Nothing Special   »   [go: up one dir, main page]

WO2016159120A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2016159120A1
WO2016159120A1 PCT/JP2016/060459 JP2016060459W WO2016159120A1 WO 2016159120 A1 WO2016159120 A1 WO 2016159120A1 JP 2016060459 W JP2016060459 W JP 2016060459W WO 2016159120 A1 WO2016159120 A1 WO 2016159120A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
combustion engine
internal combustion
control
state
Prior art date
Application number
PCT/JP2016/060459
Other languages
English (en)
French (fr)
Inventor
津田耕平
吉田高志
吉田奈緒
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US15/556,154 priority Critical patent/US10322715B2/en
Priority to CN201680017377.5A priority patent/CN107428333B/zh
Priority to DE112016000467.2T priority patent/DE112016000467T5/de
Priority to JP2017510130A priority patent/JP6390788B2/ja
Publication of WO2016159120A1 publication Critical patent/WO2016159120A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0803Circuits or control means specially adapted for starting of engines characterised by means for initiating engine start or stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1025Input torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device that controls a vehicle drive device provided with an engagement device, a rotating electrical machine, and a transmission device in order from the side of the internal combustion engine on a power transmission path connecting the internal combustion engine and wheels. .
  • Patent Document 1 discloses a shock when performing start control for starting an internal combustion engine with the output torque of the rotating electrical machine in the electric travel state in which the vehicle is driven with the output torque of the rotating electrical machine with the engagement device released. Techniques for mitigating are described. Specifically, during start control of the internal combustion engine, the torque associated with the start of the internal combustion engine is controlled by controlling the shift engagement device of the transmission that is engaged to form the shift stage to the slip engagement state. It is described that the change is absorbed by the gear shift engagement device. In Patent Document 1, when a downshift of a transmission is required at the start of an internal combustion engine, a shift engagement device that controls to a slip engagement state to absorb torque fluctuation is disclosed by downshift. It is described to select the shifting engagement device to be released.
  • the required torque of the wheel (which is required to be transmitted to the wheel is also required during the start control of the internal combustion engine and the downshift of the transmission in the electric running state. It is desirable to cause the rotating electrical machine to output a traveling torque having a magnitude corresponding to the required wheel torque so that a torque having a magnitude equal to that of the torque is transmitted to the wheels. Therefore, when performing the above-described start control of the internal combustion engine in the electric travel state, the rotating electrical machine is required to output a start torque for starting the internal combustion engine in addition to the travel torque.
  • the start request of the internal combustion engine is generally generated under a situation where the wheel request torque is large. Therefore, when the start control of the internal combustion engine is performed in parallel with the downshift control as described above, the sum of the running torque, the start torque, and the inertia torque may exceed the maximum torque that can be output by the rotating electrical machine. . That is, by performing the start control of the internal combustion engine in parallel with the downshift control, the output torque of the rotating electrical machine is insufficient, which may affect the progress of the already started downshift operation.
  • Patent Document 1 does not describe control when a request for starting the internal combustion engine is generated while downshifting is performed in the electric traveling state.
  • the internal combustion engine can be started without greatly affecting the progress of the already started downshift operation. Realization of a simple control device is desired.
  • control for a vehicle drive device provided with an engagement device, a rotating electrical machine, and a transmission device in order from the side of the internal combustion engine in the power transmission path connecting the internal combustion engine and the wheels.
  • the characteristic configuration of the apparatus is that the start control for starting the internal combustion engine by the output torque of the rotating electrical machine via the engagement device is a first start control, and the output torque of the rotating electrical machine is in the released state of the engagement device.
  • a downshift that changes the gear ratio by the transmission so that the gear ratio after the gear shift becomes larger than the gear ratio before the gear shift is set in the electric gear driving state while the driving state in which the vehicle is running is the electric driving state. If there is a request to start the internal combustion engine during the operation, the first start control is performed after the downshift is completed.
  • the first start control when the start request for the internal combustion engine is generated during the downshift in the electric running state, and the first start control is performed, the first start control is performed after the end of the downshift. Start control is performed.
  • the first start control in which the rotary electric machine is required to output the starting torque is not performed. Therefore, even when a request for starting the internal combustion engine is generated during downshifting in the electric running state, the already started downshift operation can be appropriately advanced.
  • the internal combustion engine is started, for example, by the first start control at the time after the end of the change in the rotational speed of the rotating electrical machine for downshifting (that is, when the rotating electrical machine does not need to output an inertia torque).
  • it can be performed by a method that does not require the output torque of the rotating electrical machine at a time point before that. In any case, it is possible to start the internal combustion engine without greatly affecting the progress of the downshift operation that has already started.
  • the control device is a control device that controls a vehicle drive device.
  • the control device 32 includes a drive control unit 30 and a vehicle control unit 34.
  • drive coupling means a state where two rotating elements are coupled so as to be able to transmit a driving force.
  • This concept includes a state where the two rotating elements are coupled so as to rotate integrally, and a state where the two rotating elements are coupled so as to be able to transmit the driving force via one or more transmission members.
  • Such transmission members include various members (shafts, gear mechanisms, belts, chains, etc.) that transmit rotation at the same speed or at different speeds, and an engagement device that selectively transmits rotation and driving force. (Such as a friction engagement device or a meshing engagement device) may be included.
  • the “engagement state” is a state in which a transmission torque capacity is generated in the friction engagement device.
  • the transmission torque capacity is the magnitude of the maximum torque that the friction engagement device can transmit by friction.
  • the magnitude of the transmission torque capacity changes in proportion to the engagement pressure of the friction engagement device (pressure that presses the input-side engagement member and the output-side engagement member against each other).
  • the “engagement state” there is no difference in rotational speed (slip) between the pair of engagement members of the friction engagement device (between the input side engagement member and the output side engagement member).
  • a “sliding engagement state” in which there is a difference in rotational speed between the pair of engagement members of the friction engagement device.
  • the “released state” is a state where no transmission torque capacity is generated in the friction engagement device.
  • a transmission torque capacity may be generated by dragging the engagement members (friction members).
  • drag torque is not considered in the classification of the engagement state, and the transfer torque capacity is generated by drag between the engagement members when a command for generating the transfer torque capacity is not issued.
  • the state is also included in the “released state”.
  • torque is transmitted between the pair of engagement members by friction between the pair of engagement members.
  • torque slip torque
  • torque having a magnitude of the transmission torque capacity is transmitted from the engagement member having a higher rotation speed to the engagement member having a lower rotation speed by dynamic friction.
  • the torque acting between the pair of engagement members is transmitted by static friction with the magnitude of the transmission torque capacity as the upper limit.
  • a vehicle 1 (hybrid vehicle) is provided with an internal combustion engine ENG, a vehicle drive device 2, and wheels W.
  • the driving force transmission path is indicated by a solid line
  • the signal and hydraulic pressure transmission path is indicated by a one-dot chain line
  • the power transmission path is indicated by a double broken line.
  • the vehicle drive device 2 includes an engagement device SSC, a rotating electrical machine MG, and a transmission device TM in order from the internal combustion engine ENG side in a power transmission path that connects the internal combustion engine ENG and the wheels W.
  • the engagement device SSC is a friction engagement device.
  • the internal combustion engine is a prime mover (for example, a gasoline engine, a diesel engine, or the like) that is driven by combustion of fuel inside the engine to extract power.
  • the rotating electrical machine is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions as a motor and a generator as necessary.
  • the vehicle drive device 2 causes the vehicle 1 to travel by transmitting the torque of at least one of the internal combustion engine ENG and the rotating electrical machine MG to the wheels W.
  • the torque in the direction in which the vehicle 1 moves forward is a positive torque
  • the torque in the opposite direction is a negative torque.
  • the vehicle drive device 2 is configured such that the output torque of the internal combustion engine ENG is transmitted to the wheels W as a positive torque.
  • a plurality of shift stages having different gear ratios are selectively formed by the transmission apparatus TM.
  • the speed change device TM includes a plurality of speed change engagement devices (see FIG. 2).
  • the vehicle drive device 2 includes an input member I and an output member O as shown in FIG.
  • the input member I is a transmission member provided in a power transmission path between the engagement device SSC and the transmission device TM.
  • the input member I is a shaft member that functions as an input shaft of the transmission apparatus TM.
  • the output member O is a transmission member provided in a power transmission path between the transmission apparatus TM and the wheels W.
  • the output member O is a shaft member that functions as an output shaft of the transmission apparatus TM.
  • the power transmission path between the output member O and the wheels W is provided with an output differential gear device DF, and the rotation of the output member O is distributed to the two left and right wheels W via the output differential gear device DF. To be transmitted.
  • the output shaft Eo (for example, crankshaft) of the internal combustion engine ENG is drivingly connected to the input member I via the engagement device SSC.
  • the engagement device SSC is a clutch.
  • the output shaft Eo and the input member I rotate together in a directly coupled state in which the engagement device SSC is directly coupled.
  • the output shaft Eo of the internal combustion engine ENG is rotationally driven (cranked) by the torque of the rotating electrical machine MG transmitted via the engagement device SSC.
  • the vehicle 1 is provided with a starter motor ST that is a dedicated rotating electric machine for starting the internal combustion engine ENG.
  • the internal combustion engine ENG is driven by the torque of the starter motor ST.
  • the output shaft Eo can also be rotationally driven.
  • the rotating electrical machine MG is powered by receiving power supplied from the power storage device 36 or supplies the power storage device 36 with power generated (regenerated) by the torque of the internal combustion engine ENG or the inertial force of the vehicle 1.
  • the rotating electrical machine MG includes a stator that is fixed to a non-rotating member such as a case, and a rotor that is drivingly connected to the input member I.
  • the rotor of the rotating electrical machine MG rotates integrally with the input member I. Therefore, the rotating electrical machine MG (rotor) and the internal combustion engine ENG (output shaft Eo) rotate integrally with each other in the direct engagement state in which the engagement device SSC is directly coupled.
  • the transmission TM shifts the rotation of the input member I (shift input shaft) and transmits it to the output member O (shift output shaft).
  • the transmission TM is a stepped automatic transmission that can form a plurality of shift stages having different gear ratios.
  • the transmission TM transmits the rotation of the input member I to the output member O after changing the speed of the input member I with a gear ratio corresponding to the formed gear.
  • the “speed ratio” is a ratio of the rotational speed of the input member I to the rotational speed of the output member O, that is, a value obtained by dividing the rotational speed of the input member I by the rotational speed of the output member O.
  • the speed change device TM includes a plurality of speed change engagement devices, and a plurality of speed stages having different speed ratios are formed according to the respective engagement states of the speed change engagement devices.
  • two or more (two in this example) of the plurality of shift engagement devices are engaged and the other gears are released, and the shift stages of the respective stages are formed.
  • the transmission TM is a first clutch C1, a second clutch C2, a third clutch C3, a first brake B1, a second brake B2, and A one-way clutch F (one-way clutch) is provided.
  • Each of the shift engagement devices except the one-way clutch F is a friction engagement device.
  • surface of FIG. 3 the gear stage of each stage is formed in the state which two of the some engaging apparatuses for a gear shift engaged, and others were released.
  • the transmission apparatus TM includes six forward shift speeds having different gear ratios (first speed 1st, second speed 2nd, third speed 3rd, fourth speed 4th, fifth speed 5th, and sixth speed 6th).
  • the transmission TM is configured by combining two differential gear devices, a first differential gear device PG1 and a second differential gear device PG2, as shown in FIG.
  • the first differential gear device PG1 is configured by a single pinion type planetary gear mechanism having three rotating elements (first sun gear S1, first carrier CA1, and first ring gear R1).
  • the first carrier CA1 meshes with the first sun gear S1 and supports a plurality of first pinion gears P1 that mesh with the first ring gear R1.
  • the second differential gear device PG2 includes a Ravigneaux type planetary gear mechanism having four rotating elements (second sun gear S2, third sun gear S3, second carrier CA2, and second ring gear R2).
  • the second carrier CA2 meshes with the second sun gear S2 and meshes with the second ring gear R2, and a plurality of second pinion gears P2 (long pinion gears) and a plurality of third pinion gears P3 meshed with the second pinion gear P2 and meshed with the third sun gear S3. (Short pinion gear).
  • the first ring gear R1 is drivingly connected to the input member I, and is connected to rotate integrally with the input member I in this example.
  • the second ring gear R2 is drivingly connected to the output member O, and is connected to rotate integrally with the output member O in this example.
  • the first carrier CA1 is drivably coupled to the third sun gear S3 via the first clutch C1 and is drivably coupled to the second sun gear S2 via the third clutch C3.
  • the first carrier CA1 rotates integrally with the third sun gear S3 in the direct engagement state in which the first clutch C1 is directly engaged, and the first clutch CA is in the direct engagement state in which the third clutch C3 is directly engaged.
  • the carrier CA1 rotates integrally with the second sun gear S2.
  • the first ring gear R1 is drivingly connected to the second carrier CA2 via the second clutch C2.
  • the first ring gear R1 rotates integrally with the second carrier CA2 in the direct engagement state in which the second clutch C2 is directly engaged.
  • the first sun gear S1 is fixed to the vehicle drive device 2 or the case 3 of the transmission TM (an example of a non-rotating member).
  • the second sun gear S2 is selectively fixed to the case 3 by the first brake B1.
  • the second carrier CA2 is selectively fixed to the case 3 by the second brake B2, and the direction of relative rotation with respect to the case 3 is limited to only one direction by the one-way clutch F.
  • the second carrier CA2 whose rotation is restricted by the one-way clutch F receives the reaction force of the positive torque transmitted from the input member I to the third sun gear S3 via the first differential gear device PG1.
  • the positive torque is transmitted to the output member O via the second ring gear R2.
  • the rotation of the second carrier CA2 is not restricted by the one-way clutch F, and therefore the second brake B2 in addition to the first clutch C1. Are engaged.
  • an internal combustion engine control device 31 is provided in addition to the control device 32 as a control device for controlling the state (traveling state, etc.) of the vehicle 1. Yes.
  • the control device 32 and the internal combustion engine control device 31 include an arithmetic processing device such as a CPU as a core and a storage device such as a RAM and a ROM.
  • Each function executed by the control device 32 and the internal combustion engine control device 31 is realized by software (program) stored in a storage device such as a ROM, hardware such as a separately provided arithmetic circuit, or both.
  • the arithmetic processing unit included in the control device 32 and the internal combustion engine control device 31 operates as a computer that executes each program.
  • the control device 32 and the internal combustion engine control device 31 are configured to be able to communicate with each other, share various information such as sensor detection information and control parameters, and perform cooperative control by exchanging various control signals. It is configured.
  • One or both of the control device 32 and the internal combustion engine control device 31 may be configured by a set of a plurality of hardware (a plurality of separated hardware) that can communicate with each other. Further, the control device 32 and the internal combustion engine control device 31 may be configured to be provided in common hardware.
  • the vehicle 1 is provided with various sensors, and the control device 32 is configured to be able to acquire detection information of the various sensors.
  • an input rotation speed sensor Se1 detects the rotation speed of the input member I or the rotation speed of a member that rotates in synchronization with the input member I.
  • synchronous rotation means rotating integrally or rotating at a proportional rotation speed.
  • the output rotation speed sensor Se2 detects the rotation speed of the output member O or the rotation speed of a member that rotates in synchronization with the output member O.
  • the engine rotation speed sensor Se3 detects the rotation speed of the internal combustion engine ENG (output shaft Eo) or the rotation speed of a member that rotates in synchronization with the internal combustion engine ENG (output shaft Eo).
  • the control device 32 acquires the rotational speed of the input member I and the rotating electrical machine MG (rotor) based on the detection information of the input rotational speed sensor Se1, and the rotational speed and vehicle speed of the output member O based on the detection information of the output rotational speed sensor Se2.
  • the rotation speed of the internal combustion engine ENG (output shaft Eo) is acquired based on the detection information of the engine rotation speed sensor Se3.
  • the control device 32 via the internal combustion engine control device 31, detects information of the engine rotational speed sensor Se3 or the rotational speed of the internal combustion engine ENG (output shaft Eo) based on the detected information. Get information about.
  • the accelerator opening sensor Se4 detects the accelerator opening according to the amount of depression of the driver's accelerator pedal.
  • the brake operation sensor Se5 detects a brake operation amount corresponding to the depression amount of the driver's brake pedal.
  • the shift position sensor Se6 detects the selected position of the shift lever.
  • the shift lever is a lever operated by the driver to select one travel range from a plurality of travel ranges. To select the shift lever selection position (shift position), the position for selecting the forward travel range (D range), the position for selecting the reverse travel range (R range), and the neutral range (N range) , A position for selecting a parking range (P range), and the like.
  • the power storage state sensor Se7 acquires a charge state or a power storage amount of the power storage device 36 that supplies power to the rotating electrical machine MG.
  • the control device 32 (a vehicle control unit 34 to be described later in this example) is required to transmit to the wheels W based on sensor detection information such as the accelerator opening, the vehicle speed, the shift position, the charging state of the power storage device 36, and the like.
  • sensor detection information such as the accelerator opening, the vehicle speed, the shift position, the charging state of the power storage device 36, and the like.
  • wheel request torque vehicle request torque
  • a travel mode of the vehicle 1 and a target gear stage to be formed in the transmission TM are determined.
  • the engagement state of the engagement device SSC and each shift engagement device is determined by the drive control unit 30 (an engagement control unit 42 described later) included in the control device 32 according to the determined travel mode and the target shift speed. Be controlled.
  • the travel mode includes an electric travel mode in which only the torque of the rotating electrical machine MG is transmitted to the wheels W to travel the vehicle 1, and an engine travel mode in which only the torque of the internal combustion engine ENG is transmitted to the wheels W to travel the vehicle 1. And a hybrid travel mode (parallel travel mode) in which the torque of both the rotating electrical machine MG and the internal combustion engine ENG is transmitted to the wheels W to travel the vehicle 1 is included.
  • the engagement device SSC is controlled to the released state
  • the engine travel mode and the hybrid travel mode the engagement device SSC is controlled to the engaged state.
  • the electric traveling state is a state realized during traveling in the electric traveling mode.
  • the control device 32 includes a drive control unit 30 and a vehicle control unit 34.
  • the drive control unit 30 and the vehicle control unit 34 can communicate with each other.
  • the drive control unit 30 and the vehicle control unit 34 may be provided in different hardware or in common hardware.
  • the vehicle control unit 34 performs control for integrating various controls (torque control, engagement control, etc.) performed on the internal combustion engine ENG and the vehicle drive device 2 as a whole vehicle.
  • the vehicle control unit 34 has a function of controlling the torque sharing of the entire vehicle. Specifically, the vehicle control unit 34 determines the internal combustion engine required torque and the rotary electrical machine required torque in consideration of the respective torque sharing ratios of the internal combustion engine ENG and the rotary electrical machine MG.
  • the internal combustion engine required torque is a torque required for the internal combustion engine ENG as a torque output from the internal combustion engine ENG.
  • the rotating electrical machine required torque is a torque required for the rotating electrical machine MG as a torque output from the rotating electrical machine MG.
  • the rotating electrical machine required torque is set to a negative torque. Basically, each of the internal combustion engine required torque and the rotating electrical machine required torque is determined so that the sum of the internal combustion engine required torque and the rotating electrical machine required torque becomes equal to the wheel required torque.
  • the internal combustion engine controller 31 controls the operation of the internal combustion engine ENG.
  • the internal combustion engine control device 31 controls the internal combustion engine ENG so as to output the internal combustion engine required torque. Further, when there is a request for starting the internal combustion engine ENG from the vehicle control unit 34, the internal combustion engine control device 31 starts the internal combustion engine ENG by starting fuel supply or ignition to the internal combustion engine ENG, etc. When there is a stop request for the internal combustion engine ENG from the control unit 34, the internal combustion engine ENG is stopped by stopping fuel supply or ignition to the internal combustion engine ENG.
  • the drive control unit 30 controls the state of engagement of the engagement device SSC and each shift engagement device, and controls the operation of the rotating electrical machine MG.
  • the drive control unit 30 includes a rotating electrical machine control unit 41 that controls the operation of the rotating electrical machine MG and an engagement control unit 42 that controls the state of engagement of each engagement device so as to communicate with each other.
  • Each of the rotating electrical machine control unit 41 and the engagement control unit 42 is configured by software (program) stored in a storage device, hardware such as a separately provided arithmetic circuit, or both.
  • the rotating electrical machine control unit 41 controls the rotating electrical machine MG to output the rotating electrical machine required torque.
  • the rotating electrical machine control unit 41 controls the output torque of the rotating electrical machine MG by controlling the inverter device 35 that converts the DC voltage of the power storage device 36 into an AC voltage and supplies the AC voltage to the rotating electrical machine MG.
  • the engagement control unit 42 is a state in which the vehicle control unit 34 determines the engagement state of each engagement device (including the engagement device SSC and each shift engagement device) provided in the vehicle drive device 2. Control to be The engagement control unit 42 controls the engagement state of each engagement device so as to realize the travel mode determined by the vehicle control unit 34 and to form the target shift speed determined by the vehicle control unit 34. .
  • the target shift speed is determined by the vehicle control unit 34 by referring to a shift map (not shown).
  • the shift map is a map that defines the relationship between the accelerator opening and the vehicle speed, and the gear position in the transmission apparatus TM.
  • a plurality of upshift lines and a plurality of downshift lines are defined.
  • upshifting means changing the speed ratio of the transmission so that the speed ratio after the speed change becomes smaller than the speed ratio before the speed change.
  • downshifting means changing the speed ratio of the transmission so that the speed ratio after the speed change becomes larger than the speed ratio before the speed change.
  • the upshift is a change of the gear stage to the high speed side (side where the gear ratio is relatively reduced), and the downshift Is to change the gear position to the low speed side (the side where the gear ratio is relatively increased). That is, the upshift is to switch the shift speed formed in the transmission apparatus TM to a shift speed having a smaller gear ratio than the shift speed, and the downshift is a shift speed formed by the transmission apparatus TM. Switching the gear to a gear having a larger gear ratio than the gear.
  • the engagement control unit 42 releases the disengagement-side engagement device, which is a gear shift engagement device that is released for gear shift switching, and performs gear shift switching when performing gear shift control that switches gear shift gears.
  • a so-called change-over shift is performed in which an engagement-side engagement device that is a shift engagement device engaged is engaged.
  • the engagement-side engagement device is an engagement device that is released before the start of the shift control and is engaged by the shift control.
  • the disengagement-side engagement device is an engagement device that is engaged before the start of the shift control and released by the shift control.
  • the disengagement-side engagement device includes a plurality of shift engagement units that are engaged to form a shift stage after a shift among a plurality of shift engagement apparatuses that are engaged to form a shift stage before a shift. It is set to a shift engagement device that is not common with the combined device.
  • the engagement-side engagement device is a plurality of gears that are engaged to form a gear before shifting, among a plurality of gear engaging devices that are engaged to form a gear after shifting. It is set to a shift engagement device that is not common to the engagement device. For example, as shown in FIG. 3, when the shift stage before the shift is the third stage 3rd and the shift stage after the shift is the second stage 2nd, the third clutch C3 is set as the disengagement side engagement device, The brake B1 is set to the engagement side engagement device.
  • the engagement device to be controlled by the engagement control unit 42 is a hydraulically driven friction engagement device.
  • the engagement control unit 42 controls the state of each engagement of the engagement device by controlling the hydraulic pressure supplied to each of the engagement devices via the hydraulic control device PC.
  • the engagement pressure of each engagement device changes in proportion to the magnitude of the hydraulic pressure supplied to the engagement device. That is, the magnitude of the transmission torque capacity generated in the engagement device changes in proportion to the magnitude of the hydraulic pressure supplied to the engagement device.
  • the engagement state of each engagement device is controlled to one of a direct engagement state, a slip engagement state, and a release state according to the supplied hydraulic pressure.
  • the hydraulic control device PC includes a hydraulic control valve (such as a linear solenoid valve) for adjusting the hydraulic pressure of hydraulic oil supplied from an oil pump (not shown).
  • the oil pump is, for example, a mechanical pump driven by a rotating member provided in the vehicle drive device 2 such as the output shaft Eo or the output member O, an electric pump driven by a dedicated rotating electrical machine, or the like.
  • the hydraulic pressure control device PC adjusts the opening degree of the hydraulic pressure control valve in accordance with the hydraulic pressure command from the engagement control unit 42, thereby supplying hydraulic fluid corresponding to the hydraulic pressure command to each engagement device.
  • the vehicle control unit 34 determines that there is a request for starting the internal combustion engine ENG when an internal combustion engine start condition, which is a condition for starting the internal combustion engine ENG, is satisfied, and cooperates with the internal combustion engine control device 31 and the drive control unit 30.
  • the start control of the internal combustion engine ENG is performed by operation.
  • the internal combustion engine start condition is satisfied when the vehicle 1 is in a situation that requires the torque of the internal combustion engine ENG. For example, when the driver depresses the accelerator pedal strongly while the vehicle 1 is stopped or while driving in the electric driving mode, the internal combustion engine is started when the wheel required torque cannot be obtained only by the rotating electrical machine MG.
  • the condition is met.
  • the internal combustion engine start condition is also satisfied when it is necessary to start the internal combustion engine ENG and charge the power storage device 36.
  • the start control of the internal combustion engine ENG performed by the vehicle control unit 34 includes first start control.
  • the first start control is start control for starting the internal combustion engine ENG by the output torque of the rotating electrical machine MG via the engagement device SSC.
  • the internal combustion engine ENG is rotated by the output torque of the rotating electrical machine MG transmitted via the engagement device SSC in the slip engagement state.
  • the engagement control unit 42 increases the engagement pressure of the engagement device SSC from zero to change the engagement device SSC from the released state to the sliding engagement state. Transition.
  • slip torque (starting torque Ts) having a magnitude corresponding to the engagement pressure (transmission torque capacity) of the engagement device SSC is transmitted to the internal combustion engine ENG, and the rotational speed of the internal combustion engine ENG increases.
  • the internal combustion engine control device 31 starts fuel supply and ignition to the internal combustion engine ENG to start combustion of the internal combustion engine ENG.
  • the engagement control unit 42 raises the engagement pressure of the engagement device SSC to the complete engagement pressure, and shifts the engagement device SSC to the direct engagement state.
  • the complete engagement pressure is an engagement pressure that can maintain an engagement state without slipping (direct engagement state) even if the torque transmitted to the engagement device fluctuates.
  • the start control of the internal combustion engine ENG performed by the vehicle control unit 34 includes the second start control in addition to the first start control.
  • the second start control is start control for starting the internal combustion engine ENG by the output torque of the starter motor ST.
  • the internal combustion engine ENG is rotated by the output torque of the starter motor ST.
  • the vehicle control unit 34 performs the second start control, the internal combustion engine control device 31 supplies electric power to the starter motor ST to rotate the internal combustion engine ENG, and starts fuel supply and ignition to the internal combustion engine ENG.
  • combustion of the internal combustion engine ENG is started.
  • the engagement control unit 42 increases the engagement pressure of the engagement device SSC from zero, and shifts the engagement device SSC from the released state to the directly connected state.
  • the start torque Ts is transmitted from the rotating electrical machine MG side to the internal combustion engine ENG side via the engagement device SSC. Therefore, in order to transmit a torque having the same magnitude as the wheel required torque to the wheel W even during the first start control, the rotating electrical machine MG has a travel torque (a wheel corresponding to the wheel required torque). In addition to the driving torque, it is necessary to output the starting torque Ts. In view of this point, in the present embodiment, the control device 32 is necessary to perform the first start control from the maximum torque Tmax that can be output by the rotating electrical machine MG, in the electric running state.
  • the output torque of the rotating electrical machine MG in the electric travel state is set to be equal to or less than the allowable torque Ta, which is a torque obtained by subtracting the starting torque Ts from the maximum torque Tmax.
  • the “output torque of the rotating electrical machine MG in the electric running state” here does not include the starting torque Ts or the inertia torque Ti. That is, the “electric running state” here is an electric running state in which the first start control and the downshift control are not performed.
  • the vehicle control unit 34 is configured to determine a rotating electrical machine required torque having a magnitude equal to or smaller than the allowable torque Ta when determining the rotating electrical machine required torque in the electric travel state.
  • the magnitude of the torque (starting torque Ts) transmitted from the rotating electrical machine MG side to the internal combustion engine ENG side via the engagement device SSC can change during the first starting control, for example,
  • the maximum starting torque Ts required during the first starting control is subtracted from the maximum torque Tmax to determine the allowable torque Ta, or the starting torque required during the first starting control.
  • the allowable torque Ta can be determined by subtracting the average value of Ts from the maximum torque Tmax.
  • the maximum torque Tmax that can be output by the rotating electrical machine MG generally changes according to the rotational speed of the rotating electrical machine MG, and therefore the size of the allowable torque Ta also depends on the rotational speed of the rotating electrical machine MG. Will change accordingly.
  • the allowable torque Ta is set to the amount of charge (charged state) of the power storage device 36. It may be variably set according to the above.
  • the rotating electrical machine MG needs to output torque for other applications in addition to the running torque
  • downshifting is performed in the electric running state in addition to the situation where the first start control is performed.
  • the rotating electrical machine MG has a gear ratio by downshifting in addition to the running torque. It is necessary to output an inertia torque Ti for changing the rotation speed of the rotating electrical machine MG by an amount corresponding to the change amount.
  • the inertia torque Ti is a torque having a magnitude obtained by multiplying the moment of inertia of the rotating electrical machine MG (rotor) by the rate of change (rotational acceleration) of the rotational speed of the rotating electrical machine MG (rotor). Therefore, for example, when there is a request for starting the internal combustion engine ENG during downshifting in the electric running state and the first start control is performed in parallel with the downshift control, the starting torque Ts is added to the running torque.
  • the rotary electric machine MG is required to output both of the torque and inertia torque Ti.
  • the magnitude of the running torque at that time is often close to the allowable torque Ta. It is expected to be. Then, when the magnitude of the running torque is close to the allowable torque Ta, the sum of the running torque, the starting torque Ts, and the inertia torque Ti exceeds the maximum torque Tmax as shown by the broken line in FIG. That is, by performing the first start control in parallel with the downshift control, the output torque of the rotating electrical machine MG is insufficient, which may affect the progress of the already started downshift operation.
  • FIG. 4 shows an example where the magnitude of the inertia torque Ti is smaller than the starting torque Ts.
  • the target change rate of the rotational speed of the internal combustion engine ENG in the first starting control and downshift control are shown.
  • the magnitude of the inertia torque Ti may be larger than the starting torque Ts.
  • the vehicle control unit 34 (the control device 32), when there is a request for starting the internal combustion engine ENG while performing the downshift in the electric travel state, until the downshift ends.
  • the first start control is not performed (that is, the first start control is prohibited). That is, the vehicle control unit 34 is configured not to perform the first start control while the rotating electrical machine MG needs to output the inertia torque Ti.
  • the vehicle control unit 34 (the control device 32) is in the case where there is a request for starting the internal combustion engine ENG while performing the downshift in the electric travel state, and when performing the first start control, The first start control is performed after the downshift is completed.
  • the vehicle control unit 34 (the control device 32) rotates for downshifting when there is a request for starting the internal combustion engine ENG while downshifting in the electric running state.
  • the first start control is not performed until the rotational speed change of the rotating electrical machine MG due to the output torque of the electrical machine MG (hereinafter referred to as “rotational speed change of the rotating electrical machine MG for downshifting”) is completed.
  • the vehicle control unit 34 (the control device 32) is in the case where there is a request for starting the internal combustion engine ENG while performing the downshift in the electric travel state, and when performing the first start control,
  • the first start control is performed after the rotation speed change of the rotating electrical machine MG for downshifting is completed.
  • the rotational speed change of the rotating electrical machine MG for downshifting is performed by the output torque of the rotating electrical machine MG, and the amount of change in rotational speed at this time is the amount of change in the gear ratio of the gear stage before and after the downshift. It depends on your needs.
  • the start control of the internal combustion engine ENG performed by the vehicle control unit 34 includes the second start control in addition to the first start control.
  • the vehicle control unit 34 determines that the torque responsiveness request is a high response request when there is a start request for the internal combustion engine ENG while downshifting in the electric travel state. If the torque response request is in the low response request state, the second start control is performed in the state, and the first start control is performed after the rotation speed change of the rotating electrical machine MG for downshifting is completed. It is configured as follows.
  • the second start control is a start control of the internal combustion engine ENG that does not require the output torque of the rotating electrical machine MG.
  • the second start control can be started without waiting for the end of the rotation speed change of the rotating electrical machine MG for the downshift.
  • the torque responsiveness request is a request for responsiveness to the torque (wheel transmission torque) transmitted to the wheel W.
  • the low response request state is a state in which the request for responsiveness is lower than the high response request state.
  • the responsiveness here refers to the time from when an operation (for example, operation of an accelerator pedal) for changing the wheel request torque by the driver is performed until the change in the wheel request torque is reflected in the wheel transmission torque. The responsiveness increases as the time becomes shorter.
  • the torque responsiveness request is determined based on, for example, at least one of the accelerator opening, the change rate of the accelerator opening, the vehicle mode, and the vehicle speed. Regarding the accelerator opening, the change rate of the accelerator opening, and the vehicle speed, the torque response requirement is determined so as to increase as they increase.
  • the torque responsiveness request is determined according to the degree of torque responsiveness corresponding to the vehicle mode (for example, normal mode, sports mode, etc.) selected by the driver.
  • the torque response request is expressed by a numerical value (index) that increases as the degree of request increases, a state where the numerical value is equal to or greater than a threshold value is a high response required state, and the numerical value is less than the threshold value Can be in a low response request state.
  • the vehicle control unit 34 ends the change in the rotational speed of the rotating electrical machine MG for downshifting when there is a request to start the internal combustion engine ENG while downshifting in the electrically driven state. Until this time, the first start control is not performed.
  • “the first start control is not performed” means that the transmission torque of the engagement device SSC increases (basically from zero until the change in the rotational speed of the rotating electrical machine MG for downshifting is completed. Does not start, and does not exclude a configuration in which the supply of hydraulic pressure to the engagement device SSC is started until the rotation speed change ends.
  • the vehicle control unit 34 (the control device 32) performs the first start control when there is a request for starting the internal combustion engine ENG while performing the downshift in the electric travel state. In such a case, the first start control is performed after the rotation speed change of the rotating electrical machine MG for downshifting is completed. In addition, when the vehicle control unit 34 is requested to start the internal combustion engine ENG while downshifting in the electric running state, and the torque response request is in the low response request state, the vehicle control unit 34 performs the downshift. Therefore, the first start control is performed after the rotation speed change of the rotating electrical machine MG is completed.
  • performing the first start control means that the increase in the transmission torque of the engagement device SSC is started after the end of the rotational speed change, and until the end of the rotational speed change.
  • the configuration for starting the supply of hydraulic pressure to the engagement device SSC is not excluded.
  • the vehicle control unit 34 performs the above-described control when there is a request to start the internal combustion engine ENG while downshifting in the electric travel state.
  • the travel torque is a negative torque
  • the shortage of output torque of the rotating electrical machine MG as described above hardly occurs.
  • the vehicle control unit 34 may be configured to perform the above-described control only when there is a request for starting the internal combustion engine ENG while performing the on-down shift in the electric traveling state. it can.
  • the on / down shift is a down shift in a state in which torque in the forward acceleration direction is transmitted to the wheel W (travel torque is a positive torque).
  • the first start control can be started before the end of the rotation speed change.
  • the vehicle control unit 34 performs the first start control or the second start control in addition to the above case. That is, in the present embodiment, the first start control is started when there is a start request for the internal combustion engine ENG while the vehicle is in the electric travel state and is not downshifted. While the downshift is not performed, the inertia torque TI is not output by the rotating electrical machine MG. Therefore, even if the starting torque Ts associated with the first starting control is output to the rotating electrical machine MG in addition to the running torque, the shortage of the output torque of the rotating electrical machine MG as described above hardly occurs. Therefore, when the downshift is not performed, the first start control is preferably started immediately after the start request for the internal combustion engine ENG is made. As a result, the internal combustion engine ENG can be quickly started when the downshift is not performed.
  • the vehicle control unit 34 performs the first start control or the second start control depending on whether the torque responsiveness request is in a low response request state or a high response request state.
  • the vehicle control unit 34 is in the case where there is a request for starting the internal combustion engine ENG while it is in the electric running state and is not downshifting, and the torque response request is in the low response request state.
  • the first start control is started, and the second start control is started when the torque responsiveness request is in the high response request state.
  • the maximum output torque Tmax of the rotating electrical machine MG can be used as the running torque when the torque response request is in the high response request state.
  • the internal combustion engine ENG is started by the output torque of the starter motor ST by performing the second start control.
  • the rotating electrical machine MG need not bear the start torque Ts and the inertia torque Ti. Therefore, the maximum output torque Tmax possessed by the rotating electrical machine MG can be used as the running torque, and a higher required wheel torque can be met.
  • the vehicle control unit 34 (control device 32) performs a start control selection process for selecting start control of the internal combustion engine ENG according to the procedure shown in FIG.
  • FIG. 5 is a flowchart showing a start control selection process during downshifting in the electric travel state.
  • the vehicle control unit 34 determines whether or not a start request for the internal combustion engine ENG has been generated during the downshift in the electric travel state (step # 01: Yes) until the downshift is completed (step # 03: No). Monitor (step # 02). When there is a request for starting the internal combustion engine ENG (step # 02: Yes), processing for selecting one of the first start control and the second start control is performed.
  • step # 04 it is determined whether or not the rotation speed change of the rotating electrical machine MG for downshift has been completed (step # 04), and whether or not the torque responsiveness request is in a high response request state (step # 04).
  • step # 04 if the positive determination is made first (step # 04: Yes), the first start control is selected (step # 06).
  • step # 07 the second start control is selected (step # 07).
  • the first start control is selected. Further, when the start request of the internal combustion engine ENG is requested, the rotation speed change of the rotating electrical machine MG for downshifting is not completed, and until the rotation speed change of the rotating electrical machine MG for downshifting is completed. If the torque response request is not in the high response request state, the first start control is selected. On the other hand, when the rotational speed change of the rotating electrical machine MG for downshifting has not been completed when the start request of the internal combustion engine ENG has been requested, and the torque responsiveness request at that time is in a high response request state The second start control is selected.
  • the second start control is selected.
  • step # 5: No the first start control can be selected.
  • the first start control is selected instead of the second start control. This is different from the example shown in FIG.
  • the vehicle control unit 34 (the control device 32) performs the start for selecting the start control of the internal combustion engine ENG according to the procedure shown in FIG. 6 while the downshift is not performed in the electric travel state. Perform control selection processing.
  • FIG. 6 is a flowchart showing a start control selection process while the downshift is not performed in the electric travel state.
  • the vehicle control unit 34 monitors whether or not a start request for the internal combustion engine ENG has been generated (step # 09) while the downshift in the electric travel state is not performed (step # 08: No). If there is a request for starting the internal combustion engine ENG (step # 09: Yes), it is determined whether or not the torque responsiveness request is in a high response request state (step # 10).
  • step # 10: No When the torque responsiveness request is not in the high responsiveness request state, that is, in the low responsiveness request state (step # 10: No), the first start control is selected (step # 11). When the torque response request is in the high response request state (step # 10: Yes), the second start control is selected (step # 12).
  • FIG. 7 shows a specific example in the case where there is a request for starting the internal combustion engine ENG while downshifting in the electric running state, and the first start control is performed after completion of the change in the rotational speed of the rotating electrical machine MG for downshifting.
  • FIG. 9 is a time chart showing a specific example in the case where there is a request for starting the internal combustion engine ENG during the downshift in the electric running state and the second start control is performed.
  • FIG. 8 is a time chart showing a comparative example.
  • the traveling mode is set to the electric traveling mode until time T01, and the vehicle 1 is traveling by the output torque of the rotating electrical machine MG with the engagement device SSC released. Further, the rotation of the internal combustion engine ENG is stopped, and the rotating electrical machine MG outputs a positive torque (running torque) having a magnitude corresponding to the wheel required torque.
  • the target gear position is changed to the low speed side, and the downshift control (on-downshift control in this example) is started at the time T01.
  • the adjustment of the hydraulic pressure command of the engagement side engagement device is started at time T01 so that the engagement pressure of the engagement side engagement device increases from zero to the engagement side preliminary pressure.
  • the adjustment of the hydraulic pressure command of the disengagement side engagement device is started at a time between time T01 and time T02 so that the engagement pressure of the disengagement side engagement device decreases from the complete engagement pressure to the minimum engagement pressure.
  • the engagement side preliminary pressure is an engagement pressure during standby before the engagement side engagement device is engaged.
  • the engagement-side preliminary pressure is set to a stroke end pressure that is an engagement pressure for positioning the piston at the stroke end position, or a pressure that is smaller than the stroke end pressure by a predetermined pressure.
  • the minimum engagement pressure is a lower limit engagement that can maintain the disengagement side engagement device in the direct engagement state in a state where the traveling torque having a magnitude corresponding to the wheel required torque output by the rotating electrical machine MG is transmitted. Pressure.
  • the start request for the internal combustion engine ENG is generated at a time between time T01 and time T02, and the torque until the end time (time T03) of the rotational speed change of the rotating electrical machine MG for downshifting is reached.
  • time T03 the first start control is performed after the end of the change in rotational speed of the rotating electrical machine MG for downshifting (after time T03). Therefore, during the inertia phase control started at time T02, the rotating electrical machine MG does not need to output the starting torque Ts, and the inertia torque TI output in addition to the running torque by the rotating electrical machine MG is used for downshifting.
  • the disengagement side engagement device shifts from the direct engagement state to the slip engagement state, and the rotation speed of the rotating electrical machine MG starts to increase from the pre-shift synchronous rotation speed Wbf.
  • the hydraulic pressure command of the disengagement side engagement device after the transition to the slip engagement state is adjusted so that the transmission torque capacity of the disengagement side engagement device becomes a magnitude corresponding to the required wheel torque.
  • the synchronous rotation speed Wbf before the shift is the rotation speed of the input member I in a state where all of the shift engagement devices that are engaged to form the shift stage before the shift are directly connected, This coincides with the rotational speed obtained by multiplying the rotational speed of O by the speed ratio of the gear stage before the gear shift.
  • the post-shift synchronous rotation speed Waf is the rotational speed of the input member I in a state where all the shift engagement devices that are engaged to form the post-shift gear stage are directly engaged, and the output member O Is equal to the rotation speed obtained by multiplying the rotation speed by the speed ratio of the speed stage after the shift.
  • control rotational speed control
  • control is performed to control the output torque of the rotating electrical machine MG to bring the rotational speed of the rotating electrical machine MG closer to the target rotational speed.
  • the torque phase is controlled after time T03, which is the time after the end of the inertia phase control.
  • the hydraulic pressure command of the release-side engagement device is adjusted so that the engagement pressure of the release-side engagement device decreases toward zero, and the engagement pressure of the engagement-side engagement device is completely engaged.
  • the hydraulic pressure command of the engagement side engagement device is adjusted so that the pressure gradually increases to the combined pressure.
  • the torque ratio gradually decreases as the engagement pressure of the engagement-side engagement device increases.
  • the torque ratio is relative to the transmission device TM with respect to the output torque output from the transmission device TM to the wheel W side of the power transmission path (in this example, the torque output from the transmission device TM to the output member O).
  • the torque phase control is started at a time between time T03 and time T04, and the torque phase control is ended at time T05.
  • the control device 32 when performing the first start control, the control device 32 is engaged within a period during which a change in torque ratio due to downshift occurs (that is, within a period during which torque phase control is performed).
  • the engagement device SSC is configured to be controlled so that the transmission torque of the device SSC starts to increase.
  • the timing at which the transmission torque of the engagement device SSC starts to rise generally coincides with the timing at which the rotational speed of the internal combustion engine ENG starts to rise.
  • the adjustment of the hydraulic pressure command of the engagement device SSC is started from a time slightly before time T03 so that the transmission torque of the engagement device SSC starts to increase at time T04.
  • the engagement device SSC is shifted from the released state to the sliding engagement state.
  • the rotational speed of the internal combustion engine ENG starts to increase due to the starting torque Ts transmitted from the rotary electric machine MG side to the internal combustion engine ENG side via the engagement device SSC in the slip engagement state.
  • the rotary electric machine MG does not need to output the inertia torque Ti, the shortage of the output torque of the rotary electric machine MG as described above hardly occurs.
  • the hydraulic pressure command of the engagement device SSC in the sliding engagement state is adjusted so that the transmission torque capacity of the engagement device SSC becomes a magnitude corresponding to the set starting torque Ts.
  • the engagement pressure of the engagement device SSC is increased after the combustion of the internal combustion engine ENG is started so as not to prevent the increase in the rotational speed of the internal combustion engine ENG after the combustion of the internal combustion engine ENG. Once lowered, the engagement pressure of the engagement device SSC is increased to the full engagement pressure. Further, in the example shown in FIG. 7, by shifting the engagement device SSC from the sliding engagement state to the direct engagement state in a state where the rotation speed of the internal combustion engine ENG is higher than the rotation speed of the rotating electrical machine MG, The torque transmission direction is prevented from reversing before and after the direct engagement of the engagement device SSC.
  • the engagement device SSC may be controlled such that the transmission torque of the engagement device SSC begins to increase at a later point in time during which the change in the torque ratio due to the shift occurs.
  • the rotating electrical machine for the downshift is used. Since the first start control is performed after the change in the rotation speed of the MG, the rotary electric machine MG does not need to output both the inertia torque Ti and the start torque Ts in addition to the running torque, and has already started.
  • the internal combustion engine ENG can be started without significantly affecting the progress of the downshift operation.
  • a shock is generated as a result of not performing such control and the downshift operation already started is affected by the start control of the internal combustion engine ENG will be described with reference to FIG.
  • the time T11 in FIG. 8 corresponds to the time T01 in FIG. That is, in the comparative example shown in FIG. 8, the downshift control is started at time T11.
  • the first start control is performed without waiting for the end of the rotation speed change of the rotating electrical machine MG in response to the start request of the internal combustion engine ENG generated between the time T11 and the time T12. . Therefore, in this comparative example, between time T11 and time 12, adjustment of the hydraulic pressure command for shifting the engagement device SSC from the released state to the sliding engagement state is started, and control of the inertia phase is started.
  • the engagement device SSC has shifted to the sliding engagement state.
  • the rotating electrical machine MG needs to output both the inertia torque Ti and the starting torque Ts in addition to the running torque.
  • the sum of the running torque, the start torque Ts, and the inertia torque Ti tends to exceed the maximum torque Tmax.
  • Tmax the maximum torque
  • FIG. 9 shows a specific example according to the present embodiment when there is a request for starting the internal combustion engine ENG during the downshift in the electric running state and the second start control is performed in response to the start request.
  • time T21 corresponds to time T01 in FIG. That is, also in the specific example shown in FIG. 9, the downshift control is started at time T21.
  • the start request of the internal combustion engine ENG is generated between the time T21 and the time T22, and the torque responsiveness request at that time is in the high response request state.
  • 2nd starting control is assumed.
  • FIG. 9 shows a specific example according to the present embodiment when there is a request for starting the internal combustion engine ENG during the downshift in the electric running state and the second start control is performed in response to the start request.
  • the second start control is started immediately after the start request of the internal combustion engine ENG is generated, and at the time T22 when the inertia phase control is started, the rotational speed of the internal combustion engine ENG is increased by the torque of the starter motor ST. It is starting to rise.
  • the rotational speed of the internal combustion engine ENG is higher than the rotational speed of the rotating electrical machine MG. It has become.
  • the hydraulic pressure command of the engagement device SSC for increasing the engagement pressure of the engagement device SSC to the full engagement pressure is adjusted, and the engagement device SSC is shifted from the released state to the directly connected state.
  • the vehicle control unit 34 when the vehicle control unit 34 (the control device 32) makes a start request for the internal combustion engine ENG while performing a downshift in the electric travel state, the torque responsiveness request is high. In the response request state, the second start control is performed. In the case where the torque responsiveness request is in the low response request state, the first start control is performed after the end of the change in the rotational speed of the rotating electrical machine MG for the downshift.
  • the configuration for performing the above has been described as an example. However, the embodiment of the present invention is not limited to this, and when the vehicle control unit 34 makes a start request for the internal combustion engine ENG while performing a downshift in the electric traveling state, a request other than a torque response request is made.
  • the index may be configured to determine whether to perform the second start control or to perform the first start control after the end of the change in the rotational speed of the rotating electrical machine MG for downshifting. For example, based on the reason why the internal combustion engine start condition is satisfied, when the vehicle control unit 34 satisfies the internal combustion engine start condition in order to increase the wheel transmission torque, the vehicle control unit 34 performs the second start control and causes the rotating electrical machine MG to generate power. Therefore, when the internal combustion engine start condition is satisfied, the first start control may be performed after the change in the rotation speed of the rotating electrical machine MG for downshifting is completed.
  • the vehicle drive device 2 to be controlled by the control device 32 is connected to the engagement device SSC in order from the internal combustion engine ENG side to the power transmission path connecting the internal combustion engine ENG and the wheels W.
  • the vehicle drive device 2 having another configuration may be controlled.
  • a clutch CL is provided in the power transmission path between the rotating electrical machine MG and the transmission TM, and the clutch CL is connected to the input member I and the input shaft (intermediate shaft M) of the transmission TM.
  • the vehicle drive device 2 may be a control target.
  • the case where the vehicle drive device 2 including a stepped automatic transmission is used as the transmission device TM is described as an example of control.
  • a dual clutch type transmission called a so-called DCT (Dual Clutch Transmission) is used.
  • a vehicle control device including another type of transmission such as a device may be a control target.
  • both the engagement device SSC and the shift engagement device are hydraulic drive engagement devices
  • a driving force other than hydraulic pressure for example, an electromagnet driving force, a servo motor driving force, or the like.
  • a combined device may be used.
  • both the engagement device SSC and the shift engagement device reduce the supply hydraulic pressure (hydraulic pressure command) to reduce the transmission torque capacity (engagement).
  • the case of a normally open type engaging device in which the pressure is reduced has been described as an example.
  • one or both of the engaging device SSC and the shifting engaging device are engaged by spring pressure or the like, and the supply hydraulic pressure (hydraulic pressure)
  • the normally closed engagement device in which the transmission torque capacity (engagement pressure) decreases by increasing the command) may be used.
  • each speed stage is formed by controlling two of the plurality of speed change engagement devices to the engaged state.
  • the transmission apparatus TM is configured to be capable of forming six shift stages with different transmission ratios as the forward shift stage has been described as an example.
  • the transmission apparatus TM can be formed.
  • the number of forward shift speeds may be other than “6” (eg, “8”).
  • the transmission TM is a so-called CVT (Continuously Variable Variable Transmission). It is also possible to control a vehicle control device including a continuously variable automatic transmission that is called as a control target. Note that downshift in this case simply means changing the gear ratio after the shift to be larger than the gear ratio before the shift.
  • An engagement device (SSC), a rotating electrical machine (MG), and a transmission device (TM) are connected to a power transmission path connecting the internal combustion engine (ENG) and the wheels (W) in order from the internal combustion engine (ENG) side.
  • the starting control for starting the vehicle is the first starting control, and the driving state in which the vehicle (1) is driven by the output torque of the rotating electrical machine (MG) in the released state of the engagement device (SSC) is the electric driving state.
  • TM speed change device
  • the end of the downshift is completed.
  • the first start control is performed later.
  • the rotary electric machine (MG) is required to output an inertia torque (Ti) for changing the rotation speed of the rotary electric machine (MG), it is necessary to output the starting torque (Ts).
  • the first start control required for) is not performed. Therefore, even when a start request for the internal combustion engine (ENG) is generated while downshifting is performed in the electric traveling state, the already started downshift operation can be appropriately advanced.
  • the internal combustion engine (ENG) is started by, for example, a time point after the end of the rotational speed change of the rotating electrical machine (MG) for downshifting (that is, the rotating electrical machine (MG) needs to output an inertia torque (Ti). It is possible to carry out by the first start control at a time point where there is no) or by a method that does not require the output torque of the rotating electrical machine (MG) at a time point before that. In any case, the internal combustion engine (ENG) can be started without greatly affecting the progress of the downshift operation that has already started.
  • the end of the downshift is after the end of the rotation speed change of the rotating electrical machine (MG) due to the output torque of the rotating electrical machine (MG) for downshifting.
  • the first start control can be performed after the rotating electrical machine (MG) does not need to output the inertia torque (Ti) for downshifting. Therefore, the internal combustion engine (ENG) can be started without significantly affecting the progress of the already started downshift operation.
  • the rotating electrical machine in the power transmission path with respect to the transmission (TM) with respect to the output torque output from the transmission (TM) to the wheel (W) side of the power transmission path (MG)
  • the engagement device (SSC) controlling the engagement device (SSC) so that the transmission torque of the engagement device (SSC) starts to increase.
  • the engagement device (SSC) In order to transfer the starting torque (Ts) from the rotating electrical machine (MG) to the internal combustion engine (ENG), when the engagement device (SSC) is shifted from the release state to the slip engagement state, the engagement device (SSC) At the timing when the transmission torque starts to rise, the torque transmitted to the wheel (W) (wheel transmission torque) may vary.
  • the timing at which such fluctuations in the wheel transmission torque can occur can be included in a period in which the torque ratio changes due to the downshift. Note that, during a period in which the torque ratio changes, generally, the magnitude of the wheel transmission torque changes in accordance with the change in the torque ratio. Therefore, even if the wheel transmission torque fluctuates at the above timing, the fluctuation can be confused with the change in the wheel transmission torque accompanying the change in the torque ratio. It is possible to reduce the uncomfortable feeling.
  • the first start control when there is a request for starting the internal combustion engine (ENG) while the electric running state is not performed and the downshift is not performed.
  • the start control for starting the internal combustion engine (ENG) by the output torque of the starter motor (ST) is the second start control, and the internal combustion engine is performed while the downshift is performed in the electric travel state.
  • the engine (ENG) is requested to start, if the torque responsiveness request, which is a request for responsiveness to the torque transmitted to the wheel (W), is in the high response request state, the second start control.
  • the torque response request is a low response request state in which the request for the response is lower than the high response request state, it is preferable to perform the first start control.
  • This configuration requires the output torque of the rotating electrical machine (MG) without waiting for the end of the rotational speed change of the rotating electrical machine (MG) for downshifting when the torque responsiveness request is in a high response request state.
  • the start control of the internal combustion engine by the second start control that is not performed can be started. Therefore, the output torque of the internal combustion engine (ENG) is set to the wheel (compared to the case where the first start control is performed after the rotation speed change of the rotating electrical machine (MG) for downshifting is completed to start the internal combustion engine (ENG)). It becomes possible to realize the state that can be transmitted to W) at an early stage.
  • the first start control is performed and the internal combustion engine (ENG) is started after the rotation speed change of the rotating electrical machine (MG) for downshifting is completed.
  • a vehicle such as a driver (rather than realizing a state where the output torque of the internal combustion engine (ENG) can be transmitted to the wheels (W) at an early stage)
  • the internal combustion engine (ENG) can be started by giving priority to not generating an operation sound of the starter motor (ST) that may give the occupant an uncomfortable feeling.
  • durability of the starter motor (ST) is easily ensured by not performing the second start control more than necessary.
  • the first start is performed.
  • the internal combustion engine (ENG) can be quickly started by starting the control and using the output torque of the rotating electrical machine (MG).
  • the second start control is started and the starter is started.
  • the internal combustion engine (ENG) is started by the output torque of the motor (ST).
  • the rotating electrical machine (MG) does not need to bear the starting torque (Ts) and the inertia torque (Ti), and therefore the maximum output torque of the rotating electrical machine (MG). (Tmax) can be used as the running torque. Therefore, it becomes possible to respond to a higher required wheel torque.
  • the technology according to the present disclosure controls a vehicle drive device in which an engagement device, a rotating electrical machine, and a transmission device are provided in order from the internal combustion engine side in a power transmission path that connects the internal combustion engine and wheels. It can be used for a control device.
  • Vehicle 2 Vehicle drive device 32: Control device ENG: Internal combustion engine MG: Rotating electric machine SSC: Engagement device ST: Starter motor TM: Transmission device Tmax: Maximum torque W: Wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 電動走行状態においてダウンシフトを行っている間に内燃機関の始動要求があった場合に、既に開始しているダウンシフト動作の進行に大きな影響を与えることなく内燃機関を始動させることが可能な制御装置を実現する。 係合装置(SSC)を介して回転電機(MG)の出力トルクによって内燃機関(ENG)を始動させる始動制御を第一始動制御とする。制御装置(32)は、変速装置(TM)による変速比を、変速後の変速比が変速前の変速比に対して大きくなるように変更するダウンシフトを電動走行状態で行っている間に内燃機関(ENG)の始動要求があった場合には、ダウンシフトの終了後に第一始動制御を行う。

Description

制御装置
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、内燃機関の側から順に、係合装置、回転電機、及び、変速装置が設けられた車両用駆動装置を制御対象とする制御装置に関する。
 上記のような制御装置として、特開2012-121568号公報(特許文献1)に記載されたものが知られている。特許文献1には、係合装置の解放状態で回転電機の出力トルクによって車両を走行させている電動走行状態において、回転電機の出力トルクによって内燃機関を始動させる始動制御を行う際の、ショックを軽減するための技術が記載されている。具体的には、内燃機関の始動制御時に、変速段を形成するために係合されている変速装置の変速用係合装置を滑り係合状態に制御することで、内燃機関の始動に伴うトルク変動を当該変速用係合装置によって吸収することが記載されている。そして、特許文献1には、内燃機関の始動時に変速装置のダウンシフトが要求される場合には、トルク変動の吸収のために滑り係合状態に制御する変速用係合装置として、ダウンシフトによって解放される変速用係合装置を選択することが記載されている。
特開2012-121568号公報
 ところで、車両の運転者のドライバビリティを適切に確保すべく、電動走行状態において内燃機関の始動制御や変速装置のダウンシフトを行っている間も、車輪要求トルク(車輪に伝達することが要求されるトルク)と同等の大きさのトルクが車輪に伝達されるように、車輪要求トルクに応じた大きさの走行トルクを回転電機に出力させることが望ましい。そのため、電動走行状態において上記のような内燃機関の始動制御を行う場合には、走行トルクに加えて、内燃機関を始動させるための始動トルクを出力することが、回転電機に要求される。また、電動走行状態においてダウンシフトを行う場合には、走行トルクに加えて、変速比の変化量に応じた量だけ回転電機の回転速度を変化させるためのイナーシャトルクを出力することが、回転電機に要求される。よって、例えば、電動走行状態においてダウンシフトを行っている間に内燃機関の始動要求があり、ダウンシフト制御と並行して内燃機関の始動制御を行う場合には、走行トルクに加えて始動トルク及びイナーシャトルクの双方を出力することが、回転電機に要求される。
 内燃機関の始動要求は、一般に、車輪要求トルクが大きい状況下で発生する。そのため、上記のようにダウンシフト制御と並行して内燃機関の始動制御を行う場合には、走行トルク、始動トルク、及びイナーシャトルクの総和が、回転電機が出力可能な最大トルクを超えるおそれがある。すなわち、ダウンシフト制御と並行して内燃機関の始動制御を行うことで、回転電機の出力トルクが不足し、既に開始しているダウンシフト動作の進行に影響を与えるおそれがある。しかしながら、特許文献1には、電動走行状態においてダウンシフトを行っている間に内燃機関の始動要求が発生した場合の制御について記載されていない。
 そこで、電動走行状態においてダウンシフトを行っている間に内燃機関の始動要求があった場合に、既に開始しているダウンシフト動作の進行に大きな影響を与えることなく内燃機関を始動させることが可能な制御装置の実現が望まれる。
 上記に鑑みた、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、係合装置、回転電機、及び、変速装置が設けられた車両用駆動装置を制御対象とする制御装置の特徴構成は、前記係合装置を介して前記回転電機の出力トルクによって前記内燃機関を始動させる始動制御を第一始動制御とし、前記係合装置の解放状態で前記回転電機の出力トルクによって車両を走行させている走行状態を電動走行状態として、前記変速装置による変速比を、変速後の変速比が変速前の変速比に対して大きくなるように変更するダウンシフトを前記電動走行状態で行っている間に前記内燃機関の始動要求があった場合には、前記ダウンシフトの終了後に前記第一始動制御を行う点にある。
 上記の特徴構成によれば、電動走行状態でダウンシフトを行っている間に内燃機関の始動要求が発生した場合であって、第一始動制御を行う場合には、ダウンシフトの終了後に第一始動制御が行われる。すなわち、回転電機の回転速度変化のためのイナーシャトルクを出力することが回転電機に要求される間は、始動トルクを出力することが回転電機に要求される第一始動制御は行われない。よって、電動走行状態でダウンシフトを行っている間に内燃機関の始動要求が発生した場合でも、既に開始しているダウンシフト動作を適切に進行させることができる。そして、内燃機関の始動は、例えば、ダウンシフトのための回転電機の回転速度変化の終了後の時点(すなわち、回転電機がイナーシャトルクを出力する必要のない時点)で第一始動制御によって行うことや、それ以前の時点において回転電機の出力トルクを必要としない方法によって行うことが可能である。いずれの場合でも、既に開始しているダウンシフト動作の進行に大きな影響を与えることなく、内燃機関を始動させることが可能である。
実施形態に係る車両用駆動装置及び制御装置の概略構成を示す図である。 実施形態に係る変速装置のスケルトン図である。 実施形態に係る変速装置の作動表である。 回転電機の回転速度と出力トルクとの関係の一例を示す特性図である。 実施形態に係る始動制御選択処理の処理手順を示すフローチャートである。 実施形態に係る始動制御選択処理の他の処理手順を示すフローチャートである。 実施形態に係る内燃機関始動制御の制御挙動の一例を示すタイムチャートである。 比較例に係る内燃機関始動制御の制御挙動の一例を示すタイムチャートである。 実施形態に係る内燃機関始動制御の制御挙動の別例を示すタイムチャートである。 その他の実施形態に係る車両用駆動装置の概略構成を示す図である。 その他の実施形態に係る車両用駆動装置の概略構成を示す図である。
 制御装置の実施形態について、図面を参照して説明する。制御装置は、車両用駆動装置を制御対象とする制御装置である。本実施形態では、図1に示すように、制御装置32は、駆動制御ユニット30と、車両制御ユニット34とを備えている。
 以下の説明では、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を意味する。この概念には、2つの回転要素が一体回転するように連結された状態や、2つの回転要素が1つ以上の伝動部材を介して駆動力を伝達可能に連結された状態が含まれる。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(軸、歯車機構、ベルト、チェーン等)が含まれ、回転及び駆動力を選択的に伝達する係合装置(摩擦係合装置や噛み合い式係合装置等)が含まれてもよい。
 また、摩擦係合装置の係合の状態について、「係合状態」は、摩擦係合装置に伝達トルク容量が生じている状態である。伝達トルク容量は、摩擦係合装置が摩擦により伝達することができる最大のトルクの大きさである。伝達トルク容量の大きさは、摩擦係合装置の係合圧(入力側係合部材と出力側係合部材とを相互に押し付けあう圧力)に比例して変化する。「係合状態」には、摩擦係合装置の一対の係合部材間(入力側係合部材と出力側係合部材との間)に回転速度差(滑り)がない「直結係合状態」と、摩擦係合装置の一対の係合部材間に回転速度差がある「滑り係合状態」とが含まれる。
 また、「解放状態」は、摩擦係合装置に伝達トルク容量が生じていない状態である。摩擦係合装置には、制御装置により伝達トルク容量を生じさせる指令が出されていない場合でも、係合部材(摩擦部材)同士の引き摺りによって伝達トルク容量が生じる場合がある。本明細書では、このような引き摺りトルクは係合の状態の分類に際して考慮せず、伝達トルク容量を生じさせる指令が出されていない場合に係合部材同士の引き摺りによって伝達トルク容量が生じている状態も「解放状態」に含める。
 摩擦係合装置の係合状態では、一対の係合部材間の摩擦により、一対の係合部材間でトルクが伝達される。摩擦係合装置の滑り係合状態では、動摩擦により回転速度の高い方の係合部材から回転速度の低い方の係合部材に伝達トルク容量の大きさのトルク(スリップトルク)が伝達される。一方、摩擦係合装置の直結係合状態では、伝達トルク容量の大きさを上限として、静摩擦により一対の係合部材間に作用するトルクが伝達される。
1.車両用駆動装置の構成
 本実施形態に係る制御装置32の制御対象となる車両用駆動装置2の構成について説明する。図1に示すように、車両1(ハイブリッド車両)には、内燃機関ENG、車両用駆動装置2、及び車輪Wが備えられている。なお、図1では、駆動力の伝達経路を実線で示し、信号や油圧の伝達経路を一点鎖線で示し、電力の伝達経路を二重の破線で示している。車両用駆動装置2は、内燃機関ENGと車輪Wとを結ぶ動力伝達経路に、内燃機関ENGの側から順に、係合装置SSC、回転電機MG、及び変速装置TMを備えている。係合装置SSCは摩擦係合装置である。ここで、内燃機関は、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機(例えば、ガソリンエンジン、ディーゼルエンジン等)である。また、回転電機は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータとしての双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。車両用駆動装置2は、内燃機関ENG及び回転電機MGの少なくとも一方のトルクを車輪Wに伝達させて車両1を走行させる。本明細書では、車両1を前進させる方向のトルク(前進加速方向のトルク)を正トルクとし、それとは反対方向のトルクを負トルクとする。車両用駆動装置2は、内燃機関ENGの出力トルクが正トルクとして車輪Wに伝達されるように構成されている。変速装置TMによって、変速比の異なる複数の変速段が選択的に形成される。変速装置TMは、複数の変速用係合装置(図2参照)を備える。
 車両用駆動装置2は、図1に示すように、入力部材Iと出力部材Oとを備えている。入力部材Iは、係合装置SSCと変速装置TMとの間の動力伝達経路に設けられる伝動部材である。本実施形態では、入力部材Iは、変速装置TMの入力軸として機能する軸部材である。出力部材Oは、変速装置TMと車輪Wとの間の動力伝達経路に設けられる伝動部材である。本実施形態では、出力部材Oは、変速装置TMの出力軸として機能する軸部材である。出力部材Oと車輪Wとの間の動力伝達経路には出力用差動歯車装置DFが備えられ、出力部材Oの回転は、出力用差動歯車装置DFを介して左右2つの車輪Wに分配されて伝達される。
 内燃機関ENGの出力軸Eo(例えば、クランクシャフト)は、係合装置SSCを介して入力部材Iに駆動連結されている。係合装置SSCはクラッチである。本実施形態では、係合装置SSCが直結係合した直結係合状態で、出力軸Eoと入力部材Iとが一体回転する。内燃機関ENGを始動する際には、例えば、係合装置SSCを介して伝達される回転電機MGのトルクによって、内燃機関ENGの出力軸Eoが回転駆動(クランキング)される。本実施形態では、車両1には内燃機関ENGを始動するための専用の回転電機であるスタータモータSTが備えられており、内燃機関ENGを始動する際に、スタータモータSTのトルクによって内燃機関ENGの出力軸Eoを回転駆動することもできる。
 回転電機MGは、蓄電装置36から電力の供給を受けて力行し、或いは、内燃機関ENGのトルクや車両1の慣性力によって発電(回生)した電力を蓄電装置36に供給して蓄電させる。図示は省略するが、回転電機MGは、ケース等の非回転部材に固定されるステータと、入力部材Iに駆動連結されるロータとを備える。本実施形態では、回転電機MGのロータは、入力部材Iと一体回転する。よって、係合装置SSCが直結係合した直結係合状態で、回転電機MG(ロータ)と内燃機関ENG(出力軸Eo)とが一体回転する。
 変速装置TMは、入力部材I(変速入力軸)の回転を変速して出力部材O(変速出力軸)に伝達する。本実施形態では、変速装置TMは、変速比の異なる複数の変速段を形成可能な有段の自動変速装置である。変速装置TMは、入力部材Iの回転を、形成されている変速段に応じた変速比で変速して出力部材Oに伝達する。ここでは、「変速比」を、出力部材Oの回転速度に対する入力部材Iの回転速度の比、すなわち、入力部材Iの回転速度を出力部材Oの回転速度で除算した値とする。変速装置TMは、複数の変速用係合装置を備え、変速用係合装置のそれぞれの係合の状態に応じて、変速比の異なる複数の変速段が形成される。本実施形態では、複数の変速用係合装置のうちの2つ以上(本例では2つ)が係合すると共にそれ以外が解放した状態で、各段の変速段が形成される。
 具体的には、図2に示すように、変速装置TMは、変速用係合装置として、第一クラッチC1、第二クラッチC2、第三クラッチC3、第一ブレーキB1、第二ブレーキB2、及びワンウェイクラッチF(一方向クラッチ)を備えている。ワンウェイクラッチFを除く変速用係合装置のそれぞれは、摩擦係合装置である。そして、図3の作動表に示すように、複数の変速用係合装置のうちの2つが係合すると共にそれら以外が解放した状態で、各段の変速段が形成される。本例では、変速装置TMは、変速比の異なる6つの前進用変速段(第一段1st、第二段2nd、第三段3rd、第四段4th、第五段5th、第六段6th)、及び1つの後進用変速段(Rev)を形成可能である。前進用の変速段は、第一段から第六段に向かって(すなわち、高速段側に向かって)変速比が段階的に小さくなる。図3の作動表において、「○」は、当該変速用係合装置が係合されることを示し、「無印」は、当該変速用係合装置が解放されることを示している。「(○)」は、内燃機関ENGの回転抵抗を利用した制動(いわゆるエンジンブレーキ)を行う場面等において係合されることを示している。「△」は、ワンウェイクラッチFによる回転規制の対象部材(本例では第二キャリヤCA2)の回転方向が一方の方向である場合には解放され、当該回転方向が他方の方向である場合には係合されることを示している。
 本実施形態では、変速装置TMは、図2に示すように、第一差動歯車装置PG1及び第二差動歯車装置PG2の2つの差動歯車装置を組み合わせて構成されている。第一差動歯車装置PG1は、3つの回転要素(第一サンギヤS1、第一キャリヤCA1、及び第一リングギヤR1)を有するシングルピニオン型の遊星歯車機構により構成されている。第一キャリヤCA1は、第一サンギヤS1に噛み合うと共に第一リングギヤR1に噛み合う複数の第一ピニオンギヤP1を支持する。第二差動歯車装置PG2は、4つの回転要素(第二サンギヤS2、第三サンギヤS3、第二キャリヤCA2、及び第二リングギヤR2)を有するラビニヨ型の遊星歯車機構により構成されている。第二キャリヤCA2は、第二サンギヤS2に噛み合うと共に第二リングギヤR2に噛み合う複数の第二ピニオンギヤP2(ロングピニオンギヤ)と、第二ピニオンギヤP2に噛み合うと共に第三サンギヤS3に噛み合う複数の第三ピニオンギヤP3(ショートピニオンギヤ)とを支持する。
 第一リングギヤR1は、入力部材Iに駆動連結され、本例では入力部材Iと一体回転するように連結されている。第二リングギヤR2は、出力部材Oに駆動連結され、本例では出力部材Oと一体回転するように連結されている。第一キャリヤCA1は、第一クラッチC1を介して第三サンギヤS3に駆動連結されていると共に、第三クラッチC3を介して第二サンギヤS2に駆動連結されている。本例では、第一クラッチC1が直結係合した直結係合状態で、第一キャリヤCA1は第三サンギヤS3と一体回転し、第三クラッチC3が直結係合した直結係合状態で、第一キャリヤCA1は第二サンギヤS2と一体回転する。第一リングギヤR1は、第二クラッチC2を介して第二キャリヤCA2に駆動連結されている。本例では、第二クラッチC2が直結係合した直結係合状態で、第一リングギヤR1は第二キャリヤCA2と一体回転する。
 第一サンギヤS1は、車両用駆動装置2或いは変速装置TMのケース3(非回転部材の一例)に固定されている。第二サンギヤS2は、第一ブレーキB1によりケース3に選択的に固定される。第二キャリヤCA2は、第二ブレーキB2によりケース3に選択的に固定されると共に、ワンウェイクラッチFによりケース3に対する相対回転の方向が一方向のみに制限される。第一段1stにおいて正トルクを入力部材Iから出力部材Oに伝達する場合には、第一クラッチC1が係合されると共にそれ以外の変速用係合装置(但し、ワンウェイクラッチを除く。)が解放される。この場合、第一差動歯車装置PG1を介して入力部材Iから第三サンギヤS3に伝達される正トルクの反力を、ワンウェイクラッチFにより回転が規制された状態の第二キャリヤCA2が受けることで、当該正トルクが第二リングギヤR2を介して出力部材Oに伝達される。一方、第一段1stにおいて負トルクを入力部材Iから出力部材Oに伝達する場合には、第二キャリヤCA2の回転はワンウェイクラッチFによって規制されないため、第一クラッチC1に加えて第二ブレーキB2が係合される。
2.制御装置の構成
 図1に示すように、本実施形態では、車両1の状態(走行状態等)を制御するための制御装置として、制御装置32の他に、内燃機関制御装置31が設けられている。制御装置32や内燃機関制御装置31は、CPU等の演算処理装置を中核として備えると共に、RAMやROM等の記憶装置を備える。ROM等の記憶装置に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置32や内燃機関制御装置31が実行する各機能が実現される。制御装置32や内燃機関制御装置31が備える演算処理装置は、各プログラムを実行するコンピュータとして動作する。制御装置32及び内燃機関制御装置31は、互いに通信可能に構成されており、センサの検出情報及び制御パラメータ等の各種情報を共有すると共に、各種制御信号をやりとりすることで協調制御を行うように構成されている。制御装置32及び内燃機関制御装置31の一方又は双方が、互いに通信可能な複数のハードウェア(複数の分離したハードウェア)の集合によって構成されても良い。また、制御装置32と内燃機関制御装置31とが、共通のハードウェアに備えられる構成とすることもできる。
 車両1には各種センサが備えられており、制御装置32は、当該各種センサの検出情報を取得可能に構成されている。図1には、車両1に備えられるセンサの例として、入力回転速度センサSe1、出力回転速度センサSe2、機関回転速度センサSe3、アクセル開度センサSe4、ブレーキ操作センサSe5、シフト位置センサSe6、蓄電状態センサSe7を示している。入力回転速度センサSe1は、入力部材Iの回転速度、又は入力部材Iと同期回転する部材の回転速度を検出する。なお、同期回転とは、一体回転すること、又は比例した回転速度で回転することを意味する。出力回転速度センサSe2は、出力部材Oの回転速度、又は出力部材Oと同期回転する部材の回転速度を検出する。機関回転速度センサSe3は、内燃機関ENG(出力軸Eo)の回転速度、又は内燃機関ENG(出力軸Eo)と同期回転する部材の回転速度を検出する。制御装置32は、入力回転速度センサSe1の検出情報に基づき入力部材Iや回転電機MG(ロータ)の回転速度を取得し、出力回転速度センサSe2の検出情報に基づき出力部材Oの回転速度や車速を取得し、機関回転速度センサSe3の検出情報に基づき内燃機関ENG(出力軸Eo)の回転速度を取得する。なお、図1に示す例では、制御装置32は、内燃機関制御装置31を介して、機関回転速度センサSe3の検出情報、或いは、当該検出情報に基づく内燃機関ENG(出力軸Eo)の回転速度の情報を取得する。
 アクセル開度センサSe4は、運転者のアクセルペダルの踏み込み量に応じたアクセル開度を検出する。ブレーキ操作センサSe5は、運転者のブレーキペダルの踏み込み量に応じたブレーキ操作量を検出する。シフト位置センサSe6は、シフトレバーの選択位置を検出する。なお、シフトレバーは、複数の走行レンジの中から1つの走行レンジを選択するために運転者が操作するレバーである。シフトレバーの選択位置(シフト位置)には、前進走行レンジ(Dレンジ)を選択するための位置、後進走行レンジ(Rレンジ)を選択するための位置、ニュートラルレンジ(Nレンジ)を選択するための位置、パーキングレンジ(Pレンジ)を選択するための位置等が含まれる。蓄電状態センサSe7は、回転電機MGに電力を供給する蓄電装置36の充電状態又は蓄電量を取得する。制御装置32(本例では、後述する車両制御ユニット34)は、アクセル開度、車速、シフト位置、蓄電装置36の充電状態等のセンサ検出情報に基づいて、車輪Wに伝達することが要求されるトルクである車輪要求トルク(車両要求トルク)を導出すると共に、車両1の走行モードや変速装置TMに形成させる目標変速段等を決定する。決定された走行モードや目標変速段に応じて、係合装置SSC及び各変速用係合装置の係合の状態が、制御装置32が備える駆動制御ユニット30(後述する係合制御部42)によって制御される。なお、走行モードには、回転電機MGのトルクのみを車輪Wに伝達させて車両1を走行させる電動走行モード、内燃機関ENGのトルクのみを車輪Wに伝達させて車両1を走行させるエンジン走行モード、及び、回転電機MG及び内燃機関ENGの双方のトルクを車輪Wに伝達させて車両1を走行させるハイブリッド走行モード(パラレル走行モード)等が含まれる。電動走行モードでは係合装置SSCは解放状態に制御され、エンジン走行モード及びハイブリッド走行モードでは係合装置SSCは係合状態に制御される。以下では、係合装置SSCの解放状態で回転電機MGの出力トルクによって車両1を走行させている走行状態を「電動走行状態」という。電動走行状態は、電動走行モードでの走行中に実現される状態である。
 本実施形態では、図1に示すように、制御装置32は、駆動制御ユニット30及び車両制御ユニット34を備えている。駆動制御ユニット30及び車両制御ユニット34は、互いに通信可能である。駆動制御ユニット30と車両制御ユニット34とは、互いに別のハードウェアに備えられても、共通のハードウェアに備えられても良い。車両制御ユニット34は、内燃機関ENG及び車両用駆動装置2に対して行われる各種の制御(トルク制御、係合制御等)を車両全体として統合する制御を行う。車両制御ユニット34は、車両全体のトルク分担を制御する機能を有する。具体的には、車両制御ユニット34は、内燃機関ENG及び回転電機MGのそれぞれのトルク分担割合を考慮して、内燃機関要求トルク及び回転電機要求トルクを決定する。内燃機関要求トルクは、内燃機関ENGが出力するトルクとして当該内燃機関ENGに要求されるトルクである。回転電機要求トルクは、回転電機MGが出力するトルクとして当該回転電機MGに要求されるトルクである。回転電機MGに発電を行わせる場合には、回転電機要求トルクは負トルクに設定される。基本的に、内燃機関要求トルクと回転電機要求トルクとの和が車輪要求トルクに等しくなるように、内燃機関要求トルク及び回転電機要求トルクのそれぞれが決定される。
 内燃機関制御装置31は、内燃機関ENGの動作制御を行う。内燃機関制御装置31は、車両制御ユニット34から内燃機関要求トルクが指令されている場合には、当該内燃機関要求トルクを出力するように内燃機関ENGを制御する。また、内燃機関制御装置31は、車両制御ユニット34から内燃機関ENGの始動要求があった場合には、内燃機関ENGへの燃料供給や点火を開始する等して内燃機関ENGを始動させ、車両制御ユニット34から内燃機関ENGの停止要求があった場合には、内燃機関ENGへの燃料供給や点火を停止する等して内燃機関ENGを停止させる。
 駆動制御ユニット30は、係合装置SSC及び各変速用係合装置の係合の状態を制御すると共に、回転電機MGの動作制御を行う。駆動制御ユニット30は、回転電機MGの動作制御を行う回転電機制御部41と、各係合装置の係合の状態を制御する係合制御部42とを、互いに通信可能に備えている。回転電機制御部41及び係合制御部42のそれぞれは、記憶装置に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により構成される。回転電機制御部41は、車両制御ユニット34から回転電機要求トルクが指令されている場合には、当該回転電機要求トルクを出力するように回転電機MGを制御する。具体的には、回転電機制御部41は、蓄電装置36の直流電圧を交流電圧に変換して回転電機MGに供給するインバータ装置35を制御することで、回転電機MGの出力トルクを制御する。係合制御部42は、車両用駆動装置2に備えられる各係合装置(係合装置SSC及び各変速用係合装置を含む。)の係合の状態を、車両制御ユニット34が決定した状態となるように制御する。係合制御部42は、車両制御ユニット34が決定した走行モードを実現するように且つ車両制御ユニット34が決定した目標変速段を形成するように、各係合装置の係合の状態を制御する。
 本実施形態では、目標変速段は、変速マップ(図示せず)を参照することで車両制御ユニット34により決定される。変速マップは、アクセル開度及び車速と、変速装置TMにおける変速段との関係を規定したマップである。変速マップには、複数のアップシフト線と複数のダウンシフト線とが規定されている。なお、アップシフトとは、変速装置の変速比を、変速後の変速比が変速前の変速比に対して小さくなるように変更することをいう。一方、ダウンシフトとは、変速装置の変速比を、変速後の変速比が変速前の変速比に対して大きくなるように変更することをいう。本実施形態においては、変速装置TMは有段の自動変速装置であるので、アップシフトとは、高速段側(変速比を相対的に小さくする側)への変速段の変更であり、ダウンシフトとは、低速段側(変速比を相対的に大きくする側)への変速段の変更である。すなわち、アップシフトとは、変速装置TMに形成されている変速段を、当該変速段よりも変速比が小さい変速段に切り替えることであり、ダウンシフトとは、変速装置TMにより形成されている変速段を、当該変速段よりも変速比が大きい変速段に切り替えることである。アクセル開度及び車速が変化して変速マップ上でアップシフト線を跨ぐと、目標変速段が1段アップシフトされ、アクセル開度及び車速が変化して変速マップ上でダウンシフト線を跨ぐと、目標変速段が1段ダウンシフトされる。係合制御部42は、変速段を切り替える変速制御を行う際には、変速段の切り替えのために解放される変速用係合装置である解放側係合装置を解放させると共に、変速段の切り替えのために係合される変速用係合装置である係合側係合装置を係合させる、いわゆるつなぎ替え変速を行う。係合側係合装置は、変速制御の開始前は解放され、変速制御によって係合される係合装置である。解放側係合装置は、変速制御の開始前は係合され、変速制御によって解放される係合装置である。解放側係合装置は、変速前の変速段を形成するために係合される複数の変速用係合装置のうち、変速後の変速段を形成するために係合される複数の変速用係合装置との間で共通しない変速用係合装置に設定される。係合側係合装置は、変速後の変速段を形成するために係合される複数の変速用係合装置のうち、変速前の変速段を形成するために係合される複数の変速用係合装置との間で共通しない変速用係合装置に設定される。例えば、図3に示すように、変速前の変速段が第三段3rdで変速後の変速段が第二段2ndである場合、第三クラッチC3が解放側係合装置に設定され、第一ブレーキB1が係合側係合装置に設定される。
 本実施形態では、係合制御部42の制御対象の係合装置は、油圧駆動式の摩擦係合装置である。係合制御部42は、係合装置のそれぞれに供給される油圧を、油圧制御装置PCを介して制御することで、係合装置のそれぞれの係合の状態を制御する。各係合装置の係合圧は、当該係合装置に供給されている油圧の大きさに比例して変化する。すなわち、係合装置に生じる伝達トルク容量の大きさは、当該係合装置に供給されている油圧の大きさに比例して変化する。そして、各係合装置の係合の状態は、供給されている油圧に応じて、直結係合状態、滑り係合状態、及び解放状態のいずれかに制御される。詳細は省略するが、油圧制御装置PCは、オイルポンプ(図示せず)から供給される作動油の油圧を調整するための油圧制御弁(リニアソレノイド弁等)を備えている。オイルポンプは、例えば、出力軸Eoや出力部材O等の車両用駆動装置2に備えられる回転部材によって駆動される機械式ポンプや、専用の回転電機により駆動される電動ポンプ等とされる。油圧制御装置PCは、係合制御部42からの油圧指令に応じて油圧制御弁の開度を調整することで、当該油圧指令に応じた油圧の作動油を各係合装置へ供給する。
 車両制御ユニット34は、内燃機関ENGを始動させる条件である内燃機関始動条件が成立した場合に、内燃機関ENGの始動要求があったと判定し、内燃機関制御装置31及び駆動制御ユニット30との協働により内燃機関ENGの始動制御を行う。内燃機関始動条件は、車両1が内燃機関ENGのトルクを必要とする状況となった場合に成立する。例えば、車両1の停車中や電動走行モードでの走行中に運転者がアクセルペダルを強く踏み込む等して、回転電機MGのみでは車輪要求トルクが得られない状態となった場合に、内燃機関始動条件が成立する。また、内燃機関ENGを始動させて蓄電装置36を充電することが必要になった場合にも、内燃機関始動条件が成立する。
 車両制御ユニット34が行う内燃機関ENGの始動制御には、第一始動制御が含まれる。第一始動制御は、係合装置SSCを介して回転電機MGの出力トルクによって内燃機関ENGを始動させる始動制御である。第一始動制御を行う際には、滑り係合状態の係合装置SSCを介して伝達される回転電機MGの出力トルクによって、内燃機関ENGが回転される。車両制御ユニット34が第一始動制御を行う際には、係合制御部42は、係合装置SSCの係合圧をゼロから増加させて、係合装置SSCを解放状態から滑り係合状態に移行させる。これにより、係合装置SSCの係合圧(伝達トルク容量)に応じた大きさのスリップトルク(始動トルクTs)が内燃機関ENGに伝達され、内燃機関ENGの回転速度が上昇する。内燃機関制御装置31は、内燃機関ENGの回転速度が燃焼可能な回転速度を上回った後、内燃機関ENGへの燃料供給及び点火を開始して内燃機関ENGの燃焼を開始させる。その後、係合制御部42は、係合装置SSCの係合圧を完全係合圧まで上昇させて、係合装置SSCを直結係合状態に移行させる。ここで、完全係合圧とは、係合装置に伝達されるトルクが変動しても滑りのない係合状態(直結係合状態)を維持できる係合圧である。第一始動制御の具体的内容については、後に図7を参照して説明する。
 本実施形態では、車両制御ユニット34が行う内燃機関ENGの始動制御には、第一始動制御に加えて第二始動制御が含まれる。第二始動制御は、スタータモータSTの出力トルクによって内燃機関ENGを始動させる始動制御である。第二始動制御を行う際には、スタータモータSTの出力トルクによって内燃機関ENGが回転される。車両制御ユニット34が第二始動制御を行う際には、内燃機関制御装置31は、スタータモータSTに電力を供給して内燃機関ENGを回転させると共に、内燃機関ENGへの燃料供給及び点火を開始して内燃機関ENGの燃焼を開始させる。その後、係合制御部42が、係合装置SSCの係合圧をゼロから増加させて、係合装置SSCを解放状態から直結状態に移行させる。第二始動制御の具体的内容については、後に図9を参照して説明する。
 上記のように、第一始動制御を行って内燃機関ENGを始動させる場合には、始動トルクTsが係合装置SSCを介して回転電機MG側から内燃機関ENG側に伝達される。そのため、第一始動制御を行っている間も車輪要求トルクと同等の大きさのトルクを車輪Wに伝達させるためには、回転電機MGは、車輪要求トルクに応じた大きさの走行トルク(車輪駆動トルク)に加えて、始動トルクTsを出力する必要がある。この点に鑑みて、本実施形態では、制御装置32は、電動走行状態における回転電機MGの出力トルクを、回転電機MGが出力可能な最大トルクTmaxから、第一始動制御を行うために必要な回転電機MGの出力トルク分(始動トルクTs分)を減算した値以下に制限するように構成されている。すなわち、図4に示すように、電動走行状態における回転電機MGの出力トルクは、最大トルクTmaxから始動トルクTs分を減算したトルクである許容トルクTa以下に設定される。ここでの「電動走行状態における回転電機MGの出力トルク」には、始動トルクTsやイナーシャトルクTiは含めない。すなわち、ここでの「電動走行状態」は、第一始動制御やダウンシフト制御を行っていない電動走行状態である。電動走行状態における回転電機MGの出力トルクの大きさが、始動トルクTsを更に出力しても最大トルクTmaxを超えない大きさに制限されるため、電動走行状態において内燃機関ENGの始動要求が発生した場合に、第一始動制御を行って内燃機関ENGを適切に始動させることが可能となっている。本実施形態では、車両制御ユニット34が、電動走行状態において回転電機要求トルクを決定する際に、許容トルクTa以下の大きさの回転電機要求トルクを決定するように構成されている。なお、係合装置SSCを介して回転電機MG側から内燃機関ENG側に伝達されるトルク(始動トルクTs)の大きさは、第一始動制御を行っている間に変化し得るが、例えば、第一始動制御を行っている間に必要となる最大の始動トルクTsを最大トルクTmaxから減算して許容トルクTaを決定することや、第一始動制御を行っている間に必要となる始動トルクTsの平均値を最大トルクTmaxから減算して許容トルクTaを決定すること等ができる。なお、図4に示すように、回転電機MGが出力可能な最大トルクTmaxは、一般に、回転電機MGの回転速度に応じて変化するため、許容トルクTaの大きさも、回転電機MGの回転速度に応じて変化する。なお、回転電機MGが出力可能な最大トルクTmaxが、蓄電装置36の蓄電量(充電状態)に応じて変化することを考慮して、許容トルクTaを、蓄電装置36の蓄電量(充電状態)に応じて可変に設定しても良い。
 回転電機MGが走行トルクに加えて他の用途のためのトルクを出力する必要がある状況として、第一始動制御を行う状況以外に、電動走行状態でダウンシフトを行う状況がある。電動走行状態においてダウンシフト制御を行っている間も車輪要求トルクと同等の大きさのトルクを車輪Wに伝達させるためには、回転電機MGは、走行トルクに加えて、ダウンシフトによる変速比の変化量に応じた量だけ回転電機MGの回転速度を変化させるためのイナーシャトルクTiを出力する必要がある。なお、このイナーシャトルクTiは、回転電機MG(ロータ)の慣性モーメントに、回転電機MG(ロータ)の回転速度の変化率(回転加速度)を乗算した大きさのトルクになる。よって、例えば、電動走行状態においてダウンシフトを行っている間に内燃機関ENGの始動要求があり、ダウンシフト制御と並行して第一始動制御を行う場合には、走行トルクに加えて始動トルクTs及びイナーシャトルクTiの双方を出力することが、回転電機MGに要求される。しかしながら、内燃機関ENGの始動要求は、一般に、回転電機MGのみでは車輪要求トルクが得られない状況下で発生するため、その時点での走行トルクの大きさは、許容トルクTaに近い場合が多いと予想される。そして、走行トルクの大きさが許容トルクTaに近い場合には、図4に破線で示すように、走行トルク、始動トルクTs、及びイナーシャトルクTiの総和が、最大トルクTmaxを超えてしまう。すなわち、ダウンシフト制御と並行して第一始動制御を行うことで、回転電機MGの出力トルクが不足し、既に開始しているダウンシフト動作の進行に影響を与えるおそれがある。なお、図4では、イナーシャトルクTiの大きさが始動トルクTsよりも小さい場合を例として示しているが、第一始動制御における内燃機関ENGの回転速度の目標変化率の設定や、ダウンシフト制御における回転電機MGの回転速度の目標変化率の設定によっては、イナーシャトルクTiの大きさが始動トルクTsよりも大きくなる場合もある。
 上記のように、電動走行状態においてダウンシフトを行っている間に内燃機関ENGの始動要求があった場合にダウンシフト制御と並行して第一始動制御を行うと、既に開始しているダウンシフト動作の進行に影響を与えるおそれがある。この点に鑑みて、車両制御ユニット34(制御装置32)は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合に、ダウンシフトが終了するまでの間、第一始動制御を行わない(すなわち、第一始動制御を禁止する)ように構成されている。すなわち、車両制御ユニット34は、回転電機MGがイナーシャトルクTiを出力する必要のある間は第一始動制御を行わないように構成されている。言い換えれば、車両制御ユニット34(制御装置32)は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合であって、第一始動制御を行う場合には、ダウンシフトの終了後に第一始動制御を行うように構成されている。
 更に言えば、本実施形態では、車両制御ユニット34(制御装置32)は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合に、ダウンシフトのための回転電機MGの出力トルクによる回転電機MGの回転速度変化(以下、「ダウンシフトのための回転電機MGの回転速度変化」という。)が終了するまでの間、第一始動制御を行わないように構成されている。言い換えれば、車両制御ユニット34(制御装置32)は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合であって、第一始動制御を行う場合には、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行うように構成されている。なお、ダウンシフトのための回転電機MGの回転速度変化は、回転電機MGの出力トルクにより行われ、この際の回転速度の変化量は、ダウンシフトの前後の変速段の変速比の変化量に応じて定まる。
 本実施形態では、車両制御ユニット34が行う内燃機関ENGの始動制御には、第一始動制御に加えて第二始動制御が含まれる。そして、本実施形態では、車両制御ユニット34(制御装置32)は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合に、トルク応答性要求が高応答要求状態である場合には、第二始動制御を行い、トルク応答性要求が低応答要求状態である場合には、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行うように構成されている。第二始動制御は、回転電機MGの出力トルクを必要としない内燃機関ENGの始動制御である。そのため、第二始動制御は、ダウンシフトのための回転電機MGの回転速度変化の終了を待つことなく開始することができる。上記のように構成することで、常にダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行う場合に比べて、トルク応答性要求が高応答要求状態である場合に、内燃機関ENGの出力トルクを車輪Wに伝達可能な状態を早期に実現することが可能となる。
 ここで、トルク応答性要求とは、車輪Wに伝達するトルク(車輪伝達トルク)に対する応答性の要求である。そして、低応答要求状態は、高応答要求状態よりも応答性に対する要求が低い状態である。ここでの応答性は、運転者による車輪要求トルクを変更させる操作(例えば、アクセルペダルの操作等)が行われてから、車輪要求トルクの当該変更が車輪伝達トルクに反映されるまでの時間についての応答性であり、当該時間が短くなるに従って応答性が高くなる。トルク応答性要求は、例えば、アクセル開度、アクセル開度の変化率、車両モード、及び車速のうちの、少なくともいずれか1つに基づいて定められる。
アクセル開度、アクセル開度の変化率、及び車速については、これらが大きくなるに従って高くなるようにトルク応答性要求が決定される。また、車両モードについては、運転者によって選択されている車両モード(例えば、ノーマルモード、スポーツモード等)に対応するトルク応答性の程度に応じて、トルク応答性要求が決定される。そして、トルク応答性要求を、要求の度合いが高くなるに従って大きくなる数値(指標)で表した場合に、当該数値が閾値以上である状態を高応答要求状態とし、当該数値が閾値未満である状態を低応答要求状態とすることができる。
 上記のように、車両制御ユニット34は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合に、ダウンシフトのための回転電機MGの回転速度変化が終了するまでの間、第一始動制御を行わないように構成されている。この場合の「第一始動制御を行わない」とは、ダウンシフトのための回転電機MGの回転速度変化が終了するまでの間に、係合装置SSCの伝達トルクの上昇(基本的にゼロからの上昇)を開始させないことを意味し、当該回転速度変化が終了するまでの間に係合装置SSCへの油圧の供給を開始する構成を排除するものではない。また、上記のように、車両制御ユニット34(制御装置32)は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合であって、第一始動制御を行う場合には、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行うように構成されている。また、車両制御ユニット34は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合に、トルク応答性要求が低応答要求状態である場合には、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行うように構成されている。この場合の「第一始動制御を行う」とは、係合装置SSCの伝達トルクの上昇を、当該回転速度変化の終了後に開始させることを意味し、当該回転速度変化が終了するまでの間に係合装置SSCへの油圧の供給を開始する構成を排除するものではない。
 車両制御ユニット34は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合に、上記のような制御を行うが、走行トルクが負トルクである場合には、上述したような回転電機MGの出力トルクの不足は生じ難い。この点に鑑みて、車両制御ユニット34が、電動走行状態でオンダウンシフトを行っている間に内燃機関ENGの始動要求があった場合にのみ、上記のような制御を行う構成とすることもできる。ここで、オンダウンシフトとは、車輪Wに前進加速方向のトルクを伝達している状態(走行トルクが正トルクの状態)でのダウンシフトである。走行トルクが負トルクの状態でのダウンシフトであるオフダウンシフトを電動走行状態で行っている間に内燃機関ENGの始動要求があった場合には、例えば、ダウンシフトのための回転電機MGの回転速度変化の終了前に第一始動制御を開始する構成とすることができる。
 また、車両制御ユニット34は、上記の場合以外にも第一始動制御又は第二始動制御を行う。すなわち、本実施形態では、電動走行状態であってダウンシフトを行っていない間に内燃機関ENGの始動要求があった場合には、第一始動制御を開始する。ダウンシフトを行っていない間は、回転電機MGによってイナーシャトルクTiが出力されることはない。そのため、走行トルクに加えて、第一始動制御に伴う始動トルクTsを回転電機MGに出力させても、上述したような回転電機MGの出力トルクの不足は生じ難い。そこで、ダウンシフトを行っていない場合には、内燃機関ENGの始動要求があった後、直ちに第一始動制御を開始するとよい。これにより、ダウンシフトを行っていない場合に迅速に内燃機関ENGを始動させることができる。
 また、より好ましくは、車両制御ユニット34は、トルク応答性要求が低応答要求状態であるか高応答要求状態であるかに応じて第一始動制御又は第二始動制御を行う。すなわち、車両制御ユニット34は、電動走行状態であってダウンシフトを行っていない間に内燃機関ENGの始動要求があった場合であって、トルク応答性要求が低応答要求状態である場合には第一始動制御を開始し、トルク応答性要求が高応答要求状態である場合には第二始動制御を開始する。ダウンシフトを行っていない場合であっても、トルク応答性要求が高応答要求状態である場合には、回転電機MGの最大の出力トルクTmaxを走行トルクとして利用できることが好ましい。このような場合には、第二始動制御を行うことにより、スタータモータSTの出力トルクによって内燃機関ENGを始動させる。第二始動制御によれば、回転電機MGは始動トルクTs及びイナーシャトルクTiを負担する必要がない。従って、回転電機MGの持つ最大の出力トルクTmaxを、走行トルクとして利用することができ、より高い車輪要求トルクに応じることが可能となる。
 本実施形態では、車両制御ユニット34(制御装置32)は、図5に示す手順に沿って、内燃機関ENGの始動制御を選択する始動制御選択処理を行う。図5は、電動走行状態でダウンシフトを行っている間における始動制御選択処理を示すフローチャートである。車両制御ユニット34は、電動走行状態でのダウンシフト中に(ステップ#01:Yes)、ダウンシフトが終了するまでの間(ステップ#03:No)、内燃機関ENGの始動要求の発生の有無を監視する(ステップ#02)。そして、内燃機関ENGの始動要求があった場合には(ステップ#02:Yes)、第一始動制御及び第二始動制御のうちのいずれか1つを選択する処理が行われる。具体的には、ダウンシフトのための回転電機MGの回転速度変化が終了したか否かの判定(ステップ#04)と、トルク応答性要求が高応答要求状態であるか否かの判定(ステップ#05)とのうち、ステップ#04の判定において先に肯定的な判定がなされた場合には(ステップ#04:Yes)、第一始動制御が選択され(ステップ#06)、ステップ#05の判定において先に肯定的な判定がなされた場合には(ステップ#05:Yes)、第二始動制御が選択される(ステップ#07)。
 よって、内燃機関ENGの始動要求があった時点で、ダウンシフトのための回転電機MGの回転速度変化が既に終了している場合には、第一始動制御が選択される。また、内燃機関ENGの始動要求があった時点でダウンシフトのための回転電機MGの回転速度変化が終了しておらず、ダウンシフトのための回転電機MGの回転速度変化が終了するまでの間にトルク応答性要求が高応答要求状態にならなかった場合には、第一始動制御が選択される。一方、内燃機関ENGの始動要求があった時点でダウンシフトのための回転電機MGの回転速度変化が終了しておらず、その時点でのトルク応答性要求が高応答要求状態であった場合には、第二始動制御が選択される。また、内燃機関ENGの始動要求があった時点でダウンシフトのための回転電機MGの回転速度変化が終了しておらず、その時点でのトルク応答性要求も高応答要求状態ではなかったが、ダウンシフトのための回転電機MGの回転速度変化が終了するまでの間にトルク応答性要求が高応答要求状態になった場合には、第二始動制御が選択される。
 なお、ここでは、ステップ#05の判定で否定的な判定がなされた場合に(ステップ#05:No)、処理がステップ#04の判定に戻される場合を例として説明したが、ステップ#05の判定で否定的な判定がなされた場合には(ステップ#5:No)、第一始動制御を選択する構成とすることもできる。この場合、内燃機関ENGの始動要求があった時点でダウンシフトのための回転電機MGの回転速度変化が終了しておらず、その時点でのトルク応答性要求も高応答要求状態ではなかったが、ダウンシフトのための回転電機MGの回転速度変化が終了するまでの間にトルク応答性要求が高応答要求状態になるような状況では、第二始動制御ではなく第一始動制御が選択される点で、図5に示す例とは異なる。
 また、本実施形態では、車両制御ユニット34(制御装置32)は、電動走行状態でダウンシフトを行っていない間は、図6に示す手順に沿って、内燃機関ENGの始動制御を選択する始動制御選択処理を行う。図6は、電動走行状態でダウンシフトを行っていない間における始動制御選択処理を示すフローチャートである。車両制御ユニット34は、電動走行状態でのダウンシフトが行われていない間(ステップ#08:No)、内燃機関ENGの始動要求の発生の有無を監視する(ステップ#09)。そして、内燃機関ENGの始動要求があった場合には(ステップ#09:Yes)、トルク応答性要求が高応答要求状態であるか否かを判断する(ステップ#10)。トルク応答性要求が高応答性要求状態でない場合、すなわち低応答性要求状態である場合は(ステップ#10:No)、第一始動制御が選択される(ステップ#11)。トルク応答性要求が高応答要求状態である場合は(ステップ#10:Yes)、第二始動制御が選択される(ステップ#12)。
 本実施形態に係る内燃機関始動制御の具体的内容について、図7に示す例及び図9に示す例を参照して説明する。図7は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があり、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行う場合の具体例を示すタイムチャートである。図9は、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があり、第二始動制御を行う場合の具体例を示すタイムチャートである。また、図8は、比較例を示すタイムチャートである。
 図7に示す例では、時刻T01までは、走行モードは電動走行モードに設定されており、係合装置SSCが解放された状態で、回転電機MGの出力トルクによって車両1が走行している。また、内燃機関ENGの回転は停止しており、回転電機MGは車輪要求トルクに応じた大きさの正トルク(走行トルク)を出力している。時刻T01或いはそれより前の時点で目標変速段が低速段側に変更され、時刻T01においてダウンシフト制御(本例では、オンダウンシフト制御)が開始されている。図7に示す例では、係合側係合装置の係合圧がゼロから係合側予備圧まで増加するように、係合側係合装置の油圧指令の調整が時刻T01において開始されると共に、解放側係合装置の係合圧が完全係合圧から最小係合圧まで減少するように、解放側係合装置の油圧指令の調整が時刻T01と時刻T02との間の時点で開始されている。ここで、係合側予備圧は、係合側係合装置を係合させる前の待機中における係合圧である。係合側予備圧は、ピストンをストロークエンド位置に位置させるための係合圧であるストロークエンド圧や、ストロークエンド圧より所定圧だけ小さい圧に設定される。また、最小係合圧は、回転電機MGが出力する車輪要求トルクに応じた大きさの走行トルクを伝達している状態で、解放側係合装置を直結係合状態に維持できる下限の係合圧である。
 本例では、時刻T01と時刻T02との間の時点で内燃機関ENGの始動要求が発生すると共に、ダウンシフトのための回転電機MGの回転速度変化の終了時点(時刻T03)までの間、トルク応答性要求が低応答要求状態のままである状況を想定している。そのため、ダウンシフトのための回転電機MGの回転速度変化の終了後(時刻T03以降)に、第一始動制御が行われる。そのため、時刻T02で開始されるイナーシャ相の制御の間、回転電機MGは始動トルクTsを出力する必要はなく、回転電機MGが走行トルクに加えて出力するイナーシャトルクTiによって、ダウンシフトのための回転電機MGの回転速度変化を適切に行うことが可能となっている。すなわち、時刻T02において解放側係合装置が直結係合状態から滑り係合状態に移行すると共に回転電機MGの回転速度が変速前同期回転速度Wbfから上昇し始める。滑り係合状態に移行した後の解放側係合装置の油圧指令は、解放側係合装置の伝達トルク容量が車輪要求トルクに応じた大きさとなるように調整される。
 時刻T03において、回転電機MGの回転速度が変速後同期回転速度Wafに到達すると、イナーシャ相の制御が終了する。ここで、変速前同期回転速度Wbfは、変速前の変速段を形成するために係合される変速用係合装置が全て直結係合した状態での入力部材Iの回転速度であり、出力部材Oの回転速度に変速前の変速段の変速比を乗算した回転速度に一致する。また、変速後同期回転速度Wafは、変速後の変速段を形成するために係合される変速用係合装置が全て直結係合した状態での入力部材Iの回転速度であり、出力部材Oの回転速度に変速後の変速段の変速比を乗算した回転速度に一致する。イナーシャ相では、例えば、回転電機MGの出力トルクを制御して回転電機MGの回転速度を目標回転速度に近づける制御(回転速度制御)を行う。
 イナーシャ相の制御の終了後の時点である時刻T03以降に、トルク相の制御が行われる。トルク相では、解放側係合装置の係合圧がゼロに向かって減少するように、解放側係合装置の油圧指令が調整されると共に、係合側係合装置の係合圧が完全係合圧まで次第に上昇するように、係合側係合装置の油圧指令が調整される。トルク相の制御を行っている間は、係合側係合装置の係合圧の上昇に伴い、トルク比が次第に減少していく。ここで、トルク比は、変速装置TMから動力伝達経路の車輪W側に出力される出力トルク(本例では、変速装置TMから出力部材Oに出力されるトルク)に対する、変速装置TMに対して動力伝達経路の回転電機MG側から入力される入力トルク(本例では、入力部材Iから変速装置TMに入力されるトルク)の比率である。本例では、時刻T03と時刻T04との間の時点でトルク相の制御が開始され、時刻T05においてトルク相の制御が終了している。
 本実施形態では、制御装置32は、第一始動制御を行う場合に、ダウンシフトによるトルク比の変化が生じている期間内(すなわち、トルク相の制御が行われている期間内)に係合装置SSCの伝達トルクが上昇し始めるように、係合装置SSCを制御するように構成されている。なお、係合装置SSCの伝達トルクが上昇し始めるタイミングは、内燃機関ENGの回転速度が上昇し始めるタイミングと、概ね一致する。図7に示す例では、時刻T04において係合装置SSCの伝達トルクが上昇し始めるように、時刻T03の少し前の時点から係合装置SSCの油圧指令の調整が開始されている。これにより、時刻T04において係合装置SSCが解放状態から滑り係合状態に移行される。そして、滑り係合状態の係合装置SSCを介して回転電機MG側から内燃機関ENG側に伝達される始動トルクTsによって、内燃機関ENGの回転速度が上昇し始める。この際、回転電機MGはイナーシャトルクTiを出力する必要はないため、上述したような回転電機MGの出力トルクの不足は生じ難い。なお、滑り係合状態の係合装置SSCの油圧指令は、係合装置SSCの伝達トルク容量が、設定されている始動トルクTsに応じた大きさとなるように調整される。
 内燃機関ENGの回転速度が燃焼可能な回転速度を上回ると、内燃機関ENGの燃焼が開始される。その後、内燃機関ENGの回転速度が更に上昇し、内燃機関ENGと回転電機MGとが同期回転しているとみなすことができる状態、すなわち、内燃機関ENGの回転速度と回転電機MGの回転速度との間の回転速度差が同期判定閾値未満である状態で、係合装置SSCの係合圧を完全係合圧まで上昇させるための、係合装置SSCの油圧指令の調整が行われ、係合装置SSCが滑り係合状態から直結係合状態に移行される。なお、図7に示す例では、内燃機関ENGの燃焼後の内燃機関ENGの回転速度の上昇を妨げないように、内燃機関ENGの燃焼が開始された後、係合装置SSCの係合圧を一旦低下させ、その後、係合装置SSCの係合圧を完全係合圧まで上昇させている。また、図7に示す例では、内燃機関ENGの回転速度が回転電機MGの回転速度よりも高い状態で、係合装置SSCの滑り係合状態から直結係合状態への移行を行うことで、係合装置SSCの直結係合の前後でトルクの伝達方向が逆転しないようにしている。
 なお、ここでは、ダウンシフトによるトルク比の変化が生じている期間内に係合装置SSCの伝達トルクが上昇し始めるように、係合装置SSCが制御される場合を例として説明したが、ダウンシフトによるトルク比の変化が生じている期間の後の時点で係合装置SSCの伝達トルクが上昇し始めるように、係合装置SSCが制御される構成とすることもできる。
 上記のように、本実施形態では、電動走行状態でダウンシフトを行っている間に発生した内燃機関ENGの始動要求に応じて第一始動制御を行う場合には、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行うため、回転電機MGは、走行トルクに加えてイナーシャトルクTi及び始動トルクTsの双方を同時期に出力する必要はなく、既に開始しているダウンシフト動作の進行に大きな影響を与えることなく内燃機関ENGを始動させることができる。以下、このような制御を行わない結果、既に開始しているダウンシフト動作が内燃機関ENGの始動制御の影響を受けてショックが発生する比較例を、図8を参照して説明する。
 図8での時刻T11は、図7での時刻T01に対応する。すなわち、図8に示す比較例でも、時刻T11においてダウンシフト制御が開始されている。そして、この比較例では、時刻T11と時刻T12との間の時点で発生した内燃機関ENGの始動要求に応じて、第一始動制御が回転電機MGの回転速度変化の終了まで待たずに行われる。よって、この比較例では、時刻T11と時刻12との間において、係合装置SSCを解放状態から滑り係合状態に移行させるための油圧指令の調整が開始され、イナーシャ相の制御が開始される時刻T12において、係合装置SSCが滑り係合状態に移行している。この場合、時刻T12で開始されるイナーシャ相の制御の間、回転電機MGは、走行トルクに加えてイナーシャトルクTi及び始動トルクTsの双方を出力する必要があるが、上述したように、内燃機関ENGの始動要求が発生するような状況下では、走行トルク、始動トルクTs、及びイナーシャトルクTiの総和が最大トルクTmaxを超えやすい。図8では、これらの総和を示す破線まで回転電機MGの出力トルクを上昇させることができない状況を想定している。
 このように回転電機MGの出力トルクが不足すると、図8に示すように、ダウンシフトのための回転電機MGの回転速度変化を維持することができなくなり、変速後同期回転速度Wafに向かって上昇した回転電機MGの回転速度が変速前同期回転速度Wbfに向かって低下する。そして、時刻T13において回転電機MGの回転速度が変速前同期回転速度Wbfまで低下した時点で、係合装置SSCが滑り係合状態から直結係合状態に移行し、その際の係合装置SSCが伝達するトルクの変動によってショックが発生する場合がある。なお、この比較例では、その後、内燃機関ENGの回転速度及び回転電機MGの回転速度が一体的に上昇し、時刻T14において、回転電機MGの回転速度が変速後同期回転速度Wafに到達している。
 次に、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があり、当該始動要求に応じて第二始動制御を行う場合の本実施形態に係る具体例について、図9を参照して説明する。図9に示す例では、時刻T21が図7における時刻T01に対応する。すなわち、図9に示す具体例でも、時刻T21においてダウンシフト制御が開始されている。この例では、時刻T21と時刻T22との間の時点で内燃機関ENGの始動要求が発生すると共に、その時点でのトルク応答性要求が高応答要求状態であったために、内燃機関ENGの始動が第二始動制御によって行われる場合を想定している。図9に示す例では、内燃機関ENGの始動要求の発生直後に第二始動制御が開始され、イナーシャ相の制御が開始される時刻T22において、スタータモータSTのトルクによって内燃機関ENGの回転速度が上昇し始めている。そして、内燃機関ENGの燃焼が開始されると共に内燃機関ENGの回転速度が更に上昇し、イナーシャ相の制御が終了する時刻T23において、内燃機関ENGの回転速度が回転電機MGの回転速度よりも高くなっている。その後、係合装置SSCの係合圧を完全係合圧まで上昇させるための係合装置SSCの油圧指令の調整が行われ、係合装置SSCが解放状態から直結係合状態に移行される。
3.その他の実施形態
 制御装置のその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
(1)上記の実施形態では、車両制御ユニット34(制御装置32)が、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合に、トルク応答性要求が高応答要求状態である場合には、第二始動制御を行い、トルク応答性要求が低応答要求状態である場合には、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行う構成を例として説明した。しかし、本発明の実施形態はこれに限定されず、車両制御ユニット34が、電動走行状態でダウンシフトを行っている間に内燃機関ENGの始動要求があった場合に、トルク応答性要求以外の指標に基づき、第二始動制御を行うか、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行うかを決定する構成とすることもできる。例えば、内燃機関始動条件の成立理由に基づき、車両制御ユニット34が、車輪伝達トルクを増加させるために内燃機関始動条件が成立した場合には、第二始動制御を行い、回転電機MGに発電させるために内燃機関始動条件が成立した場合には、ダウンシフトのための回転電機MGの回転速度変化の終了後に第一始動制御を行う構成とすることもできる。
(2)上記の実施形態では、車両1にスタータモータSTが備えられる場合を例として説明したが、車両1にスタータモータSTが備えられず、第一始動制御によってのみ内燃機関ENGが始動される構成とすることもできる。
(3)上記の実施形態では、制御装置32の制御対象となる車両用駆動装置2が、内燃機関ENGと車輪Wとを結ぶ動力伝達経路に、内燃機関ENGの側から順に、係合装置SSC、回転電機MG、及び変速装置TMを備える場合を例として説明したが、他の構成の車両用駆動装置2を制御対象とすることもできる。例えば、図10に示すように、回転電機MGと変速装置TMとの間の動力伝達経路にクラッチCLが設けられ、当該クラッチCLが入力部材Iと変速装置TMの入力軸(中間軸M)とを選択的に連結する構成の車両用駆動装置2や、図11に示すように、回転電機MGと変速装置TMとの間の動力伝達経路に、直結クラッチCLを有するトルクコンバータTCが設けられる構成の車両用駆動装置2を制御対象としても良い。また、上記の実施形態では、変速装置TMとして有段自動変速装置を備える車両用駆動装置2を制御対象とする場合を例として説明したが、いわゆるDCT(Dual Clutch Transmission)と呼ばれるデュアルクラッチ式変速装置等の他の形式の変速装置を備える車両用制御装置を制御対象とすることもできる。
(4)上記の実施形態では、係合装置SSC及び変速用係合装置(但し、ワンウェイクラッチFを除く。)の双方が、油圧駆動式の係合装置である場合を例として説明したが、係合装置SSC及び変速用係合装置(但し、ワンウェイクラッチFを除く。)の一方又は双方が、油圧以外の駆動力、例えば、電磁石の駆動力、サーボモータの駆動力等により制御される係合装置であってもよい。
(5)上記の実施形態では、係合装置SSC及び変速用係合装置(但し、ワンウェイクラッチFを除く。)の双方が、供給油圧(油圧指令)を減少させることで伝達トルク容量(係合圧)が減少するノーマルオープン式の係合装置である場合を例として説明したが、係合装置SSC及び変速用係合装置の一方又は双方が、バネ圧等により係合され、供給油圧(油圧指令)を増加させることで伝達トルク容量(係合圧)が減少するノーマルクローズ式の係合装置であっても良い。
(6)上記の実施形態では、各段の変速段が、複数の変速用係合装置のうちの2つを係合状態に制御することで形成される構成を例として説明したが、各段の変速段が、複数の変速用係合装置のうちの3つ以上を係合状態に制御することで形成される構成とすることもできる。
(7)上記の実施形態では、変速装置TMが、前進用の変速段として、変速比の異なる6つの変速段を形成可能に構成される場合を例として説明したが、変速装置TMが形成可能な前進用の変速段の数が“6”以外(例えば“8”)である構成とすることもできる。
(8)上記の実施形態では、変速装置TMとして有段自動変速装置を備える車両用駆動装置2を制御対象とする場合を例として説明したが、変速装置TMとして、いわゆるCVT(Continuously Variable Transmission)と呼ばれる無段の自動変速装置を備える車両用制御装置を制御対象とすることもできる。なお、この場合におけるダウンシフトとは、単に、変速後の変速比が変速前の変速比に対して大きくなるように変更することをいうものとする。
(9)上記の実施形態で説明した駆動制御ユニット30における機能部の割り当ては単なる一例であり、複数の機能部を組み合わせたり、1つの機能部を更に区分けしたりすることも可能である。
(10)その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎないと理解されるべきである。従って、当業者は、本開示の趣旨を逸脱しない範囲で、適宜、種々の改変を行うことが可能である。
4.上記実施形態の概要
 以上で説明した実施形態は、以下の構成を備えている。
 内燃機関(ENG)と車輪(W)とを結ぶ動力伝達経路に、前記内燃機関(ENG)の側から順に、係合装置(SSC)、回転電機(MG)、及び、変速装置(TM)が設けられた車両用駆動装置(2)を制御対象とする制御装置(32)であって、前記係合装置(SSC)を介して前記回転電機(MG)の出力トルクによって前記内燃機関(ENG)を始動させる始動制御を第一始動制御とし、前記係合装置(SSC)の解放状態で前記回転電機(MG)の出力トルクによって車両(1)を走行させている走行状態を電動走行状態として、前記変速装置(TM)による変速比を、変速後の変速比が変速前の変速比に対して大きくなるように変更するダウンシフトを前記電動走行状態で行っている間に前記内燃機関(ENG)の始動要求があった場合には、前記ダウンシフトの終了後に前記第一始動制御を行う。
 このような構成によれば、電動走行状態でダウンシフトを行っている間に内燃機関(ENG)の始動要求が発生した場合であって、第一始動制御を行う場合には、ダウンシフトの終了後に第一始動制御が行われる。すなわち、回転電機(MG)の回転速度変化のためのイナーシャトルク(Ti)を出力することが回転電機(MG)に要求される間は、始動トルク(Ts)を出力することが回転電機(MG)に要求される第一始動制御は行われない。よって、電動走行状態でダウンシフトを行っている間に内燃機関(ENG)の始動要求が発生した場合でも、既に開始しているダウンシフト動作を適切に進行させることができる。そして、内燃機関(ENG)の始動は、例えば、ダウンシフトのための回転電機(MG)の回転速度変化の終了後の時点(すなわち、回転電機(MG)がイナーシャトルク(Ti)を出力する必要のない時点)で第一始動制御によって行うことや、それ以前の時点において回転電機(MG)の出力トルクを必要としない方法によって行うことが可能である。いずれの場合でも、既に開始しているダウンシフト動作の進行に大きな影響を与えることなく、内燃機関(ENG)を始動させることが可能である。
 また、この実施形態では、ダウンシフトの終了後は、ダウンシフトのための回転電機(MG)の出力トルクによる回転電機(MG)の回転速度変化の終了後であると好適である。
 このような構成によれば、ダウンシフトのために回転電機(MG)がイナーシャトルク(Ti)を出力する必要がなくなった後に、第一始動制御を行うことができる。よって、既に開始しているダウンシフト動作の進行に大きな影響を与えることなく、内燃機関(ENG)を始動させることができる。
 また、この実施形態では、前記変速装置(TM)から前記動力伝達経路の前記車輪(W)側に出力される出力トルクに対する、前記変速装置(TM)に対して前記動力伝達経路の前記回転電機(MG)側から入力される入力トルクの比率をトルク比として、前記ダウンシフトの終了後に前記第一始動制御を行う場合に、前記ダウンシフトによる前記トルク比の変化が生じている期間内に前記係合装置(SSC)の伝達トルクが上昇し始めるように、前記係合装置(SSC)を制御すると好適である。
 始動トルク(Ts)を回転電機(MG)から内燃機関(ENG)に伝達するために係合装置(SSC)を解放状態から滑り係合状態に移行させる際には、係合装置(SSC)の伝達トルクが上昇し始めるタイミングにおいて、車輪(W)に伝達されるトルク(車輪伝達トルク)に変動が生じ得る。上記の構成では、このような車輪伝達トルクの変動が生じ得るタイミングを、ダウンシフトによるトルク比の変化が生じている期間内に含めることができる。なお、トルク比の変化が生じている期間では、一般に、車輪伝達トルクの大きさがトルク比の変化に合わせて変化する。よって、仮に上記のタイミングで車輪伝達トルクの変動が発生した場合でも、当該変動をトルク比の変化に伴う車輪伝達トルクの変化に紛れさせることができ、運転者等の車両(1)の乗員が感じる違和感の低減を図ることができる。
 また、この実施形態では、前記電動走行状態であって前記ダウンシフトを行っていない間に前記内燃機関(ENG)の始動要求があった場合には、前記第一始動制御を開始すると好適である。
 このような構成によれば、ダウンシフトを行っていない間は、回転電機(MG)によってダウンシフトのためのイナーシャトルク(Ti)を出力する必要はない。そのため、走行トルクに加えて、第一始動制御に伴う始動トルク(Ts)を回転電機(MG)に出力させても、回転電機(MG)の出力トルクの不足は生じ難い。従って、この構成によれば、ダウンシフトを行っていない間に内燃機関(ENG)の始動要求があった場合に、迅速に内燃機関(ENG)を始動させることができる。
 また、この実施形態では、スタータモータ(ST)の出力トルクによって前記内燃機関(ENG)を始動させる始動制御を第二始動制御とし、前記ダウンシフトを前記電動走行状態で行っている間に前記内燃機関(ENG)の始動要求があった場合に、前記車輪(W)に伝達するトルクに対する応答性の要求であるトルク応答性要求が、高応答要求状態である場合には、前記第二始動制御を行い、前記トルク応答性要求が、前記高応答要求状態よりも前記応答性に対する要求が低い低応答要求状態である場合には、前記第一始動制御を行うと好適である。
 この構成では、トルク応答性要求が高応答要求状態である場合に、ダウンシフトのための回転電機(MG)の回転速度変化の終了を待つことなく、回転電機(MG)の出力トルクを必要としない第二始動制御による内燃機関の始動制御を開始することができる。よって、ダウンシフトのための回転電機(MG)の回転速度変化の終了後に第一始動制御を行って内燃機関(ENG)を始動させる場合に比べて、内燃機関(ENG)の出力トルクを車輪(W)に伝達可能な状態を早期に実現することが可能となる。一方、トルク応答性要求が低応答要求状態である場合には、ダウンシフトのための回転電機(MG)の回転速度変化の終了後に、第一始動制御を行って内燃機関(ENG)が始動される。すなわち、トルク応答性要求が低応答要求状態である場合には、内燃機関(ENG)の出力トルクを車輪(W)に伝達可能な状態を早期に実現することよりも、運転者等の車両(1)の乗員に違和感を与える場合があるスタータモータ(ST)の作動音を発生させないことを優先して、内燃機関(ENG)を始動させることができる。なお、必要以上に第二始動制御を行わないことで、スタータモータ(ST)の耐久性を確保しやすいという利点もある。
 前記電動走行状態であって前記ダウンシフトを行っていない間に前記内燃機関(EMG)の始動要求があった場合であって、前記トルク応答性要求が前記低応答要求状態である場合には前記第一始動制御を開始し、前記トルク応答性要求が前記高応答要求状態である場合には前記第二始動制御を開始すると好適である。
 このような構成によれば、ダウンシフトを行っていない間に内燃機関(ENG)の始動要求があった場合であって、トルク応答性要求が低応答要求状態である場合には、第一始動制御を開始して回転電機(MG)の出力トルクによって迅速に内燃機関(ENG)を始動させることができる。一方、ダウンシフトを行っていない間に内燃機関(ENG)の始動要求があった場合であって、トルク応答性要求が高応答要求状態である場合には、第二始動制御を開始してスタータモータ(ST)の出力トルクによって内燃機関(ENG)を始動させる。このような場合に第二始動制御を行うことにより、回転電機(MG)は始動トルク(Ts)及びイナーシャトルク(Ti)を負担する必要がないため、回転電機(MG)の持つ最大の出力トルク(Tmax)を、走行トルクとして利用することができる。従って、より高い車輪要求トルクに応じることが可能となる。
 本開示に係る技術は、内燃機関と車輪とを結ぶ動力伝達経路に、内燃機関の側から順に、係合装置、回転電機、及び、変速装置が設けられた車両用駆動装置を制御対象とする制御装置に利用することができる。
1:車両
2:車両用駆動装置
32:制御装置
ENG:内燃機関
MG:回転電機
SSC:係合装置
ST:スタータモータ
TM:変速装置
Tmax:最大トルク
W:車輪

Claims (6)

  1.  内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、係合装置、回転電機、及び、変速装置が設けられた車両用駆動装置を制御対象とする制御装置であって、
     前記係合装置を介して前記回転電機の出力トルクによって前記内燃機関を始動させる始動制御を第一始動制御とし、
     前記係合装置の解放状態で前記回転電機の出力トルクによって車両を走行させている走行状態を電動走行状態として、
     前記変速装置による変速比を、変速後の変速比が変速前の変速比に対して大きくなるように変更するダウンシフトを前記電動走行状態で行っている間に前記内燃機関の始動要求があった場合には、前記ダウンシフトの終了後に前記第一始動制御を行う制御装置。
  2.  前記ダウンシフトの終了後は、前記ダウンシフトのための前記回転電機の出力トルクによる前記回転電機の回転速度変化の終了後である請求項1に記載の制御装置。
  3.  前記変速装置から前記動力伝達経路の前記車輪側に出力される出力トルクに対する、前記変速装置に対して前記動力伝達経路の前記回転電機側から入力される入力トルクの比率をトルク比として、
     前記ダウンシフトの終了後に前記第一始動制御を行う場合に、前記ダウンシフトによる前記トルク比の変化が生じている期間内に前記係合装置の伝達トルクが上昇し始めるように、前記係合装置を制御する請求項1又は2に記載の制御装置。
  4.  前記電動走行状態であって前記ダウンシフトを行っていない間に前記内燃機関の始動要求があった場合には、前記第一始動制御を開始する請求項1から3のいずれか一項に記載の制御装置。
  5.  スタータモータの出力トルクによって前記内燃機関を始動させる始動制御を第二始動制御とし、
     前記ダウンシフトを前記電動走行状態で行っている間に前記内燃機関の始動要求があった場合に、前記車輪に伝達するトルクに対する応答性の要求であるトルク応答性要求が、高応答要求状態である場合には、前記第二始動制御を行い、前記トルク応答性要求が、前記高応答要求状態よりも前記応答性に対する要求が低い低応答要求状態である場合には、前記第一始動制御を行う請求項1から4のいずれか一項に記載の制御装置。
  6.  前記電動走行状態であって前記ダウンシフトを行っていない間に前記内燃機関の始動要求があった場合であって、前記トルク応答性要求が前記低応答要求状態である場合には前記第一始動制御を開始し、前記トルク応答性要求が前記高応答要求状態である場合には前記第二始動制御を開始する請求項5に記載の制御装置。
PCT/JP2016/060459 2015-03-31 2016-03-30 制御装置 WO2016159120A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/556,154 US10322715B2 (en) 2015-03-31 2016-03-30 Control device for performing a start control
CN201680017377.5A CN107428333B (zh) 2015-03-31 2016-03-30 控制装置
DE112016000467.2T DE112016000467T5 (de) 2015-03-31 2016-03-30 Steuerungsvorrichtung
JP2017510130A JP6390788B2 (ja) 2015-03-31 2016-03-30 制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-074182 2015-03-31
JP2015074182 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159120A1 true WO2016159120A1 (ja) 2016-10-06

Family

ID=57007215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060459 WO2016159120A1 (ja) 2015-03-31 2016-03-30 制御装置

Country Status (5)

Country Link
US (1) US10322715B2 (ja)
JP (1) JP6390788B2 (ja)
CN (1) CN107428333B (ja)
DE (1) DE112016000467T5 (ja)
WO (1) WO2016159120A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016004869T5 (de) * 2016-01-28 2018-07-19 Aisin Aw Co., Ltd. Übertragungsvorrichtung
JP6852696B2 (ja) * 2018-02-26 2021-03-31 トヨタ自動車株式会社 車両のエンジン始動制御装置
CN112984099B (zh) * 2021-05-08 2021-07-27 北京航空航天大学 一种无动力升挡过程中改变意图的换挡控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179598A (ja) * 2010-03-01 2011-09-15 Toyota Motor Corp 変速制御装置及び車両制御装置
WO2012102370A1 (ja) * 2011-01-28 2012-08-02 日産自動車株式会社 ハイブリッド車両の制御装置
JP2013147193A (ja) * 2012-01-20 2013-08-01 Toyota Motor Corp ハイブリッド車両用駆動装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680959A (en) * 1986-04-23 1987-07-21 General Motors Corporation Emulation system for a motor vehicle drivetrain
JP2881949B2 (ja) * 1990-05-01 1999-04-12 日産自動車株式会社 自動変速機の制御装置
JP2687734B2 (ja) * 1990-05-01 1997-12-08 日産自動車株式会社 自動変速機の変速制御装置
US5046383A (en) * 1990-07-16 1991-09-10 General Motors Corporation Acceleration-based control of power-on clutch-to-clutch upshifting in an automatic transmission
US5079970A (en) * 1990-10-24 1992-01-14 General Motors Corporation Acceleration-based control of power-on downshifting in an automatic transmission
JP3537809B2 (ja) * 2002-03-08 2004-06-14 本田技研工業株式会社 ハイブリッド車両
FR2882697B1 (fr) * 2005-03-01 2008-10-31 Peugeot Citroen Automobiles Sa Procede de changement de rapport de vitesse
JP2006306210A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd ハイブリッド駆動装置のエンジン始動方法
JP4466514B2 (ja) * 2005-09-08 2010-05-26 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP2007069804A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動応答改善装置
JP2008137619A (ja) * 2006-12-05 2008-06-19 Toyota Motor Corp 車両用駆動装置の制御装置
US8204659B2 (en) * 2007-03-12 2012-06-19 Nissan Motor Co., Ltd. Engine start control system for hybrid vehicle
JP5125199B2 (ja) * 2007-04-20 2013-01-23 トヨタ自動車株式会社 ハイブリッド車両のエンジン始動制御装置
DE102008002383A1 (de) * 2008-06-12 2009-12-17 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs
JP5024274B2 (ja) * 2008-12-19 2012-09-12 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP5233659B2 (ja) * 2008-12-24 2013-07-10 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP5233658B2 (ja) * 2008-12-24 2013-07-10 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP5742124B2 (ja) * 2010-07-21 2015-07-01 日産自動車株式会社 ハイブリッド車両の制御装置
KR20120021093A (ko) * 2010-08-31 2012-03-08 현대자동차주식회사 하이브리드 차량의 변속 제어장치 및 방법
EP2631142B1 (en) * 2010-10-22 2019-09-18 Nissan Motor Co., Ltd Control device of hybrid vehicle
DE102010043355B4 (de) * 2010-11-04 2018-04-05 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeugs
WO2012095970A1 (ja) * 2011-01-12 2012-07-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2012102369A1 (ja) * 2011-01-28 2012-08-02 日産自動車株式会社 ハイブリッド車両の制御装置
EP2783934B1 (en) * 2011-11-25 2020-03-25 Nissan Motor Co., Ltd. Hybrid vehicle control device
JP2012121568A (ja) 2012-01-10 2012-06-28 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP5787169B2 (ja) * 2012-01-27 2015-09-30 アイシン・エィ・ダブリュ株式会社 制御装置
US9108614B2 (en) * 2012-05-04 2015-08-18 Ford Global Technologies, Llc Methods and systems for adapting a driveline disconnect clutch transfer function
JP6003915B2 (ja) * 2013-02-05 2016-10-05 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6217125B2 (ja) * 2013-05-08 2017-10-25 日産自動車株式会社 ハイブリッド車両の制御装置
KR101481335B1 (ko) * 2013-11-20 2015-01-09 현대자동차주식회사 하이브리드 차량의 변속제어방법
US9758149B2 (en) * 2015-01-23 2017-09-12 Ford Global Technologies, Llc Hybrid vehicle and downshifting strategy in a hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179598A (ja) * 2010-03-01 2011-09-15 Toyota Motor Corp 変速制御装置及び車両制御装置
WO2012102370A1 (ja) * 2011-01-28 2012-08-02 日産自動車株式会社 ハイブリッド車両の制御装置
JP2013147193A (ja) * 2012-01-20 2013-08-01 Toyota Motor Corp ハイブリッド車両用駆動装置

Also Published As

Publication number Publication date
JP6390788B2 (ja) 2018-09-19
US10322715B2 (en) 2019-06-18
CN107428333B (zh) 2019-11-05
CN107428333A (zh) 2017-12-01
DE112016000467T5 (de) 2017-10-12
JPWO2016159120A1 (ja) 2017-12-14
US20180037220A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP5177578B2 (ja) 制御装置
JP6562001B2 (ja) 車両用駆動伝達装置の制御装置
US20050164827A1 (en) Hybrid powertrain system including smooth shifting automated transmission
JP6265261B2 (ja) 車両用駆動装置の制御装置
JP6278345B2 (ja) 車両用駆動装置の制御装置
WO2011118257A1 (ja) 車両用制御装置及び車両駆動システム
US20200023726A1 (en) Control device
WO2016084529A1 (ja) 車両用駆動装置の制御装置
JP2020032854A (ja) 車両の制御装置
JPWO2017057757A1 (ja) 制御装置
JP6394792B2 (ja) 制御装置
JP6390788B2 (ja) 制御装置
JP5825422B2 (ja) 制御装置
JP6465204B2 (ja) 車両用駆動装置の制御装置
JP6299281B2 (ja) 車両用駆動装置の制御装置
JP2020045992A (ja) 制御装置
JP2020006782A (ja) 車両用駆動装置の制御装置
JP6414499B2 (ja) 車両用駆動装置の制御装置
JP6414489B2 (ja) 車両用駆動装置の制御装置
JP6459720B2 (ja) 車両用駆動装置
JP2019031206A (ja) 車両の制御装置
JP2021154932A (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510130

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000467

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15556154

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16773001

Country of ref document: EP

Kind code of ref document: A1