WO2016121751A1 - インバータ制御装置及びモータ駆動システム - Google Patents
インバータ制御装置及びモータ駆動システム Download PDFInfo
- Publication number
- WO2016121751A1 WO2016121751A1 PCT/JP2016/052161 JP2016052161W WO2016121751A1 WO 2016121751 A1 WO2016121751 A1 WO 2016121751A1 JP 2016052161 W JP2016052161 W JP 2016052161W WO 2016121751 A1 WO2016121751 A1 WO 2016121751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- command value
- current command
- current
- calculation unit
- value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
- H02P6/182—Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/08—Reluctance motors
Definitions
- Embodiments of the present invention relate to an inverter control device and a motor drive system.
- a rotational phase angle sensorless control device for a permanent magnet synchronous motor (PMSM) or a synchronous reluctance motor (SynRM) a rotational phase angle estimation method using an induced voltage is used in a high speed range.
- PMSM permanent magnet synchronous motor
- SynRM and PMSM with a small magnet magnetic flux have a problem that the estimation accuracy of the rotational phase angle is deteriorated because the induced voltage is small in a low load state even in a high speed region.
- an inverter control device and a motor drive system that can accurately estimate the rotational phase angle of a motor in a high-speed and low-load state.
- An inverter control device includes an inverter main circuit, a current detector, a current command value calculation unit, a voltage command value calculation unit, and an estimation unit.
- the inverter main circuit can be electrically connected to a predetermined rotational drive target.
- the current detector detects a current value output from the inverter main circuit.
- the current command value calculation unit calculates a current command value at which the output voltage output from the inverter main circuit is equal to or higher than a predetermined target value.
- the voltage command value calculation unit calculates a voltage command value at which the current value is equal to the current command value.
- the estimation unit calculates an estimated rotation phase angle of the rotation drive target based on the voltage command value and the current value.
- the figure which shows the structure of the electric current command value calculation part of FIG. The figure explaining the calculation method of an electric current command value.
- FIG. The figure explaining the calculation method of the electric current command value in the modification 2.
- FIG. The figure which shows the structure of the modification 3 of an electric current command value calculation part.
- FIG. 1 is a diagram illustrating a configuration of a system according to the present embodiment. As shown in FIG. 1, the system according to the present embodiment includes a motor 1 and an inverter control device 2.
- the motor 1 is a rotational drive target of the control device 2 and is connected to the control device 2.
- the SynRM 1 includes a stator and a rotor.
- the stator has three excitation phases (U phase, V phase, and W phase).
- the stator generates a magnetic field by a three-phase alternating current flowing in each excitation phase.
- the rotor does not have a permanent magnet. The rotor rotates due to magnetic interaction with the magnetic field generated by the stator.
- the inverter control device 2 (hereinafter referred to as “control device 2”) controls the rotational phase angle of the SynRM 1 without a sensor.
- the control device 2 includes an inverter 21, a current detector 22, a coordinate conversion unit 23, a current command value calculation unit 24, a voltage command value calculation unit 25, and a coordinate A conversion unit 26, a PWM modulation unit 27, and a speed / rotation phase angle estimation unit 28 are provided.
- the inverter 21 is a circuit including a switching element (transistor).
- the inverter 21 converts electric power from a power source (not shown) into alternating current by switching ON / OFF of the switching element, and supplies the alternating current to the SynRM 1.
- the inverter 21 receives a control signal for controlling ON / OFF of each switching element from the PWM modulator 22.
- the current detector 22 detects a two-phase or three-phase current value among the three-phase alternating current flowing through the stator of the SynRM 1.
- FIG. 1 shows a configuration for detecting current values iu and iw of two phases (U phase and W phase).
- the coordinate conversion unit 23 converts the current values iu and iw detected by the current detector 22 from the three-phase fixed coordinate system to the dcqc axis rotation coordinate system.
- the three-phase fixed coordinate system and the dcqc axis rotation coordinate system will be described with reference to FIG.
- the three-phase fixed coordinate system is a fixed coordinate system composed of an ⁇ axis and a ⁇ axis.
- the ⁇ axis is set in the U-phase direction
- the ⁇ axis is set in a direction perpendicular to the ⁇ axis.
- the current values iu and iw detected by the current detector 22 are expressed on such three-phase fixed coordinates.
- the dcqc axis rotational coordinate system is a rotational coordinate system composed of a dc axis and a qc axis.
- the dc axis is set in the direction estimated by the control device 2 as the d-axis direction (the direction in which the rotor inductance is minimum), and the qc axis is the q-axis direction in the q-axis direction (the direction in which the rotor inductance is maximum). Is set in the estimated direction.
- the inductance ellipse in FIG. 2 indicates the inductance of the rotor.
- the dcqc axis and the dq axis do not always coincide with each other.
- the actual rotational phase angle ⁇ of the rotor is represented by an angle from the ⁇ axis to the d axis.
- the estimated rotational phase angle ⁇ est of the rotor estimated by the control device 2 is represented by an angle from the ⁇ axis to the dc axis. The closer the angle between the rotational phase angle ⁇ and the estimated rotational phase angle ⁇ est, the higher the estimation accuracy of the rotational phase angle.
- the coordinate conversion unit 23 can convert the three-phase fixed coordinate system into the dcqc axis rotation coordinate system by using the estimated rotation phase angle ⁇ est output from the speed rotation phase angle estimation unit 28.
- the current values iu and iw coordinate-converted by the coordinate conversion unit 23 are referred to as current values idc and iqc.
- the current value idc is a dc axis component of the current flowing through the stator
- the current value iqc is a qc axis component of the current flowing through the stator.
- the current command value calculation unit 24 calculates current command values idc * and iqc * based on the torque command value T * and the estimated speed ⁇ est.
- the torque command value T * is a torque value generated in the rotor. In the present embodiment, it is assumed that the torque command value T * is input from an external device.
- the estimated speed ⁇ est is the angular speed of the rotor estimated by the control device 2.
- the current command value idc * is a dc axis component of a current that flows through SynRM1.
- the current command value iqc * is the qc-axis component of the current that flows through SynRM1. Details of the current command value calculation unit 24 will be described later.
- the voltage command value calculation unit 25 calculates voltage command values vdc * and vqc * at which the current values idc and iqc of SynRM1 are equal to the current command values idc * and iqc * .
- the voltage command value vdc * is a dc axis component of the voltage applied to the stator of SynRM1.
- the voltage command value vqc * is a qc-axis component of the voltage applied to the stator of SynRM1.
- the coordinate conversion unit 26 converts the voltage command values vdc * and vqc * output from the voltage command calculation unit 25 from a dcqc axis rotation coordinate system to a three-phase fixed coordinate system. Similar to the coordinate conversion unit 23, the coordinate conversion unit 26 can convert the dcqc axis rotation coordinate system into a three-phase fixed coordinate system by using the estimated rotation phase angle ⁇ est.
- the voltage command values vdc * and vqc * coordinate-converted by the coordinate conversion unit 26 are referred to as voltage command values vu * , vv * and vw * .
- the voltage command value vu * is a voltage applied to the U phase of the stator
- the voltage command value vv * is a voltage applied to the V phase of the stator
- the voltage command value vw * is a W phase of the stator. Is the voltage applied to.
- the PWM modulation unit 27 modulates the voltage command values vu * , vv * , vw * by PWM (Pulse-Width Modulation) using a triangular wave, and outputs a binary value corresponding to ON or OFF of each switching element of the inverter 21. Generate a control signal.
- the PWM modulation unit 27 inputs the generated control signal to the inverter 21.
- the speed / rotation phase angle estimator 28 determines the rotor of the SynRM 1 based on the torque command value T * , the voltage command values vdc * and vqc * , and the current values idc and iqc.
- the speed ⁇ and the rotational phase angle ⁇ are estimated, and the estimated speed ⁇ est and the estimated rotational phase angle ⁇ est are calculated.
- FIG. 3 is a diagram illustrating a configuration of the estimation unit 28.
- the estimation unit 28 includes a phase difference ⁇ setting unit 31, a ⁇ voltage calculation unit 32, a ⁇ voltage estimation unit 33, a subtractor 34, a PI controller 35, an integrator 36, Is provided.
- the phase difference ⁇ setting unit 31 outputs a phase difference ⁇ corresponding to the torque command value T * from among a plurality of phase differences ⁇ stored in advance.
- the phase difference ⁇ is a phase difference value or range in which the voltage change is the largest due to the influence of the error ⁇ between the rotational phase angle ⁇ and the estimated rotational phase angle ⁇ est.
- the plurality of phase differences ⁇ are calculated in advance analytically or experimentally for each torque value and stored in the phase difference ⁇ setting unit 31.
- the ⁇ voltage calculation unit 32 calculates the voltage value v ⁇ of the ⁇ voltage based on the voltage command values vdc * and vqc * and the phase difference ⁇ set (output) by the phase difference ⁇ setting unit 31.
- the ⁇ voltage is a feature amount that changes according to the error ⁇ .
- the voltage value v ⁇ is calculated by the following equation, for example.
- the voltage value v ⁇ calculated by the ⁇ voltage calculation unit 32 is input to the subtractor 34.
- the ⁇ voltage estimation unit 33 calculates an estimated voltage value v ⁇ est of the ⁇ voltage based on the voltage values vdcest, vqcest and the phase difference ⁇ set (output) by the phase difference ⁇ setting unit 31.
- the ⁇ voltage estimation unit 33 calculates voltage values vdcest and vqcest based on the current values idc and iqc and the estimated speed ⁇ est.
- the voltage value vdcest is an estimated value of the dc axis component of the voltage applied to the stator of SynRM1.
- the voltage value vqcest is an estimated value of the qc-axis component of the voltage applied to the stator of SynRM1.
- the voltage values vdcest and vqcest are calculated by the following equations.
- Equation (2) Rm is a winding resistance of the stator, Ld is an inductance in the d-axis direction, Lq is an inductance in the q-axis direction, and p is a differential operator (d / dt).
- the ⁇ voltage estimation unit 33 stores these values in advance.
- the ⁇ voltage estimation unit 33 calculates an estimated voltage value v ⁇ est of the ⁇ voltage based on the voltage values vdest, vqcest and the phase difference ⁇ .
- the estimated voltage value v ⁇ est is calculated by the following equation, for example.
- the estimated voltage value v ⁇ est calculated by the ⁇ voltage estimation unit 33 is input to the subtractor 34.
- the subtracter 34 subtracts the voltage value v ⁇ from the estimated voltage value v ⁇ est to calculate an error ⁇ v ⁇ of the ⁇ voltage. Since the ⁇ voltage changes according to the error ⁇ , the error ⁇ v ⁇ is proportional to the error ⁇ .
- the error ⁇ v ⁇ calculated by the subtractor 34 is input to the PI controller 35.
- the PI controller 35 performs the PI control so that the error ⁇ v ⁇ becomes 0, thereby estimating the rotor speed ⁇ and calculating the estimated speed ⁇ est.
- the estimated speed ⁇ est calculated by the PI controller 35 is sequentially fed back to the ⁇ voltage estimator 33 and input to the integrator 36.
- the integrator 36 integrates the estimated speed ⁇ est calculated by the PI controller 35 to calculate the estimated rotational phase angle ⁇ est.
- the estimation unit 28 can calculate the estimated speed ⁇ est and the estimated rotational phase angle ⁇ est.
- the estimated speed ⁇ est calculated by the estimation unit 28 is input to the current command value calculation unit 24.
- the estimated rotational phase angle ⁇ est is input to the coordinate conversion units 23 and 26 and used for coordinate conversion.
- the estimation method of the speed ⁇ and the rotational phase angle ⁇ by the estimation unit 28 is not limited to this, and can be arbitrarily selected from known estimation methods.
- the estimation unit 28 may estimate the rotational phase angle ⁇ by another method using a voltage generated by the flux linkage, or may estimate the rotation phase angle ⁇ by using the flux linkage itself. Then, the rotational phase angle ⁇ may be estimated by performing PI control so that the deviation of the q-axis component of the current value becomes zero.
- the current command value calculation unit 24 calculates the current command value so that the output voltage of the SynRM 1 is equal to or higher than a predetermined target value V SET .
- the target value V SET is a voltage value obtained experimentally or analytically in advance as an output voltage capable of accurately estimating the speed ⁇ and the rotational phase angle ⁇ .
- FIG. 4 is a diagram showing a configuration of the current command value calculation unit 24.
- the current command value calculation unit 24 includes a first calculation unit 41, a second calculation unit 42, and a selection unit 43.
- the first calculator 41 generates first current command values id1 * and iq1 * based on the torque command value T * .
- the first current command value id1 * is a dc-axis component of a current that flows through SynRM1.
- the first current command value iq1 * is a qc-axis component of a current that flows through SynRM1.
- the first calculator 41 calculates the first current command values id1 * and iq1 * so that the torque of SynRM1 becomes the torque command value T * .
- FIG. 5 is a diagram for explaining a method of calculating a current command value.
- the horizontal axis is idc
- the vertical axis is iqc
- the arrow 51 is the first current vector
- the arrow 52 is the second current vector
- the curve 53 is the equal torque curve of the torque command value T *
- the curve 62 is the target value V. It is an isovoltage ellipse of SET .
- the first current vector 51 is a vector corresponding to the first current command values id1 * and iq1 * .
- the first current command value is represented by two values (id1 * , iq1 * ).
- the current magnitude (id1 * 2 + iq1 * 2 ) 1/2 , the current phase angle ⁇ 1 It is also possible to express by. These representations can be converted to each other. Selecting an arbitrary point from the plane of FIG. 5 corresponds to calculating (selecting) the first current command value.
- the first calculator 41 selects an arbitrary point on the equal torque curve 53 of the torque command value T * as the first current command value.
- the first calculator 41 can select the first current command value from the equal torque curve 53 by an arbitrary method according to the control desired to be realized by the control device 2.
- the first calculation unit 41 selects the first current command value so that the magnitude of the current flowing through the stator (the magnitude of the first current vector) is minimized.
- the first calculation unit 41 may select the first current command value at which the current phase angle ⁇ 1 is 135 degrees ignoring the magnetic saturation, or the current phase angle ⁇ 1 in consideration of the magnetic saturation. May be selected as the first current command value at an angle more than 135 degrees.
- the first calculation unit 41 may select the first current command value so that the efficiency and power factor of the SynRM 1 are maximized.
- the first calculation unit 41 may select the first current command value as described above with reference to a table in which the first current command value for each torque value is stored, or may be obtained by calculation.
- the first current command value calculated by the first calculation unit 41 is input to the selection unit 43.
- the second calculator 42 calculates the second current command values id2 * and iq2 * based on the torque command value T * and the estimated speed ⁇ est.
- the second current command value id2 * is a dc-axis component of a current that flows through SynRM1.
- the current command value iq2 * is the qc-axis component of the current that flows through SynRM1.
- the second calculation unit 42 as the torque of the SynRM1 is the torque command value T *, and, as the output voltage of SynRM1 becomes the target value V SET, the second current command value id2 *, calculates the iq2 * .
- the second current vector 52 in FIG. 5 is a vector corresponding to the second current command values id2 * and iq2 * .
- the second current command value is represented by two values (id2 * , iq2 * ), but the current magnitude (id2 * 2 + iq2 * 2 ) 1/2 , the current phase angle ⁇ 2, It is also possible to express by. These representations can be converted to each other. Selecting an arbitrary point from the plane of FIG. 5 corresponds to calculating (selecting) the second current command value.
- the second calculation unit 42 uses any one of intersections of the equal torque curve 53 of the torque command value T * and the equal voltage ellipse 54 of the target value V SET as the second current command value. Select one. When there are two intersections A and B, the second calculation unit 42 preferably selects the intersection A as shown in FIG.
- Intersection A is an intersection on the iqc axis side (q axis side) of the two intersections.
- the equal voltage ellipse 54 is wide in the d-axis direction and narrow in the q-axis direction.
- the magnitude (the magnitude of the second current vector) becomes small. For this reason, when the 2nd calculation part 42 selects the intersection A, the power of the control apparatus 2 can be saved. In the following, it is assumed that the second current command value is the intersection A.
- the second calculation unit 42 may select the second current command value as described above with reference to a table in which the second current command value for each torque value is stored, or solve the following equation: You may ask for it.
- the second current command value calculated by the second calculation unit 42 is input to the selection unit 43.
- the selector 43 outputs the first current command value id1 * , iq1 * or the second current command value id2 * , iq2 * as the current command value idc * , iqc * .
- the selection unit 43, the first current command value id1 *, iq1 * is output voltages V 1 corresponding to determines whether less than the target value V SET.
- the output voltage V 1, is that of SynRM1 the output voltage when the output of the first current command value as a current command value. The determination method will be described later.
- the selection unit 43 selects one of the first current command values id1 * and iq1 * and the second current command values id2 * and iq2 * according to the determination result, and outputs the selected current command values idc * and iqc *. To do.
- the selection unit 43 If the output voltage V 1 is lower than the target value V SET (V 1 ⁇ V SET ), the selection unit 43, the second current command value id2 *, iq2 * of the current command value idc *, selected as iqc *.
- the case where the output voltage V 1 is lower than the target value V SET is a case where the first current command value is included in the equal voltage ellipse 54 as shown in FIG.
- the second current command value is closer to the iqc axis (q axis) than the first current command value. That is, the current phase angle ⁇ 2 of the second current command value is on the iqc axis (q axis) side from the current phase angle ⁇ 1 of the first current command value.
- the q-axis component iq2 * of the second current command value is larger than the q-axis component iq1 * of the first current command value, and the d-axis component id2 * of the second current command value is the d-axis of the first current command value. Less than component id1 * .
- the selection unit 43 selects the first current command values id1 * and iq1 * as the current command values idc * and iqc * .
- the case where the output voltage V 1 is equal to or higher than the target value V SET is a case where the second current command value is on the equal voltage ellipse 54 or outside the equal voltage ellipse 54.
- the first current command value is closer to the iqc axis (q axis) than the second current command value. That is, the current phase angle ⁇ 1 of the first current command value is on the iqc axis (q axis) side from the current phase angle ⁇ 2 of the second current command value. Further, q-axis component of the first current command value iq1 * is, q-axis component iq2 * greater second current command value, d-axis component of the first current command value id1 * is, d-axis of the second current command value Less than component id2 * .
- the selection unit 43 outputs the selected first current command value or second current command value as a current command value.
- the current command value output by the selection unit 43 is input to the voltage command calculation unit 25.
- Selection unit 43 acquires the output voltage V 1, by comparing the target value V SET, a determination.
- the selection unit 43 may select the output voltage V 1 with reference to a table in which the output voltage for each first current command value is stored, or may be calculated by the following equation.
- the selection unit 43 may perform the determination by comparing the current phase angle ⁇ 1 of the first current command value with the current phase angle ⁇ 2 of the second current command value. Selection unit 43, when the current phase angle ⁇ 2 of the q-axis side from the current phase angle .beta.1, determines the output voltage V 1 is lower than the target value V SET.
- the selection unit 43 a q-axis component iq1 * of the first current command value, the q-axis component iq2 * of the second current command value, by comparing may perform determination.
- Selection unit 43 when the q-axis component iq1 * is the q-axis component iq2 * smaller, determines the output voltage V 1 is lower than the target value V SET.
- the selection unit 43 may perform the determination by comparing the d-axis component id1 * of the first current command value with the d-axis component id2 * of the second current command value. Selection unit 43 determines a d-axis component id1 * if d-axis component id2 * is greater than the output voltage V 1 is lower than the target value V SET.
- the current command value calculation unit 24 calculates the current command values idc * and iqc * in this way, so that the output voltage of the SynRM1 is set as a target for an arbitrary torque command value T * as shown by a solid line in FIG. It can be greater than or equal to the value V SET .
- control device 2 since the control device 2 according to the present embodiment can set the output voltage to be equal to or higher than the target value V SET even in the case of a low load, based on the output voltage of SynRM1, the speed ⁇ and rotation of the SynRM1 The phase angle ⁇ can be estimated with high accuracy.
- control device 2 controls the operation of the SynRM 1
- the control device 2 can also be used as a PMSM control device with a small magnet magnetic flux.
- PMSM having a small magnet magnetic flux has a low induced voltage at low load, similar to SynRM1.
- FIG. 7 is a diagram illustrating a configuration of the first modification of the current command value calculation unit 24.
- the second calculation unit 43 includes a q-axis component calculation unit 44 and a d-axis component calculation unit 45.
- Other configurations of the current command value calculation unit 24 are the same as those in FIG.
- the q-axis component calculation unit 44 calculates the q-axis component iq2 * of the second current command value based on the estimated speed ⁇ est. Specifically, the q-axis component calculation unit 44, the current value iq2 * to calculate the q-axis component iq2 * to be inversely proportional with the estimated speed .omega.est.
- the q-axis component iq2 * is calculated by the following equation, for example.
- the d-axis component calculation unit 45 calculates the d-axis component id2 * of the second current command value based on the torque command value T * and the q-axis component iq2 * .
- the d-axis component id2 * is calculated by the following equation, for example.
- control device 2 can set the output voltage at a low load to be equal to or higher than the target value V SET .
- current loss in the high speed region can be suppressed.
- FIG. 8 is a diagram illustrating a configuration of a second modification of the current command value calculation unit 24. As shown in FIG. 8, the current command value calculation unit 24 calculates current command values iqc * and idc * based on the torque command value T * and the estimated speed ⁇ est.
- the current command value calculation unit 24 calculates the q-axis component iqc * such that the q-axis component iqc * of the current command value is equal to or greater than a predetermined target value Iq SET , as shown in FIG. . Further, as shown in FIG. 10, the current command value calculation unit 24 generates the q-axis component iqc * so that the target value Iq SET decreases as the estimated speed ⁇ est increases.
- the motor output voltage at the time of low load can be set to the target value V SET or more.
- current loss in the high speed region can be suppressed.
- Modification 3 of the current command value calculation unit 24 according to the present embodiment will be described with reference to FIGS. 11 and 12.
- the current command value calculation unit 24 described above calculates a current command value at which the output voltage is equal to or higher than the target value V SET by selecting one of the two current command values.
- the current command value at which the output voltage is equal to or higher than the target value V SET is calculated by correcting one current command value.
- FIG. 11 is a diagram illustrating a configuration of a third modification of the current command value calculation unit 24.
- the current command value calculation unit 24 includes a q-axis component calculation unit 46, a correction unit 47, an adder 48, and a d-axis component calculation unit 49.
- the q-axis component calculation unit 46 calculates a current command value iq3 * based on the torque command value T * .
- the current command value iq3 * is a value before correction of the q-axis component of the current command value.
- the current command value calculation unit 24 in the present modification calculates the q-axis component of the current command value by correcting the current command value iq3 * .
- the current command value iq3 * is calculated by an arbitrary method according to the control to be realized by the control device so that the torque of the SynRM1 becomes the torque command value T * .
- the q-axis component calculation unit 46 calculates the current command value iq3 * so that the magnitude of the current flowing through the stator is minimized.
- the q-axis component calculation unit 46 may calculate the current command value iq3 * at which the current phase angle ⁇ is 135 degrees, ignoring the magnetic saturation, or the current phase angle in consideration of the magnetic saturation.
- a current command value iq3 * at which ⁇ is an angle advanced from 135 degrees may be calculated.
- the q-axis component calculation unit 46 may calculate the current command value iq3 * so that the efficiency and power factor of SynRM1 are maximized.
- the current command value iq3 * calculated by the q-axis component calculation unit 46 is input to the adder 48.
- the correction unit 47 receives the voltage command values vdc * and vqc * from the voltage command value calculation unit 25. Correction unit 47 calculates correction value ⁇ iq * based on voltage command values vdc * and vqc * . Correction value? Iq * corrects the current command value IQ3 *, a current command value for calculating a q-axis component of the current command value iqc *. Details of the correction unit 47 will be described later.
- the correction value ⁇ iq * calculated by the correction unit 47 is input to the adder 48.
- the adder 48 adds the correction value? Iq * to the current command value IQ3 *, calculates the current command value iqc *.
- the current command value iqc * calculated by the adder 48 is input to the d-axis component calculation unit 49.
- the d-axis component calculation unit 49 calculates the d-axis component idc * of the current command value based on the torque command value T * and the current command value iqc * so that the torque of the SynRM1 becomes the torque command value T *. calculate.
- the d-axis component idc * is calculated by the following equation, for example.
- FIG. 12 is a diagram illustrating a configuration of the correction unit 47.
- the correction unit 47 includes an output voltage calculation unit 61, a subtracter 62, a limiter 63, and a PI controller 64.
- the output voltage calculation unit 61 receives the voltage command values vdc * and vqc * calculated by the voltage command value calculation unit 25. Output voltage calculation unit 61, voltage command value vdc *, based on vqc *, calculates the output voltage V 1 of the SynRM1. Output voltages V 1, for example, is calculated by the following equation.
- the output voltage V 1 calculated by the output voltage calculation unit 61 is input to the subtractor 62.
- the subtractor 62 subtracts the output voltage V 1 from the output voltage target value V SET to calculate an output voltage error ⁇ V.
- the error ⁇ V calculated by the subtractor 62 is input to the limiter 63.
- the limiter 63 limits the error ⁇ V to 0 or more. That is, only an error ⁇ V of 0 or more is output.
- the error ⁇ V output from the limiter 63 is input to the PI controller 64.
- the PI controller 64 performs PI control based on the error ⁇ V limited to 0 or more, and calculates a correction value ⁇ iq * at which the output voltage V 1 of the SynRM 1 is equal to or higher than the target value V SET .
- the correction value ⁇ iq * calculated by the PI controller 64 is input to the adder 48.
- Modification 4 of the current command value calculation unit 24 will be described with reference to FIG.
- a current command value at which the output voltage is equal to or higher than the target value V SET is calculated.
- a correction value ⁇ iq * is generated by the correction unit 47 and added to the current command value iq3 * by the adder 48 to generate a current command value iqc * .
- the lower limiter 91 by limiting the lower limit of the current command value IQ3 *, generates a current command value iqc *.
- iq SET is calculated from the minimum speed ⁇ MIN used in the present embodiment and the output voltage target value V SET by the following equation.
- the output voltage V 1 can be made equal to or higher than the target value V SET even when the load is low.
- the output voltage V 1 can be made equal to or higher than the target value V SET with a simple configuration in which only the lower limiter 91 is added to the first embodiment and Modifications 1 to 3.
- FIG. 14 is a diagram illustrating a configuration of a system according to the present embodiment. As shown in FIG. 14, the control device 2 according to the present embodiment further includes a torque command value calculation unit 29. Other configurations are the same as those of the first embodiment.
- the torque command value calculation unit (speed controller) 29 calculates a torque command value T * based on the speed command value ⁇ * and the estimated speed ⁇ est.
- the speed command value ⁇ * is an angular speed for rotating the rotor of SynRM1.
- the torque command value T * calculated by the torque command value calculation unit 29 is input to the current command value calculation unit 24.
- the speed command value ⁇ * is input from an external device.
- FIG. 15 is a diagram illustrating a configuration of the torque command value calculation unit 29. As shown in FIG. 15, the torque command value calculation unit 29 includes a subtracter 71 and a PI controller 72.
- the subtracter 71 receives the speed command value ⁇ * and the estimated speed ⁇ est.
- the subtracter 71 subtracts the estimated speed ⁇ est from the speed command value ⁇ * to calculate an angular speed error ⁇ of the rotor.
- the error ⁇ calculated by the subtracter 71 is input to the PI controller 72.
- the PI controller 72 performs PI control based on the error ⁇ , and calculates a torque command value T * at which the error ⁇ becomes zero.
- the torque command value T * calculated by the PI controller 72 is input to the current command value calculation unit 24.
- the current command value calculation unit 24 may have the configuration described in the first embodiment, but may have another configuration.
- FIG. 16 is a diagram illustrating another configuration of the current command value calculation unit 24.
- the current command value calculation unit 24 calculates current command values idc * and idc * based on the torque command value T * and the phase angle command value ⁇ * .
- the current command value calculation unit 24 includes an output voltage calculation unit 81, a subtracter 82, a limiter 83, a PI controller 84, a phase angle command value calculation unit 85, and a subtractor 86. And a current command value acquisition unit 87.
- the output voltage calculation unit 81 receives the voltage command values vdc * and vqc * calculated by the voltage command value calculation unit 25. Output voltage calculation unit 81, voltage command value vdc *, based on vqc *, calculates the output voltage V 1 of the SynRM1. The output voltage V 1 calculated by the output voltage calculation unit 81 is input to the subtractor 82.
- the subtracter 82 subtracts the output voltage V 1 from the output voltage target value V SET to calculate an output voltage error ⁇ V.
- the error ⁇ V calculated by the subtractor 82 is input to the limiter 83.
- the limiter 83 limits the error ⁇ V to 0 or more. That is, only an error ⁇ V of 0 or more is output.
- the error ⁇ V output from the limiter 83 is input to the PI controller 84.
- the PI controller 84 performs PI control based on the error ⁇ V limited to 0 or more, and calculates a correction value ⁇ * at which the output voltage V 1 of the SynRM 1 is equal to or higher than the target value V SET .
- Correction value [Delta] [beta] * is the phase angle command value to calculate the phase angle command value beta * to correct the phase angle command value .beta.1 *.
- the correction value ⁇ * calculated by the PI controller 84 is input to the subtractor 86.
- the phase angle command value calculation unit 85 calculates the phase angle command value ⁇ 1 * based on the torque command value T * .
- the phase angle command value ⁇ 1 * is a value before correction of the phase angle command value ⁇ * .
- the phase angle command value ⁇ 1 * is calculated by an arbitrary method according to the control desired to be realized by the control device so that the torque of the SynRM1 becomes the torque command value T * .
- the phase angle command value calculation unit 85 calculates the phase angle command value ⁇ 1 * so that the magnitude of the current flowing through the stator is minimized.
- the phase angle command value calculation unit 85 may ignore the magnetic saturation and set the phase angle command value ⁇ 1 * to 135 degrees, or consider the magnetic saturation and set the phase angle command value ⁇ 1 * from 135 degrees. It may be an advanced angle. Further, the phase angle command value calculation unit 85 may calculate the phase angle command value ⁇ 1 * so that the efficiency and the power factor of SynRM1 are maximized.
- phase angle command value ⁇ 1 * calculated by the phase angle command value calculation unit 85 is input to the subtractor 86.
- the subtracter 86 subtracts the correction value ⁇ * from the phase angle command value ⁇ 1 * to calculate the phase angle command value ⁇ * .
- the phase angle command value ⁇ * calculated by the subtractor 86 is input to the current command value acquisition unit 87.
- the current command value acquisition unit 87 calculates current command values idc * and iqc * based on the torque command value T * and the phase angle command value ⁇ * . Specifically, the current command value acquisition unit 87 may acquire the coordinates of the point where the current phase angle becomes the phase angle command value ⁇ * on the equal torque curve of the torque command value T * . The current command values idc * and iqc * acquired by the current command value acquisition unit 87 are input to the voltage command value calculation unit 25.
- the current command value calculation unit 24 in FIG. 16 corrects the current phase angle so that the output voltage V 1 is equal to or higher than the target value V SET . Specifically, the current phase angle is corrected in the delay direction so that the current command value moves to the q-axis side. Thus, it is possible to output voltage V 1 of the low load and the target value V SET more.
- control device 2 according to the present embodiment has lower required accuracy of torque control than the first embodiment. This is because the control device 2 according to the present embodiment performs control so that the speed ⁇ of the SynRM 1 becomes the speed command value ⁇ * .
- the current command value calculation unit 24 can calculate the current command value without using a table (such as a table in which the output voltage for each current command value is stored) for accurately controlling the torque of the SynRM1. .
- the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. Further, for example, a configuration in which some components are deleted from all the components shown in each embodiment is also conceivable. Furthermore, you may combine suitably the component described in different embodiment.
- 1 synchronous reluctance motor (SynRM), 2: inverter control device, 21: inverter, 22: current detector, 23: coordinate conversion unit, 24: current command value calculation unit, 25: voltage command value calculation unit, 26: Coordinate conversion unit, 27: PWM modulator, 28: Speed / rotation phase angle estimation unit, 29: Torque command value calculation unit, 31: Phase difference ⁇ setting unit, 32: ⁇ voltage calculation unit, 33: ⁇ voltage estimation unit, 34: subtractor, 35: PI controller, 36: integrator, 41: first calculator, 42: second calculator, 43: selector, 44: q-axis component calculator, 45: d-axis component calculator 46: q-axis component calculation unit, 47: correction unit, 48: adder, 49d-axis component calculation unit, 51: first current vector, 52: second current vector, 53: isotorque curve, 54: isovoltage ellipse 61: output voltage calculation unit, 62: subtractor, 63 Limiter, 64: PI controller, 71
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
【課題】 高速かつ低負荷の状態におけるモータの回転位相角を精度よく推定できるインバータ制御装置及び駆動システムを提供する。 【解決手段】 一実施形態に係るインバータ制御装置は、インバータ主回路と、電流検出器と、電流指令値算出部と、電圧指令値算出部と、推定部と、を備える。インバータ主回路は、所定の回転駆動対象と電気的に接続可能である。電流検出器は、インバータ主回路から出力される電流値を検出する。電流指令値算出部は、インバータ主回路から出力される出力電圧が所定の目標値以上となる電流指令値を算出する。電圧指令値算出部は、電流値が、電流指令値と等しくなる電圧指令値を算出する。推定部は、電圧指令値及び電流値に基づいて、回転駆動対象の推定回転位相角を算出する。
Description
本発明の実施形態は、インバータ制御装置及びモータ駆動システムに関する。
従来、永久磁石同期モータ(PMSM)やシンクロナスリラクタンスモータ(SynRM)の回転位相角センサレス制御装置において、高速域では誘起電圧を利用した回転位相角の推定方法が利用されている。しかしながら、SynRMや、磁石磁束が小さいPMSMでは、高速域であっても、低負荷の状態では誘起電圧が小さいため、回転位相角の推定精度が悪化するという問題があった。
高速かつ低負荷の状態におけるモータの回転位相角を精度よく推定できるインバータ制御装置及びモータ駆動システムを提供する。
一実施形態に係るインバータ制御装置は、インバータ主回路と、電流検出器と、電流指令値算出部と、電圧指令値算出部と、推定部と、を備える。インバータ主回路は、所定の回転駆動対象と電気的に接続可能である。電流検出器は、インバータ主回路から出力される電流値を検出する。電流指令値算出部は、インバータ主回路から出力される出力電圧が所定の目標値以上となる電流指令値を算出する。電圧指令値算出部は、電流値が、電流指令値と等しくなる電圧指令値を算出する。推定部は、電圧指令値及び電流値に基づいて、回転駆動対象の推定回転位相角を算出する。
以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
第1実施形態に係るモータ駆動システム(以下、「システム」という)について、図1~図13を参照して説明する。図1は、本実施形態に係るシステムの構成を示す図である。図1に示すように、本実施形態に係るシステムは、モータ1と、インバータ制御装置2と、を備える。
第1実施形態に係るモータ駆動システム(以下、「システム」という)について、図1~図13を参照して説明する。図1は、本実施形態に係るシステムの構成を示す図である。図1に示すように、本実施形態に係るシステムは、モータ1と、インバータ制御装置2と、を備える。
モータ1は、制御装置2の回転駆動対象であり、制御装置2に接続される。以下では、モータ1がシンクロナスリラクタンスモータ(以下、「SynRM1」という)である場合を例として説明する。SynRM1は、固定子と、回転子と、を備える。固定子は、3つの励磁相(U相、V相、及びW相)を有する。固定子は、各励磁相に流れる3相交流電流によって磁界を発生させる。回転子は、永久磁石を有さない。回転子は、固定子が発生させた磁界との磁気的相互作用により回転する。
インバータ制御装置2(以下、「制御装置2」という)は、SynRM1の回転位相角を、センサレスで制御する。図1に示すように、本実施形態に係る制御装置2は、インバータ21と、電流検出器22と、座標変換部23と、電流指令値算出部24と、電圧指令値算出部25と、座標変換部26と、PWM変調部27と、速度・回転位相角推定部28と、を備える。
インバータ21は、スイッチング素子(トランジスタ)を備える回路である。インバータ21は、スイッチング素子のON/OFFを切替えることにより、電源(図示省略)からの電力を交流に変換して、SynRM1に供給する。インバータ21は、各スイッチング素子のON/OFFを制御する制御信号をPWM変調部22から入力される。
電流検出器22は、SynRM1の固定子に流れる3相交流電流のうち、2相又は3相の電流値を検出する。図1は、2相(U相及びW相)の電流値iu,iwを検出する構成を示している。
座標変換部23は、電流検出器22が検出した電流値iu,iwを、三相固定座標系からdcqc軸回転座標系に座標変換する。ここで、三相固定座標系及びdcqc軸回転座標系について、図2を参照して説明する。
図2に示すように、三相固定座標系は、α軸とβ軸とからなる固定座標系である。図2において、α軸は、U相方向に設定され、β軸は、α軸と垂直な方向に設定されている。電流検出器22により検出された電流値iu,iwは、このような三相固定座標上で表される。
これに対して、dcqc軸回転座標系は、dc軸とqc軸とからなる回転座標系である。dc軸は、制御装置2がd軸方向(回転子のインダクタンスが最小の方向)と推定した方向に設定され、qc軸は、制御装置2がq軸方向(回転子のインダクタンスが最大の方向)と推定した方向に設定される。図2のインダクタンス楕円は、回転子のインダクタンスを示している。
図2に示すように、dcqc軸と、dq軸と、は必ずしも一致するとは限らない。回転子の実際の回転位相角θは、α軸からd軸までの角度で表される。また、制御装置2が推定した回転子の推定回転位相角θestは、α軸からdc軸までの角度で表される。回転位相角θと推定回転位相角θestとの角度が近いほど、回転位相角の推定精度が高いことを意味する。
座標変換部23は、速度回転位相角推定部28が出力した推定回転位相角θestを用いることにより、三相固定座標系をdcqc軸回転座標系に変換することができる。以下では、座標変換部23が座標変換した電流値iu,iwを、電流値idc,iqcという。電流値idcは、固定子に流れる電流のdc軸成分であり、電流値iqcは、固定子に流れる電流のqc軸成分である。
電流指令値算出部24は、トルク指令値T*及び推定速度ωestに基づいて、電流指令値idc*,iqc*を算出する。トルク指令値T*とは、回転子に発生させるトルク値である。本実施形態では、トルク指令値T*は、外部装置から入力されるものとする。推定速度ωestとは、制御装置2が推定した回転子の角速度のことである。電流指令値idc*とは、SynRM1に流す電流のdc軸成分である。電流指令値iqc*とは、SynRM1に流す電流のqc軸成分である。電流指令値算出部24の詳細については後述する。
電圧指令値算出部25(電流制御部)は、SynRM1の電流値idc,iqcが、電流指令値idc*,iqc*と等しくなる電圧指令値vdc*,vqc*を算出する。電圧指令値vdc*は、SynRM1の固定子に印加する電圧のdc軸成分である。電圧指令値vqc*は、SynRM1の固定子に印加する電圧のqc軸成分である。
座標変換部26は、電圧指令算出部25が出力した電圧指令値vdc*,vqc*を、dcqc軸回転座標系から三相固定座標系に座標変換する。座標変換部26は、座標変換部23と同様、推定回転位相角θestを用いることにより、dcqc軸回転座標系を三相固定座標系に変換することができる。以下では、座標変換部26が座標変換した電圧指令値vdc*,vqc*を、電圧指令値vu*,vv*,vw*という。電圧指令値vu*は、固定子のU相に印加する電圧であり、電圧指令値vv*は、固定子のV相に印加する電圧であり、電圧指令値vw*は、固定子のW相に印加する電圧である。
PWM変調部27は、電圧指令値vu*,vv*,vw*を、三角波を用いたPWM(Pulse-Width Modulation)によって変調し、インバータ21の各スイッチング素子のON又はOFFに対応した2値の制御信号を生成する。PWM変調部27は、生成した制御信号をインバータ21に入力する。
速度・回転位相角推定部28(以下、「推定部28」という)は、トルク指令値T*、電圧指令値vdc*,vqc*、及び電流値idc,iqcに基づいて、SynRM1の回転子の速度ω及び回転位相角θを推定し、推定速度ωest及び推定回転位相角θestを算出する。
図3は、推定部28の構成を示す図である。図3に示すように、推定部28は、位相差δ設定部31と、γ電圧算出部32と、γ電圧推定部33と、減算器34と、PI制御器35と、積分器36と、を備える。
位相差δ設定部31は、予め記憶した複数の位相差δの中から、トルク指令値T*に応じた位相差δを出力する。位相差δとは、回転位相角θと推定回転位相角θestとの誤差Δθの影響による、電圧の変化が一番大きくなる位相差の値又は範囲のことである。複数の位相差δは、トルク値毎に解析的又は実験的に予め算出され、位相差δ設定部31に記憶される。
γ電圧算出部32は、電圧指令値vdc*,vqc*と、位相差δ設定部31が設定(出力)した位相差δと、に基づいて、γ電圧の電圧値vγを算出する。γ電圧とは、誤差Δθに応じて変化する特徴量である。電圧値vγは、例えば、以下の式により算出される。
γ電圧算出部32が算出した電圧値vγは、減算器34に入力される。
γ電圧推定部33は、電圧値vdcest,vqcestと、位相差δ設定部31が設定(出力)した位相差δと、に基づいて、γ電圧の推定電圧値vγestを算出する。
まず、γ電圧推定部33は、電流値idc,iqcと、推定速度ωestと、に基づいて、電圧値vdcest,vqcestを算出する。電圧値vdcestは、SynRM1の固定子に印加された電圧のdc軸成分の推定値である。電圧値vqcestは、SynRM1の固定子に印加された電圧のqc軸成分の推定値である。電圧値vdcest,vqcestは、以下の式により算出される。
式(2)において、Rmは固定子の巻線抵抗、Ldはd軸方向のインダクタンス、Lqはq軸方向のインダクタンス、pは微分演算子(d/dt)である。γ電圧推定部33は、これらの値を予め記憶する。
次に、γ電圧推定部33は、電圧値vdcest,vqcestと、位相差δと、に基づいて、γ電圧の推定電圧値vγestを算出する。推定電圧値vγestは、例えば、以下の式により算出される。
γ電圧推定部33が算出した推定電圧値vγestは、減算器34に入力される。
減算器34は、推定電圧値vγestから電圧値vγを減算し、γ電圧の誤差Δvγを算出する。γ電圧は、誤差Δθに応じて変化するため、誤差Δvγは、誤差Δθに比例する。減算器34が算出した誤差Δvγは、PI制御器35に入力される。
なお、γ電圧を式(1)で算出することにより、誤差Δθに対する誤差Δvγの線形性を向上させることができる。すなわち、誤差Δvγが誤差Δθに比例する誤差Δθの範囲を広げることができる。
PI制御器35は、誤差Δvγが0となるようにPI制御を行うことで、回転子の速度ωを推定し、推定速度ωestを算出する。PI制御器35が算出した推定速度ωestは、γ電圧推定部33に逐次フィードバックされると共に、積分器36に入力される。
積分器36は、PI制御器35が算出した推定速度ωestを積分し、推定回転位相角θestを算出する。
以上のような構成により、推定部28は、推定速度ωest及び推定回転位相角θestを算出することができる。推定部28が算出した推定速度ωestは、電流指令値算出部24に入力される。また、推定回転位相角θestは、座標変換部23,26に入力され、座標変換に利用される。
なお、推定部28による速度ω及び回転位相角θの推定方法はこれに限られず、既知の推定方法から任意に選択可能である。例えば、推定部28は、鎖交磁束により生じる電圧を利用する他の方法により回転位相角θを推定してもよいし、鎖交磁束自体を利用して回転位相角θを推定してもよいし、電流値のq軸成分の偏差が0になるようにPI制御することにより回転位相角θを推定してもよい。
ここで、電流指令値算出部24について詳細に説明する。本実施形態に係る電流指令値算出部24は、SynRM1の出力電圧が所定の目標値VSET以上となるように、電流指令値を算出する。目標値VSETは、速度ω及び回転位相角θを精度よく推定可能な出力電圧として、実験的又は解析的に予め求められた電圧値である。
ここで、図4は、電流指令値算出部24の構成を示す図である。図4に示すように、電流指令値算出部24は、第1算出部41と、第2算出部42と、選択部43と、を備える。
第1算出部41は、トルク指令値T*に基づいて、第1電流指令値id1*,iq1*を生成する。第1電流指令値id1*とは、SynRM1に流す電流のdc軸成分である。第1電流指令値iq1*とは、SynRM1に流す電流のqc軸成分である。第1算出部41は、SynRM1のトルクがトルク指令値T*となるように、第1電流指令値id1*,iq1*を算出する。
図5は、電流指令値の算出方法を説明する図である。図5において、横軸はidc、縦軸はiqc、矢印51は第1電流ベクトル、矢印52は第2電流ベクトル、曲線53はトルク指令値T*の等トルク曲線、及び曲線62は目標値VSETの等電圧楕円である。
第1電流ベクトル51は、第1電流指令値id1*,iq1*に対応するベクトルである。以上の説明では、第1電流指令値は、(id1*,iq1*)の2値で表されたが、電流の大きさ(id1*2+iq1*2)1/2と、電流位相角β1と、で表すことも可能である。これらの表現は、相互に変換可能である。図5の平面上から任意の点を選択することは、第1電流指令値を算出(選択)することと対応する。
図5に示すように、第1算出部41は、第1電流指令値として、トルク指令値T*の等トルク曲線53上の任意の点を選択する。第1算出部41は、制御装置2により実現したい制御に応じた任意の方法で、等トルク曲線53上から第1電流指令値を選択することができる。
例えば、第1算出部41は、固定子に流す電流の大きさ(第1電流ベクトルの大きさ)が最小となるように、第1電流指令値を選択する。この場合、第1算出部41は、磁気飽和を無視して、電流位相角β1が135度となる第1電流指令値を選択してもよいし、磁気飽和を考慮して、電流位相角β1が135度より進んだ角度となる第1電流指令値を選択してもよい。また、第1算出部41は、SynRM1の効率や力率が最大となるように第1電流指令値を選択してもよい。
第1算出部41は、上記のような第1電流指令値を、トルク値毎の第1電流指令値が記憶されたテーブルを参照して選択してもよいし、計算により求めてもよい。第1算出部41により算出された第1電流指令値は、選択部43に入力される。
第2算出部42は、トルク指令値T*及び推定速度ωestに基づいて、第2電流指令値id2*,iq2*を算出する。第2電流指令値id2*とは、SynRM1に流す電流のdc軸成分である。電流指令値iq2*とは、SynRM1に流す電流のqc軸成分である。第2算出部42は、SynRM1のトルクがトルク指令値T*となるように、かつ、SynRM1の出力電圧が目標値VSETとなるように、第2電流指令値id2*,iq2*を算出する。
図5の第2電流ベクトル52は、第2電流指令値id2*,iq2*に対応するベクトルである。以上の説明では、第2電流指令値は、(id2*,iq2*)の2値で表されたが、電流の大きさ(id2*2+iq2*2)1/2と、電流位相角β2と、で表すことも可能である。これらの表現は、相互に変換可能である。図5の平面上から任意の点を選択することは、第2電流指令値を算出(選択)することと対応する。
図5に示すように、第2算出部42は、第2電流指令値として、トルク指令値T*の等トルク曲線53と、目標値VSETの等電圧楕円54と、の交点のいずれか1つを選択する。第2算出部42は、2つの交点A,Bが存在する場合、図5に示すように、交点Aを選択するのが好ましい。
交点Aとは、2つの交点のうち、iqc軸側(q軸側)の交点のことである。一般に、等電圧楕円54は、d軸方向に広く、q軸方向に狭くなるため、q軸側の交点Aを選択すると、d軸側の交点Bを選択した場合より、固定子に流す電流の大きさ(第2電流ベクトルの大きさ)が小さくなる。このため、第2算出部42が交点Aを選択することにより、制御装置2を省電力することができる。以下では、第2電流指令値は交点Aであるものとする。
なお、第2算出部42は、上記のような第2電流指令値を、トルク値毎の第2電流指令値が記憶されたテーブルを参照して選択してもよいし、以下の式を解くことにより求めてもよい。
第2算出部42により算出された第2電流指令値は、選択部43に入力される。
選択部43は、第1電流指令値id1*,iq1*又は第2電流指令値id2*,iq2*を電流指令値idc*,iqc*として出力する。まず、選択部43は、第1電流指令値id1*,iq1*に応じた出力電圧V1が、目標値VSETより低いか否か判定する。出力電圧V1とは、電流指令値として第1電流指令値を出力した場合のSynRM1の出力電圧のことである。判定方法については後述する。
次に、選択部43は、判定結果に応じて第1電流指令値id1*,iq1*及び第2電流指令値id2*,iq2*の一方を選択し、電流指令値idc*,iqc*として出力する。
出力電圧V1が目標値VSETより低い場合(V1<VSET)、選択部43は、第2電流指令値id2*,iq2*を電流指令値idc*,iqc*として選択する。出力電圧V1が目標値VSETより低い場合とは、図5に示すように、第1電流指令値が、等電圧楕円54に含まれる場合である。
このとき、第2電流指令値は、第1電流指令値よりiqc軸(q軸)に近い。すなわち、第2電流指令値の電流位相角β2は、第1電流指令値の電流位相角β1よりiqc軸(q軸)側である。また、第2電流指令値のq軸成分iq2*は、第1電流指令値のq軸成分iq1*より大きく、第2電流指令値のd軸成分id2*は、第1電流指令値のd軸成分id1*より小さい。
一方、出力電圧V1が目標値VSET以上の場合(V1≧VSET)、選択部43は、第1電流指令値id1*,iq1*を電流指令値idc*,iqc*として選択する。出力電圧V1が目標値VSET以上の場合とは、第2電流指令値が、等電圧楕円54上又は等電圧楕円54の外側にある場合である。
このとき、第1電流指令値は、第2電流指令値よりiqc軸(q軸)に近い。すなわち、第1電流指令値の電流位相角β1は、第2電流指令値の電流位相角β2よりiqc軸(q軸)側である。また、第1電流指令値のq軸成分iq1*は、第2電流指令値のq軸成分iq2*より大きく、第1電流指令値のd軸成分id1*は、第2電流指令値のd軸成分id2*より小さい。
選択部43は、選択した第1電流指令値又は第2電流指令値を電流指令値として出力する。選択部43により出力された電流指令値は、電圧指令算出部25に入力される。
次に、選択部43による、出力電圧V1が目標値VSETより低いか否かの判定方法について説明する。
選択部43は、例えば、出力電圧V1を取得し、目標値VSETと比較することにより、判定を行う。選択部43は、第1電流指令値毎の出力電圧が記憶されたテーブルを参照して出力電圧V1を選択してもよいし、以下の式により算出してもよい。
また、選択部43は、第1電流指令値の電流位相角β1と、第2電流指令値の電流位相角β2と、を比較することにより、判定を行なってもよい。選択部43は、電流位相角β2が電流位相角β1よりq軸側の場合、出力電圧V1が目標値VSETより低いと判定する。
さらに、選択部43は、第1電流指令値のq軸成分iq1*と、第2電流指令値のq軸成分iq2*と、を比較することにより、判定を行なってもよい。選択部43は、q軸成分iq1*がq軸成分iq2*より小さい場合、出力電圧V1が目標値VSETより低いと判定する。
またさらに、選択部43は、第1電流指令値のd軸成分id1*と、第2電流指令値のd軸成分id2*と、を比較することにより、判定を行なってもよい。選択部43は、d軸成分id1*がd軸成分id2*より大きい場合、出力電圧V1が目標値VSETより低いと判定する。
電流指令値算出部24がこのように電流指令値idc*,iqc*を算出することにより、図6に実線で示すように、任意のトルク指令値T*に対して、SynRM1の出力電圧を目標値VSET以上とすることができる。
従来の制御装置では、SynRM1が高速域で動作しても、トルク指令値T*が小さい低負荷の状態では、図6に破線で示すように、SynRM1の出力電圧(誘起電圧)が小さくなった。このため、誘起電圧を利用して精度よく速度ωや回転位相角θを推定することが困難であった。
しかしながら、本実施形態に係る制御装置2は、低負荷の場合であっても、出力電圧を目標値VSET以上とすることができるため、SynRM1の出力電圧に基づいて、SynRM1の速度ωや回転位相角θを精度よく推定することができる。
なお、以上の説明では、制御装置2がSynRM1の動作を制御する場合について説明したが、この制御装置2は、磁石磁束が小さいPMSMの制御装置として利用することもできる。磁石磁束が小さいPMSMは、SynRM1と同様に、低負荷時の誘起電圧が小さい。このようなPMSMに本実施形態に係る制御装置2を適用することにより、PMSMの速度ωや回転位相角θの低負荷時における推定精度を向上させることができる。
(第1実施形態の変形例1)
本実施形態に係る電流指令値算出部24の変形例1について、図7を参照して説明する。図7は、電流指令値算出部24の変形例1の構成を示す図である。図7に示すように、第2算出部43は、q軸成分算出部44と、d軸成分算出部45と、を備える。電流指令値算出部24の他の構成は図4と同様である。
本実施形態に係る電流指令値算出部24の変形例1について、図7を参照して説明する。図7は、電流指令値算出部24の変形例1の構成を示す図である。図7に示すように、第2算出部43は、q軸成分算出部44と、d軸成分算出部45と、を備える。電流指令値算出部24の他の構成は図4と同様である。
q軸成分算出部44は、推定速度ωestに基づいて第2電流指令値のq軸成分iq2*を算出する。具体的には、q軸成分算出部44は、電流値iq2*が推定速度ωestと反比例するようにq軸成分iq2*を算出する。q軸成分iq2*は、例えば、以下の式により算出される。
d軸成分算出部45は、トルク指令値T*及びq軸成分iq2*に基づいて、第2電流指令値のd軸成分id2*を算出する。d軸成分id2*は、例えば、以下の式により算出される。
このような構成により、制御装置2は、低負荷時の出力電圧を目標値VSET以上とすることができる。また、高速域における電流損失を抑制することができる。
(第1実施形態の変形例2)
本実施形態に係る電流指令値算出部24の変形例2について、図8~図10を参照して説明する。図8は、電流指令値算出部24の変形例2の構成を示す図である。図8に示すように、この電流指令値算出部24は、トルク指令値T*及び推定速度ωestに基づいて、電流指令値iqc*,idc*を算出する。
本実施形態に係る電流指令値算出部24の変形例2について、図8~図10を参照して説明する。図8は、電流指令値算出部24の変形例2の構成を示す図である。図8に示すように、この電流指令値算出部24は、トルク指令値T*及び推定速度ωestに基づいて、電流指令値iqc*,idc*を算出する。
本変形例において、電流指令値算出部24は、図9に示すように、電流指令値のq軸成分iqc*が所定の目標値IqSET以上となるように、q軸成分iqc*を算出する。また、電流指令値算出部24は、図10に示すように、推定速度ωestが大きくなるほど、目標値IqSETが小さくなるように、q軸成分iqc*を生成する。
このような構成により、低負荷時のモータ出力電圧を目標値VSET以上とすることができる。また、高速域における電流損失を抑制することができる。
(第1実施形態の変形例3)
本実施形態に係る電流指令値算出部24の変形例3について、図11及び図12を参照して説明する。以上で説明した電流指令値算出部24は、2つの電流指令値から一方を選択することにより、出力電圧が目標値VSET以上となる電流指令値を算出した。これに対して、本変形例では、1つの電流指令値を補正することにより、出力電圧が目標値VSET以上となる電流指令値を算出する。
本実施形態に係る電流指令値算出部24の変形例3について、図11及び図12を参照して説明する。以上で説明した電流指令値算出部24は、2つの電流指令値から一方を選択することにより、出力電圧が目標値VSET以上となる電流指令値を算出した。これに対して、本変形例では、1つの電流指令値を補正することにより、出力電圧が目標値VSET以上となる電流指令値を算出する。
図11は、電流指令値算出部24の変形例3の構成を示す図である。図11に示すように、電流指令値算出部24は、q軸成分算出部46と、補正部47と、加算器48と、d軸成分算出部49と、を備える。
q軸成分算出部46は、トルク指令値T*に基づいて、電流指令値iq3*を算出する。電流指令値iq3*は、電流指令値のq軸成分の補正前の値である。本変形例における電流指令値算出部24は、電流指令値iq3*を補正することにより、電流指令値のq軸成分を算出する。電流指令値iq3*は、SynRM1のトルクがトルク指令値T*となるように、制御装置で実現したい制御に応じた任意の方法で算出される。
例えば、q軸成分算出部46は、固定子に流す電流の大きさが最小となるように、電流指令値iq3*を算出する。この場合、q軸成分算出部46は、磁気飽和を無視して、電流位相角βが135度となる電流指令値iq3*を算出してもよいし、磁気飽和を考慮して、電流位相角βが135度より進んだ角度となる電流指令値iq3*を算出してもよい。また、q軸成分算出部46は、SynRM1の効率や力率が最大となるように電流指令値iq3*を算出してもよい。
q軸成分算出部46が算出した電流指令値iq3*は、加算器48に入力される。
補正部47は、電圧指令値算出部25から、電圧指令値vdc*,vqc*を入力される。補正部47は、電圧指令値vdc*,vqc*に基づいて、補正値Δiq*を算出する。補正値Δiq*は、電流指令値iq3*を補正して、電流指令値のq軸成分iqc*を算出するための電流指令値である。補正部47の詳細については後述する。補正部47が算出した補正値Δiq*は、加算器48に入力される。
加算器48は、電流指令値iq3*に補正値Δiq*を加算し、電流指令値iqc*を算出する。加算器48が算出した電流指令値iqc*は、d軸成分算出部49に入力される。
d軸成分算出部49は、トルク指令値T*と、電流指令値iqc*と、に基づいて、SynRM1のトルクがトルク指令値T*となるように、電流指令値のd軸成分idc*を算出する。d軸成分idc*は、例えば、以下の式により算出される。
ここで、補正部47について、図12を参照して説明する。図12は、補正部47の構成を示す図である。図12に示すように、補正部47は、出力電圧算出部61と、減算器62と、リミッタ63と、PI制御器64と、を備える。
出力電圧算出部61は、電圧指令値算出部25が算出した電圧指令値vdc*,vqc*を入力される。出力電圧算出部61は、電圧指令値vdc*,vqc*に基づいて、SynRM1の出力電圧V1を算出する。出力電圧V1は、例えば、以下の式により算出される。
出力電圧算出部61が算出した出力電圧V1は、減算器62に入力される。
減算器62は、出力電圧の目標値VSETから出力電圧V1を減算し、出力電圧の誤差ΔVを算出する。減算器62が算出した誤差ΔVは、リミッタ63に入力される。
リミッタ63は、誤差ΔVを0以上にリミットする。すなわち、0以上の誤差ΔVだけを出力する。リミッタ63が出力した誤差ΔVは、PI制御器64に入力される。
PI制御器64は、0以上にリミットされた誤差ΔVに基づいてPI制御を行い、SynRM1の出力電圧V1が目標値VSET以上となる補正値Δiq*を算出する。PI制御器64が算出した補正値Δiq*は、加算器48に入力される。
このような構成により、電流指令値に応じた出力電圧V1が目標値VSETより低い場合すなわち、ΔVが0以上の場合、出力電圧V1が目標値VSET以上となるように、電流指令値に補正値Δiq*がオフセット電流として追加される。これにより、低負荷時の出力電圧V1を目標値VSET以上とすることができる。
(第1実施形態の変形例4)
本実施形態に係る電流指令値算出部24の変形例4について、図16を参照して説明する。本変形例では、変形例3と同様に、1つの電流指令値を補正することにより、出力電圧が目標値VSET以上となる電流指令値を算出する。変形例3では、補正部47によって補正値Δiq*を生成し、これを加算器48で電流指令値iq3*に加算することで、電流指令値iqc*を生成した。これに対して、本変形例では、下限リミッタ91によって、電流指令値iq3*の下限をリミットすることで、電流指令値iqc*を生成する。
本実施形態に係る電流指令値算出部24の変形例4について、図16を参照して説明する。本変形例では、変形例3と同様に、1つの電流指令値を補正することにより、出力電圧が目標値VSET以上となる電流指令値を算出する。変形例3では、補正部47によって補正値Δiq*を生成し、これを加算器48で電流指令値iq3*に加算することで、電流指令値iqc*を生成した。これに対して、本変形例では、下限リミッタ91によって、電流指令値iq3*の下限をリミットすることで、電流指令値iqc*を生成する。
下限リミッタ91は、図9のように、iqc*がiqSET以上になるように、iq3*を補正(リミット)する。iqSETは、例えば本実施例が使用される最小速度ωMINと、出力電圧の目標値VSETと、から次式で計算される。
このような構成により、低負荷時であっても出力電圧V1を目標値VSET以上とすることができる。本変形例では、第1実施形態および変形例1~3に対して、下限リミッタ91を追加するだけという簡単な構成で、出力電圧V1を目標値VSET以上とすることができる。
(第2実施形態)
次に、第2実施形態に係る制御装置2について、図14~図16を参照して説明する。図14は、本実施形態に係るシステムの構成を示す図である。図14に示すように、本実施形態に係る制御装置2は、トルク指令値算出部29を更に備える。他の構成は、第1実施形態と同様である。
次に、第2実施形態に係る制御装置2について、図14~図16を参照して説明する。図14は、本実施形態に係るシステムの構成を示す図である。図14に示すように、本実施形態に係る制御装置2は、トルク指令値算出部29を更に備える。他の構成は、第1実施形態と同様である。
トルク指令値算出部(速度制御器)29は、速度指令値ω*及び推定速度ωestに基づいて、トルク指令値T*を算出する。速度指令値ω*とは、SynRM1の回転子を回転させる角速度である。本実施形態において、電流指令値算出部24には、トルク指令値算出部29が算出したトルク指令値T*が入力される。なお、本実施形態では、速度指令値ω*は、外部装置から入力されるものとする。
図15は、トルク指令値算出部29の構成を示す図である。図15に示すように、トルク指令値算出部29は、減算器71と、PI制御器72と、を備える。
減算器71は、速度指令値ω*と推定速度ωestとを入力される。減算器71は、速度指令値ω*から推定速度ωestを減算し、回転子の角速度の誤差Δωを算出する。減算器71が算出した誤差Δωは、PI制御器72に入力される。
PI制御器72は、誤差Δωに基づいてPI制御を行い、誤差Δωが0となるトルク指令値T*を算出する。PI制御器72が算出したトルク指令値T*は、電流指令値算出部24に入力される。
上述の通り、電流指令値算出部24は、第1実施形態で説明した構成としてもよいが、他の構成とすることもできる。図16は、電流指令値算出部24の他の構成を示す図である。この電流指令値算出部24は、トルク指令値T*及び位相角指令値β*に基づいて、電流指令値idc*,idc*を算出する。
図16に示すように、この電流指令値算出部24は、出力電圧算出部81と、減算器82と、リミッタ83と、PI制御器84と、位相角指令値算出部85と、減算器86と、電流指令値取得部87と、を備える。
出力電圧算出部81は、電圧指令値算出部25が算出した電圧指令値vdc*,vqc*を入力される。出力電圧算出部81は、電圧指令値vdc*,vqc*に基づいて、SynRM1の出力電圧V1を算出する。出力電圧算出部81が算出した出力電圧V1は、減算器82に入力される。
減算器82は、出力電圧の目標値VSETから出力電圧V1を減算し、出力電圧の誤差ΔVを算出する。減算器82が算出した誤差ΔVは、リミッタ83に入力される。
リミッタ83は、誤差ΔVを0以上にリミットする。すなわち、0以上の誤差ΔVだけを出力する。リミッタ83が出力した誤差ΔVは、PI制御器84に入力される。
PI制御器84は、0以上にリミットされた誤差ΔVに基づいてPI制御を行い、SynRM1の出力電圧V1が目標値VSET以上となる補正値Δβ*を算出する。補正値Δβ*は、位相角指令値β1*を補正して位相角指令値β*を算出するための位相角指令値である。PI制御器84が算出した補正値Δβ*は、減算器86に入力される。
位相角指令値算出部85は、トルク指令値T*に基づいて、位相角指令値β1*を算出する。位相角指令値β1*は、位相角指令値β*の補正前の値である。位相角指令値β1*は、SynRM1のトルクがトルク指令値T*となるように、制御装置で実現したい制御に応じた任意の方法で算出される。
例えば、位相角指令値算出部85は、固定子に流す電流の大きさが最小となるように、位相角指令値β1*を算出する。この場合、位相角指令値算出部85は、磁気飽和を無視して、位相角指令値β1*を135度としてもよいし、磁気飽和を考慮して、位相角指令値β1*を135度より進んだ角度としてもよい。また、位相角指令値算出部85は、SynRM1の効率や力率が最大となるように位相角指令値β1*を算出してもよい。
位相角指令値算出部85が算出した位相角指令値β1*は、減算器86に入力される。
減算器86は、位相角指令値β1*から補正値Δβ*を減算して、位相角指令値β*を算出する。減算器86が算出した位相角指令値β*は、電流指令値取得部87に入力される。
電流指令値取得部87は、トルク指令値T*及び位相角指令値β*に基づいて、電流指令値idc*,iqc*を算出する。具体的には、電流指令値取得部87は、トルク指令値T*の等トルク曲線上の、電流位相角が位相角指令値β*となる点の座標を取得すればよい。電流指令値取得部87により取得された電流指令値idc*,iqc*は、電圧指令値算出部25に入力される。
以上説明した通り、図16の電流指令値算出部24は、出力電圧V1が目標値VSET以上となるように、電流位相角を補正する。具体的には、電流指令値がq軸側に移動するように、電流位相角を遅れ方向に補正する。これにより、低負荷時の出力電圧V1を目標値VSET以上とすることができる。
また、本実施形態に係る制御装置2は、要求されるトルク制御の精度が第1実施形態に比べて低い。これは、本実施形態に係る制御装置2は、SynRM1の速度ωが速度指令値ω*となるように制御するためである。
このため、電流指令値算出部24は、SynRM1のトルクを正確に制御するためのテーブル(電流指令値毎の出力電圧が記憶されたテーブルなど)を用いずに電流指令値を算出することができる。
なお、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。
1:シンクロナスリラクタンスモータ(SynRM)、2:インバータ制御装置、21:インバータ、22:電流検出器、23:座標変換部、24:電流指令値算出部、25:電圧指令値算出部、26:座標変換部、27:PWM変調器、28:速度・回転位相角推定部、29:トルク指令値算出部、31:位相差δ設定部、32:γ電圧算出部、33:γ電圧推定部、34:減算器、35:PI制御器、36:積分器、41:第1算出部、42:第2算出部、43:選択部、44:q軸成分算出部、45:d軸成分算出部、46:q軸成分算出部、47:補正部、48:加算器、49d軸成分算出部、51:第1電流ベクトル、52:第2電流ベクトル、53:等トルク曲線、54:等電圧楕円、61:出力電圧算出部、62:減算器、63:リミッタ、64:PI制御器、71:減算器、72:PI制御器、81:出力電圧算出部、82減算器、83:リミッタ、84:PI制御器、85:位相角指令値算出部、86:減算器、87:電流指令値取得部
Claims (15)
- 所定の回転駆動対象と電気的に接続可能なインバータ主回路と、
前記インバータ主回路から出力される電流値を検出する電流検出器と、
前記インバータ主回路から出力される出力電圧が所定の目標値以上となる電流指令値を算出する電流指令値算出部と、
前記電流値が、前記電流指令値と等しくなる電圧指令値を算出する電圧指令値算出部と、
前記電圧指令値及び前記電流値に基づいて、前記回転駆動対象の推定回転位相角を算出する推定部と、
を備えるインバータ制御装置。 - 前記電流指令値算出部は、トルク指令値に基づいて第1電流指令値を算出し、前記トルク指令値及び推定速度に基づいて第2電流指令値を算出し、前記第1電流指令値に応じた前記出力電圧が前記目標値より低いか判定し、前記目標値以上のとき、前記第1電流指令値を前記電流指令値として出力し、前記目標値より低いとき、前記第2電流指令値を前記電流指令値として出力する
請求項1に記載のインバータ制御装置。 - 前記第2電流指令値に応じた前記出力電圧は前記目標値である
請求項2に記載のインバータ制御装置。 - 前記電流指令値算出部は、前記第1電流指令値及び前記第2電流指令値のうち、電流位相角がq軸に近い方を前記電流指令値として出力する
請求項2又は請求項3に記載のインバータ制御装置。 - 前記電流指令値算出部は、前記第1電流指令値及び前記第2電流指令値のうち、q軸成分が大きい方を前記電流指令値として出力する
請求項2乃至請求項4のいずれか1項に記載のインバータ制御装置。 - 前記電流指令値算出部は、トルク指令値、推定速度、及び前記電圧指令値の少なくとも1つに基づいて、前記電流指令値を算出する
請求項1乃至請求項5のいずれか1項に記載のインバータ制御装置。 - 前記電流指令値算出部は、前記第1電流指令値に基づいて算出した前記出力電圧の電圧値と、前記目標値と、を比較することにより前記判定を行う
請求項2乃至請求項6のいずれか1項に記載のインバータ制御装置。 - 前記電流指令値算出部は、前記第1電流指令値のq軸成分と、前記第2電流指令値のq軸成分と、を比較することにより前記判定を行う
請求項2乃至請求項6のいずれか1項に記載のインバータ制御装置。 - 前記電流指令値算出部は、前記第1電流指令値のd軸成分と、前記第2電流指令値のd軸成分と、を比較することにより前記判定を行う
請求項2乃至請求項6のいずれか1項に記載のインバータ制御装置。 - 前記電流指令値算出部は、前記第1電流指令値の電流位相角と、前記第2電流指令値の電流位相角と、を比較することにより前記判定を行う
請求項2乃至請求項6のいずれか1項に記載のインバータ制御装置。 - 前記電流指令値算出部は、前記出力電圧が前記目標値より低いとき、前記出力電圧と前記目標値との誤差に基づいて補正値を算出し、前記電流指令値に前記補正値を加算する
請求項1に記載のインバータ制御装置。 - 速度指令値及び推定速度に基づいて、前記トルク指令値を算出するトルク指令値算出部を更に備える
請求項1乃至請求項11のいずれか1項に記載のインバータ制御装置。 - 前記電流指令値算出部は、前記電流指令値の下限をリミットする下限リミッタを備える
請求項1乃至請求項12のいずれか1項に記載のインバータ制御装置。 - 前記下限リミッタは、最低速度における前記出力電圧が前記目標値となるように設定される
請求項13に記載のインバータ制御装置。 - モータと、
前記モータに接続されたインバータ主回路と、
前記インバータ主回路から出力される電流値を検出する電流検出器と、
前記インバータ主回路から出力される出力電圧が所定の目標値以上となる電流指令値を算出する電流指令値算出部と、
前記電流値が、前記電流指令値と等しくなる電圧指令値を算出する電圧指令値算出部と、
前記電圧指令値及び前記電流値に基づいて、前記モータの推定回転位相角を算出する推定部と、
を備えるモータ駆動システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680003392.4A CN107078674B (zh) | 2015-01-28 | 2016-01-26 | 逆变器控制装置以及电机驱动系统 |
EP16743354.9A EP3252941B1 (en) | 2015-01-28 | 2016-01-26 | Inverter control apparatus and motor driving system |
JP2016535264A JP6367332B2 (ja) | 2015-01-28 | 2016-01-26 | インバータ制御装置及びモータ駆動システム |
US15/636,198 US10158305B2 (en) | 2015-01-28 | 2017-06-28 | Inverter controller and motor driving system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-014722 | 2015-01-28 | ||
JP2015014722 | 2015-01-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/636,198 Continuation US10158305B2 (en) | 2015-01-28 | 2017-06-28 | Inverter controller and motor driving system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121751A1 true WO2016121751A1 (ja) | 2016-08-04 |
Family
ID=56543362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052161 WO2016121751A1 (ja) | 2015-01-28 | 2016-01-26 | インバータ制御装置及びモータ駆動システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US10158305B2 (ja) |
EP (1) | EP3252941B1 (ja) |
JP (1) | JP6367332B2 (ja) |
CN (1) | CN107078674B (ja) |
WO (1) | WO2016121751A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018038111A1 (ja) * | 2016-08-22 | 2018-03-01 | 株式会社 東芝 | インバータ制御装置およびドライブシステム |
WO2018123426A1 (ja) * | 2016-12-28 | 2018-07-05 | アルプス電気株式会社 | 直流整流子電動機の回転に関する情報を取得する装置及び方法 |
KR20190032556A (ko) * | 2016-09-05 | 2019-03-27 | 가부시끼가이샤 도시바 | 인버터 제어 장치 및 모터 구동 시스템 |
EP3509210A4 (en) * | 2016-09-05 | 2020-04-22 | Toshiba Infrastructure Systems & Solutions Corporation | CONVERTER CONTROL DEVICE AND ELECTRIC MOTOR DRIVE SYSTEM |
US11296633B2 (en) | 2018-01-12 | 2022-04-05 | Mitsubishi Electric Corporation | Rotary machine control device |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10770966B2 (en) | 2016-04-15 | 2020-09-08 | Emerson Climate Technologies, Inc. | Power factor correction circuit and method including dual bridge rectifiers |
US10320322B2 (en) | 2016-04-15 | 2019-06-11 | Emerson Climate Technologies, Inc. | Switch actuation measurement circuit for voltage converter |
US10277115B2 (en) | 2016-04-15 | 2019-04-30 | Emerson Climate Technologies, Inc. | Filtering systems and methods for voltage control |
US10763740B2 (en) | 2016-04-15 | 2020-09-01 | Emerson Climate Technologies, Inc. | Switch off time control systems and methods |
US10656026B2 (en) | 2016-04-15 | 2020-05-19 | Emerson Climate Technologies, Inc. | Temperature sensing circuit for transmitting data across isolation barrier |
US10305373B2 (en) | 2016-04-15 | 2019-05-28 | Emerson Climate Technologies, Inc. | Input reference signal generation systems and methods |
US9933842B2 (en) | 2016-04-15 | 2018-04-03 | Emerson Climate Technologies, Inc. | Microcontroller architecture for power factor correction converter |
EP3522362B1 (en) * | 2018-02-01 | 2023-12-20 | Siemens Gamesa Renewable Energy A/S | Controlling a multi winding set permanent magnet electrical machine |
JP7032250B2 (ja) * | 2018-06-28 | 2022-03-08 | 株式会社日立産機システム | 電力変換装置 |
CN112039401A (zh) * | 2019-05-17 | 2020-12-04 | 杭州三花研究院有限公司 | 一种控制方法和控制装置及其系统 |
CN113839605B (zh) * | 2020-06-23 | 2024-03-15 | 苏州宝时得电动工具有限公司 | 电机转速控制方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000037099A (ja) * | 1998-07-16 | 2000-02-02 | Yaskawa Electric Corp | 交流電動機の可変速制御装置 |
JP2006121768A (ja) * | 2004-10-19 | 2006-05-11 | Fuji Electric Fa Components & Systems Co Ltd | 誘導電動機の可変速制御装置 |
JP2009261103A (ja) * | 2008-04-15 | 2009-11-05 | Jtekt Corp | モータ制御装置 |
JP2010130751A (ja) * | 2008-11-26 | 2010-06-10 | Honda Motor Co Ltd | 電動機の相電流推定装置および電動機の磁極位置推定装置 |
JP2010136586A (ja) * | 2008-12-08 | 2010-06-17 | Honda Motor Co Ltd | 電動機の磁極位置推定装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100354775B1 (ko) * | 2000-03-25 | 2002-11-04 | 엘지전자 주식회사 | 동기 릴럭턴스 모터의 속도 제어장치 |
KR100421373B1 (ko) * | 2001-06-20 | 2004-03-06 | 엘지전자 주식회사 | 동기 릴럭턴스 모터의 회전 속도 제어장치 |
KR20040019323A (ko) * | 2001-07-04 | 2004-03-05 | 가부시키가이샤 야스카와덴키 | 동기 전동기의 전류 제어 방법 및 제어 장치 |
JP3692085B2 (ja) | 2002-02-21 | 2005-09-07 | 株式会社東芝 | モータ制御方法及び装置 |
EP1492223A4 (en) * | 2002-03-22 | 2005-12-14 | Matsushita Electric Ind Co Ltd | DEVICE FOR CONTROLLING A SYNCHRONOUS RELUCTANCE ENGINE |
JP4579627B2 (ja) | 2004-09-02 | 2010-11-10 | 三菱電機株式会社 | 回転機の制御装置 |
JP2010119284A (ja) * | 2008-10-16 | 2010-05-27 | Panasonic Corp | モータ駆動装置 |
JP4819970B2 (ja) * | 2008-12-15 | 2011-11-24 | 三菱電機株式会社 | 電動機駆動用電力変換装置 |
JP5971707B2 (ja) * | 2011-08-29 | 2016-08-17 | 株式会社東芝 | 同期電動機のセンサレス制御装置ならびにインバータ装置 |
WO2014157628A1 (ja) * | 2013-03-28 | 2014-10-02 | アイシン・エィ・ダブリュ株式会社 | 回転電機制御装置 |
JP6193006B2 (ja) * | 2013-06-20 | 2017-09-06 | 株式会社東芝 | 電気車制御装置 |
-
2016
- 2016-01-26 JP JP2016535264A patent/JP6367332B2/ja active Active
- 2016-01-26 WO PCT/JP2016/052161 patent/WO2016121751A1/ja active Application Filing
- 2016-01-26 CN CN201680003392.4A patent/CN107078674B/zh active Active
- 2016-01-26 EP EP16743354.9A patent/EP3252941B1/en active Active
-
2017
- 2017-06-28 US US15/636,198 patent/US10158305B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000037099A (ja) * | 1998-07-16 | 2000-02-02 | Yaskawa Electric Corp | 交流電動機の可変速制御装置 |
JP2006121768A (ja) * | 2004-10-19 | 2006-05-11 | Fuji Electric Fa Components & Systems Co Ltd | 誘導電動機の可変速制御装置 |
JP2009261103A (ja) * | 2008-04-15 | 2009-11-05 | Jtekt Corp | モータ制御装置 |
JP2010130751A (ja) * | 2008-11-26 | 2010-06-10 | Honda Motor Co Ltd | 電動機の相電流推定装置および電動機の磁極位置推定装置 |
JP2010136586A (ja) * | 2008-12-08 | 2010-06-17 | Honda Motor Co Ltd | 電動機の磁極位置推定装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3252941A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018038111A1 (ja) * | 2016-08-22 | 2018-03-01 | 株式会社 東芝 | インバータ制御装置およびドライブシステム |
TWI668953B (zh) * | 2016-08-22 | 2019-08-11 | 日商東芝股份有限公司 | Inverter control device and drive system |
US10637381B2 (en) | 2016-08-22 | 2020-04-28 | Kabushiki Kaisha Toshiba | Inverter control device and drive system |
KR20190032556A (ko) * | 2016-09-05 | 2019-03-27 | 가부시끼가이샤 도시바 | 인버터 제어 장치 및 모터 구동 시스템 |
EP3509211A4 (en) * | 2016-09-05 | 2020-04-15 | Kabushiki Kaisha Toshiba | CONVERTER CONTROL DEVICE AND DRIVE SYSTEM |
EP3509210A4 (en) * | 2016-09-05 | 2020-04-22 | Toshiba Infrastructure Systems & Solutions Corporation | CONVERTER CONTROL DEVICE AND ELECTRIC MOTOR DRIVE SYSTEM |
US10742151B2 (en) | 2016-09-05 | 2020-08-11 | Toshiba Infrastructure Systems & Solutions Corporation | Inverter control device and motor drive system |
US10833613B2 (en) | 2016-09-05 | 2020-11-10 | Kabushiki Kaisha Toshiba | Inverter control apparatus and motor drive system |
KR102285041B1 (ko) * | 2016-09-05 | 2021-08-04 | 가부시끼가이샤 도시바 | 인버터 제어 장치 및 모터 구동 시스템 |
WO2018123426A1 (ja) * | 2016-12-28 | 2018-07-05 | アルプス電気株式会社 | 直流整流子電動機の回転に関する情報を取得する装置及び方法 |
US11296633B2 (en) | 2018-01-12 | 2022-04-05 | Mitsubishi Electric Corporation | Rotary machine control device |
Also Published As
Publication number | Publication date |
---|---|
JP6367332B2 (ja) | 2018-08-01 |
US20170317623A1 (en) | 2017-11-02 |
JPWO2016121751A1 (ja) | 2017-04-27 |
US10158305B2 (en) | 2018-12-18 |
CN107078674B (zh) | 2019-09-17 |
EP3252941A1 (en) | 2017-12-06 |
CN107078674A (zh) | 2017-08-18 |
EP3252941A4 (en) | 2018-10-03 |
EP3252941B1 (en) | 2021-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6367332B2 (ja) | インバータ制御装置及びモータ駆動システム | |
JP4989075B2 (ja) | 電動機駆動制御装置及び電動機駆動システム | |
JP5494760B2 (ja) | 電動機制御装置 | |
WO2016121237A1 (ja) | インバータ制御装置及びモータ駆動システム | |
EP2424105A2 (en) | Vector control apparatus and motor control system | |
TWI654827B (zh) | 換流器控制裝置及馬達驅動系統 | |
JP6776066B2 (ja) | インバータ制御装置および電動機駆動システム | |
JP2002095300A (ja) | 永久磁石同期電動機の制御方法 | |
JP2009095135A (ja) | 同期電動機の制御装置 | |
JP2009060688A (ja) | 同期電動機の制御装置 | |
JP5499965B2 (ja) | 交流回転機の制御装置 | |
JP5648310B2 (ja) | 同期モータの制御装置、及び同期モータの制御方法 | |
JP2000037098A (ja) | 速度センサレスベクトル制御を用いた電力変換装置 | |
JP2008148437A (ja) | 永久磁石型同期モータの制御装置 | |
JP5660191B2 (ja) | 電動機制御装置 | |
JP3692085B2 (ja) | モータ制御方法及び装置 | |
JP2006197712A (ja) | 同期電動機の駆動システム及び同期電動機の駆動方法 | |
KR102409792B1 (ko) | 영구 자석 동기 전동기의 제어 장치, 마이크로 컴퓨터, 전동기 시스템 및 영구 자석 동기 전동기의 운전 방법 | |
JP7251424B2 (ja) | インバータ装置及びインバータ装置の制御方法 | |
JP5390970B2 (ja) | モータ制御装置 | |
JP5456873B1 (ja) | 同期機制御装置 | |
JP7226211B2 (ja) | インバータ装置及びインバータ装置の制御方法 | |
JP2020036513A (ja) | モータ制御装置 | |
JP7099226B2 (ja) | モータ制御装置 | |
JP2010268663A (ja) | ロータ角度推定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016535264 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743354 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016743354 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |