WO2016122278A1 - 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 - Google Patents
리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 Download PDFInfo
- Publication number
- WO2016122278A1 WO2016122278A1 PCT/KR2016/001074 KR2016001074W WO2016122278A1 WO 2016122278 A1 WO2016122278 A1 WO 2016122278A1 KR 2016001074 W KR2016001074 W KR 2016001074W WO 2016122278 A1 WO2016122278 A1 WO 2016122278A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- lithium secondary
- oxygen
- secondary battery
- positive electrode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- It relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery.
- a battery generates power by using a material capable of electrochemical reactions at a positive electrode and a negative electrode.
- a typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potent al when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
- the lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and layering an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
- a lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2) LiMn0 2 , and the like are being studied.
- ⁇ -based positive electrode active materials such as LiMn 2 O 4 and LiMn0 2 are easy to synthesize, are relatively inexpensive, have the best thermal stability compared to other active materials when overcharged, and have low environmental pollution and are attractive materials. Although it has a disadvantage, the capacity is small.
- LiCo0 2 has a good electrical conductivity and a high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability, and discharge capacity. Thus, LiCo0 2 is a representative cathode active material commercially available and commercially available. However, since LiCo0 2 is expensive, it takes up more than 30% of the battery price, which leads to a problem of low price competitiveness.
- LiNi0 2 exhibits the highest discharge capacity of battery characteristics among the cathode active materials mentioned above, but has a disadvantage of being difficult to synthesize. Also high of nickel The oxidized state causes deterioration of battery and electrode life, and causes severe self discharge and inferior reversibility. In addition, it is difficult to commercialize the stability is not complete.
- the present invention provides a cathode active material for a lithium secondary battery having excellent lifespan characteristics, and provides a lithium secondary battery including a cathode including the cathode active material. [Measures of problem]
- the compound is a compound in which primary particles are condensed to form secondary particles.
- An X-ray diffraction analysis provides a cathode active material for a lithium secondary battery having a grain size of 0.0593 to 0.0610 at (003) peak in spectral analysis.
- the compound in which the primary particles aggregate to form secondary particles may be a nickel composite oxide.
- the compound capable of reversible intercalation and deintercalation of lithium may be a cathode active material for a lithium secondary battery represented by the following Formula 1.
- A Ni a Cop Mn y
- D is one or more elements selected from the group consisting of Mg, Al, B, Zr and Ti
- E is one selected from the group consisting of P, F and S
- the above elements are -0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, 0.6 ⁇ ⁇ 0.81, 0. 10 ⁇ ⁇ 0.20 and 0. 10 ⁇ y ⁇ 0.20.
- the compound may have a strain% of 8 to 20% in X-ray diffraction spectrum analysis.
- the compound is a nickel complex oxide, LiNi 0 . 80 Co 0 . 10 Mn 0 . May be 10 0 2 .
- the compound is a nickel complex oxide, UNi 0 . 70 Co 0 . 15 Mn 0 . May be 15 0 2 .
- a nickel complex hydroxide Preparing to prepare a mixture
- Method of producing a cathode active material for a lithium secondary battery comprising the step of: heat-treating the prepared mixture in an oxygen and / or air atmosphere to obtain a compound of formula (1):
- It provides a method for producing a cathode active material for a lithium secondary battery comprising a.
- A Ni aCopMny
- D is at least one element selected from the group consisting of Mg, A1, B, Zr and Ti
- E is at least one element selected from the group consisting of P, F and S , -0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇
- heat treatment temperature provides a method for producing a positive electrode active material for a lithium secondary battery that is 700 to 950 ° C.
- A Ni aCoPMny
- D is one or more elements selected from the group consisting of Mg, Al, B, Zr and Ti
- E is selected from the group consisting of P, F and S 3 ⁇ 4 one or more elements -0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, 0.6 ⁇ ⁇ 0.81, 0.10 ⁇ ⁇ 0.20 and 0.10 ⁇ ⁇ 0.20
- the ratio of oxygen and air in the first temperature section and the second temperature section in the interval may be 25: 75 to 35: 65.
- the ratio of oxygen and air in the temperature-rising section and the second temperature section in the temperature increase section is a heat treatment process of 25: 75 to 35: 65,
- the ratio of carbon and air in the temperature maintaining section during the heat treatment is 25: 75 To 35:65.
- cathode active material having excellent battery characteristics and a lithium secondary battery including the same.
- FIG. 1 is a schematic view of a lithium secondary battery.
- the compound is a compound in which primary particles aggregate to form secondary particles
- An X-ray diffraction analysis provides a cathode active material for a lithium secondary battery having a grain size of 0.0593 to 0.0610 at (003) peak in spectral analysis.
- the compound that aggregates the primary particles to form secondary particles may be a nickel composite oxide.
- the compound capable of reversible intercalation and deintercalation of lithium may be a cathode active material for a lithium secondary battery represented by the following Formula 1.
- A Ni aCoPMny
- D is at least one element selected from the group consisting of Mg, Al, B, Zr and Ti
- E is at least one element selected from the group consisting of P, F and S -0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, 0.6 ⁇ ⁇ 0.81, 0.10 ⁇ ⁇ 0.20 and 0.10 ⁇ 0.20.
- the compound may have a strain% of 8 to 20% in X-ray diffraction spectrum analysis
- the compound is a nickel complex oxide, LiNi 0 . 80 Co 0 . 10 Mn 0 . May be 10 0 2 .
- the compound is a nickel composite oxide, LiNi 0 .7oCoo.i5Mno. May be 15 02.
- the (003) peak can confirm the development of the layered structure.
- the development of the layered structure improves the surface structure of the active material, and increases the grain size, thereby facilitating the movement of Li due to the decrease in the number of boundaries between the primary particles, thereby improving battery characteristics.
- strain 3 ⁇ 4> is reduced, thereby reducing the stress in the structure, which may contribute to the structure stabilization.
- preparing a complex by preparing a nickel complex hydroxide; and a lithium feed material;
- Method of producing a cathode active material for a lithium secondary battery comprising the step of obtaining a compound of formula 1 by heat-treating the prepared mixture in an oxygen and / or air atmosphere:
- It provides a method for producing a positive electrode active material for a lithium secondary battery comprising a.
- A Ni a Coi 3 Mny
- D is at least one element selected from the group consisting of Mg, Al, B, Zr and Ti
- E is at least one element selected from the group consisting of P, F and S ⁇ -0.05 ⁇ z ⁇ 0.1, 0 ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, 0.6 ⁇ ⁇ 0.81, 0.10 ⁇ ⁇ 0.20 and 0 ⁇ 10 ⁇ ⁇ 0.20
- the heat treatment temperature is 700 to 950 ° C. It provides a method for producing a positive electrode active material for lithium secondary batteries.
- A Ni a Co ⁇ Mn y
- D is at least one element selected from the group consisting of Mg, Al, B, Zr and Ti
- E is 1 selected from the group consisting of P
- F and S Is an element of at least a species, -0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, 0.6 ⁇ ⁇ 0.81, 0. 10 ⁇ ⁇ 0.20 and 0. 10 ⁇ ⁇ 0.20
- the ratio of oxygen and air in the temperature increase section during the heat treatment may be 25: 75 to 35: 65.
- the ratio of oxygen and air in the first temperature section and the second temperature section in the temperature increase section is a heat treatment process of 25: 75 to 35: 65,
- the ratio of oxygen and air in the temperature maintenance section in the heat treatment process may be 25: 75 to 35: 65,
- the ratio of oxygen and air may be 65:35 to 75:25 at all stages in the heat treatment process.
- the surface structure of the active material can be improved by the development of a layered structure due to the introduction of C02 into the Li reaction zone, thereby improving battery characteristics.
- a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte
- the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer, I provides a lithium secondary battery, comprising the positive electrode active material sulhan. Descriptions related to the cathode active material are omitted because they are the same as the above-described embodiments of the present invention.
- the positive electrode active material layer may include a binder and a conductive material.
- the binder serves to adhere the positive electrode active material particles to each other well, and also to adhere the positive electrode active material to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, and diacetyl cellulose , Polyvinyl chloride, carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, Polypropylene, styrene-butadiene rubber, acrylic styrene-butadiene rubber, epoxy resin, nylon, etc. may be used, but is not limited thereto.
- the conductive material is used to impart conductivity to an electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
- any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
- Metal-based materials such as metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
- the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
- the negative electrode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, or a transition metal oxide.
- any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon, Amorphous carbons or these may be used together.
- the crystalline carbons include amorphous, plate-like, fl ake, spherical or fibrous natural or artificial abyss, and examples of the amorphous carbon include soft carbon (low temperature calcined carbon). Or hard carbon, mesophase pitch carbide, calcined coke, and the like.
- alloy of the lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
- Examples of materials capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, Element selected from the group consisting of ash earth elements and combinations thereof, not Si), Sn, Sn0 2 , Sn-Y (Y is alkali metal, alkaline earth metal group 13 element, group 14 element transition metal, rare earth An element selected from the group consisting of an element and a combination thereof, and not an Sn); and at least one of these and Si0 2 may be used in combination.
- the element Y may include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se , Te, Po, and combinations thereof.
- transition metal oxides examples include vanadium oxide and lithium vanadium oxide.
- the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
- the binder adheres well to the negative electrode active material particles, and also adheres the negative electrode active material to the current collector.
- examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl salose, and polyvinyl chloride.
- Carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
- the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
- any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
- Metal materials such as metal powder or metal fibers such as copper, nickel and aluminum ⁇ ; Conductive polymers such as polyphenylene derivatives; Or combinations thereof Conductive materials containing water can be used.
- the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and a combination thereof. .
- A1 may be used as the current collector, but is not limited thereto.
- the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
- N-methylpyridone may be used as the solvent, but is not limited thereto.
- the electrolyte contains a non-aqueous organic solvent and a lithium salt.
- the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
- a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
- the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), .ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene.
- EC Carbonate
- PC propylene carbonate
- BC butylene carbonate
- ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl Propionate, butyrolactone, decanol i de, valerolactone, mevalonolactone
- the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Amides such as nitriles, dimethylformamide, and dioxolanes such as 1,3-dioxolane, and sulfolanes such as 1,3-dioxolane, and the like. have.
- the non-aqueous organic solvent may be used alone or in combination of one or more.
- the mixing ratio in the case of using more than one in combination can be appropriately adjusted according to the desired battery performance, which can be widely understood by those skilled in the art.
- the carbonate solvent it is preferable to use cyclic carbonate and chain carbonate in combination.
- the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
- the non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
- the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
- an aromatic hydrocarbon compound of Formula 2 may be used as the aromatic hydrocarbon organic solvent.
- To 3 ⁇ 4 is each independently hydrogen, halogen, C1 to
- the aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2 , 4-Trichlorobenzene , Iodobenzene , 1,2-Diiodobenzene , 1,3-Diiodobenzene , 1,4-Diiodobanzen , 1,2, 3-triiodobenzene , 1,2 , 4-triiodobenzene, toluene, fluoroluene, 1,2-difluoroluene, 1,3-difluoroluene
- the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound of Formula 3 to improve battery life.
- R 7 And are each independently hydrogen, halogen group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group, at least one of R 7 and 3 ⁇ 4 is a halogen group , Cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.)
- ethylene carbonate compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Etc. can be mentioned. In the case of further use of such life improving additives, the amount thereof can be properly adjusted.
- the lithium salt is a substance that dissolves in an organic solvent, acts as a source of lithium ions in the battery, thereby enabling the operation of a basic lithium secondary battery, and promoting the movement of lithium ions between the positive electrode and the negative electrode.
- Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 S0 3 , LiC10 4> LiA10 2> LiAlCl 4 , LiN (C x F 2x + 1 S0 2 ) (CyF 2y + 1 S0 2 ) (where x and y are natural numbers), LiCl, Lil and LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate (LiBOB) Or two or more supporting electrolyte salts, and the lithium salt concentration is preferably in the range of 0.1 to 2.0 M. If the lithium salt concentration is in the above range, the electrolyte has an appropriate conductivity and viscos
- a separator may exist between the positive electrode and the negative electrode.
- the separator polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
- Lithium secondary batteries may be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used, and may be classified into cylindrical, square, coin type, and pouch types according to their type. Depending on the size, it can be divided into bulk type and thin film type. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
- the lithium secondary battery 1 schematically shows a typical structure of a lithium secondary battery of the present invention.
- the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2.
- container. (5), and the sealing member 6 which encloses the said ⁇ paper container 5 is included.
- LiOH and Ni 0 . 80 Co 0 . 10 Mn 0 . 10 (0H) 2 was mixed using a mixer at a weight ratio of 1: 1.2 (Metal: Li).
- the mixed mixture was heated to a reaction temperature of 6 hours in an atmosphere where the ratio of oxygen and air was 70:30, 750 ° C., 7 hours in a holding section, and a total firing time of 20 hours, thereby preparing a fired body.
- Example 2 The obtained fired body was cooled slowly and pulverized to prepare a positive electrode active material.
- Example 2 The obtained fired body was cooled slowly and pulverized to prepare a positive electrode active material.
- LiOH and Ni 0 . 80 Co 0 . 10 Mn 0 . 10 (0H) 2 was mixed using a mixer at a weight ratio of 1: 1.02 (Metal: Li).
- the ratio of oxygen and air in the first temperature section and the second temperature section in the temperature increase section of the mixed mixture is 30: 70, the third temperature section and the crab temperature.
- the oxygen atmosphere is used, and the ratio of oxygen and air in the temperature maintaining section is
- a fired body was produced in a temperature rise reaction time of 6 hours, and a total firing time of 20 hours at 750 ° C and 7 hours in a holding section.
- LiOH and Ni 0 . 80 Co 0 . 10 Mn 0 . 10 (0H) 2 was mixed using a mixer at a weight ratio of 1: 1.02 (Metal: Li).
- the mixed mixture was heated at a reaction time of 6 hours in an oxygen atmosphere, a total firing time of 20 hours at 750 ° C. and 7 hours in a holding section, and a fired body was manufactured.
- the obtained fired body was slowly carved out and pulverized to prepare a positive electrode active material. Production of coin cell
- a positive electrode slurry was prepared by adding to 5.0 wt%.
- the positive electrode slurry was applied to a thin film of aluminum (A1), which is a positive electrode current collector having a thickness of 20 to 40, vacuum dried, and roll pressed to prepare a positive electrode.
- Li-metal was used as the negative electrode. .
- Table 1 shows 4.3V initial Formation, 4.5V, 45 ° C lcyle, 20cycle, 30cycle capacity and life characteristic data of Examples and Comparative Examples.
- Hyosung 1CY 20CY 30CY can three to three (mAh / g) ⁇ ⁇ low cooking: u ⁇ ⁇ cooking: ⁇ low at (20CY / (30CY /
- Examples 1 to 2 have excellent life characteristics than Comparative Example 1. This is because the surface structure of the active material is improved by the development of the layered structure, and the movement of Li is facilitated by decreasing the number of boundaries between primary particles by increasing the grain size, thereby improving battery characteristics.
- Experimental Example 2 XRD Measurement
- XRD X-ray diffraction analysis
- Examples 1 to 2 are confirmed to have a larger crystal lite size than Comparative Example 1. This is because the surface structure of the active material is improved by the development of the layered structure, and the movement of Li is facilitated by decreasing the number of boundaries between the primary particles by increasing the grain size, thereby improving battery characteristics. In addition, in the X-ray diffraction spectrum analysis, the strain% is reduced, thereby reducing the stress in the structure, which may contribute to the structure stabilization.
- the present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 있어서, 상기 화합물은 일차입자가 응집되어 이차입자를 형성하는 화합물로서, X선 회절 분석 스펙트럼 분석에서 (003)피크에서의 결정립의 크기가 0.0593 내지 0.0610 µm 인 것인 리튬 이차 전지용 양극 활물질을 제공한다.
Description
【명세서】
【발명의 명칭】
리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
【기술분야】
리튬 이차 전지용 양극 활물질의 제조 방법 및 리튬 이차전지용 양극 활물질에 관한 것이다.
【배경기술】
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다. 전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemical potent i al )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다.
상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션 /디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 층전시켜 제조한다. 리튬 이차 전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며 , 그 예로 LiCo02 , LiMn204, LiNi02 ) LiMn02 등의 복합금속 산화물들이 연구되고 있다. 상기 양극 활물질 중 LiMn204, LiMn02 등의 Μη계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과충전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점을 가지고 있다.
LiCo02는 양호한 전기 전도도와 약 3.7V 정도의 높은 전지 전압을 가지며, 사이클 수명 특성, 안정성 또한 방전 용량 역시 우수하므로, 현재 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나 LiCo02는 가격이 비싸기 때문에 전지 가격의 30% 이상을 차지하므로 가격 경쟁력이 떨어지는 문제점이 있다.
또한 LiNi02는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이 있다. 또한 니켈의 높은
산화상태는 전지 및 전극 수명 저하의 원인이 되며, 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아울러, 안정성 확보가 완전하지 않아서 상용화에 어려움올 겪고 있다.
【발명의 내용】
【해결하려는 과제】
수명특성이 우수한 리튬 이차 전지용 양극 활물질을 제공하며, 상기 양극 활물질을 포함하는 양극을 포함하는 리튬 이차 전지를 제공하는 것이다. 【과제의 해결 수단】
본 발명의 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 있어서,
상기 화합물은 일차입자가 웅집되어 이차입자를 형성하는 .화합물로서 ,
X선 회절 분석 스펙트럼 분석에서 (003)피크에서의 결정립의 크기가 0.0593 내지 0.0610 인 것인 리튬 이차 전지용 양극 활물질을 제공한다.
상기 일차입자가 응집되어 이차입자를 형성하는 화합물은 니켈복합산화물일 수 있다.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 하기 화학식 1로 표현 되는 것인 리륨 이차 전지용 양극 활물질일 수 있다.
[화학식 1 ]
Li [LizA(i-z-a)Da]Eb02-b
상기 화학식 1에서 , A = Ni a Cop Mn y이고, D는 Mg, Al , B, Zr 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P , F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0. 1 , 0 < a < 0.05 및 0 ≤ b < 0.05 이고, 0.6 < α < 0.81 , 0. 10 < β < 0.20 및 0. 10 < y <0.20 이다.
상기 화합물은 X선 회절 분석 스펙트럼 분석에서 strain %가 8 내지 20% 일 수 있다.
상기 화합물은 니켈복합산화물로서, LiNi0.80Co0.10Mn0.1002 일 수 있다.
상기 화합물은 니켈복합산화물로서, UNi0.70Co0.15Mn0.1502 일 수 있다.
본 발명의 다른 일 구현예에서는, 니켈복합수산화물;및 리튬 공급 물질을
준비하여 흔합물을 제조하는 단계; 및
상기 제조된 흔합물을 산소 및 /또는 공기 분위기에서 열처리 하여 하기 화학식 1의 화합물을 수득하는 단계;를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법 :
를 포함하는 것인 리튬 이차 전지용 양극 활물질의 제조 방법을 제공한다.
[화학식 1]
Li [LizA(1-z-a)Da]Eb02-b
상기 화학식 1에서, A = Ni aCopMny이고, D는 Mg, A1, B, Zr 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b ≤
0.05 이고, 0.6 < α < 0.81, 0.10< β <0.20 및 0.10< γ <0.20
상기 산소 및 /또는 공기 분위기에서 열처리하여 하기 화학식 1의 화합물을 수득하는 단계;에서, 열처리 온도는, 700 내지 950°C인 것인 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다.
[화학식 1]
Li[LizA(l-z-a)Da]Eb02-b
상기 화학식 1에서, A = Ni aCoPMny이고, D는 Mg, Al , B, Zr 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택 ¾ 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.6 < α < 0.81, 0.10< β <0.20 및 0.10< γ <0.20
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 승은 구간에서의 제 1온도 구간 및 제 2온도 구간에서의 산소 및 공기의 비율은 25 : 75 내지 35 : 65 일 수 있다.
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 승온 구간에서의 제 ί온도 구간 및 제 2온도 구간에서의 산소 및 공기의 비율은 25 : 75 내지 35 : 65 인 열처리 공정이며,
상기 승온 구간에서의 제 3온도 구간 및 제 4온도 구간에서는 산소 분위기이며, .
상기 열처리 과정에서 온도 유지 구간에서의 삯소 및 공기의 비율은 25 : 75
내지 35 : 65 일 수 있다.
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 전구간에서 산소 및 공기의 비율은 65 : 35 내지 75 : 25 일 수 있다. 본 발명의 또 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
【발명의 효과】
우수한 전지 특성을 갖는 양극 활물질 및 이를 포함하는 리튬 이차 전지를 제공할 수 있다.
【도면의 간단한 설명】
도 1은 리튬 이차 전지의 개략도이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예를 상세히 설명하기로 한다 . 다만, 이는 예시로서 제시되는 것으로, 이쎄 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. 본 발명의 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 있어서,
상기 화합물은 일차입자가 응집되어 이차입자를 형성하는 화합물로서,
X선 회절 분석 스펙트럼 분석에서 (003)피크에서의 결정립의 크기가 0.0593 내지 0.0610 인 것인 리튬 이차 전지용 양극 활물질을 제공한다.
상기 일차입자가 웅집되어 이차입자를 형성하는 화합물은 니켈복합산화물일 수 있다.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 하기 화학식 1로 표현 되는 것인 리튬 이차 전지용 양극 활물질일 수 있다.
[화학식 1 ]
Li [LizA(1-z-a)Da]Eb02-b
상기 화학식 1에서, A = Ni aCoPMny이고, D는 Mg, Al, B, Zr 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.6 < α < 0.81, 0.10< β <0.20 및 0.10< <0.20 이다.
상기 화합물은 X선 회절 분석 스펙트럼 분석에서 strain %가 8 내지 20% 일 수 있다
상기 화합물은 니켈복합산화물로서, LiNi0.80Co0.10Mn0.1002 일 수 있다.
상기 화합물은 니켈복합산화물로서, LiNi0.7oCoo.i5Mno.1502 일 수 있다.
X선 회절 분석 스펙트럼 분석에서 (003)피크는 층상구조의 발달을 확인 할 수 있다. 층상 구조의 발달로 활물질 표면구조가 개선되며, 결정립 크기의 증가로 일차입자간 Boundary수 감소로 Li의 이동이 용이해지므로 전지 특성이 향상 될 수 있다.
또한 X선 회절 분석 스펙트럼 분석에서 strain ¾>가 감소되어 구조 내 stress가 감소하여 구조 안정화에 기여할 수 있다. 본 발명의 다른 일 구현예에서는, 니켈복합수산화물;및 리튬 공급 물질을 준비하여 흔합물을 제조하는 단계 ; 및
상기 제조된 흔합물을 산소 및 /또는 공기 분위기에서 열처리 하여 하기 화학식 1의 화합물올 수득하는 단계;를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법 :
를 포함하는 것인 리튬 이차 전지용 양극 활물질의 제조 방법을 제공한다.. [화학식 1]
Li [LizA(i-2-a)Da]Eb02-b
상기 화학식 1에서, A = Ni aCoi3Mny이고, D는 Mg, Al , B, Zr 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고ᅳ -0.05 < z < 0.1, 0 < < 0.05 및 0 < b < 0.05 이고, 0.6 < α < 0.81, 0.10< β <0.20 및 0·10< γ <0.20
상기 산소 및 /또는 공기 분위기에서 열처리하여 하기 화학식 1의 화합물을 수득하는 단계;에서,
열처리 온도는, 700 내지 950°C인 것인 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다.
[화학식 1 ]
Li [LizA(i-z-a)Da]Eb02-b
상기 화학식 1에서, A = Ni a Co ^ Mn y이고, D는 Mg , Al , B , Zr 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P , F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0. 1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.6 < α < 0.81 , 0. 10 < β < 0.20 및 0. 10 < γ < 0.20
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 승온 구간에서의 산소 및 공기의 비을은 25 : 75 내지 35 : 65 일 수 있다.
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 승온 구간에서의 제 1온도 구간 및 제 2온도 구간에서의 산소 및 공기의 비율은 25 : 75 내지 35 : 65 인 열처리 공정이며,
상기 승온 구간에서의 제 3온도 구간 및 제 4온도 구간에서는 산소 분위기이며,
상기 열처리 과정에서 온도 유지 구간에서의 산소 및 공기의 비율은 25 : 75 내지 35 : 65 일 수 있다,
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 전구간에서 산소 및 공기의 비율은 65 : 35 내지 75 : 25 일 수 있다.
상기의 분위기 조절을 통하여 전구간 산소 분위기에서의 열처리 과정과 달리 공기 분위기를 포함함에 따라 Li 반웅 구간에의 C02 투입으로 인한 층상구조 발달로 활물질 표면구조를 개선 전지특성을 개선 할 수 있다.
또한 산소 사용량을 줄일 수 있어 공정성을 향상 시킬 수 있다.
나머지 구성에 대한 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 그 설명을 생략하도록 한다. 본 발명의 또 다른 일 구현예에서는, 양극, 음극 및 전해질을 포함하는 리튬 이차 전지며, 상기 양극은 전류 집전체 및 상기 전류 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은, 전'술한 양극 활물질을 포함하는 것인 리튬 이차 전지를 제공한다.
상기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 생략하도록 한다.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질 을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀롤로즈, 히드록시프로필셀롤로즈, 디아세틸셀를로즈, 폴리비닐클로 라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이 드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌—부타디엔 러버, 아 크릴레이티드 스티렌-부타디엔 러버 , 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 혹연, 인조 흑연, 카본 블혁, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 .금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합 물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질을 포함한다.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션 할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질 로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 ( f l ake) , 구형 또는 섬유형의 천연 혹연 또는 인조 혹연과 같은 혹연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 (soft carbon : 저온 소성 탄소) 또는 하드 카본 (hard carbon) , 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금 (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 회 토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, Sn02, Sn-Y (상기 Y는 알칼리 금속, 알칼리 토금속 13족 원소, 14족 원소 전이 금속, 회토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 Si02를 흔합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti , Zr, Hf , Rf , V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au Zn, Cd, B, Al , Ga, Sn, In, Ti , Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조 합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질 을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜, 카 르복시메틸셀를로즈, 히드록시프로필샐롤로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라 이드, 폴리에틸렌, 폴리프로필렌, 스티렌ᅳ부타디엔 러버 , 아크릴레이티드 스티렌- 부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄ᅳ 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질 ; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합
물을 포함하는 도전성 재료를 사용할 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포 체 ( foam) , 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전류 집전체로는 A1을 사용할 수 있으나 이에 한정되는 것은 아니다. 상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피를리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반웅에 관여하는 이온들이 이동 할 수 있는 매질 역할을 한다.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알 코올계, 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디 메틸 카보네이트 (DMC) , 디에틸 카보네이트 (DEC) , 디프로필 카보네이트 (DPC) , 메틸 프로필 카보네이트 (MPC) , .에틸프로필 카보네이트 (EPC), 메틸에틸 카보네이트 (MEC) , 에틸렌 카보네이트 (EC) , 프로필렌 카보네이트 (PC) , 부틸렌 카보네이트 (BC) 등이 사 용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n- 프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 부티로락톤, 데카놀라이드 (decanol i de) , 발레로락톤, 메발로노락톤
(mevalono l actone) , 카프로락톤 (caprol actone) , 등이 사용될 수 있다. 상기 에테 르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트 라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시 클로핵사논 등이 사용될 수 있다. 또한 상기 알코을계 용매로는 에틸알코올, 이소 프로필 알코을 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드 류, 1 , 3-디옥솔란 등의 디옥솔란류 설포란 ( sul fo l ane)류 등이 사용될 수 있다.
_ 상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으
며, 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형 (cyclic) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 흔합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
본 발명의 일 구현예에 따른 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용 매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 흔합될 수 있다. 상기 방향족 탄화수소계 유기용매로는 하기 화학식 2의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 2]
C10 알킬기, 할로알킬기 또는 이들의 조합이다 J
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 1,2-디플루오로벤 젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2, 4-트 리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로 벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오 도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도밴젠, 1,2, 3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 를루엔, 플루오로를루엔, 1,2-디플루오로를루엔, 1,3-디 플루오로를루엔, 1,4—디플루오로를루엔, 1,2,3-트리플루오로를루엔, 1,2,4-트리플 루오로를루엔, 클로로를루엔, 1,2-디클로로를루엔, 1,3-디클로로를루엔, 1,4-디클 로로를루엔, 1,2,3-트리클로로를루엔, 1,2,4-트리클로로를루엔, 아이오도를루엔, 1,2-디아이오도를루엔, 1,3-디아이오도를루엔, 1,4-디아이오도를루엔, 1,2,3-트리
아이오도를루엔, 1,2,4:트리아이오도를루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또 는 하기 화학식 3의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.
[화학식 3]
(상기 화학식 3에서, R7 및 는 각각 독립적으로 수소, 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5 플루오로알킬기이고, 상기 R7과 ¾중 적어도 하나는 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기 이다.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보 네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보 네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보 네이트또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가 제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiC4F9S03, LiC104> LiA102> LiAlCl4, LiN(CxF2x+1S02)(CyF2y+1S02) (여기서, x 및 y는 자연수임), LiCl, Lil 및 LiB(C204)2(리 튬 비스옥살레이토 보레이트 (lithium bis(oxalato) borate; LiBOB)로 이루어진 군 에서 선택되는 하나 또는 둘 이상올 지지 (supporting) 전해염으로 포함한다. 리튬 염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상 기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수
도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌 /폴리프로필렌 2층 세퍼레이터, 폴리에틸렌 /폴리프로필렌 /폴리에틸렌 3층 세퍼레이터, 폴리프로필렌 /폴리에틸렌 /폴리프로필렌 3층 세퍼레이터 등과 같은 흔합 다층막이 사용될 수 있음은 물론이다.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리륨 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
도 1에 본 발명의 리튬 이차 전지의 대표적인 구조를 개략적으로 나타내었다. 도 1에 나타낸 것과 같이 상기 리튬 이차 전지 ( 1)는 양극 (3), 음극 (2) 및 상기 양극 (3)과 음극 (2) 사이에 존재하는 세퍼레이터 (4)에 함침된 전해액올 포함하는 전지 용기. (5)와, 상기 ^ 1지 용기 (5)를 봉입하는 봉입 부재 (6)를 포함한다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기의 실시예는 본 발명의 일 실시예 일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
실시예
실시예 1
LiOH와 Ni0.80Co0.10Mn0.10(0H)2를 1 : 1 .02(Metal :Li )의 중량 비율로, 믹서를 사용하여 흔합하였다. 상기 흔합 된 흔합물을 산소 및 공기의 비율이 70 : 30 인 분위기에서 승온 반웅 시간 6 시간, 유지 구간에서 750 °C , 7 시간으로 총 소성 시간은 20 시간으로 , 소성체를 제조하였다.
얻어진 소성체를 천천히 냉각하고, 분쇄하여 양극 활물질올 제조하였다. 실시예 2
LiOH와 Ni0.80Co0.10Mn0.10(0H)2를 1 : 1.02(Metal : Li )의 중량 비율로, 믹서를 사용하여 흔합하였다. 상기 흔합 된 흔합물을 승온 구간에서의 제 1 온도 구간 및 계 2 온도 구간에서 산소 및 공기의 비율은 30 : 70, 제 3 온도 구간 및 게 4 온도
구간에서는 산소 분위기로 하며, 온도 유지 구간에서의 산소 및 공기의 비율은
30 : 70 분위기에서 승온 반웅 시간 6 시간, 유지 구간에서 750 °C, 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다.
얻어진 소성체를 천천히 넁각하고, 분쇄하여 양극 활물질을 제조하였다. 비교예 1
LiOH와 Ni0.80Co0.10Mn0.10(0H)2를 1: 1.02(Metal :Li )의 중량 비율로, 믹서를 사용하여 흔합하였다. 상기 흔합 된 흔합물올 산소 분위기에서 승온 반웅 시간 6 시간, 유지 구간에서 750 °C, 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다.
얻어진 소성체를 천천히 넁각하고, 분쇄하여 양극 활물질을 제조하였다. 코인셀의 제조
상기 실시예 및 비교예에서 제조된 양극 활물질 95 중량 ¾, 도전제로 카본 블랙 (carbon black) 2.5 중량 %, 결합제로 PVDF 2.5중량¾ 를 용제 (솔벤트)인 N- 메틸 -2 피를리돈 (NMP) 5.0 중량 %에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20 내지 40 의 양극 집전체인 알루미늄 (A1) 박막에 도포 및 진공 건조하고 롤 프레스 (roll press)를 실시하여 양극을 제조하였다.
음극으로는 Li-금속을 이용하였다. .
이와 같이 제조된 양극과 Li-금속을 대극으로, 전해액으로는 1.15M
LiPF6EC:DMC(l:lvol%)을 사용하여 코인 샐 타입의 반쪽 전지를 제조하였다.
초기 Formation 층방전은 4.3-3.0V 범위에서 실시하였다.
수명특성의 충방전은 4.5-3.0V 범위에서 실시하였다. 실험예 1: 전지 특성 평가
하기 표 1은 상기의 실시예 및 비교예의 4.3V 초기 Formation, 4.5V, 45°C lcyle, 20cycle, 30cycle 용량 및 수명특성 데이터이다.
[표 .1]
ϋ저요리 σ:
효을 1CY 20CY 30CY 수 트섯 수 트섯
(mAh/g) ᄇ μ저요리: u μ π요리: μ저요 at (20CY/ (30CY/
1CY, %) 1CY, %) 실시예 1 203.75 89.25 217.69 193.35 176.09 88.82 80.89 실시예 2 203.66 89.64 216.78 190.22 172.32 87.75 79.49 비교예 1 202.64 89.12 217.75 190.10 164.31 87.30 75.46
상기 표 1에서 실시예 1 내지 2는 비교예 1 보다 뛰어난 수명 특성이 확인된다. 이는 층상 구조의 발달로 활물질 표면구조가 개선되며, 결정립 크기의 증가로 일차입자간 Boundary수 감소로 Li의 이동이 용이해지므로 전지 특성이 향상 될 수 있다. 실험예 2: XRD측정
하기 표 는 상기의 실시예 및 비교예의 X선 회절 분석 (XRD) 스펙트럼 분석 데이터이다. XRD 측정은 X선 회절법 (UltimalV, Rigaku社)에 의하여 상온 250C, Cu a , 전압 40kV, 전류 3mA, 10 ~ 90 deg, 스템폭 0.01 deg, 스텝 스캔 (step scan)으로 측정하였다.
[표 2]
상기 표 2에서 실시예 1 내지 2는 비교예 1 보다 결정립 크기 (Crystal lite size) 가 큼이 확인 된다. 이는 층상 구조의 발달로 활물질 표면구조가 개선되며, 결정립 크기의 증가로 일차입자간 Boundary수 감소로 Li의 이동이 용이해지므로 전지 특성이 향상 될 수 있다. 또한 또한 X선 회절 분석 스펙트럼 분석에서 strain %가 감소되어 구조 내 stress가 감소하여 구조 안정화에 기여할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
Claims
【특허청구범위】
【청구항 11
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 있어서, 상기 화합물은 일차입자가 웅집되어 이차입자를 형성하는 화합물로서,
5 X선 회절 분석 스펙트럼 분석에서 (003)피크에서의 결정립의 크기가 0.0593 내지 0.0610 인 것인 리튬 이차 전지용 양극 활물질.
【청구항 2]
저 U항에 있어서,
10 상기 일차입자가 웅집되어 이차입자를 형성하는 화합물은 니켈복합산화물인 것인 리튬 이차 전지용 양극 활물질.
【청구항 3]
제 1항에 있어서,
15 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 하기 화학식 1로 표현 되는 것인 리튬 이차 전지용 양극 활물질.
[화학식 1 ]
Li [LizA(1-z-a)Da]Eb02-b
(상기 화학식 1에서, A = Ni aCopMnY이고, D는 Mg, Al, B, Zr 및 Ti로 20. 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.6 < α < 0.81, 0.10< β<0.20 및 0.10< γ<0.20 이다.)
【청구항 4】
25 제 1항에 있어서,
상기 화합물은 X선 회절 분석 스펙트럼 분석에서 strain ¾가 8 내지 20% 인 것인 리튬 이차 전지용 양극 활물질.
【청구항 5】
30 제 1항에 있어서
상기 화합물은 니켈복합산화물로서, LiNi0.80Co0.10Mn0.1002 인 것인 리튬 이차 전지용 양극 활물질.
【청구항 6]
게 1항에 있어서,
상기 화합물은 니켈복합산화물로서, LiNi0.70Co0.15Mn0.1502 인 것인 리튬 이차 전지용 양극 활물질.
【청구항 7】
니켈복합수산화물; 및 리튬 공급 물질올 준비하여 흔합물을 제조하는 단계; 상기 제조된 흔합물을 산소 및 /또는 공기 분위기에서 열처리 하여 하기 화학식 1의 화합물을 수득하는 단계;
를 포함하는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
[화학식 1 ]
Li [Li2A(1-z-a)Da]Eb02-b
(상기 화학식 1에서, A = Ni aCo^Mn 이고, D는 Mg, Al, B, Zr 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.6 < α < 0.81, 0.10< β<0.20 및 0.10< γ<0.20이다.)
【청구항 8]
제 7항에 있어서,
상기 산소 및 /또는 공기 분위기에서 열처리하여 하기 화학식 1의 화합물을 수득하는 단계;에서,
열처리 온도는, 700 내지 950 °C인 것인 리튬 이차전지용 양극 활물질의 제조 방법 ·
[화학식 1 ]
Li [LizA(i-z-a)Da]Eb02-b
(상기 화학식 1에서, A = Ni aCopMnY이고, D는 Mg, Al, B, Zr 및 Ti로
이루어진 군에서 선택된 1종 이상의 원소이고, E는 Pᅳ F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.6 < α < 0.81, 0.10< β<0.20 및 0.10< γ<0·20이다.)
【청구항 9】
제 7항에 있어서,
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 승온 구간에서의 제 1온도 구간 및 제 2온도 구간에서의 산소 및 공기의 비율은 25 : 75 내지 35 : 65 인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
【청구항 10】
거 17항에 있어서,
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 승온 구간에서의 제
1온도 구간 및 제 2온도 구간에서의 산소 및 공기의 비율은 25 : 75 내지 35 : 65 인 열처리 공정이며,
상기 승은 구간에서의 제 3온도 구간 및 제 4온도 구간에서는 산소 분위기이며,
상기 열처리 과정에서 온도 유지 구간에서의 산소 및 공기의 비율은 25 : 75 내자 35 : 65 인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
【청구항 11】
저 17항에 있어서,
상기 산소 및 /또는 공기 분위기에서 열처리 과정에서 전구간에서 산소 및 공기의 비율은 65 : 35 내지 75 : 25 인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
[청구항 12】
거 11항 내지 제 6항 중 어느 한 항에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극;
음극 활물질올 포함하는 음극; 및
전해질;
을 포함하는 리륨 이차 전 ^
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/547,025 US20180026266A1 (en) | 2015-01-30 | 2016-02-01 | Positive Active Material For Lithium Secondary Battery, Method For Producing Same, And Lithium Secondary Battery Comprising Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0014634 | 2015-01-30 | ||
KR1020150014634A KR20160093817A (ko) | 2015-01-30 | 2015-01-30 | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016122278A1 true WO2016122278A1 (ko) | 2016-08-04 |
Family
ID=56543799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/001074 WO2016122278A1 (ko) | 2015-01-30 | 2016-02-01 | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180026266A1 (ko) |
KR (1) | KR20160093817A (ko) |
WO (1) | WO2016122278A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102568566B1 (ko) * | 2019-02-01 | 2023-08-22 | 주식회사 엘지에너지솔루션 | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 |
JP7521180B2 (ja) * | 2019-08-29 | 2024-07-24 | 住友金属鉱山株式会社 | 正極活物質の製造方法 |
US20230142182A1 (en) * | 2019-10-23 | 2023-05-11 | Lg Chem, Ltd. | Positive Electrode Active Material, and Positive Electrode and Lithium Secondary Battery Including Same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100056106A (ko) * | 2008-11-19 | 2010-05-27 | 새한미디어주식회사 | 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지 |
KR20100099594A (ko) * | 2009-03-03 | 2010-09-13 | 주식회사 엘앤에프신소재 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 |
KR20130077805A (ko) * | 2011-12-29 | 2013-07-09 | 주식회사 엘앤에프신소재 | 리튬 이차 전지용 양극 활물질의 제조 방법 및 양극 활물질 |
KR20140089851A (ko) * | 2013-01-07 | 2014-07-16 | 삼성에스디아이 주식회사 | 양극 활물질, 이를 포함하는 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법 |
WO2015012648A1 (ko) * | 2013-07-26 | 2015-01-29 | 주식회사 엘지화학 | 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070292761A1 (en) * | 2005-04-13 | 2007-12-20 | Lg Chem, Ltd. | Material for lithium secondary battery of high performance |
US8465556B2 (en) * | 2010-12-01 | 2013-06-18 | Sisom Thin Films Llc | Method of forming a solid state cathode for high energy density secondary batteries |
-
2015
- 2015-01-30 KR KR1020150014634A patent/KR20160093817A/ko not_active Application Discontinuation
-
2016
- 2016-02-01 WO PCT/KR2016/001074 patent/WO2016122278A1/ko active Application Filing
- 2016-02-01 US US15/547,025 patent/US20180026266A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100056106A (ko) * | 2008-11-19 | 2010-05-27 | 새한미디어주식회사 | 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지 |
KR20100099594A (ko) * | 2009-03-03 | 2010-09-13 | 주식회사 엘앤에프신소재 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 |
KR20130077805A (ko) * | 2011-12-29 | 2013-07-09 | 주식회사 엘앤에프신소재 | 리튬 이차 전지용 양극 활물질의 제조 방법 및 양극 활물질 |
KR20140089851A (ko) * | 2013-01-07 | 2014-07-16 | 삼성에스디아이 주식회사 | 양극 활물질, 이를 포함하는 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법 |
WO2015012648A1 (ko) * | 2013-07-26 | 2015-01-29 | 주식회사 엘지화학 | 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질 |
Also Published As
Publication number | Publication date |
---|---|
KR20160093817A (ko) | 2016-08-09 |
US20180026266A1 (en) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101757628B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
JP2022017425A (ja) | リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池 | |
WO2015083901A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2015083900A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2015053586A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
JP7022730B2 (ja) | リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池 | |
WO2015084026A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR101309149B1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 및 이를 이용한 리튬 이차전지 | |
KR20100064631A (ko) | 양극 활물질, 이를 포함하는 양극 및 리튬 전지 | |
WO2016032290A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2017150915A1 (ko) | 리듐 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
KR20160061493A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
KR20170106810A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2014157743A1 (ko) | 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지 | |
KR102114229B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR102085247B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
KR20110136001A (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 및 이를 이용한 리튬 이차전지 | |
WO2016186479A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2016122278A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20160083818A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20180019140A (ko) | 리튬 이차 전지용 양극 활물질 | |
KR101673178B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR101646702B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR102185125B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
CN111668462A (zh) | 用于可再充电锂电池的正极活性物质、制备其的方法和包括其的可再充电锂电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743756 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15547025 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16743756 Country of ref document: EP Kind code of ref document: A1 |