X-ray diffraction pattern of Li 10 Sn(P 0.95 Sb 0.05 ) 2 S 12 solid electrolyte material;
- Fig. 10 is a graph of electrochemical impedance of the solid electrolyte material at different temperatures and a curve of ion conduction change with temperature. It can be obtained from Figure 10 that the ion conductance of this material at 25 degrees Celsius is 5.6 millisiemens per centimeter, and the activation energy is 11.6 kJ per mole.
- the Li 10 Sn (P 0.95 Sb 0.05 ) 2 S 12 solid electrolyte material has a higher room temperature ion conductance, which is comparable to the room temperature ion conductance of the Li 10 SnP 2 S 12 material reported in the literature (6.3 millisiemens per Cm) closer.
- Fig. 11 is an X-ray diffraction pattern of Li 10 Si(P 0.95 Sb 0.05 ) 2 S 12 solid electrolyte material
- Fig. 12 is a graph of electrochemical impedance of the solid electrolyte material at different temperatures and a curve of ion conductance with temperature. It can be obtained from Figure 12 that the ion conductance of this material is 2.5 millisiemens per centimeter at 25 degrees Celsius, and the activation energy is 11.6 kJ per mole.
- Li 10 Si (P 0.95 Sb 0.05 ) 2 S 12 solid electrolyte material has higher room temperature ion conductance, which is comparable to the room temperature ion conductance of Li 10 SiP 2 S 12 reported in the literature (2 millisiemens per Cm) even higher.
- system material ie Li 3 (P 0.9 Sb 0.1 ) S 4 solid electrolyte material
- the glove box respectively take 100 mg of Li 6 (P 0.975 Sb 0.025 )S 5 Cl and Li 6 (P 0.9 Sb 0.1 )S 5 Cl solid electrolyte materials obtained in Example 2 into a 1 ml open glass bottle Then put the glass bottle in a reaction box with a flow of dry air, let it stand at room temperature for 24 hours, the flow of dry air is 100 milliliters per minute, after the end of standing, take out the sample to perform XRD, ion conduction and electron conduction test.
- Figure 14 is the XRD comparison diagram of Li 6 (P 0.975 Sb 0.025 )S 5 Cl material before and after air exposure
- Figure 15 is the XRD comparison diagram of Li 6 (P 0.9 Sb 0.1 )S 5 Cl material before and after air exposure
- Figure 16 Is the electrochemical impedance spectroscopy of Li 6 (P 0.975 Sb 0.025 )S 5 Cl material before and after air exposure and the calculated ion conductance comparison chart
- Figure 17 shows the Li 6 (P 0.9 Sb 0.1 )S 5 Cl material exposed to air The electrochemical impedance spectroscopy before and after and the calculated ion conductance comparison chart
- the air stability of the obtained Li 6 (P 0.9 Sb 0.1 )S 5 Cl solid electrolyte material becomes higher.
- the XRD pattern did not change much, and the ion conductance decreased from 1.9 ⁇ 10 -3 S cm -1 to 2.3 ⁇ 10 -4 S cm -1 .
- the ion conductance of the material is 0.12 times that before the effect of air.
- the electron conductance of the above two materials does not change much.
- a 0.025, 0.075, 0.1, 0.125.
- the glove box respectively take the Li 10 Ge (P 0.975 Sb 0.025 ) 2 S 12 , Li 10 Ge (P 0.925 Sb 0.075 ) 2 S 12 , Li 10 Ge (P 0.9 Sb 0.1 ) 2 S obtained in Example 1 12 and Li 10 Ge(P 0.875 Sb 0.125 ) 2 S 12 solid electrolyte material 200 milligrams was put into a 1 ml open glass bottle, then the glass bottle was placed in a reaction box with a flow of dry air, and left at room temperature 24 For hours, the airflow of dry air is 100 milliliters per minute.
- Fig. 19 is an XRD comparison diagram of Li 10 Ge(P 0.875 Sb 0.125 ) 2 S 12 before and after air exposure
- Fig. 20 is a comparison diagram of ion conductance changes of these four materials before and after air exposure. It can be found from the above figures that the XRD of the Li 10 Ge(P 0.875 Sb 0.125 ) 2 S 12 material does not change much after being exposed to air for 24 hours. Similarly, the ion conductance of the four materials obtained above did not change much before and after air exposure. After 24 hours of air exposure, the ion conductance of the above four materials can still reach more than 10mS cm -2 . It shows that the material has good air stability and can be used directly in a dry air atmosphere. Has greater application value.
- the Li 10 Ge (P 0.99 Sb 0.01 ) 2 S 12 electrolyte material obtained in Example 1 is used in an all-solid Li-LiCoO 2 secondary battery.
- the LiCoO 2 cathode material used is first coated with LiNbO 2 on the surface through atomic layer deposition (ALD), and the coating layer is about 10 nanometers.
- ALD atomic layer deposition
- the specific process is to use a mortar to grind for 20 minutes.
- the ground material is used as a positive electrode powder.
- a thin metal indium sheet is used as the negative electrode, and the Li 10 Ge (P 0.99 Sb 0.01 ) 2 S 12 electrolyte material obtained in Example 1 is also used as the electrolyte.
- 10 mg of positive electrode powder was added to one side of the electrolyte layer, and after spreading, a second compression was performed at a pressure of 350 MPa to laminate the positive electrode layer and the electrolyte layer together.
- the discharge capacity of the first lap is 0.707 mAh. Based on the mass of lithium cobalt oxide (6 mg), the specific capacity is 117.8 mAh per gram.
- the charge specific capacity and discharge specific capacity of the second circle are 121.1 and 116.2 mAh per gram, respectively. The reversibility of the battery cycle is better.
- the inorganic sulfide electrolyte material provided in the present disclosure has good air stability, simple preparation method, low production cost, good air stability, high lithium ion conductivity, and is expected to solve inorganic sulfide electrolyte As a practical application of high-performance all-solid-state lithium secondary battery electrolyte.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Silicon Compounds (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
Claims (11)
- 一种如下式(I)所示的无机硫化物电解质材料,Li 10M(P 1-aSb a) 2S 12, (I);其中,M为Ge、Si、Sn中的一种或者多种,0.01≤a≤1;优选地,0.01≤a≤0.2。
- 根据权利要求1所述的无机硫化物电解质材料,a选自0.01、0.025、0.05、0.075、0.1、0.125、0.15、0.2、0.3、0.4或1;优选地,式(I)所示的无机硫化物电解质材料为Li 10Ge(P 0.99Sb 0.01) 2S 12、Li 10Ge(P 0.975Sb 0.025) 2S 12、Li 10Ge(P 0.925Sb 0.075) 2S 12、Li 10Ge(P 0.9Sb 0.1) 2S 12、Li 10Ge(P 0.875Sb 0.125) 2S 12、Li 10Sn(P 0.95Sb 0.05) 2S 12或Li 10Si(P 0.95Sb 0.05) 2S 12。
- 一种如下式(II)所示的无机硫化物电解质材料,Li 6(P 1-aSb a)S 5X, (II);其中,X为F、Cl、Br、I中的一种或者多种,0.01≤a≤1;优选地,0.025≤a≤0.2。
- 根据权利要求3所述的无机硫化物电解质材料,其特征在于,a选自0.025、0.05、0.075、0.1、0.15、0.2、0.5或1;优选地,式(II)所示的无机硫化物电解质材料为Li 6(P 0.975Sb 0.025)S 5Cl或Li 6(P 0.95Sb 0.05)S 5Cl。
- 一种如下式(III)所示的无机硫化物电解质材料,Li 3(P 1-aSb a)S 4, (III);其中,0.01≤a≤1;优选地,0.05≤a≤0.3。
- 根据权利要求5所述的无机硫化物电解质材料,其特征在于,a选自0.05、0.1、0.2或0.3。
- 根据权利要求1-6任一项所述无机硫化物电解质材料,其特征在于,其为晶体型、非晶型或晶体-非晶复合型;和/或,所述硫化物固体电解质材料的工作温度在-100~300℃。
- 权利要求1-7任一项所述无机硫化物电解质材料的制备方法,其特征在于,将所需原料按配比混合后研磨,然后进行热处理,分别得到式(I)、式(II)、式(III)所示的硫化物电解质材料。
- 根据权利要求8所述的制备方法,其特征在于,所述研磨时间大于3小时;和/或热处理温度大于300℃而小于600℃。
- 根据权利要求8所述的制备方法,其特征在于,所述研磨时间大于3小时;和/或热处理温度大于230℃而小于600℃。
- 权利要求1-7任一项所述硫化物固体电解质材料或权利要求8或9或10所述方法制备的硫化物固体电解质材料在制备全固态锂二次电池中的应用。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19927347.5A EP3893308B1 (en) | 2019-04-30 | 2019-12-06 | Inorganic sulfide solid electrolyte having high air stability, and preparation method and use thereof |
US17/422,789 US20220131182A1 (en) | 2019-04-30 | 2019-12-06 | Inorganic sulfide solid electrolyte having high air stability, and preparation method and use thereof |
KR1020217036060A KR20210148306A (ko) | 2019-04-30 | 2019-12-06 | 공기 안정성이 높은 무기 황화물 고체 전해질 및 이의 제조 방법과 응용 |
JP2021542254A JP7129075B2 (ja) | 2019-04-30 | 2019-12-06 | 大気安定性の高い無機硫化物固体電解質、及びその製造方法並びにその応用 |
CN201980093980.5A CN113614971B (zh) | 2019-04-30 | 2019-12-06 | 高空气稳定性无机硫化物固体电解质及其制备方法与应用 |
ES19927347T ES2943111T3 (es) | 2019-04-30 | 2019-12-06 | Electrolito sólido de sulfuro inorgánico con alta estabilidad al aire, y método de preparación y uso de este |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910358953.8A CN110085908B (zh) | 2019-04-30 | 2019-04-30 | 高空气稳定性无机硫化物固体电解质及其制备方法与应用 |
CN201910358953.8 | 2019-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020220676A1 true WO2020220676A1 (zh) | 2020-11-05 |
Family
ID=67417976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/123481 WO2020220676A1 (zh) | 2019-04-30 | 2019-12-06 | 高空气稳定性无机硫化物固体电解质及其制备方法与应用 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220131182A1 (zh) |
EP (1) | EP3893308B1 (zh) |
JP (1) | JP7129075B2 (zh) |
KR (1) | KR20210148306A (zh) |
CN (2) | CN110085908B (zh) |
ES (1) | ES2943111T3 (zh) |
WO (1) | WO2020220676A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116706212A (zh) * | 2023-05-09 | 2023-09-05 | 高能时代(珠海)新能源科技有限公司 | 一种固态电解质的制备方法及制备装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110085908B (zh) * | 2019-04-30 | 2021-09-17 | 国联汽车动力电池研究院有限责任公司 | 高空气稳定性无机硫化物固体电解质及其制备方法与应用 |
US20220263123A1 (en) * | 2019-09-06 | 2022-08-18 | Rhodia Operations | New method for the preparation of a li-p-s product and corresponding products |
CN111710902B (zh) * | 2020-06-01 | 2021-11-09 | 国联汽车动力电池研究院有限责任公司 | 玻璃-陶瓷型硫化物电解质及其制备方法和应用 |
US12015119B2 (en) * | 2020-09-23 | 2024-06-18 | Solid Power Operating, Inc. | Solid electrolyte material and solid-state battery made therewith |
CN112777632B (zh) * | 2021-01-25 | 2022-05-03 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | 一种硫化物锂离子固态电解质及其制备方法和应用 |
CN113097560A (zh) * | 2021-04-09 | 2021-07-09 | 浙江大学山东工业技术研究院 | 一种高空气稳定性纳米晶硫化物固体电解质和固态电池及其制备方法 |
CN113471521B (zh) * | 2021-06-30 | 2022-08-19 | 国联汽车动力电池研究院有限责任公司 | 一种无机硫化物固体电解质及其制备方法 |
CN113363569B (zh) * | 2021-06-30 | 2023-05-05 | 国联汽车动力电池研究院有限责任公司 | 一种高稳定性无机硫化物固体电解质及其制备方法 |
JP7574817B2 (ja) | 2022-02-18 | 2024-10-29 | トヨタ自動車株式会社 | 硫化物系固体電解質 |
CN114744287A (zh) * | 2022-04-01 | 2022-07-12 | 上海屹锂新能源科技有限公司 | 一种硫化物固态电解质的制备方法及其应用 |
CN114933331B (zh) * | 2022-05-13 | 2023-02-17 | 上海屹锂新能源科技有限公司 | 一种硫化物固态电解质及其制备方法 |
CN115207457A (zh) * | 2022-08-01 | 2022-10-18 | 蜂巢能源科技(无锡)有限公司 | 改性硫化物固态电解质及其制备方法与电池 |
US12009478B1 (en) * | 2023-07-25 | 2024-06-11 | Rivian Ip Holdings, Llc | Solid state electrolyte |
CN117117300B (zh) * | 2023-08-14 | 2024-12-17 | 国联汽车动力电池研究院有限责任公司 | 一种无机硫化物固体电解质及其制备方法和应用 |
CN117613371B (zh) * | 2024-01-18 | 2024-09-13 | 中国第一汽车股份有限公司 | 固态电解质的制备方法、固态电解质及其应用 |
CN117936882B (zh) * | 2024-03-25 | 2024-06-04 | 四川新能源汽车创新中心有限公司 | 一种硫化物电解质的改性方法、硫化物电解质及其应用 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101821199A (zh) * | 2007-10-08 | 2010-09-01 | 锡根大学 | 锂-硫银锗矿 |
CN101861673A (zh) * | 2009-01-21 | 2010-10-13 | 丰田自动车株式会社 | 硫化物固体电解质材料 |
CN103531841A (zh) * | 2013-11-01 | 2014-01-22 | 中国科学院宁波材料技术与工程研究所 | 硫化物固体电解质及其制备方法与全固态锂二次电池 |
CN103531840A (zh) | 2013-11-01 | 2014-01-22 | 中国科学院上海硅酸盐研究所 | 一种双电解质体系锂硫电池及其制备方法 |
US20140370398A1 (en) * | 2013-06-17 | 2014-12-18 | Electronics And Telecommunications Research Institute | Lithium battery and method of preparing the same |
CN105009332A (zh) * | 2013-02-28 | 2015-10-28 | I-Ten公司 | 制造单片全固态电池的方法 |
CN106887638A (zh) | 2015-12-15 | 2017-06-23 | 国联汽车动力电池研究院有限责任公司 | 一种复合固体电解质材料、其制备方法及包含该电解质材料的全固态锂离子二次电池 |
CN108258303A (zh) * | 2018-01-18 | 2018-07-06 | 中国科学院宁波材料技术与工程研究所 | 一种硫化物固体电解质、其制备方法及全固态锂二次电池 |
CN108269964A (zh) * | 2017-12-27 | 2018-07-10 | 国联汽车动力电池研究院有限责任公司 | 一种复合固态电极及其制备方法 |
CN108352567A (zh) * | 2016-01-12 | 2018-07-31 | 株式会社Lg化学 | 硫化物型固体电解质和应用其的全固态电池 |
CN109690696A (zh) * | 2016-09-12 | 2019-04-26 | 出光兴产株式会社 | 硫化物固体电解质 |
JP2019102355A (ja) * | 2017-12-06 | 2019-06-24 | 国立大学法人豊橋技術科学大学 | 固体電解質用イオン伝導体の製造方法 |
CN110085908A (zh) * | 2019-04-30 | 2019-08-02 | 国联汽车动力电池研究院有限责任公司 | 高空气稳定性无机硫化物固体电解质及其制备方法与应用 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5120272B2 (ja) * | 2008-09-11 | 2013-01-16 | トヨタ自動車株式会社 | 硫化物系固体電解質 |
KR101660609B1 (ko) * | 2012-02-06 | 2016-09-27 | 도요타지도샤가부시키가이샤 | 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법 |
JP6037444B2 (ja) * | 2013-01-17 | 2016-12-07 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
CN103531849B (zh) * | 2013-11-01 | 2016-08-17 | 国家电网公司 | 硫化物电解质材料及其制备方法与全固态锂二次电池 |
JP6101223B2 (ja) * | 2014-02-25 | 2017-03-22 | 富士フイルム株式会社 | 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
JP6721669B2 (ja) * | 2016-02-19 | 2020-07-15 | 富士フイルム株式会社 | 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法 |
CN109526242B (zh) * | 2016-08-10 | 2022-04-15 | 出光兴产株式会社 | 硫化物固体电解质 |
KR20190001798A (ko) * | 2017-06-28 | 2019-01-07 | 한국전기연구원 | 황화물계 고체전해질 재료 및 그 제조방법 |
-
2019
- 2019-04-30 CN CN201910358953.8A patent/CN110085908B/zh active Active
- 2019-12-06 KR KR1020217036060A patent/KR20210148306A/ko not_active IP Right Cessation
- 2019-12-06 EP EP19927347.5A patent/EP3893308B1/en active Active
- 2019-12-06 US US17/422,789 patent/US20220131182A1/en active Pending
- 2019-12-06 ES ES19927347T patent/ES2943111T3/es active Active
- 2019-12-06 JP JP2021542254A patent/JP7129075B2/ja active Active
- 2019-12-06 WO PCT/CN2019/123481 patent/WO2020220676A1/zh unknown
- 2019-12-06 CN CN201980093980.5A patent/CN113614971B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101821199A (zh) * | 2007-10-08 | 2010-09-01 | 锡根大学 | 锂-硫银锗矿 |
CN101861673A (zh) * | 2009-01-21 | 2010-10-13 | 丰田自动车株式会社 | 硫化物固体电解质材料 |
CN105009332A (zh) * | 2013-02-28 | 2015-10-28 | I-Ten公司 | 制造单片全固态电池的方法 |
US20140370398A1 (en) * | 2013-06-17 | 2014-12-18 | Electronics And Telecommunications Research Institute | Lithium battery and method of preparing the same |
CN103531841A (zh) * | 2013-11-01 | 2014-01-22 | 中国科学院宁波材料技术与工程研究所 | 硫化物固体电解质及其制备方法与全固态锂二次电池 |
CN103531840A (zh) | 2013-11-01 | 2014-01-22 | 中国科学院上海硅酸盐研究所 | 一种双电解质体系锂硫电池及其制备方法 |
CN106887638A (zh) | 2015-12-15 | 2017-06-23 | 国联汽车动力电池研究院有限责任公司 | 一种复合固体电解质材料、其制备方法及包含该电解质材料的全固态锂离子二次电池 |
CN108352567A (zh) * | 2016-01-12 | 2018-07-31 | 株式会社Lg化学 | 硫化物型固体电解质和应用其的全固态电池 |
CN109690696A (zh) * | 2016-09-12 | 2019-04-26 | 出光兴产株式会社 | 硫化物固体电解质 |
JP2019102355A (ja) * | 2017-12-06 | 2019-06-24 | 国立大学法人豊橋技術科学大学 | 固体電解質用イオン伝導体の製造方法 |
CN108269964A (zh) * | 2017-12-27 | 2018-07-10 | 国联汽车动力电池研究院有限责任公司 | 一种复合固态电极及其制备方法 |
CN108258303A (zh) * | 2018-01-18 | 2018-07-06 | 中国科学院宁波材料技术与工程研究所 | 一种硫化物固体电解质、其制备方法及全固态锂二次电池 |
CN110085908A (zh) * | 2019-04-30 | 2019-08-02 | 国联汽车动力电池研究院有限责任公司 | 高空气稳定性无机硫化物固体电解质及其制备方法与应用 |
Non-Patent Citations (7)
Title |
---|
BACHMAN J CMUY SGRIMAUD A ET AL.: "Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction", CHEMICAL REVIEWS, vol. 116, no. 1, 2015, pages 140 - 162, XP055297581, DOI: 10.1021/acs.chemrev.5b00563 |
KAMAYA NHOMMA KYAMAKAWA Y ET AL.: "A lithium superionic conductor", NATURE MATERIALS, vol. 10, no. 9, 2011, pages 682, XP055386603, DOI: 10.1038/nmat3066 |
KATO YHORI SSAITO T ET AL.: "High-power all-solid-state batteries using sulfide superionic conductors", NATURE ENERGY, vol. 1, no. 4, 2016, pages 16030, XP055615412, DOI: 10.1038/nenergy.2016.30 |
KERMAN KLUNTZ AVISWANATHAN V ET AL.: "practical challenges hindering the development of solid state Li ion batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 164, no. 7, 2017, pages A1731 - A1744 |
See also references of EP3893308A4 |
SUN CLIU JGONG Y ET AL.: "Recent advances in all-solid-state rechargeable lithium batteries", NANO ENERGY, vol. 33, 2017, pages 363 - 386, XP055659452, DOI: 10.1016/j.nanoen.2017.01.028 |
THANGADURAI VNARAYANAN SPINZARU D: "Garnet-type solid-state fast Li ion conductors for Li batteries: critical review", CHEMICAL SOCIETY REVIEWS, vol. 43, no. 13, 2014, pages 4714 - 4727, XP055330242, DOI: 10.1039/c4cs00020j |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116706212A (zh) * | 2023-05-09 | 2023-09-05 | 高能时代(珠海)新能源科技有限公司 | 一种固态电解质的制备方法及制备装置 |
CN116706212B (zh) * | 2023-05-09 | 2024-02-02 | 高能时代(珠海)新能源科技有限公司 | 一种固态电解质的制备方法及制备装置 |
Also Published As
Publication number | Publication date |
---|---|
ES2943111T3 (es) | 2023-06-09 |
EP3893308A1 (en) | 2021-10-13 |
CN113614971A (zh) | 2021-11-05 |
KR20210148306A (ko) | 2021-12-07 |
JP2022502341A (ja) | 2022-01-11 |
US20220131182A1 (en) | 2022-04-28 |
EP3893308A4 (en) | 2022-03-16 |
EP3893308B1 (en) | 2023-02-08 |
JP7129075B2 (ja) | 2022-09-01 |
CN110085908A (zh) | 2019-08-02 |
CN110085908B (zh) | 2021-09-17 |
CN113614971B (zh) | 2024-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020220676A1 (zh) | 高空气稳定性无机硫化物固体电解质及其制备方法与应用 | |
CN113471521B (zh) | 一种无机硫化物固体电解质及其制备方法 | |
Hayashi et al. | High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4 | |
CN109830740B (zh) | 一种固态电解质及全固态电池 | |
CN110265709B (zh) | 表面包覆改性的锂镧锆氧基固体电解质材料及其制备方法和应用 | |
CN113363569B (zh) | 一种高稳定性无机硫化物固体电解质及其制备方法 | |
CN103227321B (zh) | 锂离子电池负极用MnOx/Fe2O3纳米复合材料的制备方法 | |
CN103066265B (zh) | 钠离子电池负极活性物质及其制备方法和应用 | |
CN102760876B (zh) | 铌酸盐及其复合材料与其在二次锂电池中的应用 | |
WO2023030025A1 (zh) | 一种硫银锗矿型固态电解质的制备及其全固态电池应用 | |
CN101847717A (zh) | 一种锂离子电池用钛酸锂复合负极材料的制备方法 | |
WO2024016662A1 (zh) | 一种正极材料用复合包覆剂、一种高镍单晶正极材料和电池 | |
CN105336939A (zh) | 一种钛酸锂的包覆改性方法及其锂离子电池 | |
CN104505490A (zh) | 采用原位碳还原法制备的锂离子电池用正极活性材料及方法 | |
CN103378355B (zh) | 碱金属二次电池及其用的负极活性物质、负极材料、负极和负极活性物质的制备方法 | |
CN110311169B (zh) | 一种具有硫空位结构的固体电解质及其制备方法和应用 | |
CN115472901A (zh) | 一种低温制备nasicon型钠离子固态电解质的方法 | |
CN114005982A (zh) | 一种原位功能性包覆的正极材料及其制备方法和全固态锂电池 | |
CN112909325A (zh) | 一种高电导率薄层硫化物固体电解质膜及其制备方法和应用 | |
CN105591091B (zh) | 一种钠离子二次电池负极活性物质及其制备方法和应用 | |
KR102180352B1 (ko) | 황화물계 글래스 세라믹, 이의 제조방법 및 이를 고체전해질로 함유하는 전고체 이차전지 | |
CN106785003A (zh) | 一种添加锂硅合金和碘化银的硫化锂系固体电解质材料及其制备方法 | |
CN104538613B (zh) | 一种制备具有层状结构的类镧酸锂电池材料的方法 | |
CN105036193B (zh) | 一种改性钒酸锂材料及改性方法及在锂离子电池中的应用 | |
CN117594868A (zh) | 一种硫化物及其制备方法、固态电解质、全固态电池和用电设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19927347 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021542254 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019927347 Country of ref document: EP Effective date: 20210705 |
|
ENP | Entry into the national phase |
Ref document number: 20217036060 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |