Nothing Special   »   [go: up one dir, main page]

WO2020194680A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2020194680A1
WO2020194680A1 PCT/JP2019/013663 JP2019013663W WO2020194680A1 WO 2020194680 A1 WO2020194680 A1 WO 2020194680A1 JP 2019013663 W JP2019013663 W JP 2019013663W WO 2020194680 A1 WO2020194680 A1 WO 2020194680A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
target
motor
work vehicle
regenerative
Prior art date
Application number
PCT/JP2019/013663
Other languages
English (en)
French (fr)
Inventor
浩志 歌代
昭範 神谷
徳孝 伊藤
大木 孝利
聡 関野
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP19921893.4A priority Critical patent/EP4071017B1/en
Priority to JP2021508612A priority patent/JP7071583B2/ja
Priority to PCT/JP2019/013663 priority patent/WO2020194680A1/ja
Priority to US17/255,185 priority patent/US11466432B2/en
Priority to CN201980044470.9A priority patent/CN112384424B/zh
Publication of WO2020194680A1 publication Critical patent/WO2020194680A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/06Dynamic electric resistor braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/198Conjoint control of vehicle sub-units of different type or different function including control of braking systems with exhaust brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2083Control of vehicle braking systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • B60W2710/305Auxiliary equipments target power to auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/415Wheel loaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/283Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a single arm pivoted directly on the chassis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a work vehicle capable of performing work such as excavation and traveling, and particularly to a work vehicle provided with an electric motor as a traveling actuator.
  • Patent Document 1 discloses a technique in which a traveling drive unit of a wheel loader is electrified, regenerative electric power generated from an electric motor is recovered during traveling braking, and the regenerative electric power is used for driving a traveling or working actuator.
  • the rotating shaft of the traveling electric motor is rotated by the rotational force acting via the propeller shaft during downhill traveling or traveling braking, and the traveling electric motor generates regenerative power with this rotation. .. Then, the generated regenerative power is charged in a power storage device such as a battery or a capacitor.
  • a power storage device such as a battery or a capacitor.
  • the present invention has been made in view of the above-mentioned actual conditions, and an object of the present invention is to reliably obtain a braking force required for traveling in a work vehicle that employs an electric motor as a traveling actuator, and during braking.
  • the purpose is to provide a technology that effectively utilizes the regenerative power generated.
  • the driving force of the engine, the power generating electric power generated by the driving force of the engine, the electric power driven by the power supplied from the generating electric power, and the driving force of the electric power is transmitted.
  • the regenerative power and the target hydraulic drive power for driving the hydraulic pump are calculated, and when the regenerative power is equal to or less than the target hydraulic drive power, the regenerative power is supplied to and consumed by the generator electric motor operating as a motor.
  • the regenerative power is supplied to the generator electric motor operating as a motor, and the power corresponding to the difference between the regenerative power and the target hydraulic drive power is supplied to the exhaust brake. It is characterized by being consumed by.
  • the braking force required during traveling can be reliably obtained, and the regenerative power generated during braking can be effectively used. Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 is a side view of the wheel loader 100 according to the present embodiment.
  • the wheel loader 100 includes a front frame 104 having a lift arm 101, a bucket 102, a pair of left and right front wheels 103, and the like, and a rear frame 107 having a cab 105 and a pair of left and right rear wheels 106 and the like.
  • the front wheels 103 and the rear wheels 106 are drive wheels driven by an electric motor 14 (see FIG. 2) mounted on the wheel loader 100. More specifically, the motor 14 is rotated by being supplied with the electric power generated by the generator motor 11 by the driving force of the engine 10. Then, the rotational driving force of the electric motor 14 is changed by a transmission (not shown) and transmitted to the front wheels 103 and the rear wheels 106 via the propeller shaft and the axle.
  • an electric motor 14 see FIG. 2 mounted on the wheel loader 100. More specifically, the motor 14 is rotated by being supplied with the electric power generated by the generator motor 11 by the driving force of the engine 10. Then, the rotational driving force of the electric motor 14 is changed by a transmission (not shown) and transmitted to the front wheels 103 and the rear wheels 106 via the propeller shaft and the axle.
  • the lift arm 101 rotates in the vertical direction (depression and elevation) due to the expansion and contraction of the lift arm cylinder 108.
  • the bucket 102 rotates (clouds or dumps) in the vertical direction due to the expansion and contraction of the bucket cylinder 109.
  • the lift arm 101, the bucket 102, the lift arm cylinder 108, and the bucket cylinder 109 constitute a front working device.
  • the front frame 104 and the rear frame 107 are rotatably connected in the left-right direction by a center pin 110. Further, the front frame 104 and the rear frame 107 are connected by a pair of left and right steering cylinders 111L and 111R. The front ends of the steering cylinders 111L and 111R are connected to the front frame 104, and the rear ends are connected to the rear frame 107 in a state where the rear ends can rotate in the left-right direction.
  • the front frame 104 bends in the left-right direction with respect to the rear frame 107 around the center pin 110.
  • the relative mounting angle between the front frame 104 and the rear frame 107 changes, and the vehicle body bends and turns. That is, the wheel loader 100 is an articulate type in which the front frame 104 and the rear frame 107 are bent around the center pin 110.
  • the cab 105 is formed with an internal space on which an operator who operates the wheel loader 100 is boarded. Inside the cab 105, a seat on which the operator is seated (not shown) and an operating device operated by the operator seated on the seat are arranged. When the operator on the cab 105 operates the operating device, the wheel loader 100 travels and the front working device operates.
  • the operating device accepts the operation of the operator who operates the wheel loader 100. Then, the operation device outputs an operation signal according to the operation direction and the operation amount of the operator to the control device 20 (see FIG. 2).
  • the operating device includes, for example, as shown in FIG. 2, a hydraulic operating lever 31, an accelerator pedal 32, a brake pedal 33, and an FNR switch 34.
  • the hydraulic operating lever 31 includes a steering lever that expands and contracts the steering cylinders 111L and 111R, an arm operating lever that expands and contracts the lift arm cylinder 108, and a bucket operating lever that expands and contracts the bucket cylinder 109.
  • the hydraulic operation lever 31 outputs a lever signal indicating the lodging direction and the amount of lodging of each lever as an operation signal.
  • the accelerator pedal 32 adjusts the rotation speed of the engine 10.
  • the accelerator pedal 32 outputs the accelerator depression rate Rat acc as an operation signal.
  • the brake pedal 33 brakes the front wheels 103 and the rear wheels 106.
  • the brake pedal 33 outputs the brake depression rate Rat brk as an operation signal.
  • the FNR switch 34 switches the traveling direction (forward, reverse, neutral) of the wheel loader 100.
  • the FNR switch 34 outputs an FNR signal indicating any of forward, reverse, and neutral as an operation signal.
  • FIG. 2 is a hardware configuration diagram of the wheel loader 100.
  • the wheel loader 100 includes an engine (ENG) 10, a generator motor (M / G) 11, inverters (INV) 12, 13, an electric motor (M) 14, a converter (CONV) 15, and a resistor (BR). 16, a hydraulic oil tank 17, a hydraulic pump 18, a direction switching valve 19, and a control device (M / C) 20 are mainly provided.
  • the engine 10 burns fossil fuels to generate driving force.
  • the rotation speed of the engine 10 is controlled by the ECU 10a.
  • the actual rotation speed of the engine 10 (actual engine rotation speed ⁇ Eng ) is detected by the rotation speed sensor 35.
  • the rotation speed sensor 35 outputs a rotation speed signal indicating the detected actual engine rotation speed ⁇ Eng to the control device 20.
  • a throttle device 10b is provided in the exhaust pipeline of the engine 10.
  • the throttle device 10b increases or decreases the passage area of the exhaust gas passing through the exhaust pipeline according to the control of the ECU 10a. By narrowing the passage area of the exhaust gas with the throttle device 10b and operating the exhaust brake, the exhaust resistance becomes a load and the engine 10 is decelerated (the number of revolutions is lowered).
  • a rotor is attached to a rotating shaft coaxial with the output shaft of the engine 10, and a stator is arranged on the outer circumference of the rotor.
  • the generator motor 11 generates three-phase AC electric power by transmitting the driving force of the engine 10 and rotating the rotor.
  • the inverter 12 converts the three-phase AC power output from the generator motor 11 into DC power and outputs it to the inverter 13.
  • the inverter 13 converts the DC power output from the inverter 12 into three-phase AC power and outputs it to the electric motor 14.
  • the electric motor 14 receives the supply of three-phase AC power from the inverter 13 to generate a driving force, and outputs the generated driving force to the propeller shaft. Then, the drive wheels (front wheels 103 and rear wheels 106) rotate by transmitting the driving force of the electric motor 14 via the propeller shaft. As a result, the wheel loader 100 runs.
  • vehicle speed Vact The actual traveling speed of the wheel loader 100 (hereinafter, referred to as "vehicle speed Vact ”) is detected by the vehicle speed sensor 36. Then, the vehicle speed sensor 36 outputs a vehicle speed signal indicating the detected vehicle speed Vact to the control device 20.
  • the electric motor 14 when braking the wheel loader 100, the electric motor 14 operates as an electric brake. Then, the electric motor 14 that operates as an electric brake generates regenerative power (regenerative power) and outputs it to the inverter 13. The inverter 13 converts the three-phase alternating current regenerative power output from the electric motor 14 into DC power and outputs it to the inverter 12 and the converter 15.
  • the inverter 12 converts the DC regenerative power output from the inverter 13 into three-phase AC power and outputs it to the generator motor 11.
  • the generator motor 11 operates as a motor by the three-phase AC power supplied from the inverter 12 and drives the output shaft (rotary shaft) of the engine 10. That is, a part of the regenerative power generated by the motor 14 is converted into a driving force by the generator motor 11.
  • the converter 15 transforms the DC power supplied from the inverter 13 and outputs it to the resistor 16.
  • the resistor 16 is a resistance element that converts the regenerative power supplied through the converter 15 into heat. That is, a part of the regenerative power generated by the electric motor 14 is consumed by the resistor 16.
  • the hydraulic pump 18 is a variable displacement hydraulic pump and is connected to the output shaft of the engine 10. That is, the hydraulic pump 18 transmits the driving force of one or both of the engine 10 and the generator motor 11 operating as a motor, and pumps the hydraulic oil stored in the hydraulic oil tank 17 to the direction switching valve 19.
  • the discharge pressure P of the hydraulic oil pressure-fed from the hydraulic pump 18 is detected by the pressure sensor 37. Then, the pressure sensor 37 outputs a pressure signal indicating the detected discharge pressure P to the control device 20.
  • the hydraulic oil output from the hydraulic oil tank 17 is referred to as a lift arm cylinder 108, a bucket cylinder 109, and steering cylinders 111L and 111R (hereinafter, these are collectively referred to as "hydraulic actuator”. ). More specifically, the direction switching valve 19 controls the supply direction and flow rate of the hydraulic oil supplied to the hydraulic actuator according to the operation direction and the operation amount of the hydraulic operation lever 31.
  • the control device 20 controls the operation of the entire wheel loader 100. More specifically, the control device 20 is output from the operation signals output from the operation devices 31 to 34, the rotation speed signal output from the rotation speed sensor 35, the vehicle speed signal output from the vehicle speed sensor 36, and the pressure sensor 37.
  • the operation of the ECU 10a that is, the engine 10 and the throttle device 10b
  • the inverters 12, 13 and the converter 15 is controlled based on the pressure signal.
  • the control device 20 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • each functional block described later is realized by the CPU reading and executing the program code stored in the ROM.
  • the RAM is used as a work area when the CPU executes a program.
  • control device 20 is not limited to this, and may be realized by hardware such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field-Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • FIG. 3 is a functional block diagram of the control device 20.
  • the control device 20 includes a target electric drive power calculation unit 21, a maximum exhaust brake power calculation unit 22, a target hydraulic drive power calculation unit 23, a target brake power distribution calculation unit 24, and a target engine speed calculation unit 25. Be prepared.
  • the target electric drive power calculation unit 21 includes an accelerator depression rate Rat acc output from the accelerator pedal 32, a brake depression rate Rat brk output from the brake pedal 33, an FNR signal output from the FNR switch 34, and a vehicle speed sensor. 36 based on the vehicle speed V act outputted from, for calculating a target brake force Etar_brk.
  • the target braking power Ether_brk indicates the magnitude of the regenerative power (regenerative power) generated by the electric motor 14 when the front wheels 103 and the rear wheels 106 are braked. That is, the target braking power Ether_brk becomes a larger value as the braking force of the front wheels 103 and the rear wheels 106 increases.
  • Target brake power Etar_brk the current vehicle speed V act of the wheel loader 100, the larger the difference between the target vehicle speed (target running speed) V tar after braking, a large value.
  • the target vehicle speed V tar is calculated by the following formula 1
  • the target braking power Etar_brk is calculated by the following formula 2.
  • the FNR in Equation 1 is a variable corresponding to the value of the FNR signal, and is set to 1 when moving forward, -1 when moving backward, and 0 when neutral.
  • C 1 and C 2 of Equations 1 and 2 are predetermined constants.
  • the target electric drive power calculation unit 21 notifies the target brake power distribution calculation unit 24 and the target engine speed calculation unit 25 of the calculated target brake power Etar_brk. Further, the target electric drive power calculation unit 21 outputs a control signal instructing the output of the electric power (target traveling motor regenerative power) corresponding to the target brake power Ether_brk to the inverter 13.
  • the maximum exhaust brake power calculation unit 22 calculates the maximum exhaust brake power Emax_exh based on the actual engine speed ⁇ Eng output from the speed sensor 35.
  • the maximum exhaust brake power Emax_exh indicates the magnitude of the power consumed by the exhaust brake when the throttle device 10b is throttled to the maximum.
  • FIG. 4 is a diagram showing a correspondence relationship between the actual engine speed ⁇ Eng and the maximum exhaust brake power Emax_exh.
  • the maximum exhaust brake power Emax_exh is a function of the actual engine speed ⁇ Eng . More specifically, the maximum exhaust brake power Emax_exh is, the higher the actual engine speed omega Eng becomes a large value, the actual engine speed omega Eng becomes lower the smaller value.
  • the correspondence relationship of FIG. 4 is determined in advance by an experiment or a simulation, and is stored in a storage device (ROM, RAM).
  • the maximum exhaust brake power calculation unit 22 calculates the maximum exhaust brake power Emax_exh corresponding to the current actual engine speed ⁇ Eng , for example, based on the correspondence stored in the storage device. Then, the maximum exhaust brake power calculation unit 22 notifies the target brake power distribution calculation unit 24 of the calculated maximum exhaust brake power Emax_exh.
  • the target hydraulic drive power calculation unit 23 is based on the lever signal output from the hydraulic operation lever 31, the actual engine rotation speed ⁇ Eng output from the rotation speed sensor 35, and the pressure signal output from the pressure sensor 37. , Calculate the target hydraulic drive power Ehyd. Then, the target hydraulic drive power calculation unit 23 notifies the target brake power distribution calculation unit 24 and the target engine speed calculation unit 25 of the calculated target hydraulic drive power Ehyd.
  • the target hydraulic drive power Ehyd indicates the magnitude of the power for driving the hydraulic pump 18.
  • the target flow rate of the hydraulic pump 18 is obtained from the lever signal output from the hydraulic operation lever 31 and the actual engine speed ⁇ Eng output from the rotation speed sensor 35. After that, the value obtained by multiplying the pressure signal output from the pressure sensor 37 by the target flow rate is derived as the target hydraulic drive power Ehyd.
  • the target hydraulic drive power Ehyd becomes a larger value as the amount of lodging of the hydraulic operating lever 31 increases, and becomes a larger value as the actual engine speed ⁇ Eng increases, and the pressure of the hydraulic oil output from the hydraulic pump 18 increases.
  • the target hydraulic drive power Ehyd is calculated by the following equation 3.
  • ⁇ in Equation 3 is the pump efficiency of the hydraulic pump 18, which is a predetermined constant.
  • Q in Equation 3 is the discharge flow rate of hydraulic oil from the hydraulic pump 18, which changes according to the operation amount of the hydraulic operation lever 31 indicated by the lever signal and the actual engine speed ⁇ Eng .
  • i in the formula 3 is an index indicating each hydraulic pump when the wheel loader 100 is equipped with a plurality of hydraulic pumps.
  • the target brake power distribution calculation unit 24 includes a target brake power Etar_brk calculated by the target electric drive power calculation unit 21, a maximum exhaust brake power Emax_ex calculated by the maximum exhaust brake power calculation unit 22, and a target hydraulic drive power calculation unit. Based on the target hydraulic drive power Ehyd calculated by 23, the target generator power action power Etar_MG, the target exhaust brake consumption power Etar_exh, and the target brake resistor consumption power Etar_br are calculated. The specific processing of the target brake power distribution calculation unit 24 will be described later with reference to FIG.
  • Target generator power action force Etar_MG indicates the magnitude of power (regenerative power) to be supplied to the generator motor 11 in order to operate the hydraulic actuator according to the operation amount of the hydraulic operation lever 31. Then, the target brake power distribution calculation unit 24 outputs a control signal instructing the output of the electric power corresponding to the calculated target generator power action force Etar_MG to the inverter 12.
  • Target exhaust brake consumption power Ether_exh indicates the magnitude of the power (driving force) consumed by the exhaust brake. Then, the target brake power distribution calculation unit 24 outputs a control signal for causing the exhaust brake to consume the calculated target exhaust brake consumption power Ether_exh to the ECU 10a.
  • Target brake resistor power consumption Etar_br indicates the magnitude of power (regenerative power) to be consumed by the resistor 16. That is, the target brake resistor consumption power Etar_br indicates the magnitude of the power that the resistor 16 should convert into heat in the target brake power Etar_brk. Then, the target brake power distribution calculation unit 24 outputs a control signal instructing the output of the power corresponding to the calculated target brake resistor consumption power Ether_br to the converter 15.
  • the target engine speed calculation unit 25 is based on the target hydraulic drive power Ehyd calculated by the target hydraulic drive power calculation unit 23 and the actual engine speed ⁇ Eng output from the speed sensor 35, and the target engine speed calculation unit 25. Is calculated.
  • the target engine speed is a target value of the speed of the engine 10.
  • the target engine rotation speed calculation unit 25 outputs a control signal for rotating the engine 10 at the calculated target engine rotation speed to the ECU 10a. Specific processing of the target engine speed calculation unit 25 will be described later with reference to FIG.
  • FIG. 5 is an explanatory diagram illustrating V-shape loading by the wheel loader 100.
  • FIG. 6 is a diagram showing the relationship between the engine speed, the hydraulic drive power, the target hydraulic drive power Ehyd, the target exhaust brake consumption power Etar_exh, and the target brake resistor consumption power Etar_br in each operation of the wheel loader 100.
  • the wheel loader 100 advances toward the ground A, which is the work object (arrow X1 shown in FIG. 5), and tilts the bucket 102 in a state of plunging into the ground A to perform excavation work.
  • the operator performs a combined operation of tilting the bucket 102 while increasing the drive of the wheel loader 100.
  • no braking force is generated.
  • the wheel loader 100 retracts with the excavated earth and sand, minerals, and other loads loaded in the bucket 102. After retreating a sufficient distance, the operator switches the direction from reverse to forward (arrow X2 shown in FIG. 5). At this time, the operator performs an independent operation of decelerating the wheel loader 100 without operating the bucket 102. Therefore, as shown in "V-shaped excavation (without hydraulic pressure)" in FIG. 6, the engine speed, hydraulic drive power, and target hydraulic drive power Ehyd become low, the target exhaust brake consumption power Etar_exh becomes high, and the target brake Resistor power consumption Etar_br tends to be low.
  • the wheel loader 100 advances toward the dump truck B (arrow Y1 shown in FIG. 5), stops in front of the dump truck B (position of the broken line wheel loader 100), and removes the earth and sand in the bucket 102. Dump.
  • the operator since the operator performs a combined operation of dumping the bucket while decelerating the wheel loader 100, the operator exhibits the tendency of "V-shaped excavation (using hydraulic pressure)" in FIG. Therefore, as shown in "V-shaped excavation (using hydraulic pressure)" in FIG. 6, the engine speed, hydraulic drive power, and target hydraulic drive power Ehyd become high, and the target exhaust brake consumption power Etar_exh and the target brake resistor consumption power Etar_br tends to be low.
  • the wheel loader 100 retracts in a state where the load is not loaded in the bucket 102. After retreating a sufficient distance, the operator switches the direction from reverse to forward (arrow Y2 shown in FIG. 5). At this time, since the operator performs an independent operation of decelerating the wheel loader 100 without operating the bucket 102, the operator exhibits the tendency of "V-shaped excavation (no hydraulic pressure is used)" in FIG. Then, the wheel loader 100 reciprocates in a V shape between the ground A and the dump truck B to perform excavation work and loading work.
  • the wheel loader 100 may travel on a long slope depending on the environment of the work site. At this time, the operator gently brakes the front wheels 103 and the rear wheels 106 without operating the bucket 102 to control the speed of the wheel loader 100. Therefore, as shown in “downhill” in FIG. 6, the engine speed is high, the hydraulic drive power and the target hydraulic drive power Ehyd are low, and the target exhaust brake consumption power Etar_exh and the target brake resistor consumption power Etar_br are high. Tends to be.
  • FIG. 7 is a flowchart showing the calculation processing of Etar_MG, Etar_exh, and Etar_br by the target brake power distribution calculation unit 24.
  • the target brake power distribution calculation unit 24 repeatedly executes the process shown in FIG. 7 at predetermined time intervals.
  • the target brake power distribution calculation unit 24 compares the target brake power Etar_brk calculated by the target electric drive power calculation unit 21 with the target hydraulic drive power Ehyd calculated by the target hydraulic drive power calculation unit 23 (S1). ).
  • the target brake power Ether_brk is equal to or less than the target hydraulic drive power Ehyd
  • the power to be transmitted to the hydraulic pump 18 is large and the target hydraulic drive power is large, for example, when the above-mentioned combined operation is performed. This is a case where the target braking power Ether_brk can be covered only by Ehyd.
  • the case where the target brake power Etar_brk is larger than the target hydraulic drive power Ehyd is a case where the power transmitted to the hydraulic pump 18 is small and the target hydraulic drive power Ehyd can be covered only by the regenerative power. Therefore, when the target brake power distribution calculation unit 24 determines that Ether_brk> Ehyd (S1: Yes), the difference between the target brake power Etar_brk and the target hydraulic drive power Ehyd is compared with the maximum exhaust brake power Emax_exh (S3). ).
  • the difference between the target brake power Etar_brk and the target hydraulic drive power Ehyd is the remaining power that consumes the target hydraulic drive power Ehyd from the regenerative power (hereinafter referred to as "surplus regenerative power").
  • the surplus regenerative power is equal to or less than the maximum exhaust brake power Emax_exh, for example, since the surplus regenerative power is relatively small as in the case where the above-mentioned independent operation is performed, all the surplus regenerative power is exhaust braked. It is a case where it can be consumed by.
  • the control device 20 when the regenerative power is larger than the target hydraulic drive power Ehyd and the difference between the regenerative power and the target hydraulic drive power Ehyd is equal to or less than the maximum exhaust brake power Emax_exh, the control device 20 operates using the regenerative power as a motor. While supplying to the electric motor 11, the exhaust brake consumes the power corresponding to the difference between the regenerative power and the target hydraulic drive power Ehyd.
  • step S4 all the regenerative power generated by the motor 14 is supplied to the generator motor 11 and converted into the driving force to the hydraulic pump 18, and the surplus regenerative power is consumed by the exhaust brake.
  • the throttle device 10b is activated to increase the target exhaust brake consumption power Ether_exh of the engine 10, and the regenerative power supplied to the generator motor 11 can be consumed by the engine 10 and the hydraulic pump 18.
  • the target brake power distribution calculation unit 24 determines (S1: Yes) with (S1: Yes) and (Etar_brk-Ehyd)> Emax_exh (S3: Yes)
  • the target generator power action force Etar_MG Emax_exh + Ehyd
  • the control device 20 when the difference between the regenerative power and the target hydraulic drive power Ehyd is larger than the maximum exhaust brake power Emax_exh, the control device 20 has a target generator power action corresponding to the sum of the maximum exhaust brake power Emax_exh and the target hydraulic drive power Ehyd.
  • the power Etar_MG is supplied to the generator electric motor 11 that operates as a motor, the maximum exhaust brake power Emax_exh is consumed by the exhaust brake, and the power corresponding to the difference between the regenerative power and the target generator power action power Etar_MG is supplied to the resistor 16. To consume.
  • step S2 all the regenerative power is converted into the driving force transmitted to the hydraulic pump 18. In this way, by supplying a part of the driving force required for the combined operation with the regenerative power, it is possible to improve the fuel efficiency of the engine 10 while effectively utilizing the regenerative power.
  • step S4 all the regenerative power is converted into the driving force transmitted to the hydraulic pump 18, and the throttle device 10b of the engine 10 is operated by the amount corresponding to the surplus regenerative power.
  • the throttle device 10b of the engine 10 is operated by the amount corresponding to the surplus regenerative power.
  • step S5 only the surplus regenerative power that cannot be consumed even by the exhaust brake is converted into heat by the resistor 16. In this way, by minimizing the consumption of regenerative power (conversion to heat) that does not contribute to the operation of the wheel loader 100, an environment-friendly wheel loader 100 can be realized.
  • a device to be added to the above-described embodiment is a torque for rotating the output shaft of the engine 10 when fuel is not injected (hereinafter, referred to as "motoring torque of the engine 10").
  • Motoring torque of the engine 10 Exhaust brakes, throttle valves, variable turbo throttles, etc. are included as devices that can positively adjust. Further, even if these devices are not provided, the engine motoring drive power can be calculated. In this case, the target drive power corresponding to the motoring torque of the engine 10 described above always has a constant value, that is, coincides with the drive power corresponding to the maximum motoring torque of the engine 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

走行時に必要な制動力を確実に得ることができ、且つ制動時に発生する回生動力を有効に利用する技術を提供する。 作業車両は、電動機から出力される回生動力、及び油圧ポンプを駆動する目標油圧駆動動力を演算し、回生動力が目標油圧駆動動力以下の場合に、回生動力をモータとして動作する発電電動機に供給して消費させ、回生動力が目標油圧駆動動力より大きい場合に、回生動力をモータとして動作する発電電動機に供給させると共に、回生動力と目標油圧駆動動力との差に相当する動力を排気ブレーキに消費させる。

Description

作業車両
 本発明は、掘削等の作業及び走行が可能な作業車両に関し、特に電動機を走行用アクチュエータとして備える作業車両に関する。
 近年、建設機械を含む作業車両の分野において、特に省エネルギを目的として走行用アクチュエータに電動機を採用し、油圧力及び電力を併用した所謂ハイブリッド機の開発が進んでいる。例えば、特許文献1には、ホイールローダの走行駆動部を電動化し、走行制動時に電動機から生じる回生電力を回収し、この回生電力を走行や作業用アクチュエータの駆動に用いる技術が開示されている。
 このようなハイブリッドホイールローダでは、降坂走行や走行制動時にプロペラシャフトを介して作用する回転力によって、走行用電動機の回転軸が回転し、この回転に伴って走行用電動機が回生電力を発生させる。そして、発生した回生電力は、バッテリやキャパシタなどの蓄電装置に充電される。なお、走行用電動機が回生電力を発電する際には、回転軸の回転に抗する力が生じ、この抵抗力が走行に対するブレーキとして作用する。
国際公開第2014/175195号
 しかしながら、大きなブレーキ力を発生させるほど、発生する回生電力も大きくなるので、これに対応するために極めて大容量の蓄電装置が必要となる。さらに、蓄電装置がフル充電されている場合には、それ以上充電することができないので、必要なブレーキ力を得ることができないという課題がある。
 本発明は、上記した実状に鑑みてなされたものであり、その目的は、走行用のアクチュエータとして電動機を採用した作業車両において、走行時に必要な制動力を確実に得ることができ、且つ制動時に発生する回生動力を有効に利用する技術を提供することにある。
 上記目的を達成するために、本発明は、エンジンと、前記エンジンの駆動力で発電する発電電動機と、前記発電電動機から供給される電力で駆動する電動機と、前記電動機の駆動力が伝達されて回転する駆動輪と、前記エンジンまたはモータとして動作する前記発電電動機の駆動力が伝達されて作動油を圧送する油圧ポンプと、前記油圧ポンプから作動油の供給を受けて動作する油圧アクチュエータと、前記エンジンの排気管路に排気ブレーキを作動させるための絞り装置と、前記発電電動機及び絞り装置の動作を制御する制御装置とを備える作業車両であって、前記制御装置は、前記電動機から出力される回生動力、及び前記油圧ポンプを駆動する目標油圧駆動動力を演算し、前記回生動力が前記目標油圧駆動動力以下の場合に、前記回生動力をモータとして動作する前記発電電動機に供給して消費させ、前記回生動力が前記目標油圧駆動動力より大きい場合に、前記回生動力をモータとして動作する前記発電電動機に供給させると共に、前記回生動力と前記目標油圧駆動動力との差に相当する動力を前記排気ブレーキに消費させることを特徴とする。
 本発明によれば、走行用のアクチュエータとして電動機を採用した作業車両において、走行時に必要な制動力を確実に得ることができると共に、制動時に発生する回生動力を有効に利用することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本実施形態に係るホイールローダの側面図である。 ホイールローダのハードウェア構成図である。 制御装置の機能ブロック図である。 実エンジン回転数と、最大排気ブレーキ動力との対応関係を示す図である。 ホイールローダによるVシェープローディングを説明する説明図である。 ホイールローダの各作業におけるエンジン回転数、油圧駆動動力、目標油圧駆動動力、目標排気ブレーキ消費動力、及び目標ブレーキ抵抗器消費動力の関係を示す図である。 目標ブレーキ動力配分演算部によるEtar_MG、Etar_exh、Etar_brの演算処理を示すフローチャートである。
 以下、図面を参照して、本発明に係るホイールローダ100の各実施形態について説明する。なお、本明細書中の前後左右は、特に断らない限り、ホイールローダ100に搭乗して操作するオペレータの視点を基準としている。また、本実施形態では、パワーを動力として以下に説明する。
 図1は、本実施形態に係るホイールローダ100の側面図である。ホイールローダ100は、リフトアーム101、バケット102、及び左右一対の前輪103等を有する前フレーム104と、キャブ105、及び左右一対の後輪106等を有する後フレーム107とで構成される。
 前輪103及び後輪106は、ホイールローダ100に搭載された電動機14(図2参照)によって駆動される駆動輪である。より詳細には、電動機14は、エンジン10の駆動力によって発電電動機11で発電された電力が供給されて回転する。そして、電動機14の回転駆動力は、トランスミッション(図示省略)で変速されて、プロペラシャフト及びアクスルを介して前輪103及び後輪106に伝達される。
 リフトアーム101は、リフトアームシリンダ108の伸縮によって上下方向に回動(俯仰動)する。バケット102は、バケットシリンダ109の伸縮によって上下方向に回動(クラウドまたはダンプ)する。リフトアーム101、バケット102、リフトアームシリンダ108、及びバケットシリンダ109は、フロント作業装置を構成している。
 前フレーム104と後フレーム107とは、センタピン110によって、左右方向に回転可能に連結されている。また、前フレーム104と後フレーム107とは、左右一対のステアリングシリンダ111L、111Rによって接続されている。ステアリングシリンダ111L、111Rは、前端が前フレーム104に接続され、後端が左右方向に回動可能な状態で後フレーム107に接続される。
 一対のステアリングシリンダ111L、111Rのうち一方を伸長、他方を縮退させることにより、センタピン110を中心として前フレーム104が後フレーム107に対して左右方向に屈曲する。これにより、前フレーム104と後フレーム107との相対的な取付角度が変化し、車体が屈曲して換向する。すなわち、このホイールローダ100は、センタピン110を中心に前フレーム104と後フレーム107とが屈曲されるアーティキュレート式である。
 キャブ105には、ホイールローダ100を操作するオペレータが搭乗する内部空間が形成されている。キャブ105の内部には、オペレータが着席するシート(図示省略)と、シートに着席したオペレータが操作する操作装置が配置されている。キャブ105に搭乗したオペレータが操作装置を操作することによって、ホイールローダ100が走行し、フロント作業装置が動作する。
 操作装置は、ホイールローダ100を操作するオペレータの操作を受け付ける。そして、操作装置は、オペレータの操作方向及び操作量に応じた操作信号を、制御装置20(図2参照)に出力する。操作装置は、例えば図2に示すように、油圧操作レバー31と、アクセルペダル32と、ブレーキペダル33と、FNRスイッチ34とを備える。
 油圧操作レバー31は、ステアリングシリンダ111L、111Rを伸縮させるステアリングレバー、リフトアームシリンダ108を伸縮させるアーム操作レバー、バケットシリンダ109を伸縮させるバケット操作レバーを含む。油圧操作レバー31は、各レバーの倒伏方向及び倒伏量を示すレバー信号を、操作信号として出力する。
 アクセルペダル32は、エンジン10の回転数を調整する。アクセルペダル32は、アクセル踏込率Rataccを、操作信号として出力する。ブレーキペダル33は、前輪103及び後輪106を制動する。ブレーキペダル33は、ブレーキ踏込率Ratbrkを、操作信号として出力する。FNRスイッチ34は、ホイールローダ100の進行方向(前進、後進、ニュートラル)を切り換える。FNRスイッチ34は、前進、後進、ニュートラルのいずれかを示すFNR信号を、操作信号として出力する。
 図2は、ホイールローダ100のハードウェア構成図である。ホイールローダ100は、エンジン(ENG)10と、発電電動機(M/G)11と、インバータ(INV)12、13と、電動機(M)14と、コンバータ(CONV)15と、抵抗器(BR)16と、作動油タンク17と、油圧ポンプ18と、方向切換弁19と、制御装置(M/C)20とを主に備える。
 エンジン10は、化石燃料を燃焼させて駆動力を発生させる。エンジン10の回転数は、ECU10aによって制御される。エンジン10の実際の回転数(実エンジン回転数ωEng)は、回転数センサ35によって検出される。そして、回転数センサ35は、検出した実エンジン回転数ωEngを示す回転数信号を、制御装置20に出力する。
 また、エンジン10の排気管路には、絞り装置10bが設けられている。絞り装置10bは、ECU10aの制御に従って、排気管路を通過する排気ガスの通過面積を増減させる。この絞り装置10bで排気ガスの通過面積を絞って排気ブレーキを作動させることにより、排気抵抗が負荷となってエンジン10が減速(回転数が低下)する。
 発電電動機11は、エンジン10の出力軸と同軸上にある回転軸にロータが取り付けられ、ロータの外周にステータが配置されている。発電電動機11は、エンジン10の駆動力が伝達されてロータが回転することによって、三相交流電力を発電する。
 インバータ12は、発電電動機11から出力された三相交流電力を直流電力に変換して、インバータ13に出力する。インバータ13は、インバータ12から出力された直流電力を三相交流電力に変換して、電動機14に出力する。
 電動機14は、インバータ13から三相交流電力の供給を受けて駆動力を発生させ、発生させた駆動力をプロペラシャフトに出力する。そして、駆動輪(前輪103及び後輪106)は、電動機14の駆動力がプロペラシャフトを介して伝達されることによって回転する。これにより、ホイールローダ100が走行する。
 ホイールローダ100の実際の走行速度(以下、「車速Vact」と表記する。)は、車速センサ36によって検出される。そして、車速センサ36は、検出した車速Vactを示す車速信号を、制御装置20に出力する。
 一方、ホイールローダ100を制動する際、電動機14は、電気ブレーキとして作動する。そして、電気ブレーキとして作動する電動機14は、回生電力(回生動力)を発電して、インバータ13に出力する。インバータ13は、電動機14から出力された三相交流の回生電力を直流電力に変換して、インバータ12及びコンバータ15に出力する。
 インバータ12は、インバータ13から出力された直流の回生電力を三相交流電力に変換して、発電電動機11に出力する。発電電動機11は、インバータ12から供給された三相交流電力によってモータとして動作し、エンジン10の出力軸(回転軸)を駆動する。すなわち、電動機14が発生させた回生電力の一部は、発電電動機11で駆動力に変換される。
 コンバータ15は、インバータ13から供給される直流電力を変圧して、抵抗器16に出力する。抵抗器16は、コンバータ15を通じて供給された回生電力を熱に変換する抵抗素子である。すなわち、電動機14が発生させた回生電力の一部は、抵抗器16で消費される。
 油圧ポンプ18は、可変容量型の油圧ポンプであって、エンジン10の出力軸に接続されている。すなわち、油圧ポンプ18は、エンジン10及びモータとして動作する発電電動機11の一方或いは両方の駆動力が伝達されて、作動油タンク17に貯留された作動油を方向切換弁19に圧送する。油圧ポンプ18から圧送される作動油の吐出圧力Pは、圧力センサ37によって検出される。そして、圧力センサ37は、検出した吐出圧力Pを示す圧力信号を、制御装置20に出力する。
 方向切換弁19は、作動油タンク17から出力された作動油を、リフトアームシリンダ108、バケットシリンダ109、及びステアリングシリンダ111L、111R(以下、これらを総称して、「油圧アクチュエータ」と表記する。)に供給する。より詳細には、方向切換弁19は、油圧操作レバー31の操作方向及び操作量に応じて、油圧アクチュエータに供給する作動油の供給方向及び流量を制御する。
 制御装置20は、ホイールローダ100全体の動作を制御する。より詳細には、制御装置20は、操作装置31~34から出力される操作信号、回転数センサ35から出力される回転数信号、車速センサ36から出力される車速信号、圧力センサ37から出力される圧力信号に基づいて、ECU10a(すなわち、エンジン10及び絞り装置10b)、インバータ12、13、及びコンバータ15の動作を制御する。
 制御装置20は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)を備える。制御装置20は、ROMに格納されたプログラムコードをCPUが読み出して実行することによって、後述する各機能ブロックが実現される。RAMは、CPUがプログラムを実行する際のワークエリアとして用いられる。
 但し、制御装置20の具体的な構成はこれに限定されず、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよい。
 図3は、制御装置20の機能ブロック図である。制御装置20は、目標電機駆動動力演算部21と、最大排気ブレーキ動力演算部22と、目標油圧駆動動力演算部23と、目標ブレーキ動力配分演算部24と、目標エンジン回転数演算部25とを備える。
 目標電機駆動動力演算部21は、アクセルペダル32から出力されるアクセル踏込率Rataccと、ブレーキペダル33から出力されるブレーキ踏込率Ratbrkと、FNRスイッチ34から出力されるFNR信号と、車速センサ36から出力される車速Vactとに基づいて、目標ブレーキ動力Etar_brkを演算する。
 目標ブレーキ動力Etar_brkは、前輪103及び後輪106が制動された際に、電動機14が発生させる回生動力(回生電力)の大きさを示す。すなわち、目標ブレーキ動力Etar_brkは、前輪103及び後輪106の制動力が大きいほど大きな値になる。
 目標ブレーキ動力Etar_brkは、ホイールローダ100の現在の車速Vactと、制動後の目標車速(目標走行速度)Vtarとの差が大きいほど、大きな値になる。例えば、目標車速Vtarは下記式1で演算され、目標ブレーキ動力Etar_brkは下記式2で演算される。式1のFNRは、FNR信号の値に対応する変数であって、前進のときに1、後進のときに-1、ニュートラルのときに0が設定される。また、式1、2のC、Cは予め定められた定数である。
Figure JPOXMLDOC01-appb-M000001
 そして、目標電機駆動動力演算部21は、演算した目標ブレーキ動力Etar_brkを、目標ブレーキ動力配分演算部24及び目標エンジン回転数演算部25に通知する。また、目標電機駆動動力演算部21は、目標ブレーキ動力Etar_brkに相当する電力(目標走行モータ回生動力)の出力を指示する制御信号を、インバータ13に出力する。
 最大排気ブレーキ動力演算部22は、回転数センサ35から出力される実エンジン回転数ωEngに基づいて、最大排気ブレーキ動力Emax_exhを演算する。最大排気ブレーキ動力Emax_exhは、絞り装置10bを最大まで絞ったときに排気ブレーキで消費される動力の大きさを示す。
 図4は、実エンジン回転数ωEngと、最大排気ブレーキ動力Emax_exhとの対応関係を示す図である。図4に示すように、最大排気ブレーキ動力Emax_exhは、実エンジン回転数ωEngの関数である。より詳細には、最大排気ブレーキ動力Emax_exhは、実エンジン回転数ωEngが高いほど大きな値になり、実エンジン回転数ωEngが低いほど小さな値になる。図4の対応関係は、実験或いはシミュレーションによって予め決定され、記憶装置(ROM、RAM)に記憶される。
 最大排気ブレーキ動力演算部22は、例えば、記憶装置に記憶された対応関係に基づいて、現在の実エンジン回転数ωEngに対応する最大排気ブレーキ動力Emax_exhを演算する。そして、最大排気ブレーキ動力演算部22は、演算した最大排気ブレーキ動力Emax_exhを、目標ブレーキ動力配分演算部24に通知する。
 目標油圧駆動動力演算部23は、油圧操作レバー31から出力されるレバー信号と、回転数センサ35から出力される実エンジン回転数ωEngと、圧力センサ37から出力される圧力信号とに基づいて、目標油圧駆動動力Ehydを演算する。そして、目標油圧駆動動力演算部23は、演算した目標油圧駆動動力Ehydを、目標ブレーキ動力配分演算部24及び目標エンジン回転数演算部25に通知する。
 目標油圧駆動動力Ehydは、油圧ポンプ18を駆動する動力の大きさを示す。具体的には、油圧操作レバー31から出力されるレバー信号と、回転数センサ35から出力される実エンジン回転数ωEngより油圧ポンプ18の目標流量を求める。その後、圧力センサ37から出力される圧力信号に目標流量を乗算した値を目標油圧駆動動力Ehydとして導出する。
 すなわち、目標油圧駆動動力Ehydは、油圧操作レバー31の倒伏量が大きいほど大きい値になり、実エンジン回転数ωEngが高いほど大きな値になり、油圧ポンプ18から出力される作動油の圧力が高いほど大きな値になる。
 例えば、目標油圧駆動動力Ehydは下記式3で演算される。式3のηは、油圧ポンプ18のポンプ効率であって、予め定められた定数である。また、式3のQは、油圧ポンプ18からの作動油の吐出流量であって、レバー信号で示される油圧操作レバー31の操作量及び実エンジン回転数ωEngに応じて変化する。さらに、式3のiは、ホイールローダ100が複数の油圧ポンプを搭載している場合に、各油圧ポンプを示すインデックスである。
Figure JPOXMLDOC01-appb-M000002
 目標ブレーキ動力配分演算部24は、目標電機駆動動力演算部21によって演算された目標ブレーキ動力Etar_brkと、最大排気ブレーキ動力演算部22によって演算された最大排気ブレーキ動力Emax_exhと、目標油圧駆動動力演算部23によって演算された目標油圧駆動動力Ehydとに基づいて、目標発電機力行動力Etar_MGと、目標排気ブレーキ消費動力Etar_exhと、目標ブレーキ抵抗器消費動力Etar_brとを演算する。目標ブレーキ動力配分演算部24の具体的な処理は、図7を参照して後述する。
 目標発電機力行動力Etar_MGは、油圧操作レバー31の操作量に応じて油圧アクチュエータを動作させるために、発電電動機11に供給すべき動力(回生電力)の大きさを示す。そして、目標ブレーキ動力配分演算部24は、演算した目標発電機力行動力Etar_MGに相当する電力の出力を指示する制御信号を、インバータ12に出力する。
 目標排気ブレーキ消費動力Etar_exhは、排気ブレーキに消費させる動力(駆動力)の大きさを示す。そして、目標ブレーキ動力配分演算部24は、演算した目標排気ブレーキ消費動力Etar_exhを排気ブレーキに消費させる制御信号を、ECU10aに出力する。
 目標ブレーキ抵抗器消費動力Etar_brは、抵抗器16に消費させるべき動力(回生電力)の大きさを示す。すなわち、目標ブレーキ抵抗器消費動力Etar_brは、目標ブレーキ動力Etar_brkのうち、抵抗器16が熱に変換すべき動力の大きさを示す。そして、目標ブレーキ動力配分演算部24は、演算した目標ブレーキ抵抗器消費動力Etar_brに相当する電力の出力を指示する制御信号を、コンバータ15に出力する。
 目標エンジン回転数演算部25は、目標油圧駆動動力演算部23によって演算された目標油圧駆動動力Ehydと、回転数センサ35から出力される実エンジン回転数ωEngとに基づいて、目標エンジン回転数を演算する。目標エンジン回転数は、エンジン10の回転数の目標値である。そして、目標エンジン回転数演算部25は、演算した目標エンジン回転数でエンジン10を回転させる制御信号を、ECU10aに出力する。目標エンジン回転数演算部25の具体的な処理は、図7を参照して後述する。
 次に、ホイールローダ100が掘削作業及び積み込み作業を行う際の方法の1つであるVシェープローディングについて説明する。図5は、ホイールローダ100によるVシェープローディングを説明する説明図である。図6は、ホイールローダ100の各作業におけるエンジン回転数、油圧駆動動力、目標油圧駆動動力Ehyd、目標排気ブレーキ消費動力Etar_exh、及び目標ブレーキ抵抗器消費動力Etar_brの関係を示す図である。
 まず、ホイールローダ100は、作業対象物である地山Aに向かって前進し(図5に示す矢印X1)、バケット102を地山Aに突入させた状態でチルトさせることにより掘削作業を行う。このとき、オペレータは、ホイールローダ100の駆動を増大させながらバケット102をチルトさせる複合操作を行う。このときに、制動力は発生しない。
 次に、掘削作業が終わると、ホイールローダ100は、掘削した土砂や鉱物等の荷をバケット102に積んだ状態で後退する。十分な距離を後退した後、オペレータは後進から前進への方向切換を行う(図5に示す矢印X2)。このとき、オペレータは、バケット102を動作させずに、ホイールローダ100を減速する単独操作を行う。そのため、図6の「V字掘削時(油圧不使用)」のように、エンジン回転数、油圧駆動動力、及び目標油圧駆動動力Ehydが低くなり、目標排気ブレーキ消費動力Etar_exhが高くなり、目標ブレーキ抵抗器消費動力Etar_brが低くなる傾向がある。
 次に、ホイールローダ100は、ダンプトラックBに向かって前進し(図5に示す矢印Y1)、ダンプトラックBの手前(破線のホイールローダ100の位置)で停止して、バケット102内の土砂を放土する。このとき、オペレータは、ホイールローダ100を減速させながらバケットをダンプする複合操作を行うので、図6の「V字掘削時(油圧使用)」の傾向を呈する。そのため、図6の「V字掘削時(油圧使用)」のように、エンジン回転数、油圧駆動動力、及び目標油圧駆動動力Ehydが高くなり、目標排気ブレーキ消費動力Etar_exh及び目標ブレーキ抵抗器消費動力Etar_brが低くなる傾向がある。
 次に、ホイールローダ100は、ダンプトラックBへの積み込み作業が終わると、バケット102内に荷が積まれていない状態で後退する。十分な距離を後退した後、オペレータは後進から前進への方向切換を行う(図5に示す矢印Y2)。このとき、オペレータは、バケット102を動作させずに、ホイールローダ100を減速する単独操作を行うので、図6の「V字掘削時(油圧不使用)」の傾向を呈する。そして、ホイールローダ100は、地山AとダンプトラックBとの間でV字形状に往復走行し、掘削作業及び積み込み作業を行う。
 また、ホイールローダ100は、作業現場の環境によっては、長い斜面を走行することがある。このとき、オペレータは、バケット102を動作させずに、前輪103及び後輪106を緩やかに制動して、ホイールローダ100の速度を制御する。そのため、図6の「降坂時」のように、エンジン回転数が高くなり、油圧駆動動力及び目標油圧駆動動力Ehydが低くなり、目標排気ブレーキ消費動力Etar_exh及び目標ブレーキ抵抗器消費動力Etar_brが高くなる傾向がある。
 次に、図7を参照して、前述したホイールローダ100の各動作時における制御装置20の処理を説明する。図7は、目標ブレーキ動力配分演算部24によるEtar_MG、Etar_exh、Etar_brの演算処理を示すフローチャートである。目標ブレーキ動力配分演算部24は、図7に示す処理を所定の時間間隔で繰り返し実行する。
 まず、目標ブレーキ動力配分演算部24は、目標電機駆動動力演算部21によって演算された目標ブレーキ動力Etar_brkと、目標油圧駆動動力演算部23によって演算された目標油圧駆動動力Ehydとを比較する(S1)。
 ここで、目標ブレーキ動力Etar_brkが目標油圧駆動動力Ehyd以下の場合とは、例えば、前述の複合操作が行われている場合のように、油圧ポンプ18に伝達すべき動力が大きく、目標油圧駆動動力Ehydのみで目標ブレーキ動力Etar_brkを賄うことができる場合である。
 そこで、目標ブレーキ動力配分演算部24は、Etar_brk≦Ehydと判定した場合に(S1:No)、目標発電機力行動力Etar_MG=Etar_brk、目標排気ブレーキ消費動力Etar_exh=0、目標ブレーキ抵抗器消費動力Etar_br=0に設定し、ECU10a、インバータ12、及びコンバータ15に制御信号を出力する(S2)。すなわち、制御装置20は、回生動力が目標油圧駆動動力Ehyd以下の場合に、回生動力をモータとして動作する発電電動機11に供給して消費させる。これにより、ステップS2では、電動機14が発生させた回生動力が全て発電電動機11に供給されて、油圧ポンプ18への駆動力に変換される。
 一方、目標ブレーキ動力Etar_brkが目標油圧駆動動力Ehydより大きい場合とは、油圧ポンプ18に伝達される動力が小さく、目標油圧駆動動力Ehydを回生動力のみで賄うことができる場合である。そこで、目標ブレーキ動力配分演算部24は、Etar_brk>Ehydと判定した場合に(S1:Yes)、目標ブレーキ動力Etar_brk及び目標油圧駆動動力Ehydの差と、最大排気ブレーキ動力Emax_exhとを比較する(S3)。
 目標ブレーキ動力Etar_brk及び目標油圧駆動動力Ehydの差は、回生動力から目標油圧駆動動力Ehydを消費した残りの動力(以下、「余剰回生動力」と表記する。)である。そして、余剰回生動力が最大排気ブレーキ動力Emax_exh以下の場合とは、例えば、前述の単独操作が行われている場合のように、余剰回生動力が比較的小さいので、余剰回生動力の全てを排気ブレーキで消費させることをできる場合である。
 そこで、目標ブレーキ動力配分演算部24は、Etar_brk>Ehydで(S1:Yes)、且つ(Etar_brk-Ehyd)≦Emax_exhと判定した場合に(S3:No)、目標発電機力行動力Etar_MG=Etar_brk、目標排気ブレーキ消費動力Etar_exh=Etar_brk-Ehyd、目標ブレーキ抵抗器消費動力Etar_br=0に設定し、ECU10a、インバータ12、及びコンバータ15に制御信号を出力する(S4)。すなわち、制御装置20は、回生動力が目標油圧駆動動力Ehydよりも大きく、且つ回生動力と目標油圧駆動動力Ehydとの差が最大排気ブレーキ動力Emax_exh以下の場合に、回生動力をモータとして動作する発電電動機11に供給すると共に、回生動力と目標油圧駆動動力Ehydとの差に相当する動力を排気ブレーキに消費させる。
 すなわち、ステップS4では、電動機14が発生させた回生動力が全て発電電動機11に供給されて、油圧ポンプ18への駆動力に変換されると共に、余剰回生動力が排気ブレーキで消費される。換言すれば、絞り装置10bが作動してエンジン10の目標排気ブレーキ消費動力Etar_exhが大きくなり、発電電動機11へ供給された回生動力がエンジン10及び油圧ポンプ18で消費可能となる。
 一方、余剰回生動力が最大排気ブレーキ動力Emax_exhより大きい場合とは、例えば、長い坂道を下っている場合のように、継続して大きな回生動力が発生して、余剰回生動力の全てを排気ブレーキで消費しきれない場合である。
 そこで、目標ブレーキ動力配分演算部24は、Etar_brk>Ehydで(S1:Yes)、且つ(Etar_brk-Ehyd)>Emax_exhと判定した場合に(S3:Yes)、目標発電機力行動力Etar_MG=Emax_exh+Ehyd、目標排気ブレーキ消費動力Etar_exh=Emax_exh、目標ブレーキ抵抗器消費動力Etar_br=Etar_brk-Etar_MGに設定し、ECU10a、インバータ12、及びコンバータ15に制御信号を出力する(S5)。すなわち、制御装置20は、回生動力と目標油圧駆動動力Ehydとの差が最大排気ブレーキ動力Emax_exhより大きい場合に、最大排気ブレーキ動力Emax_exh及び目標油圧駆動動力Ehydの和に相当する目標発電機力行動力Etar_MGをモータとして動作する発電電動機11に供給すると共に、最大排気ブレーキ動力Emax_exhを排気ブレーキに消費させ、さらに、回生動力と目標発電機力行動力Etar_MGとの差に相当する動力を抵抗器16に消費させる。
 上記の実施形態によれば、ステップS2において、回生動力の全てを油圧ポンプ18に伝達する駆動力に変換させる。このように、複合操作時に必要な駆動力の一部を回生動力で賄うことによって、回生動力を有効利用しつつ、エンジン10の燃費を向上させることができる。
 また、上記の実施形態によれば、ステップS4において、回生動力の全てを油圧ポンプ18に伝達する駆動力に変換し、余剰回生動力に相当する分だけエンジン10の絞り装置10bを作動させる。このように、エンジン10で賄っていた油圧ポンプ18の駆動力の一部を、回生動力で置き換えることによって、回生動力を有効利用しつつ、エンジン10の燃費を向上させることができる。
 また、上記の実施形態によれば、ステップS5において、排気ブレーキでも消費しきれない余剰回生動力のみが抵抗器16で熱に変換される。このように、ホイールローダ100の動作に寄与しない回生動力の消費(熱への変換)を最小限にすることによって、環境に配慮したホイールローダ100が実現できる。
 さらに、上記の実施形態によれば、電動機14で発生した回生動力を全て使い切るので、蓄電装置がフル充電されて必要なブレーキ力が得られないという事態を回避できる。すなわち、ホイールローダ100の走行時に必要な制動力を確実に得ることができる。
 なお、前述した複合操作及び単独操作と、ステップS2、S4、S5の処理との対応関係は一例であって、これに限定されるものではない。また、作業車両の具体例はホイールローダ100に限定されず、油圧ショベル、ダンプトラック、モータグレーダなどであってもよい。上述した実施形態に対し、追加される装置として考えられるのは、燃料を噴射していないときにエンジン10の出力軸を回転させるトルク(以下、「エンジン10のモータリングトルク」と表記する。)を積極的に調整できる装置として、排気ブレーキ、スロットルバルブ、可変ターボの絞り等が含まれる。また、これらの装置が仮に無かったとしても、エンジンモータリング駆動動力は算出可能である。この場合には、上記したエンジン10のモータリングトルクに対応した目標駆動動力は常に一定値、すなわち、最大のエンジン10のモータリングトルクに対応した駆動動力と一致する。
 上述した実施形態は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。
 10 エンジン
 10a ECU
 10b 絞り装置
 11 発電電動機
 12,13 インバータ
 14 電動機
 15 コンバータ
 16 抵抗器
 17 作動油タンク
 18 油圧ポンプ
 19 方向制御弁
 20 制御装置
 21 目標電機駆動動力演算部
 22 最大排気ブレーキ動力演算部
 23 目標油圧駆動動力演算部
 24 目標ブレーキ動力配分演算部
 25 目標エンジン回転数演算部
 100 ホイールローダ
 101 リフトアーム
 102 バケット
 103 前輪
 104 前フレーム
 105 キャブ
 106 後輪
 107 後フレーム
 108 リフトアームシリンダ
 109 バケットシリンダ
 110 センタピン
 111L,111R ステアリングシリンダ
 

Claims (5)

  1.  エンジンと、前記エンジンの駆動力で発電する発電電動機と、前記発電電動機から供給される電力で駆動する電動機と、前記電動機の駆動力が伝達されて回転する駆動輪と、前記エンジンまたはモータとして動作する前記発電電動機の駆動力が伝達されて作動油を圧送する油圧ポンプと、前記油圧ポンプから作動油の供給を受けて動作する油圧アクチュエータと、前記エンジンの排気管路に排気ブレーキを作動させるための絞り装置と、前記発電電動機及び絞り装置の動作を制御する制御装置とを備える作業車両であって、
     前記制御装置は、
     前記電動機から出力される回生動力、及び前記油圧ポンプを駆動する目標油圧駆動動力を演算し、
     前記回生動力が前記目標油圧駆動動力以下の場合に、前記回生動力をモータとして動作する前記発電電動機に供給して消費させ、
     前記回生動力が前記目標油圧駆動動力より大きい場合に、前記回生動力をモータとして動作する前記発電電動機に供給させると共に、前記回生動力と前記目標油圧駆動動力との差に相当する動力を前記排気ブレーキに消費させることを特徴とする作業車両。
  2.  請求項1に記載の作業車両において、
     前記回生動力を熱に変換する抵抗器を備え、
     前記制御装置は、
     前記絞り装置を最大まで絞ったときに前記排気ブレーキで消費される最大排気ブレーキ動力を演算し、
     前記回生動力が前記目標油圧駆動動力よりも大きく、且つ前記回生動力と前記目標油圧駆動動力との差が前記最大排気ブレーキ動力以下の場合に、前記回生動力をモータとして動作する前記発電電動機に供給すると共に、前記回生動力と前記目標油圧駆動動力との差に相当する動力を前記排気ブレーキに消費させ、
     前記回生動力と前記目標油圧駆動動力との差が前記最大排気ブレーキ動力より大きい場合に、
     前記最大排気ブレーキ動力及び前記目標油圧駆動動力の和に相当する目標発電機力行動力をモータとして動作する前記発電電動機に供給すると共に、
     前記最大排気ブレーキ動力を前記排気ブレーキに消費させ、
     さらに、前記回生動力と前記目標発電機力行動力との差に相当する動力を前記抵抗器に消費させることを特徴とする作業車両。
  3.  請求項1に記載の作業車両において、
     前記制御装置は、前記作業車両の実際の走行速度と、アクセルペダルの踏込率、ブレーキペダルの踏込率、及び前記作業車両の進行方向から特定される目標走行速度とに基づいて、前記回生動力を演算することを特徴とする作業車両。
  4.  請求項1に記載の作業車両において、
     前記制御装置は、前記油圧ポンプの現在の吐出圧力及び吐出流量に基づいて、前記目標油圧駆動動力を演算することを特徴とする作業車両。
  5.  請求項2に記載の作業車両において、
     前記制御装置は、前記エンジンの現在の回転数に基づいて、前記最大排気ブレーキ動力を演算することを特徴とする作業車両。
PCT/JP2019/013663 2019-03-28 2019-03-28 作業車両 WO2020194680A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19921893.4A EP4071017B1 (en) 2019-03-28 2019-03-28 Work vehicle
JP2021508612A JP7071583B2 (ja) 2019-03-28 2019-03-28 作業車両
PCT/JP2019/013663 WO2020194680A1 (ja) 2019-03-28 2019-03-28 作業車両
US17/255,185 US11466432B2 (en) 2019-03-28 2019-03-28 Work vehicle
CN201980044470.9A CN112384424B (zh) 2019-03-28 2019-03-28 作业车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013663 WO2020194680A1 (ja) 2019-03-28 2019-03-28 作業車両

Publications (1)

Publication Number Publication Date
WO2020194680A1 true WO2020194680A1 (ja) 2020-10-01

Family

ID=72611230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013663 WO2020194680A1 (ja) 2019-03-28 2019-03-28 作業車両

Country Status (5)

Country Link
US (1) US11466432B2 (ja)
EP (1) EP4071017B1 (ja)
JP (1) JP7071583B2 (ja)
CN (1) CN112384424B (ja)
WO (1) WO2020194680A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113323069B (zh) * 2021-06-04 2022-11-29 三一重机有限公司 一种适用于电动挖掘机的动力系统及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291451A (ja) * 1999-04-01 2000-10-17 Isuzu Motors Ltd シリーズハイブリッド車回生電力消費制御装置
JP2002315105A (ja) * 2001-04-12 2002-10-25 Komatsu Ltd ホイールローダ
WO2014175195A1 (ja) 2013-04-26 2014-10-30 日立建機株式会社 ハイブリッド式作業車両
JP2016104927A (ja) * 2013-03-13 2016-06-09 日立建機株式会社 ハイブリッド式作業車両

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953471A (ja) * 1995-08-11 1997-02-25 Jidosha Kiki Co Ltd ブレーキ力可変の排気ブレーキ装置
JP3946623B2 (ja) * 2002-11-29 2007-07-18 本田技研工業株式会社 燃料電池車両の制御装置
JP4640044B2 (ja) * 2005-06-01 2011-03-02 トヨタ自動車株式会社 自動車およびその制御方法
CN101037087A (zh) * 2006-03-14 2007-09-19 朱荣辉 一种机动车无级变速混合动力节能装置
US7658250B2 (en) * 2006-09-29 2010-02-09 Caterpillar Inc. Energy storage and recovery for a tracked machine
KR20130140104A (ko) * 2011-01-21 2013-12-23 히다찌 겐끼 가부시키가이샤 작업 차량의 제어 장치 및 작업 차량
JP5731331B2 (ja) * 2011-09-06 2015-06-10 日立建機株式会社 作業機械の動力回生装置
JP2013141339A (ja) * 2011-12-28 2013-07-18 Daihatsu Motor Co Ltd 回生制御装置
JP2015063847A (ja) * 2013-09-25 2015-04-09 日立建機株式会社 作業車両
DE102013021607A1 (de) * 2013-09-27 2015-04-02 Liebherr-Components Biberach Gmbh Selbstfahrende Arbeitsmaschine sowie Verfahren zum Abbremsen einer solchen Arbeitsmaschine
JP2016111891A (ja) * 2014-12-10 2016-06-20 トヨタ自動車株式会社 車両用制動力制御装置
JP2016175493A (ja) * 2015-03-19 2016-10-06 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法
JP2018105114A (ja) * 2018-02-22 2018-07-05 株式会社小松製作所 作業車両及びその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291451A (ja) * 1999-04-01 2000-10-17 Isuzu Motors Ltd シリーズハイブリッド車回生電力消費制御装置
JP2002315105A (ja) * 2001-04-12 2002-10-25 Komatsu Ltd ホイールローダ
JP2016104927A (ja) * 2013-03-13 2016-06-09 日立建機株式会社 ハイブリッド式作業車両
WO2014175195A1 (ja) 2013-04-26 2014-10-30 日立建機株式会社 ハイブリッド式作業車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071017A4

Also Published As

Publication number Publication date
JPWO2020194680A1 (ja) 2021-09-13
EP4071017A1 (en) 2022-10-12
CN112384424A (zh) 2021-02-19
US20210262198A1 (en) 2021-08-26
EP4071017A4 (en) 2022-11-23
US11466432B2 (en) 2022-10-11
CN112384424B (zh) 2024-06-14
EP4071017B1 (en) 2023-12-13
JP7071583B2 (ja) 2022-05-19

Similar Documents

Publication Publication Date Title
JP4732284B2 (ja) 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械
US6705030B2 (en) Wheel loader
JP5676739B2 (ja) ホイールローダ
WO2018062332A1 (ja) 作業車両
JP5000430B2 (ja) ハイブリッド型作業機械の運転制御方法および同方法を用いた作業機械
JP6434128B2 (ja) ハイブリッド式作業車両
JP2011525448A (ja) ハイブリッドエネルギシステムを制御するシステム
JP6433687B2 (ja) ハイブリッド式ホイールローダ
US10183673B2 (en) Powertrain operation and regulation
JP2003155760A5 (ja)
WO2007040656A1 (en) Crowd force control in electrically propelled work machine
CN107407076A (zh) 工程机械的控制装置
JP6626371B2 (ja) ハイブリッド作業機械
JP7071583B2 (ja) 作業車両
JP6051364B2 (ja) 作業車両
JP2010047125A (ja) ハイブリッド建設機械の走行制御回路
JP7374144B2 (ja) 作業車両
WO2018062314A1 (ja) 作業車両
US11946225B2 (en) Method and systems for controlling electrically-powered hydraulic circuits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019921893

Country of ref document: EP

Effective date: 20211028