Nothing Special   »   [go: up one dir, main page]

WO2016002868A1 - 水産物由来遊離1価不飽和脂肪酸又はその低級アルコールエステルの製造方法 - Google Patents

水産物由来遊離1価不飽和脂肪酸又はその低級アルコールエステルの製造方法 Download PDF

Info

Publication number
WO2016002868A1
WO2016002868A1 PCT/JP2015/069090 JP2015069090W WO2016002868A1 WO 2016002868 A1 WO2016002868 A1 WO 2016002868A1 JP 2015069090 W JP2015069090 W JP 2015069090W WO 2016002868 A1 WO2016002868 A1 WO 2016002868A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower alcohol
free
fatty acid
alcohol ester
weight
Prior art date
Application number
PCT/JP2015/069090
Other languages
English (en)
French (fr)
Inventor
誠造 佐藤
拓朗 深江
直美 大塚
秀明 山口
Original Assignee
日本水産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本水産株式会社 filed Critical 日本水産株式会社
Priority to EP15815644.8A priority Critical patent/EP3165591B1/en
Priority to CA2953319A priority patent/CA2953319C/en
Priority to CN201580026352.7A priority patent/CN106459833A/zh
Priority to ES15815644T priority patent/ES2978914T3/es
Priority to AU2015285212A priority patent/AU2015285212A1/en
Priority to JP2016531436A priority patent/JP6651447B2/ja
Publication of WO2016002868A1 publication Critical patent/WO2016002868A1/ja
Priority to US15/393,576 priority patent/US10597606B2/en
Priority to AU2019206071A priority patent/AU2019206071A1/en
Priority to AU2020277196A priority patent/AU2020277196B9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/02Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
    • C11C1/04Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • A61K31/231Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having one or two double bonds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/005Splitting up mixtures of fatty acids into their constituents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • C11C1/10Refining by distillation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a method for producing a free monounsaturated fatty acid having 20 or more carbon atoms (unsaturated fatty acid having one double bond, hereinafter also referred to as MUFA) or a lower alcohol ester thereof from oil and fat derived from marine products.
  • MUFA monounsaturated fatty acid having one double bond
  • the present invention relates to monounsaturated fatty acids or lower alcohol esters thereof, and uses thereof.
  • PUFA Polyunsaturated fatty acids
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Saturated fatty acids increase cholesterol levels in blood, whereas unsaturated fatty acids having 18 carbon atoms that are abundant in vegetable oils, oleic acid (monovalent), linoleic acid (2 No.) and linolenic acid (trivalent) are attracting attention because they lower cholesterol levels.
  • oleic acid which is a MUFA having 18 carbon atoms
  • MUFAs contained in vegetable oils have 20 or 22 carbon atoms, and these are abundant in rapeseed oil, arachis oil, pepper oil, giraffe oil and the like.
  • MUFA with 20 or more carbon atoms is also called LC-MUFA.
  • Method for producing vegetable oil-derived LC-MUFA methods such as urea addition and recrystallization have been reported (for example, WO89 / 08095 and JP-A-9-278706).
  • MUFA monounsaturated fatty acids
  • MUFA having 20 or more carbon atoms is LC-MUFA.
  • physiological activities such as cholesterol lowering action (for example, WO2012 / 121080).
  • the LC-MUFA derived from vegetable oil is mainly n-9, whereas the one derived from fish oil is mainly n-11.
  • n-9 indicates that the ninth bond from the methyl terminus of the fatty acid is a double bond
  • n-11 indicates that the 11th bond from the methyl terminus of the fatty acid is a double bond.
  • oils and fats derived from marine products contain many types of fatty acids with 12 to 24 carbon atoms and 0 to 6 double bonds in addition to MUFA.
  • WO2012 / 121080 describes a laboratory-scale purification method in which saury oil is ethyl esterified and applied to an ODS column to concentrate MUFA.
  • the concentration of MUFA having 20 and / or 22 carbon atoms derived from marine products obtained by this method is shown to be about 70%.
  • LC-MUFA which is abundant in marine oils such as saury and cod, has been reported to have an improving effect on metabolic syndrome, but highly unsaturated fatty acids having 20 or more carbon atoms (hereinafter, LC-PUFA is also included), which is an obstacle to accurately verifying the effect of LC-MUFA or its ester.
  • LC-MUFA or its ester which is useful as a medicine, clinically or to a wider range of diseases, it contains almost no ingredients other than LC-MUFA For example, it is required to produce a large amount of LC-MUFA having a concentration (purity) of 85% by weight or more, further 90% by weight or more with high efficiency.
  • LC-MUFA derived from marine oils and fats are mainly composed of isomers having different positions of double bonds from LC-MUFA contained in oils and fats derived from vegetable oils.
  • LC-MUFA derived from marine fats and oils containing such isomers in high concentration LC-MUFA derived from high-concentration marine fats and oils does not exist in the world, so a means for supplying them is necessary.
  • the present invention relates to an industrial production method for efficiently obtaining a high concentration of LC-MUFA, or for efficiently obtaining LC-MUFA having a low content of LC-PUFA and saturated fatty acid, and the high yield obtained thereby.
  • the objective is to provide LC-MUFA of high purity.
  • the present invention relates to a method for producing monovalent unsaturated fatty acids having 20 and / or 22 carbon atoms or lower alcohol esters thereof, and monovalent unsaturated fatty acids having 20 and / or 22 carbon atoms or lower alcohol esters thereof. Each aspect is included.
  • a method for producing a free monounsaturated fatty acid having 20 and / or 22 carbon atoms or a lower alcohol ester thereof including the following: hydrolysis or alcoholysis of fats and oils derived from marine raw materials, and free fatty acids or lower Obtaining an alcohol ester, performing distillation on the free fatty acid or lower alcohol ester, reducing the concentration of fatty acid having 18 or less carbon atoms in the free fatty acid or lower alcohol ester, column chromatography of reverse phase distribution system To fractionate a free monounsaturated fatty acid having 20 and / or 22 carbon atoms or a lower alcohol ester thereof.
  • the oil and fat derived from the marine product raw material is a refined oil obtained by at least one purification treatment selected from the group consisting of degumming, deoxidation, decolorization and deodorization with respect to the crude oil obtained from the marine product. 1].
  • [5] The method according to any one of [1] to [3], wherein the distillation is rectification using a regular packing.
  • the concentration of a free fatty acid having 18 or less carbon atoms or a lower alcohol ester thereof after distillation is 30% by weight, 20% by weight, 10% by weight or less, 5% by weight or less, or 1
  • the concentration of free highly unsaturated fatty acids or their lower alcohol esters after performing distillation and column chromatography is 5% by weight or less or 1% by weight or less of the total fatty acids [1] to [7] Any one method.
  • At least free gadoleic acid (n-11) or a lower alcohol ester thereof or free cetoleic acid (n-11) or a lower alcohol ester thereof A free fatty acid or a lower alcohol ester thereof containing a free monounsaturated fatty acid having 20 and / or 22 carbon atoms or a lower alcohol ester thereof of 70% by weight, 80% by weight or 90% by weight or more of the total fatty acid .
  • a free monounsaturated fatty acid having 20 carbon atoms or a lower alcohol ester thereof is free gadoleic acid (n-11) or a lower alcohol ester thereof, and / or free gondoic acid (n-9) or a lower alcohol thereof
  • a free monounsaturated fatty acid having 22 carbon atoms or a lower alcohol ester thereof is free cetreic acid (n-11) or a lower alcohol ester thereof and / or free erucic acid (n-9) or a lower ester thereof
  • At least 70% by weight of the total fatty acid is a free monounsaturated fatty acid having 20 and / or 22 carbon atoms or a lower alcohol ester thereof, and at least free gadoleic acid or a lower alcohol ester thereof or free cetreic acid or a lower alcohol thereof.
  • At least 90% by weight of the total fatty acid is a free monounsaturated fatty acid having 20 and / or 22 carbon atoms or a lower alcohol ester thereof, and at least free gadoleic acid or a lower alcohol ester thereof or free cetreic acid or a lower alcohol thereof. 12% or less of the free saturated fatty acid or lower alcohol ester thereof in the total fatty acid, and 1% by weight or less of the free highly unsaturated fatty acid or lower alcohol ester thereof in the total fatty acid. ] The free fatty acid or its lower alcohol ester.
  • Free fatty acids having 18 or less carbon atoms or lower alcohol esters thereof in all fatty acids are 30% by weight, 20% by weight, 10% by weight, 5% by weight or less, or 1% by weight or less [9] ]
  • [17] Use of the free fatty acid according to any one of [9] to [16] or a lower alcohol ester thereof in the production of food.
  • a metabolic syndrome-improving agent or a lifestyle-related disease preventing agent comprising the free fatty acid according to any one of [9] to [16] or a lower alcohol ester thereof as an active ingredient.
  • a metabolic syndrome improving composition or a composition for preventing lifestyle-related diseases comprising the metabolic syndrome improving agent or lifestyle-related disease preventing agent of [18] and an additive component.
  • LC-MUFA derived from aquatic oils and fats can be provided in a high concentration and high yield with a low content of LC-PUFA and saturated fatty acid.
  • the content of saturated fatty acid and LC-PUFA in the LC-MUFA composition can be reduced.
  • LC-MUFA is used as a functional component, it is suitable for use in applications where a low concentration of saturated fatty acid and / or LC-PUFA is required.
  • Fatty acids differ greatly not only in their physical properties but also in physiological functions when the number of carbon atoms or the number of double bonds is different.
  • LC-MUFAs derived from marine oils and fats which were difficult to separate in the past, can be separated according to the number of carbon atoms, so that individual functions can be clarified and used effectively. Suitable for uses such as pharmaceuticals and supplements containing LC-MUFA as an active ingredient.
  • oil or “oil / fat” as used herein refers not only to triglycerides but also includes triglycerides as the main component and includes other lipids such as diglycerides, monoglycerides, phospholipids, cholesterol, and free fatty acids. Includes crude oil. “Oil” or “fat” means a composition comprising these lipids.
  • fatty acid includes not only free saturated or unsaturated fatty acids themselves, but also free saturated or unsaturated fatty acids, saturated or unsaturated fatty acid alcohol esters, triglycerides, diglycerides, monoglycerides, phospholipids, steryl esters and the like. Fatty acids as constituent units are also included and can be rephrased as constituent fatty acids. In the present specification, unless otherwise specified, the form of a compound containing a fatty acid may be omitted. Examples of the form of the compound containing a fatty acid include a free fatty acid form, a fatty acid alcohol ester form, a glycerol ester form, a phospholipid form, and a steryl ester form.
  • the compound containing the same fatty acid may be contained in a single form in the oil, or may be contained as a mixture of two or more forms. It has been empirically found that the reaction efficiency of fatty acid hydrolysis or alcohol decomposition is high, and after hydrolysis or alcohol decomposition, a composition containing fatty acids mainly in the form of free fatty acids or their lower alcohol esters is obtained. . For this reason, unless otherwise indicated, the fatty acid after the processing step may be represented by omitting that it is a composition and that the fatty acid is a fatty acid in the form of a free fatty acid or a lower alcohol ester. However, it does not completely exclude the inclusion of fatty acids in a form other than the free fatty acid form or the lower alcohol ester form.
  • fatty acids When describing fatty acids, numerical representations may be used in which the number of carbon atoms, the number of double bonds, and the location of double bonds are simply expressed using numbers and alphabets, respectively.
  • a saturated fatty acid having 20 carbon atoms is represented as “C20: 0”
  • a monounsaturated fatty acid having 18 carbon atoms is represented as “C18: 1”, and the like
  • arachidonic acid is represented as “C20: 4, n-6”.
  • N- indicates the position of the double bond counted from the methyl terminus of the fatty acid.
  • n-6 indicates that the position of the double bond is the sixth counted from the methyl terminus of the fatty acid. Show. This method is well known to those skilled in the art, and the fatty acid represented according to this method can be easily identified by those skilled in the art.
  • crude oil means a mixture of the above-described lipids and extracted from a living organism.
  • refined oil refers to a phospholipid by performing at least one oil and fat refining step selected from the group consisting of a degumming step, a deoxidizing step, a decoloring step, and a deodorizing step on the crude oil. And oil that has been subjected to a purification treatment to remove substances other than the target product such as sterol.
  • oils and fats obtained from marine products include lipids including fats and oils, phospholipids, wax esters and the like contained in fish, shellfish or marine animals.
  • Fish species with a high content of LC-MUFA include fish belonging to the saury family such as saury, fish belonging to the cod family such as codfish, walleye pollock, Atlantic cod, mandala, chum salmon, coho salmon, sockeye salmon, calaf trout, coral salmon, Examples include salmonid fish such as rainbow trout, cucumber fishes such as calaft shishamo and shishamo, and herring fishes such as herring.
  • fish such as eelfish, tuna, mackerel, goldfish, mutsu, red sea bream, Alaska snake, and blue sea bream are also relatively abundant. It is also abundant in the liver oil of sharks such as black sharks, sharks, and sharks. Oils and fats derived from animals such as seals and whales can also be used. Even raw materials that do not contain much LC-MUFA can be concentrated and used.
  • dococenoic acid (C22: 1) contained in saury (raw) fatty acids is 19.3% by weight
  • icosenoic acid (C20: 1) is 17.2% by weight
  • the total amount of saturated fatty acids is stated to be 50.1% by weight.
  • Saury oil is characterized by a high content of monounsaturated fatty acids among fish oils. It is preferable to select a fish oil containing 10% by weight or more, preferably 15% by weight or more of docosenoic acid and icosenoic acid in the fatty acid. Fish oil of fish species with a large catch such as sanma and cod is suitable as a raw material.
  • MUFA monounsaturated fatty acid
  • PUFA polyunsaturated fatty acid
  • It is a fatty acid having the above.
  • LC-MUFAs according to the present invention, MUFAs having 20 and / or 22 carbon atoms, particularly isomers of n-11 can be obtained at high concentrations.
  • MUFA with 20 carbon atoms is called eicosenoic acid (icosenoic acid) under the IUPAC name, and cis-icos-9-enoic acid (n-11, common name gadoleic acid), cis-icos-11- It is called enoic acid (n-9, common name Gondoic acid).
  • MUFA with 22 carbons is called docosenoic acid in the IUPAC name, and cis-docos-11-enoic acid (n-11, common name cetoleic acid), cis-docos-13-enoic acid (n -9, the common name erucic acid).
  • Marine fats and oils are rich in n-11 gadoleic acid and / or cetreic acid.
  • Fatty acids other than MUFA contained in fish oil, etc. include saturated fatty acids (carbon numbers 14, 16, 18, 20, etc.), divalent, trivalent unsaturated fatty acids (carbon numbers 18, 20, etc.), and tetravalent or higher Polyunsaturated fatty acids (PUFA, carbon number 20, 22 etc.) are mentioned.
  • polyunsaturated fatty acids are characteristic fatty acids for fish oil and the like, for example, fatty acids having 20 or more carbon atoms and 4 or more double bonds.
  • the ester of MUFA is a lower alcohol having 1 to 3 carbon atoms of MUFA, preferably an ester of ethanol of MUFA.
  • the method for producing a free monounsaturated fatty acid having 20 and / or 22 carbon atoms or a lower alcohol ester thereof includes hydrolyzing or alcoholicizing a fat or oil derived from a marine product raw material, Obtaining a lower alcohol ester (hereinafter sometimes referred to as a processing step), distilling the free fatty acid or lower alcohol ester, and reducing the concentration of fatty acid having 18 or less carbon atoms in the free fatty acid or lower alcohol ester Fractions of free monounsaturated fatty acids having 20 and / or 22 carbon atoms or their lower alcohol esters by column chromatography (hereinafter sometimes referred to as distillation step) and reverse phase partition system. (Hereinafter sometimes referred to as column process), and in some cases, other processes may be included. Can.
  • Any method may be used for obtaining the crude oil from each marine product raw material.
  • saury crude oil as an example, it is usually collected in the following manner as with other fish oils. Processing residue such as fish head, skin, middle bone, internal organs, etc. generated from saury whole or fishery processing is pulverized and steamed, and then squeezed to separate into boiling water (stick water) and compressed meal. The fats and oils obtained with the broth are separated from the broth by centrifugation to obtain crude saury.
  • crude oil of fish oil is made into purified fish oil through purification processes such as degumming process, deoxidation, decolorization using activated clay or activated carbon, water washing process, deodorization process by steam distillation and the like according to the raw materials.
  • This refined fish oil can also be used as a raw material of the present invention.
  • the oil and fat derived from the marine product raw material used in the method of one embodiment of the present invention is a refined oil obtained by performing such a general refining process on the crude oil obtained from the marine product.
  • a refined oil obtained by subjecting a crude oil obtained from a marine product to at least one of a degumming step, a deoxidizing step, and a decoloring step can be used as a fat derived from a marine product raw material.
  • the processing step in the method of one embodiment of the present invention is a step of decomposing oil and fat derived from a marine product raw material into free fatty acid or lower alcohol ester by hydrolysis or alcohol decomposition.
  • Hydrolysis is to release a fatty acid bonded to glycerin by adding water and a catalyst such as an acid or an enzyme to the oil to react.
  • Alcohol decomposition is a process in which an oil and fat are reacted with a lower alcohol having 1 to 3 carbon atoms, preferably ethanol, and a catalyst or enzyme to produce an ester of a fatty acid bonded to glycerin and a lower alcohol.
  • the distillation step of the method according to one embodiment of the present invention is a step of reducing the concentration of a fatty acid having 18 or less carbon atoms in the free fatty acid or lower alcohol ester produced in the processing step by distillation.
  • Fatty acids having 18 or less carbon atoms are 30 area% or less, 20 area% or less, 10 area% or less, 5 area% or less, or 1 area% or less, in other words, 30% or less, 20% or less, 10% or less. It is preferable to reduce to less than 5%, less than 5% by weight, or less than 1% by weight.
  • the distillation method may be any method, and among them, a method capable of removing fatty acids having 18 or less carbon atoms as much as possible is preferable. Examples of such distillation methods include simple distillation such as molecular distillation and short path distillation; and rectification, and rectification is particularly preferable. Both rectification and simple distillation are preferably thin film distillation including a thin film heating evaporator.
  • the conditions of rectification can be adjusted by the fatty acid composition of the lower alcohol ester used as a raw material.
  • the column bottom temperature is 220 ° C. or less, preferably 150 to 220 ° C., particularly preferably 150 to 200 ° C.
  • the decompression condition is 10 mmHg or less, more preferably 1 mmHg or less, and still more preferably 0.1 mmHg or less.
  • the preferable pressure reduction conditions in simple distillation, particularly short-path distillation or molecular distillation are 0.05 mmHg or less, more preferably 0.0013 mmHg or less.
  • the column step in the method of one embodiment of the present invention is a step for concentrating or separating MUFA having 20 and / or 22 carbon atoms from other unsaturated fatty acids.
  • column chromatography using a reverse phase partition system is suitable.
  • an ODS column is preferable. If it is an adsorbent of a reverse phase distribution system as a stationary phase, it can be used without particular designation, and an ODS column using octadecylsilyl (ODS) is preferable.
  • the amount of the adsorbent is preferably 10 times or more, more preferably 100 times or more the weight of the raw material used for column chromatography.
  • adsorbent amount there is no restriction
  • various polar solvents such as methanol, ethanol, 2-propanol, acetone, and acetonitrile, or water-containing solvents obtained by adding water to these polar solvents can be used, and methanol is preferred.
  • free MUFA having 20 and / or 22 carbon atoms in the total fatty acids or their lower alcohol esters can be concentrated to a high concentration, for example, these can be concentrated alone or in combination to a concentration of 70% or more, 80% or more, 90% or more, or 95% or more. , 99.99% by weight or less, or 99.9999% by weight or less in the total fatty acids.
  • concentration of the free fatty acid having 18 or less carbon atoms or the lower alcohol ester thereof in the total fatty acid can be reduced. It can be reduced to not more than wt%, not more than 20 wt%, not more than 10 wt%, not more than 5 wt%, or not more than 1 wt%.
  • the free saturated fatty acid or its lower alcohol ester in the total fatty acid can be reduced to 10% by weight or less, 5% by weight or less, or 1% by weight or less.
  • the PUFA in the total fatty acids can be reduced to 5% by weight or less, or 1% by weight or less.
  • the free monounsaturated fatty acid having 20 carbon atoms or its lower alcohol ester concentrated to a high concentration is free gadoleic acid (n- 11) and / or free gondoic acid (n-9) or a lower alcohol ester thereof, and a free monounsaturated fatty acid having 22 carbon atoms or a lower alcohol ester thereof concentrated to a high concentration, It can be free cetoleic acid (n-11) or a lower alcohol ester thereof and / or free erucic acid (n-9) or a lower alcohol ester thereof.
  • the resulting free fatty acid or lower alcohol ester thereof can contain at least free gadoleic acid (n-11) or lower alcohol ester thereof, or free cetoleic acid (n-11) or lower alcohol ester thereof, and at least free Gadoleic acid or a lower alcohol ester thereof.
  • free fatty acids or lower alcohol esters thereof include free gadoleic acid or lower alcohol esters thereof in a total fatty acid of 30% by weight, 40% by weight, 50% by weight, 60% by weight, or 70% by weight. % Or more, and can be contained at 99.99% by weight or less, or 99.9999% by weight or less in the total fatty acids.
  • the free fatty acid or lower alcohol ester thereof contains free cetreic acid or lower alcohol ester thereof in a total fatty acid of 30% by weight, 40% by weight, 50% by weight, 60% by weight, or 70% by weight or more. It can be contained in the total fatty acid at 99.99 wt% or less, or 99.9999 wt% or less.
  • the free fatty acid or its lower alcohol ester can contain free gondonic acid or its lower alcohol ester in a total fatty acid of 5% by weight or more, 10% by weight or more, 15% by weight or more, or 20% by weight or more, The total fatty acid may be 99.99% by weight or less, or 99.9999% by weight or less.
  • the free fatty acid or its lower alcohol ester may contain free erucic acid or its lower alcohol ester in a total fatty acid of 1% by weight or more, 2% by weight or more, or 3% by weight or more. It can contain 99 weight% or less or 99.9999 weight% or less.
  • both free gadoleic acid and free cetreic acid or a lower alcohol ester thereof are present in the free fatty acid or its lower alcohol ester, the total concentration thereof is 99.99% by weight or less in the total fatty acid, or 99.99%. It can be made 9999% by weight or less. If free gadoleic acid, free cetreic acid, free gondoic acid and free erucic acid, or two or more of these lower alcohol esters are present together in the free fatty acid or its lower alcohol ester, the total concentration of these May be 99.99 wt% or less, or 99.9999 wt% or less of the total fatty acids. Such free fatty acids or lower alcohol esters thereof are preferred as pharmaceuticals or supplements containing LC-MUFA as an active ingredient.
  • the free fatty acid or lower alcohol ester thereof, which is MUFA can be preferably applied as a pharmaceutical or supplement containing LC-MUFA as an active ingredient.
  • At least 70% by weight of the total fatty acids containing at least 70% by weight of free gadoleic acid or a lower alcohol ester thereof or free cetreic acid or a lower alcohol ester thereof according to an embodiment of the present invention has 20 and / or 22 carbon atoms.
  • Lower alcohol ester is a pharmaceutical with LC-MUFA as an active ingredient Or more preferably as a supplement.
  • it contains at least free gadoleic acid or a lower alcohol ester thereof or free cetreic acid or a lower alcohol ester thereof, and at least 90% by weight of the total fatty acids is MUFA having 20 and / or 22 carbon atoms,
  • the free fatty acids having 18 or less carbon atoms or their lower alcohol esters in the total fatty acids are, for example, 30% by weight or less, 20% by weight in total, alone or in combination. %, 10%, 5% or 1% or less.
  • these high-purity compositions are It is indispensable. Since the free fatty acid or lower alcohol ester according to an embodiment of the present invention contains at least gadoleic acid or cetreic acid and contains a high concentration of free monounsaturated fatty acids having 20 and / or 22 carbon atoms, gadoleic acid or cetrein It is preferably applied to research, development and commercialization of substances derived from marine products such as acids.
  • the free fatty acid or lower alcohol ester has a low concentration of at least one fatty acid selected from the group consisting of fatty acids having 18 or less carbon atoms, saturated fatty acids, and highly unsaturated fatty acids Is more preferably applied.
  • the free fatty acid according to one embodiment of the present invention may be a salt thereof.
  • the salt include potassium salt and sodium salt.
  • the composition according to one embodiment of the present invention contains LC-MUFA at a high concentration, and in some cases, the content of saturated fatty acid, LC-PUFA, and the like can be extremely low. For this reason, LC-MUFA is extremely useful for applications requiring high concentrations. Examples of such uses include foods, supplements, and pharmaceuticals. It is particularly preferable to use for the purpose of LC-MUFA functionality, for example, for improvement of metabolic syndrome, prevention of lifestyle-related diseases.
  • improvement of metabolic syndrome comprising administering the composition according to one aspect of the present invention as an agent for improving metabolic syndrome to a subject in need of improvement of metabolic syndrome, in an amount effective for improving metabolic syndrome.
  • a method is provided.
  • the lifestyle according to the present invention includes administering the composition according to one aspect of the present invention to a subject for which lifestyle-related preventive agent or lifestyle-related disease prevention is required, in an amount effective for lifestyle-related prevention.
  • Disease prevention methods are included. Examples of administration subjects include humans and animals.
  • compositions (a) to (c) are used as a metabolic syndrome ameliorating agent or a lifestyle-related disease preventing agent in these improvement methods or prevention methods: (A) at least free gadoleic acid (n-11) or a lower alcohol ester thereof, or free cetreic acid (n-11) or a lower alcohol ester thereof, monovalent unsaturated fatty acid having 20 and / or 22 carbon atoms, or thereof A composition containing a free fatty acid or a lower alcohol ester thereof, containing 70 wt% or more, 80 wt% or more, or 90 wt% or more of the lower alcohol ester of (B) at least 70% by weight of the total fatty acid is a monounsaturated fatty acid having 20 and / or 22 carbon atoms, and includes at least free gadoleic acid or a lower alcohol ester thereof or free cetreic acid or a lower alcohol ester thereof; A composition comprising a free fatty acid or a lower alcohol este
  • the fish-derived refined oil contains about 30% by weight of monounsaturated fatty acids having 20 and / or 22 carbon atoms or lower alcohol esters thereof, and such fish-derived refined oil has an improved metabolic syndrome.
  • WO2012 / 121080 Lipids (2011) Vol.46, pp.425-434; J. Agric. Food Chem., 2011, Vol.59, pp.7482-7489; Lipids in Health and Disease, 2011, vol.10, pp.189-199 etc.
  • the metabolic syndrome improving agent or lifestyle-related disease preventive agent contains at least free gadoleic acid or a lower alcohol ester thereof or free cetreic acid or a lower alcohol ester thereof, and has a higher concentration, for example, 70% by weight or more. Therefore, a higher effect of improving metabolic syndrome or prevention of lifestyle-related diseases can be expected because it contains a free monounsaturated fatty acid having 20 and / or 22 carbon atoms or a lower alcohol ester thereof.
  • a composition for improving metabolic syndrome or a composition for preventing lifestyle-related diseases comprising the metabolic syndrome-improving agent or lifestyle-related disease-preventing agent (a) to (c) above, and an additive component.
  • the additive component include a pharmaceutically acceptable base, carrier, excipient, disintegrant, lubricant, and coloring agent when used as a pharmaceutical product.
  • the composition for improving metabolic syndrome or the composition for preventing lifestyle-related diseases according to another aspect of the present invention is preferably provided as a soft capsule such as gelatin, or a tablet or capsule after being processed into a powdered oil or fat. Can do.
  • a composition for improving metabolic syndrome or a composition for preventing lifestyle-related diseases is a combination of the above-mentioned metabolic syndrome improving agent or lifestyle-related disease preventive agent of (a) to (c) and an additive component, which are necessary at a predetermined blending ratio. Depending on the situation, it can be produced through additional steps such as processing into a desired dosage form.
  • the content of the metabolic syndrome ameliorating agent or the lifestyle-related disease preventive agent in the composition for improving metabolic syndrome or the composition for preventing lifestyle-related diseases is not particularly limited as long as the content can be expected to be effective. % To 100% by weight, 0.1% to 100% by weight, or 3% to 100% by weight.
  • the metabolic syndrome improving agents or lifestyle-related disease preventing agents (a) to (c) above can be used as food materials in foods.
  • the food means all foods including beverages, and includes general health foods including health foods such as supplements, as well as foods for specified health use or nutritional function foods stipulated in the Health Functional Food System of the Consumer Affairs Agency. For example, it can be set as the functional food to which the indication which has a metabolic syndrome improvement effect, or the indication which has a lifestyle-related disease prevention effect
  • the metabolic syndrome-improving agent or the lifestyle-related disease preventive agent of the above (a) to (c) is used as a food material, the food containing these may be combined with other food materials as required, and any shape It can be manufactured through an additional process such as forming into a mold.
  • the content rate in the foodstuff of a metabolic syndrome improving agent or a lifestyle-related disease preventive agent It can be set as the content rate by which an effect is anticipated.
  • the food material may be used as an additive for animal feed.
  • the composition When administered to a subject as a pharmaceutical or food, it is appropriately set according to conditions such as the degree of symptoms, age, weight and health of the subject. For example, in the case of an adult, the composition is administered in an amount of 1 mg to 1 g / kg / day, preferably 5 mg to 300 mg / kg / day as an active ingredient, orally or parenterally, once a day or 2 to 2 It can be divided into four or more doses and administered at appropriate intervals.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after the numerical value as a minimum value and a maximum value, respectively.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. To do.
  • the terms “below” or “less than” in terms of percentage mean 0% or a range including a value that cannot be detected by current means unless a lower limit value is specifically described.
  • an element labeled with the indefinite article “a” or “an” does not exclude the possibility of one or more elements present unless the context clearly indicates or ties.
  • the indefinite article “a” or “an” usually means “at least one”.
  • the verb “comprising” and its conjugation are used in a non-limiting sense, and include items that follow this term and do not exclude items that are not specifically mentioned. .
  • each feature described in one embodiment regarding each aspect of the invention may be arbitrarily combined to form a new embodiment. Embodiments should also be understood as being encompassed by each aspect of the invention.
  • the fatty acid composition can be determined according to a conventional method. Specifically, fats and oils to be measured are esterified using a lower alcohol and a catalyst to obtain a fatty acid lower alcohol ester. Subsequently, the obtained fatty acid lower alcohol ester is analyzed using gas chromatography. The peak corresponding to each fatty acid is identified in the obtained gas chromatography chart, and the peak area of each fatty acid is obtained using the Agilent ChemStation integration algorithm (revision C.01.03 [37], Agilent Technologies). The peak area is the total peak area of each component of the chart analyzed by using gas chromatography, thin layer chromatography / flame ionization detector (TLC / FID), etc.
  • TLC / FID thin layer chromatography / flame ionization detector
  • Example 1 4,000 kg of crude saury collected from fresh saury was degummed, deoxidized and decolored to obtain 3,520 kg of saury refined oil. 2,000 kg of the obtained saury refined oil was transesterified with sodium ethylate for ethyl esterification, and 0.5% vitamin E was added as an antioxidant to obtain 1,999 kg of saury oil ethyl ester (sample A). The analytical values of the obtained saury oil ethyl ester are shown in Table 1.
  • Example 2 Purification of saury oil ethyl ester by rectification 100.06 g of saury oil ethyl ester is placed in a 500 mL three-necked flask and five laboratory packing EXs (25 mm x 50 mm, Sulzer Chemtech) are inserted in a rectifying tower with a vacuum jacket made by Kiriyama Seisakusho (vacuum) Using a fractionating tube with jacket (Kiriyama Seisakusho, a fractionation head (Kiriyama Seisakusho)), tower bottom temperature 185 ° C, tower bottom pressure 0.8mmHg (about 107Pa), tower top pressure 8Pa, tower top steam temperature Precision distillation was performed at 133 ° C. to obtain 43.2 g of rectified fraction (sample B) and 54.5 g of rectified residue (sample C). Table 2 shows the fatty acid composition of Samples B and C.
  • Example 3 Purification of saury oil ethyl ester by molecular distillation 905.5 g of saury oil ethyl ester was placed in a centrifugal molecular distillation device (MS-150) manufactured by Nippon Vehicle Manufacturing Co., Ltd. and distilled at an evaporation surface temperature of 90 ° C and a pressure of 0.015 Torr. A distillation fraction of 209.7 g and a distillation residue of 596.2 g (sample D) were obtained. Table 2 shows the fatty acid composition of Sample D.
  • Example 4 Purification of LC-MUFA by HPLC after distillation. Samples C and D containing fatty acid ethyl ester purified by rectification or molecular distillation were further purified by ODS (Octa Decyl Silyl) -HPLC.
  • the separation conditions are as follows. Separation condition columns: JAIGEL-ODS-AP-30, SP-120-15 (Nippon Analytical Industrial Co., Ltd.), 30 ⁇ ⁇ 200mm Eluent: Methanol flow rate: 20mL / min Column temperature: 40 ° C Sample load: 6.30g Detector: Differential refractometer
  • C20: 1 fraction a fraction containing C20: 1
  • C22: 1 fraction a fraction containing C22: 1
  • Table 3 shows the fatty acid composition of each fraction.
  • the fatty acid composition (%) is an area ratio based on a gas chromatography chart as described above.
  • Sample E Sample C as a raw material
  • sample C20 1 fraction fractionated
  • Sample F Sample C as a raw material sample
  • C22 1 fraction fractionated
  • Sample sample G Sample D as a raw material
  • Sample H Sample from which sample D was fractionated using sample D as a raw material
  • the content ratio of LC-MUFA could be increased by performing ODS-HPLC purification for all of samples E to H.
  • Samples E, F and G could be concentrated to a concentration of 95% by weight or more.
  • the composition obtained according to the embodiment of the present invention contains LC-MUFA at a high concentration, and the content of saturated fatty acid and LC-PUFA is extremely low.
  • LC-MUFA is extremely useful for applications requiring high concentrations. Examples of such uses include foods, supplements, and pharmaceuticals. It is particularly preferable to use for the purpose of LC-MUFA functionality, for example, for improvement of metabolic syndrome, prevention of lifestyle-related diseases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Fats And Perfumes (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Edible Oils And Fats (AREA)

Abstract

 以下を含む炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルを製造する方法:水産物原料由来の油脂を加水分解又はアルコール分解して、遊離脂肪酸又は低級アルコールエステルを得ること、前記遊離脂肪酸又は低級アルコールエステルに対して蒸留を行い、当該遊離脂肪酸又は低級アルコールエステル中の炭素数18以下の脂肪酸の濃度を低減させること、逆相分配系のカラムクロマトグラフィーにより、炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルの画分を分取すること。

Description

水産物由来遊離1価不飽和脂肪酸又はその低級アルコールエステルの製造方法
 本発明は、水産物由来の油脂から炭素数20以上の遊離1価不飽和脂肪酸(二重結合を1個もつ不飽和脂肪酸、以下、MUFAとも記す。)又はその低級アルコールエステルを製造する方法、遊離1価不飽和脂肪酸又はその低級アルコールエステル、及びそれらの用途に関する。
 魚油特有の脂肪酸であるエイコサペンタエン酸(以下、EPA)、ドコサヘキサエン酸(以下、DHA)などの多価不飽和脂肪酸(以下、PUFA)は、多くの生理活性を有することが見出され、広く、サプリメント又は医薬品として利用されている。
 植物油は広く食用に用いられており、飽和脂肪酸が血中のコレステロール値を高めるのに対し、植物油に多く含まれる炭素数18の不飽和脂肪酸である、オレイン酸(1価)、リノール酸(2価)、リノレン酸(3価)はコレステロール値を低下させるということから注目されている。特に、炭素数18のMUFAであるオレイン酸は善玉コレステロールに影響せず、悪玉コレステロールだけを低下させるため、健康に良いといわれている。植物油に含まれるMUFAには炭素数20、22のものもあり、これらは、菜種油、アラセイトウ油、辛子油、キリ油等に多く含まれる。主に炭素数20以上のMUFAは、LC-MUFAとも呼ばれている。植物油由来のLC-MUFAの製造方法については、尿素付加、再結晶などの方法が報告されている(例えば、WO89/08095及び特開平9-278706号)。
 また、魚油にも1価不飽和脂肪酸(以下、MUFA)、主に炭素数20又は22のMUFA(以下、炭素数20以上のMUFAをLC-MUFA)が含まれている。魚油由来のLC-MUFAにも、コレステロール低下作用などの生理活性があることが報告されている(例えば、WO2012/121080)。植物油由来のLC-MUFAはn-9が主であるのに対し、魚油由来のものはn-11が主であるという違いがある。n-9とは、脂肪酸のメチル末端から9番目の結合が二重結合であることを示し、n-11とは、脂肪酸のメチル末端から11番目の結合が二重結合であることを示す。
 植物油と異なり、水産物由来の油脂中にはMUFA以外に炭素数12~24で二重結合0~6個をもつ多種類の脂肪酸が含まれている。水産物油脂からの精製例として、WO2012/121080には、サンマ油をエチルエステル化してODSカラムに付しMUFAを濃縮するラボスケールでの精製方法が記載されている。この方法で得られる水産物由来の炭素数20及び/又は22のMUFAの濃度は70%程度と示されている。
 水産物由来の油脂中に含まれるMUFA以外に炭素数12~24で二重結合0~6個をもつ多種類の脂肪酸の中には、精製処理においてMUFAと類似の挙動を示すものが存在するため、MUFAを高濃度に効率よく濃縮するのは容易ではなく、これまで産業利用可能な方法によって量産された例は認められない。
 サンマ、タラ等の水産物油脂中に豊富に含まれるLC-MUFAは、メタボリックシンドロームに対する改善効果を有することが報告されているが、水産物油脂中には炭素数20以上の高度不飽和脂肪酸(以下、LC-PUFAとも記す。)も含まれており、正確にLC-MUFA又はそのエステルの効果を検証する上において障害となっている。医薬品として有用なLC-MUFA又はそのエステル等を臨床的に、あるいは更に広範囲な疾患領域へ適用するためには、LC-MUFAを高濃度に含むもの、又はLC-MUFA以外の成分がほとんど含まれない、例えばLC-MUFA濃度(純度)が85重量%以上、更には90重量%以上のものを、大量に高効率で生産することが求められている。
 特に、水産物油脂由来のLC-MUFAは、植物油由来の油脂に含まれるLC-MUFAと二重結合の位置が異なる異性体を主成分とする。そのような異性体を高濃度に含む水産物油脂由来のLC-MUFAについては、高濃度な水産物油脂由来のLC-MUFAが世に存在しないため、その供給手段が必要である。
 本発明は、高濃度なLC-MUFAを効率よく得るための、又はLC-PUFA及び飽和脂肪酸含有量が低いLC-MUFAを効率よく得るための、工業的製造方法、及びそれによって得られた高純度のLC-MUFAを提供することを課題とする。
 本発明は、以下の炭素数20及び/又は22の1価不飽和脂肪酸又はそれらの低級アルコールエステルを製造する方法、並びに炭素数20及び/又は22の1価不飽和脂肪酸又はその低級アルコールエステルの各態様を含む。
 [1] 以下を含む、炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルを製造する方法:水産物原料由来の油脂を加水分解又はアルコール分解して、遊離脂肪酸又は低級アルコールエステルを得ること、前記遊離脂肪酸又は低級アルコールエステルに対して蒸留を行い、当該遊離脂肪酸又は低級アルコールエステル中の炭素数18以下の脂肪酸の濃度を低減させること、逆相分配系のカラムクロマトグラフィーにより、炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルの画分を分取すること。
 [2] 水産物原料由来の油脂が、水産物から得た粗油に対して脱ガム、脱酸、脱色及び脱臭からなる群より選択される少なくとも1つの精製処理により得られた精製油である、[1]の方法。
 [3] 蒸留が、精留である[1]又は[2]の方法。
 [4] 蒸留が、分子蒸留又は短行程蒸留である[1]又は[2]の方法。
 [5] 蒸留が、規則充填物を用いた精留である[1]~[3]のいずれか1の方法。
 [6] カラムクロマトグラフィーにより、全脂肪酸中の濃度が70重量%以上、80重量%以上、90重量%以上、又は95重量%以上である炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルを得る[1]~[5]のいずれか1の方法。
 [7] 蒸留実施後の炭素数18以下の遊離脂肪酸又はそれらの低級アルコールエステルの濃度が、全脂肪酸中の30重量%以下、20重量%以下、10重量%以下、5重量%以下、又は1重量%以下である[1]~[6]のいずれか1の方法。
 [8] 蒸留及びカラムクロマトグラフィーの実施後の遊離高度不飽和脂肪酸又はそれらの低級アルコールエステルの濃度が、全脂肪酸中の5重量%以下、又は1重量%以下である[1]~[7]のいずれか1の方法。
 [9] [1]~[8]のいずれか1の方法により得られ得る炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステル。
 [10] 少なくとも、遊離ガドレイン酸(n-11)若しくはその低級アルコールエステル又は遊離セトレイン酸(n-11)若しくはその低級アルコールエステルを含み、
 炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルを全脂肪酸の70重量%以上、80重量%以上、又は、90重量%以上含有する、遊離脂肪酸又はその低級アルコールエステル。
 [11] 炭素数20の遊離1価不飽和脂肪酸又はその低級アルコールエステルが、遊離ガドレイン酸(n-11)若しくはその低級アルコールエステル、及び/又は、遊離ゴンドイン酸(n-9)若しくはその低級アルコールエステルであり、炭素数22の遊離1価不飽和脂肪酸又はその低級アルコールエステルが、遊離セトレイン酸(n-11)若しくはその低級アルコールエステル、及び/又は、遊離エルカ酸(n-9)若しくはその低級アルコールエステルである、[10]の遊離脂肪酸又はその低級アルコールエステル。
 [12] 全脂肪酸中の少なくとも70重量%が炭素数20及び/又は22の遊離1価不飽和脂肪酸又はその低級アルコールエステルであり、少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離セトレイン酸若しくはその低級アルコールエステルを含み、全脂肪酸中の遊離飽和脂肪酸又はその低級アルコールエステルが10重量%以下であり、かつ全脂肪酸中の遊離高度不飽和脂肪酸又はその低級アルコールエステルが5重量%以下である、遊離脂肪酸又はその低級アルコールエステル。
 [13] 全脂肪酸中の少なくとも90重量%が炭素数20及び/又は22の遊離1価不飽和脂肪酸又はその低級アルコールエステルであり、少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離セトレイン酸若しくはその低級アルコールエステルを含み、全脂肪酸中の遊離飽和脂肪酸又はその低級アルコールエステルが5重量%以下であり、かつ全脂肪酸中の遊離高度不飽和脂肪酸又はその低級アルコールエステルが1重量%以下である、[12]の遊離脂肪酸又はその低級アルコールエステル。
 [14] 遊離ガドレイン酸又はその低級アルコールエステルを少なくとも含み、遊離ガドレイン酸(n-11)又はその低級アルコールエステルを、全脂肪酸中に30重量%以上、40重量%以上、50重量%以上、60重量%以上、又は70重量%以上含有する、[9]~[13]のいずれか1の遊離脂肪酸又はその低級アルコールエステル。
 [15] 全脂肪酸中の炭素数18以下の遊離脂肪酸又はその低級アルコールエステルが、30重量%以下、20重量%以下、10重量%以下、5重量%以下、又は1重量%以下である[9]~[14]のいずれか1の遊離脂肪酸又はその低級アルコールエステル。
 [16] 水産物の油脂から得られ得る[9]~[15]のいずれか1の遊離脂肪酸又はその低級アルコールエステル。
 [17] [9]~[16]のいずれか1の遊離脂肪酸又はその低級アルコールエステルの、食品の製造における使用。
 [18] [9]~[16]のいずれか1の遊離脂肪酸又はその低級アルコールエステルを有効成分とするメタボリックシンドローム改善剤又は生活習慣病予防剤。
 [19] [18]のメタボリックシンドローム改善剤又は生活習慣病予防剤と、添加成分と、を含むメタボリックシンドローム改善組成物又は生活習慣病予防用組成物。
 [20] [9]~[16]のいずれか1の遊離脂肪酸又はその低級アルコールエステルの、[18]に記載のメタボリックシンドローム改善組成物又は生活習慣病予防用組成物の製造における使用。
 本発明の方法によれば、高濃度のLC-MUFAを効率よく得ることができる。また、本発明の一態様により、LC-PUFA及び飽和脂肪酸含有量が低く、高濃度かつ高収率に水産物油脂由来のLC-MUFAを提供することができる。本発明の一態様により、LC-MUFAの組成物中の飽和脂肪酸ならびにLC-PUFAの含有量を低くすることが可能となる。LC-MUFAを機能性成分として利用する場合に、飽和脂肪酸及び/又はLC-PUFAの濃度が低いことが求められる用途に用いるのに適している。脂肪酸は炭素数又は二重結合の数が異なるとその物性だけでなく、生理機能に大きな違いを生じる。従来分離するのが困難であった水産物油脂由来のLC-MUFAを炭素数別に分離できたことにより、個々の機能を明確にし、有効利用することができる。LC-MUFAを有効成分とする医薬品、サプリメントなどの用途に適する。
 「油」又は「油脂」とは、本明細書では、トリグリセリドのみのものだけでなく、トリグリセリドを主成分とし、ジグリセリド、モノグリセリド、リン脂質、コレステロール、遊離脂肪酸等の他の脂質が含まれている粗油も含む。「油」又は「油脂」は、これらの脂質を含む組成物を意味する。
 用語「脂肪酸」には、遊離の飽和若しくは不飽和脂肪酸それら自体だけでなく、遊離の飽和若しくは不飽和脂肪酸、飽和若しくは不飽和脂肪酸アルコールエステル、トリグリセリド、ジグリセリド、モノグリセリド、リン脂質、ステリルエステル等中に含まれる構成単位としての脂肪酸も含まれ、構成脂肪酸とも言い換えられ得る。本明細書において、特に断らない限り、脂肪酸を含む化合物の形態については省略する場合がある。脂肪酸を含む化合物の形態としては、遊離脂肪酸形態、脂肪酸アルコールエステル形態、グリセロールエステル形態、リン脂質の形態、ステリルエステル形態等を挙げることができる。同一の脂肪酸を含む化合物は、油中、単一の形態で含まれていてもよく、2つ以上の形態の混合物として含まれていてもよい。
 脂肪酸の加水分解又はアルコール分解の反応効率は高いことが経験的に判明しており、加水分解又はアルコール分解後には、主として遊離脂肪酸形態又はそれらの低級アルコールエステル形態の脂肪酸を含む組成物が得られる。このため、加工工程後の脂肪酸については、特に断らない限り、組成物であること、及び、脂肪酸が遊離脂肪酸形態又は低級アルコールエステル形態の脂肪酸であることを省略して表記することがある。ただし、遊離脂肪酸形態又は低級アルコールエステル形態以外の形態の脂肪酸が含まれることを完全に排除するものではない。
 脂肪酸を表記する際に、炭素数、二重結合の数及び二重結合の場所を、それぞれ数字とアルファベットを用いて簡略的に表した数値表現を用いることがある。例えば、炭素数20の飽和脂肪酸は「C20:0」と表記され、炭素数18の一価不飽和脂肪酸は「C18:1」等と表記され、アラキドン酸は「C20:4,n-6」等と表記され得る。「n-」は、脂肪酸のメチル末端から数えた二重結合の位置を示し、例えば「n-6」であれば、二重結合の位置が脂肪酸のメチル末端から数えて6番目であることを示す。この方法は当業者には周知であり、この方法に従って表記された脂肪酸については、当業者であれば容易に特定することができる。
 本明細書において「粗油」とは、上述した脂質の混合物であって、生物から抽出された状態の油を意味する。本明細書において「精製油」とは、粗油に対して、脱ガム工程、脱酸工程、脱色工程、及び脱臭工程からなる群より選択される少なくとも1つの油脂の精製工程を行い、リン脂質及びステロールなどの目的物以外の物質を除去する精製処理を行った油を意味する。
 本発明において、「水産物から得られる油脂」又は「水産物原料由来の油脂」とは、魚類、甲殻類、又は海産動物に含まれる油脂、リン脂質、ワックスエステルなどを含む脂質が例示される。LC-MUFAの含有量が多い魚種としては、サンマなどサンマ科に属する魚、マダラ、スケトウダラ、タイセイヨウダラ、ギンダラ等のタラ科に属する魚、シロザケ、ギンザケ、ベニザケ、カラフトマス、タイヘイヨウサケ、ニジマス等のサケ科の魚、カラフトシシャモ、シシャモ等のキュウリウオ科の魚、ニシン等のニシン科の魚などが例示される。このほか、イカナゴ、マグロ、サバ、キンメダイ、ムツ、アコウダイ、アラスカめぬけ、オオサガなどの魚にも比較的多く含まれている。また、アブラツノザメ、ウバザメ、ギンザメなどのサメ類の肝油にも多く含まれる。アザラシ及びクジラなどの動物に由来する油脂も利用できる。LC-MUFAが多くない原料であっても、濃縮して用いることができる。
 五訂日本食品標準成分表には、サンマ(生)の脂肪酸中に含まれるドコセン酸(C22:1)は19.3重量%、イコセン酸(C20:1)は17.2重量%、モノ不飽和脂肪酸の総量は50.1重量%であると記載されている。サンマ油は魚油の中でもモノ不飽和脂肪酸の含有量が多いのが特徴である。脂肪酸中に、ドコセン酸及びイコセン酸をそれぞれ10重量%以上、好ましくは15重量%以上含有する魚油を選択することが好ましい。さんま、タラ類など漁獲量の多い魚種の魚油が原料として適している。
 本発明において、「1価不飽和脂肪酸」、又は「MUFA」とは、二重結合を1つ有する脂肪酸であり、「高度不飽和脂肪酸」、又は「PUFA」とは、二重結合を4つ以上有する脂肪酸である。MUFA又はPUFAであって、炭素数20以上の長鎖(Long Chain)の脂肪酸をLC-MUFA、又はLC-PUFAと記した。
 LC-MUFAのうち、本発明では、炭素数20及び/又は22のMUFA、特に、n-11の異性体を高濃度に得ることができる。
 炭素数20のMUFAはIUPAC名ではエイコセン酸(イコセン酸)と呼ばれ、二重結合の位置によりcis-icos-9-enoic acid(n-11、慣用名ガドレイン酸)、cis-icos-11-enoic acid(n-9、慣用名ゴンドイン酸 (Gondoic acid))などと呼ばれる。炭素数22のMUFAはIUPAC名ではドコセン酸と呼ばれ、二重結合の位置によりcis-docos-11-enoic acid(n-11、慣用名セトレイン酸)、 cis-docos-13-enoic acid(n-9、慣用名エルカ酸)などと呼ばれる。水産物油脂には、n-11のガドレイン酸及び/又はセトレイン酸が多く含まれる。
 魚油等に含まれるMUFA以外の脂肪酸には、飽和脂肪酸(炭素数14、16、18、20等)、2価、3価の不飽和脂肪酸(炭素数18、20等)、及び4価以上の高度不飽和脂肪酸(PUFA、炭素数20、22等)が挙げられる。これらのうち、高度不飽和脂肪酸は、魚油等に特徴的な脂肪酸であり、例えば、炭素数20以上、二重結合数4以上の脂肪酸であり、具体的にはアラキドン酸(20:4,n-6)、エイコサペンタエン酸(20:5,n-3)、ドコサペンタエン酸(22:5,n-6)、ドコサヘキサエン酸(22:6,n-3)などが挙げられる。
 本発明においてMUFAのエステルとはMUFAの炭素数1~3の低級アルコール、好ましくはMUFAのエタノールのエステルである。
 本発明の一態様に係る炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルを製造する方法は、水産物原料由来の油脂を加水分解又はアルコール分解して、遊離脂肪酸又は低級アルコールエステルを得ること(以下、加工工程という場合がある)、前記遊離脂肪酸又は低級アルコールエステルに対して蒸留を行い、当該遊離脂肪酸又は低級アルコールエステル中の炭素数18以下の脂肪酸の濃度を低減させること(以下、蒸留工程という場合がある)、及び、逆相分配系のカラムクロマトグラフィーにより、炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルの画分を分取すること(以下、カラム工程という場合がある)、を含み、場合によって、他の工程を含むことができる。
 各水産物原料から粗油を得る方法はいかなる方法でも構わない。サンマ粗油を例にすると、通常、その他の魚油と同様に以下のような方法で採取される。サンマ全体又は水産加工から発生する魚の頭、皮、中骨、内臓等の加工残滓を粉砕して蒸煮した後、圧搾して煮汁(スティックウォーター)と圧搾ミールに分離する。煮汁とともに得られる油脂を煮汁から遠心分離により分離し、サンマ粗油とする。
 一般に魚油の粗油は、原料に応じて、脱ガム工程、脱酸、活性白土又は活性炭を用いた脱色、水洗工程、水蒸気蒸留等による脱臭工程などの精製工程を経て精製魚油とされる。本発明の原料として、この精製魚油を用いることもできる。換言すれば、本発明の一態様の方法に用いられる水産物原料由来の油脂は、水産物から得た粗油に対して、このような一般的な精製工程を行って得られた精製油とすることができる。例えば、水産物から得た粗油に対して、脱ガム工程、脱酸工程、及び脱色工程の少なくとも1つの精製処理を行った精製油を水産物原料由来の油脂とすることができる。
 本発明の一態様の方法における加工工程は、水産物原料由来の油脂を、加水分解又はアルコール分解により、遊離の脂肪酸又は低級アルコールエステルに分解する工程である。加水分解は、油脂に水と酸などの触媒又は酵素とを加え反応させ、グリセリンに結合した脂肪酸を遊離させることである。アルコール分解は、油脂に炭素数1~3の低級アルコール、好ましくはエタノール、と触媒又は酵素とを加え反応させ、グリセリンに結合した脂肪酸と低級アルコールとのエステルを生成させるものである。遊離の脂肪酸又は低級アルコールエステルをグリセリンから分離させることにより、所望の脂肪酸を濃縮することが可能になる。
 本発明の一態様における方法の蒸留工程は、蒸留により、加工工程で製造した遊離脂肪酸又は低級アルコールエステル中の炭素数18以下の脂肪酸の濃度を低減させる工程である。ここで炭素数18以下の脂肪酸を可能な限り除去することにより、続く、カラム工程がより有効に機能することができる。炭素数18以下の脂肪酸は、30面積%以下、20面積%以下、10面積%以下、5面積%以下、又は1面積%以下、換言すれば、30重量%以下、20重量%以下、10重量%以下、5重量%以下、又は1重量%以下に低減させるのが好ましい。実施例の表2及び表3の結果に示されるように、精留のような蒸留により炭素数18以下の脂肪酸の濃度をより低くしておくとカラム工程でC20:1画分にC20:1をより多く濃縮することができる。
 蒸留方法はいずれの方法であってよく、なかでも炭素数18以下の脂肪酸をできるだけ除去できる方法が好ましい。このような蒸留方法としては、分子蒸留、短行程蒸留等の単蒸留;及び精留を挙げることができ、特に精留が好ましい。精留及び単蒸留はいずれも、薄膜式加熱蒸発器を含む薄膜蒸留であることが好ましい。
 LC-MUFAと炭素数18以下の脂肪酸を分離するには、精留は、短行程蒸留、分子蒸留等の単蒸留に比べて分離が良く、このため、C18以下の脂肪酸を効率良く低減することができる。精留の条件は、原料とする低級アルコールエステルの脂肪酸組成により調整することができる。好ましい精留条件として塔底温度は220℃以下であり、好ましくは150~220℃、特に好ましくは150~200℃である。減圧条件は10mmHg以下、より好ましくは1mmHg以下、更に好ましくは0.1mmHg以下である。圧力の下限値については特に制限はなく、用いられる装置により適宜設定される。分離の理論段数を高めるための内部構造には、充填式、棚段式等の各種様式を採用することができ、より好ましくは規則充填物を用いる充填式である。短行程蒸留、分子蒸留等の単蒸留は、精留に比べて、生産性に優れて大量処理に適している。単蒸留、特に短行程蒸留又は分子蒸留における好ましい蒸留条件としては、蒸発面温度が120℃以下、好ましくは50~120℃、さらに好ましくは50~80℃である。単蒸留、特に短行程蒸留又は分子蒸留における好ましい減圧条件は0.05mmHg以下、より好ましくは0.0013mmHg以下である。圧力の下限値については特に制限はなく、用いられる装置により適宜設定される。
 本発明の一態様の方法におけるカラム工程は、炭素数20及び/又は22のMUFAを、濃縮、あるいは、これらを他の不飽和脂肪酸と分離するための工程である。炭素数20及び/又は22のMUFAを他の不飽和脂肪酸と分離するには、逆相分配系のカラムクロマトグラフィーが適している。具体的にはODSカラムが好ましい。固定相として逆相分配系の吸着剤であれば特に指定なく用いることができ、好ましくはオクタデシルシリル(ODS)を用いたODSカラムである。吸着剤量は、好ましくは、カラムクロマトグラフィーに供する原料量の10倍重量以上、より好ましくは100倍重量以上である。吸着剤量の上限値については特に制限はなく、例えば1000倍量とすることができる。溶離液及び移動相については、メタノール、エタノール、2-プロパノール、アセトン、アセトニトリル等の各種極性溶媒、又はそれら極性溶媒に水を加えた含水溶媒を用いることができ、好ましくは、メタノールである。
 上述の加工工程からカラム工程を順に実施することにより、換言すれば、蒸留及びクロマトグラフィーを実施することにより、全脂肪酸中に占める炭素数20及び/又は22の遊離のMUFA又はそれらの低級アルコールエステルを高濃度に濃縮することができ、例えば、これらを単独で、又は組み合わせた合計で、70重量%以上、80重量%以上、90重量%以上、又は、95重量%以上に濃縮することができ、全脂肪酸中99.99重量%以下、又は99.9999重量%以下とすることができる。
 蒸留及びクロマトグラフィーを実施することにより、全脂肪酸中に占める炭素数18以下の遊離の脂肪酸又はその低級アルコールエステルの濃度を低減することができ、例えば、これらを単独で又は組み合わせた合計で、30重量%以下、20重量%以下、10重量%以下、5重量%以下、又は1重量%以下に低減することができる。
 蒸留及びクロマトグラフィーを実施することにより、全脂肪酸中に占める遊離飽和脂肪酸又はその低級アルコールエステルを、10重量%以下、5重量%以下、又は1重量%以下に低下させることができる。
 蒸留及びクロマトグラフィーを実施することにより、全脂肪酸中に占めるPUFAを5重量%以下、又は1重量%以下に低下させることができる。
 得られる遊離脂肪酸又はその低級アルコールエステルは、水産物の油脂から得られるため、高濃度に濃縮される炭素数20の遊離の1価不飽和脂肪酸又はその低級アルコールエステルが、遊離のガドレイン酸(n-11)及び/又は遊離のゴンドイン酸(n-9)又はそれらの低級アルコールエステルであることができ、高濃度に濃縮される炭素数22の遊離の1価不飽和脂肪酸又はその低級アルコールエステルが、遊離のセトレイン酸(n-11)若しくはその低級アルコールエステル及び/又は遊離のエルカ酸(n-9)若しくはその低級アルコールエステルであることができる。得られる遊離脂肪酸又はその低級アルコールエステルは、少なくとも遊離のガドレイン酸(n-11)若しくはその低級アルコールエステル、又は遊離のセトレイン酸(n-11)若しくはその低級アルコールエステルを含むことができ、少なくとも遊離のガドレイン酸又はその低級アルコールエステルを含むことができる。
 なかでも、遊離脂肪酸又はその低級アルコールエステルは、遊離のガドレイン酸若しくはその低級アルコールエステルを、全脂肪酸中に30重量%以上、40重量%以上、50重量%以上、60重量%以上、又は70重量%以上含有することができ、全脂肪酸中99.99重量%以下、又は99.9999重量%以下で含有することができる。
 遊離脂肪酸又はその低級アルコールエステルは、遊離のセトレイン酸若しくはその低級アルコールエステルを、全脂肪酸中に30重量%以上、40重量%以上、50重量%以上、60重量%以上、又は70重量%以上含有することができ、全脂肪酸中99.99重量%以下、又は99.9999重量%以下で含有することができる。
 遊離脂肪酸又はその低級アルコールエステルは、遊離のゴンドイン酸若しくはその低級アルコールエステルを、全脂肪酸中に5重量%以上、10重量%以上、15重量%以上、又は20重量%以上含有することができ、全脂肪酸中99.99重量%以下、又は99.9999重量%以下含有することができる。
 遊離脂肪酸又はその低級アルコールエステルは、遊離のエルカ酸若しくはその低級アルコールエステルを、全脂肪酸中に1重量%以上、2重量%以上、又は3重量%以上含有することができ、全脂肪酸中99.99重量%以下、又は99.9999重量%以下含有することができる。
 遊離脂肪酸又はその低級アルコールエステル中に遊離のガドレイン酸及び遊離のセトレイン酸若しくはそれの低級アルコールエステルが共に存在する場合、これらの合計の濃度は、全脂肪酸中99.99重量%以下、又は99.9999重量%以下とすることができる。
 遊離脂肪酸又はその低級アルコールエステル中に遊離のガドレイン酸、遊離のセトレイン酸、遊離のゴンドイン酸及び遊離のエルカ酸、又はそれらの低級アルコールエステルが2つ以上、共に存在する場合、これらの合計の濃度は、全脂肪酸中99.99重量%以下、又は99.9999重量%以下とすることができる。
 このような遊離脂肪酸又はその低級アルコールエステルは、LC-MUFAを有効成分とする医薬品又はサプリメントとして好ましい。
 本発明の一態様により製造することができる、少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離のセトレイン酸若しくはその低級アルコールエステルを含み、全脂肪酸中の少なくとも70重量%が炭素数20及び/又は22のMUFAである遊離脂肪酸又はその低級アルコールエステルは、LC-MUFAを有効成分とする医薬品又はサプリメントとして好ましく適用できる。
 なかでも、本発明の一態様による以下の、少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離のセトレイン酸若しくはその低級アルコールエステルを含み、全脂肪酸中の少なくとも70重量%が炭素数20及び/又は22のMUFAであり、かつ飽和脂肪酸が10重量%以下であり、PUFAが5重量%以下の遊離脂肪酸又はその低級アルコールエステル;あるいは、少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離のセトレイン酸若しくはその低級アルコールエステルを含み、全脂肪酸中の少なくとも90重量%が炭素数20及び/又は22のMUFAであり、かつ飽和脂肪酸が5重量%以下であり、PUFAが1重量%以下である、遊離脂肪酸又はその低級アルコールエステルは、LC-MUFAを有効成分とする医薬品又はサプリメントとしてより好ましい。
 特に、医薬品用には、少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離のセトレイン酸若しくはその低級アルコールエステルを含み、全脂肪酸中の少なくとも90重量%が炭素数20及び/又は22のMUFAであり、飽和脂肪酸が1重量%以下であり、PUFAが1重量%以下である、遊離脂肪酸又はその低級アルコールエステルが好ましい。
 これらの遊離脂肪酸又はその低級アルコールエステルでは、全脂肪酸中に占める炭素数18以下の遊離の脂肪酸又はその低級アルコールエステルが、例えば、これらを単独で又は組み合わせた合計で、30重量%以下、20重量%以下、10重量%以下、5重量%以下、又は1重量%以下とすることができる。
 ガドレイン酸(n-11)、セトレイン酸(n-11)のような水産物からしか得られない異性体の研究、開発、製品化に、本発明の一態様に係るこれらの高純度の組成物は欠かせないものである。
 本発明の一形態に係る遊離脂肪酸又は低級アルコールエステルは、少なくともガドレイン酸又はセトレイン酸を含み、炭素数20及び/又は22の遊離の1価不飽和脂肪酸を高濃度に含むので、ガドレイン酸又はセトレイン酸のような水産物由来の物質の研究、開発、製品化に好ましく適用される。本発明の一形態に係る遊離脂肪酸又は低級アルコールエステルは、上記に加えて、炭素数18以下の脂肪酸、飽和脂肪酸及び高度不飽和脂肪酸からなる群より選択される少なくとも1つの脂肪酸の濃度が低い場合には、より好ましく適用される。
 本発明の一態様に係る遊離の脂肪酸は、それらの塩としてもよい。塩としては、カリウム塩及びナトリウム塩などが例示される。
 上述のように、本発明の一態様に係る組成物は、LC-MUFAを高濃度で含有し、場合によって、飽和脂肪酸、LC-PUFA等の含有量を極めて低くすることができる。このため、LC-MUFAを高い濃度で要求される用途への適用に極めて有用である。このような用途としては、例えば、食品用、サプリメント用、医薬品用等を挙げることができる。LC-MUFAの機能性を目的とする用途、例えば、メタボリックシンドローム改善、生活習慣病予防等の用途に用いることが特に好ましい。
 本発明の他の態様では、本発明の一態様に係る組成物をメタボリックシンドローム改善剤として、メタボリックシンドローム改善が求められる対象に、メタボリックシンドローム改善に有効な量で、投与することを含むメタボリックシンドローム改善方法が提供される。
 本発明の更に他の態様では、本発明の一態様に係る組成物を生活習慣予防剤、生活習慣病予防が求められる対象に、生活習慣予防に有効な量で、投与することを含む生活習慣病予防方法が含まれる。
 投与対象としては、ヒト、動物等が挙げられる。
 例えば、以下の(a)~(c)の本発明の一態様に係る組成物は、これらの改善方法又は予防方法におけるメタボリックシンドローム改善剤又は生活習慣病予防剤として用いられる:
 (a) 少なくとも遊離ガドレイン酸(n-11)若しくはその低級アルコールエステル又は遊離のセトレイン酸(n-11)若しくはその低級アルコールエステルを含み、炭素数20及び/又は22の1価不飽和脂肪酸又はそれらの低級アルコールエステルを全脂肪酸の70重量%以上、80重量%以上、又は、90重量%以上含有する、遊離脂肪酸又はその低級アルコールエステルを含む組成物;
 (b) 全脂肪酸中の少なくとも70重量%が炭素数20及び/又は22の1価不飽和脂肪酸であり、少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離のセトレイン酸若しくはその低級アルコールエステルを含み、全脂肪酸中の飽和脂肪酸が10重量%以下であり、かつ全脂肪酸中の高度不飽和脂肪酸が5重量%以下である、遊離脂肪酸又はその低級アルコールエステルを含む組成物;及び、
 (c) 全脂肪酸中の少なくとも90重量%が炭素数20及び/又は22の1価不飽和脂肪酸であり、少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離のセトレイン酸若しくはその低級アルコールエステルを含み、全脂肪酸中の飽和脂肪酸が5重量%以下であり、かつ全脂肪酸中の高度不飽和脂肪酸が1重量%以下である、遊離脂肪酸又はその低級アルコールエステルを含む組成物。
 魚類由来の精製油には、炭素数20及び/又は22の1価不飽和脂肪酸又はその低級アルコールエステルが30重量%程度含まれており、このような魚類由来の精製油には、メタボリックシンドローム改善効果がある(例えば、WO2012/121080;Lipids (2011) Vol.46, pp.425-434;J. Agric. Food Chem., 2011, Vol.59, pp.7482-7489 ;Lipids in Health and Disease, 2011, vol.10, pp.189-199等、参照)。本発明の一態様によるメタボリックシンドローム改善剤又は生活習慣病予防剤は、少なくとも遊離のガドレイン酸若しくはその低級アルコールエステル又は遊離のセトレイン酸若しくはその低級アルコールエステルを含み、より高い濃度、例えば70重量%以上の炭素数20及び/又は22の遊離の1価不飽和脂肪酸又はその低級アルコールエステルを含むものであるので、より高いメタボリックシンドローム改善効果又は生活習慣病予防効果が期待できる。
 本発明の他の態様によれば、上記(a)~(c)のメタボリックシンドローム改善剤又は生活習慣病予防剤と、添加成分とを含むメタボリックシンドローム改善用組成物又は生活習慣病予防用組成物が提供される。添加成分としては、例えば、医薬品として使用される場合、薬学的に許容される基剤、担体、賦形剤、崩壊剤、滑沢剤及び着色剤などを挙げることができる。本発明の他の態様によるメタボリックシンドローム改善用組成物又は生活習慣病予防用組成物は、好ましくは、ゼラチン等の軟カプセル、又は、粉末油脂に加工してから、錠剤又はカプセルなどとして提供することができる。メタボリックシンドローム改善用組成物又は生活習慣病予防用組成物は、上記(a)~(c)のメタボリックシンドローム改善剤又は生活習慣病予防剤と、添加成分とを所定の配合比で配合し、必要に応じて、所望の剤型に加工することなどの付加的工程を経ることにより、製造することができる。メタボリックシンドローム改善用組成物又は生活習慣病予防用組成物におけるメタボリックシンドローム改善剤又は生活習慣病予防剤の含有率は、効果が期待できる含有率であれば特に制限はなく、例えば、0.01重量%~100重量%、0.1重量%~100重量%、又は3重量%~100重量%とすることができる。
 上記(a)~(c)のメタボリックシンドローム改善剤又は生活習慣病予防剤は、それぞれ食品素材として食品に用いることができる。食品は、飲料を含む食品全般を意味し、サプリメントなどの健康食品を含む一般食品の他、消費者庁の保健機能食品制度に規定される特定保健用食品又は栄養機能食品をも含む。例えば、メタボリックシンドローム改善作用を有する旨の表示又は生活習慣病予防作用を有する旨の表示を付した機能性食品とすることができる。上記(a)~(c)のメタボリックシンドローム改善剤又は生活習慣病予防剤を食品素材として用いる場合、これらを含有する食品は、必要に応じて他の食品素材と組み合わせること、更には任意の形状に成形することなどの付加的工程を経て製造できる。メタボリックシンドローム改善剤又は生活習慣病予防剤の食品における含有率については特に制限はなく、効果が期待される含有率とすることができる。食品素材として、食品の他に、動物用の餌料用の添加成分として用いてもよい。
 医薬品又は食品として投与対象に投与する場合、症状の程度、投与対象の年齢、体重及び健康状態などの条件に応じて、適宜設定される。例えば、成人であれば有効成分量として1mg~1g/kg/日、好ましくは5mg~300mg/kg/日の量で、本組成物を、経口又は非経口的に、1日1回若しくは2~4回、又はそれ以上に分割して、適宜間隔をあけて投与することができる。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において「~」を用いて示された数値範囲は、その前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示すものとする。
 本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書において、パーセントに関して「以下」又は「未満」との用語は、下限値を特に記載しない限り、0%又は、現状の手段では検出不可の値を含む範囲を意味する。
 本明細書において、不定冠詞「a」又は「an」が付された要素は、文脈中で明確に示す又は結びつけることがない限り、1つ又は複数の要素が存在する可能性を排除しない。従って、不定冠詞「a」又は「an」は通常「少なくとも1つ」を意味する。
 本明細書に記載の動詞「含む(comprising)」及びその活用は、非限定的な意味で使用され、かつこの用語に続く事項が含まれ、特別に言及されない事項は除かれないことを意味する。
 本明細書において、発明の各態様(aspect)に関する一実施形態(embodiment)中で説明された各発明特定事項(feature)は、任意に組み合わせて新たな実施形態としてもよく、このような新たな実施形態も、本発明の各態様に包含され得るものとして、理解されるべきである。
 以下、本発明を実施例にて詳細に説明する。しかしながら、本発明はそれらに何ら限定されるものではない。なお下記実施例において、特記しない場合、「%」は「重量%」を意味する。
 脂肪酸組成は、常法にしたがって求めることができる。具体的には、測定対象となる油脂を、低級アルコールと触媒を用いてエステル化し、脂肪酸低級アルコールエステルを得る。次いで、得られた脂肪酸低級アルコールエステルを、ガスクロマトグラフィーを用いて分析する。得られたガスクロマトグラフィーのチャートにおいて各脂肪酸に相当するピークを同定し、Agilent ChemStation積分アルゴリズム(リビジョンC.01.03[37]、Agilent Technologies)を用いて、各脂肪酸のピーク面積を求める。ピーク面積とは、各種脂肪酸を構成成分とする油脂をガスクロマトグラフィー、薄層クロマトグラフィー/水素炎イオン化検出器(TLC/FID)等を用いて分析したチャートのそれぞれの成分のピーク面積の全ピーク面積に対する割合(面積%)であり、そのピークの成分の含有比率を示すものである。上述の測定方法により得られた面積%による値は、試料中の各脂肪酸の重量%による値と同一として互換可能に使用できる。日本油化学会(JOCS)制定 基準油脂分析試験法 2013版 2.4.2.1-2013 脂肪酸組成(FID恒温ガスクロマトグラフ法)及び、同2.4.2.2-2013 脂肪酸組成(FID昇温ガスクロマトグラフ法)を参照のこと。
 脂肪酸組成については実施例に示す方法によるガスクロマトグラフィーにより、脂質組成については、TLC/FIDを用いた。詳細な条件は実施例に示した。
 実施例で使用されるアルキルエステル化方法のエチルエステル化率は、95%~100%であることが経験的に判明している。このため、本実施例の項において、得られる原料エチルエステルでは、含有する飽和又は不飽和脂肪酸のほとんどが脂肪酸エチルエステル形態であると推測された。このため、以下では、試料中に含まれる飽和又は不飽和脂肪酸はすべてエチルエステル形態の飽和又は不飽和脂肪酸として記載する。ただし、遊離脂肪酸形態又は低級アルコールエステル形態以外の形態の脂肪酸が含まれることを完全に排除するものではない。
[実施例1]
 新鮮なサンマより採取したサンマ粗油4,000kgについて脱ガム、脱酸及び脱色処理を行い、サンマ精製油を3,520kg得た。得られたサンマ精製油2,000kgをナトリウムエチラートとエステル交換させてエチルエステル化を行い、抗酸化剤としてビタミンEを0.5%添加し、サンマ油エチルエステル(試料A)を1,999kg得た。得られたサンマ油エチルエステルの分析値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
精留によるサンマ油エチルエステルの精製
 サンマ油エチルエステル100.06gを500mL三口フラスコに入れラボラトリーパッキンEX(25mm×50mm、スルザーケムテック)を5つ挿入した桐山製作所製の真空ジャケット付精留塔(真空ジャケット付分留管(桐山製作所)、分留ヘッド(桐山製作所))を用いて塔底温度185℃,塔底圧力0.8mmHg(約107Pa)、塔内最上部圧力8Pa、塔内最上部蒸気温度133℃の条件で精密蒸留を行ない、精留留分43.2g(試料B)と精留残分54.5g(試料C)を得た。試料B及びCの脂肪酸組成を表2に示す。
[実施例3]
分子蒸留によるサンマ油エチルエステルの精製
 サンマ油エチルエステル905.5gを日本車両製造(株)製の遠心式分子蒸留装置(MS-150)に入れ,蒸発面温度90℃,圧力0.015Torrで蒸留を行ない、蒸留留分209.7gと蒸留残分596.2g(試料D)を得た。試料Dの脂肪酸組成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例4]
蒸留後にHPLCによるLC-MUFAの精製
 精留又は分子蒸留により精製した脂肪酸エチルエステルを含む試料C及びDに対して、更に、ODS(Octa Decyl Silyl)-HPLCにより高度精製を実施した。なお分離条件は、以下の通りである。
分離条件
カラム:JAIGEL-ODS-AP-30,SP-120-15(日本分析工業株式会社)、30φ×200mm
溶離液:メタノール
流速:20mL/min
カラム温度:40℃
サンプル負荷量:6.30g
検出器:示差屈折計
 示差屈折計のピーク及び保持時間を指標にして、C20:1を含み得る画分(以下、C20:1画分という)、C22:1を含み得る画分(以下、C22:1画分という)を、以下の試料E~Hからそれぞれ分取した。各画分の脂肪酸組成を表3に示す。脂肪酸組成(%)は、前述のように、ガスクロマトグラフィーのチャートに基づく面積比である。
試料E:試料Cを原料として、C20:1画分を分取した試料
試料F:試料Cを原料として、C22:1画分を分取した試料
試料G:試料Dを原料として、C20:1画分を分取した試料
試料H:試料Dを原料として、C22:1画分を分取した試料
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料E~Hのいずれも、ODS-HPLC精製を実施することにより、LC-MUFAの含有比率を高めることができた。特に試料E、F、Gでは、95重量%以上の濃度に濃縮できた。
 一方、最初の精製工程として精留を用いた試料Cを原料とした場合は、分子蒸留を用いた試料Dを原料とした場合よりも、精製工程後に、炭素数20のLC-MUFAをより濃縮することができた(試料E、F)。これは、蒸留工程で炭素数18以下の脂肪酸の残存が少なく、HPLC工程で、炭素数18以下の脂肪酸の存在によるC20:1の分離効率の低下が効果的に抑制されたことによる。最初の蒸留工程の方法の選択によってはC20:1の濃度を高めることが効果的であることがわかる。このため、C20:1を高濃度で含有するLC-MUFAエチルエステルを得るためには、HPLC精製よりも前の精製工程において炭素数18以下の脂肪酸及び飽和脂肪酸を除いておくことが有効であることが分かった。
 さらに驚くべきことに、精留を用いて炭素数18以下の脂肪酸及び飽和脂肪酸を除いておくことでLC-MUFAはより高濃度となり、LC-MURAが同程度の濃度である試料Eと試料Gを比較すると、LC-MUFAの回収率が1.34倍となることがわかった。
 本実施例で示されるように、本発明の態様によって得られる組成物は、LC-MUFAを高濃度で含有し、飽和脂肪酸及びLC-PUFAの含有量が極めて低い。このため、LC-MUFAを高い濃度で要求される用途への適用に極めて有用である。このような用途としては、例えば、食品用、サプリメント用、医薬品用等を挙げることができる。LC-MUFAの機能性を目的とする用途、例えば、メタボリックシンドローム改善、生活習慣病予防等の用途に用いることが特に好ましい。
 2014年7月2日に出願された日本国特許出願第2014-136436号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
 
 

 

Claims (20)

  1.  以下を含む、炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルを製造する方法:
     水産物原料由来の油脂を加水分解又はアルコール分解して、遊離脂肪酸又は低級アルコールエステルを得ること、
     前記遊離脂肪酸又は低級アルコールエステルに対して蒸留を行い、当該遊離脂肪酸又は低級アルコールエステル中の炭素数18以下の脂肪酸の濃度を低減させること、
     逆相分配系のカラムクロマトグラフィーにより、炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルの画分を分取すること。
  2.  水産物原料由来の油脂が、水産物から得た粗油に対して脱ガム、脱酸、脱色及び脱臭からなる群より選択される少なくとも1つの精製処理により得られた精製油である、請求項1の方法。
  3.  蒸留が、精留である請求項1又は請求項2の方法。
  4.  蒸留が、分子蒸留又は短行程蒸留である請求項1又は請求項2の方法。
  5.  蒸留が、規則充填物を用いた精留である請求項1~請求項3のいずれか1項の方法。
  6.  カラムクロマトグラフィーにより、全脂肪酸中の濃度が70重量%以上、80重量%以上、90重量%以上、又は95重量%以上である炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルを得る請求項1~請求項5のいずれか1項の方法。
  7.  蒸留実施後の炭素数18以下の遊離脂肪酸又はそれらの低級アルコールエステルの濃度が、全脂肪酸中の30重量%以下、20重量%以下、10重量%以下、5重量%以下、又は1重量%以下である請求項1~請求項6のいずれか1項の方法。
  8.  蒸留及びカラムクロマトグラフィーの実施後の遊離高度不飽和脂肪酸又はそれらの低級アルコールエステルの濃度が、全脂肪酸中の5重量%以下、又は1重量%以下である請求項1~請求項7のいずれか1項の方法。
  9.  請求項1~請求項8のいずれか1項の方法により得られ得る炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステル。
  10.  少なくとも、遊離ガドレイン酸(n-11)若しくはその低級アルコールエステル又は遊離セトレイン酸(n-11)若しくはその低級アルコールエステルを含み、
     炭素数20及び/又は22の遊離1価不飽和脂肪酸又はそれらの低級アルコールエステルを全脂肪酸の70重量%以上、80重量%以上、又は、90重量%以上含有する、
     遊離脂肪酸又はその低級アルコールエステル。
  11.  炭素数20の遊離1価不飽和脂肪酸又はその低級アルコールエステルが、遊離ガドレイン酸(n-11)若しくはその低級アルコールエステル、及び/又は、遊離ゴンドイン酸(n-9)若しくはその低級アルコールエステルであり、炭素数22の遊離1価不飽和脂肪酸又はその低級アルコールエステルが、遊離セトレイン酸(n-11)若しくはその低級アルコールエステル、及び/又は、遊離エルカ酸(n-9)若しくはその低級アルコールエステルである、請求項10の遊離脂肪酸又はその低級アルコールエステル。
  12.  全脂肪酸中の少なくとも70重量%が炭素数20及び/又は22の遊離1価不飽和脂肪酸又はその低級アルコールエステルであり、
     少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離セトレイン酸若しくはその低級アルコールエステルを含み、
     全脂肪酸中の遊離飽和脂肪酸又はその低級アルコールエステルが10重量%以下であり、かつ
     全脂肪酸中の遊離高度不飽和脂肪酸又はその低級アルコールエステルが5重量%以下である、
    遊離脂肪酸又はその低級アルコールエステル。
  13.  全脂肪酸中の少なくとも90重量%が炭素数20及び/又は22の遊離1価不飽和脂肪酸又はその低級アルコールエステルであり、
     少なくとも遊離ガドレイン酸若しくはその低級アルコールエステル又は遊離セトレイン酸若しくはその低級アルコールエステルを含み、
     全脂肪酸中の遊離飽和脂肪酸又はその低級アルコールエステルが5重量%以下であり、かつ
     全脂肪酸中の遊離高度不飽和脂肪酸又はその低級アルコールエステルが1重量%以下である、
    請求項12の遊離脂肪酸又はその低級アルコールエステル。
  14.  遊離ガドレイン酸又はその低級アルコールエステルを少なくとも含み、遊離ガドレイン酸(n-11)又はその低級アルコールエステルを、全脂肪酸中に30重量%以上、40重量%以上、50重量%以上、60重量%以上、又は70重量%以上含有する請求項9~請求項13のいずれか1項の遊離脂肪酸又はその低級アルコールエステル。
  15.  全脂肪酸中の炭素数18以下の遊離脂肪酸又はその低級アルコールエステルが、30重量%以下、20重量%以下、10重量%以下、5重量%以下、又は1重量%以下である請求項9~請求項14のいずれか1項の遊離脂肪酸又はその低級アルコールエステル。
  16.  水産物の油脂から得られ得る請求項9~請求項15のいずれか1項の遊離脂肪酸又はその低級アルコールエステル。
  17.  請求項9~請求項16のいずれか1項の遊離脂肪酸又はその低級アルコールエステルの、食品の製造における使用。
  18.  請求項9~請求項16のいずれか1項の遊離脂肪酸又はその低級アルコールエステルを有効成分とするメタボリックシンドローム改善剤又は生活習慣病予防剤。
  19.  請求項18のメタボリックシンドローム改善剤又は生活習慣病予防剤と、添加成分と、を含むメタボリックシンドローム改善組成物又は生活習慣病予防用組成物。
  20.  請求項9~請求項16のいずれか1項の遊離脂肪酸又はその低級アルコールエステルの、請求項18に記載のメタボリックシンドローム改善組成物又は生活習慣病予防用組成物の製造における使用。
     
     
     

     
PCT/JP2015/069090 2014-07-02 2015-07-02 水産物由来遊離1価不飽和脂肪酸又はその低級アルコールエステルの製造方法 WO2016002868A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP15815644.8A EP3165591B1 (en) 2014-07-02 2015-07-02 Method for producing marine product-derived monovalent unsaturated free fatty acids or lower alcohol esters thereof
CA2953319A CA2953319C (en) 2014-07-02 2015-07-02 Production method of marine product-derived free monounsaturated fatty acids or lower alcohol esters thereof
CN201580026352.7A CN106459833A (zh) 2014-07-02 2015-07-02 源自水产物的游离一元不饱和脂肪酸或其低级醇酯的制造方法
ES15815644T ES2978914T3 (es) 2014-07-02 2015-07-02 Método para producir ácidos grasos libres insaturados monovalentes derivados de productos marinos o ésteres de alcohol inferior de los mismos
AU2015285212A AU2015285212A1 (en) 2014-07-02 2015-07-02 Production method of marine product-derived free monounsaturated fatty acids or lower alcohol esters thereof
JP2016531436A JP6651447B2 (ja) 2014-07-02 2015-07-02 水産物由来遊離1価不飽和脂肪酸又はその低級アルコールエステルの製造方法
US15/393,576 US10597606B2 (en) 2014-07-02 2016-12-29 Production method of marine product-derived free monounsaturated fatty acids or lower alcohol esters thereof
AU2019206071A AU2019206071A1 (en) 2014-07-02 2019-07-18 Production method of marine product-derived free monounsaturated fatty acids or lower alcohol esters thereof
AU2020277196A AU2020277196B9 (en) 2014-07-02 2020-11-26 Production method of marine product-derived free monounsaturated fatty acids or lower alcohol esters thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136436 2014-07-02
JP2014136436 2014-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/393,576 Continuation US10597606B2 (en) 2014-07-02 2016-12-29 Production method of marine product-derived free monounsaturated fatty acids or lower alcohol esters thereof

Publications (1)

Publication Number Publication Date
WO2016002868A1 true WO2016002868A1 (ja) 2016-01-07

Family

ID=55019395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069090 WO2016002868A1 (ja) 2014-07-02 2015-07-02 水産物由来遊離1価不飽和脂肪酸又はその低級アルコールエステルの製造方法

Country Status (9)

Country Link
US (1) US10597606B2 (ja)
EP (1) EP3165591B1 (ja)
JP (4) JP6651447B2 (ja)
CN (1) CN106459833A (ja)
AU (3) AU2015285212A1 (ja)
CA (1) CA2953319C (ja)
ES (1) ES2978914T3 (ja)
HK (1) HK1232249A1 (ja)
WO (1) WO2016002868A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210048A (ja) * 1985-03-14 1986-09-18 Nippon Oil & Fats Co Ltd オクタデカテトラエン酸の分離精製方法
WO2012121080A1 (ja) * 2011-03-04 2012-09-13 日本水産株式会社 メタボリックシンドローム改善剤
WO2015154997A1 (en) 2014-04-07 2015-10-15 Epax Norway As Long chain monounsaturated fatty acid composition and method for the production thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764358A (en) * 1971-10-18 1973-10-09 Diamond Shamrock Corp Sperm oil substitute and its use in leather treatment
JPS61297A (ja) * 1984-06-12 1986-01-06 日本油脂株式会社 オレイン酸の製造法
JPS61291540A (ja) * 1985-06-19 1986-12-22 Tama Seikagaku Kk 長鎖高度不飽和脂肪酸またはその低級アルキルエステルの分離精製方法
JPH07110956B2 (ja) * 1987-08-20 1995-11-29 日清製粉株式会社 エイコサペンタエン酸またはそのエステルおよびドコサヘキサエン酸またはそのエステルの製造法
GB8804188D0 (en) 1988-02-23 1988-03-23 Croda Int Plc Pharmaceutical compositions
GB2217173B (en) * 1988-04-13 1993-11-17 Brian Anthony Whittle Dietary supplements containing w-3 PUFAs and dietary fibre nutritional and medicinal compositions
JP3400466B2 (ja) * 1991-10-28 2003-04-28 日本水産株式会社 高純度エイコサペンタエン酸またはそのエステルの製造方法
JPH09278706A (ja) * 1996-04-12 1997-10-28 Nof Corp ゴンドイン酸の製造法
JPH09279179A (ja) * 1996-04-12 1997-10-28 Nof Corp ワツクスエステルからの脂肪酸の製造法
JP4707839B2 (ja) * 2000-02-07 2011-06-22 森永乳業株式会社 糖尿病予防治療剤
US6867234B2 (en) * 2000-11-16 2005-03-15 Morinaga Milk Industry Co., Ltd. Fat composition for oral or enternal administration and hexacosanoic acid depressant
JP2006265104A (ja) * 2005-03-22 2006-10-05 Nof Corp 皮膚外用剤用リン脂質誘導体、皮膚外用剤、リポソームおよび脂肪乳剤
WO2008133573A1 (en) * 2007-04-26 2008-11-06 Patrick Adlercreutz A polyunsaturated fatty acid (pufa) enriched marine oil comprising eicosapentaenoic acid (epa) and docosahexaenoic acid (dha), and a process of production thereof
PL2349250T3 (pl) * 2008-10-31 2017-09-29 Lipid Pharmaceuticals Ehf. Kwasy Tłuszczowe Do Stosowania Jako Lek

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210048A (ja) * 1985-03-14 1986-09-18 Nippon Oil & Fats Co Ltd オクタデカテトラエン酸の分離精製方法
WO2012121080A1 (ja) * 2011-03-04 2012-09-13 日本水産株式会社 メタボリックシンドローム改善剤
WO2015154997A1 (en) 2014-04-07 2015-10-15 Epax Norway As Long chain monounsaturated fatty acid composition and method for the production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165591A4

Also Published As

Publication number Publication date
US10597606B2 (en) 2020-03-24
EP3165591A4 (en) 2017-11-29
JP2020050882A (ja) 2020-04-02
AU2020277196A1 (en) 2020-12-24
AU2020277196B9 (en) 2023-03-23
JP2023107827A (ja) 2023-08-03
JP6651447B2 (ja) 2020-02-19
CA2953319A1 (en) 2016-01-07
HK1232249A1 (zh) 2018-01-05
EP3165591C0 (en) 2024-05-22
CN106459833A (zh) 2017-02-22
EP3165591B1 (en) 2024-05-22
JP2021155756A (ja) 2021-10-07
AU2020277196B2 (en) 2023-02-23
ES2978914T3 (es) 2024-09-23
US20170107453A1 (en) 2017-04-20
EP3165591A1 (en) 2017-05-10
AU2015285212A1 (en) 2017-01-12
CA2953319C (en) 2022-11-29
AU2019206071A1 (en) 2019-08-08
JPWO2016002868A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6953504B2 (ja) エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
Mishra et al. Extraction and purification of ω-3 fatty acids with an emphasis on supercritical fluid extraction—A review
CN106459829B (zh) 长链单不饱和脂肪酸组合物及其制备方法
US10314871B2 (en) Isolation of Omega-7 fatty acid ethyl esters from natural oils
WO2010010364A2 (en) Process for the purification of oils
KR102639143B1 (ko) 초장쇄 지방산 조성물
JP2021137035A (ja) 高度不飽和脂肪酸含有組成物及び該組成物を含有する食品
AU2020277196B9 (en) Production method of marine product-derived free monounsaturated fatty acids or lower alcohol esters thereof
BR112020026069A2 (pt) composição de lipídio à base de vegetais, composição nutracêutica, produto alimentício para consumo humano ou animal, e, processo para produzir uma composição de lipídio à base de vegetais
BR112020026087A2 (pt) composição de lipídio à base de vegetais, tinta ou verniz, e, processo para produzir uma composição de lipídio
Ciriminna et al. A Circular Economy Approach to Omega-3 Extraction
NO20220910A1 (en) Cetoleic acid composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2953319

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016531436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015815644

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815644

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015285212

Country of ref document: AU

Date of ref document: 20150702

Kind code of ref document: A