Nothing Special   »   [go: up one dir, main page]

WO2020012210A1 - 走行支援方法及び走行支援装置 - Google Patents

走行支援方法及び走行支援装置 Download PDF

Info

Publication number
WO2020012210A1
WO2020012210A1 PCT/IB2018/000877 IB2018000877W WO2020012210A1 WO 2020012210 A1 WO2020012210 A1 WO 2020012210A1 IB 2018000877 W IB2018000877 W IB 2018000877W WO 2020012210 A1 WO2020012210 A1 WO 2020012210A1
Authority
WO
WIPO (PCT)
Prior art keywords
entrance
vehicle
exit
lane
determined
Prior art date
Application number
PCT/IB2018/000877
Other languages
English (en)
French (fr)
Inventor
高松吉郎
藤田晋
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2018/000877 priority Critical patent/WO2020012210A1/ja
Priority to JP2020529831A priority patent/JP7026228B2/ja
Priority to US17/258,782 priority patent/US11565701B2/en
Priority to EP18926027.6A priority patent/EP3822584A4/en
Priority to CN201880095571.4A priority patent/CN112400096B/zh
Priority to KR1020217003908A priority patent/KR102611934B1/ko
Publication of WO2020012210A1 publication Critical patent/WO2020012210A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3658Lane guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18159Traversing an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3446Details of route searching algorithms, e.g. Dijkstra, A*, arc-flags, using precalculated routes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3461Preferred or disfavoured areas, e.g. dangerous zones, toll or emission zones, intersections, manoeuvre types, segments such as motorways, toll roads, ferries
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/05Type of road, e.g. motorways, local streets, paved or unpaved roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way

Definitions

  • the present disclosure relates to a driving support method and a driving support device.
  • the conventional driving support method discloses traveling control of the own vehicle when entering the roundabout
  • the own vehicle at the entrance through which the own vehicle passes when entering the roundabout is disclosed. Is not considered at all. For this reason, lanes may need to be changed while traveling on the ring road, and as a result, traveling of other vehicles may be hindered.
  • the present disclosure has been made in view of the above problem, and has as its object to provide a driving support method and a driving support device that can suppress the occurrence of lane changes in a ring road.
  • the present disclosure is a driving support method that includes a controller that calculates a target route for driving the own vehicle and executes driving support control based on the target route, and supports driving of the own vehicle.
  • this driving support method it is determined whether or not the vehicle has arrived at a roundabout having a ring road to which three or more radiation paths are connected.
  • the position of the entrance where the vehicle enters the ring road and the position of the exit where the vehicle exits the ring road are specified. Then, based on the positional relationship between the entrance and the exit, an entrance position which is the width direction position of the own vehicle at the entrance is set.
  • FIG. 1 is an overall system diagram illustrating an automatic driving control system to which a driving support method and a driving support device according to a first embodiment are applied. It is explanatory drawing which shows a roundabout.
  • FIG. 3 is a control block diagram illustrating a recognition determination processor according to the first embodiment.
  • 4 is a flowchart illustrating a flow of driving support control executed by a recognition determination processor according to the first embodiment.
  • 5 is a flowchart illustrating a flow of first entrance position setting control executed by a recognition determination processor according to the first embodiment.
  • 5 is a flowchart illustrating a flow of a second entrance position setting control executed by the recognition determination processor according to the first embodiment.
  • 6 is a flowchart illustrating a flow of a third entrance position setting control executed by the recognition determination processor according to the first embodiment.
  • 6 is a flowchart illustrating a flow of a fourth entrance position setting control executed by the recognition determination processor according to the first embodiment. It is explanatory drawing explaining the entrance position setting operation
  • the driving support method and the driving support device use the target route information (driving route information) generated by the recognition determination processor, and the driving / braking / steering angle is automatically controlled by selecting the automatic driving mode.
  • This is applied to a driving vehicle (an example of a driving support vehicle, own vehicle).
  • the configuration of the first embodiment will be referred to as “overall system configuration”, “control block configuration of recognition determination processor”, “processing configuration of driving support control”, “processing configuration of first entrance position setting control”, “second entrance configuration”.
  • the processing configuration of the position setting control, the processing configuration of the third entrance position setting control, and the processing configuration of the fourth entrance position setting control will be described separately.
  • the automatic driving system A includes an on-vehicle sensor 1, a map data storage unit 2, a recognition determination processor 3 (controller), an automatic driving control unit 4, an actuator 5, a display device 7, It has.
  • the vehicle-mounted sensor 1 includes a camera 11, a radar 12, a GPS 13, and a vehicle-mounted data communication device 14.
  • the sensor information obtained by the in-vehicle sensor 1 is output to the recognition determination processor 3.
  • the camera 11 is a surrounding recognition sensor that realizes, as a function required for automatic driving, a function of acquiring surrounding information of the own vehicle such as a lane, a preceding vehicle, or a pedestrian based on image data.
  • the camera 11 is configured by combining, for example, a front recognition camera, a rear recognition camera, a right recognition camera, and a left recognition camera of the own vehicle.
  • objects on the own vehicle traveling road lanes, objects outside the own vehicle traveling road (road structures, preceding vehicles, following vehicles, oncoming vehicles, surrounding vehicles, pedestrians, bicycles, two-wheeled vehicles), own vehicle traveling roads (road white lines) , Road boundaries, stop lines, pedestrian crossings) and road signs (speed limit) are detected.
  • the radar 12 is a distance measuring sensor that realizes, as functions required for automatic driving, a function of detecting the presence of an object around the vehicle and a function of detecting the distance to an object around the vehicle.
  • the “radar 12” is a general term including a radar using radio waves, a rider using light, and a sonar using ultrasonic waves.
  • a laser radar, a millimeter-wave radar, an ultrasonic radar, a laser range finder, or the like can be used.
  • the radar 12 is configured by combining, for example, a forward radar, a backward radar, a right radar, a left radar, and the like of the own vehicle.
  • the radar 12 detects the positions of objects on the own vehicle traveling road and objects outside the own vehicle traveling road (road structures, preceding vehicles, following vehicles, oncoming vehicles, surrounding vehicles, pedestrians, bicycles, two-wheeled vehicles), and the like. The distance to the object is detected. If the viewing angle is insufficient, it may be added as appropriate.
  • the GPS 13 is a vehicle position sensor that has a GNSS antenna 13a and detects the vehicle position (latitude / longitude) of a stopped or running vehicle by using satellite communication.
  • GNSS is an abbreviation for “Global Navigation Satellite System: Global Navigation Satellite System”
  • GPS is an abbreviation for “Global Positioning System: Global Positioning System”.
  • the in-vehicle data communication device 14 is an external data sensor that performs wireless communication with the external data communication device 8 via the transmission / reception antennas 8a and 14a, thereby obtaining information that cannot be obtained from the own vehicle from outside. is there.
  • the on-board data communication device 14 When the external data communication device 8 is, for example, a data communication device mounted on another vehicle running around the own vehicle, the on-board data communication device 14 performs inter-vehicle communication between the own vehicle and the other vehicle.
  • the in-vehicle data communicator 14 can acquire, through its inter-vehicle communication, information necessary for the own vehicle among various information held by the other vehicle at its own request.
  • the in-vehicle data communication device 14 performs infrastructure communication between the vehicle and the infrastructure equipment.
  • the in-vehicle data communicator 14 can acquire information necessary for the own vehicle from the various information held by the infrastructure equipment through this infrastructure communication at its own request. Accordingly, for example, when there is information that is insufficient in the map data stored in the map data storage unit 2 or information that has been changed from the map data, the missing information / change information can be supplemented. Further, traffic information such as traffic congestion information and travel regulation information on a target route on which the vehicle is scheduled to travel can also be obtained.
  • the map data storage unit 2 is constituted by an in-vehicle memory storing so-called electronic map data in which latitude and longitude are associated with map information.
  • the map data storage unit 2 transmits map data centering on the vehicle position to the recognition determination processor 3.
  • the map data has road information associated with each point, and the road information is defined by nodes and links connecting the nodes.
  • the road information includes information for specifying a road according to the position / area of the road, a road type for each road, a road width for each road, and road shape information.
  • the road information is stored in association with information on the position of the intersection, the approach direction of the intersection, the type of the intersection, and other intersections for each identification information of each road link.
  • the road information includes, for each piece of identification information of each road link, a road type, a road width, a road shape, whether or not the vehicle can go straight, a priority relation for traveling, whether or not passing (whether or not to enter an adjacent lane), a speed limit, and a road speed. Signs and other road information are stored in association with each other.
  • the recognition determination processor 3 integrates input information (vehicle surrounding information, own vehicle position information, map data information, destination information, and the like) from the on-vehicle sensor 1 and the map data storage unit 2 to obtain a target route (travel route). And a target vehicle speed profile (including an acceleration profile and a deceleration profile). Then, it outputs the generated target route information and target vehicle speed profile information to the automatic driving control unit 4 together with the own vehicle position information and the like. That is, the recognition determination processor 3 generates a target route from the current position to the destination based on the road information and the route search method from the map data storage unit 2, and the target vehicle speed profile and the like along the generated target route.
  • input information vehicle surrounding information, own vehicle position information, map data information, destination information, and the like
  • the recognition determination processor 3 determines that automatic driving cannot be maintained based on the sensing result around the own vehicle by the in-vehicle sensor 1 during the stop / run of the own vehicle along the target route. Based on this, the target route, the target vehicle speed profile, and the like are sequentially corrected. Note that even if the target route is corrected, it is referred to as a target route. That is, the target route includes the corrected route.
  • an entrance position setting control for setting a width direction position of the own vehicle V at the own vehicle entrance 105a (hereinafter, referred to as “entrance position”).
  • entrance position a target traveling position is set based on the entrance position information.
  • the target travel position information is output to the automatic driving control unit 4 together with the own vehicle position information and the like.
  • the “target traveling position” is a position of the own vehicle that is a target on the traveling path of the own vehicle V.
  • the recognition determination processor 3 determines whether or not the lane change toward the set entrance position can be executed based on the sensing result around the own vehicle and the own vehicle position information. Then, lane change enable / disable information, which is a result of determining whether or not lane change is possible, is generated. Then, the target travel position is reset based on the lane change availability information.
  • the “roundabout 100” is a type of an intersection where a vehicle traveling on a traveling road gives up traveling to a vehicle traveling on a priority road where the traveling road intersects, as shown in FIG. It is an annular intersection having an annular ring road 101 (an area surrounded by a broken line L2, a priority road) to which three or more (six in FIG. 3) radiation paths 110 (travel paths) are connected. That is, the roundabout 100 is a region surrounded by the broken line L1 including the ring road 101 and the connecting portion 102 between the ring road 101 and the radiation path 110.
  • a circular central island 103 is provided. This central island 103 is prohibited from running.
  • the ring road 101 allows a vehicle to travel in one way.
  • the traveling direction in the ring road 101 is clockwise in the case of left-hand traffic, and counterclockwise in the case of right-hand traffic.
  • a sign 104 indicating the traveling direction in the ring road 101 may be provided on the central island 103.
  • connection portion 102 is a region having a predetermined length radially outward of the ring road 101 from the boundary (dashed line L2) between the ring road 101 and each radiation path 110.
  • a portion of the connecting portion 102 where the vehicle enters the ring road 101 is referred to as an “entrance 105”, and a portion of the connecting portion 102 where the vehicle exits the ring road 101 is referred to as an “exit 106”.
  • the entrance 105 through which the own vehicle V passes when entering the ring road 101 is referred to as “own vehicle entrance 105a”, and the exit 106 through which the own vehicle V passes when exiting the ring road 101 is referred to as “own vehicle”. It is called "car exit 106a”.
  • the radiation path that travels when the vehicle V enters the ring road 101 among the radiation paths 110 is referred to as an “entering path 111”, and the radiation path that travels when the vehicle V exits the ring road 101. Is referred to as “exit road 112”. That is, the approach path 111 is the radiation path 110 having the own vehicle entrance 105a, and the exit path 112 is the radiation path 110 having the own vehicle exit 106a.
  • the vehicle entrance 105a, the vehicle exit 106a, the approach path 111, and the exit path 112 are all determined based on the target route (travel route) TR of the vehicle V.
  • the roundabout 100 is an intersection where a vehicle traveling on the radiation path 110 yields to a vehicle traveling on the ring road 101. Therefore, in this roundabout 100, a vehicle entering the ring road 101 must not obstruct the traffic of the vehicle traveling on the ring road 101, and the vehicle in the ring road 101 runs toward the entrance 105. When the vehicle is traveling, it is necessary for the vehicle entering the ring road 101 to stop at the entrance 105.
  • a separation island 107 mounted from the road surface may be provided between the entrance 105 and the exit 106.
  • the separation island 107 is for separating a vehicle entering the ring road 101 from a vehicle exiting the ring road 101.
  • a traffic signal 108 for controlling the entry of the vehicle into the ring road 101 may be provided in front of the entrance 105.
  • the automatic driving control unit 4 calculates a driving command value / braking command value / steering angle command value for driving / stopping the own vehicle by automatic driving along a target route and a target driving position. Calculate. Then, the calculation result of the drive command value is output to the drive actuator 51, the calculation result of the brake command value is output to the brake actuator 52, and the calculation result of the steering angle command value is output to the steering angle actuator 53.
  • the actuator 5 runs / stops the own vehicle along a target route or a target running position based on a control command input from the automatic driving control unit 4 or runs the own vehicle toward a set entrance position.
  • the actuator 5 includes a drive actuator 51, a braking actuator 52, and a steering angle actuator 53.
  • the drive actuator 51 is an actuator that receives a drive command value from the automatic operation control unit 4 and controls a drive force output to drive wheels.
  • an engine is used for an engine vehicle
  • an engine and a motor / generator (powering) are used for a hybrid vehicle
  • a motor / generator (powering) is used for an electric vehicle.
  • the braking actuator 52 is an actuator that receives a braking command value from the automatic driving control unit 4 and controls a braking force that is output to driving wheels.
  • a hydraulic booster for example, a hydraulic booster, an electric booster, a brake hydraulic actuator, a brake motor actuator, a motor / generator (regeneration), or the like is used.
  • the steering angle actuator 53 is an actuator that inputs a steering angle command value from the automatic driving control unit 4 and controls the steered angle of the steered wheels.
  • a steering motor or the like provided in a steering force transmission system of the steering system is used.
  • the display device 7 is a device that displays on a screen where the vehicle is moving on a map while the vehicle is stopped / running by automatic driving, and provides visual information of the vehicle position to a driver or an occupant.
  • the display device 7 inputs target route information, own vehicle position information, destination information, and the like generated by the recognition determination processor 3, and displays a map, road, target route, own vehicle position, destination, and the like on a display screen. Display it easily.
  • the recognition determination processor 3 includes a target generation unit 31, an arrival determination unit 32, a position identification unit 33, a lane determination unit 34, an entrance position setting unit 35, and a lane change determination unit 36. , Is provided.
  • the target generation unit 31 inputs own vehicle surrounding information, own vehicle position information, map data information, destination information, and the like. Further, the lane information determined by the lane determination unit 34, the entrance position information set by the entrance position setting unit 35, and the lane change enable / disable information determined by the lane change determination unit 36 are input. The target generation unit 31 generates a target route, a target vehicle speed profile, a target travel position, and the like, based on various types of input information. The various types of target information generated by the target generation unit 31 are output to the arrival determination unit 32, the entrance position setting unit 35, and the automatic operation control unit 4.
  • the arrival determination unit 32 inputs the vehicle position information, the map data information, the target route information, and the like.
  • the arrival determining unit 32 determines whether the vehicle V has reached the roundabout 100 or not.
  • the result of the determination by the arrival determining unit 32 and the target route information are output to the position specifying unit 33 and the entrance position setting unit 35.
  • the determination that the own vehicle V has reached the roundabout 100 is based on the determination that the distance L (see FIG. 2) along the target path from the own vehicle V to the center position in the width direction of the own vehicle entrance 105a is a predetermined threshold distance. Perform when the following is reached.
  • the “distance L” is calculated based on the information of the roundabout 100 obtained from the map data information and the own vehicle position information.
  • the “threshold distance” is a distance that allows the vehicle V to change lanes at least once before the vehicle V reaches the vehicle entrance 105a, and is, for example, 100 m to 300 m.
  • the “threshold distance” may be changed according to the traveling speed of the vehicle V.
  • the position specifying unit 33 inputs the determination result of the arrival determining unit 32, target route information, map data information, and the like.
  • the position specifying unit 33 specifies the position of the own vehicle entrance 105a and the position of the own vehicle exit 106a in the roundabout 100. Then, the position information of the own vehicle entrance 105a and the position information of the own vehicle exit 106a specified by the position specifying unit 33 are output to the lane determining unit 34 and the entrance position setting unit 35.
  • the lane determining unit 34 inputs the position information of the own vehicle entrance 105a and the map data information from the position specifying unit 33.
  • the lane determination unit 34 determines whether the vehicle entrance 105a has a plurality of lanes arranged in the vehicle width direction.
  • the determination result (lane information) of the lane determination unit 34 is output to the target generation unit 31 and the entrance position setting unit 35.
  • the "lane” is a travelable area arranged in the vehicle width direction on the travel road.
  • a road white line is provided on the road surface of the travel road, an area divided by the road white line and extending along the travel road corresponds to one lane.
  • a plurality of areas separated by the road white line are arranged in the vehicle width direction, it is determined that “there are a plurality of lanes”.
  • the road white line is not provided on the road surface of the traveling road, when the traveling road has a width dimension that allows a plurality of vehicles to run side by side in the vehicle width direction, the message “having a plurality of lanes. Yes ".
  • the own vehicle entrance 105a is divided by the road white line, it is determined whether or not the own vehicle entrance 105a has a plurality of lanes based on the road white line. On the other hand, when the vehicle entrance 105a is not divided by the road white line, it is determined whether or not the vehicle entrance 105a has a plurality of lanes based on the width of the vehicle entrance 105a.
  • the entrance position setting unit 35 determines the target route information, the determination result of the arrival determination unit 32, the position information of the vehicle entrance 105 a and the position information of the vehicle exit 106 a from the position identification unit 33, and the determination of the lane determination unit 34. Enter the result.
  • the entrance position setting unit 35 sets the “entrance position”, which is the width direction position of the own vehicle V at the own vehicle entrance 105a, based on the various types of input information, and generates input position information.
  • the input position information generated by the entrance position setting unit 35 is output to the target generation unit 31 and the lane change determination unit 36.
  • the entrance position setting unit 35 includes a roundabout state determination unit 35a, a radiation path determination unit 35b, a congestion degree determination unit 35c, a lane number determination unit 35d, a relative position determination unit 35e, and an entrance position calculation unit. 35f.
  • the roundabout state determination unit 35a inputs the determination result of the arrival determination unit 32, the vehicle position information, the map data information, the target route information, and the like.
  • the roundabout state determination unit 35a determines the following items for the roundabout 100 to which the vehicle V has arrived. -Whether or not the outer diameter dimension of the ring road 101 is equal to or greater than a first predetermined value. -Whether the width dimension of the ring road 101 is greater than or equal to a second predetermined value. -Whether or not the traffic light 108 is provided at a position before the vehicle entrance 105a.
  • the determination result of the roundabout state determination unit 35a is output to the entrance position calculation unit 35f.
  • the “first predetermined value” is a value that can secure a traveling distance required when the vehicle V changes lanes in the ring road 101 from when the vehicle V enters the ring road 101 to when the vehicle V exits. Yes, for example, 60 m.
  • the “second predetermined value” is a value that allows the lane change in the ring road 101, and is, for example, 10 m (corresponding to three lanes).
  • the traffic light 108 is a traffic light that controls the entry of the vehicle when the vehicle enters the ring road 101 via the own vehicle entrance 105a.
  • the radiation path determination unit 35b inputs the position information of the own vehicle entrance 105a, the position information of the own vehicle exit 106a, map data information, and the like.
  • the radiation path determination unit 35b determines whether there are a plurality of radiation paths 110 connected to the ring road 101 between the vehicle entrance 105a and the vehicle exit 106a in the roundabout 100 reached by the vehicle V. Judge.
  • the determination result of the radiation path determination unit 35b is output to the entrance position calculation unit 35f.
  • “between the own vehicle entrance 105a and the own vehicle exit 106a” is an area sandwiched between the own vehicle entrance 105a and the own vehicle exit 106a when viewed along the traveling direction on the ring road 101. .
  • the congestion degree determination unit 35c inputs the position information of the vehicle entrance 105a, the position information of the vehicle exit 106a, the vehicle surrounding information, the map data information, and the like. The congestion degree determination unit 35c determines whether there is a radiation path 110 connected to the ring road 101 between the host vehicle entrance 105a and the host vehicle exit 106a. Further, the degree of congestion of the vehicle entering the ring road 101 from the radiation path 110 existing in the region between the own vehicle entrance 105a and the own vehicle exit 106a is calculated, and the level of this approach congestion is determined.
  • information necessary for calculating the degree of congestion may be acquired by the on-vehicle sensor 1, or may be obtained by VICS information or the like. It may be obtained via the external data communication device 8.
  • the judgment result of the congestion degree judgment unit 35c is output to the entrance position calculation unit 35f.
  • “between the own vehicle entrance 105a and the own vehicle exit 106a” is an area sandwiched between the own vehicle entrance 105a and the own vehicle exit 106a when viewed along the traveling direction on the ring road 101. .
  • the lane number determination unit 35d inputs the determination result of the lane determination unit 34, the determination result of the roundabout state determination unit 35a, map data information, and the like.
  • the lane number determining unit 35d determines whether the vehicle entrance 105a has two lanes arranged in the width direction.
  • the judgment result of the lane number judging unit 35d is output to the entrance position calculating unit 35f.
  • the relative position determination unit 35e inputs the position information of the own vehicle entrance 105a, the position information of the own vehicle exit 106a, the surrounding information of the own vehicle, map data information, and the like.
  • the relative position determination unit 35e determines a relative positional relationship between the vehicle entrance 105a and the vehicle exit 106a.
  • the relative position information determined and obtained by the relative position determination unit 35e is output to the entrance position calculation unit 35f.
  • the relative positional relationship between the vehicle entrance 105a and the vehicle exit 106a is determined based on the position of the vehicle exit 106a with respect to the front direction of the vehicle entrance 105a.
  • the own vehicle exit 106a exists in a region on the left side of the front direction of the own vehicle entrance 105a, or the own vehicle exit 106a exists in a region on the right side of the front direction of the own vehicle entrance 105a. It is determined whether the vehicle is present or not, and whether the vehicle exit 106a exists in front of the vehicle entrance 105a.
  • the “front direction of the own vehicle entrance 105a” is, as shown in FIG. 2, a direction indicated by a one-dot chain line L3 connecting the center position O1 in the width direction of the approach road 111 and the center position O2 of the loop road 101. (Hereinafter referred to as “front direction L3”). Further, “the own vehicle exit 106a is present in a region on the left side of the front direction of the own vehicle entrance 105a” means that the exit road 112 is located on the left side of the front direction L3 when facing the traveling direction of the own vehicle V. Is present.
  • the own vehicle exit 106a exists in a region on the right side of the front direction of the own vehicle entrance 105a
  • the exit road 112 exists in a region on the left side of the front direction L3 when facing the traveling direction of the own vehicle V. This is the case.
  • the own vehicle exit 106a exists in the front direction of the own vehicle entrance 105a means a state in which the front direction L3 and the exit road 112 overlap.
  • the case shown in FIG. 2 is a case where “the own vehicle exit 106a exists in a region on the right side of the front direction of the own vehicle entrance 105a”.
  • the entrance position calculation unit 35f includes a determination result of the roundabout state determination unit 35a, a determination result of the radiation path determination unit 35b, a determination result of the congestion degree determination unit 35c, a determination result of the lane number determination unit 35d, and a relative position.
  • the relative position information from the determination unit 35e is input.
  • the entrance position calculation unit 35f sets the entrance position, which is the width direction position of the vehicle V at the vehicle entrance 105a, based on the positional relationship between the vehicle entrance 105a and the vehicle exit 106a.
  • the setting of the entrance position by the entrance position calculation unit 35f is performed based on the relative positional relationship between the vehicle entrance 105a and the vehicle exit 106a, and the position between the vehicle entrance 105a and the vehicle exit 106a. It may be performed based on the existence of the radiation path 110 obtained from the relationship.
  • the lane change determination unit 36 inputs the entrance position information from the entrance position setting unit 35, the vehicle surrounding information, the vehicle position information, and the like.
  • the entrance position set by the entrance position setting unit 35 before the vehicle V reaches the vehicle entrance 105a based on the vehicle surrounding information and the vehicle position information. It is determined whether or not the lane change toward can be smoothly performed.
  • the lane change permission / prohibition information generated by the lane change determination unit 36 is output to the target generation unit 31.
  • the case where the smooth execution of the lane change is impossible is, for example, a case where there is another vehicle adjacent to the own vehicle V, a case where another vehicle exists at the movement target point, and the like.
  • FIG. 4 is a flowchart showing the flow of the driving support control. Hereinafter, each step of FIG. 4 will be described.
  • step S1 a target route and the like are generated based on the vehicle surrounding information, the vehicle position information, the map data information, the destination information, and the like, and the process proceeds to step S2.
  • Step S1 corresponds to the target generation unit 31.
  • step S2 following the generation of the target route and the like in step S1, during traveling, the vehicle position information and the vehicle surrounding information are acquired from the vehicle-mounted sensor 1, and the process proceeds to step S3.
  • step S3 following the acquisition of the own vehicle position information and the own vehicle surrounding information in step S2, whether or not the distance from the own vehicle V to the roundabout 100 has reached the threshold distance or less, that is, whether the own vehicle V It is determined whether or not the vehicle has reached the about 100.
  • the process proceeds to step S4. If NO (roundabout not reached), the process returns to step S1.
  • the distance from the own vehicle V to the roundabout 100 is determined based on own vehicle position information, map data information, and the like.
  • Step S3 corresponds to the arrival determination unit 32.
  • step S4 following the determination that the roundabout has been reached in step S3, information on the roundabout 100 to which the vehicle V has arrived is obtained from the target route information, the vehicle position information, the map data, and the like, and the process proceeds to step S5.
  • the “information of the roundabout 100” includes the position information of the own vehicle entrance 105a, the position information of the own vehicle exit 106a, the outer diameter dimension information of the ring road 101, the width dimension information of the ring road 101, and the traffic light in front of the entrance.
  • Step S4 corresponds to the position specifying unit 33.
  • step S5 following the acquisition of the roundabout information in step S4, based on the own vehicle position information, the own vehicle surrounding information, and the like, the own vehicle V can enter the ring road 101 without stopping at the own vehicle entrance 105a. It is determined whether or not there is. In the case of YES (can be entered into the ring road without stopping), the process proceeds to step S13. If NO (the vehicle cannot enter the ring road without stopping), the process proceeds to step S6.
  • the case where “there is no need to stop and it is possible to enter the ring road 101” means that there is no preceding vehicle at the own vehicle entrance 105a and another vehicle coming toward the own vehicle entrance 105a in the ring road 101. It does not exist.
  • step S6 following the determination in step S5 that it is impossible to enter the ring road without stopping, the own vehicle entrance 105a through which the vehicle V passes when entering the ring road 101 has a plurality of vehicle entrances 105 arranged in the width direction. It is determined whether the vehicle has a lane. If YES (there is a plurality of lanes), the process proceeds to step S7. If NO (one lane), the process proceeds to step S13.
  • the lane of the own vehicle entrance 105a is determined based on position information and map data information of the own vehicle entrance 105a, image data acquired by the camera 11, and the like. Step S6 corresponds to the lane determination unit 34.
  • step S7 following the determination that the own vehicle entrance 105a has a plurality of lanes in step S6, the entrance position setting control is executed to set the "entrance position" which is the width direction position of the own vehicle V at the own vehicle entrance 105a. Then, a lane for setting the entrance position is specified, and the process proceeds to step S8.
  • the entrance position setting control is a process of specifying the position of the vehicle entrance 105a and the position of the vehicle exit 106a, and setting the entrance position based on the positional relationship between the vehicle entrance 105a and the vehicle exit 106a. is there.
  • This entrance position setting control includes a first entrance position setting control shown in FIG. 5, a second entrance position setting control shown in FIG. 6, a third entrance position setting control shown in FIG.
  • Step S7 corresponds to the entrance position setting unit 35.
  • step S8 following the setting of the entrance position in step S7, it is determined whether or not the entrance position set in this step S7 is set on a lane other than the own lane (another lane). If YES (the entrance position is set on another lane), the process proceeds to step S9. If NO (the entrance position is set on the own lane), the process proceeds to step S13.
  • the “own lane” is a lane that coincides with an extension line extending along the traveling path from the current position of the own vehicle V. The positional relationship between the entrance position set in step S7 and the own lane is determined based on own vehicle position information, entrance position information, and the like.
  • step S9 following the determination that the entrance position is set on another lane in step S8, it is determined whether or not the lane change toward the entrance position can be executed. If YES (the lane can be changed), the process proceeds to step S10. If NO (the lane cannot be changed), the process proceeds to step S13.
  • whether or not the lane change can be executed is determined by the presence of an adjacent vehicle obtained from entrance position information, own vehicle surrounding information, own vehicle position information, and the like, the surrounding conditions of the own vehicle such as the distance to the own vehicle entrance 105a, and the like. Perform based on vehicle conditions.
  • the “lane change toward the entrance position” refers to the lane in which the entrance position set in step S7 is set (the lane reaching the entrance position by traveling in the lane, hereinafter referred to as the “target lane”). This is a lane change for moving the own vehicle V.
  • step S10 following the determination that lane change is possible in step S9, execution of lane change control is permitted, and the process proceeds to step S11.
  • Steps S9 and S10 correspond to the lane change determination unit 36.
  • step S11 the execution of the lane change control in step S10 is permitted, the lane change control is executed, and the process proceeds to step S12.
  • the recognition determination processor 3 generates a target traveling position from the current position of the own vehicle V to the target lane, and outputs the target traveling position information to the automatic driving control unit 4.
  • the automatic driving control unit 4 generates a command value for performing automatic driving along the target driving position based on the target driving position information, and outputs the command value to the actuator 5.
  • the own vehicle V is driven / stopped by the actuator 5 so as to be along the target driving position. Since the lane change control is a known control, a detailed description is omitted.
  • step S12 following the execution of the lane change control in step S11, it is determined whether or not the lane change control has been completed. If YES (the control ends), the process proceeds to step S13. If NO (control continues), the process returns to step S9.
  • end of the lane change control is determined based on the fact that the vehicle V has moved to the target lane.
  • step S13 it is determined in step S5 that it is possible to enter the ring road without stopping, in step S6, the own vehicle entrance 105a is determined to be one lane, in step S8, the entrance position is determined to be own lane, and in step S9. Following the determination in step S12 that the lane change toward the entrance position is not possible or the determination in step S12 that the lane change control has ended, the vehicle keeps traveling along its own lane, and proceeds to step S14.
  • step S14 following the maintenance of traveling along the own lane in step S13, it is determined whether or not the vehicle has reached the own vehicle entrance 105a, which is the boundary between the ring road 101 and the approach road 111. In the case of YES (arrival at the entrance), the process proceeds to step S15. If NO (the entrance has not been reached), the process returns to step S13.
  • the vehicle V has reached the vehicle entrance 105a based on the vehicle position information and the map data information, etc., based on the fact that the distance from the vehicle V to the vehicle entrance 105a has reached a predetermined distance or less. The decision is made.
  • step S15 following the determination that the entrance has been reached in step S14, roundabout traveling control is executed, and the process proceeds to the end.
  • the roundabout travel control enters the ring road 101 through the own vehicle entrance 105a by automatic driving based on own vehicle surrounding information, own vehicle position information, target route information, and the like acquired from the on-board sensor 1, After traveling in the ring road 101, the vehicle exits the ring road 101 via the own vehicle exit 106a and passes through the roundabout 100.
  • This roundabout traveling control is a well-known control, and a detailed description thereof will be omitted.
  • FIG. 5 is a flowchart showing the flow of the first entrance position setting control. Hereinafter, each step of FIG. 5 will be described.
  • step S101 it is determined whether or not the outer diameter of the ring road 101 is equal to or greater than a first predetermined value in the roundabout 100 to which the vehicle V has arrived.
  • a first predetermined value in the roundabout 100 to which the vehicle V has arrived.
  • the flow proceeds to step S104.
  • NO circular outer diameter dimension ⁇ first predetermined value
  • the “first predetermined value” is a value that can secure a traveling distance required when the vehicle V changes lanes in the ring road 101 from when the vehicle V enters the ring road 101 to when it exits. It is.
  • the size of the outer diameter of the ring road 101 is determined using the roundabout information acquired in step S4 of the driving support control.
  • step S102 following the determination in step S101 that the outer diameter of the ring road is smaller than the first predetermined value, it is determined whether the width dimension of the ring road 101 is equal to or larger than the second predetermined value in the roundabout 100 to which the vehicle V has arrived. Is determined based on the map data information. If YES (circular width dimension ⁇ second predetermined value), the process proceeds to step S104. If NO (circular width dimension ⁇ second predetermined value), the process proceeds to step S103.
  • the “second predetermined value” is a value that allows the vehicle V to change lanes within the ring road 101.
  • the size of the width dimension of the ring road 101 is determined using the roundabout information acquired in step S4 of the driving support control.
  • step S103 following the determination that the outer diameter of the ring road is smaller than the second predetermined value in step S102, it is determined whether or not the traffic light 108 for controlling vehicle entry into the ring road 101 is provided at a position before the own vehicle entrance 105a. Is determined based on the map data information. If YES (there is a traffic light), the process proceeds to step S104. If NO (no traffic light), the process proceeds to step S106.
  • the presence or absence of the traffic light 108 is determined using the roundabout information acquired in step S4 of the driving support control. Steps S101, S102, and S103 correspond to the roundabout state determination unit 35a.
  • step S104 one of the determination that the outer diameter of the roadway is equal to or greater than the first predetermined value in step S101, the determination that the outer diameter of the roadway is greater than or equal to the second predetermined value in step S102, and the determination that there is a traffic light in step S103 Then, based on the relative positional relationship between the host vehicle exit 106a and the host vehicle entrance 105a, it is determined whether the host vehicle exit 106a exists in the front direction L3 of the host vehicle entrance 105a. In the case of YES (there is an exit in the front direction), the process proceeds to step S105. If NO (there is no exit in the front direction), the process proceeds to step S106. Step S104 corresponds to the relative position determination unit 35e.
  • the state where “the own vehicle exit 106a exists in front of the own vehicle entrance 105a” is a state where the exit road 112 and the front direction L3 of the own vehicle entrance 105a overlap. If the front direction L3 of the own vehicle entrance 105a overlaps a part of the exit road 112, it is determined that "the own vehicle exit 106a exists in the front direction of the own vehicle entrance 105a". On the other hand, the state where “the own vehicle exit 106a does not exist in the front direction of the own vehicle entrance 105a” means that when facing the traveling direction of the own vehicle V, the region is on the left or right side of the front direction L3 of the own vehicle entrance 105a. This is the state where the exit road 112 exists. Further, the relative positional relationship between the vehicle exit 106a and the vehicle entrance 105a is determined using the roundabout information acquired in step S4 of the driving support control.
  • step S105 following the determination in step S104 that "the own vehicle exit 106a exists in front of the own vehicle entrance 105a", the entrance position is set on the own lane, and the process proceeds to the end.
  • Step S105 corresponds to the entrance position calculation unit 35f.
  • step S106 following either the determination that there is no traffic light in step S103 or the determination that "the own vehicle exit 106a does not exist in front of the own vehicle entrance 105a" in step S104, the fourth entrance position setting is performed. Select execution of control and go to end.
  • FIG. 6 is a flowchart showing the flow of the second entrance position setting control. Hereinafter, each step of FIG. 6 will be described.
  • step S201 it is determined whether or not there are a plurality of radiation paths 110 connected to the ring road 101 between the own vehicle entrance 105a and the own vehicle exit 106a in the roundabout 100 to which the own vehicle V has arrived. If YES (there are a plurality of radiation paths), the process proceeds to step S202. If NO (there is no plurality of radiation paths), the process proceeds to step S205. Step S201 corresponds to the radiation path determination unit 35b. Here, the presence or absence of the plurality of radiation paths 110 between the own vehicle entrance 105a and the own vehicle exit 106a is determined using the roundabout information acquired in step S4 of the driving support control.
  • step S202 following the determination in step S201 that there are a plurality of radiation paths, it is determined whether the traveling direction in the loop road 101 is clockwise. If YES (clockwise), the process proceeds to step S203. In the case of NO (counterclockwise direction), the flow proceeds to step S204.
  • step S203 following the determination in step S202 that the traveling direction in the ring road 101 is clockwise, the entrance position is set on the lane on the right side of the leftmost lane, and the process proceeds to the end.
  • the left end lane is the lane on the leftmost side when facing the traveling direction at the own vehicle entrance 105a.
  • the entrance position may be set on the lane on the right side of the left end lane. Therefore, when the host vehicle entrance 105a has two lanes, the entrance position is set on the right lane. Further, for example, when the vehicle entrance 105a has three lanes, the entrance position is set either on the center lane or on the right end lane.
  • step S204 following the determination in step S202 that the traveling direction in the ring road 101 is counterclockwise, the entrance position is set on the lane on the left side of the rightmost lane, and the process proceeds to the end.
  • the right end lane is the lane on the rightmost side when facing the traveling direction at the own vehicle entrance 105a.
  • the entrance position since the entrance position may be set on the left lane of the right end lane, if the own vehicle entrance 105a has two lanes, the entrance position is set on the left lane. Further, for example, when the host vehicle entrance 105a has three lanes, the entrance position is set either on the center lane or on the left end lane.
  • Steps S203 and S204 correspond to the entrance position calculation unit 35f.
  • step S205 following the determination in step S201 that there is no plurality of radiation paths, the execution of the fourth entrance position setting control is selected, and the process proceeds to the end.
  • FIG. 7 is a flowchart showing the flow of the third entrance position setting control. Hereinafter, each step of FIG. 7 will be described.
  • step S301 in the roundabout 100 to which the vehicle V has arrived, it is determined whether or not the radiation path 110 connected to the ring road 101 exists between the vehicle entrance 105a and the vehicle exit 106a in the map data information. Judge based on. If YES (there is a radiation path), the process proceeds to step S302. If NO (no radiation path), the process proceeds to step S307.
  • the presence or absence of the radiation path 110 between the own vehicle entrance 105a and the own vehicle exit 106a is determined using the roundabout information acquired in step S4 of the driving support control.
  • step S302 following the determination that there is a radiation path in step S301, the congestion degree of another vehicle entering the ring road 101 from the radiation path 110 between the own vehicle entrance 105a and the own vehicle exit 106a (entering congestion). Is calculated, and the process proceeds to step S303.
  • the “entrance congestion degree” is calculated based on, for example, the number of vehicles entering the vehicle per unit time, the number of vehicles on the radiation path 110 per unit distance, and the like.
  • the information necessary for calculating the degree of congestion is acquired via the on-vehicle sensor 1 and the external data communication device 8.
  • step S303 following the calculation of the degree of entry congestion in step S302, it is determined whether or not this degree of entry congestion is equal to or greater than a threshold value, that is, the entry of the radiation path 110 between the own vehicle entrance 105a and the own vehicle exit 106a. It is determined whether the congestion degree is high. If YES (the degree of congestion is high), the process proceeds to step S304. In the case of NO (the degree of congestion is low), the process proceeds to step S307. Steps S301, S302, and S303 correspond to the congestion degree determination unit 35c.
  • step S304 following the determination in step S303 that the degree of congestion is high, it is determined whether or not the traveling direction in the ring road 101 is clockwise. If YES (clockwise), the process proceeds to step S305. If NO (counterclockwise), the process proceeds to step S306.
  • step S305 following the determination in step S304 that the traveling direction in the ring road 101 is clockwise, the entrance position is set on the lane on the right side of the leftmost lane, and the process proceeds to the end.
  • the entrance position may be set on the lane on the right side of the left end lane. Therefore, when the own vehicle entrance 105a has two lanes, the entrance position is set on the right lane. Further, for example, when the vehicle entrance 105a has three lanes, the entrance position is set either on the center lane or on the right end lane.
  • step S306 following the determination in step S304 that the traveling direction in the ring road 101 is the counterclockwise direction, the entrance position is set on the lane on the left side of the rightmost lane, and the process proceeds to the end.
  • the entrance position may be set on the lane on the left side of the right end lane. Therefore, when the own vehicle entrance 105a has two lanes, the entrance position is set on the left lane. Further, for example, when the host vehicle entrance 105a has three lanes, the entrance position is set either on the center lane or on the left end lane.
  • Steps S305 and S306 correspond to the entrance position calculation unit 35f.
  • step S307 following either the determination that there is no radiation path in step S301 or the determination that the degree of ingress congestion is low in step S303, execution of the fourth entrance position setting control is selected, and the process proceeds to the end.
  • FIG. 8 is a flowchart showing the flow of the fourth entrance position setting control. Hereinafter, each step of FIG. 8 will be described.
  • step S401 it is determined whether the vehicle entrance 105a has two rows of lanes arranged in the width direction. If YES (two lanes), the process proceeds to step S402. If NO (three lanes or more), the process proceeds to step S405. Step S401 corresponds to the lane number determining unit 35d.
  • step S402 following the determination that the host vehicle entrance 105a has two lanes in step S401, the host vehicle exit 106a is connected to the host vehicle entrance 105a based on the relative positional relationship between the host vehicle exit 106a and the host vehicle entrance 105a. It is determined whether or not it exists in the area on the right side of the front direction L3. If YES (the exit is to the right from the front), the process proceeds to step S403. In the case of NO (there is an exit on the left or on the front side from the front direction), the process proceeds to step S404. Note that the relative positional relationship between the vehicle exit 106a and the vehicle entrance 105a is determined using the roundabout information acquired in step S4 of the driving support control.
  • step S403 following the determination in step S402 that "the own vehicle exit 106a exists on the right side of the front of the own vehicle entrance 105a", the entrance position is set on the right lane, and the process proceeds to the end.
  • step S404 following the determination in step S402 that "the host vehicle exit 106a is located on the left side or in front of the host vehicle entrance 105a", the entrance position is set on the left lane, and the process proceeds to the end. .
  • step S405 following the determination in step S401 that the host vehicle entrance 105a has three or more lanes, based on the relative positional relationship between the host vehicle exit 106a and the host vehicle entrance 105a, the host vehicle exit 106a It is determined whether or not there is an area on the right side of the front direction L3 of 105a. If YES (the exit is to the right from the front), the process proceeds to step S406. In the case of NO (there is an exit on the left from the front direction or on the front direction), the process proceeds to step S407. Note that the relative positional relationship between the vehicle exit 106a and the vehicle entrance 105a is determined using the roundabout information acquired in step S4 of the driving support control.
  • step S406 following the determination in step S405 that "the own vehicle exit 106a exists on the right side of the front of the own vehicle entrance 105a", the entrance position is set on the rightmost lane, and the process proceeds to the end.
  • step S407 following the determination in step S405 that "the own vehicle exit 106a exists on the left side or in the front direction from the front direction of the own vehicle entrance 105a", the own vehicle exit 106a is in the front direction L3 of the own vehicle entrance 105a. It is determined whether or not it exists in the area on the left side. If YES (the exit is to the left from the front), the process proceeds to step S408. In the case of NO (there is an exit in the front direction), the flow proceeds to step S409. Steps S402, S405, and S407 correspond to the relative position determination unit 35e. Then, the relative positional relationship between the vehicle exit 106a and the vehicle entrance 105a is determined using the roundabout information acquired in step S4 of the driving support control.
  • step S408 following the determination in step S407 that "the own vehicle exit 106a is on the left side of the front direction of the own vehicle entrance 105a", the entrance position is set on the leftmost lane, and the process proceeds to the end.
  • step S409 following the determination in step S407 that "the own vehicle exit 106a exists in front of the own vehicle entrance 105a", the entrance position is set on the lane between the leftmost lane and the rightmost lane. Proceed to. Steps S403, S404, S406, S408, and S409 correspond to the entrance position calculation unit 35f.
  • the recognition determination processor 3 executes the traveling support control shown in FIG. That is, the recognition determination processor 3 performs the processing from step S1 to step S2 and step S3 shown in FIG. 4 to generate a target route and the like, and acquire own vehicle position information and own vehicle surrounding information.
  • step S3 the recognition determination processor 3 performs the processing of step S4 to step S5, and performs the processing of the own vehicle.
  • the information of the roundabout 100 determined to have reached V is acquired. Further, it is determined whether or not the own vehicle V can enter the ring road 101 without stopping at the own vehicle entrance 105a.
  • the ring road 101 does not stop at the own vehicle entrance 105a. It is assumed that the vehicle can enter the vehicle, and the processes from step S13 to step S14 and step S15 are performed. That is, the recognition determination processor 3 continuously travels in the lane (own lane) that is running at the present time (for example, at the timing when it is determined that the vehicle has reached the roundabout 100) until the own vehicle V reaches the entrance position. The target travel position is generated. Thereby, the own vehicle V continues to travel on the own lane until the vehicle V reaches the entrance position. When the vehicle arrives at the vehicle entrance 105a, the roundabout traveling control is executed, and the vehicle V passes through the roundabout 100 by automatic driving of a known control.
  • step S5 it is determined that it is impossible to enter the road 101 (it is necessary to stop at the own vehicle entrance 105a). Then, the process of step S6 is performed, and it is determined whether the vehicle entrance 105a has a plurality of lanes.
  • step S7 the process of step S7 is performed, and the entrance position setting control is performed. That is, the recognition determination processor 3 sets the “entrance position”, which is the width direction position of the own vehicle V at the own vehicle entrance 105a, based on the positional relationship between the own vehicle entrance 105a and the own vehicle exit 106a. Set the target lane to set the position.
  • the first, second and third entrance position setting controls shown in FIGS. 5 to 7 are executed in parallel.
  • the fourth entrance position setting control shown in FIG. 8 is executed.
  • step S8 When the “entrance position” and the target lane are set as a result of the execution of the entrance position setting control, the process of step S8 is performed, and whether the set entrance position is set on a lane other than the own lane, that is, the target It is determined whether the lane is another lane.
  • the process proceeds from step S8 to step S13, step S14, and step S15.
  • About traveling control is executed.
  • step S9 determines whether the lane change toward the entrance position can be executed. I do.
  • the process proceeds to step S13, step S14, and step S15. After the traveling in the own lane is continued, the roundabout traveling control is executed.
  • step S9 when it is determined that the lane can be changed in the process of step S9, the processes of step S10 and step S11 are sequentially performed, the execution of the lane change control is permitted, and the lane change control is executed. Then, when it is determined that the lane change control has been completed by the process of step S12, the process proceeds to step S13, step S14, and step S15. After the traveling of the own lane is continued, the roundabout traveling control is executed. When it is determined that the lane change cannot be performed during the execution of the lane change control, the execution of the lane change control is stopped, and the processes of steps S13, S14, and S15 are performed.
  • step S105 the process of step S105 is performed, and the entrance position is set on the own lane. That is, in the example shown in FIG. 9 in which the approach road 111 has two lanes, when the vehicle V is traveling in the right lane 111R, the entrance position is set on the right lane 111R. When the vehicle V is traveling on the left lane 111L, the entrance position is set on the left lane 111L.
  • the lane can be changed between the time when the vehicle V enters the roadway 101 and the time when the vehicle V exits. In other words, the lane can be changed as appropriate in accordance with the situation inside the ring road 101 regardless of the entrance position.
  • the host vehicle exit 106a is located on the left side of the front direction L3 of the host vehicle entrance 105a, the stay time of the host vehicle V on the road is relatively short. Therefore, it is said that it is preferable to travel in the ring road 101 toward the outer periphery.
  • the traveling time of the vehicle V on the road is relatively long. Therefore, it is said that it is preferable to travel toward the inner periphery of the ring road 101 so as not to hinder the running of the other vehicle (particularly, the operation of the other vehicle exiting the ring road 101).
  • the host vehicle exit 106a is located in the front direction L3 of the host vehicle entrance 105a, the environment of the host vehicle exit 106a is offset from the front direction L3 of the host vehicle entrance 105a to the left or right. The degree of freedom in selecting a traveling route within 101 increases.
  • the entrance position may be set on an arbitrary lane. Good. That is, in the example illustrated in FIG. 5, the entrance position is set on the own lane in the process of step S105, but is not limited thereto. For example, the entrance position may be set on a lane with few leading vehicles. In this case, it is possible to enter the ring road 101 in a short time or to quickly pass through the roundabout 100.
  • step S105 is performed to set the entrance position on the own lane. That is, in the example shown in FIG. 9 in which the approach road 111 has two lanes, when the vehicle V is traveling in the right lane 111R, the entrance position is set on the right lane 111R. When the vehicle V is traveling on the left lane 111L, the entrance position is set on the left lane 111L.
  • the lane can be changed between the time when the vehicle V enters the road 101 and the time when the vehicle V exits. That is, it is possible to appropriately change lanes according to the situation inside the loop road 101 regardless of the entrance position. Therefore, when the ring width W1 is equal to or larger than the second predetermined value and the vehicle exit 106a is located in the front direction L3 of the vehicle entrance 105a, the entrance position may be set on an arbitrary lane. . Thereby, it is possible to enter the ring road 101 or to pass through the roundabout 100 in a short time in accordance with the surrounding conditions of the own vehicle and the running conditions of the own vehicle V.
  • the entrance position is set on the right lane 111R.
  • the entrance position is set on the left lane 111L.
  • the traffic light 108 for controlling the approach to the avenue 101 when the traffic light 108 for controlling the approach to the avenue 101 is installed, the number of vehicles in the avenue 101 is limited, and the inside of the avenue 101 is not easily congested. That is, it is possible to easily change lanes according to the situation inside the loop road 101 regardless of the entrance position. Therefore, even when the traffic light 108 for controlling the approach to the ring road 101 is installed, and the own vehicle exit 106a exists in the front direction L3 of the own vehicle entrance 105a, the entrance position can be set to an arbitrary vehicle. It may be set on a line. Thereby, it is possible to enter the ring road 101 or to pass through the roundabout 100 in a short time in accordance with the surrounding conditions of the own vehicle and the running conditions of the own vehicle V.
  • the outer circumference dimension R1 of the road is less than the first predetermined value
  • the width W1 of the road is less than the second predetermined value
  • the access control signal is provided. If not, the process proceeds to step S106, and execution of the fourth entrance position setting control is selected.
  • the entrance position is set on the right lane 111R.
  • the entrance position is set to either the right end lane 111R 'or the center lane 111C. In this case, the entrance position is set based on other conditions (for example, the number of preceding vehicles is small).
  • the processing from step S202 to step S204 is performed, and the entrance position is set on the lane on the left side of the rightmost lane. That is, in the example in which the approach road 111 has two lanes as shown in FIG. 10, the entrance position is set on the left lane 111L. When the approach road 111 as shown in FIG. 14 has three lanes, the entrance position is set to either the left end lane 111L 'or the center lane 111C. In this case, the entrance position is set based on other conditions (for example, the number of preceding vehicles is small).
  • a plurality of radiation paths 110 do not exist between the own vehicle entrance 105a and the own vehicle exit 106a (when the approach path 111 and the exit path 112 are adjacent to each other). If only one radiation path 110 exists between the entrance path 111 and the exit path 112), the process proceeds to step S205, and execution of the fourth entrance position setting control is selected.
  • step S303 If the degree of entry congestion is equal to or greater than the threshold, the determination in step S303 is affirmative, and the process in step S304 is performed.
  • the process of step S305 is performed, and the entrance position is set on the lane on the right side of the leftmost lane. That is, in the example shown in FIG. 11 in which the approach road 111 has two lanes, the entrance position is set on the right lane 111R. When the approach road 111 has three lanes (see FIG. 14), the entrance position is set to either the right end lane 111R 'or the center lane 111C. In this case, the entrance position is set based on other conditions (for example, the number of preceding vehicles is small).
  • the processing from step S304 to step S306 is performed, and the entrance position is set on the lane on the left side of the rightmost lane. That is, in the example in which the approach road 111 has two lanes as shown in FIG. 11, the entrance position is set on the left lane 111L. When the approach road 111 as shown in FIG. 14 has three lanes, the entrance position is set to either the left end lane 111L 'or the center lane 111C. In this case, the entrance position is set based on other conditions (for example, the number of preceding vehicles is small).
  • step S307 when the radiation path 110 does not exist between the own vehicle entrance 105a and the own vehicle exit 106a, or when the degree of congestion is low, the processing in step S307 is performed. Then, execution of the fourth entrance position setting control is selected.
  • step S407 it is determined that “the own vehicle exit 106a exists in the region on the left side of the front direction L3 of the own vehicle entrance 105a”, and a negative determination is made, and the process of step S407 is performed. That is, it is determined whether or not the own vehicle exit 106a exists in a region on the left side of the front direction L3 of the own vehicle entrance 105a. In the traveling scene shown in FIG. 14, the determination is affirmative, and the process of step S408 is performed to set the entrance position on the left end lane 111L '.
  • the positions of the vehicle entrance 105a and the vehicle exit 106a are specified. Then, the entrance position is set based on the positional relationship between the own vehicle entrance 105a and the own vehicle exit 106a.
  • the vehicle when the rightmost lane is selected at the entrance position, the vehicle travels along the inner circumference in the ring road 101, then changes lanes toward the outer circumference, and exits through the own vehicle exit 106a. It will run to 112. Therefore, the difficulty of traveling on the ring road 101 is higher when a lane close to the right end lane is selected than when the left end lane is selected at the entrance position. However, since the left end lane is selected, the vehicle travels along the outer circumference in the ring road 101, and when the traveling distance in the ring road 101 becomes long, the traveling of another vehicle exiting the ring road 101 is hindered. There is a fear.
  • the entrance position is set to the left end lane.
  • the entrance position can be set on the rightmost lane. That is, at the own vehicle entrance 105a and the approach road 111 before entering the ring road 101, it is possible to select an appropriate lane for traveling in the ring road 101 and run. As a result, the possibility of appropriately passing through the roundabout 100 can be increased, and the occurrence of lane changes in the ring road 101 can be suppressed.
  • the vehicle exit 106a When setting the entrance position based on the relative positional relationship between the vehicle entrance 105a and the vehicle exit 106a, the vehicle exit 106a is positioned in front of the vehicle entrance 105a as shown in the fourth entrance position setting control.
  • the entrance position When it is determined that the vehicle is located in the area on the left side of the direction L3, the entrance position is set to the left side of the center position in the width direction of the own vehicle entrance 105a.
  • the entrance position is set to the right of the widthwise center position of the host vehicle entrance 105a.
  • the entrance position is set to the right when turning the ring 101 clockwise, and the entrance position is set to the left when rotating the ring 101 counterclockwise.
  • the radiation path existing between the vehicle entrance 105a and the vehicle exit 106a is set.
  • the congestion degree at 110 is high, as shown in the third entrance position setting control, the entrance position is set to the right side when turning the ring road 101 clockwise, and the entrance position is set when turning the ring road 101 counterclockwise. To the left.
  • the degree of freedom in changing lanes in the ring road 101 is high.
  • the entrance position is set on the own lane as indicated by the first entrance position setting control. Accordingly, it is not necessary to change lanes while traveling on the approach road 111, and it is possible to suppress the occurrence of lane changes while traveling on the approach road 111.
  • the entrance position may be arbitrarily determined according to the surrounding conditions of the own vehicle. May be set. Therefore, when passing through the roundabout 100, it is possible to set a more appropriate entrance position, and it is possible to shorten the traveling time and realize smooth traveling.
  • the entrance position is set on another lane, it is determined whether or not the lane change toward the entrance position can be smoothly performed.
  • the lane change control is performed. Allow On the other hand, when it is determined that the smooth lane change cannot be executed, the execution of the lane change control is not permitted, and the traveling of the own lane is maintained. Therefore, it is possible to suppress a sudden change in vehicle speed and a change in steering due to a lane change while traveling on the approach road 111, and to perform smooth traveling.
  • a controller that calculates a traveling route (target route) for traveling the own vehicle V and executes traveling support control based on the traveling route, and supports traveling of the own vehicle V.
  • the driving support method It is determined whether or not the vehicle V has reached the roundabout 100 having the ring road 101 to which three or more radiation paths 110 are connected, When it is determined that the own vehicle V has reached the roundabout 100, the position of the entrance (own vehicle entrance 105a) where the own vehicle V enters the ring road 101 and the position of the own vehicle V exits the ring road 101
  • the exit (own vehicle exit 106a) A configuration for setting an entrance position, which is a position in the width direction of the host vehicle V at the entrance (host vehicle entrance 105a), based on a positional relationship between the entrance (host vehicle entrance 105a) and the exit (host vehicle exit 106a). And As a result, it is possible to suppress the occurrence of lane changes in the ring road 101.
  • the entrance position is set between the entrance (own vehicle entrance 105a) and the exit (own vehicle exit 106a). Based on relative position, When it is determined that the exit (own vehicle exit 106a) exists on the left side of the front direction L3 of the entrance (own vehicle entrance 105a) or in the front direction L3 of the entrance (own vehicle entrance 105a), the entrance position is determined.
  • the entrance position is set to the right lane 111R. Accordingly, the vehicle can pass through the ring road 101 along an appropriate traveling route according to the relative positional relationship between the vehicle entrance 105a and the vehicle exit 106a.
  • the entrance position is set to the left end lane 111L '
  • the entrance position is set to the right end lane 111R '
  • the entrance position is set to the lane between the leftmost lane 111L 'and the rightmost lane 111R' (the central lane 111C).
  • the setting of the entrance position is performed by setting the entrance (own vehicle entrance 105a) and the exit (own vehicle exit 106a). Based on the relative position of When it is determined that the exit (own vehicle exit 106a) exists in the front direction L3 of the entrance (own vehicle entrance 105a), the entrance position can be set to an arbitrary position. Accordingly, the vehicle can pass through the ring road 101 along an appropriate traveling route according to the relative positional relationship between the vehicle entrance 105a and the vehicle exit 106a.
  • the entrance position is set relative to the entrance (own vehicle entrance 105a) and the exit (own vehicle exit 106a). Based on a typical positional relationship, When it is determined that the exit (own vehicle exit 106a) exists in the front direction L3 of the entrance (own vehicle entrance 105a), the entrance position can be set to an arbitrary position. Thereby, when passing through the roundabout 100, a more appropriate entrance position can be set, and it is possible to shorten the traveling time and realize smooth traveling.
  • the entrance position is set based on the relative positional relationship between the entrance (own vehicle entrance 105a) and the exit (own vehicle exit 106a), When it is determined that the exit (own vehicle exit 106a) exists in the front direction L3 of the entrance (own vehicle entrance 105a), the entrance position can be set to an arbitrary position. Thereby, when passing through the roundabout 100, a more appropriate entrance position can be set, and it is possible to shorten the traveling time and realize smooth traveling.
  • the entrance position can be set to an arbitrary position
  • the entrance position is set on an extension line (own lane) extending along the traveling path from the current position of the vehicle V.
  • the occurrence of lane changes on the approach road 111 can be suppressed.
  • the entrance position is set based on the existence of the radiation path 110 obtained from the positional relationship between the entrance (own vehicle entrance 105a) and the exit (own vehicle exit 106a), When it is determined that there are a plurality of radiation paths 110 between the entrance (own vehicle entrance 105a) and the exit (own vehicle exit 106a), when the traveling direction in the ring road 101 is clockwise, The entrance position is set on the right side of the center position in the width direction of the entrance (own vehicle entrance 105a), and when the traveling direction in the circulating road 101 is counterclockwise, the entrance position is set to the entrance (autonomous vehicle entrance 105a). It is configured to be set on the left side of the center position in the width direction of the vehicle entrance 105a). Thus, it is possible to suppress the occurrence of a lane change in the ring road 101 and to smoothly pass through the roundabout 100 without hindering the traveling of other vehicles entering and exiting the ring road 101 via the radiation path 110. it can.
  • the entrance position is set based on the existence of the radiation path 110 obtained from the positional relationship between the entrance (own vehicle entrance 105a) and the exit (own vehicle exit 106a), It is determined that the radiation path 110 exists between the entrance (the own vehicle entrance 105a) and the exit (the own vehicle exit 106a), and the congestion degree (vehicle congestion) of the vehicle entering the ring road 101 from the radiation path 110 is determined.
  • a travel including a controller (recognition determination processor 3) that calculates a travel route (target route) for traveling the own vehicle V and executes traveling support control for supporting traveling of the own vehicle V based on the travel route.
  • the controller (recognition determination processor 3)
  • An arrival determination unit 32 that determines whether or not the vehicle V has reached the roundabout 100 having the ring road 101 to which three or more radiation paths 110 are connected; When the arrival determination unit 32 determines that the vehicle V has reached the roundabout 100, the position of the entrance (the vehicle entrance 105a) where the vehicle V enters the ring road 101 and the position of the vehicle V are determined.
  • the driving support method and the driving support device according to the present disclosure have been described based on the first embodiment.
  • the specific configuration is not limited to the first embodiment, and is related to each claim in the claims. Changes and additions to the design are permitted without departing from the spirit of the invention.
  • the determination that the vehicle has arrived at the roundabout 100 is made based on the fact that the distance from the vehicle V to the vehicle entrance 105a has reached the threshold distance or less.
  • it is not limited to this.
  • it may be determined whether or not the vehicle V has reached the roundabout 100 based on the time required for the vehicle V to reach the entry point to the ring road 101 (the vehicle entrance 105a).
  • the time required to reach the host vehicle entrance 105a is obtained based on the vehicle speed profile and the distance traveled to the host vehicle entrance 105a.
  • the entrance position setting control is executed when the own vehicle entrance 105a has a plurality of lanes, and the entrance position is set based on the positional relationship between the own vehicle entrance 105a and the own vehicle exit 106a.
  • the entrance position setting control may be executed.
  • the entrance position of the vehicle V is set to a position closer to the left side than the center position in the lane width direction, or to a position closer to the right side than the center position in the lane width direction.
  • the positional relationship of the vehicle exit 106a is determined based on the front direction L3 of the vehicle entrance 105a, but the present invention is not limited to this.
  • the position of the host vehicle V at the host vehicle entrance 105a is referred to as “the position of the entrance where the host vehicle enters the ring road”, and based on the position of the host vehicle V, the direction in which the host vehicle V faces is referred to as “the entrance Front direction ”. Then, it may be determined whether the vehicle exit 106a exists in the left region or the right region with respect to the direction in which the vehicle V faces.
  • the present invention is not limited to this, and the driving support control may be executed even while the driver is traveling by manual driving in which the driver travels / stops the own vehicle by his / her own intention.
  • the driving support control may be executed even while the driver is traveling by manual driving in which the driver travels / stops the own vehicle by his / her own intention.
  • information on the entrance position is presented to the driver via the display device 7.
  • the driver may be notified of the information on the entrance position by voice or the like.
  • the traveling position on the ring road 101 is set to a position along the outer circumference.
  • the entrance position may be set. In this case, although the entrance position is not set based on the positional relationship between the own vehicle entrance 105a and the own vehicle exit 106a, the vehicle can pass without changing lanes in the ring road 101.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

ラウンドアバウトの環道内での車線変更の発生を抑制することができる走行支援方法を提供する。自車(V)を走行させる走行ルートを算出し、この走行ルートに基づいて走行支援制御を実行する認識判断プロセッサ(3)により、自車(V) の走行を支援する走行支援方法において、三本以上の放射路(110)が接続された環道(101) を有するラウンドアバウト(100) に自車(V) が到達した力、否かを判断する。そして、ラウンドァバウト(100) に自車(V) が到達したと判断したとき、自車入口(105a)の位置と自車出口(106a) の位置を特定する。さらに、自車入口(105a) 及び自車出口 (106a) の位置関係に基づいて、自車入口(105a) での自車(V) の幅方向位置である入口位置を設定する。

Description

走行支援方法及び走行支援装置
 本開示は、走行支援方法及び走行支援装置に関する発明である。
 従来、ラウンドアバウトの環道へ進入する手前の地点で、自車を一時停止させる走行支援方法が知られている(例えば、特許文献1参照)。
特表2018−503169号公報
 ここで、従来の走行支援方法には、ラウンドアバウトの環道に進入する際の自車の走行制御が開示されているものの、環道に進入する際に自車が通過する入口での自車の幅方向位置については何ら考慮されていない。そのため、環道内を走行中に車線変更を要することがあり、その結果、他車の走行を阻害するおそれがある。
 本開示は、上記問題に着目してなされたもので、環道内での車線変更の発生を抑制することができる走行支援方法及び走行支援装置を提供することを目的とする。
 上記目的を達成するため、本開示は、自車を走行させる目標経路を算出し、目標経路に基づいて走行支援制御を実行するコントローラを備え、自車の走行を支援する走行支援方法である。
 この走行支援方法では、三本以上の放射路が接続された環道を有するラウンドアバウトに自車が到達したか否かを判断する。ラウンドアバウトに自車が到達したと判断したとき、自車が環道に進入する入口の位置と自車が環道から退出する出口の位置を特定する。そして、入口及び出口の位置関係に基づいて、入口での自車の幅方向位置である入口位置を設定する。
 よって、本開示では、環道内での車線変更の発生を抑制することができる。
実施例1の走行支援方法及び走行支援装置が適用された自動運転制御システムを示す全体システム図である。 ラウンドアバウトを示す説明図である。 実施例1の認識判断プロセッサを示す制御ブロック図である。 実施例1の認識判断プロセッサにて実行される走行支援制御の流れを示すフローチャートである。 実施例1の認識判断プロセッサにて実行される第1入口位置設定制御の流れを示すフローチャートである。 実施例1の認識判断プロセッサにて実行される第2入口位置設定制御の流れを示すフローチャートである。 実施例1の認識判断プロセッサにて実行される第3入口位置設定制御の流れを示すフローチャートである。 実施例1の認識判断プロセッサにて実行される第4入口位置設定制御の流れを示すフローチャートである。 自車入口が二車線で、ラウンドアバウトを直進するシーンでの入口位置設定作用を説明する説明図である。 自車入口と自車出口の間に複数の放射路があるシーンでの入口位置設定作用を説明する説明図である。 自車入口と自車出口の間の放射路における進入混雑度が高いシーンでの入口位置設定作用を説明する説明図である。 自車入口が二車線で、ラウンドアバウトを左折するシーンでの入口位置設定作用を説明する説明図である。 自車入口が二車線で、ラウンドアバウトを右折するシーンでの入口位置設定作用を説明する説明図である。 自車入口が三車線で、ラウンドアバウトを左折するシーンでの入口位置設定作用を説明する説明図である。 自車入口が三車線で、ラウンドアバウトを直進するシーンでの入口位置設定作用を説明する説明図である。 自車入口が三車線で、ラウンドアバウトを右折するシーンでの入口位置設定作用を説明する説明図である。
 以下、本開示による走行支援方法及び走行支援装置を実施するための形態を、図面に示す実施例1に基づいて説明する。
 実施例1における走行支援方法及び走行支援装置は、認識判断プロセッサにて生成される目標経路情報(走行ルート情報)を用い、自動運転モードの選択により駆動/制動/舵角が自動制御される自動運転車両(走行支援車両の一例、自車)に適用したものである。以下、実施例1の構成を、「全体システム構成」、「認識判断プロセッサの制御ブロック構成」、「走行支援制御の処理構成」、「第1入口位置設定制御の処理構成」、「第2入口位置設定制御の処理構成」、「第3入口位置設定制御の処理構成」、「第4入口位置設定制御の処理構成」に分けて説明する。
[全体システム構成]
 自動運転システムAは、図1に示すように、車載センサ1と、地図データ記憶部2と、認識判断プロセッサ3(コントローラ)と、自動運転制御ユニット4と、アクチュエータ5と、表示デバイス7と、を備えている。
 車載センサ1は、カメラ11と、レーダー12と、GPS13と、車載データ通信器14と、を有する。車載センサ1により取得したセンサ情報は、認識判断プロセッサ3へ出力される。
 カメラ11は、自動運転で求められる機能として、車線や先行車や歩行者等の自車の周囲情報を画像データにより取得する機能を実現する周囲認識センサである。このカメラ11は、例えば、自車の前方認識カメラ、後方認識カメラ、右方認識カメラ、左方認識カメラ等を組み合わせることにより構成される。
 カメラ11では、自車走行路上物体・車線・自車走行路外物体(道路構造物、先行車、後続車、対向車、周囲車両、歩行者、自転車、二輪車)・自車走行路(道路白線、道路境界、停止線、横断歩道)・道路標識(制限速度)等が検知される。
 レーダー12は、自動運転で求められる機能として、自車周囲の物体の存在を検知する機能と共に、自車周囲の物体までの距離を検知する機能を実現する測距センサである。ここで、「レーダー12」とは、電波を用いたレーダーと、光を用いたライダーと、超音波を用いたソナーと、を含む総称をいう。レーダー12としては、例えば、レーザーレーダー、ミリ波レーダー、超音波レーダー、レーザーレンジファインダー等を用いることができる。このレーダー12は、例えば、自車の前方レーダー、後方レーダー、右方レーダー、左方レーダー等を組み合わせることにより構成される。
 レーダー12では、自車走行路上物体・自車走行路外物体(道路構造物、先行車、後続車、対向車、周囲車両、歩行者、自転車、二輪車)等の位置が検知されると共に、各物体までの距離が検知される。なお、視野角が不足すれば、適宜追加しても良い。
 GPS13は、GNSSアンテナ13aを有し、衛星通信を利用することで停車中/走行中の自車位置(緯度・経度)を検知する自車位置センサである。なお、「GNSS」は「Global Navigation Satellite System:全地球航法衛星システム」の略称であり、「GPS」は「Global Positioning System:グローバル・ポジショニング・システム」の略称である。
 車載データ通信器14は、外部データ通信器8との間で送受信アンテナ8a,14aを介して無線通信を行うことで、自車からは取得することができない情報を外部から取得する外部データセンサである。
 外部データ通信器8が、例えば、自車の周辺を走行する他車に搭載されたデータ通信器の場合、車載データ通信器14は、自車と他車の間で車車間通信を行う。車載データ通信器14は、この車車間通信を介して他車が保有する様々な情報のうち、自車で必要な情報を自己のリクエストにより取得することができる。
 外部データ通信器8が、例えば、インフラストラクチャ設備に設けられたデータ通信器の場合、車載データ通信器14は、自車とインフラストラクチャ設備の間でインフラ通信を行う。車載データ通信器14は、このインフラ通信を介してインフラストラクチャ設備が保有する様々な情報のうち、自車で必要な情報を自己のリクエストにより取得することができる。これにより、例えば、地図データ記憶部2に保存されている地図データでは不足する情報や地図データから変更された情報がある場合、不足情報/変更情報を補うことができる。また、自車が走行を予定している目標経路上での渋滞情報や走行規制情報等の交通情報を取得することもできる。
 地図データ記憶部2は、緯度経度と地図情報が対応づけられた、いわゆる電子地図データが格納された車載メモリにより構成される。GPS13にて検知される自車位置を認識判断プロセッサ3にて自車位置情報として認識すると、地図データ記憶部2は、自車位置を中心とする地図データを認識判断プロセッサ3へと送信する。
 地図データは、各地点に対応づけられた道路情報を有し、道路情報は、ノードと、ノード間を接続するリンクにより定義される。道路情報は、道路の位置/領域により道路を特定する情報と、道路ごとの道路種別、道路ごとの道路幅、道路の形状情報とを含む。道路情報は、各道路リンクの識別情報ごとに、交差点の位置、交差点の進入方向、交差点の種別その他の交差点に関する情報を対応づけて記憶されている。また、道路情報は、各道路リンクの識別情報ごとに、道路種別、道路幅、道路形状、直進の可否、進行の優先関係、追い越しの可否(隣接レーンへの進入の可否)、制限速度、道路標識、その他の道路に関する情報を対応づけて記憶されている。
 認識判断プロセッサ3は、車載センサ1や地図データ記憶部2からの入力情報(自車周囲情報、自車位置情報、地図データ情報、目的地情報等)を統合処理し、目標経路(走行ルート)と目標車速プロファイル(加速プロファイルや減速プロファイルを含む)等を生成する。そして、生成した目標経路情報と目標車速プロファイル情報を、自車位置情報等と共に自動運転制御ユニット4へ出力する。すなわち、この認識判断プロセッサ3は、現在地から目的地までの目標経路を、地図データ記憶部2からの道路情報やルート検索手法等に基づいて生成し、生成した目標経路に沿った目標車速プロファイル等を生成する。なお、認識判断プロセッサ3では、目標経路に沿う自車の停車中/走行中、車載センサ1による自車周囲のセンシング結果により自動運転を維持できないと判断されると、自車周囲のセンシング結果に基づいて、目標経路や目標車速プロファイル等を逐次修正する。なお、目標経路が修正されても、目標経路という。つまり、目標経路には、修正された経路も含む。
 さらに、この認識判断プロセッサ3では、ラウンドアバウト100(図2参照)に到達した際、自車Vの自車入口105aでの幅方向位置(以下「入口位置」という)を設定する入口位置設定制御を行い、入口位置情報を生成する。そして、この入口位置情報に基づいて目標走行位置を設定する。この目標走行位置情報は、自車位置情報等と共に自動運転制御ユニット4へ出力される。なお、「目標走行位置」とは、自車Vの走行路内での目標になる自車位置である。また、この認識判断プロセッサ3では、入口位置を設定した際、自車周囲のセンシング結果及び自車位置情報に基づいて、設定した入口位置に向かう車線変更が実行可能であるか否かを判断し、車線変更の可否の判断結果である車線変更可否情報を生成する。そして、この車線変更可否情報に基づいて目標走行位置を再設定する。
 ここで、「ラウンドアバウト100」とは、走行路が交差した優先路を走行する車両に対して、走行路を走行中の車両が走行を譲る交差点の一種であり、図2に示すように、三本以上(図3では六本)の放射路110(走行路)が接続された円環状の環道101(破線L2で囲まれた領域、優先路)を有する環状の交差点である。すなわち、ラウンドアバウト100は、環道101と、この環道101と放射路110との接続部102と、を含む破線L1で囲まれた領域である。
 環道101の中心には、円形の中央島103が設けられている。この中央島103は、車両の走行が禁止されている。また、環道101は、車両が一方通行で走行可能になっている。なお、環道101内での走行方向は、左側通行の場合には時計回り方向になり、右側通行の場合には反時計回り方向になる。中央島103には、環道101内での走行方向を示す標識104を設置してもよい。
 一方、接続部102は、環道101と各放射路110との境界(破線L2)から、環道101の径方向外方に所定の長さを有する領域である。この接続部102のうち、車両が環道101へ進入する部分を「入口105」といい、接続部102のうち、車両が環道101から退出する部分を「出口106」という。さらに、以下では、自車Vが環道101へ進入する際に通過する入口105を「自車入口105a」と呼び、自車Vが環道101から退出する際に通過する出口106を「自車出口106a」と呼ぶ。
 そして、放射路110のうち、自車Vが環道101への進入するときに走行する放射路を「進入路111」といい、自車Vが環道101から退出するときに走行する放射路を「退出路112」という。すなわち、進入路111は自車入口105aを有する放射路110であり、退出路112は自車出口106aを有する放射路110である。自車入口105a、自車出口106a、進入路111、退出路112は、いずれも自車Vの目標経路(走行ルート)TRに基づいて決まる。
 なお、ラウンドアバウト100は、環道101を走行する車両に対して、放射路110を走行中の車両が走行を譲る交差点である。そのため、このラウンドアバウト100では、環道101へ進入しようとする車両は、環道101を走行している車両の通行を妨げてはならず、環道101内の車両が入口105に向かって走行しているときには、環道101へ進入する車両は入口105で停車する必要がある。
 また、ラウンドアバウト100では、図2に示すように、入口105と出口106の間に路面からマウントアップされた分離島107が設けられていてもよい。分離島107は、環道101へ進入する車両と環道101から退出する車両を分離するためのものである。さらに、図2に示すように、入口105の手前に環道101への車両の進入を制御する信号機108が設置されていてもよい。
 自動運転制御ユニット4は、認識判断プロセッサ3からの入力情報に基づいて、目標経路や目標走行位置に沿う自動運転により自車を走行/停止させる駆動指令値/制動指令値/舵角指令値を演算する。そして、駆動指令値の演算結果を駆動アクチュエータ51へ出力し、制動指令値の演算結果を制動アクチュエータ52へ出力し、舵角指令値の演算結果を舵角アクチュエータ53へ出力する。
 アクチュエータ5は、自動運転制御ユニット4から入力された制御指令に基づいて目標経路や目標走行位置に沿うように自車を走行/停止させたり、自車を設定した入口位置に向けて走行させたりする制御アクチュエータである。このアクチュエータ5は、駆動アクチュエータ51と、制動アクチュエータ52と、舵角アクチュエータ53と、を有する。
 駆動アクチュエータ51は、自動運転制御ユニット4から駆動指令値を入力し、駆動輪へ出力する駆動力を制御するアクチュエータである。駆動アクチュエータ51としては、例えば、エンジン車の場合にエンジンを用い、ハイブリッド車の場合にエンジンとモータ/ジェネレータ(力行)を用い、電気自動車の場合にモータ/ジェネレータ(力行)を用いる。
 制動アクチュエータ52は、自動運転制御ユニット4から制動指令値を入力し、駆動輪へ出力する制動力を制御するアクチュエータである。制動アクチュエータ52としては、例えば、油圧ブースタや電動ブースタやブレーキ液圧アクチュエータやブレーキモータアクチュエータやモータ/ジェネレータ(回生)等を用いる。
 舵角アクチュエータ53は、自動運転制御ユニット4から舵角指令値を入力し、操舵輪の転舵角を制御するアクチュエータである。なお、舵角アクチュエータ53としては、ステアリングシステムの操舵力伝達系に設けられる転舵モータ等を用いる。
 表示デバイス7は、自動運転による停車中/走行中、自車が地図上で何処を移動しているか等を画面表示し、ドライバーや乗員に自車位置の視覚情報を提供するデバイスである。この表示デバイス7は、認識判断プロセッサ3により生成された目標経路情報や自車位置情報や目的地情報等を入力し、表示画面に、地図と道路と目標経路と自車位置と目的地等を視認しやすく表示する。
[認識判断プロセッサの制御ブロック構成]
 認識判断プロセッサ3は、図3に示すように、目標生成部31と、到達判断部32と、位置特定部33と、車線判断部34と、入口位置設定部35と、車線変更判断部36と、を備えている。
 目標生成部31は、自車周囲情報と自車位置情報と地図データ情報と目的地情報等を入力する。さらに、車線判断部34によって判断された車線情報と、入口位置設定部35によって設定された入口位置情報と、車線変更判断部36によって判断された車線変更可否情報を入力する。この目標生成部31では、入力された各種の情報に基づき、目標経路、目標車速プロファイル、目標走行位置等を生成する。目標生成部31により生成された各種の目標情報は、到達判断部32と、入口位置設定部35と、自動運転制御ユニット4に出力される。
 到達判断部32は、自車位置情報と地図データ情報と目標経路情報等を入力する。この到達判断部32では、自車Vがラウンドアバウト100に到達したか否かを判断する。この到達判断部32での判断結果と目標経路情報は、位置特定部33及び入口位置設定部35に出力される。ここで、自車Vがラウンドアバウト100に到達したとの判断は、自車Vから自車入口105aの幅方向中央位置までの目標経路に沿った距離L(図2参照)が所定の閾値距離以下に達したことで行う。「距離L」は、地図データ情報より得られたラウンドアバウト100の情報と、自車位置情報とに基づいて演算する。また、「閾値距離」とは、自車Vが自車入口105aに到達するまでの間に少なくとも一回の車線変更を可能とする距離であり、例えば100m~300mとする。なお、この「閾値距離」は、自車Vの走行速度に応じて変更してもよい。
 位置特定部33は、到達判断部32の判断結果と目標経路情報、地図データ情報等を入力する。この位置特定部33では、ラウンドアバウト100内における自車入口105aの位置と自車出口106aの位置を特定する。そして、位置特定部33により特定された自車入口105aの位置情報及び自車出口106aの位置情報は、車線判断部34及び入口位置設定部35に出力される。
 車線判断部34は、位置特定部33からの自車入口105aの位置情報と地図データ情報等を入力する。この車線判断部34では、自車入口105aが車幅方向に並ぶ複数の車線を有しているか否かを判断する。この車線判断部34の判断結果(車線情報)は、目標生成部31及び入口位置設定部35に出力される。
 なお、「車線」とは、走行路上に車幅方向に並んだ走行可能領域である。例えば、走行路の路面上に道路白線が設けられている場合には、この道路白線によって区分けされて走行路に沿って延びる領域が一つの車線に相当する。そして、道路白線によって区分けされた領域が車幅方向に複数並んでいるときに「複数の車線を有している」と判断する。一方、走行路の路面上に道路白線が設けられていない場合には、走行路が、車幅方向に複数の車両が並んで走行可能な幅寸法であるときに「複数の車線を有している」と判断する。
すなわち、自車入口105aが道路白線で区分けされていれば、道路白線を基準にして複数の車線を有しているか否かを判断する。一方、自車入口105aが道路白線で区分けされていないときには、自車入口105aの幅寸法を基準にして複数の車線を有しているか否かを判断する。
 入口位置設定部35は、目標経路情報と、到達判断部32の判断結果と、位置特定部33からの自車入口105aの位置情報及び自車出口106aの位置情報と、車線判断部34の判断結果を入力する。この入口位置設定部35では、入力された各種の情報に基づき、自車Vの自車入口105aでの幅方向位置である「入口位置」を設定し、入力位置情報を生成する。入口位置設定部35により生成された入力位置情報は、目標生成部31及び車線変更判断部36に出力される。ここで、入口位置設定部35は、ラウンドアバウト状態判断部35aと、放射路判断部35bと、混雑度判断部35cと、車線数判断部35dと、相対位置判断部35eと、入口位置演算部35fと、を有している。
 ラウンドアバウト状態判断部35aは、到達判断部32の判断結果と自車位置情報と地図データ情報と目標経路情報等を入力する。このラウンドアバウト状態判断部35aでは、自車Vが到達したラウンドアバウト100について、以下に列挙する事項をそれぞれ判断する。
 ・環道101の外径寸法が第1所定値以上であるか否か。
 ・環道101の幅寸法が第2所定値以上であるか否か。
 ・自車入口105aの手前位置に信号機108が設けられているか否か。
ラウンドアバウト状態判断部35aの判断結果は、入口位置演算部35fに出力される。なお、「第1所定値」とは、自車Vが環道101に進入してから退出するまでの間に、環道101内で車線変更を行う際に必要な走行距離を確保できる値であり、例えば60mとする。また、「第2所定値」とは、環道101内での車線変更を可能とする値であり、例えば10m(三車線相当)とする。さらに、信号機108は、自車入口105aを介して環道101に車両が進入する際に、この車両の進入を制御する信号機である。
 放射路判断部35bは、自車入口105aの位置情報及び自車出口106aの位置情報と地図データ情報等を入力する。この放射路判断部35bでは、自車Vが到達したラウンドアバウト100において、自車入口105aと自車出口106aとの間に、環道101に接続する複数の放射路110が存在するか否かを判断する。放射路判断部35bの判断結果は、入口位置演算部35fに出力される。ここで、「自車入口105aと自車出口106aとの間」とは、環道101での進行方向に沿って見たとき、自車入口105aと自車出口106aとに挟まれる領域である。
 混雑度判断部35cは、自車入口105aの位置情報及び自車出口106aの位置情報と自車周囲情報、地図データ情報等を入力する。この混雑度判断部35cでは、自車入口105aと自車出口106aとの間に、環道101に接続する放射路110が存在するか否かを判断する。さらに、自車入口105aと自車出口106aとの間の領域に存在する放射路110から環道101へ進入する車両の混雑度を演算し、この進入混雑度の高さを判断する。なお、進入混雑度を演算する際に必要な情報(例えば、放射路110から環道101へと進入する他車の状況等)は、車載センサ1によって取得してもよいし、VICS情報等の外部データ通信器8を介して取得してもよい。混雑度判断部35cの判断結果は、入口位置演算部35fに出力される。ここで、「自車入口105aと自車出口106aとの間」とは、環道101での進行方向に沿って見たとき、自車入口105aと自車出口106aとに挟まれる領域である。
 車線数判断部35dは、車線判断部34の判断結果と、ラウンドアバウト状態判断部35aの判断結果と、地図データ情報等を入力する。この車線数判断部35dでは、自車入口105aが幅方向に並ぶ二列の車線を有するか否かを判断する。車線数判断部35dの判断結果は、入口位置演算部35fに出力される。
 相対位置判断部35eは、自車入口105aの位置情報及び自車出口106aの位置情報と自車周囲情報、地図データ情報等を入力する。この相対位置判断部35eでは、自車入口105aと自車出口106aとの相対的な位置関係を判断する。相対位置判断部35eによって判断されて得られた相対位置情報は、入口位置演算部35fに出力される。
ここで、自車入口105aと自車出口106aとの相対的な位置関係は、自車入口105aの正面方向に対する自車出口106aの位置に基づいて判断される。すなわち、この相対位置判断部35eでは、自車出口106aが自車入口105aの正面方向よりも左側の領域に存在するか、自車出口106aが自車入口105aの正面方向よりも右側の領域に存在するか、自車出口106aが自車入口105aの正面方向上に存在するか、を判断する。
 なお、「自車入口105aの正面方向」とは、図2に示すように、進入路111の幅方向中央位置O1と、環道101の中心位置O2とを結んだ一点鎖線L3で示される方向である(以下、「正面方向L3」という)。また、「自車出口106aが自車入口105aの正面方向よりも左側の領域に存在する」とは、自車Vの進行方向に向いたときに正面方向L3よりも左の領域に退出路112が存在する場合である。「自車出口106aが自車入口105aの正面方向よりも右側の領域に存在する」とは、自車Vの進行方向に向いたときに正面方向L3よりも左の領域に退出路112が存在する場合である。さらに「自車出口106aが自車入口105aの正面方向上に存在する」とは、正面方向L3と退出路112とが重複している状態である。なお、図2に示すケースは、「自車入口105aの正面方向よりも右側の領域に自車出口106aが存在する」ケースである。
 入口位置演算部35fは、ラウンドアバウト状態判断部35aの判断結果と、放射路判断部35bの判断結果と、混雑度判断部35cの判断結果と、車線数判断部35dの判断結果と、相対位置判断部35eからの相対位置情報を入力する。この入口位置演算部35fでは、自車入口105a及び自車出口106aの位置関係に基づいて、自車入口105aでの自車Vの幅方向位置である入口位置を設定する。
ここで、入口位置演算部35fによる入口位置の設定は、自車入口105aと自車出口106aとの相対的な位置関係に基づいて行う場合と、自車入口105aと自車出口106aとの位置関係から得られる放射路110の存在に基づいて行う場合がある。
 車線変更判断部36は、入口位置設定部35からの入口位置情報と、自車周囲情報と、自車位置情報等を入力する。この車線変更判断部36では、自車周囲情報と、自車位置情報等に基づき、自車Vが自車入口105aに到達するまでの間に、入口位置設定部35にて設定された入口位置に向かう車線変更を円滑に実行可能であるか否かを判断する。この車線変更判断部36によって生成された車線変更の可否情報は、目標生成部31に出力される。ここで、車線変更の円滑な実行が不可能な場合とは、例えば、自車Vに隣接する他車が存在する場合や、移動目標地点に他車が存在する場合等、である。
[走行支援制御の処理構成]
 図4は、走行支援制御の流れを示すフローチャートである。以下、図4の各ステップを説明する。
 ステップS1では、自車周囲情報と自車位置情報と地図データ情報と目的地情報等に基づいて目標経路等を生成し、ステップS2へ進む。なお、ステップS1が、目標生成部31に相当する。
 ステップS2では、ステップS1での目標経路等の生成に続き、走行中に、車載センサ1から自車位置情報及び自車周囲情報を取得し、ステップS3へ進む。
 ステップS3では、ステップS2での自車位置情報及び自車周囲情報の取得に続き、自車Vからラウンドアバウト100までの距離が閾値距離以下に達したか否か、つまり、自車Vがラウンドアバウト100に到達したか否かを判断する。YES(ラウンドアバウト到達)の場合にはステップS4へ進む。NO(ラウンドアバウト未到達)の場合にはステップS1へ戻る。
ここで、自車Vからラウンドアバウト100までの距離は、自車位置情報や地図データ情報等に基づいて判断される。なお、ステップS3が、到達判断部32に相当する。
 ステップS4では、ステップS3でのラウンドアバウト到達との判断に続き、目標経路情報や、自車位置情報、地図データ等から自車Vが到達したラウンドアバウト100の情報を取得し、ステップS5へ進む。
ここで、「ラウンドアバウト100の情報」とは、自車入口105aの位置情報、自車出口106aの位置情報、環道101の外径寸法情報、環道101の幅寸法情報、入口手前の信号機設置情報、放射路110の位置情報、放射路110を走行中の他車状況等、自車入口105aの位置と自車出口106aの位置とを特定したり、入口位置を設定する際に必要となる各種の情報である。なお、ステップS4が位置特定部33に相当する。
 ステップS5では、ステップS4でのラウンドアバウト情報の取得に続き、自車位置情報や自車周囲情報等に基づき、自車Vが自車入口105aで停止することなく環道101に進入が可能であるか否かを判断する。YES(停止不要で環道内へ進入可能)の場合にはステップS13へ進む。NO(停止不要では環道内へ進入不可能)の場合にはステップS6へ進む。
ここで、「停止不要で環道101内に進入可能」な場合とは、自車入口105aに先行車が存在せず、且つ、環道101内において自車入口105aに向かってくる他車が存在しない場合である。なお、演算時点で自車入口105aに先行車が存在していても、自車Vが自車入口105aに到達する前に当該先行車が環道101内に進入することが予測できれば、「自車入口105aに先行車が存在しない」と判断する。
 ステップS6では、ステップS5での停止不要では環道内へ進入不可能との判断に続き、自車Vが環道101へ進入する際に通過する自車入口105aが、幅方向に並んだ複数の車線を有しているか否かを判断する。YES(複数車線あり)の場合はステップS7へ進む。NO(一車線)の場合はステップS13へ進む。
ここで、自車入口105aの車線は、自車入口105aの位置情報や地図データ情報、カメラ11によって取得した画像データ等に基づいて判断される。なお、ステップS6が車線判断部34に相当する。
 ステップS7では、ステップS6での自車入口105aが複数車線との判断に続き、入口位置設定制御を実行し、自車Vの自車入口105aでの幅方向位置である「入口位置」を設定し、さらにこの入口位置を設定する車線を特定し、ステップS8へ進む。
ここで、入口位置設定制御は、自車入口105aの位置と自車出口106aの位置を特定し、この自車入口105a及び自車出口106aの位置関係に基づいて、入口位置を設定する処理である。この入口位置設定制御は、図5に示す第1入口位置設定制御と、図6に示す第2入口位置設定制御と、図7に示す第3入口位置設定制御と、図8に示す第4入口位置設定制御を有している。第1、第2、第3入口位置設定制御は並列に実行される。一方、第4入口位置設定制御は、第1、第2、第3入口位置設定制御を実行した結果、すべての処理において第4入口位置設定制御を実行するステップが選択された場合に実行される。なお、ステップS7が入口位置設定部35に相当する。
 ステップS8では、ステップS7での入口位置の設定に続き、このステップS7にて設定された入口位置が自車線以外の車線(他車線)上に設定されたか否かを判断する。YES(入口位置を他車線上に設定)の場合にはステップS9へ進む。NO(入口位置を自車線上に設定)の場合にはステップS13へ進む。
ここで、「自車線」とは、自車Vの現在位置から走行路に沿って延びる延長線に一致する車線である。ステップS7にて設定された入口位置と自車線との位置関係は、自車位置情報や入口位置情報等に基づいて判断される。
 ステップS9では、ステップS8での入口位置を他車線上に設定との判断に続き、入口位置に向かう車線変更の実行が可能か否かを判断する。YES(車線変更可能)の場合にはステップS10へ進む。NO(車線変更不可能)の場合にはステップS13へ進む。
ここで、車線変更の実行可否判断は、入口位置情報や自車周囲情報、自車位置情報等から得られる隣接車両の存在や、自車入口105aまでの距離等の自車の周囲状況や自車状況に基づいて行う。また、「入口位置に向かう車線変更」とは、ステップS7にて設定された入口位置が設定された車線(当該車線を走行することで入口位置へ到達する車線、以下「目標車線」という)へ自車Vを移動させる車線変更である。
 ステップS10では、ステップS9での車線変更可能との判断に続き、車線変更制御の実行を許可し、ステップS11へ進む。なお、ステップS9及びステップS10が車線変更判断部36に相当する。
 ステップS11では、ステップS10での車線変更制御の実行を許可に続き、車線変更制御を実行し、ステップS12へ進む。
ここで、「車線変更制御」は、認識判断プロセッサ3にて、自車Vの現在位置から目標車線に向かう目標走行位置を生成し、この目標走行位置情報を自動運転制御ユニット4へ出力する。そして、自動運転制御ユニット4において、目標走行位置情報に基づいて目標走行位置に沿う自動運転を行う指令値を生成し、この指令値をアクチュエータ5へ出力する。そして、アクチュエータ5によって、目標走行位置に沿うように自車Vを走行/停止させることである。この車線変更制御は、周知の制御であるため、詳細な説明を省略する。
 ステップS12では、ステップS11での車線変更制御の実行に続き、車線変更制御が終了したか否かを判断する。YES(制御終了)の場合はステップS13へ進む。NO(制御継続)の場合はステップS9に戻る。
ここで、「車線変更制御の終了」は、自車Vが目標車線に移動したことで判断する。
 ステップS13では、ステップS5での停止不要で環道内へ進入可能との判断、ステップS6での自車入口105aが一車線との判断、ステップS8での入口位置=自車線との判断、ステップS9での入口位置に向かう車線変更不可能との判断、ステップS12での車線変更制御終了との判断のいずれかに続き、自車線に沿った走行を維持し、ステップS14へ進む。
 ステップS14では、ステップS13での自車線に沿った走行維持に続き、環道101と進入路111との境界である自車入口105aに到達したか否かを判断する。YES(入口到達)の場合にはステップS15へ進む。NO(入口未到達)の場合にはステップS13へ戻る。
ここで、自車Vが自車入口105aに到達したとの判断は、自車位置情報や地図データ情報等に基づき、自車Vから自車入口105aまでの距離が所定距離以下に達したと判断したことで行う。
 ステップS15では、ステップS14での入口到達との判断に続き、ラウンドアバウト走行制御を実行し、エンドへ進む。ここで、ラウンドアバウト走行制御は、車載センサ1から取得した自車周囲情報や自車位置情報、目標経路情報等に基づいた自動運転により、自車入口105aを介して環道101に進入し、環道101内を走行した後、自車出口106aを介して環道101を退出し、ラウンドアバウト100を通過する制御である。このラウンドアバウト走行制御は、周知の制御であるため、詳細な説明を省略する。
[第1入口位置設定制御の処理構成]
 図5は、第1入口位置設定制御の流れを示すフローチャートである。以下、図5の各ステップを説明する。
 ステップS101では、自車Vが到達したラウンドアバウト100において、環道101の外径寸法が第1所定値以上であるか否かを判断する。YES(環道外径寸法≧第1所定値)の場合にはステップS104へ進む。NO(環道外径寸法<第1所定値)の場合にはステップS102へ進む。
ここで、「第1所定値」は、自車Vが環道101に進入してから退出するまでの間に、環道101内での車線変更を行う際に必要な走行距離を確保できる値である。また、環道101の外径寸法の大きさは、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。
 ステップS102では、ステップS101での環道外径寸法<第1所定値との判断に続き、自車Vが到達したラウンドアバウト100において、環道101の幅寸法が第2所定値以上であるか否かを、地図データ情報に基づいて判断する。YES(環道幅寸法≧第2所定値)の場合にはステップS104へ進む。NO(環道幅寸法<第2所定値)の場合にはステップS103へ進む。
ここで、「第2所定値」は、自車Vの環道101内での車線変更を可能とする値である。また、環道101の幅寸法の大きさは、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。
 ステップS103では、ステップS102での環道外径寸法<第2所定値との判断に続き、自車入口105aの手前位置に環道101への車両進入を制御する信号機108が設けられているか否かを、地図データ情報に基づいて判断する。YES(信号機あり)の場合はステップS104へ進む。NO(信号機なし)の場合はステップS106へ進む。
ここで、信号機108の有無は、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。なお、ステップS101、ステップS102、ステップS103がラウンドアバウト状態判断部35aに相当する。
 ステップS104では、ステップS101での環道外径寸法≧第1所定値との判断、ステップS102での環道幅寸法≧第2所定値との判断、ステップS103での信号機ありとの判断のいずれかに続き、自車出口106aと自車入口105aとの相対的な位置関係に基づいて、自車出口106aが自車入口105aの正面方向L3上に存在するか否かを判断する。YES(正面方向上に出口あり)の場合にはステップS105へ進む。NO(正面方向上に出口なし)の場合にはステップS106へ進む。なお、ステップS104が相対位置判断部35eに相当する。
ここで、「自車出口106aが自車入口105aの正面方向上に存在する」状態は、退出路112と自車入口105aの正面方向L3とが重複している状態である。なお、退出路112の一部に自車入口105aの正面方向L3が重複していれば、「自車出口106aが自車入口105aの正面方向上に存在する」と判断する。一方、「自車出口106aが自車入口105aの正面方向上に存在しない」状態は、自車Vの進行方向に向いたとき、自車入口105aの正面方向L3よりも左側又は右側の領域に退出路112が存在する状態である。さらに、自車出口106aと自車入口105aとの相対的な位置関係は、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。
 ステップS105では、ステップS104での「自車出口106aが自車入口105aの正面方向上に存在する」との判断に続き、入口位置を自車線上に設定し、エンドへ進む。なお、ステップS105が入口位置演算部35fに相当する。
 ステップS106では、ステップS103での信号機なしとの判断、ステップS104での「自車出口106aが自車入口105aの正面方向上に存在しない」との判断のいずれかに続き、第4入口位置設定制御の実行を選択し、エンドへ進む。
[第2入口位置設定制御の処理構成]
 図6は、第2入口位置設定制御の流れを示すフローチャートである。以下、図6の各ステップを説明する。
 ステップS201では、自車Vが到達したラウンドアバウト100において、自車入口105aと自車出口106aとの間に、環道101に接続する複数の放射路110が存在するか否かを判断する。YES(複数の放射路あり)の場合にはステップS202へ進む。NO(複数の放射路なし)の場合にはステップS205へ進む。なお、ステップS201が放射路判断部35bに相当する。
ここで、自車入口105aと自車出口106aとの間の複数の放射路110の有無は、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。
 ステップS202では、ステップS201での複数の放射路ありとの判断に続き、環道101内での走行方向が時計回り方向であるか否かを判断する。YES(時計回り方向)の場合にはステップS203へ進む。NO(反時計回り方向)の場合にはステップS204へ進む。
 ステップS203では、ステップS202での環道101内での走行方向が時計回り方向との判断に続き、入口位置を左端車線よりも右側の車線上に設定し、エンドへ進む。
ここで、左端車線とは、自車入口105aにおいて進行方向を向いたとき、最も左側にある車線である。このステップS203では、左端車線よりも右側の車線上に入口位置を設定すればよいため、自車入口105aが二車線を有する場合では、右車線上に入口位置が設定される。また、例えば自車入口105aが三車線を有する場合では、中央車線上又は右端車線上のいずれかに入口位置が設定される。
 なお、以下では、入口位置を設定可能な車線が複数ある場合には、例えば自車線に一致する車線を選択したり、先行車までの道なり距離が長い(車線に沿って並ぶ先行車が少ない)車線を選択したり、自車線に隣接する車線を選択したりする。
 ステップS204では、ステップS202での環道101内での走行方向が反時計回り方向との判断に続き、入口位置を右端車線よりも左側の車線上に設定し、エンドへ進む。ここで、右端車線とは、自車入口105aにおいて進行方向を向いたとき、最も右側にある車線である。このステップS204では、右端車線よりも左側の車線上に入口位置を設定すればよいため、自車入口105aが二車線を有する場合では、左車線上に入口位置が設定される。また、例えば自車入口105aが三車線を有する場合では、中央車線上又は左端車線上のいずれかに入口位置が設定される。なお、ステップS203及びステップS204が入口位置演算部35fに相当する。
 ステップS205では、ステップS201での複数の放射路なしとの判断に続き、第4入口位置設定制御の実行を選択し、エンドへ進む。
[第3入口位置設定制御の処理構成]
 図7は、第3入口位置設定制御の流れを示すフローチャートである。以下、図7の各ステップを説明する。
 ステップS301では、自車Vが到達したラウンドアバウト100において、自車入口105aと自車出口106aとの間に、環道101に接続する放射路110が存在するか否かを、地図データ情報に基づいて判断する。YES(放射路あり)の場合にはステップS302へ進む。NO(放射路なし)の場合にはステップS307へ進む。
ここで、自車入口105aと自車出口106aとの間の放射路110の有無は、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。
 ステップS302では、ステップS301での放射路ありとの判断に続き、自車入口105aと自車出口106aとの間にある放射路110から環道101へと進入する他車の混雑度(進入混雑度)を演算し、ステップS303へ進む。
ここで、「進入混雑度」は、例えば、単位時間当たりの進入車両台数や、単位距離当たりの放射路110上の車両数等に基づいて演算する。また、進入混雑度を演算する際に必要な情報は、車載センサ1や外部データ通信器8を介して取得する。
 ステップS303では、ステップS302での進入混雑度の演算に続き、この進入混雑度が閾値以上であるか否か、つまり、自車入口105aと自車出口106aとの間にある放射路110の進入混雑度が高いか否かを判断する。YES(進入混雑度が高い)の場合にはステップS304へ進む。NO(進入混雑度が低い)の場合にはステップS307へ進む。なお、ステップS301、ステップS302、ステップS303が混雑度判断部35cに相当する。
 ステップS304では、ステップS303での進入混雑度が高いとの判断に続き、環道101内での走行方向が時計回り方向であるか否かを判断する。YES(時計回り方向)の場合にはステップS305へ進む。NO(反時計回り方向)の場合にはステップS306へ進む。
 ステップS305では、ステップS304での環道101内での走行方向が時計回り方向との判断に続き、入口位置を左端車線よりも右側の車線上に設定し、エンドへ進む。
なお、このステップS305では、左端車線よりも右側の車線上に入口位置を設定すればよいため、自車入口105aが二車線を有する場合では、右車線上に入口位置が設定される。また、例えば自車入口105aが三車線を有する場合では、中央車線上又は右端車線上のいずれかに入口位置が設定される。
 ステップS306では、ステップS304での環道101内での走行方向が反時計回り方向との判断に続き、入口位置を右端車線よりも左側の車線上に設定し、エンドへ進む。なお、このステップS306では、右端車線よりも左側の車線上に入口位置を設定すればよいため、自車入口105aが二車線を有する場合では、左車線上に入口位置が設定される。また、例えば自車入口105aが三車線を有する場合では、中央車線上又は左端車線上のいずれかに入口位置が設定される。なお、ステップS305及びステップS306が入口位置演算部35fに相当する。
 ステップS307では、ステップS301での放射路なしとの判断、ステップS303での進入混雑度が低いとの判断のいずれかに続き、第4入口位置設定制御の実行を選択し、エンドへ進む。
[第4入口位置設定制御の処理構成]
 図8は、第4入口位置設定制御の流れを示すフローチャートである。以下、図8の各ステップを説明する。
 ステップS401では、自車入口105aが幅方向に並ぶ二列の車線を有するか否かを判断する。YES(二車線)の場合にはステップS402へ進む。NO(三車線以上)の場合にはステップS405へ進む。なお、ステップS401が車線数判断部35dに相当する。
 ステップS402では、ステップS401での自車入口105aが二車線との判断に続き、自車出口106aと自車入口105aとの相対的な位置関係に基づいて、自車出口106aが自車入口105aの正面方向L3よりも右側の領域に存在するか否かを判断する。YES(正面方向より右に出口あり)の場合にはステップS403へ進む。NO(正面方向より左又は正面方向上に出口あり)の場合にはステップS404へ進む。
なお、自車出口106aと自車入口105aとの相対的な位置関係は、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。
 ステップS403では、ステップS402での「自車出口106aが自車入口105aの正面方向より右側に存在する」との判断に続き、入口位置を右車線上に設定し、エンドへ進む。
 ステップS404では、ステップS402での「自車出口106aが自車入口105aの正面方向より左側又は正面方向上に存在する」との判断に続き、入口位置を左車線上に設定し、エンドへ進む。
 ステップS405では、ステップS401での自車入口105aが三車線以上との判断に続き、自車出口106aと自車入口105aとの相対的な位置関係に基づいて、自車出口106aが自車入口105aの正面方向L3よりも右側の領域に存在するか否かを判断する。YES(正面方向より右に出口あり)の場合にはステップS406へ進む。NO(正面方向より左又は正面方向上に出口あり)の場合にはステップS407へ進む。
なお、自車出口106aと自車入口105aとの相対的な位置関係は、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。
 ステップS406では、ステップS405での「自車出口106aが自車入口105aの正面方向より右側に存在する」との判断に続き、入口位置を右端車線上に設定し、エンドへ進む。
 ステップS407では、ステップS405での「自車出口106aが自車入口105aの正面方向より左側又は正面方向上に存在する」との判断に続き、自車出口106aが自車入口105aの正面方向L3よりも左側の領域に存在するか否かを判断する。YES(正面方向より左に出口あり)の場合にはステップS408へ進む。NO(正面方向上に出口あり)の場合にはステップS409へ進む。なお、ステップS402、ステップS405、ステップS407が相対位置判断部35eに相当する。
そして、自車出口106aと自車入口105aとの相対的な位置関係は、走行支援制御のステップS4にて取得したラウンドアバウト情報を用いて判断する。
 ステップS408では、ステップS407での「自車出口106aが自車入口105aの正面方向より左側に存在する」との判断に続き、入口位置を左端車線上に設定し、エンドへ進む。
 ステップS409では、ステップS407での「自車出口106aが自車入口105aの正面方向上に存在する」との判断に続き、入口位置を左端車線と右端車線の間の車線上に設定し、エンドへ進む。なお、ステップS403、ステップS404、ステップS406、ステップS408、ステップS409が入口位置演算部35fに相当する。
 次に、実施例1の走行支援方法及び走行支援装置の作用を、走行シーンごとに説明する。なお、以下では、原則として左側通行であり、環道101内を時計回り方向に走行することを前提に説明する。
[入口位置の設定が不要な走行シーン]
 自車Vの走行中、認識判断プロセッサ3は、図4に示す走行支援制御を実行する。すなわち、認識判断プロセッサ3は、図4に示すステップS1からステップS2、ステップS3の処理を行い、目標経路等が生成されると共に、自車位置情報及び自車周囲情報が取得される。
 そして、自車Vが走行路上に存在するラウンドアバウト100に近づき、ステップS3の処理においてラウンドアバウト到達判断が肯定されると、認識判断プロセッサ3は、ステップS4からステップS5の処理を行い、自車Vが到達したと判断したラウンドアバウト100の情報を取得する。さらに、自車Vが自車入口105aで停止することなく環道101に進入が可能であるか否かを判断する。
 ここで、自車入口105aに先行車が存在せず、且つ、環道101内において自車入口105aに向かってくる他車が存在しない場合では、自車入口105aで停止することなく環道101に進入が可能であるとし、ステップS13からステップS14、ステップS15の処理を行う。すなわち、認識判断プロセッサ3は、現在(例えば、ラウンドアバウト100に到達したと判断したタイミング)時点で走行している車線(自車線)を、自車Vが入口位置に到達するまで継続して走行する目標走行位置を生成する。これにより、自車Vは、入口位置に到達するまでの間、自車線の走行を継続する。そして、自車入口105aに到達したら、ラウンドアバウト走行制御が実行され、自車Vは周知の制御の自動運転にてラウンドアバウト100を通過する。
 一方、例えば、自車入口105aに先行車が存在したり、環道101内において自車入口105aに向かってくる他車が存在したりする場合には、ステップS5の処理において「停止不要では環道101内へ進入不可能(自車入口105aで停車が必要)」と判断される。そして、ステップS6の処理が行われ、自車入口105aが複数車線であるか否かが判断される。
 このとき、自車入口105aが一車線の場合では、入口位置は必然的に自車線上に設定される。そのため、入口位置設定制御の実行は不要であり、ステップS6からステップS13、ステップS14、ステップS15へと進み、自車線の走行が継続された後、ラウンドアバウト走行制御が実行される。
[入口位置の設定を要する走行シーン]
 これに対し、自車入口105aが二車線以上の複数車線を有する場合では、ステップS7の処理を行い、入口位置設定制御を実行する。つまり、認識判断プロセッサ3は、自車入口105a及び自車出口106aの位置関係に基づいて、自車Vの自車入口105aでの幅方向位置である「入口位置」を設定し、さらにこの入口位置を設定する目標車線を設定する。なお、この入口位置設定制御では、図5~図7に示す第1,第2,第3入口位置設定制御を並列に実行する。そして、これらのすべての処理において第4入口位置設定制御の実行を選択するステップへ進んだ場合、図8に示す第4入口位置設定制御を実行する。
 そして、入口位置設定制御を実行した結果、「入口位置」及び目標車線が設定されると、ステップS8の処理を行い、設定された入口位置が自車線以外の車線上に設定されたか、つまり目標車線が他車線であるか否かを判断する。ここで、目標車線と自車線とが一致する場合には、車線変更が不要であるとして、ステップS8からステップS13、ステップS14、ステップS15へと進み、自車線の走行が継続された後、ラウンドアバウト走行制御が実行される。
 一方、目標車線と自車線とが一致していない場合には、入口位置に向かう車線変更が必要であるとしてステップS9の処理を行い、入口位置に向かう車線変更の実行が可能か否かを判断する。ここで、隣接車両の存在や、自車入口105aまでの距離等の自車周囲環境等に基づいて、車線変更ができないと判断されたときには、車線変更が不可能であるとして、ステップS9からステップS13、ステップS14、ステップS15へと進み、自車線の走行が継続された後、ラウンドアバウト走行制御が実行される。
 これに対し、ステップS9の処理において、車線変更ができると判断されたときには、ステップS10、ステップS11の処理を順に行い、車線変更制御の実行を許可し、車線変更制御を実行する。そして、ステップS12の処理によって車線変更制御が終了したと判断されたとき、ステップS13、ステップS14、ステップS15へと進み、自車線の走行が継続された後、ラウンドアバウト走行制御が実行される。なお、車線変更制御の実行中に車線変更ができないと判断されたときには、車線変更制御の実行を中止して、ステップS13、ステップS14、ステップS15の処理を行う。
 続いて、走行シーンごとに分けて走行支援方法及び走行支援装置における目標車線設定作用を説明する。
[環道外径寸法が第1所定値以上で、自車入口の正面方向上に自車出口があるシーン]
 認識判断プロセッサ3において入口位置設定制御を実行する際、図9に示すラウンドアバウト100Aにおいて、環道101の外径寸法(以下、「環道外径寸法R1」という)が第1所定値以上のときを考える。この場合には、図5に示す第1入口位置設定制御のステップS101の処理で、環道外径寸法≧第1閾値と判断され、ステップS104の処理を行う。図9に示す走行シーンでは、自車入口105aの正面方向L3に退出路112が重複しており、「自車入口105aの正面方向上に自車出口106aが存在する」と判断される。そのため、ステップS105の処理を行い、入口位置を自車線上に設定する。つまり、進入路111が二車線である図9に示す例では、自車Vが右車線111Rを走行している場合、右車線111R上に入口位置が設定される。また、自車Vが左車線111Lを走行している場合、左車線111L上に入口位置が設定される。
 これにより、進入路111を走行中に車線変更を行う必要がなくなり、進入路111の走行中での車線変更の発生を抑制することができる。
 なお、環道外径寸法R1が第1所定値以上のときには、自車Vが環道101に進入してから退出するまでの間に車線変更が可能になる。つまり、入口位置に拘らず、環道101内の状況に応じて適宜車線変更を行うことができる。これに対し、自車出口106aが自車入口105aの正面方向L3よりも左側の領域にある場合、自車Vの環道滞在時間が比較的短くなる。そのため、環道101内を外周に寄って走行することが好ましいとされている。また、自車出口106aが自車入口105aの正面方向L3よりも右側の領域にある場合、自車Vの環道滞在時間が比較的長くなる。そのため、他車の走行(特に環道101から退出する他車の動作)を阻害しないように、環道101内を内周に寄って走行することが好ましいとされている。一方、自車出口106aが自車入口105aの正面方向L3上に存在する場合では、自車出口106aが自車入口105aの正面方向L3から左右いずれかにオフセットしている場合よりも、環道101内での走行ルートの選択自由度が高くなる。
 そのため、環道外径寸法R1が第1所定値以上であって、自車出口106aが自車入口105aの正面方向L3上に存在する場合には、入口位置を任意の車線上に設定してもよい。つまり、図5に示す例では、ステップS105の処理において入口位置を自車線上に設定したが、これに限らない。例えば、先行車の少ない車線上に入口位置を設定してもよい。この場合には、短時間で環道101に進入したり、ラウンドアバウト100を速やかに通過したりすることが可能となる。
[環道幅寸法が第2所定値以上で、自車入口の正面方向上に自車出口があるシーン]
 図9に示すラウンドアバウト100Aにおいて、環道外径寸法R1が第1所定値未満であって、環道101の幅寸法(以下、「環道幅寸法W1」という)が第2所定値以上のときを考える。この場合には、図5に示す第1入口位置設定制御のステップS102の処理で、環道幅寸法≧第2閾値と判断され、ステップS104の処理を行う。図9に示す走行シーンでは、「自車入口105aの正面方向上に自車出口106aが存在する」と判断されてステップS105の処理を行い、入口位置を自車線上に設定する。つまり、進入路111が二車線である図9に示す例では、自車Vが右車線111Rを走行している場合、右車線111R上に入口位置が設定される。また、自車Vが左車線111Lを走行している場合、左車線111L上に入口位置が設定される。
 これにより、進入路111を走行中に車線変更を行う必要がなくなり、進入路111の走行中での車線変更の発生を抑制することができる。
 なお、環道幅寸法W1が第2所定値以上の場合にも、自車Vが環道101に進入してから退出するまでの間に車線変更が可能になる。つまり、入口位置に拘らず、環道101内の状況に応じて適宜車線変更を行うことが可能である。そのため、環道幅寸法W1が第2所定値以上であって、自車出口106aが自車入口105aの正面方向L3上に存在する場合には、入口位置を任意の車線上に設定してもよい。これにより、自車周囲状況や、自車Vの走行状況に応じて、短時間で環道101に進入したり、ラウンドアバウト100を速やかに通過したりすることができる。
[環道への進入制御信号機があり、自車入口の正面方向上に自車出口があるシーン]
 図9に示すラウンドアバウト100Aにおいて、環道外径寸法R1が第1所定値未満且つ環道幅寸法W1が第2所定値未満であって、自車入口105aの手前地点に、環道101への進入を制御する信号機108(図2参照)が設置されている場合を考える(図9では信号機108は示さない)。この場合には、図5に示す第1入口位置設定制御のステップS103の処理で信号機ありと判断され、ステップS104の処理を行う。図9に示す走行シーンでは、「自車入口105aの正面方向上に自車出口106aが存在する」と判断されてステップS105の処理を行い、入口位置を自車線上に設定する。つまり、進入路111が二車線である図9に示す例では、自車Vが右車線111Rを走行している場合、右車線111R上に入口位置が設定される。また、自車Vが左車線111Lを走行している場合、左車線111L上に入口位置が設定される。
 これにより、進入路111を走行中に車線変更を行う必要がなくなり、進入路111の走行中での車線変更の発生を抑制することができる。
 また、環道101への進入を制御する信号機108が設置されているときには、環道101内の車両数に制限がかかり、環道101内が混雑しにくい。つまり、入口位置に拘らず、環道101内の状況に応じて車線変更を容易に行うことが可能になる。そのため、環道101への進入を制御する信号機108が設置されている場合であって、自車出口106aが自車入口105aの正面方向L3上に存在する場合にも、入口位置を任意の車線上に設定してもよい。これにより、自車周囲状況や、自車Vの走行状況に応じて、短時間で環道101に進入したり、ラウンドアバウト100を速やかに通過したりすることができる。
 なお、図5に示す第1入口位置設定制御では、環道外径寸法R1が第1所定値未満であって、環道幅寸法W1が第2所定値未満であって、進入制御信号機が設置されていない場合には、ステップS106の処理に進み、第4入口位置設定制御の実行が選択される。
[自車入口と自車出口の間に複数の放射路があるシーン]
 図10に示すラウンドアバウト100Bにおいて、自車入口105aと自車出口106aとの間に、環道101に接続する複数の放射路110が存在する場合を考える。この場合には、図6に示す第2入口位置設定制御のステップS201の処理で、複数の放射路ありと判断され、ステップS202の処理を行う。図10に示すラウンドアバウト100Bでは、環道101内を時計回り方向に進行するので、ステップS203の処理を行い、入口位置を左端車線よりも右側の車線上に設定する。つまり、進入路111が二車線である図10に示す例では、右車線111R上に入口位置が設定される。なお、図14に示すような進入路111が三車線の場合には、右端車線111R´又は中央車線111C上のいずれかに入口位置が設定される。この場合は、他の条件(例えば、先行車が少ない等)に基づいて入口位置を設定する。
 一方、環道101内での走行方向が反時計回り方向の場合には、ステップS202からステップS204の処理を行い、入口位置を右端車線よりも左側の車線上に設定する。つまり、図10に示すような進入路111が二車線である例では、左車線111L上に入口位置が設定される。なお、図14に示すような進入路111が三車線の場合には、左端車線111L´又は中央車線111C上のいずれかに入口位置が設定される。この場合は、他の条件(例えば、先行車が少ない等)に基づいて入口位置を設定する。
 これにより、自車入口105aと自車出口106aとの間にある複数の放射路110から進入する他車や、この放射路110から退出する他車の走行を阻害しにくくなり、環道101内を円滑に走行することが可能となる。
 なお、図6に示す第2入口位置設定制御では、自車入口105aと自車出口106aとの間に複数の放射路110が存在しない場合(進入路111と退出路112が隣接している場合や、進入路111と退出路112の間に放射路110が一本だけ存在する場合)には、ステップS205の処理に進み、第4入口位置設定制御の実行が選択される。
[自車入口と自車出口の間の放射路における進入混雑度が高いシーン]
 図11に示すラウンドアバウト100Cにおいて、自車入口105aと自車出口106aとの間に、環道101に接続する放射路110が存在し、この放射路110における他車Vαの進入混雑度が高い場合を考える。この場合には、図7に示す第3入口位置設定制御のステップS301の処理で、放射路ありと判断され、ステップS302の処理を行い、自車入口105aと自車出口106aとの間の放射路110における進入混雑度が演算される。そして、この進入混雑度が閾値以上であれば、ステップS303の判断で肯定され、ステップS304の処理を行う。図11に示すラウンドアバウト100Cでは、環道101内を時計回り方向に進行するので、ステップS305の処理を行い、入口位置を左端車線よりも右側の車線上に設定する。つまり、進入路111が二車線である図11に示す例では、右車線111R上に入口位置が設定される。なお、進入路111が三車線の場合(図14参照)には、右端車線111R´又は中央車線111C上のいずれかに入口位置が設定される。この場合は、他の条件(例えば、先行車が少ない等)に基づいて入口位置を設定する。
 一方、環道101内での走行方向が反時計回り方向の場合には、ステップS304からステップS306の処理を行い、入口位置を右端車線よりも左側の車線上に設定する。つまり、図11に示すような進入路111が二車線である例では、左車線111L上に入口位置が設定される。なお、図14に示すような進入路111が三車線の場合には、左端車線111L´又は中央車線111C上のいずれかに入口位置が設定される。この場合は、他の条件(例えば、先行車が少ない等)に基づいて入口位置を設定する。
 これにより、自車入口105aと自車出口106aとの間にある放射路110から進入する他車の走行を阻害しにくくなり、環道101内を円滑に走行することが可能となる。また、他車の走行を阻害しないことで、ラウンドアバウト100での交通流を妨げることがなく、スムーズな交通に貢献することができる。しかも、環道101内で混雑度が低い車線を走行することも可能になり、ラウンドアバウト100を速やかに通過することができる。
 なお、図7に示す第3入口位置設定制御では、自車入口105aと自車出口106aとの間に放射路110が存在しない場合や、進入混雑度が低い場合には、ステップS307の処理に進み、第4入口位置設定制御の実行が選択される。
[自車入口が二車線で、ラウンドアバウトを左折するシーン]
 以下、第1~第3入口位置設定制御のすべてで第4入口位置設定制御の実行が選択された場合を前提に説明する。ここで、進入路111が二車線である図12に示すラウンドアバウト100Dにおいて、左折するシーンを考える。この場合には、図8に示す第4入口位置設定制御のステップS401の処理で肯定判断され、ステップS402の処理を行う。つまり、自車出口106aが自車入口105aの正面方向L3よりも右側の領域に存在するか否かを判断する。図12に示す走行シーンでは、「自車入口105aの正面方向L3よりも左側の領域に自車出口106aが存在する」と判断されて否定判断となり、ステップS404の処理を行い、入口位置を左車線111L上に設定する。
 これにより、環道101内に不要に入り込むことがなくなり、環道101内を外周に寄って走行し、円滑に退出することができる。そのため、環道101内での車線変更の発生を抑制することができる。
[自車入口が二車線で、ラウンドアバウトを直進するシーン]
 進入路111が二車線である図9に示すラウンドアバウト100Aにおいて、直進するシーンを考える。この場合には、図8に示す第4入口位置設定制御のステップS401の処理で肯定判断され、ステップS402の処理を行う。図9に示す走行シーンでは、「自車入口105aの正面方向L3上に自車出口106aが存在する」と判断されて否定判断となり、ステップS404の処理を行い、入口位置を左車線111L上に設定する。
 これにより、環道101内に不要に入り込むことがなくなり、環道101内を外周に寄って走行し、円滑に退出することができる。そのため、環道101内での車線変更の発生を抑制することができる。
[自車入口が二車線で、ラウンドアバウトを右折するシーン]
 進入路111が二車線である図13に示すラウンドアバウト100Eにおいて、右折するシーンを考える。この場合には、図8に示す第4入口位置設定制御のステップS401の処理で肯定判断され、ステップS402の処理を行う。図13に示す走行シーンでは、「自車入口105aの正面方向L3よりも右側の領域に自車出口106aが存在する」と判断されて肯定判断になり、ステップS403の処理を行い、入口位置を右車線111R上に設定する。
 これにより、環道101内を外周に寄って走行する場合よりも、環道101内での走行距離を短縮することができ、環道101を速やかに退出することができる。
[自車入口が三車線で、ラウンドアバウトを左折するシーン]
 進入路111が三車線である図14に示すラウンドアバウト100Fにおいて、左折するシーンを考える。この場合には、図8に示す第4入口位置設定制御のステップS401の処理で否定判断され、ステップS405の処理を行う。つまり、自車出口106aが自車入口105aの正面方向L3よりも右側の領域に存在するか否かを判断する。図14に示す走行シーンでは、「自車入口105aの正面方向L3よりも左側の領域に自車出口106aが存在する」と判断されて否定判断となり、ステップS407の処理を行う。つまり、自車出口106aが自車入口105aの正面方向L3よりも左側の領域に存在するか否かを判断する。図14に示す走行シーンでは、肯定判断となり、ステップS408の処理を行い、入口位置を左端車線111L´上に設定する。
 これにより、環道101内に不要に入り込むことがなくなり、環道101内を外周に寄って走行し、円滑に退出することができる。そのため、環道101内での車線変更の発生を抑制することができる。
[自車入口が三車線で、ラウンドアバウトを直進するシーン]
 進入路111が三車線である図15に示すラウンドアバウト100Gにおいて、直進するシーンを考える。この場合には、図8に示す第4入口位置設定制御のステップS401の処理で否定判断され、ステップS405の処理を行う。図15に示す走行シーンでは、「自車入口105aの正面方向L3上に自車出口106aが存在する」と判断されて否定判断となり、ステップS407の処理を行う。この図15に示す走行シーンでは、このステップS407の処理においても否定判断となる。その結果、ステップS409の処理を行い、入口位置を中央車線111C上に設定する。
 これにより、環道101内を外周に寄って走行する場合よりも、環道101内での走行距離を短縮することができ、環道101を速やかに退出することができる。
[自車入口が三車線で、ラウンドアバウトを右折するシーン]
 進入路111が三車線である図16に示すラウンドアバウト100Hにおいて、右折するシーンを考える。この場合には、図8に示す第4入口位置設定制御のステップS401の処理で否定判断され、ステップS405の処理を行う。図15に示す走行シーンでは、「自車入口105aの正面方向L3よりも右側の領域に自車出口106aが存在する」と判断されてと判断されて肯定判断となり、ステップS406の処理を行い、入口位置を右端車線111R´上に設定する。
 これにより、環道101内を外周に寄って走行する場合よりも、環道101内での走行距離を短縮することができ、環道101を速やかに退出することができる。
 このように、実施例1の走行支援方法及び走行支援装置では、ラウンドアバウト100に自車Vが到達したと判断したとき、自車入口105aと自車出口106aの位置を特定する。そして、この自車入口105a及び自車出口106aの位置関係に基づいて、入口位置を設定する。
 ここで、一般的に、入口位置において右端車線を選択した場合では、環道101内を内周に沿って走行した後、外周に向かって車線変更を行い、自車出口106aを介して退出路112へと走行することになる。そのため、入口位置において左端車線を選択した場合よりも、右端車線に近い車線を選択した場合の方が環道101における走行難易度が高くなる。しかしながら、左端車線を選択したことで、環道101内を外周に沿って走行することになり、環道101内の走行距離が長くなるときには、環道101から退出する他車の走行を阻害するおそれが生じる。
 これに対し、実施例1では、自車入口105a及び自車出口106aの位置関係に基づいて、入口位置を設定することで、例えば、左端車線の選択が好ましい走行シーンでは、入口位置を左端車線上に設定し、右端車線の選択が好ましいシーンでは、入口位置を右端車線上に設定することができる。つまり、環道101に進入する前の自車入口105a及び進入路111において、環道101内の走行に対して適切な車線を選択して走行することができる。この結果、ラウンドアバウト100を適切に通過する可能性を高め、環道101内での車線変更の発生を抑制することができる。
 さらに、環道101内での車線変更を抑制することで、他車の走行を阻害することを防止できる。また、環道101への進入前に予め環道101内の走行に対して適切な車線を選択できるので、環道101の走行時間を短縮したり、ラウンドアバウト100の通過を円滑に行うことができる。
 そして、自車入口105aと自車出口106aとの相対的な位置関係に基づいて入口位置を設定する際、第4入口位置設定制御に示すように、自車出口106aが自車入口105aの正面方向L3よりも左側の領域に存在すると判断したとき、入口位置を自車入口105aの幅方向中央位置よりも左側に設定する。また、自車出口106aが自車入口105aの正面方向L3よりも右側の領域に存在すると判断したとき、入口位置を自車入口105aの幅方向中央位置よりも右側に設定する。
 これにより、自車入口105aと自車出口106aとの相対的な位置関係に応じて、環道101内での不要な車線変更を抑制したり、環道101内での走行距離を抑えて走行時間の短縮化を図ったりすることができる。すなわち、環道101内を適切な走行ルートで通過することができる。
 さらに、自車入口105aと自車出口106aとの位置関係から得られる放射路110の存在に基づいて入口位置を設定する際、自車入口105aと自車出口106aとの間に複数の放射路110がある場合には、第2入口位置設定制御に示すように、環道101を時計回りするときには入口位置を右寄りに設定し、環道101を反時計回りするときには入口位置を左寄りに設定する。
 また、自車入口105aと自車出口106aとの位置関係から得られる放射路110の存在に基づいて入口位置を設定する際、自車入口105aと自車出口106aとの間に存在する放射路110での進入混雑度が高い場合には、第3入口位置設定制御に示すように、環道101を時計回りするときには入口位置を右寄りに設定し、環道101を反時計回りするときには入口位置を左寄りに設定する。
 これにより、自車入口105aと自車出口106aとの間にある放射路110から進入する他車や、この放射路110から退出する他車の走行を阻害しにくくなり、環道101内を円滑に走行することが可能となる。
 そして、環道外径寸法R1や環道幅寸法W1が所定値以上であったり、環道101への車両の進入が制御されたりするときには、環道101内での車線変更の自由度が高い。そのような場合において、自車出口106aが自車入口105aの正面方向L3上に存在するとき、第1入口位置設定制御に示すように、入口位置を自車線上に設定する。これにより、進入路111を走行中に車線変更を行う必要がなくなり、進入路111の走行中での車線変更の発生を抑制することができる。
 また、環道101内での車線変更の自由度が高い場合に、自車出口106aが自車入口105aの正面方向L3上に存在するときには、自車周囲状況等に応じて入口位置を任意に設定してもよい。そのため、ラウンドアバウト100を通過する際に、より適切な入口位置を設定することができ、走行時間の短縮や、円滑な走行を実現することが可能となる。
 さらに、入口位置が他車線上に設定されたときには、入口位置に向かう車線変更を円滑に実行が可能か否かを判断し、円滑な車線変更を実行可能と判断したときには、車線変更制御の実行を許可する。一方、円滑な車線変更を実行不可能と判断したときには、車線変更制御の実行を許可せず、自車線の走行を維持する。そのため、進入路111を走行中に車線変更に伴う急激な車速変化や操舵変化の発生等を抑制することができ、円滑な走行を行うことができる。
 次に、効果を説明する。
 実施例1の走行支援方法及び走行支援装置にあっては、下記に列挙する効果を得ることができる。
 (1)自車Vを走行させる走行ルート(目標経路)を算出し、前記走行ルートに基づいて走行支援制御を実行するコントローラ(認識判断プロセッサ3)を備え、前記自車Vの走行を支援する走行支援方法において、
 三本以上の放射路110が接続された環道101を有するラウンドアバウト100に前記自車Vが到達したか否かを判断し、
 前記ラウンドアバウト100に前記自車Vが到達したと判断したとき、前記自車Vが前記環道101に進入する入口(自車入口105a)の位置と前記自車Vが前記環道101から退出する出口(自車出口106a)の位置を特定し、
 前記入口(自車入口105a)及び前記出口(自車出口106a)の位置関係に基づいて、前記入口(自車入口105a)での前記自車Vの幅方向位置である入口位置を設定する構成とした。
 これにより、環道101内での車線変更の発生を抑制することができる。
 (2)前記入口位置の設定を、前記入口(自車入口105a)と前記出口(自車出口106a)との相対的な位置関係に基づいて行い、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3よりも左側の領域に存在すると判断したとき、前記入口位置を、前記入口(自車入口105a)の幅方向中央位置よりも左側に設定し、
 前記出口(自車出口106a)が前記入口の正面方向L3よりも右側の領域に存在すると判断したとき、前記入口位置を、前記入口(自車入口105a)の幅方向中央位置よりも右側に設定する構成とした。
 これにより、自車入口105aと自車出口106aとの相対的な位置関係に応じて、環道101内を適切な走行ルートで通過することができる。
 (3)前記入口(自車入口105a)が幅方向に並ぶ二列の車線を有するか否かを判断し、
 前記入口(自車入口105a)が幅方向に並ぶ二列の車線を有すると判断したとき、前記入口位置の設定を、前記入口(自車入口105a)と前記出口(自車出口106a)との相対的な位置関係に基づいて行い、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3よりも左側の領域又は前記入口(自車入口105a)の正面方向L3上に存在すると判断したとき、前記入口位置を左車線111Lに設定し、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3よりも右側の領域に存在すると判断したとき、前記入口位置を右車線111Rに設定する構成とした。
 これにより、自車入口105aと自車出口106aとの相対的な位置関係に応じて、環道101内を適切な走行ルートで通過することができる。
 (4)前記入口(自車入口105a)が幅方向に並ぶ三列の車線を有するか否かを判断し、
 前記入口(自車入口105a)が幅方向に並ぶ三列以上の車線を有すると判断したとき、前記入口位置の設定を、前記入口(自車入口105a)と前記出口(自車出口106a)との相対的な位置関係に基づいて行い、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3よりも左側の領域に存在すると判断したとき、前記入口位置を左端車線111L´に設定し、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3よりも右側の領域に存在すると判断したとき、前記入口位置を右端車線111R´に設定し、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3上に存在すると判断したとき、前記入口位置を左端車線111L´と右端車線111R´の間の車線(中央車線111C)に設定する構成とした。
 これにより、自車入口105aと自車出口106aとの相対的な位置関係に応じて、環道101内を適切な走行ルートで通過することができる。
 (5)前記環道101の外径寸法(環道外径寸法R1)が前記環道101での車線変更に必要な距離を確保可能な第1所定値以上であるか否かを判断し、
 前記外径寸法(環道外径寸法R1)が前記第1所定値以上であると判断したとき、前記入口位置の設定を、前記入口(自車入口105a)と前記出口(自車出口106a)との相対的な位置関係に基づいて行い、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3上に存在すると判断したとき、前記入口位置を任意の位置に設定可能とする構成とした。
 これにより、自車入口105aと自車出口106aとの相対的な位置関係に応じて、環道101内を適切な走行ルートで通過することができる。
 (6)前記環道101の幅寸法(環道幅寸法W1)が前記環道101での車線変更を可能とする第2所定値以上であるか否かを判断し、
 前記幅寸法(環道幅寸法W1)が前記第2所定値以上であると判断したとき、前記入口位置の設定を、前記入口(自車入口105a)と前記出口(自車出口106a)との相対的な位置関係に基づいて行い、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3上に存在すると判断したとき、前記入口位置を任意の位置に設定可能とする構成とした。
 これにより、ラウンドアバウト100を通過する際に、より適切な入口位置を設定することができ、走行時間の短縮や、円滑な走行を実現することが可能となる。
 (7)前記環道101への進入を制御する信号機108が設けられているか否かを判断し、
 前記信号機108が設けられていると判断したとき、前記入口位置の設定を、前記入口(自車入口105a)と前記出口(自車出口106a)との相対的な位置関係に基づいて行い、
 前記出口(自車出口106a)が前記入口(自車入口105a)の正面方向L3上に存在すると判断したとき、前記入口位置を任意の位置に設定可能とする構成とした。
 これにより、ラウンドアバウト100を通過する際に、より適切な入口位置を設定することができ、走行時間の短縮や、円滑な走行を実現することが可能となる。
 (8)前記入口位置を任意の位置に設定可能とするとき、前記入口位置を、前記自車Vの現在位置から走行路に沿って延びる延長線(自車線)上に設定する構成とした。
 これにより、進入路111における車線変更の発生を抑制することができる。
 (9)前記入口位置の設定を、前記入口(自車入口105a)と前記出口(自車出口106a)との位置関係から得られる放射路110の存在に基づいて行い、
 前記入口(自車入口105a)と前記出口(自車出口106a)との間に複数の放射路110が存在すると判断したとき、前記環道101内の進行方向が時計回り方向の場合には、前記入口位置を前記入口(自車入口105a)の幅方向中央位置よりも右側に設定し、前記環道101内の進行方向が反時計回り方向の場合には、前記入口位置を前記入口(自車入口105a)の幅方向中央位置よりも左側に設定する構成とした。
 これにより、放射路110を介して環道101から出入りする他車の走行を阻害することなく、環道101内での車線変更の発生を抑制して、円滑にラウンドアバウト100を通過することができる。
 (10)前記入口位置の設定を、前記入口(自車入口105a)と前記出口(自車出口106a)との位置関係から得られる放射路110の存在に基づいて行い、
 前記入口(自車入口105a)と前記出口(自車出口106a)との間に放射路110が存在すると判断すると共に、前記放射路110から前記環道101へ進入する車両の混雑度(進入混雑度)の高いと判断したとき、前記環道101内の進行方向が時計回り方向の場合には、前記入口位置を前記入口(自車入口105a)の幅方向中央位置よりも右側に設定し、前記環道101内の進行方向が反時計回り方向の場合には、前記入口位置を前記入口(自車入口105a)の幅方向中央位置よりも左側に設定する構成とした。
 これにより、放射路110を介して環道101から出入りする他車の走行を阻害することなく、環道101内での車線変更の発生を抑制して、円滑にラウンドアバウト100を通過することができる。
 (11)前記入口位置を、前記自車Vの現在位置から走行路に沿って延びる延長線(自車線)から外れた位置(他車線上)に設定したとき、前記入口(自車入口105a)に到達するまでに前記入口位置に向かう車線変更を円滑に実行可能であるか否かを判断し、
 前記車線変更を円滑に実行可能と判断したとき、前記車線変更の実行を許可する構成とした。
 これにより、車線変更に伴う急激な車速変化や操舵変化の発生を防止でき、円滑な走行として、乗員への違和感の発生を抑制することができる。
 (12)自車Vを走行させる走行ルート(目標経路)を算出し、前記走行ルートに基づいて前記自車Vの走行を支援する走行支援制御を実行するコントローラ(認識判断プロセッサ3)を備える走行支援装置において、
 前記コントローラ(認識判断プロセッサ3)は、
 三本以上の放射路110が接続された環道101を有するラウンドアバウト100に前記自車Vが到達したか否かを判断する到達判断部32と、
 前記到達判断部32により前記ラウンドアバウト100に前記自車Vが到達したと判断したとき、前記自車Vが前記環道101に進入する入口(自車入口105a)の位置と前記自車Vが前記環道101から退出する出口(自車出口106a)の位置を特定する位置特定部33と、
 前記位置特定部33によって特定した前記入口(自車入口105a)及び前記出口(自車出口106a)の位置関係に基づいて、前記入口(自車入口105a)での前記自車Vの幅方向位置である入口位置を設定する入口位置設定部35と、
構成とした。
 これにより、環道101内での車線変更の発生を抑制することができる。
 以上、本開示の走行支援方法及び走行支援装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、ラウンドアバウト100に到着したとの判断を、自車Vから自車入口105aまでの距離が閾値距離以下に達したことで判断する例を示した。しかしながらこれに限らない。例えば、自車Vが環道101への進入地点(自車入口105a)に到達するまでに要する時間を基準にして、ラウンドアバウト100に到達したか否かを判断してもよい。なお、自車入口105aに到達するまでに要する時間は、車速プロファイルと自車入口105aまでの道のり距離に基づいて求める。
 また、実施例1では、自車入口105aが複数車線のときに入口位置設定制御を実行し、自車入口105aと自車出口106aの位置関係に基づいて、入口位置を設定する例を示した。しかしながら、自車入口105aが一車線であっても、入口位置設定制御を実行してもよい。この場合には、一車線の中において、自車Vの入口位置を車線の幅方向中央位置よりも左側に寄った位置や、車線の幅方向中央位置よりも右側に寄った位置に設定することで、環道101内での走行ルートを適切にし、環道101内での車線変更の発生を抑制することができる。
 また、実施例1では、自車入口105aの正面方向L3を基準にして、自車出口106aの位置関係を判断する例を示したが、これに限らない。例えば、自車入口105aでの自車Vの位置を「自車が環道に進入する入口の位置」とし、この自車Vの位置を基準にし、自車Vが正対する方向を「入口の正面方向」とする。そして、自車Vが正対する方向に対して自車出口106aが左側の領域に存在するのか、右側の領域に存在するのかを判断してもよい。
 また、実施例1では、自動運転によって走行中に走行支援制御を実行する例を示した。しかしながら、これに限らず、ドライバーが自らの意図によって自車を走行/停止させるマニュアル運転での走行中であっても、走行支援制御を実行してもよい。この場合には、自車入口105aと自車出口106aの位置関係に基づいて入口位置を設定した後、この入口位置の情報を、表示デバイス7を介してドライバーに提示する。また、音声等によってドライバーに入口位置の情報を知らせてもよい。
 また、実施例1では、入口位置に向かう車線変更が実行不可能であるときには、自車線の走行を維持する例を示したが、これに限らない。例えば、入口位置に向かう車線変更が実行不可能であったり、他車が多くて自由な走行が困難であると判断した場合等では、環道101での走行位置が外周に沿うような位置に入口位置を設定してもよい。この場合、自車入口105aと自車出口106aとの位置関係に基づいて設定した入口位置ではないものの、環道101内での車線変更を行うことなく通過することが可能になる。

Claims (12)

  1.  自車を走行させる走行ルートを算出し、前記走行ルートに基づいて走行支援制御を実行するコントローラによる走行支援方法において、
     三本以上の放射路が接続された環道を有するラウンドアバウトに前記自車が到達したか否かを判断し、
     前記ラウンドアバウトに前記自車が到達したと判断したとき、前記自車が前記環道に進入する入口の位置と前記自車が前記環道から退出する出口の位置を特定し、
     前記入口及び前記出口の位置関係に基づいて、前記入口での前記自車の幅方向位置である入口位置を設定する
     ことを特徴とする走行支援方法。
  2.  請求項1に記載された走行支援方法おいて、
     前記入口位置の設定を、前記入口と前記出口との相対的な位置関係に基づいて行い、
     前記出口が前記入口の正面方向よりも左側の領域に存在すると判断したとき、前記入口位置を、前記入口の幅方向中央位置よりも左側に設定し、
     前記出口が前記入口の正面方向よりも右側の領域に存在すると判断したとき、前記入口位置を、前記入口の幅方向中央位置よりも右側に設定する
     ことを特徴とする走行支援方法。
  3.  請求項1又は請求項2に記載された走行支援方法において、
     前記入口が幅方向に並ぶ二列の車線を有するか否かを判断し、
     前記入口が幅方向に並ぶ二列の車線を有すると判断したとき、前記入口位置の設定を、前記入口と前記出口との相対的な位置関係に基づいて行い、
     前記出口が前記入口の正面方向よりも左側の領域又は前記入口の正面方向上に存在すると判断したとき、前記入口位置を左車線に設定し、
     前記出口が前記入口の正面方向よりも右側の領域に存在すると判断したとき、前記入口位置を右車線に設定する
     ことを特徴とする走行支援方法。
  4.  請求項1から請求項3のいずれか一項に記載された走行支援方法において、
     前記入口が幅方向に並ぶ三列の車線を有するか否かを判断し、
     前記入口が幅方向に並ぶ三列以上の車線を有すると判断したとき、前記入口位置の設定を、前記入口と前記出口との相対的な位置関係に基づいて行い、
     前記出口が前記入口の正面方向よりも左側の領域に存在すると判断したとき、前記入口位置を左端車線に設定し、
     前記出口が前記入口の正面方向よりも右側の領域に存在すると判断したとき、前記入口位置を右端車線に設定し、
     前記出口が前記入口の正面方向上に存在すると判断したとき、前記入口位置を左端車線と右端車線の間の車線に設定する
     ことを特徴とする走行支援方法。
  5.  請求項1から請求項4のいずれか一項に記載された走行支援方法において、
     前記環道の外径寸法が前記環道での車線変更に必要な距離を確保可能な第1所定値以上であるか否かを判断し、
     前記外径寸法が前記第1所定値以上であると判断したとき、前記入口位置の設定を、前記入口と前記出口との相対的な位置関係に基づいて行い、
     前記出口が前記入口の正面方向上に存在すると判断したとき、前記入口位置を任意の位置に設定可能とする
     ことを特徴とする走行支援方法。
  6.  請求項1から請求項5のいずれか一項に記載された走行支援方法おいて、
     前記環道の幅寸法が前記環道での車線変更を可能とする第2所定値以上であるか否かを判断し、
     前記幅寸法が前記第2所定値以上であると判断したとき、前記入口位置の設定を、前記入口と前記出口との相対的な位置関係に基づいて行い、
     前記出口が前記入口の正面方向上に存在すると判断したとき、前記入口位置を任意の位置に設定可能とする
     ことを特徴とする走行支援方法。
  7.  請求項1から請求項6のいずれか一項に記載された走行支援方法において、
     前記環道への進入を制御する信号機が設けられているか否かを判断し、
     前記信号機が設けられていると判断したとき、前記入口位置の設定を、前記入口と前記出口との相対的な位置関係に基づいて行い、
     前記出口が前記入口の正面方向上に存在すると判断したとき、前記入口位置を任意の位置に設定可能とする
     ことを特徴とする走行支援方法。
  8.  請求項5から請求項7のいずれか一項に記載された走行支援方法において、
     前記入口位置を任意の位置に設定可能とするとき、前記入口位置を、前記自車の現在位置から走行路に沿って延びる延長線上に設定する
     ことを特徴とする走行支援方法。
  9.  請求項1に記載された走行支援方法において、
     前記入口位置の設定を、前記入口と前記出口との位置関係から得られる放射路の存在に基づいて行い、
     前記入口と前記出口との間に複数の放射路が存在すると判断したとき、前記環道内の進行方向が時計回り方向の場合には、前記入口位置を前記入口の幅方向中央位置よりも右側に設定し、前記進行方向が反時計回り方向の場合には、前記入口位置を前記入口の幅方向中央位置よりも左側に設定する
     ことを特徴とする走行支援方法。
  10.  請求項1又は請求項9に記載された走行支援方法において、
     前記入口位置の設定を、前記入口と前記出口との位置関係から得られる放射路の存在に基づいて行い、
     前記入口と前記出口との間に放射路が存在すると判断すると共に、当該放射路から前記環道へ進入する車両の混雑度が高いと判断したとき、前記環道内の進行方向が時計回り方向の場合には、前記入口位置を前記入口の幅方向中央位置よりも右側に設定し、前記進行方向が反時計回り方向の場合には、前記入口位置を前記入口の幅方向中央位置よりも左側に設定する
     ことを特徴とする走行支援方法。
  11.  請求項1から請求項10のいずれか一項に記載された走行支援方法において、
     前記入口位置を、前記自車の現在位置から走行路に沿って延びる延長線から外れた位置に設定したとき、前記入口に到達するまでに前記入口位置に向かう車線変更の実行が可能であるか否かを判断し、
     前記車線変更の実行が可能と判断したとき、前記車線変更の実行を許可する
     ことを特徴とする走行支援方法。
  12.  自車を走行させる走行ルートを算出し、前記走行ルートに基づいて前記自車の走行を支援する走行支援制御を実行するコントローラを備える走行支援装置において、
     前記コントローラは、
     三本以上の放射路が接続された環道を有するラウンドアバウトに前記自車が到達したか否かを判断する到達判断部と、
     前記到達判断部により前記ラウンドアバウトに前記自車が到達したと判断したとき、前記自車が前記環道に進入する入口の位置と前記自車が前記環道から退出する出口の位置とを特定する位置特定部と、
     前記位置特定部によって特定した前記入口及び前記出口の位置関係に基づいて、前記入口での前記自車の幅方向位置である入口位置を設定する入口位置設定部と、
     を有することを特徴とする走行支援装置。
PCT/IB2018/000877 2018-07-11 2018-07-11 走行支援方法及び走行支援装置 WO2020012210A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/IB2018/000877 WO2020012210A1 (ja) 2018-07-11 2018-07-11 走行支援方法及び走行支援装置
JP2020529831A JP7026228B2 (ja) 2018-07-11 2018-07-11 走行支援方法及び走行支援装置
US17/258,782 US11565701B2 (en) 2018-07-11 2018-07-11 Driving assist method and driving assist device
EP18926027.6A EP3822584A4 (en) 2018-07-11 2018-07-11 DRIVER ASSISTANCE PROCEDURE AND DRIVER ASSISTANCE DEVICE
CN201880095571.4A CN112400096B (zh) 2018-07-11 2018-07-11 行驶辅助方法和行驶辅助装置
KR1020217003908A KR102611934B1 (ko) 2018-07-11 2018-07-11 주행 지원 방법 및 주행 지원 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/000877 WO2020012210A1 (ja) 2018-07-11 2018-07-11 走行支援方法及び走行支援装置

Publications (1)

Publication Number Publication Date
WO2020012210A1 true WO2020012210A1 (ja) 2020-01-16

Family

ID=69141589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/000877 WO2020012210A1 (ja) 2018-07-11 2018-07-11 走行支援方法及び走行支援装置

Country Status (6)

Country Link
US (1) US11565701B2 (ja)
EP (1) EP3822584A4 (ja)
JP (1) JP7026228B2 (ja)
KR (1) KR102611934B1 (ja)
CN (1) CN112400096B (ja)
WO (1) WO2020012210A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760046C1 (ru) * 2018-07-16 2021-11-22 Ниссан Мотор Ко., Лтд. Способ помощи при вождении и устройство помощи при вождении
JP7158655B2 (ja) * 2018-08-28 2022-10-24 マツダ株式会社 停車支援装置
DE102019211599A1 (de) * 2019-08-01 2021-02-04 Robert Bosch Gmbh Trajektorienplanung eines Nutzfahrzeugs
JP7150900B2 (ja) * 2021-01-12 2022-10-11 本田技研工業株式会社 推奨レーンを判定する車両システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076276A1 (en) * 2000-12-15 2002-06-20 Troemel David Eric Butzek-troemel roundabout or "spiralabout"
WO2005098363A1 (ja) * 2004-04-02 2005-10-20 Matsushita Electric Industrial Co., Ltd. ナビゲーション装置
JP2010107305A (ja) * 2008-10-29 2010-05-13 Aisin Aw Co Ltd 道路情報生成装置、道路情報生成方法および道路情報生成プログラム
JP2018503169A (ja) 2014-12-09 2018-02-01 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 譲歩シナリオを検出して応答する自律車両

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822770B2 (ja) * 1999-12-10 2006-09-20 三菱電機株式会社 車両用前方監視装置
JP4746794B2 (ja) * 2001-08-21 2011-08-10 クラリオン株式会社 カーナビゲーション装置、カーナビゲーション用制御プログラムを記録した記録媒体
JP4148232B2 (ja) * 2005-03-22 2008-09-10 株式会社デンソー 経路案内装置
WO2006109471A1 (ja) * 2005-03-31 2006-10-19 Pioneer Corporation ナビゲーション装置、ナビゲーション方法、ナビゲーションプログラムおよびコンピュータに読み取り可能な記録媒体
US7433773B2 (en) * 2005-10-11 2008-10-07 Nissan Technical Center North America, Inc. Vehicle on-board unit
JP2009041927A (ja) * 2007-08-06 2009-02-26 Alpine Electronics Inc ナビゲーション装置
JP5051046B2 (ja) * 2008-07-31 2012-10-17 アイシン・エィ・ダブリュ株式会社 道路情報案内装置、道路情報案内方法及びコンピュータプログラム
CA2689743C (en) * 2008-11-26 2015-07-28 Transoft Solutions, Inc. Method and apparatus for displaying a representation of a traffic intersection
CN101923783B (zh) * 2010-08-30 2013-04-17 大连理工大学 四路环形交叉口交通响应控制方法
JP5370386B2 (ja) * 2011-01-31 2013-12-18 株式会社デンソー ナビゲーション装置
JP5851202B2 (ja) * 2011-10-28 2016-02-03 アルパイン株式会社 ナビゲーション装置
JP5924215B2 (ja) 2012-09-27 2016-05-25 トヨタ自動車株式会社 走行支援装置
EP2913216B1 (en) * 2013-09-27 2022-01-19 Transoft Solutions, Inc. Method and apparatus for generating a vehicle path
JP6165084B2 (ja) 2014-03-06 2017-07-19 アルパイン株式会社 ナビゲーションシステム及びコンピュータプログラム
EP3001272B1 (en) * 2014-09-26 2017-04-12 Volvo Car Corporation Method of trajectory planning for yielding manoeuvres
EP3023906B1 (en) * 2014-11-18 2018-05-16 Volvo Car Corporation Roundabout detecting arrangement, adaptive cruise control arrangement equipped therewith and method of detecting a roundabout
US9528838B2 (en) * 2014-12-09 2016-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle detection of and response to intersection priority
JP6309467B2 (ja) * 2015-01-29 2018-04-11 株式会社トヨタマップマスター ナビゲーション装置、ナビゲーション方法、コンピュータプログラム及びコンピュータプログラムを記録した記録媒体
JP6465730B2 (ja) * 2015-04-21 2019-02-06 アルパイン株式会社 電子装置、走行車線識別システムおよび走行車線識別方法
DE112016004370T5 (de) * 2015-10-16 2018-06-07 Clarion Co., Ltd. Fahrzeugsteuerung und Fahrzeugsteuervorrichtung
US10928211B2 (en) * 2015-11-23 2021-02-23 Here Global B.V. Method and apparatus for selectively qualifying trajectories in regards to a determination of travel time for a maneuver
JP6304223B2 (ja) * 2015-12-10 2018-04-04 トヨタ自動車株式会社 運転支援装置
EP3179212A1 (en) * 2015-12-11 2017-06-14 C.R.F. Società Consortile Per Azioni Motor vehicle driver assistance for negotiating a roundabout
CN118838336A (zh) * 2016-01-05 2024-10-25 御眼视觉技术有限公司 用于主车辆的导航系统、自主车辆及导航自主车辆的方法
CN105625125B (zh) * 2016-01-14 2019-04-02 珠海达理宇航科技有限公司 一种交叉口的路口结构及其左环行控制方法
CN105741595B (zh) * 2016-04-27 2018-02-27 常州加美科技有限公司 一种基于云端数据库的无人驾驶车辆导航行车方法
EP3291202B1 (en) * 2016-08-29 2019-04-17 Volvo Car Corporation Method of road vehicle trajectory planning
JP6680170B2 (ja) * 2016-09-30 2020-04-15 株式会社デンソー 運転支援装置及び運転支援方法
US10399564B2 (en) * 2016-10-25 2019-09-03 Ford Global Technologies, Llc Vehicle roundabout management
WO2018175441A1 (en) * 2017-03-20 2018-09-27 Mobileye Vision Technologies Ltd. Navigation by augmented path prediction
KR102262132B1 (ko) * 2017-03-27 2021-06-10 현대자동차주식회사 차량용 조향 제어방법
JP6521486B2 (ja) * 2017-06-06 2019-05-29 マツダ株式会社 車両制御装置
EP3476681A1 (en) * 2017-10-26 2019-05-01 Ningbo Geely Automobile Research & Development Co. Ltd. An autonomous driving vehicle
JP6601696B2 (ja) * 2018-01-19 2019-11-06 本田技研工業株式会社 予測装置、予測方法、およびプログラム
KR102563708B1 (ko) * 2018-05-14 2023-08-09 주식회사 에이치엘클레무브 선행 차량 출발 알림 장치 및 방법
KR102592825B1 (ko) * 2018-08-31 2023-10-23 현대자동차주식회사 충돌 회피 제어 장치 및 그 방법
US11679760B2 (en) * 2018-12-10 2023-06-20 Mobileye Vision Technologies Ltd. Navigation in vehicle crossing scenarios
US10929692B2 (en) * 2019-02-06 2021-02-23 Veoneer Us Inc. Lane level position determination
US20200272159A1 (en) * 2019-02-25 2020-08-27 Denso International America, Inc. Method and vehicle control system for intelligent vehicle control about a roundabout
FR3093690B1 (fr) * 2019-03-14 2021-02-19 Renault Sas Procédé de sélection pour un véhicule automobile d’une voie de circulation d’un rond-point
US11210937B2 (en) * 2019-04-04 2021-12-28 Denso International America, Inc. Method for un-signalized intersection traffic flow management
CN110155059B (zh) * 2019-06-04 2020-08-07 吉林大学 一种弯道优化控制方法及系统
US11634142B2 (en) * 2019-08-09 2023-04-25 Intel Corporation Blind spot detection
JP2021043707A (ja) * 2019-09-11 2021-03-18 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7279623B2 (ja) * 2019-11-26 2023-05-23 トヨタ自動車株式会社 情報処理装置、情報処理システム、およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076276A1 (en) * 2000-12-15 2002-06-20 Troemel David Eric Butzek-troemel roundabout or "spiralabout"
WO2005098363A1 (ja) * 2004-04-02 2005-10-20 Matsushita Electric Industrial Co., Ltd. ナビゲーション装置
JP2010107305A (ja) * 2008-10-29 2010-05-13 Aisin Aw Co Ltd 道路情報生成装置、道路情報生成方法および道路情報生成プログラム
JP2018503169A (ja) 2014-12-09 2018-02-01 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 譲歩シナリオを検出して応答する自律車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822584A4

Also Published As

Publication number Publication date
KR102611934B1 (ko) 2023-12-08
JP7026228B2 (ja) 2022-02-25
KR20210031724A (ko) 2021-03-22
EP3822584A1 (en) 2021-05-19
EP3822584A4 (en) 2021-07-07
JPWO2020012210A1 (ja) 2021-08-05
US11565701B2 (en) 2023-01-31
CN112400096A (zh) 2021-02-23
US20210122375A1 (en) 2021-04-29
CN112400096B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US11084489B2 (en) Automated driving assist system
JP7026231B2 (ja) 走行支援方法及び走行支援装置
US11541892B2 (en) Vehicle control method and vehicle control device
WO2020012210A1 (ja) 走行支援方法及び走行支援装置
JP6954469B2 (ja) 運転支援方法及び運転支援装置
JP7101777B2 (ja) 走行支援方法及び走行支援装置
JP2020027459A (ja) 自動運転支援装置
JP7086190B2 (ja) 走行支援方法及び走行支援装置
WO2019008648A1 (ja) 運転支援車両の目標車速生成方法及び目標車速生成装置
JP7184165B2 (ja) 車両制御方法及び車両制御装置
WO2020058741A1 (ja) 自動運転制御方法及び自動運転制御システム
JP2019209902A (ja) 走行支援方法及び走行支援装置
RU2783421C2 (ru) Способ помощи при вождении и устройство помощи при вождении
WO2020012213A1 (ja) 走行支援方法及び走行支援装置
JP7330733B2 (ja) 車両制御方法及び車両制御装置
JP7204565B2 (ja) 車両制御方法及び車両制御装置
JP2020175821A (ja) 走行支援方法及び走行支援装置
JP2020021295A (ja) 運転支援方法及び運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217003908

Country of ref document: KR

Kind code of ref document: A