WO2017068871A1 - 情報処理装置、情報処理方法及び輸送システム - Google Patents
情報処理装置、情報処理方法及び輸送システム Download PDFInfo
- Publication number
- WO2017068871A1 WO2017068871A1 PCT/JP2016/075686 JP2016075686W WO2017068871A1 WO 2017068871 A1 WO2017068871 A1 WO 2017068871A1 JP 2016075686 W JP2016075686 W JP 2016075686W WO 2017068871 A1 WO2017068871 A1 WO 2017068871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- container
- drone
- vehicle
- transportation
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 59
- 238000003672 processing method Methods 0.000 title claims abstract description 7
- 230000032258 transport Effects 0.000 claims description 150
- 230000007246 mechanism Effects 0.000 claims description 21
- 230000005484 gravity Effects 0.000 claims description 7
- 238000004891 communication Methods 0.000 description 44
- 238000003860 storage Methods 0.000 description 28
- 238000012545 processing Methods 0.000 description 26
- 238000003384 imaging method Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 238000012790 confirmation Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 238000013441 quality evaluation Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 239000004235 Orange GGN Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
- G05D1/0016—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C13/00—Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
- B64C13/02—Initiating means
- B64C13/16—Initiating means actuated automatically, e.g. responsive to gust detectors
- B64C13/18—Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/137—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/60—UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/20—Remote controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
Definitions
- This disclosure relates to an information processing apparatus, an information processing method, and a transportation system.
- Patent Document 1 technologies related to unmanned aerial vehicles that can be operated wirelessly have been proposed (see, for example, Patent Document 1). By applying such an unmanned air vehicle to the transportation of goods, it is expected to reduce the cost of transportation of the goods.
- the present disclosure proposes a new and improved information processing apparatus, information processing method, and transportation system capable of realizing more stable transportation of goods in transportation of goods by an unmanned air vehicle.
- a user in transporting an article by an unmanned aerial vehicle, a user can transport the container that is transported by the unmanned aerial vehicle based on candidates for a container that is transported by the unmanned aerial vehicle and accommodates the article.
- An information processing apparatus including a display information control unit that controls display of a screen for selecting from candidates is provided.
- the user in transporting an article by an unmanned aerial vehicle, the user can transport the container that is transported by the unmanned aerial vehicle based on a container candidate that is transported by the unmanned aerial vehicle and accommodates the article.
- an information processing method including controlling display of a screen for selecting from among container candidates by an information processing device.
- an unmanned air vehicle that transports an article accommodated in a container selected by a user
- an information processing device that controls transportation of the article by the unmanned air vehicle
- the user In transporting the article by the unmanned aerial vehicle, the user can select the container to be transported by the unmanned aerial vehicle based on the container candidate that is transported by the unmanned aerial vehicle and accommodates the article.
- a display information control unit that controls display of a screen for selecting from, a transport control unit that controls transport of the article by the unmanned air vehicle based on information on the container selected by the user on the screen;
- a transportation system is provided.
- 6 is a flowchart showing an example of a flow of processing relating to transportation between a farmhouse and a first collection point performed by the transportation management server according to the embodiment. 6 is a flowchart illustrating an example of a flow of processing relating to transportation between a first collection point and a second collection point performed by the transportation management server according to the embodiment. It is a flowchart which shows an example of the flow of the accounting process which the transport management server concerning the embodiment performs. It is explanatory drawing which shows an example of the hardware constitutions of the transportation management server which concerns on this indication.
- a system related to transportation of goods using various moving bodies has been proposed.
- a system for transporting an article using an unmanned air vehicle such as a drone
- By transporting an article by an unmanned air vehicle it is expected to reduce the cost of transporting the article.
- by transporting the crops produced by the above-mentioned self-sufficient small-scale farmhouses using an unmanned air vehicle such as a drone it is possible to distribute the crops produced by the small-scale farmhouses at a reasonable price.
- the transportation of the article by the unmanned air vehicle for example, when the weight of the article transported to the unmanned air vehicle exceeds the weight that can be loaded by the unmanned air vehicle, the flying posture of the unmanned air vehicle may become unstable. Thereby, the article to be transported may fall.
- this specification proposes a mechanism that can realize more stable transportation of goods in transportation of goods by an unmanned air vehicle.
- FIG. 1 is an explanatory diagram illustrating an example of a system configuration of a transportation system 1 according to the present embodiment.
- FIG. 2 is an explanatory diagram for explaining an example of the flow of the crop in transporting the crop by the transport system 1 according to the present embodiment.
- the transportation system 1 includes a farmer terminal 25 used by a user of the farmer 20, a drone 40, a drone management server 45, a vehicle driver terminal 65 used by a driver of the vehicle 60, A transportation management server 80.
- the farmer terminal 25, the drone management server 45, the vehicle driver terminal 65, and the transportation management server 80 communicate with each other via a wired or wireless information network A10.
- the drone 40 and the drone management server 45 communicate with each other via a wired or wireless information network A20.
- FIG. 1 two farmer terminals 25, one drone management server 45, and two vehicle driver terminals 65 are shown for one transport management server 80, but communicate with one transport management server 80.
- the number of each of the farmer terminal 25, the drone management server 45, and the vehicle driver terminal 65 may be one or more other numbers.
- two drones 40 are shown for one drone management server 45, but the number of drones 40 communicating with one drone management server 45 may be one or more other numbers. Good.
- the farmer terminal 25 has a function of communicating with an external device, a function of displaying a screen, and a function of receiving input from a farmer's user.
- the function of the farmer terminal 25 is realized by a device such as a personal computer, a smartphone, or a tablet terminal, for example.
- the display of the screen by the farmer terminal 25 is controlled by the transport management server 80.
- the farmer terminal 25 displays an input screen as a display method for the user to input information necessary for transporting the crop to the drone 40.
- the container is transported by the drone 40 in a state where the crop is accommodated in the container.
- the farmer terminal 25 displays a screen for the user to select a container to be transported by the drone 40 from among container candidates as the input screen.
- the farmer terminal 25 transmits information input by the user on the input screen to the transport management server 80.
- the farmer's terminal 25 transmits information related to the container selected by the user on the input screen to the transport management server 80.
- Information regarding the container transmitted from the farmer's terminal 25 is used for generating transport schedule data of the drone 40 by the transport management server 80.
- the drone 40 is an example of an unmanned air vehicle according to the present disclosure.
- the drone 40 is an unmanned aerial vehicle configured to automatically fly based on a designated flight path and transport an article. Specifically, the drone 40 transports the crops from the designated farm 20 to a designated collection point (hereinafter also referred to as a first collection point).
- the drone 40 flies in a section B 40 from the farmhouse 20 to the first collection place 22 schematically shown in FIG. 2, and transports the crops from the farmhouse 20 to the first collection place 22.
- the crops transported from the plurality of farmers 20 may be collected at each first collection point 22.
- the drone 40 may collect crops from a plurality of farmers 20 and transport them to the first collection point 22 in one flight, and deliver the collected crops to the plurality of first collection points 22 separately. Also good.
- the 1st collection place 22 is provided in the place where the vehicle 60 passes easily compared with the farmhouse 20, for example.
- the drone 40 can fly by, for example, four rotors, and can fly while moving up, down, and horizontally by controlling the rotation of each rotor.
- the drone 40 flies based on an operation instruction from the drone management server 45.
- the operation instruction from the drone management server 45 is made based on the transport schedule data of the drone 40 generated by the transport management server 80. Therefore, the flight route of the drone 40 is specified based on the transport schedule data of the drone 40 generated by the transport management server 80.
- the flight path from the flight start position to the flight end position specified in the transportation schedule data of the drone 40, the container collection position and the container transport destination position are represented by the latitude, longitude, and altitude corresponding to the position, for example, It is set as GPS (Global Positioning System) position information. Therefore, the drone 40 can incorporate a GPS receiver that receives radio waves from GPS satellites and calculates the current position.
- GPS Global Positioning System
- the drone 40 can transmit various information to the drone management server 45. For example, when the drone 40 completes the transportation of the crop from the designated farm 20 to the designated first collection point 22, information indicating that the transportation of the crop by the drone 40 is completed (hereinafter referred to as the first collection). (Also referred to as collection information of the location 22) to the drone management server 45.
- the collection information of the first collection point 22 transmitted to the drone management server 45 is transmitted to the transport management server 80 by the drone management server 45. Details of the drone 40 will be described later.
- the drone management server 45 shown in FIG. 1 transmits an operation instruction to the drone 40. Specifically, the drone management server 45 transmits an operation instruction to the drone 40 based on the transport schedule data of the drone 40 generated by the transport management server 80. In addition, the drone management server 45 transmits information regarding each drone 40 to the transport management server 80. For example, the drone management server 45 transmits information indicating the position of each drone 40, information indicating whether each drone 40 can be operated, and ID information of each drone 40 to the transport management server 80. The information transmitted from the drone management server 45 is used for generating transport schedule data for the drone 40 by the transport management server 80.
- the vehicle driver terminal 65 shown in FIG. 1 is mainly used by the driver of the vehicle 60 in order to communicate with the transport management server 80 related to the transport of the crops by the vehicle 60.
- the vehicle driver terminal 65 has a function of communicating with an external device, a function of displaying a screen, and a function of receiving an input from the driver of the vehicle 60.
- the functions of the vehicle driver terminal 65 are realized by a device such as a personal computer, a smartphone, or a tablet terminal, for example.
- the vehicle 60 for transporting agricultural products travels in the section B60 from the first collection point 22 to the second collection point 24 schematically shown in FIG. 2 and is transported to the first collection point 22 by the drone 40.
- the farm products are further transported to a second collection place 24 which is a different collection place from the first collection place 22.
- the crops collected from the plurality of first collection points 22 can be transported to the second collection point 24.
- the crops of the plurality of farmers 20 are collected at the second collection place 24.
- the vehicle 60 can include a private car, a commuter vehicle, a taxi, a taxi that automatically travels, and the like.
- the vehicle driver terminal 65 transmits the information input by the driver of the vehicle 60 to the transportation management server 80 before transporting the crops that are the cargo collection. Specifically, the vehicle driver terminal 65 receives information about a travel schedule of the vehicle 60, information indicating the weight that can be loaded on the vehicle 60, identification information of the vehicle 60, and driving as information input by the driver of the vehicle 60. Information related to the person is transmitted to the transportation management server 80. The information related to the travel schedule of the vehicle 60 may include information indicating the first collection point 22 through which the vehicle 60 can pass and information indicating a time when the vehicle 60 is scheduled to pass through each first collection point 22. The information transmitted from the vehicle driver terminal 65 is used for generating transportation schedule data for the drone 40 by the transportation management server 80.
- Information related to the travel schedule of the vehicle 60 information indicating the size or weight of the load that can be loaded on the vehicle 60, identification information of the vehicle 60, and information related to the driver are arranged on a predetermined server in addition to being input by the driver.
- the information may be automatically collected by using the recorded data or using a sensor mounted on the vehicle.
- the vehicle driver terminal 65 receives from the transport management server 80 information indicating that the transportation schedule data of the vehicle 60 and the collection of the crops scheduled to be collected at the first collection point 22 have been completed. Is displayed. Accordingly, the driver of the vehicle 60 can transport the crops by the vehicle 60 according to the transport schedule data of the vehicle 60.
- the first collection point 22 that is the collection destination of the crops of each vehicle 60 is specified in the schedule data of the vehicle 60.
- the vehicle driver terminal 65 is information indicating that the transportation of the agricultural product by the vehicle 60 has been completed (hereinafter referred to as the second collection point). (Also referred to as collection information of the collection point 24) is transmitted to the transportation management server 80.
- the transportation management server 80 shown in FIG. 1 is an example of an information processing apparatus according to the present disclosure.
- the transportation management server 80 manages transportation of agricultural products by the drone 40 and the vehicle 60.
- the transportation management server 80 specifically controls the transportation of the crops by the drone 40 based on information transmitted from the farmer terminal 25, the drone management server 45, and the vehicle driver terminal 65.
- the transportation management server 80 controls transportation of agricultural products by the drone 40 by generating transportation schedule data of the drone 40 and transmitting the data to the drone management server 45, for example.
- the transport schedule data of the drone 40 is a schedule that defines the crops that each drone 40 transports, the flight route of each drone 40, the arrival time of each drone 40 to the farm 20, and the arrival time to the first collection point 22. It is data.
- the transport management server 80 generates transport schedule data for the drone 40 based on information transmitted from the farmer terminal 25, the drone management server 45, and the vehicle driver terminal 65 so that the operating efficiency of the drone 40 is improved.
- the transport management server 80 stores in advance candidates for containers that are transported by the drone 40 and accommodates the crops in transporting the crops by the drone 40, and the user causes the containers to be transported by the drone 40 from among the candidates for the containers. Controls the display of the screen for selection.
- the volume of the container candidate is set so that the weight of the container carried by the drone 40 does not exceed the loadable weight of the drone 40.
- the weight of the crop is approximately proportional to the volume of the crop. Therefore, the maximum value of the weight of the container in which the crop is accommodated can be calculated according to the volume of the container.
- the transportation management server 80 it is possible to realize more stable transportation of agricultural products in the transportation of agricultural products by the drone 40.
- the transport management server 80 generates transport schedule data for the vehicle 60 based on the generated transport schedule data for the drone 40 and transmits the transport schedule data to the vehicle driver terminal 65 for transporting the crops by the vehicle 60.
- the transportation schedule data of the vehicle 60 is notified to the driver of the vehicle 60.
- the transportation schedule data of the vehicle 60 includes the crops that each vehicle 60 transports, the transportation route of each vehicle 60, the arrival time of each vehicle 60 at the first collection point 22, and the arrival time at the second collection point 24. Schedule data to be defined.
- the transportation management server 80 determines the first collection point based on the collection information of the first collection point 22 transmitted from the drone 40 when the collection of the crops to the first collection point 22 by the drone 40 is completed. Information indicating that the collection of all the crops scheduled to be collected at 22 has been completed is transmitted to the vehicle driver terminal 65. Thereby, the driver of the vehicle 60 can be made to transport the crop according to the transport schedule data of the vehicle 60. Details of the transportation management server 80 will be described later.
- FIG. 3 is an explanatory diagram illustrating an example of a functional configuration of the drone 40 according to the present embodiment.
- the drone 40 according to the present embodiment includes an imaging device 401, rotors 404a to 404d, motors 408a to 408d, a control unit 410, a communication unit 420, a sensor unit 430, a position An information acquisition unit 432, a storage unit 440, and a battery 450 are included.
- the control unit 410 includes a CPU (Central Processing Unit) that is an arithmetic processing unit, a ROM (Read Only Memory) that stores programs and arithmetic parameters used by the CPU, a program that is used in the execution of the CPU, and changes as appropriate in its execution. It includes a RAM (Random Access Memory) that temporarily stores parameters to be controlled, and controls the operation of the drone 40.
- the control unit 410 adjusts the rotational speeds of the rotors 404a to 404d by adjusting the rotational speeds of the motors 408a to 408d, performs imaging processing by the imaging device 401, and other devices (for example, the drone management server 45) via the communication unit 420.
- control unit 410 controls the flight of the drone 40 by adjusting the rotation speed of the motors 408a to 408d based on the flight information transmitted from the drone management server 45.
- the imaging device 401 is configured by a lens, an imaging device such as a CCD image sensor or a CMOS image sensor, a flash, or the like.
- the imaging device 401 may have a function of recognizing an object shown in the image from the image obtained by the imaging process.
- the imaging device 401 is configured to acquire information indicating the positional relationship between the recognized object and the drone 40. Thereby, the drone 40 can recognize the container in which the crop is accommodated and can collect the container more reliably.
- An image obtained by the imaging process of the imaging device 401 can be stored in the storage unit 440 or transmitted from the communication unit 420 to the drone management server 45.
- the rotors 404a to 404d fly the drone 40 by generating lift by rotation.
- the rotations of the rotors 404a to 404d are driven by motors 408a to 408d.
- the driving of the motors 408a to 408d can be controlled by the control unit 410.
- the communication unit 420 includes a communication circuit and an antenna, and performs transmission / reception processing of information by wireless communication with the drone management server 45. For example, the communication unit 420 receives an operation instruction regarding flight from the drone management server 45. In addition, the communication unit 420 transmits various information acquired by the sensor unit 430 and the position information acquisition unit 432 to the drone management server 45.
- the sensor unit 430 is a device group that acquires the state of the drone 40, and may be configured of, for example, an acceleration sensor, a gyro sensor, an ultrasonic sensor, an atmospheric pressure sensor, an optical flow sensor, a laser range finder, or the like.
- the sensor unit 430 can convert the acquired state of the drone 40 into a predetermined signal and provide it to the control unit 410 and the communication unit 420 as necessary.
- the sensor unit 430 detects an obstacle that may hinder the flight during flight. When the sensor unit 430 detects an obstacle, the drone 40 can provide information regarding the detected obstacle to other devices.
- the position information acquisition unit 432 acquires information on the current position of the drone 40 using, for example, position data by GPS, information on the surrounding environment of the drone 40 by the imaging device 401 or the sensor unit 430, and the like.
- the position information acquisition unit 432 can provide the acquired information on the current position of the drone 40 to the control unit 410 and the communication unit 420 as necessary.
- the control unit 410 performs flight control of the drone 40 based on the flight information received from the drone management server 45 using the current position information of the drone 40 acquired by the position information acquisition unit 432.
- the storage unit 440 stores various information. Examples of information stored in the storage unit 440 include an operation instruction transmitted from the drone management server 45 based on the transport schedule data of the drone 40 generated by the transport management server 80, and an image captured by the imaging device 401. obtain.
- the battery 450 stores electric power for operating the drone 40.
- the battery 450 may be a primary battery that can only be discharged, or may be a secondary battery that can be charged. However, when the battery 450 is a secondary battery, the battery 450 may be, for example, a charge (not shown). Power can be supplied from the station.
- the drone 40 has a configuration as shown in FIG. 3, so that it is automatically designated based on the designated flight path corresponding to the operation instruction transmitted from the drone management server 45. It is possible to carry out the transportation of the crops from the farmer 20 to the designated first collection point 22. Further, as described above, in the transportation of the crop by the drone 40, the container is transported by the drone 40 in a state where the crop is accommodated in the container.
- FIG. 4 is an explanatory diagram for explaining the transportation of the container 200 by the drone 40 according to the present embodiment. Specifically, FIG. 4 shows the state of the drone 40 before and after the collection of the container 200 by the drone 40.
- a gripping mechanism 42 that grips the container 200 is provided below the drone 40.
- the gripping mechanism 42 has a function of attaching the container 200 to the drone 40.
- an unillustrated locking portion (not shown) provided below the gripping mechanism 42 is provided on the upper portion of the container 200 when the drone 40 descends from vertically above the container 200. Lock the locking part.
- the drone 40 can carry the container 200.
- the removal of the container 200 from the drone 40 may be performed manually or automatically.
- FIG. 5 is an explanatory diagram showing the configuration of the container 200a according to the first modification. Specifically, FIG. 5 shows the state of the container 200a before and after the crop C10 is accommodated in the container 200a.
- the container 200a according to the first modification is provided with a holding mechanism 202 that holds the crop at a position that substantially coincides with the position of the center of gravity of the drone 40 in the horizontal plane.
- the holding mechanism 202 can be configured by an elastic member that is provided so as to close the opening located at the top of the container 200a.
- a stretchable sheet material or film material can be used.
- the holding mechanism 202 is fixed to the edge of the opening of the container 200a. As a result, when the crop C10 is introduced from above the holding mechanism 202, the holding mechanism 202 is deformed so that the central portion is depressed downward by the load of the crop C10 as shown in FIG. Therefore, the crop C10 is held at the center of the container 200a in the horizontal plane.
- the container 200a is attached to the drone 40 so that the center of gravity of the drone 40 and the center of the container 200a substantially coincide with each other in the horizontal plane. Therefore, according to the first modification, the crop C10 is held by the holding mechanism 202 at a position that substantially coincides with the gravity center position of the drone 40 in the horizontal plane. Thereby, during the flight of the drone 40 that transports the container 200a, it is possible to prevent the crop C10 in the container 200a from deviating from the position of the center of gravity of the drone 40 in the horizontal plane. Therefore, it is possible to prevent the attitude of the drone 40 from being tilted during the flight of the drone 40. Therefore, a more stable flight of the drone 40 can be realized in the transportation of the crop C10.
- FIG. 6 is an explanatory diagram showing the configuration of the container 200b according to the second modification. Specifically, the left diagram in FIG. 6 shows one container 200b before being collected by the drone 40, and the right diagram in FIG. 6 shows a plurality of transported by the drone 40 in a stacked state.
- the container 200b is shown.
- the container 200b according to the second modification is provided with a connection mechanism 204 that connects the container 200b and the other container 200b.
- a plurality of connection mechanisms 204 are provided on the bottom surface of the container 200b. Specifically, in a state where the plurality of containers 200b are stacked, the containers 200b adjacent to each other can be connected by the connecting mechanism 204.
- the plurality of containers 200b can be transported by the drone 40 while being stacked on each other.
- the drone 40 can be additionally attached to the drone 40 by attaching the container 200b.
- the amount of crops transported by 40 can be increased. Therefore, the operating efficiency of the drone 40 in the transportation of agricultural products can be improved.
- FIG. 7 is an explanatory diagram showing a configuration of a container 200c according to a third modification. Specifically, the diagram on the left side of FIG. 7 shows the open state in which the upper lid of the container 200c is open and the closed state in which the lid is closed, and the diagram on the right side of FIG. 7 shows the ID identification of the container 200c. The state which the drone 40a which concerns on the modification in the part 206 is imaged is shown.
- the container 200c according to the third modification is provided with an ID identification unit 206 for identifying the user ID of the farmer 20.
- the ID identification unit 206 is provided on the outer surface of an openable / closable lid located at the top of the container 200c, and is configured to be visible from above in a state where the lid is closed. obtain.
- the imaging device 401 may be provided at a position substantially coincident with the center of gravity position of the drone 40 in the horizontal plane.
- the field of view is blocked by the container 200d that is attached to the drone 40a and is located below the imaging device 401. Therefore, the ID identification unit of the uncollected container 200c It may be difficult to image 206.
- the container 200c attached to the drone 40a is not obstructed by the imaging device 401, and the container 200c is not collected.
- a mirror 46 is provided to image the ID identification unit 206.
- the imaging device 401 can image the ID identification unit 206 of the uncollected container 200c. And the imaging device 401 can acquire the ID information of the user of the farmer 20 corresponding to the uncollected container 200c by recognizing the ID identifying unit 206 from the image obtained by the imaging process. Thereby, it is possible to more reliably collect the container 200c that stores the crop designated by the transportation schedule data of the drone 40a.
- FIG. 8 is an explanatory diagram showing an example of a functional configuration of the transportation management server 80 according to the present embodiment.
- the transportation management server 80 includes a communication unit 802, a storage unit 804, a display information control unit 806, a transportation control unit 808, and a charging control unit 810.
- the communication unit 802 includes a communication circuit and communicates with a device outside the transportation management server 80. Specifically, the communication unit 802 communicates with the farmer terminal 25, the drone management server 45, and the vehicle driver terminal 65 via a wired or wireless network A10. The communication unit 802 outputs information received from the farmer terminal 25, the drone management server 45, and the vehicle driver terminal 65 to the storage unit 804, the display information control unit 806, the transport control unit 808, and the billing control unit 810. The communication unit 802 communicates with an apparatus outside the transport management server 80 based on operation instructions from the display information control unit 806, the transport control unit 808, and the charging control unit 810.
- the communication unit 802 transmits the transportation schedule data of the drone 40 and the transportation schedule data of the vehicle 60 to the drone management server 45 and the vehicle driver terminal 65, respectively, based on the operation instruction of the transportation control unit 808. Further, the communication unit 802 receives the collection information of the first collection point 22 transmitted from the drone 40 via the drone management server 45. Further, the communication unit 802 receives the collection information of the second collection point 24 transmitted from the vehicle driver terminal 65.
- the storage unit 804 includes a ROM, a RAM, a nonvolatile memory storage, a hard disk, and the like, and stores data referred to for various processes in the transportation management server 80.
- the storage unit 804 stores in advance candidates for containers 200 that are transported by the drone 40 and accommodate the crops in transporting the crop by the drone 40.
- the candidate volume of the container 200 can be set so that the weight of the container 200 in a state where the crop is accommodated does not exceed the weight that can be loaded by the drone 40.
- a display information control unit 806 is realized by a CPU and controls display of a screen by an external device. Specifically, the display information control unit 806 causes the communication unit 802 to transmit information for displaying various screens on the farmer terminal 25 and the vehicle driver terminal 65 to the farmer terminal 25 and the vehicle driver terminal 65. Thus, the display of the screen by the farmer terminal 25 and the vehicle driver terminal 65 is controlled.
- the display information control unit 806 is configured so that the user of the farmer 20 uses the container 200 to be transported by the drone 40 and to be transported to the drone 40 by the user of the farm 20 in the transportation of the crop by the drone 40. Controls the display of the screen for selecting from the above.
- the display information control unit 806 is a screen for the user of the farmer 20 to select the container 200 to be transported by the drone 40 from the candidates for the container 200 based on the container 200 candidates stored in the storage unit 804 in advance. Is displayed on the farmer terminal 25.
- the communication unit 802 may transmit information necessary for the farmer terminal 25 to display the screen to the farmer terminal 25.
- the communication unit 802 transmits, as the information, data in a format such as an HTML format, a CSS format, or a JavaScript (registered trademark) format to the farmer terminal 25, and the farmer terminal 25 displays the screen based on the received data. Display may be performed.
- the communication unit 802 receives predetermined GUI data among the GUI data included in the application or the like that is installed and stored in the farmer terminal 25 in advance. Information necessary for display may be transmitted to the farmer terminal 25.
- the communication unit 802 transmits, as the information, for example, parameters necessary for the farmer terminal 25 to display predetermined GUI data to the farmer terminal 25, and the farmer terminal 25 uses the predetermined GUI based on the received parameters. Data may be displayed.
- the parameter transmitted from the communication unit 802 to the farmer terminal 25 is, for example, a parameter corresponding to the container 200 candidate.
- the communication unit 802 may transmit the GUI data displayed by the farm terminal 25 to the farm terminal 25.
- the GUI data transmitted from the communication unit 802 to the farmer terminal 25 is, for example, GUI data corresponding to the container 200 candidate.
- the GUI data may be generated by the transportation management server 80 or may be stored in advance in the storage unit 804 of the transportation management server 80.
- FIG. 9 is an explanatory diagram showing an example of an input screen D10 displayed by the farmer terminal 25 for the user of the farmer 20 to input information necessary for transporting the crop to the drone 40.
- the input screen D10 illustrated in FIG. 9 corresponds to a screen for the user of the farmer 20 to select the container 200 to be transported by the drone 40 from the container 200 candidates.
- the input screen D ⁇ b> 10 is used to input an area E ⁇ b> 11 for selecting a container 200 to be transported by the drone 40 from candidates for the container 200 and a time during which the drone 40 can collect the container 200.
- containers 200 having different dimensions may be set as candidates for the container 200.
- candidates for the container 200 an S size container, an M size container having a volume twice that of the S size container, and an L size container having a volume three times that of the S size container. And are shown.
- a combination of a plurality of containers 200 may be set as a container 200 candidate.
- a combination composed of two S size containers a combination composed of three S size containers, a combination composed of one S size container and one M size container. And are shown.
- the total volume of the combination of the plurality of containers 200 can be set such that the total weight of the combination of the plurality of containers 200 in a state where the crop is accommodated does not exceed the loadable weight of the drone 40.
- the user of the farmer 20 can input information indicating the size and quantity of the container 200 by selecting the container 200 to be transported by the drone 40 from the candidates for the container 200 in the region E11.
- the display information control unit 806 switches the screen displayed by the farmer terminal 25 to the confirmation screen D20 shown in FIG.
- the confirmation screen D20 shown in FIG. 10 is a screen for finally confirming the contents input by the user of the farmer 20 on the input screen D10.
- the confirmation screen D20 is a region E21, region E22, region E23, and region E24 indicating input results corresponding to the region E11, region E12, region E13, and region E14 in the input screen D10 of FIG. including.
- the confirmation screen D20 transmits the input information to the transportation management server 80 after confirming again the area E25 for starting the correction operation of the input content and the input content. Region E26.
- the display information control unit 806 switches the screen displayed by the farmer terminal 25 to the input screen D10 shown in FIG.
- the determination button F3 in the area E26 of the confirmation screen D20 illustrated in FIG. 10 is selected, the farmer terminal 25 transmits information input by the user of the farmer 20 to the transport management server 80.
- the storage unit 804 stores in advance candidates for the containers 200 that are transported by the drone 40 and accommodate the crops in transporting the crop by the drone 40.
- the display information control unit 806 controls display of a screen for the user of the farmer 20 to select the container 200 to be transported by the drone 40 from the candidates for the container 200.
- the weight of the crop is approximately proportional to the volume of the crop. Therefore, the maximum value of the weight of the container 200 in the state where the agricultural products are accommodated can be calculated according to the volume of the container 200.
- the weight of the container 200 to be transported by the drone 40 is lower than the loadable weight of the drone 40.
- the transportation schedule data of the drone 40 can be generated. Accordingly, it is possible to prevent the flying posture of the drone 40 from becoming unstable due to the weight of the container 200 carried by the drone 40 exceeding the loadable weight of the drone 40. Therefore, more stable transportation of crops by the drone 40 is possible. It is possible to realize the transport of simple crops.
- the transportation control unit 808 is realized by a CPU, and manages transportation of agricultural products by the drone 40 and the vehicle 60. Regarding the transportation of the crops by the drone 40, the transport control unit 808 specifically controls the transportation of the crops by the drone 40 based on information transmitted from the farmer terminal 25, the drone management server 45, and the vehicle driver terminal 65. To do.
- the transportation control unit 808 controls transportation of agricultural products by the drone 40 by generating transportation schedule data of the drone 40 and transmitting it to the drone management server 45, for example.
- the transportation control unit 808 controls transportation of the crops by the drone 40 based on information about the container 200 selected by the user of the farmer 20 on the input screen D10 illustrated in FIG. 9 as information transmitted from the farmer terminal 25. May be.
- the transportation control unit 808 may generate transportation schedule data for the drone 40 based on information on the container 200.
- the transport control unit 808 may start generating transport schedule data for the drone 40 using the information transmitted from the farmer terminal 25 as a trigger.
- the information regarding the container 200 may include information indicating the quantity of the container 200, information indicating the time when the drone 40 can collect the container 200, information indicating the position of the container 200, and the like input by the user of the farmer 20.
- the transport control unit 808 Based on the information indicating the quantity of containers 200 selected by the user of the farm 20, the transport control unit 808 generates transport schedule data of the drone 40, thereby depending on the total weight of the containers 200 to be collected of each farm 20. Therefore, the transportation schedule data of the drone 40 can be generated so that the operation efficiency of the drone 40 is improved. For example, when the total weight of the containers 200 to be collected by the two farmers 20 is lower than the loadable weight of the drone 40, the drone is configured to cause the one drone 40 to collect the containers 200 to be collected by the two farmers 20. 40 transportation schedule data can be generated. Thereby, the operating efficiency of the drone 40 can be improved.
- the transport control unit 808 Based on the information indicating the time when the drone 40 can collect the container 200, the transport control unit 808 generates the transport schedule data of the drone 40, so that the container 200 as the collection target of each farmer 20 can be collected. Therefore, the transportation schedule data of the drone 40 can be generated so that the operation efficiency of the drone 40 is improved. For example, when the container 200 to be collected by the two farmers 20 is collected by one drone 40, the container 200 of the farmer 20 whose collection time can be collected earlier is collected by the drone 40 first. The transportation schedule data of the drone 40 can be generated. Thereby, the operating efficiency of the drone 40 can be improved.
- the transport control unit 808 Based on the information indicating the position of the container 200, the transport control unit 808 generates transport schedule data for the drone 40, so that the operating efficiency of the drone 40 is improved according to the position of the container 200 to be collected by each farmer 20.
- the transportation schedule data of the drone 40 can be generated. For example, when the container 200 to be collected by the two farmers 20 is collected by one drone 40, the drone 40 collects the container 200 of the farm 20 far from the first collection point 22 designated as the transport destination.
- the transportation schedule data of the drone 40 can be generated so as to be performed first. Thereby, the operating efficiency of the drone 40 can be improved.
- the transportation control unit 808 generates transportation schedule data for the drone 40 based on the information about the drone 40 transmitted from the drone management server 45, thereby controlling the transportation of the crops by the drone 40 based on the information about the drone 40. May be.
- the information related to the drone 40 transmitted from the drone management server 45 may include information indicating the position of each drone 40, information indicating whether each drone 40 can be operated, ID information of each drone 40, and the like.
- the transport control unit 808 Based on the information indicating the position of each drone 40, the transport control unit 808 generates transport schedule data of the drone 40, for example, to collect the crops of the farmer 20 in the drone 40 that flies closest to the farmer 20. Therefore, the transportation schedule data of the drone 40 can be generated so as to be performed preferentially. Thereby, the operating efficiency of the drone 40 can be improved.
- the transport control unit 808 generates transport schedule data of the drone 40 based on the information related to the vehicle 60 transmitted from the vehicle driver terminal 65, thereby transporting the crops by the drone 40 based on the information related to the vehicle 60.
- Information related to the vehicle 60 transmitted from the vehicle driver terminal 65 includes information related to the travel schedule of the vehicle 60, information indicating the size or weight of a load that can be loaded on the vehicle 60, identification information of the vehicle 60, information related to the driver, etc. Can be included.
- the information related to the travel schedule of the vehicle 60 may include information indicating the first collection point 22 through which the vehicle 60 can pass and information indicating a time when the vehicle 60 is scheduled to pass through each first collection point 22.
- the information indicating the size or weight of the load collection that can be loaded on the vehicle 60 may include both information indicating the size and weight of the load collection.
- the transportation control unit 808 may generate transportation schedule data for the drone 40 based on the collection information of the first collection point 22. For example, the transportation control unit 808 may generate transportation schedule data for the drone 40 based on the difference between the amount of crops that can be accommodated at each first collection point 22 and the amount of crops that are currently accommodated.
- the transport control unit 808 Based on the information related to the travel schedule of the vehicle 60, the transport control unit 808 generates transport schedule data for the drone 40, whereby appropriate transport schedule data for the drone 40 can be generated based on the travel schedule of the vehicle 60.
- the transportation schedule data of the drone 40 may be generated so as to preferentially designate the first collection place 22 having a large number of vehicles 60 that can be passed among the plurality of first collection places 22 as a destination for transporting the crops by the drone 40. it can. Thereby, it becomes possible to transport more crops from the farmhouse 20 to the second collection place 24.
- the transport control unit 808 generates transport schedule data for the vehicle 60 based on the generated transport schedule data for the drone 40 and transmits the transport schedule data to the vehicle driver terminal 65 for transporting the crops by the vehicle 60.
- the transportation schedule data of the vehicle 60 is notified to the driver of the vehicle 60. More specifically, the transportation control unit 808 collects the amount of farm products to be collected at the first collection place 22 obtained from the traveling schedule of each vehicle 60 and the transportation schedule of the drone 40 and the crops at the first collection place 22.
- the transportation schedule data of the vehicle 60 is generated on the basis of the time.
- the transport control unit 808 based on the collection information of the first collection place 22 transmitted from the drone 40 when the collection of the crops to the first collection place 22 by the drone 40 is completed, the first collection place.
- Information indicating that the collection of all the crops scheduled to be collected at 22 has been completed is transmitted to the vehicle driver terminal 65. Thereby, the driver of the vehicle 60 can be made to transport the crop according to the transport schedule data of the vehicle 60.
- the charging control unit 810 is realized by a CPU, and controls charging for each of the user of the farmer 20, the manager of the drone 40, and the driver of the vehicle 60. Specifically, the charging control unit 810 charges the driver of each vehicle 60 for a value corresponding to the transportation of the crops from the first collection place 22 to the second collection place 24 performed by each vehicle 60. For example, the charging control unit 810 performs charging processing for the driver of each vehicle 60 after collating the collection information of the second collection point 24 transmitted from the vehicle driver terminal 65 with the transportation schedule data of the vehicle 60. .
- the collection information of the second collection point 24 may include ID information of the farmer 20 regarding the crops that have been transported by the vehicle 60.
- the charging control unit 810 acquires the farmer 20 ID information for the crops that each vehicle 60 has transported to the second collection point 24, and the crops that each vehicle 60 is scheduled to transport in the transport schedule data of the vehicles 60. It collates with ID information of the farmer 20 about. Thereby, it can be confirmed that the crops to be transported by each vehicle 60 are actually transported to the second collection point 24 by each vehicle.
- the charging control unit 810 charges the management of the drone 40 for a price corresponding to the transportation of the crops from the farm 20 to the first collection place 22 performed by the drone 40.
- the charge control unit 810 performs charge processing for the management company of the drone 40 after collating the collection information of the first collection point 22 transmitted from the drone 40 with the transportation schedule data of the drone 40.
- the collection information of the first collection point 22 may include ID information of the farmer 20 regarding the crops that have been transported by the drone 40.
- the charging control unit 810 acquires the farmer 20 ID information for the crops that the drone 40 has transported to the first collection point 22, and the drone 40 is expected to transport the crops that the drone 40 plans to transport in the transport schedule data of the drone 40.
- the ID information of the farmer 20 is collated. Thereby, it can be confirmed that the crop to be transported by the drone 40 is actually transported by the drone 40 to the first collection point 22.
- the charging control unit 810 charges the user of each farmer 20 for a price corresponding to the farm products of each farmer 20 transported to the second collection point 24.
- the charge control unit 810 collates the collection information of the second collection point 24 with the transportation schedule data.
- the charging control unit 810 acquires the ID information of the farmer 20 for the crops transported to the second collection point 24, and from the farmer 20 to the second collection point 24 in the transportation schedule data of the drone 40 and the vehicle 60. Collation with the farmer 20 ID information for the crops to be transported is performed. Thereby, it can be confirmed that the crops to be transported from the farm 20 to the second collection place 24 are actually transported to the second collection place 24. Thereafter, quality evaluation of each crop collected at the second collection place 24 is performed.
- the billing control unit 810 calculates the amount of money for each crop according to the quality evaluation result of each crop, and performs billing processing for the user of each farmer 20 based on the amount.
- FIG. 11 is a flowchart showing an example of a flow of a transportation schedule data generation process performed by the transportation management server 80 according to the present embodiment.
- the transport control unit 808 determines whether or not there is a request for transport of crops from the user of the farmer 20 (step S502). For example, the transportation control unit 808 determines that there is a request for transportation of the crop from the user of the farmer 20 by acquiring the information transmitted from the farmer terminal 25. If it is not determined by the transport control unit 808 that there is a request for transport of the crop from the user of the farmer 20 (step S502 / NO), the determination process of step S502 is repeated.
- the transport control unit 808 when it is determined by the transport control unit 808 that there is a request for transport of crops from the user of the farmer 20 (step S502 / YES), the transport control unit 808 generates transport schedule data for the drone 40. Information is acquired (step S504). Specifically, the transport control unit 808 acquires information transmitted from the farmer terminal 25, the drone management server 45, and the vehicle driver terminal 65.
- the transport control unit 808 extracts the flight route that is the transport route of each drone 40 based on the acquired various information (step S506).
- the transport control unit 808 determines whether or not the transport time for the transport route of each drone 40 is within a specified range (step S508). If the transport control unit 808 does not determine that the transport time for the transport route of each drone 40 is within the regulation (step S508 / NO), the process returns to step S506. On the other hand, when the transport control unit 808 determines that the transport time for the transport route of each drone 40 is within the specified range (step S508 / YES), the process shown in FIG. Data generation is complete. In addition, the transportation control unit 808 generates transportation schedule data for the vehicle 60 based on the transportation schedule data for the drone 40.
- FIG. 12 is a flowchart illustrating an example of a flow of processing relating to transportation between the farmhouse 20 and the first collection point 22 performed by the transportation management server 80 according to the present embodiment.
- the transport control unit 808 adjusts the transport schedule data of the drone 40 (step S602).
- the transport control unit 808 is scheduled to be transported by two drones 40 when the total weight of the container 200 that each of the two drones 40 intends to transport is lower than the loadable weight of one drone 40.
- the transportation schedule data of the drone 40 is adjusted so that the containers 200 are transported together by one drone 40.
- the transportation control unit 808 sends the transportation schedule data of the drone 40 to the drone management server 45 to instruct the start of transportation of the crop by the drone 40 (step S604). Thereafter, the communication unit 802 acquires the collection information of the first collection point 22 transmitted from the drone 40 (step S606), and the process illustrated in FIG. 12 ends.
- FIG. 13 is a flowchart illustrating an example of a flow of processing relating to transportation between the first collection point 22 and the second collection point 24 performed by the transportation management server 80 according to the present embodiment.
- the transportation control unit 808 notifies the driver of each vehicle 60 by transmitting the generated transportation schedule data of the vehicle 60 to the vehicle driver terminal 65 of each vehicle 60.
- the transport control unit 808 determines whether or not the collection of all the crops scheduled to be collected at the first collection place 22 is completed based on the collection information of the first collection place 22 (Step S704).
- step S704 / NO If it is not determined by the transport control unit 808 that the collection of all the crops scheduled to be collected at the first collection point 22 has been completed (step S704 / NO), the determination process at step S704 is repeated. On the other hand, when it is determined by the transport control unit 808 that the collection of all the crops scheduled to be collected at the first collection point 22 has been completed (step S704 / YES), the transport control unit 808 moves to the first collection point 22. The information indicating that the collection of the vehicle has been completed is transmitted to the vehicle driver terminal 65 of each vehicle 60, thereby notifying the driver of each vehicle 60 (step S706). Thereafter, the communication unit 802 acquires the collection information of the second collection point 24 transmitted from the vehicle driver terminal 65 (step S708), and the process illustrated in FIG. 13 ends.
- FIG. 14 is a flowchart showing an example of the flow of billing processing performed by the transportation management server 80 according to the present embodiment.
- the charging control unit 810 first collates the collection information of the second collection point 24 with the transportation schedule data of the vehicle 60 (step S802). Then, the charging control unit 810 performs a charging process for the driver of each vehicle 60 (step S804). Next, the charging control unit 810 collates the collection information of the first collection point 22 with the transportation schedule data of the drone 40 (step S806). Then, the charging control unit 810 performs charging processing for the management company of the drone 40 (step S808).
- the charging control unit 810 collates the collection information of the second collection point 24 with the transportation schedule data of the drone 40 and the vehicle 60 (step S810). Then, quality evaluation of each crop collected at the second collection place 24 is performed (step S812).
- the billing control unit 810 calculates the amount of money for each crop according to the quality evaluation result of each crop, performs billing processing for the user of each farmer 20 based on the amount (step S814), and is shown in FIG. The process ends.
- FIG. 15 is an explanatory diagram illustrating an example of a hardware configuration of the transportation management server 80 according to the present disclosure.
- the transportation management server 80 includes a CPU (Central Processing Unit) 142, a ROM (Read Only Memory) 144, a RAM (Random Access Memory) 146, a bridge 148, a bus 150, and an interface. 152, an input device 154, an output device 156, a storage device 158, a drive 160, a connection port 162, and a communication device 164.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the CPU 142 functions as an arithmetic processing unit and a control unit, and realizes the operation of each functional configuration in the transport management server 80 in cooperation with various programs.
- the CPU 142 may be a microprocessor.
- the ROM 144 stores programs or calculation parameters used by the CPU 142.
- the RAM 146 temporarily stores programs used in the execution of the CPU 142 or parameters that change as appropriate in the execution.
- the CPU 142, the ROM 144, and the RAM 146 are connected to each other by an internal bus including a CPU bus.
- the input device 154 is an input means for an operator to input information such as a mouse, a keyboard, a touch panel, a button, a microphone, a switch, and a lever, and generates an input signal based on an input by the operator and outputs the input signal to the CPU 142. It consists of an input control circuit. An operator of the information processing device 70 can input various data and instruct a processing operation to the transportation management server 80 by operating the input device 154.
- the output device 156 performs output to devices such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and a lamp, for example. Further, the output device 156 may output sound such as a speaker and headphones.
- LCD liquid crystal display
- OLED Organic Light Emitting Diode
- the storage device 158 is a device for storing data.
- the storage device 158 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
- the storage device 158 stores programs executed by the CPU 142 and various data.
- the drive 160 is a storage medium reader / writer, and is built in or externally attached to the transport management server 80.
- the drive 160 reads information recorded on a mounted removable storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 144.
- the drive 160 can also write information to a removable storage medium.
- connection port 162 is, for example, a bus for connecting to an information processing device or peripheral device outside the transport management server 80.
- the connection port 162 may be a USB (Universal Serial Bus).
- the communication device 164 is, for example, a communication interface configured with a communication device for connecting to a network. Further, the communication device 164 performs wired communication regardless of whether it is an infrared communication compatible device, a wireless LAN (Local Area Network) compatible communication device, or an LTE (Long Term Evolution) compatible communication device. It may be a wire communication device.
- a wireless LAN Local Area Network
- LTE Long Term Evolution
- the display control unit in the transportation of the article by the unmanned air vehicle, is based on the candidate for the container that is carried by the unmanned air vehicle and accommodates the article.
- the display of the screen for the user to select the container to be transported from among the container candidates is controlled.
- the weight of the article may be approximately proportional to the volume of the article. Therefore, the maximum value of the weight of the container in which the article is accommodated can be calculated according to the volume of the container. Therefore, by allowing the user to select a container to be transported by the unmanned air vehicle from among preset container candidates, the weight of the container to be transported by the unmanned air vehicle becomes lower than the weight that can be loaded by the unmanned air vehicle.
- Unmanned air vehicle transport schedule data can be generated. Therefore, it is possible to prevent the flight posture of the unmanned air vehicle from becoming unstable due to the weight of the container carried by the unmanned air vehicle exceeding the loadable weight of the unmanned air vehicle. It is possible to realize more stable transportation of articles.
- the collection information of the first collection point 22 is the first collection point. It may be transmitted from an information processing device (not shown) provided at the station 22. In such a case, the collection information of the first collection place 22 may be transmitted based on, for example, an input by the operator of the first collection place 22, and is provided in the first collection place 22 so that the container 200 can be identified. It may be transmitted based on the identification result of the container 200 by the device that does not.
- the collection information of the second collection point 24 is You may transmit from the information processing apparatus of the 2nd collection place 24.
- the collection information of the second collection place 24 may be transmitted based on, for example, an input by the operator of the second collection place 24, and is provided in the second collection place 24 so that the container 200 can be identified. It may be transmitted based on the identification result of the container 200 by the device that does not.
- the transport of the crop The destination may be appropriately designated by the user.
- an area for the user to specify the transport destination of the crop may be additionally displayed on the input screen D10 illustrated in FIG.
- the transport control unit 808 manages the transport of the crops by the drone 40 and the vehicle 60 so that the crops are transported to the transport destination input by the user through the area, so that the transport of the crops to the transport destination designated by the user is performed. Can be realized.
- a series of control processing by each device described in this specification may be realized using any of software, hardware, and a combination of software and hardware.
- the program constituting the software is stored in advance in a storage medium (non-transitory medium) provided inside or outside each device.
- Each program is read into a RAM at the time of execution, for example, and executed by a processor such as a CPU.
- processing described using the flowchart in this specification does not necessarily have to be executed in the order shown in the flowchart. Some processing steps may be performed in parallel. Further, additional processing steps may be employed, and some processing steps may be omitted.
- a user In transporting an article by an unmanned aerial vehicle, a user selects the container to be transported by the unmanned aerial vehicle from among the container candidates based on a container candidate that is transported by the unmanned aerial vehicle and accommodates the article.
- An information processing apparatus comprising: a display information control unit that controls display of a screen for the purpose.
- the container is provided with a holding mechanism that holds the article at a position that substantially matches the position of the center of gravity of the unmanned air vehicle in a horizontal plane.
- the container is provided with an ID identification unit for identifying the ID of the user.
- the information processing apparatus according to any one of (5) to (7), wherein the information related to the container includes information indicating a position of the container.
- the transport control unit controls transport of the article by the unmanned air vehicle based on information on the unmanned air vehicle.
- (11) The information on the unmanned air vehicle according to (9) or (10), wherein the information on the unmanned air vehicle includes information indicating whether the unmanned air vehicle can operate.
- the information processing apparatus according to any one of (9) to (11), wherein the information related to the unmanned air vehicle includes ID information of the unmanned air vehicle.
- the information processing apparatus controls transportation of the article by the unmanned aerial vehicle based on information on a vehicle that further transports the article conveyed by the unmanned aerial vehicle. .
- the information processing apparatus according to any one of (13) to (15), wherein the information related to the vehicle includes identification information of the vehicle.
- the information processing apparatus according to any one of (13) to (16), wherein the information related to the vehicle includes information related to a driver of the vehicle.
- the display information control unit controls display of the screen by a terminal used by the user.
- a user In transporting an article by an unmanned aerial vehicle, a user selects the container to be transported by the unmanned aerial vehicle from among the container candidates based on a container candidate that is transported by the unmanned aerial vehicle and accommodates the article.
- An information processing method including controlling display of a screen for the purpose by an information processing device.
- An unmanned air vehicle that transports an article contained in a container selected by a user, and an information processing device that controls the transportation of the article by the unmanned air vehicle
- the information processing apparatus includes: In transporting the article by the unmanned aerial vehicle, the user can select the container to be transported by the unmanned aerial vehicle based on the container candidate that is transported by the unmanned aerial vehicle and accommodates the article.
- a display information control unit for controlling display of a screen for selecting from,
- a transportation control unit for controlling transportation of the article by the unmanned air vehicle based on information on the container selected by the user on the screen; Comprising Transport system.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Operations Research (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Quality & Reliability (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Human Resources & Organizations (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
0.導入
1.輸送システム
2.ドローン
3.容器
4.輸送管理サーバ
4-1.機能構成
4-2.動作
5.ハードウェア構成
6.まとめ
現在世界の人口は増加傾向にあり、例えば、2050年には世界の人口は90億人を超えると予想されている。そして、将来の人口の増加に伴う食糧問題を見据えて、農業の効率化、大規模化が各国で進んでいる。一方で、自給農園付きセカンドハウス(ダーチャ)で生産された農作物がロシアの経済危機を救ったように、自給自足型の小口農家を増やすことによって、食糧危機に強い持続可能な社会を構築し得る。このような小口農家のユーザにおいて、多くの国で進行している高齢化に伴い、高齢者の割合が高まっている。高齢者が生きがいを持って、農作物の生産を長期に渡って継続するためには、小口農家で生産された農作物をリーズナブルな価格で流通できるようにしていくことが重要である。
続いて、図1及び図2を参照して本実施形態に係る輸送システム1について説明する。図1は、本実施形態に係る輸送システム1のシステム構成の一例を示す説明図である。図2は、本実施形態に係る輸送システム1による農作物の輸送における農作物の流れの一例について説明するための説明図である。図1に示したように、輸送システム1は、農家20のユーザが利用する農家端末25と、ドローン40と、ドローン管理サーバ45と、車両60の運転者が利用する車両運転者端末65と、輸送管理サーバ80と、を含む。農家端末25、ドローン管理サーバ45、車両運転者端末65及び輸送管理サーバ80は、有線又は無線の情報ネットワークA10を介して互いに通信する。また、ドローン40及びドローン管理サーバ45は、有線又は無線の情報ネットワークA20を介して互いに通信する。
続いて、本実施形態に係るドローン40の機能構成について説明する。図3は、本実施形態に係るドローン40の機能構成の一例を示す説明図である。図3に示したように、本実施形態に係るドローン40は、撮像装置401と、ロータ404a~404dと、モータ408a~408dと、制御部410と、通信部420と、センサ部430と、位置情報取得部432と、記憶部440と、バッテリ450と、を含んで構成される。
続いて、図5~図7を参照して、容器200に関する各種変形例について説明する。図5は、第1の変形例に係る容器200aの構成を示す説明図である。具体的には、図5は、容器200aへ農作物C10が収容される前後のそれぞれにおける容器200aの状態を示す。第1の変形例に係る容器200aには、水平面内においてドローン40の重心位置と略一致する位置に農作物を保持する保持機構202が設けられる。例えば、保持機構202は、容器200aの上部に位置する開口部を閉鎖するように設けられ、弾性を有する部材により構成され得る。保持機構202には、例えば伸縮性のあるシート材やフィルム材を用いることができる。保持機構202は容器200aの当該開口部の縁部に固定されている。それにより、保持機構202の上方から農作物C10が投入されると、図5に示したように、保持機構202は、農作物C10の荷重によって中央部が下方へ窪むように変形する。ゆえに、農作物C10は、水平面内において容器200aの中央に保持される。
[4-1.機能構成]
続いて、本実施形態に係る輸送管理サーバ80の機能構成について説明する。図8は、本実施形態に係る輸送管理サーバ80の機能構成の一例を示す説明図である。図8に示したように、輸送管理サーバ80は、通信部802と、記憶部804と、表示情報制御部806と、輸送制御部808と、課金制御部810と、を含む。
通信部802は通信回路を含んで構成され、輸送管理サーバ80の外部の装置と通信する。具体的には、通信部802は、有線又は無線のネットワークA10を介して農家端末25、ドローン管理サーバ45及び車両運転者端末65と通信する。通信部802は、農家端末25、ドローン管理サーバ45及び車両運転者端末65から受信した情報を記憶部804、表示情報制御部806、輸送制御部808及び課金制御部810へ出力する。また、通信部802は、表示情報制御部806、輸送制御部808及び課金制御部810の各々による動作指示に基づいて、輸送管理サーバ80の外部の装置との通信を行う。
記憶部804はROM、RAM、不揮発性メモリストレージやハードディスク等を含んで構成され、輸送管理サーバ80における各種処理のために参照されるデータを記憶する。例えば、記憶部804は、ドローン40による農作物の輸送において、ドローン40により運搬され、農作物を収容する容器200の候補を予め記憶する。容器200の候補の容積は、農作物が収容された状態の当該容器200の重量がドローン40の積載可能な重量を超えない重量となるように設定され得る。
表示情報制御部806はCPUにより実現され、外部の装置による画面の表示を制御する。具体的には、表示情報制御部806は、各種画面を農家端末25及び車両運転者端末65に表示させるための情報の農家端末25及び車両運転者端末65への送信を通信部802に行わせることによって、農家端末25及び車両運転者端末65による画面の表示を制御する。
輸送制御部808はCPUにより実現され、ドローン40及び車両60による農作物の輸送を管理する。ドローン40による農作物の輸送について、輸送制御部808は、具体的には、農家端末25、ドローン管理サーバ45及び車両運転者端末65から送信される情報に基づいて、ドローン40による農作物の輸送を制御する。輸送制御部808は、例えば、ドローン40の輸送スケジュールデータを生成し、ドローン管理サーバ45へ送信することにより、ドローン40による農作物の輸送を制御する。
課金制御部810はCPUにより実現され、農家20のユーザ、ドローン40の管理業者及び車両60の運転者のそれぞれに対する課金を制御する。具体的には、課金制御部810は、各車両60によって行われた第1集荷所22から第2集荷所24への農作物の輸送に相当する対価を各車両60の運転者へ課金する。課金制御部810は、例えば、車両運転者端末65から送信される第2集荷所24の集荷情報と車両60の輸送スケジュールデータとを照合した後に、各車両60の運転者への課金処理を行う。ここで、第2集荷所24の集荷情報には、車両60による輸送が完了した農作物についての農家20のID情報が含まれ得る。課金制御部810は、具体的には、各車両60が第2集荷所24へ輸送した農作物について農家20のID情報を取得し、車両60の輸送スケジュールデータにおいて各車両60が輸送する予定の農作物についての農家20のID情報との照合を行う。それにより、各車両60が輸送する予定の農作物が実際に各車両によって第2集荷所24へ輸送されたことを確認することができる。
続いて、本実施形態に係る輸送管理サーバ80が行う処理の流れについて説明する。
図11は、本実施形態に係る輸送管理サーバ80が行う輸送スケジュールデータの生成処理の流れの一例を示すフローチャートである。図11に示したように、まず、輸送制御部808は、農家20のユーザからの農作物の輸送の要求があるか否かを判定する(ステップS502)。輸送制御部808は、例えば、農家端末25から送信された情報を取得したことをもって、農家20のユーザからの農作物の輸送の要求があると判定する。輸送制御部808により、農家20のユーザからの農作物の輸送の要求があると判定されなかった場合(ステップS502/NO)、ステップS502の判定処理が繰り返される。一方、輸送制御部808により、農家20のユーザからの農作物の輸送の要求があると判定された場合(ステップS502/YES)、輸送制御部808は、ドローン40の輸送スケジュールデータを生成するための情報を取得する(ステップS504)。具体的には、輸送制御部808は、農家端末25、ドローン管理サーバ45及び車両運転者端末65から送信される情報を取得する。
図12は、本実施形態に係る輸送管理サーバ80が行う農家20~第1集荷所22間の輸送に関する処理の流れの一例を示すフローチャートである。図12に示したように、まず、輸送制御部808は、ドローン40の輸送スケジュールデータを調整する(ステップS602)。例えば、輸送制御部808は、2つのドローン40のそれぞれが輸送する予定の容器200の総重量が1つのドローン40の積載可能な重量より低い場合に、2つのドローン40により輸送される予定であった容器200をまとめて1つのドローン40によって輸送させるようにドローン40の輸送スケジュールデータを調整する。そして、輸送制御部808は、ドローン40の輸送スケジュールデータをドローン管理サーバ45へ送信することにより、ドローン40による農作物の輸送の開始を指示する(ステップS604)。その後、通信部802は、ドローン40から送信される第1集荷所22の集荷情報を取得し(ステップS606)、図12に示した処理は終了する。
図13は、本実施形態に係る輸送管理サーバ80が行う第1集荷所22~第2集荷所24間の輸送に関する処理の流れの一例を示すフローチャートである。図13に示したように、まず、輸送制御部808は、生成した車両60の輸送スケジュールデータを、各車両60の車両運転者端末65へ送信することによって、各車両60の運転者へ通知する(ステップS702)。次に、輸送制御部808は、第1集荷所22の集荷情報に基づいて、第1集荷所22へ集荷される予定の農作物の集荷がすべて完了したか否かを判定する(ステップS704)。輸送制御部808により、第1集荷所22へ集荷される予定の農作物の集荷がすべて完了したと判定されなかった場合(ステップS704/NO)、ステップS704の判定処理が繰り返される。一方、輸送制御部808により、第1集荷所22へ集荷される予定の農作物の集荷がすべて完了したと判定された場合(ステップS704/YES)、輸送制御部808は、第1集荷所22への集荷がすべて完了したことを示す情報を、各車両60の車両運転者端末65へ送信することによって、各車両60の運転者へ通知する(ステップS706)。その後、通信部802は、車両運転者端末65から送信される第2集荷所24の集荷情報を取得し(ステップS708)、図13に示した処理は終了する。
図14は、本実施形態に係る輸送管理サーバ80が行う課金処理の流れの一例を示すフローチャートである。図14に示したように、まず、課金制御部810は、第2集荷所24の集荷情報と車両60の輸送スケジュールデータとを照合する(ステップS802)。そして、課金制御部810は、各車両60の運転者への課金処理を行う(ステップS804)。次に、課金制御部810は、第1集荷所22の集荷情報とドローン40の輸送スケジュールデータとを照合する(ステップS806)。そして、課金制御部810は、ドローン40の管理業者への課金処理を行う(ステップS808)。
以上、本開示の実施形態を説明した。上述した輸送管理サーバ80の処理は、ソフトウェアと、以下に説明する輸送管理サーバ80のハードウェアとの協働により実現される。
以上説明したように、本開示の実施形態によれば、表示制御部は、無人飛行体による物品の輸送において、無人飛行体により運搬され、物品を収容する容器の候補に基づいて、無人飛行体に運搬させる容器をユーザが容器の候補のうちから選択するための画面の表示を制御する。ここで、物品の重量は、物品の体積に略比例し得る。ゆえに、物品が収容された状態の容器の重量の最大値は、容器の容積に応じて算出することができる。よって、無人飛行体に運搬させる容器を予め設定された容器の候補のうちからユーザに選択させることによって、無人飛行体に運搬させる容器の重量が無人飛行体の積載可能な重量より低くなるように、無人飛行体の輸送スケジュールデータを生成することができる。従って、無人飛行体の運搬する容器の重量が無人飛行体の積載可能な重量を超えることにより無人飛行体の飛行姿勢が不安定になることを防止できるので、無人飛行体による物品の輸送において、より安定的な物品の輸送を実現することが可能である。
(1)
無人飛行体による物品の輸送において、前記無人飛行体により運搬され、前記物品を収容する容器の候補に基づいて、前記無人飛行体に運搬させる前記容器をユーザが前記容器の候補のうちから選択するための画面の表示を制御する表示情報制御部、を備える情報処理装置。
(2)
前記容器には、水平面内において前記無人飛行体の重心位置と略一致する位置に前記物品を保持する保持機構が設けられる、前記(1)に記載の情報処理装置。
(3)
前記容器には、前記ユーザのIDを識別するためのID識別部が設けられる、前記(1)又は(2)に記載の情報処理装置。
(4)
前記無人飛行体による前記物品の輸送において、複数の前記容器は、互いに積層された状態で前記無人飛行体により運搬される、前記(1)~(3)のいずれか一項に記載の情報処理装置。
(5)
前記画面において前記ユーザにより選択された前記容器に関する情報に基づいて、前記無人飛行体による前記物品の輸送を制御する輸送制御部を備える、前記(1)~(4)のいずれか一項に記載の情報処理装置。
(6)
前記容器に関する情報は、前記容器の数量を示す情報を含む、前記(5)に記載の情報処理装置。
(7)
前記容器に関する情報は、前記無人飛行体が前記容器を回収可能な時間を示す情報を含む、前記(5)又は(6)に記載の情報処理装置。
(8)
前記容器に関する情報は、前記容器の位置を示す情報を含む、前記(5)~(7)のいずれか一項に記載の情報処理装置。
(9)
前記輸送制御部は、前記無人飛行体に関する情報に基づいて、前記無人飛行体による前記物品の輸送を制御する、前記(5)に記載の情報処理装置。
(10)
前記無人飛行体に関する情報は、前記無人飛行体の位置を示す情報を含む、前記(9)に記載の情報処理装置。
(11)
前記無人飛行体に関する情報は、前記無人飛行体が稼働できるか否かを示す情報を含む、前記(9)又は(10)に記載の情報処理装置。
(12)
前記無人飛行体に関する情報は、前記無人飛行体のID情報を含む、前記(9)~(11)のいずれか一項に記載の情報処理装置。
(13)
前記輸送制御部は、前記無人飛行体により輸送された前記物品をさらに輸送する車両に関する情報に基づいて、前記無人飛行体による前記物品の輸送を制御する、前記(5)に記載の情報処理装置。
(14)
前記車両に関する情報は、前記車両の走行スケジュールに関する情報を含む、前記(13)に記載の情報処理装置。
(15)
前記車両に関する情報は、前記車両の積載可能な物品のサイズ又は重量を示す情報を含む、前記(13)又は(14)に記載の情報処理装置。
(16)
前記車両に関する情報は、前記車両の識別情報を含む、前記(13)~(15)のいずれか一項に記載の情報処理装置。
(17)
前記車両に関する情報は、前記車両の運転者に関する情報を含む、前記(13)~(16)のいずれか一項に記載の情報処理装置。
(18)
前記表示情報制御部は、前記ユーザによって利用される端末による前記画面の表示を制御する、前記(1)~(17)のいずれか一項に記載の情報処理装置。
(19)
無人飛行体による物品の輸送において、前記無人飛行体により運搬され、前記物品を収容する容器の候補に基づいて、前記無人飛行体に運搬させる前記容器をユーザが前記容器の候補のうちから選択するための画面の表示を、情報処理装置によって、制御すること、を含む情報処理方法。
(20)
ユーザにより選択された容器に収容される物品を輸送する無人飛行体と前記無人飛行体による前記物品の輸送を制御する情報処理装置を含み、
前記情報処理装置は、
前記無人飛行体による前記物品の輸送において、前記無人飛行体により運搬され、前記物品を収容する前記容器の候補に基づいて、前記無人飛行体に運搬させる前記容器をユーザが前記容器の候補のうちから選択するための画面の表示を制御する表示情報制御部と、
前記画面において前記ユーザにより選択された前記容器に関する情報に基づいて、前記無人飛行体による前記物品の輸送を制御する輸送制御部と、
を備える、
輸送システム。
20 農家
22 第1集荷所
24 第2集荷所
25 農家端末
40、40a ドローン
42 把持機構
45 ドローン管理サーバ
46 鏡
60 車両
65 車両運転者端末
70 情報処理装置
80 輸送管理サーバ
80 直接輸送管理サーバ
142 CPU(Central Processing Unit)
144 ROM(Read Only Memory)
146 RAM(Random Access Memory)
148 ブリッジ
150 バス
152 インタフェース
154 入力装置
156 出力装置
158 ストレージ装置
160 ドライブ
162 接続ポート
164 通信装置
200、200a、200b、200c、200d 容器
202 保持機構
204 連結機構
206 識別部
401 撮像装置
404a、404b、404c、404d ロータ
408a、408b、408c、408d モータ
410 制御部
420 通信部
430 センサ部
432 位置情報取得部
440 記憶部
450 バッテリ
802 通信部
804 記憶部
806 表示情報制御部
808 輸送制御部
810 課金制御部
Claims (20)
- 無人飛行体による物品の輸送において、前記無人飛行体により運搬され、前記物品を収容する容器の候補に基づいて、前記無人飛行体に運搬させる前記容器をユーザが前記容器の候補のうちから選択するための画面の表示を制御する表示情報制御部、を備える情報処理装置。
- 前記容器には、水平面内において前記無人飛行体の重心位置と略一致する位置に前記物品を保持する保持機構が設けられる、請求項1に記載の情報処理装置。
- 前記容器には、前記ユーザのIDを識別するためのID識別部が設けられる、請求項1に記載の情報処理装置。
- 前記無人飛行体による前記物品の輸送において、複数の前記容器は、互いに積層された状態で前記無人飛行体により運搬される、請求項1に記載の情報処理装置。
- 前記画面において前記ユーザにより選択された前記容器に関する情報に基づいて、前記無人飛行体による前記物品の輸送を制御する輸送制御部を備える、請求項1に記載の情報処理装置。
- 前記容器に関する情報は、前記容器の数量を示す情報を含む、請求項5に記載の情報処理装置。
- 前記容器に関する情報は、前記無人飛行体が前記容器を回収可能な時間を示す情報を含む、請求項5に記載の情報処理装置。
- 前記容器に関する情報は、前記容器の位置を示す情報を含む、請求項5に記載の情報処理装置。
- 前記輸送制御部は、前記無人飛行体に関する情報に基づいて、前記無人飛行体による前記物品の輸送を制御する、請求項5に記載の情報処理装置。
- 前記無人飛行体に関する情報は、前記無人飛行体の位置を示す情報を含む、請求項9に記載の情報処理装置。
- 前記無人飛行体に関する情報は、前記無人飛行体が稼働できるか否かを示す情報を含む、請求項9に記載の情報処理装置。
- 前記無人飛行体に関する情報は、前記無人飛行体のID情報を含む、請求項9に記載の情報処理装置。
- 前記輸送制御部は、前記無人飛行体により輸送された前記物品をさらに輸送する車両に関する情報に基づいて、前記無人飛行体による前記物品の輸送を制御する、請求項5に記載の情報処理装置。
- 前記車両に関する情報は、前記車両の走行スケジュールに関する情報を含む、請求項13に記載の情報処理装置。
- 前記車両に関する情報は、前記車両の積載可能な物品のサイズ又は重量を示す情報を含む、請求項13に記載の情報処理装置。
- 前記車両に関する情報は、前記車両の識別情報を含む、請求項13に記載の情報処理装置。
- 前記車両に関する情報は、前記車両の運転者に関する情報を含む、請求項13に記載の情報処理装置。
- 前記表示情報制御部は、前記ユーザによって利用される端末による前記画面の表示を制御する、請求項1に記載の情報処理装置。
- 無人飛行体による物品の輸送において、前記無人飛行体により運搬され、前記物品を収容する容器の候補に基づいて、前記無人飛行体に運搬させる前記容器をユーザが前記容器の候補のうちから選択するための画面の表示を、情報処理装置によって、制御すること、を含む情報処理方法。
- ユーザにより選択された容器に収容される物品を輸送する無人飛行体と前記無人飛行体による前記物品の輸送を制御する情報処理装置を含み、
前記情報処理装置は、
前記無人飛行体による前記物品の輸送において、前記無人飛行体により運搬され、前記物品を収容する前記容器の候補に基づいて、前記無人飛行体に運搬させる前記容器をユーザが前記容器の候補のうちから選択するための画面の表示を制御する表示情報制御部と、
前記画面において前記ユーザにより選択された前記容器に関する情報に基づいて、前記無人飛行体による前記物品の輸送を制御する輸送制御部と、
を備える、
輸送システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/768,048 US10845797B2 (en) | 2015-10-21 | 2016-09-01 | Information processing device, information processing method, and transportation system |
DE112016004832.7T DE112016004832T5 (de) | 2015-10-21 | 2016-09-01 | Informationsverarbeitungseinrichtung, informationsverarbeitungsverfahren und transportsystem |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-207507 | 2015-10-21 | ||
JP2015207507 | 2015-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017068871A1 true WO2017068871A1 (ja) | 2017-04-27 |
Family
ID=58557383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075686 WO2017068871A1 (ja) | 2015-10-21 | 2016-09-01 | 情報処理装置、情報処理方法及び輸送システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10845797B2 (ja) |
DE (1) | DE112016004832T5 (ja) |
WO (1) | WO2017068871A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019026452A1 (ja) * | 2017-08-04 | 2019-02-07 | オムロン株式会社 | シミュレーション装置、制御装置、及びシミュレーションプログラム |
JP2019031353A (ja) * | 2017-08-04 | 2019-02-28 | オムロン株式会社 | シミュレーション装置、制御装置、及びシミュレーションプログラム |
JP2020173789A (ja) * | 2019-04-12 | 2020-10-22 | 株式会社日立製作所 | 配送計画生成装置、システム、方法及びコンピュータ読み取り可能な記憶媒体 |
CN112529490A (zh) * | 2019-09-19 | 2021-03-19 | 大众汽车股份公司 | 利用无人驾驶机动车驶抵地点时的权限的确定 |
JP2023030969A (ja) * | 2021-08-24 | 2023-03-08 | 楽天グループ株式会社 | 物流システム、物流管理方法及びプログラム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11202002049TA (en) * | 2017-09-07 | 2020-04-29 | Murata Machinery Ltd | Communication system and communication method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61238595A (ja) * | 1985-04-16 | 1986-10-23 | 三菱重工業株式会社 | 航空機の貨物積込方法 |
JPH08230983A (ja) * | 1995-02-23 | 1996-09-10 | Kazuo Kito | 防災備蓄コンテナ |
JP2001319106A (ja) * | 2000-05-08 | 2001-11-16 | Lion Corp | 商品販売方法および販売システム |
JP2002085489A (ja) * | 2000-09-21 | 2002-03-26 | Narikoo:Kk | 感染性廃棄物処理管理装置 |
JP2003057065A (ja) * | 2001-08-15 | 2003-02-26 | Koji Onuma | 飛行体同士の相互位置確認方法 |
JP2003285930A (ja) * | 2002-03-28 | 2003-10-07 | Hitachi Software Eng Co Ltd | 輸送計画作成方法およびシステム |
JP2005225576A (ja) * | 2004-02-10 | 2005-08-25 | Mitsubishi Electric Information Systems Corp | 配達管理システム及び配達管理プログラム |
JP2005263112A (ja) * | 2004-03-19 | 2005-09-29 | Chugoku Electric Power Co Inc:The | 無人飛行体による運搬方法 |
JP2008276292A (ja) * | 2007-04-25 | 2008-11-13 | Senkoo Kk | 配車支援システム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1474985B (zh) * | 2000-10-10 | 2010-06-09 | 因特拉公司 | 公用承运人系统 |
US8646719B2 (en) | 2010-08-23 | 2014-02-11 | Heliplane, Llc | Marine vessel-towable aerovehicle system with automated tow line release |
CA2927096C (en) * | 2013-10-26 | 2023-02-28 | Amazon Technologies, Inc. | Unmanned aerial vehicle delivery system |
US20150269521A1 (en) * | 2014-03-21 | 2015-09-24 | Amazon Technologies, Inc. | Route scheduling of multi-class transport vehicles |
GB2525900A (en) * | 2014-05-07 | 2015-11-11 | Imp Innovations Ltd | Method of using a device capable of controlled flight |
US9305280B1 (en) * | 2014-12-22 | 2016-04-05 | Amazon Technologies, Inc. | Airborne fulfillment center utilizing unmanned aerial vehicles for item delivery |
US10071803B2 (en) * | 2015-01-16 | 2018-09-11 | International Business Machines Corporation | Package transport container and transport operations for an unmanned aerial vehicle |
US9809305B2 (en) * | 2015-03-02 | 2017-11-07 | Amazon Technologies, Inc. | Landing of unmanned aerial vehicles on transportation vehicles for transport |
KR20170005650A (ko) * | 2015-07-06 | 2017-01-16 | 엘지전자 주식회사 | 무인 항공기, 이동 단말기 및 그것들의 제어방법 |
-
2016
- 2016-09-01 US US15/768,048 patent/US10845797B2/en active Active
- 2016-09-01 DE DE112016004832.7T patent/DE112016004832T5/de active Pending
- 2016-09-01 WO PCT/JP2016/075686 patent/WO2017068871A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61238595A (ja) * | 1985-04-16 | 1986-10-23 | 三菱重工業株式会社 | 航空機の貨物積込方法 |
JPH08230983A (ja) * | 1995-02-23 | 1996-09-10 | Kazuo Kito | 防災備蓄コンテナ |
JP2001319106A (ja) * | 2000-05-08 | 2001-11-16 | Lion Corp | 商品販売方法および販売システム |
JP2002085489A (ja) * | 2000-09-21 | 2002-03-26 | Narikoo:Kk | 感染性廃棄物処理管理装置 |
JP2003057065A (ja) * | 2001-08-15 | 2003-02-26 | Koji Onuma | 飛行体同士の相互位置確認方法 |
JP2003285930A (ja) * | 2002-03-28 | 2003-10-07 | Hitachi Software Eng Co Ltd | 輸送計画作成方法およびシステム |
JP2005225576A (ja) * | 2004-02-10 | 2005-08-25 | Mitsubishi Electric Information Systems Corp | 配達管理システム及び配達管理プログラム |
JP2005263112A (ja) * | 2004-03-19 | 2005-09-29 | Chugoku Electric Power Co Inc:The | 無人飛行体による運搬方法 |
JP2008276292A (ja) * | 2007-04-25 | 2008-11-13 | Senkoo Kk | 配車支援システム |
Non-Patent Citations (1)
Title |
---|
MASATAKA UMEDA: "RFID ni Sonaeru -Fukyu eno Michisuji to Sono Genjitsumi", COMPUTOPIA, vol. 39, no. 453, 1 June 2004 (2004-06-01), pages 40 - 45, ISSN: 0010-4906 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI731251B (zh) * | 2017-08-04 | 2021-06-21 | 日商歐姆龍股份有限公司 | 模擬裝置、控制裝置以及記錄媒體 |
JP2019031352A (ja) * | 2017-08-04 | 2019-02-28 | オムロン株式会社 | シミュレーション装置、制御装置、及びシミュレーションプログラム |
JP2019031353A (ja) * | 2017-08-04 | 2019-02-28 | オムロン株式会社 | シミュレーション装置、制御装置、及びシミュレーションプログラム |
CN110612548A (zh) * | 2017-08-04 | 2019-12-24 | 欧姆龙株式会社 | 仿真装置、控制装置以及仿真程序 |
WO2019026452A1 (ja) * | 2017-08-04 | 2019-02-07 | オムロン株式会社 | シミュレーション装置、制御装置、及びシミュレーションプログラム |
JP6992312B2 (ja) | 2017-08-04 | 2022-01-13 | オムロン株式会社 | シミュレーション装置、制御装置、及びシミュレーションプログラム |
US11507088B2 (en) | 2017-08-04 | 2022-11-22 | Omron Corporation | Simulator, control device, and non-transitory computer-readable recording medium |
CN110612548B (zh) * | 2017-08-04 | 2023-04-07 | 欧姆龙株式会社 | 仿真装置、控制装置以及计算机可读取的记录媒体 |
JP2020173789A (ja) * | 2019-04-12 | 2020-10-22 | 株式会社日立製作所 | 配送計画生成装置、システム、方法及びコンピュータ読み取り可能な記憶媒体 |
JP6993449B2 (ja) | 2019-04-12 | 2022-01-13 | 株式会社日立製作所 | 配送計画生成装置、システム、方法及びコンピュータ読み取り可能な記憶媒体 |
CN112529490A (zh) * | 2019-09-19 | 2021-03-19 | 大众汽车股份公司 | 利用无人驾驶机动车驶抵地点时的权限的确定 |
JP2023030969A (ja) * | 2021-08-24 | 2023-03-08 | 楽天グループ株式会社 | 物流システム、物流管理方法及びプログラム |
JP7244594B2 (ja) | 2021-08-24 | 2023-03-22 | 楽天グループ株式会社 | 物流システム、物流管理方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
DE112016004832T5 (de) | 2018-07-26 |
US10845797B2 (en) | 2020-11-24 |
US20180299880A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017068871A1 (ja) | 情報処理装置、情報処理方法及び輸送システム | |
US11835947B1 (en) | Item exchange between autonomous vehicles of different services | |
US10894664B1 (en) | Mobile sortation and delivery of multiple items | |
CA3080410C (en) | Autonomously operated mobile locker banks | |
US20210132625A1 (en) | Modular delivery vehicle system | |
US11263579B1 (en) | Autonomous vehicle networks | |
JP7159822B2 (ja) | 配送システム及び処理サーバ | |
US9487356B1 (en) | Managing low-frequency inventory items in a fulfillment center | |
US9922306B1 (en) | Mobile RFID reading systems | |
US10535035B2 (en) | Systems and methods for delivering products to multiple delivery destinations via autonomous transport vehicles | |
CN106164946B (zh) | 通过无人操作的运输装置来递送邮递物的方法 | |
JP7027914B2 (ja) | 移動体、荷物仕分支援方法、荷物仕分支援プログラム及び荷物仕分支援システム | |
US11397913B2 (en) | Systems and methods for automated multimodal delivery | |
US10997544B1 (en) | Delivery location identifiers | |
JP6889046B2 (ja) | 飛行体、集荷支援装置、集荷制御方法、集荷支援方法、プログラム、及び記録媒体 | |
US20190070995A1 (en) | Mobile trailer systems for deploying unmanned aerial vehicles | |
US20160012393A1 (en) | Parcel delivery method using an unmanned aerial vehicle | |
US20190047701A1 (en) | Systems and methods for facilitating in-flight recharging of unmanned aerial vehicles | |
US10330480B1 (en) | Deployable sensors | |
US20210209543A1 (en) | Directing secondary delivery vehicles using primary delivery vehicles | |
CN104995575B (zh) | 一种数据处理方法、装置及飞行器 | |
US20210208603A1 (en) | Determining method of article transfer place, determining method of landing place, article transfer system, and information processing device | |
US10322802B1 (en) | Deployable sensors | |
CN111051198A (zh) | 无人飞行器控制系统、无人飞行器控制方法、及程序 | |
JP6748797B1 (ja) | 無人航空機制御システム、無人航空機制御方法、及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16857189 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15768048 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016004832 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16857189 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |