Nothing Special   »   [go: up one dir, main page]

WO2014175195A1 - ハイブリッド式作業車両 - Google Patents

ハイブリッド式作業車両 Download PDF

Info

Publication number
WO2014175195A1
WO2014175195A1 PCT/JP2014/061097 JP2014061097W WO2014175195A1 WO 2014175195 A1 WO2014175195 A1 WO 2014175195A1 JP 2014061097 W JP2014061097 W JP 2014061097W WO 2014175195 A1 WO2014175195 A1 WO 2014175195A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
engine
work vehicle
hybrid
Prior art date
Application number
PCT/JP2014/061097
Other languages
English (en)
French (fr)
Inventor
金子 悟
徳孝 伊藤
伊君 高志
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2014175195A1 publication Critical patent/WO2014175195A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18118Hill holding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • B60L15/2081Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off for drive off on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid work vehicle, and more particularly to a hybrid work vehicle suitable for controlling a work vehicle on a slope.
  • the conventional wheel loader excavates and conveys earth and sand etc. in the bucket part of the hydraulic working device at the front part while traveling by transmitting the engine power to the tires with a torque converter (torque converter) and transmission (T / M). Vehicle.
  • torque converter torque converter
  • T / M transmission
  • the traveling drive portion of such a wheel loader when the traveling drive portion of such a wheel loader is electrified, the power transmission efficiency of the torque converter and the transmission portion can be improved to the power transmission efficiency by electric drive. Further, since the wheel loader repeats the starting and stopping traveling operations frequently during the work, when the traveling drive part is electrified, regenerative power recovery during braking can be expected from the traveling motor. Therefore, when traveling on a hill with a vehicle with a traveling drive portion electrified, if the traveling direction of the vehicle is opposite to the torque direction of the traveling motor (that is, the brake is applied by the motor), the traveling motor is Becomes a power generation operation and generates electric power.
  • This power can be charged as regenerative power to a storage device such as a battery or capacitor, or when the storage device is fully charged, the storage device cannot be charged at a portion that can be an electrical load of the hybrid system. Operates to consume regenerative power in minutes.
  • the traveling drive unit is driven by an electric motor, and the front work machine is driven by hydraulic pressure generated by a hydraulic pump, but both use electric power or hydraulic pressure generated by driving the engine.
  • a certain level of engine output is required.
  • the hybrid wheel loader stands by with the engine speed reduced to an idling speed as low as idling in consideration of fuel consumption and the like when stopped before work. For this reason, even if the technique of Japanese Patent Application Laid-Open No. 2012-51457 is applied to the hybrid wheel loader as it is, the engine output is not effective when the climbing operation and the excavation operation by the front work machine are started from the standby state on the uphill road. It is sufficient, and there is a possibility that smooth transition from the stand-by state to the climbing operation and the excavation operation is not possible.
  • an object of the present invention is to smoothly perform the climbing operation and the excavation work by the front part without causing insufficient power supply from the hybrid system when the climbing and excavation work is performed on a steep slope.
  • An object of the present invention is to provide a hybrid work vehicle that can be used.
  • the present invention controls a series hybrid system in which a generator is driven by an engine, and a traveling motor is driven by the electric power generated by the generator, and the series hybrid system is controlled. And a control device for controlling the electric motor for traveling so that the vehicle speed does not exceed a preset reverse speed when detecting a slip of the vehicle on a slope.
  • a control device for controlling the electric motor for traveling so that the vehicle speed does not exceed a preset reverse speed when detecting a slip of the vehicle on a slope.
  • the subsequent climbing operation and excavation work by the front part can be smoothly performed without causing insufficient power supply from the hybrid system. it can.
  • FIG. 1 is a system configuration diagram showing an overall configuration of a hybrid work vehicle according to an embodiment of the present invention. It is explanatory drawing of the characteristic work pattern of the wheel loader which is an example of the hybrid type work vehicle by one Embodiment of this invention. It is explanatory drawing of the characteristic work pattern of the wheel loader which is an example of the hybrid type work vehicle by one Embodiment of this invention. It is a block diagram which shows the structure of the control apparatus mounted in the hybrid type work vehicle by one Embodiment of this invention. It is a flowchart which shows the control content of the control apparatus mounted in the hybrid type work vehicle by one Embodiment of this invention. It is a flowchart which shows the control content of the control apparatus mounted in the hybrid type work vehicle by one Embodiment of this invention. It is a flowchart which shows the control content of the control apparatus mounted in the hybrid type work vehicle by one Embodiment of this invention.
  • FIGS. the configuration and operation of a hybrid work vehicle according to an embodiment of the present invention will be described with reference to FIGS. Initially, the whole structure of the hybrid type work vehicle by this embodiment is demonstrated using FIG.
  • a hybrid wheel loader will be described as an example of a hybrid work vehicle.
  • FIG. 1 is a system configuration diagram showing the overall configuration of a hybrid work vehicle according to an embodiment of the present invention.
  • a hybrid wheel loader which is an example of a hybrid work vehicle, travels by supplying electric power obtained by driving the motor generator 6 with the engine 1 or electric power stored in the power storage device 11 to the electric motor 9 for traveling.
  • This is a working vehicle for excavating and transporting soil and the like at the bucket portion of the hydraulic working device 5 at the front part.
  • the wheel loader generally has a traveling part (wheel part) and a front hydraulic working unit (lift / bucket part) as main drive parts.
  • the wheel loader excavates and transports sand and the like with the hydraulic working device 5 at the front of the vehicle driven by the hydraulic pump 4 while traveling with the four wheels WH using the output of the engine 1 as a main power source. It is a working vehicle.
  • the motor generator (MG) 6 and the inverter 7 that controls the motor generator (MG) 6 are mounted on the output shaft of the engine 1, the traveling motor 9 that is mounted on the propeller shaft 8 of the traveling unit, and the inverter 10 that controls the motor.
  • the power storage device 11 is electrically connected to the inverters 7 and 10 via the DCDC converter 12, and receives DC power between these power converters.
  • an electric double layer capacitor is assumed as the power storage device 11, and the DCDC converter 12 controls the step-up / step-down control of the capacitor voltage, and exchanges DC power with the inverters 7 and 10. .
  • the hybrid system targeted by the present embodiment is a configuration generally referred to as a series type.
  • the present invention is not limited to the configuration of FIG. 1, and the system includes at least the above-described series type configuration.
  • the hybrid wheel loader shown in FIG. 1 includes a hydraulic pump 4 that supplies hydraulic pressure to a hydraulic working device 5 at a front portion that performs excavation work such as earth and sand, and performs work according to the purpose.
  • the traveling operation of the vehicle is performed by driving the traveling motor 9 mainly using the power generated by the MG 6 by the power of the engine 1.
  • the power storage device 11 absorbs regenerative power during vehicle braking and assists the output of the engine 1 to contribute to reduction of vehicle energy consumption.
  • the control device 15 controls the hybrid system in an integrated manner in order to exhibit the performance required for the wheel loader. The detailed configuration of the control device 15 will be described later with reference to FIG.
  • the control device 15 controls the engine 1, the pump 4, the inverters 7 and 10, the DCDC converter 12, and the like.
  • FIGS. 2 and 3 are explanatory diagrams of characteristic work patterns of a wheel loader which is an example of a hybrid work vehicle according to an embodiment of the present invention.
  • FIG. 2 shows the contents of the V cycle excavation work which is the most typical work pattern among the characteristic work patterns of the wheel loader which is the subject of the present invention.
  • the wheel loader WL first moves forward with respect to an object to be excavated such as a gravel mountain, and loads a transported object such as gravel into a bucket so as to thrust into the object to be excavated OBJ of the gravel mountain. Thereafter, the vehicle moves backward to return to the original position, and moves forward toward the transport vehicle CV such as a dump truck while operating the steering and raising the front bucket portion. Then, after loading (unloading) the transported material on the transport vehicle CV, the vehicle moves backward again, and the wheel loader WL returns to the original position. The wheel loader WL repeats this operation while drawing a V-shaped locus as described above.
  • the control device 15 described above outputs the outputs from the engine 1 and the power storage device 11 and the hydraulic work device 5 and traveling so that the fuel consumption and work efficiency are highest in the entire hybrid system. Distribute to the motor 9.
  • This V-cycle excavation work is basically performed on a flat surface, and requires relatively large power during excavation that thrusts into the earth and sand pile with a large traction force or in a dump approach operation that simultaneously drives the traveling part and the front part.
  • a large output shortage does not occur by maintaining the engine 1 at a high rotational speed.
  • FIG. 3 shows the contents of “scraping work” performed on a slope such as an earth and sand mountain, which is another typical work pattern, among the characteristic work patterns of the wheel loader targeted by the present invention. .
  • the lifting work is classified as a heavy load work of the wheel loader WL.
  • the hoisting operation is an operation of climbing on a steep slope such as a sand and sand surface while repeating excavation and earthing with a front hydraulic working device. As described above, the hoisting operation travels up a steep slope while performing excavation work at the front portion, so that the power required for the entire vehicle becomes very large. For example, in order to supply the power required for the hoisting operation with the engine, it is necessary to increase in advance to the rotational speed until the rated output of the engine can be output.
  • the hybrid vehicle has an object of improving fuel efficiency while ensuring workability required for a wheel loader as a work vehicle. Therefore, when the vehicle is stopped on the slope immediately before the lifting work, the idling speed is reduced to a low speed (for example, 1000 min ⁇ 1 or less) so that the fuel consumption when the vehicle is stopped is minimized.
  • the engine is controlled. As described above, when the vehicle is stopped and the engine speed is reduced when the vehicle is stopped, when the vehicle is shifted to the hoisting operation, the vehicle cannot produce power immediately and has a steep slope. It is conceivable that the vehicle moves backward in the direction opposite to the traveling direction due to the influence of. At this time, depending on the slope of the slope, the vehicle may accelerate to a large reverse speed, and the operator may perform a braking operation more than necessary.
  • the electric power of the power storage device 11 is used immediately to avoid the backward movement of the vehicle from the electric motor 9 for traveling, and even when the vehicle starts the climbing operation, the engine rotation at that time still reaches the desired rotational speed. If it is not, it becomes difficult to give the power necessary for performing the front work in addition to the climbing operation, and the workability is remarkably lowered.
  • FIG. 4 is a block diagram showing a configuration of a control device mounted on a hybrid work vehicle according to an embodiment of the present invention.
  • 5 and 6 are flowcharts showing the control contents of the control device mounted on the hybrid work vehicle according to the embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 indicate the same parts.
  • control device 15 As each functional part, a system control unit 30 that controls the entire hybrid system, a power distribution unit 31 that distributes the output of the engine 1 and the output of the power storage device 11 to each drive unit, and vehicle requirements
  • An engine control unit 32 that determines a rotational speed command of the engine 1 according to an output value
  • an MG control unit 33 that determines a torque command of the MG 6 according to a power generation request value
  • a front hydraulic working device 5 calculated from a lever operation amount and the like
  • the hydraulic pressure control unit 34 for calculating the tilt angle command value of the hydraulic pump 4 from the required power value of the vehicle, calculating the torque command of the electric motor 9 for traveling from the required driving power value calculated from the accelerator / brake pedal operation amount and the current vehicle speed.
  • Each control unit of the traveling control unit 35 is provided. Further, control commands are given from the respective control units to the engine control unit 36, the converter control unit 37, the hydraulic control unit 38, and the inverter control unit 39, which are the component control units. In this control system, since the final output of the slope start control unit 20 becomes a torque command of the traveling motor 9, the control signal is output to the traveling control unit 35.
  • the slope start control unit 20 is input with an accelerator signal, a forward / reverse lever signal, a running motor speed signal, an engine speed signal, and the like.
  • the slope start control unit 20 executes control as described below in order to solve the problems on the slope described above.
  • step S21 the slope start control unit 20 executes a vehicle reverse detection process to detect the vehicle reverse state.
  • vehicle reverse detection process the input direction of the forward / reverse lever operated by the operator (forward or reverse or neutral) and the vehicle speed (convertible with the rotational speed of the electric motor 9 for traveling) as inputs are input. Look at the difference between the two signs.
  • the backward movement state of the vehicle is detected when the input of the forward / reverse lever is in the forward or reverse position and the sign of the vehicle speed is changed from the coincidence state to the disagreement state.
  • step S21A it is determined whether the current vehicle reverse speed is larger than the reverse speed set value set in the control device 15 in advance (whether the vehicle is reversing at a higher speed). to decide.
  • step S21B if the vehicle speed is larger than the reverse speed setting value, the torque of the electric motor 9 for traveling is increased in step S21B to suppress the reverse speed of the vehicle.
  • step S21A if the vehicle speed is within the set reverse speed value, the vehicle is not greatly retracted (slid down), so that the torque of the traveling motor 9 is particularly increased. Don't do it.
  • the reverse speed setting value is a value set in the control device 15 in advance. For example, a vehicle reverse speed of about ⁇ 2 km / h or ⁇ 3 km / h is appropriate. With such a reverse speed, even if the vehicle makes an unintended reverse, the operator can proceed to the next operation without applying an unnecessary brake.
  • the vehicle moves backward at a slower (slower) speed than the reverse speed set value. That is, the slope start control unit 20 controls the reverse speed so as to continue the reverse at a lower reverse speed than the preset reverse speed set value. Since the traveling electric motor 9 rotates in the backward direction, regenerative electric power is generated. Here, in order for the electric motor 9 for driving to drive in the forward direction, it is necessary to use electric power stored in the power storage device 11. On the other hand, the electric power of the power storage device 11 is not consumed by controlling the traveling motor 9 to generate regenerative power. As will be described later, in step S21C, the MG 6 is powered.
  • the traveling electric motor 9 since the electric power of the power storage device 11 is used, if the traveling electric motor 9 is operated in a powering operation, the electric power for operating the MG 6 in a powering operation is insufficient. On the other hand, in the present embodiment, since the traveling motor 9 is controlled so as to generate regenerative power, it is possible to prevent power shortage when the MG 6 is powered in step S21C. is there.
  • step S21C the MG 6 is caused to perform a power running operation, and the MG torque is further increased.
  • the rotational speed of the engine shaft mechanically connected to the MG 6 can be increased using the regenerative electric power from the traveling motor 9 generated during the reverse operation of the vehicle.
  • the above is the processing content of reverse speed suppression control and engine preliminary acceleration control.
  • step S23 of FIG. 5 it is confirmed whether the engine rotation accelerated by the power running operation of the MG 6 has reached the target rotation speed. .
  • the process returns to the vehicle reverse detection process in step S21 and the above process is repeated.
  • step S23 if the current engine speed reaches the target speed in the engine rotation determination process in step S23, it is determined that the power necessary for the next climbing operation and the lifting operation can be supplied. The process of No. 20 is terminated and the process proceeds to the next process.
  • the target engine speed of the engine 1 needs to be set in the control device 15 so as not to cause a shortage of engine output according to the work contents at that time.
  • the traveling electric motor 9 during the vehicle reverse restraining control outputs a corresponding torque so as not to slide down. Therefore, for example, the engine rotation target value can be set according to the magnitude of the torque generated by the traveling motor 9. That is, this is a method for estimating the current slope of the slope from the magnitude of the torque generated by the traveling motor 9 and estimating the power necessary for the subsequent operation. For example, in an operation on a steep slope as assumed in the present embodiment, an engine output near the rated value is required, and therefore the engine rotation target value is set near the rated rotation.
  • the above is the processing contents of the slope start control unit 20.
  • the accelerator is stepped on by the operator. After the engine speed reaches the target value during the reverse speed suppression control, the torque of the electric motor 9 for traveling is increased and It is described so as to move uphill (forward).
  • the operator is not stepping on the accelerator, it is determined that there is no intention to move forward at that time, and the torque of the traveling motor 9 is increased even after the engine speed reaches the target value during the reverse speed suppression control. Therefore, it is possible to continue the reverse speed suppression control without moving forward.
  • regenerative electric power is continuously generated from the traveling electric motor 9 during retreat. This regenerative power is consumed by charging the power storage device 11 or by continuously driving the MG to rotate the engine shaft.
  • the slope start control unit 20 in the control device 15, it is possible to suppress the vehicle slippage that occurs at the start of work on the steep slope of the hybrid wheel loader, and to perform subsequent climbing operation and lifting It is possible to carry out the work without power shortage.
  • the subsequent climbing operation and excavation work by the front part are performed without insufficient power supply from the hybrid system. Can be done smoothly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 ハイブリッド式作業車両は、エンジン(1)で発電機(6)を駆動し、発電機で発電された電力により走行用電動機(9)を駆動して走行を行うシリーズハイブリッドシステムと、制御装置(15)とを有する。制御装置(15)の坂道発進制御部(20)は、坂道での車両のずり下がりを検出した際、車両速度を予め設定された後退速度を超えないように走行用電動機(9)を回生動作させるとともに、その際のエンジン回転数が制御装置(15)で決定される目標回転数以下である場合において、走行用電動機(9)で発生している回生電力を用いて発電機(6)をモータ駆動し、エンジン軸の回転速度を増加させる。

Description

ハイブリッド式作業車両
 本発明は、ハイブリッド式作業車両に係り、特に、坂道における作業車両の制御に好適なハイブリッド式作業車両に関する。
 近年,環境問題,原油高騰などの点から,各工業製品に対して省エネ志向が強まっている。これまでディーゼルエンジンを動力源とした油圧駆動システムが中心であった建設車両,作業用車両等の分野においてもその傾向にあり、電動化による高効率化,省エネルギー化の事例が増加してきている。
 例えば、前述の建設車両や作業用車両の駆動部分を電動化した場合,排気ガスの低減のほか,エンジンの高効率駆動(ハイブリッド機種の場合),動力伝達効率の向上,回生電力の回収など多くの省エネルギー効果が期待できる。このような建設車両・作業用車両分野では,フォークリフトの電動化が最も進んでおり,バッテリーの電力を用いてモータを駆動する、いわゆる「バッテリーフォークリフト」が他車両に先駆けていち早く実用化されており、小形フォークリフトを中心にかなりの普及台数となってきている。また最近では、これに引き続いて、油圧ショベル、エンジン式フォークリフトなどにおいて、ディーゼルエンジンと電気モータを組み合わせた「ハイブリッド車両」が製品化され始めている。
 さらに、上記のように電動化による環境対応・省エネルギー化が進む建設車両・作業用車両の中で、今後、ハイブリッド化した場合の効果として比較的大きな燃費低減効果が見込まれる車両にホイールローダがある。従来のホイールローダは、エンジンの動力をトルクコンバータ(トルコン)およびトランスミッション(T/M)によりタイヤに伝えて走行を行いながら、フロント部の油圧作業装置のバケット部分で土砂等を掘削・運搬する作業用車両である。
 例えば、このようなホイールローダの走行駆動部分を電動化した場合、トルコン、トランスミッション部分の動力伝達効率を電機駆動による動力伝達効率までに向上させることが可能となる。さらにホイールローダでは、作業中、頻繁に発進・停止の走行動作を繰り返すため、走行駆動部分を電動化した場合には、走行用の電動機から制動時の回生電力回収が見込める。よって、走行駆動部分を電動化した車両で坂道を走行する際、車両の進行方向と走行用電動機のトルク方向が逆(すなわち、電動機にてブレーキをかける動作)となった場合には走行用電動機が発電動作となり、電力を発生する。この電力は回生電力としてバッテリーやキャパシタ等の蓄電デバイスに充電されるか、もしくは蓄電デバイスが満充電状態となっていた場合などにはハイブリッドシステムの電気的な負荷となりうる部分で蓄電デバイスに充電できない分の回生電力を消費するよう動作する。
 このようなハイブリッド車両をはじめとする電機駆動システムの坂道等での車両制御方法としては、エンジンで駆動されるMG(モータジェネレータ)が発電中、駆動モータの回転数符号が反転したときに、駆動モータを回生させるとともにMGを力行動作に切り替えるものが知られている(例えば、特開2012-51457号公報参照)。特開2012-51457号公報に記載のものでは、坂道等において駆動モータから回生電力が発生した際、エンジンに機械的に接続されたMGを即時力行動作に切り替えるため、エンジンの応答遅れが影響するバッテリーへの過充電を回避することが可能となる。
特開2012-51457号公報
 特開2012-51457号公報に記載のものでは、車両が坂道等で後退した場合、駆動モータに回生トルクが発生し、モータジェネレータが力行に切り換えられるため、エンジン回転数が速やかに上昇し車両が即時に登坂動作に移行することとなる。
 ところで、ハイブリッド式ホイールローダでは、走行駆動部は電動機によって駆動され、フロント作業機は油圧ポンプにて発生した油圧により駆動されるが、いずれもエンジンの駆動により発生した電力または油圧力を用いるため、それらを駆動するためには、ある程度以上のエンジン出力が必要である。そして、ハイブリッド式ホイールローダは、作業前の停止時に、燃費等を考慮してエンジン回転数をアイドリング時程度の低回転数にまで落として待機していることが多い。そのため、特開2012-51457号公報の技術をそのままハイブリッド式ホイールローダに適用してみても、登坂路での待機状態から登坂動作とフロント作業機による掘削動作を開始した場合に、エンジン出力が不十分で、待機状態から登坂動作と掘削動作にスムーズに移行できない可能性がある。
 そこで、本発明の目的は、急勾配の斜面で登坂と掘削作業を実施する際に、その後の登坂動作とフロント部による掘削作業をハイブリッドシステムからのパワー供給不足が生じることなくスムーズに作業を行うことができるハイブリッド式作業車両を提供することにある。
 上記目的を達成するために、本発明は、エンジンで発電機を駆動し、前記発電機で発電された電力により走行用電動機を駆動して走行を行うシリーズハイブリッドシステムと、該シリーズハイブリッドシステムを制御する制御装置とを有するハイブリッド式作業車両であって、前記制御装置は、坂道での車両のずり下がりを検出した際、車両速度を予め設定された後退速度を超えないように前記走行用電動機を回生動作させるとともに、その際のエンジン回転数が前記制御装置で決定される目標回転数以下である場合において、前記走行用電動機で発生している回生電力を用いて前記発電機をモータ駆動し、前記エンジンの軸の回転速度を増加させる坂道発進制御部を備えるようにしたものである。 
 かかる構成により、急勾配の斜面で登坂と掘削作業を実施する際にも車両のずり下がりを防止し、その後の登坂動作とフロント部による掘削作業をハイブリッドシステムからのパワー供給不足が生じることなくスムーズに作業を行うことができるものとなる。
 本発明によれば、急勾配の斜面で登坂と掘削作業を実施する際に、その後の登坂動作とフロント部による掘削作業をハイブリッドシステムからのパワー供給不足が生じることなくスムーズに作業を行うことができる。
本発明の一実施形態によるハイブリッド式作業車両の全体構成を示すシステム構成図である。 本発明の一実施形態によるハイブリッド式作業車両の一例であるホイールローダの特徴的な作業パターンの説明図である。 本発明の一実施形態によるハイブリッド式作業車両の一例であるホイールローダの特徴的な作業パターンの説明図である。 本発明の一実施形態によるハイブリッド式作業車両に搭載する制御装置の構成を示すブロック図である。 本発明の一実施形態によるハイブリッド式作業車両に搭載する制御装置の制御内容を示すフローチャートである。 本発明の一実施形態によるハイブリッド式作業車両に搭載する制御装置の制御内容を示すフローチャートである。
 以下、図1~図6を用いて、本発明の一実施形態によるハイブリッド式作業車両の構成及び動作について説明する。 
 最初に、図1を用いて、本実施形態によるハイブリッド式作業車両の全体構成について説明する。ここでは、ハイブリッド式作業車両として、ハイブリッドホイールローダを一例として説明する。
 図1は、本発明の一実施形態によるハイブリッド式作業車両の全体構成を示すシステム構成図である。
 ハイブリッド式作業車両の一例であるハイブリッドホイールローダは、エンジン1でモータジェネレータ6を駆動して得られる電力または蓄電装置11に蓄えられた電力を走行用電動機9に供給することで走行を行いながら、フロント部の油圧作業装置5のバケット部分で土砂等を掘削・運搬する作業用車両である。
 ホイールローダは、一般に主な駆動部として、走行部(ホイール部分)とフロントの油圧作業装置(リフト/バケット部分)を有している。ホイールローダは、エンジン1の出力を主動力源にして、4輪の車輪WHにより走行を行いながら、さらに油圧ポンプ4によって駆動される車両フロント部の油圧作業装置5で土砂等を掘削・運搬する作業用車両である。
 エンジン1の出力軸にモータジェネレータ(MG)6、それを制御するインバータ7、ならびに、走行部のプロペラシャフト8軸上に取り付けられた走行用電動機9、それを制御するインバータ10が搭載される。また、蓄電装置11はDCDCコンバータ12を介してインバータ7,10と電気的に接続されており、これらの電力変換器の間で直流電力の収受を行う。特に本実施例では、蓄電装置11として電気2重層キャパシタを想定して記載しており、DCDCコンバータ12によってキャパシタ電圧の昇降圧制御を行い、インバータ7、10との間で直流電力の受け渡しを行う。
 以上、本実施形態が対象とするハイブリッドシステムは一般にシリーズ型といわれる構成であるが、本発明は図1の構成に限定されることなく、システムに少なくとも上記シリーズ型の構成が含まれていれば適用可能である。なお、図1に示すハイブリッドホイールローダは、土砂などの掘削作業を行うフロント部の油圧作業装置5に油圧を供給する油圧ポンプ4を備えていて、目的に応じた作業を実施する。それに対して、車両の走行動作は、主にエンジン1の動力によりMG6で発電した電力を利用し、走行用電動機9を駆動することにより行う。その際、蓄電装置11では車両制動時の回生電力の吸収やエンジン1に対する出力アシストを行い、車両の消費エネルギー低減に寄与する。
 そして、ホイールローダに必要な性能を発揮するためにハイブリッドシステムを統括的に制御するのが制御装置15である。制御装置15の詳細構成は、図4を用いて後述する。制御装置15は、エンジン1,ポンプ4,インバータ7,10,DCDCコンバータ12等を制御する。
 次に、図2及び図3を用いて、本実施形態によるハイブリッド式作業車両の一例であるホイールローダの特徴的な作業パターンについて説明する。 
 図2及び図3は、本発明の一実施形態によるハイブリッド式作業車両の一例であるホイールローダの特徴的な作業パターンの説明図である。
 図2は、本発明で対象としているホイールローダの特徴的な作業パターンの中で、最も代表的な作業パターンであるVサイクル掘削作業の内容を示している。
 ホイールローダWLはこのとき、まず砂利山などの掘削対象物に対して前進し、砂利山の掘削対象物OBJに突っ込むような形でバケットに砂利等の運搬物を積み込む。その後、後進して元の位置に戻り、ステアリングを操作しながら、かつフロントのバケット部分を上昇させながらダンプ等の運搬車両CVに向かって前進する。そして、運搬車両CVに運搬物を積み込んだ(放土した)後は再び後進し、ホイールローダWLは元の位置に戻る。ホイールローダWLは以上の説明のようにV字軌跡を描きながらこの作業を繰り返し行う。
 例えば、このようなVサイクル掘削作業において前述の制御装置15は、ハイブリッドシステム全体で最も燃費、および作業効率が高くなるように、エンジン1と蓄電装置11からの出力を油圧作業装置5および走行用電動機9に配分する。このVサイクル掘削作業は基本的にほぼ平地面で行われる作業であり、大きな牽引力で土砂山に突っ込む掘削時や走行部とフロント部を同時に駆動するダンプアプローチ動作で比較的大きなパワーを必要とするものの、エンジン1の回転数を高めに維持しておくことで大きな出力不足は生じない。
 図3は、本発明で対象としているホイールローダの特徴的な作業パターンの中で、他の代表的な作業パターンである土砂山等の斜面上で行う「かき上げ作業」の内容を示している。
 かき上げ作業は、ホイールローダWLの重負荷作業に分類されるものである。かき上げ作業は、土砂面などの急な斜面上において、フロントの油圧作業装置で掘削と放土を繰り返しながら登坂する動作である。以上のようにかき上げ作業は、フロント部で掘削作業を行いながら急な斜面を登坂走行するため、車両全体で必要とされるパワーは非常に大きいものとなる。例えば、かき上げ作業時に必要なパワーをエンジンで供給するためには、エンジンの定格出力を出せるまでの回転数まで予め上げておく必要がある。
 一方、ハイブリッド車は作業車両としてのホイールローダに必要な作業性を確保した上で、燃費性能を向上させるといった目的も有する。よって、かき上げ作業を行う直前に斜面上で車両を停止させた際にはアイドリング回転数を低回転(例えば1000min-1以下)まで低下させ、車両停止時の燃料消費量を最小限にとどめるようにエンジンの制御を行う。このように、燃費向上のため、車両の停止時においてエンジン回転数を低減させた状態からかき上げ作業に移行しようとした場合、車両はすぐにパワーを出せず、急な勾配となっている斜面の影響で進行方向とは逆方向に後退することが考えられる。このとき斜面の勾配によっては大きな後退速度まで加速してしまい、オペレータが必要以上にブレーキ操作を行うことになる可能性がある。
 あるいは、発進後、即座に蓄電装置11の電力を利用して走行用電動機9から車両の後退を回避し、登坂動作に移った場合においても、まだそのときのエンジン回転が所望の回転数まで達していない場合では登坂動作に加えてフロント作業を行うために必要なパワーを出すことが困難となり、著しく作業性を低下させることになる。
 次に、図4~図6を用いて、本実施形態によるハイブリッド式作業車両に搭載する制御装置の構成及びその制御内容について説明する。 
 図4は、本発明の一実施形態によるハイブリッド式作業車両に搭載する制御装置の構成を示すブロック図である。図5及び図6は、本発明の一実施形態によるハイブリッド式作業車両に搭載する制御装置の制御内容を示すフローチャートである。なお、図1と同一符号は、同一部分を示している。
 最初に、図4を用いて、制御装置15の内部構成について説明する。制御装置15内には、各々の機能部分として、ハイブリッドシステム全体の制御を行うシステム制御部30、エンジン1の出力と蓄電装置11の出力を各駆動部に分配する動力分配部31、車両の要求出力値に応じてエンジン1の回転数指令を決定するエンジン制御部32、発電要求値に応じてMG6のトルク指令を決定するMG制御部33、レバー操作量等から演算されたフロント油圧作業装置5の動力要求値から油圧ポンプ4の傾転角指令値を演算する油圧制御部34、アクセル/ブレーキペダル操作量、現在の車速から演算された走行動力要求値から走行用電動機9のトルク指令を演算する走行制御部35の各制御部を有する。さらに、各制御部から各コンポーネント制御部であるエンジン制御装置36,コンバータ制御装置37,油圧制御装置38,インバータ制御装置39にそれぞれ制御指令を与える。この制御系の中で坂道発進制御部20は、最終的な出力が走行用電動機9のトルク指令となるため、その制御信号は前記走行制御部35に対して出力される。
 坂道発進制御部20には、アクセル信号、前後進レバーの信号、走行用電動機の回転数信号、エンジン回転数の信号などが入力する。
 次に、図4を用いて、制御装置15の中の坂道発進制御部20の動作について説明する。
 坂道発進制御部20は、前述の坂道のおける課題を解決するために、以下の説明するような制御を実行する。
 坂道発進制御部20は、ステップS21において、車両後退検知処理を実行し、車両の後退状態を検出する。車両後退検知処理の具体的処理内容としては、入力としてオペレータが操作する前後進レバーの入力方向(前進or後進or中立)と車両速度(走行用電動機9の回転速度で換算可能)を入力として、2つの符号の差異をみる。その際、前後進レバーの入力が前進、あるいは後進の位置にあり、それに対して車両速度の符号が一致状態から不一致状態に変化したことで車両の後退状態を検出する。
 車両の後退検知後、次の処理として、後退速度抑制制御・エンジン予備加速制御を実行する。なお、この処理の詳細は、図6を用いて説明する。
 後退速度抑制制御・エンジン予備加速制御では、まず、ステップS21Aにおいて、現在の車両後退速度が予め制御装置15内に設定された後退速度設定値より大きいか(より大きい速度で後退しているか)を判断する。
 ここで、車両速度が後退速度設定値より大きければ、ステップS21Bで走行用電動機9のトルクを増加させ、車両の後退速度を抑制する。これに対して、ステップS21Aにおいて、車両速度が後退速度設定値以内であれば、車両は大きく後退している(ずり下がっている)訳ではないため、特に走行用電動機9のトルクを増加させることはしない。
 なお、上記後退速度設定値は、予め制御装置15内に設定されている値であり、例えば-2km/hや-3km/h程度の車両後退速度が適当である。この程度の後退速度であれば、車両が意図しない後退をしても特にオペレータが不要なブレーキをかけることなく、次の動作に移行できる。
 以上の制御により、車両は後退速度設定値よりも遅い(緩やかな)速度で後退する。すなわち、坂道発進制御部20は、予め設定した後退速度設定値よりも低速の後退速度で後退を持続するように、後退速度を制御する。走行用電動機9は後退方向に回転しているため、回生電力を発生する。ここで、走行用電動機9が前進方向に駆動するためには、蓄電装置11に蓄積された電力を用いる必要がある。それに対して、走行用電動機9が回生電力を発生するように制御されることで、蓄電装置11の電力が消費されることはないものである。後述するように、ステップS21Cでは、MG6は力行動作される。このとき、蓄電装置11の電力を用いるため、走行用電動機9を力行動作させると、MG6を力行動作させるための電力が不足することになる。それに対して、本実施形態では、走行用電動機9が回生電力を発生するように制御しているため、ステップS21Cにて、MG6を力行動作させる際には、電力不足とならないようにできるものである。
 その後、ステップS21Cにおいて、MG6を力行動作させ、さらにMGトルクを増加させる。このステップS21Cの動作により、車両の後退動作中に発生している走行用電動機9からの回生電力を用いて、MG6に機械的に接続されたエンジン軸の回転速度を増加することができる。
 ここで、前述のように、走行用電動機9の制御に際して低速の後退速度を持続するようにしている。すなわち、蓄電装置11の電力は消費してないものである。
 以上が後退速度抑制制御・エンジン予備加速制御の処理内容となる。
 さらに、後退速度抑制制御・エンジン予備加速制御の次の処理として、図5のステップS23のエンジン回転判定処理において、MG6の力行動作により加速されたエンジン回転が目標回転数に到達したかを確認する。ここで、現在のエンジン回転数がまだ目標回転数より低い状態であれば、ステップS21の上記車両後退検知処理に戻り、上記処理を繰り返す。
 それに対し、ステップS23のエンジン回転判定処理において現在のエンジン回転数が目標回転数に到達したならば、次の登坂動作、およびかき上げ作業に必要な動力を供給可能となったとして坂道発進制御部20の処理を終了し、次の処理に移行する。
 なお、上記エンジン1の目標回転数は制御装置15内において、その時々の作業内容に応じて、エンジン出力の不足が生じないようなエンジン回転を設定する必要がある。例えば、上記急な斜面では車両の後退抑制制御中の走行用電動機9は、ずり下がらないように相応のトルクを出している。そこで例えば、その走行用電動機9が発生しているトルクの大きさに応じてエンジン回転目標値を設定することができる。すなわち、走行用電動機9が発生しているトルクの大きさから現在の斜面の勾配を推定し、その後の動作に必要なパワーを推測する方式である。例えば、本実施例で前提としているような急斜面での作業においては、ほぼ定格付近のエンジン出力が必要になるため、エンジン回転目標値は定格回転付近を設定することになる。
 以上が坂道発進制御部20の処理内容である。なお、上記で説明した動作では、オペレータによりアクセルが踏まれているとして、後退速度抑制制御中にエンジン回転数が目標値に達した後、走行用電動機9のトルクを増して、車両の後退から登坂(前進)に移行するように記載している。これに対して、オペレータがアクセルを踏んでいない場合は、その時点では前進する意思が無いとして、後退速度抑制制御中にエンジン回転数が目標値に達した後でも走行用電動機9のトルクを増して前進に移らず、そのまま後退速度抑制制御を継続することが可能である。その際、走行用電動機9からは後退中、継続して回生電力が発生する。この回生電力は蓄電装置11に充電するか、もしくは継続してMGを力行動作させてエンジン軸を回転駆動することで消費する。
 以上のように、制御装置15内に坂道発進制御部20を実装することで、ハイブリッドホイールローダの急斜面での作業開始において発生する車両のずり下がりを抑制し、かつその後の登坂動作、およびかき上げ作業をパワー不足なく実施することが可能となる。
 以上説明したように、本実施形態によれば、急勾配の斜面で登坂と掘削作業を実施する際に、その後の登坂動作とフロント部による掘削作業をハイブリッドシステムからのパワー供給不足が生じることなく、スムーズに行うことができる。
1…エンジン
2…トルクコンバータ
3…トランスミッション(TM)
4…油圧ポンプ
5…フロント油圧作業装置
6…モータジェネレータ(MG)
7…インバータ
8…プロペラシャフト
9…走行用電動機
10…インバータ
11…蓄電装置
12…DCDCコンバータ
15…制御装置
20…坂道発進制御部
21…車両後退検知部
22…後退速度抑制制御・エンジン予備加速部
23…エンジン回転判定部
30…システム制御部
31…動力配分部
32…エンジン制御部
33…M/G制御部
34…油圧制御部
35…走行制御部
36~39…コンポーネント制御装置

Claims (5)

  1.  エンジンで発電機を駆動し、前記発電機で発電された電力により走行用電動機を駆動して走行を行うシリーズハイブリッドシステムと、該シリーズハイブリッドシステムを制御する制御装置とを有するハイブリッド式作業車両であって、
     前記制御装置は、坂道での車両のずり下がりを検出した際、車両速度を予め設定された後退速度を超えないように前記走行用電動機を回生動作させるとともに、その際のエンジン回転数が前記制御装置で決定される目標回転数以下である場合において、前記走行用電動機で発生している回生電力を用いて前記発電機をモータ駆動し、前記エンジンの軸の回転速度を増加させる坂道発進制御部を備えることを特徴とするハイブリッド式作業車両。
  2.  請求項1に記載のハイブリッド式作業車両において、
     前記坂道発進制御部は、前記設定された後退速度よりも低速の後退速度で後退を持続するように、後退速度を制御することを特徴とするハイブリッド式作業車両。
  3.  請求項2に記載のハイブリッド式作業車両において、
     前記制御装置で決定される目標回転数は、車両の後退速度が制限されている状態における前記走行用電動機のトルクの大きさに応じて決定されることを特徴とするハイブリッド式作業車両。
  4.  請求項2に記載のハイブリッド式作業車両において、
     前記坂道発進制御部は、前記車両が後退している間にオペレータによりアクセル操作が無かった場合は、車両速度が予め設定された後退速度を超えない状態で後退動作を継続することを特徴とするハイブリッド式作業車両。
  5.  請求項2に記載のハイブリッド式作業車両において、
     前記坂道発進制御部は、前記車両が後退している間にオペレータによりアクセル操作があった場合は、前記エンジン回転数が前記目標回転数に達した後、車両の登坂動作に移行することを特徴とするハイブリッド式作業車両。
PCT/JP2014/061097 2013-04-26 2014-04-18 ハイブリッド式作業車両 WO2014175195A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013093532A JP2016130030A (ja) 2013-04-26 2013-04-26 ハイブリッド式作業車両
JP2013-093532 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014175195A1 true WO2014175195A1 (ja) 2014-10-30

Family

ID=51791773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061097 WO2014175195A1 (ja) 2013-04-26 2014-04-18 ハイブリッド式作業車両

Country Status (2)

Country Link
JP (1) JP2016130030A (ja)
WO (1) WO2014175195A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106256627A (zh) * 2015-06-19 2016-12-28 现代自动车株式会社 用于在混合动力车辆中控制发动机启动时间的方法和装置
GB2573979A (en) * 2018-02-26 2019-11-27 Jaguar Land Rover Ltd A controller and a method of controlling speed of a vehicle
WO2020194680A1 (ja) 2019-03-28 2020-10-01 日立建機株式会社 作業車両
CN113370966A (zh) * 2021-07-06 2021-09-10 恒大恒驰新能源汽车研究院(上海)有限公司 混动汽车动力系统的油电切换控制方法、存储介质及电子设备
CN118422746A (zh) * 2024-07-05 2024-08-02 中联重科股份有限公司 电动滑移装载机及其控制方法、处理器和控制装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065915A1 (ja) * 2018-09-28 2020-04-02 日立建機株式会社 ホイールローダ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065107A (ja) * 2001-08-28 2003-03-05 Nissan Motor Co Ltd 車両の制御装置
JP2004215447A (ja) * 2003-01-07 2004-07-29 Toyota Industries Corp 車両の走行制御装置
JP2008199716A (ja) * 2007-02-09 2008-08-28 Hitachi Ltd 車両駆動装置及びそれに用いられる電子回路装置
JP2012051457A (ja) * 2010-09-01 2012-03-15 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065107A (ja) * 2001-08-28 2003-03-05 Nissan Motor Co Ltd 車両の制御装置
JP2004215447A (ja) * 2003-01-07 2004-07-29 Toyota Industries Corp 車両の走行制御装置
JP2008199716A (ja) * 2007-02-09 2008-08-28 Hitachi Ltd 車両駆動装置及びそれに用いられる電子回路装置
JP2012051457A (ja) * 2010-09-01 2012-03-15 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106256627A (zh) * 2015-06-19 2016-12-28 现代自动车株式会社 用于在混合动力车辆中控制发动机启动时间的方法和装置
CN106256627B (zh) * 2015-06-19 2020-03-24 现代自动车株式会社 用于在混合动力车辆中控制发动机启动时间的方法和装置
GB2573979A (en) * 2018-02-26 2019-11-27 Jaguar Land Rover Ltd A controller and a method of controlling speed of a vehicle
GB2573979B (en) * 2018-02-26 2020-09-02 Jaguar Land Rover Ltd A controller and a method of controlling speed of a vehicle
US12036872B2 (en) 2018-02-26 2024-07-16 Jaguar Land Rover Limited Controller and method of controlling speed of a vehicle
WO2020194680A1 (ja) 2019-03-28 2020-10-01 日立建機株式会社 作業車両
US11466432B2 (en) 2019-03-28 2022-10-11 Hitachi Construction Machinery Co., Ltd. Work vehicle
CN113370966A (zh) * 2021-07-06 2021-09-10 恒大恒驰新能源汽车研究院(上海)有限公司 混动汽车动力系统的油电切换控制方法、存储介质及电子设备
CN118422746A (zh) * 2024-07-05 2024-08-02 中联重科股份有限公司 电动滑移装载机及其控制方法、处理器和控制装置

Also Published As

Publication number Publication date
JP2016130030A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5676739B2 (ja) ホイールローダ
JP6014463B2 (ja) 作業車両
WO2014175195A1 (ja) ハイブリッド式作業車両
JP5174875B2 (ja) ハイブリッドホイールローダ
JP6434128B2 (ja) ハイブリッド式作業車両
JP6433687B2 (ja) ハイブリッド式ホイールローダ
WO2010114036A1 (ja) 電源システムを備えた建設機械及び産業車両
WO2015104878A1 (ja) ハイブリッド式ホイールローダ
WO2013024869A1 (ja) 作業車両
WO2013122101A1 (ja) 電動駆動式作業車両
KR101942674B1 (ko) 하이브리드 건설 기계
US20240157809A1 (en) Systems and methods for a hydraulic system
CN112469584B (zh) 作业车辆
JP2001008310A (ja) ホイール式建設機械の走行駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP