Nothing Special   »   [go: up one dir, main page]

WO2015125895A1 - ポリイミド前駆体及び/又はポリイミドを含む組成物、並びにポリイミドフィルム - Google Patents

ポリイミド前駆体及び/又はポリイミドを含む組成物、並びにポリイミドフィルム Download PDF

Info

Publication number
WO2015125895A1
WO2015125895A1 PCT/JP2015/054691 JP2015054691W WO2015125895A1 WO 2015125895 A1 WO2015125895 A1 WO 2015125895A1 JP 2015054691 W JP2015054691 W JP 2015054691W WO 2015125895 A1 WO2015125895 A1 WO 2015125895A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
mol
less
formula
tetracarboxylic acid
Prior art date
Application number
PCT/JP2015/054691
Other languages
English (en)
French (fr)
Inventor
美香 山口
二郎 杉山
野口 浩
智子 古賀
章 石窪
剛司 加藤
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2015538174A priority Critical patent/JP5888472B2/ja
Priority to CN201580009667.0A priority patent/CN106029743B/zh
Priority to KR1020167022628A priority patent/KR102268406B1/ko
Publication of WO2015125895A1 publication Critical patent/WO2015125895A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention includes a polyimide precursor and / or a polyimide composition having a specific partial structure, a polyimide precursor composition that suppresses whitening of the film when forming a film, a specific partial structure, heat resistance,
  • the present invention relates to a polyimide and a polyimide film excellent in transmittance, low linear expansion coefficient and low retardation.
  • Patent Document 1 mentions a polyimide material having heat resistance and little dimensional change (small linear expansion coefficient).
  • Patent Document 2 proposes an amideimide material having an amide bond.
  • Patent Document 1 when the monomer constituting the polyimide is only an aromatic compound, the in-plane orientation is strong, the retardation is high, and a phase difference is generated. If a material that generates such a phase difference is used, for example, the front view of the display or the visual field in an oblique direction tends to deteriorate. Moreover, when it has an amide bond like the amide imide material proposed by patent document 2, since an amide bond has high water absorption and solvent affinity, it exists in the tendency for the hydrolyzability of the polyimide resin obtained to become high. . As described above, no material has been proposed that simultaneously satisfies heat resistance, transmittance, low linear expansion coefficient, and low retardation, which are characteristics necessary for application to device materials.
  • the present invention has been accomplished in view of the above problems, and is to provide a polyimide material excellent in heat resistance, transmittance, low linear expansion coefficient and low retardation.
  • the present invention has the following configuration.
  • [1] A polyimide film containing a tetracarboxylic acid residue and a diamine residue, wherein at least one of the tetracarboxylic acid residue and the diamine residue has a bent portion, and the linear expansion coefficient is 60 ppm / K or less And the retardation is 200 nm or less, The polyimide film characterized by the above-mentioned.
  • X 2 is a direct bond, a bond having a secondary or tertiary carbon atom, or an ether bond.
  • R 3 and R 4 are each independently a functional group selected from the group consisting of an alkyl group, an alkoxy group, an amino group, and a hydroxyl group.
  • the ratio of the tetracarboxylic acid residue having the partial structure represented by the formula (4 ′) in the tetracarboxylic acid residue is 2 mol% or more and 95 mol% or less.
  • Composition. [5] A tetracarboxylic acid residue having a partial structure represented by the formula (1 ′) and a tetracarboxylic acid residue having a partial structure represented by the formula (2) in the tetracarboxylic acid residue.
  • the composition according to the above [3] or [4], wherein the sum ratio is 5 mol% or more and 95 mol% or less.
  • a polyimide precursor and / or a polyimide composition a polyimide and a polyimide film which are excellent in heat resistance, transmittance, low linear expansion coefficient and low retardation.
  • composition of the present invention is a composition containing at least one of a polyimide precursor and a polyimide, and the polyimide precursor and / or polyimide contains a tetracarboxylic acid residue and a diamine residue, and the tetracarboxylic acid
  • the acid residue has a partial structure selected from one or more from group I shown below and a partial structure selected from one or more from group II shown below, wherein the diamine residue is represented by the following formula (5): It is a composition characterized by having the partial structure represented by these.
  • X represents a direct bond, an alkylene group, a carbonyl group, an ether bond or a sulfonyl group.
  • n and m each independently represent 0 or 1.
  • R 1 and R 2 each independently represents an alkylene group, an alkenylene group or an aromatic ring. R 1 and R 2 may be bonded to each other to form a ring.
  • Y represents a direct bond or a divalent organic group.
  • R 3 and R 4 each independently represents an alkyl group, an alkoxy group, an amino group or a hydroxyl group.
  • the tetracarboxylic acid residue has a partial structure selected from one or more from group I and a partial structure selected from one or more from group II, and the diamine residue has a partial structure represented by formula (5)
  • the following is estimated as a reason for having the effect of the present invention.
  • the tetracarboxylic acid residue selected from Group I and the diamine residue represented by the formula (5) the effects of improving heat resistance and mechanical properties and lowering the linear expansion coefficient can be obtained.
  • the in-plane orientation tends to be strong and the retardation tends to be high, but by having a tetracarboxylic acid residue selected from Group II, these effects can be achieved.
  • the tetracarboxylic acid residue represents a tetravalent group derived from tetracarboxylic dianhydride.
  • a diamine residue represents the bivalent group induced
  • the partial structure selected from the group I is a partial structure represented by the following formula (1 ′) and a partial structure represented by the formula (2), and is selected from the group II
  • the partial structure represented by the following formula (4 ′) and the partial structure of the diamine residue being the partial structure represented by the following formula (5) balance the linear expansion coefficient and the optical characteristics. It is preferable because it is easy to remove, and it is more preferable that at least one of the tetracarboxylic acid residue and the diamine residue has a bending site. Details of each partial structure and bending portion will be described later.
  • X 2 is a direct bond, a bond having a secondary or tertiary carbon atom, or an ether bond.
  • R 3 and R 4 are each independently a functional group selected from the group consisting of an alkyl group, an alkoxy group, an amino group, and a hydroxyl group.
  • composition of the present invention may contain other components in addition to the polyimide precursor and / or polyimide.
  • an imidizing agent can be added in order to further increase the imidization rate during film formation.
  • the polyimide precursor and / or polyimide contained in the composition according to the present invention includes a tetracarboxylic acid residue and a diamine residue.
  • the tetracarboxylic acid residue has a partial structure selected from one or more groups from group I and a partial structure selected from one or more groups from group II.
  • the partial structure represented by formula (5) as the diamine residue If it has, it will not specifically limit. These are preferably compounds soluble in a solvent.
  • the composition of the present invention may have a polyimide precursor and / or a polyimide that does not have a partial structure of Group I or Group II as a tetracarboxylic acid residue. Moreover, you may have what does not have the partial structure represented by Formula (5) as a diamine residue.
  • “soluble in a solvent” means complete dissolution when a polyimide precursor and / or polyimide is dissolved at 0.5% by mass at room temperature (25 ° C.) in a solvent constituting the composition. To do.
  • the concentration for complete dissolution is usually 0.5% by mass or more, preferably 1% by mass or more, and more preferably 10% by mass or more.
  • the solvent constituting the composition include a solvent used for obtaining a polyimide precursor and polyimide contained in the composition of the present invention described later, a solvent used for reprecipitation, and the like.
  • the concentration of the polyimide precursor and / or polyimide in the composition can be appropriately confirmed using a conventionally known method.
  • the solvent of the composition can be obtained by distillation using a method such as drying under reduced pressure, and the mass ratio before and after the distillation.
  • the concentration of the composition is less than 0.5% by mass, the composition can be concentrated using a method such as distilling off the solvent under reduced pressure to determine whether or not the composition is soluble in the solvent.
  • the concentration of the composition is high, the concentration can be made 0.5 mass% by diluting with the solvent of the composition.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone
  • aprotic solvents such as dimethyl sulfoxide
  • anisole It can be diluted with aromatic solvents such as cresol, xylene and toluene, glycol solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and propylene glycol monomethyl ether acetate.
  • the tetracarboxylic acid residue examples include partial structures of Group I and Group II.
  • the tetracarboxylic acid residue is not particularly limited as long as it has a partial structure selected from one or more groups from group I and a partial structure selected from one or more groups from group II.
  • it has a plurality of partial structures from group I.
  • And may have a plurality of partial structures represented by the formula (1).
  • the group I since the effect of lowering the linear expansion coefficient is high, it preferably has a partial structure represented by the formula (1), and is represented by the partial structure represented by the formula (1) and the formula (2). It is more preferable to have both of the partial structures to be obtained because the heat resistance, the mechanical properties, and the linear expansion coefficient tend to be obtained. Further, in the group II, it is preferable to have a partial structure represented by the formula (4) in order to improve optical characteristics.
  • the ratio of the tetracarboxylic acid residues having a partial structure selected from each group of Group I and Group II among tetracarboxylic acid residues contained in the composition of the present invention is not particularly limited, but is usually 10 mol. % Or more, preferably 30 mol% or more, more preferably 50 mol% or more. By being in this range, it is possible to obtain a polyimide precursor and / or a polyimide composition having good optical properties and a low linear expansion coefficient.
  • the ratio of the tetracarboxylic acid residue having a partial structure selected from Group I and the tetracarboxylic acid residue having a moiety selected from Group II is not particularly limited.
  • the proportion of the tetracarboxylic acid residues having a partial structure selected from Group I is usually 5 mol% or more, preferably 10 mol% or more, more preferably 15 mol% or more, usually 95 mol% or less, preferably 90 mol% or less, more preferably 85 mol% or less. By being in this range, it is possible to obtain a polyimide precursor and / or a polyimide composition having good optical properties and a low linear expansion coefficient.
  • the ratio of the tetracarboxylic acid residue having a partial structure selected from Group I and the tetracarboxylic acid residue having a partial structure selected from Group II is not particularly limited. It is 5 mol% or more, preferably 10 mol% or more, more preferably 15 mol% or more, and is usually 500 mol% or less, preferably 300 mol% or less, more preferably 200 mol% or less, and even more preferably 150 mol% or less.
  • the ratio of the sum of the residue and the tetracarboxylic acid residue having the partial structure represented by the formula (4 ′) is not particularly limited, but is usually 10 mol% or more, preferably 30 mol% or more, more preferably 50 mol%. That's it. By being in this range, it is possible to obtain a polyimide precursor and / or a polyimide composition having good optical properties and a low linear expansion coefficient.
  • the ratio with the tetracarboxylic acid residue is not particularly limited.
  • the ratio of the sum occupied by the residues is usually 5 mol% or more, preferably 10 mol% or more, more preferably 15 mol% or more, usually 95 mol% or less, preferably 90 mol% or less, more preferably 85 mol% or less.
  • the absorption near 308 nm and 355 nm used for laser processing increases, and it can be compatible with laser processing.
  • the ratio with the tetracarboxylic acid residue is not particularly limited, but the tetracarboxylic acid residue having the partial structure represented by the formula (1 ′) and the tetracarboxylic acid residue having the partial structure represented by the formula (2)
  • the proportion of the tetracarboxylic acid residue having a partial structure represented by the formula (4 ′) relative to the sum of the groups, is usually 5 mol% or more, preferably 10 mol% or more, more preferably 15 mol% or more, and usually 500 mol% or less.
  • the proportion of the tetracarboxylic acid residue having a partial structure represented by the formula (4 ′) in the tetracarboxylic acid residue contained in the composition of the present invention is usually 2 mol% or more, preferably 5 mol% or more, More preferably, it is 8 mol% or more, usually 95 mol% or less, preferably 90 mol% or less, more preferably 85 mol% or less. By being in this range, it is possible to obtain a polyimide precursor and / or a polyimide composition having good optical properties and a low linear expansion coefficient.
  • the ratio of the tetracarboxylic acid residue having a partial structure represented by the formula (2) to the tetracarboxylic acid residue having a partial structure represented by the formula (1 ′) is not particularly limited, but is usually 0.5 mol. % Or more, preferably 1 mol% or more, more preferably 3 mol% or more, and usually 500 mol% or less, preferably 400 mol% or less, more preferably 300 mol% or less. By being in this range, it is possible to obtain a polyimide precursor and / or a polyimide composition having good optical properties and a low linear expansion coefficient.
  • the ratio of the tetracarboxylic acid residue to the sum is not particularly limited, but is usually 1 mol% or more, preferably 3 mol% or more, more preferably 5 mol% or more, and usually 95 mol% or less, preferably 90 mol% or less, more preferably It is 85 mol% or less. By being in this range, it is possible to obtain a polyimide precursor and / or a polyimide composition having good optical properties and a low linear expansion coefficient.
  • the ratio of the tetracarboxylic acid residue can be determined by analyzing the composition of the raw material monomer by NMR, solid NMR, IR, or the like. Further, after dissolution with alkali, it can be determined by gas chromatography (GC), 1 H-NMR, 13 C-NMR, two-dimensional NMR, mass spectrometry, and the like.
  • GC gas chromatography
  • the ratio of the diamine residue having a partial structure represented by the formula (5) in the diamine residue is not particularly limited, but is usually 0.1 mol% or more, preferably 1 mol% or more, more preferably 5 mol% or more. More preferably, it is 7 mol% or more, more preferably 20 mol% or more, further preferably 30 mol% or more, more preferably 40 mol% or more, and further preferably 50 mol% or more. Moreover, there is no upper limit in particular and 100 mol% may be sufficient.
  • a polyimide precursor and / or a polyimide composition for obtaining a polyimide having a low linear expansion coefficient is obtained by including a specific amount or more of the diamine residue having the partial structure represented by the formula (5) in the diamine residue. be able to.
  • the amount of the diamine compound for inducing the diamine residue is usually 0.7 mol or more, preferably 0.8 mol or more, usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of tetracarboxylic dianhydride. It is. By setting the amount of the diamine compound within this range, a polyimide precursor and / or a polyimide having an appropriate molecular weight can be obtained.
  • Group I (Group I and Group II) Group I: The following formulas (1) and (2) are shown.
  • X represents a direct bond, an alkylene group, a carbonyl group, an ether bond or a sulfonyl group.
  • n and m each independently represent 0 or 1
  • R 1 and R 2 each independently represents an alkylene group, an alkenylene group or an aromatic ring.
  • R 1 and R 2 may be different or the same, and may form a ring.
  • Y represents a direct bond or a divalent organic group.
  • X represents a direct bond, an alkylene group, a carbonyl group, an ether bond or a sulfonyl group.
  • X is preferably a direct bond, a carbonyl group or a sulfonyl group, and more preferably a direct bond, since the effect of lowering the linear expansion coefficient is high.
  • the alkylene group is not particularly limited, but preferably has 1 or more carbon atoms, more preferably 2 or more. On the other hand, it is preferably 8 or less, and more preferably 5 or less. Moreover, the said alkylene group may have a substituent, for example, an amino group, a hydroxyl group, a halogen atom, etc. are mentioned.
  • the tetracarboxylic acid residue having a partial structure represented by the formula (1) is not particularly limited.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, Tetracarboxylic dianhydrides in which X is a direct bond such as 4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride; bis (3,4-di Carboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 2,3,3 ′, 4′-tetracarboxyphenylmethane dianhydride, 2,2-bis (3,4 -Dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2- (2,3,3 ', 4'-te
  • Carboxylic dianhydride 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenylsulfone tetracarboxylic dianhydride, 2,2 ′, , 3'-diphenylsulfone tetracarboxylic dianhydride
  • X is tetracarboxylic dianhydride is sulfonyl group; tetracarboxylic acid residue and the like which are derived from tetracarboxylic dianhydride such.
  • the partial structure represented by the formula (1) of the tetracarboxylic acid residue is the partial structure represented by the following formula (1 ′), which improves the heat resistance and mechanical properties and lowers the linear expansion coefficient. Is preferable because it tends to be obtained.
  • X 2 is a direct bond, a bond having a secondary or tertiary carbon atom, or an ether bond, and among these, a direct bond is preferable because mechanical properties are improved. Moreover, in the polyimide film obtained from the composition, absorption near 308 nm and 355 nm used for laser processing is increased, which is preferable because it can be applied to laser processing.
  • the bond having a secondary or tertiary carbon atom means that X 2 is a secondary or tertiary carbon atom having 1 carbon atom.
  • the carbon atom of X 2 is linked to a hydrogen atom and / or a substituent other than being linked to the benzene ring in formula (1 ′). Examples of the substituent connected to the carbon atom of X 2 include a halogen atom, a cyano group, a nitro group, and a sulfo group.
  • Tetracarboxylic acid residue having a partial structure represented by formula (2) examples include pyromellitic dianhydride.
  • n and m each independently represent 0 or 1. Although not particularly limited, at least one of n and m is preferably 1 from the viewpoint of imidization reactivity.
  • R 1 and R 2 each independently represents an alkyl group, an alkenyl group or an aromatic ring. R 1 and R 2 may be different or the same, and may form a ring. Moreover, the alkyl group, the alkenyl group, and the aromatic ring may have a substituent.
  • C1 or more is preferable each independently. On the other hand, 10 or less is preferable, and 8 or less is more preferable.
  • the aromatic ring may be either a single ring or a condensed ring. Specifically, a benzene ring, a naphthalene ring, an anthracene ring, etc. are mentioned. In particular, a benzene ring is preferable because the solubility in an organic solvent tends to be high.
  • the tetracarboxylic acid residue having a partial structure represented by the formula (3) is not particularly limited.
  • Y represents a direct bond or a divalent organic group.
  • a bivalent organic group For example, an alkylene group, a carbonyl group, an ether bond, a sulfonyl group etc. are mentioned.
  • Y has a tendency to improve optical characteristics, and therefore, direct bonding is preferable.
  • the said alkylene group is synonymous with the preferable range of the alkylene group of X of Formula (1), and the substituent which you may have is also synonymous.
  • the tetracarboxylic acid residue having a partial structure represented by the formula (4) is not particularly limited.
  • bicyclohexane-3,3 ′, 4,4′-tetracarboxylic dianhydride, bicyclohexane-2 , 3,3 ′, 4′-tetracarboxylic dianhydride, tetracarboxylic dianhydrides such as bicyclohexane-2,2 ′, 3,3′-tetracarboxylic dianhydride Examples include residues.
  • a tetracarboxylic acid residue derived from bicyclohexane-3,3 ′, 4,4′-tetracarboxylic dianhydride is preferable because optical properties tend to be improved.
  • the partial structure represented by the formula (4) of the tetracarboxylic acid residue is preferably a partial structure represented by the following formula (4 ') because the optical properties are improved.
  • diamine residue examples include a partial structure represented by the formula (5).
  • R ⁇ 3 > and R ⁇ 4 > shows an alkyl group, an alkoxy group, an amino group, or a hydroxyl group each independently.
  • R 3 and R 4 each independently represents an alkyl group, an alkoxy group, an amino group, or a hydroxyl group.
  • the alkyl group and the alkoxy group each independently preferably have 1 or more carbon atoms. On the other hand, 10 or less is preferable, 8 or less is more preferable, and 6 or less is particularly preferable. This range is preferable because the linear expansion coefficient tends to be low.
  • the alkyl group and the alkoxy group may each have a substituent. Examples of the substituent that the alkyl group may have include a halogen atom, a cyano group, a nitro group, and a sulfo group.
  • R 3 and R 4 are preferably an alkyl group or an alkoxy group because optical characteristics and a linear expansion coefficient are improved, and an alkyl group having a halogen atom as a substituent tends to have a low linear expansion coefficient. Therefore, it is more preferable.
  • R 3 and R 4 may be the same or different, but are preferably the same from the viewpoint of ease of production.
  • the diamine residue having a partial structure represented by the formula (5) is not particularly limited.
  • R such as 4,4′-diamino-2,2′-dimethylbiphenyl, 4,4′-diamino-2,2′-diethylbiphenyl, 4,4′-diamino-2,2′-dipropylbiphenyl, etc.
  • the diamine of having R 3 and R 4 are alkoxy groups such as 4,4'-diamino-2,2'-dihydroxybiphenyl with Things; the diamine residue derived from a diamine compound such like.
  • the composition according to the present invention has a partial structure represented by the formula (1 ′), the formula (2), the formula (4 ′) and the formula (5), a tetracarboxylic acid residue and a diamine residue.
  • a tetracarboxylic acid residue having other than the partial structure represented by formula (1 ′), formula (2), formula (4 ′) and formula (5) Other than the tetracarboxylic acid residues derived from tetracarboxylic dianhydrides such as aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides shown below and partial structures represented by formula (3) The tetracarboxylic acid residue which has is mentioned.
  • aromatic tetracarboxylic dianhydride examples include tetracarboxylic dianhydrides having one aromatic ring in the molecule such as 1,2,3,4-benzenetetracarboxylic dianhydride; , 2 ′, 6,6′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2′-bis (trifluoromethyl) -4,4 ', 5,5'-biphenyltetracarboxylic dianhydride, 4,4'-(hexafluorotrimethylene) -diphthalic dianhydride, 4,4 '-(octafluo
  • aliphatic tetracarboxylic dianhydride examples include alicyclic tetracarboxylic acids such as 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride Dianhydrides; chain aliphatic tetracarboxylic dianhydrides such as ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, meso-butane-1,2,3,4-tetracarboxylic dianhydride And the like.
  • a diamine residue derived from a diamine compound shown below can be used as a diamine residue having a structure other than the partial structure represented by the formula (5) without departing from the gist of the present invention.
  • diamine compounds examples include diamine compounds having one aromatic ring contained in the molecule such as 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine; -Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis (4- (4-amino) Phenoxy) phenyl) propane, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, 1,3-bis (4-aminophenoxy) neopentane, bis (4 -Amino-3-carboxyphenyl) methane, 4,4'-diaminodiphenylsulfone, 4,4'-di Minodiphenyl sulfide,
  • diamine residues having other than the partial structure represented by formula (5) it is preferable to have a diamine residue having a partial structure represented by formula (6) in order to improve optical properties.
  • Z represents a direct bond, a sulfonyl group, an alkylene group, a carbonyl group or an ether bond
  • a and B each independently represent a direct bond, a divalent aromatic ring, a divalent heterocyclic ring or a phenyl ether group.
  • a sulfonyl group, an ether bond or a carbonyl group is preferable, and a sulfonyl group is more preferable in order to further improve optical properties.
  • the alkylene group for Z is not particularly limited, but preferably has 1 or more carbon atoms, more preferably 2 or more. On the other hand, it is preferably 8 or less, and more preferably 5 or less.
  • a and B each independently represent a direct bond, a divalent aromatic ring, a divalent heterocyclic ring or a phenyl ether group.
  • the divalent aromatic ring and the divalent heterocyclic ring may have a substituent.
  • phenyl ether groups are preferred because they tend to be highly soluble in solvents.
  • a and B may be the same or different, but the same is preferable from the viewpoint of ease of production.
  • divalent aromatic rings A and B include a benzene ring, a naphthalene ring, and an anthracene ring.
  • a benzene ring is preferable because the solubility in a solvent tends to be high.
  • divalent heterocycle of A and B include furan, thiophene, pyrrole, imidazole, pyridine, pyrimidine, pyrazine, oxazole, benzimidazole, and benzoxazole.
  • Examples of the diamine residue having a partial structure represented by the formula (6) include 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 3,3 Diamine compounds in which Z is a direct bond such as' -bis (4-aminophenoxy) biphenyl, 3,4'-bis (4-aminophenoxy) biphenyl; 3,3'-diaminodiphenylsulfone, 4,4'-diamino Diphenylsulfone, 3,4'-diaminodiphenylsulfone, 2,3'-diaminodiphenylsulfone, 2,4'-diaminodiphenylsulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3 A diamine compound wherein Z is a sulfonyl group, such as -aminophenoxy) phenyl)
  • a diamine residue derived from a diamine compound such as a diamine compound in which Z is an ether bond; It is.
  • the bending portion is a bending portion in which deformation is suppressed, and a ring bond angle around the bending portion, a ring surface angle bonded to the bending portion, a tetracarboxylic acid residue such as rotation, vibration, etc. And / or those that suppress the movement of molecules containing diamine residues. Among them, those that suppress the ring coupling angle and rotational movement around the bent portion are preferable.
  • the bent portion is preferably a trivalent or higher group that is directly bonded to the ring structure and the ring structure, and the bond angle between the ring structures is less than 180 degrees, preferably 160 degrees or less, more preferably 130 degrees. It is as follows. There is no particular lower limit, but it is usually 90 degrees or more. The angle can be obtained by a conventionally known calculation method.
  • empirical molecular orbital methods such as Hückel method and extended Huckel method, Hartley Fock method, configuration substitution interaction method, ab initio molecular orbital methods such as multi-configuration SCF method, PPP approximation, CNDO / 2, INDO, MNDO And semi-empirical molecular orbital methods such as AM1 and PM3, molecular dynamics methods such as MM2, and density functional methods such as BLYP and B3LYP.
  • the present invention by having a bent portion, thermal vibration of the polyimide precursor and / or the entire polyimide chain is suppressed, and the linear expansion coefficient tends to be improved. Furthermore, by suppressing the interaction between the polyimide precursor and / or the polyimide chain, the optical properties such as transmittance and YI tend to be improved, and the regular orientation of the same chain is disturbed, Retardation tends to improve. Further, entanglement of molecular chains of the polyimide precursor and / or polyimide increases, and the amount of aromatic rings in the chain increases, so that the heat resistance tends to be improved.
  • the polyimide precursor and / or polyimide in the composition of the present invention may have both a tetracarboxylic acid residue and a diamine residue, which usually have a bending site, and a tetracarboxylic acid having a bending site. It may have a residue or a diamine residue. Among these, since the optical properties tend to be improved, the diamine residue preferably has a bent portion. In addition, it is preferable that the tetracarboxylic acid residue and the diamine residue have a bent portion because the optical characteristics tend to be improved.
  • a tetracarboxylic acid residue and / or diamine residue bending portion may have a plurality of bending portions, but the plurality of bending portions are preferably not connected. It exists in the tendency which can maintain and improve polymerizability by a bending part not connecting.
  • it is preferable that a cyclic structure is directly bonded to the bent portion. By directly bonding the annular structure, deformations such as a bonding angle, a surface angle of a ring bonded to a bent portion, rotation, vibration, and the like are further suppressed.
  • the cyclic structure directly bonded to the bending site may be derived from the same tetracarboxylic acid residue / diamine residue as the bending site or may be different.
  • the cyclic structure When derived from the same tetracarboxylic acid residue / diamine residue as that of the bent part, the cyclic structure is a structure possessed by the tetracarboxylic acid monomer / diamine monomer.
  • the cyclic structure is a cyclic imide structure.
  • the tetracarboxylic acid residue having a bent portion may be a tetracarboxylic acid residue having a partial structure represented by the above formula (1), formula (2), formula (3) and formula (4), It may be a tetracarboxylic acid residue having other than the partial structure represented by formula (1), formula (2), formula (3) and formula (4).
  • the tetracarboxylic acid residue having a bent portion is preferably represented by the formula (1), the formula (2), the formula (3), and the formula (4). It is a tetracarboxylic acid residue having other than a partial structure.
  • the tetracarboxylic acid residue having a bent portion is other than the partial structure represented by the above formula (1 ′), formula (2) and formula (4 ′). It is a tetracarboxylic acid residue having Moreover, you may have two or more tetracarboxylic acid residues which have a bending part.
  • the diamine residue having a bent portion is other than the partial structure represented by the above formula (5), and may have a plurality.
  • the content of the bent portion is not particularly limited, but is usually 0.1 mol% or more, preferably 0.5 mol%, more preferably 1 mol%, based on the ratio of the tetracarboxylic acid residue and the diamine residue in the composition. As mentioned above, More preferably, it is 5 mol% or more. Moreover, it is 150 mol% or less normally, Preferably it is 100 mol% or less, More preferably, it is 50 mol% or less. By being in these ranges, the optical properties are improved and the mechanical properties tend to be improved.
  • the element constituting the main chain bonded to the ring has a trivalent or higher bond.
  • the trivalent or higher bonds at least one selected from a quaternary carbon atom, a hexavalent sulfur atom, a tertiary amine, and a benzene ring is preferable.
  • the optical properties are improved when the tetracarboxylic acid and / or diamine residue having a bent portion is one in which two or more aromatic rings are bonded by a quaternary carbon atom and / or a hexavalent sulfur atom. This is preferable.
  • Those having a bond of 3 or more are not particularly limited as long as they do not depart from the gist of the present invention, and examples thereof include a structure represented by the following formula (30).
  • Z 1 represents a quaternary carbon atom, a hexavalent sulfur atom, a tertiary amine or a benzene ring.
  • Y 1 and Y 2 each independently represent a cyclic structure.
  • the quaternary carbon hexafluoropropane, propane, fluorene and the like are preferable because optical characteristics are improved.
  • hexavalent sulfur a sulfonyl group is preferable because optical characteristics are improved.
  • Trimethylamine is preferred as the tertiary amine.
  • the cyclic structure of Y 1 and Y 2 represents an aromatic compound, an alicyclic compound, or an imide ring.
  • the aromatic compound the number of elements forming one ring is 5 or more and 8 or less, and a single ring or two rings may be condensed. Specifically, it is a benzene ring, a condensed aromatic ring or a heterocyclic ring.
  • the number of condensed aromatic rings is not particularly limited, but is preferably 2 or more and 5 or less because heat resistance and optical properties tend to be compatible.
  • the heterocyclic ring is not particularly limited, and specific examples include furan, thiophene, pyrrole, imidazole, pyridine, pyrimidine, pyrazine, oxazole, benzimidazole, benzoxazole and the like.
  • substituents that the aromatic compound may have include an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an amino group, and a hydroxyl group.
  • the alkyl group having 1 to 6 carbon atoms and the alkoxy group having 1 to 6 carbon atoms may have a substituent.
  • Examples of the substituent that the alkyl group having 1 to 6 carbon atoms may have include a halogen atom and a hydroxyl group. Examples of the substituent that the alkoxy group having 1 to 6 carbon atoms may have include a halogen atom and a hydroxyl group.
  • the alicyclic compound has 4 or more and 8 or less carbon atoms forming one ring, and a single ring or two rings may be condensed. Moreover, you may have an unsaturated bond in the ring. Specific examples include cyclobutane, cyclobutadiene, cyclopentane, cyclopentaene, cyclohexane, cyclohexaene, cyclohexadiene, cycloheptane, cycloheptaene, cyclooctane, and the like.
  • the alicyclic compound may have a substituent, and examples of the substituent that may be included include an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an amino group. Group, hydroxyl group and the like.
  • the alkyl group having 1 or more and 6 or less carbon atoms and the alkoxy group having 1 or more and 6 or less carbon atoms may have a substituent, and examples of the substituent that may have may include the above-mentioned aromatic compounds. Synonymous with things.
  • An imide ring is a ring having an imide bond, and the number of elements forming one ring is 4 or more and 6 or less, and may be only an imide ring or may be condensed with another ring.
  • the ring which may be condensed includes an aromatic compound which may have a substituent and an alicyclic compound which may have a substituent.
  • the number of rings in the case of condensation is not particularly limited, but is preferably 2 or more and 4 or less because heat resistance and optical properties tend to be compatible.
  • a site selected from the structures represented by the following formulas (31) to (35) is preferable from the viewpoint of improving optical properties.
  • R 10 and R 11 each independently represents an alkyl group, an amino group or a hydroxyl group, and Y 1 and Y 2 each independently represent an aromatic hydrocarbon, an alicyclic compound or an imide ring.
  • the alkyl group for R 10 and R 11 preferably has 1 or more carbon atoms. On the other hand, 10 or less is preferable, 8 or less is more preferable, and 6 or less is particularly preferable. This range is preferable because the linear expansion coefficient tends to be low.
  • the alkyl group may have a substituent. Examples of the substituent that the alkyl group may have include a halogen atom, a cyano group, a nitro group, and a sulfo group.
  • Y 1 and Y 2 are each as Y 1 and Y 2 of Formula (30) interchangeably, examples, preferred ranges, and the substituent which may have also the same.
  • R 12 to R 15 each independently represents an alkyl group or a hydroxyl group.
  • the alkyl groups for R 12 to R 15 each independently preferably have 1 or more carbon atoms. On the other hand, 10 or less is preferable, 8 or less is more preferable, and 6 or less is particularly preferable. This range is preferable because the linear expansion coefficient tends to be low.
  • the alkyl group may have a substituent. Examples of the substituent that the alkyl group may have include a halogen atom, a cyano group, a nitro group, and a sulfo group. Among these, it is preferable to have a halogen atom, and a fluorine atom is particularly preferable. Within this range, the linear expansion coefficient tends to be low.
  • Y 1 and Y 2 are each as Y 1 and Y 2 of Formula (30) interchangeably, examples, preferred ranges, and the substituent which may have also the same.
  • Y 1 and Y 2 are each as Y 1 and Y 2 of Formula (30) interchangeably, examples, preferred ranges, and the substituent which may have also the same.
  • R 16 represents an alkyl group or an aromatic compound.
  • Y 1 and Y 2 are each as Y 1 and Y 2 of Formula (30) interchangeably, examples, preferred ranges, and the substituent which may have also the same.
  • the alkyl group for R 16 preferably has 1 or more carbon atoms. On the other hand, 10 or less is preferable, 8 or less is more preferable, and 6 or less is particularly preferable. This range is preferable because the linear expansion coefficient tends to be low.
  • the alkyl group may have a substituent. Examples of the substituent that the alkyl group may have include a halogen atom, a cyano group, a nitro group, and a sulfo group.
  • the linear expansion coefficient tends to be low.
  • the number of elements forming one ring is 5 or more and 8 or less, and a single ring or two rings may be condensed.
  • it is a benzene ring, a condensed aromatic ring or a heterocyclic ring.
  • a monocyclic benzene ring or a condensed aromatic ring obtained by condensing a benzene ring is preferable because the coefficient of linear expansion tends to be low.
  • the number of condensed aromatic rings is not particularly limited, but is preferably 2 or more and 5 or less because heat resistance and optical properties tend to be compatible.
  • the heterocyclic ring is not particularly limited, and specific examples include furan, thiophene, pyrrole, imidazole, pyridine, pyrimidine, pyrazine, oxazole, benzimidazole, benzoxazole and the like.
  • Examples of the substituent that the aromatic compound may have include an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an amino group, and a hydroxyl group.
  • the alkyl group having 1 to 6 carbon atoms and the alkoxy group having 1 to 6 carbon atoms may have a substituent.
  • Examples of the substituent that the alkyl group having 1 to 6 carbon atoms may have include a halogen atom and a hydroxyl group. Examples of the substituent that the alkoxy group having 1 to 6 carbon atoms may have include a halogen atom and a hydroxyl group.
  • R represents an alkyl group, a nitro group, an amino group, a hydroxyl group or a halogen atom.
  • the alkyl group is not particularly limited, but preferably has 1 or more carbon atoms. On the other hand, it is preferably 8 or less, and more preferably 5 or less. By being in these ranges, the compatibility with the solvent tends to be improved.
  • the alkyl group may have a substituent, and examples thereof include an amino group, a hydroxyl group, a nitro group, and a halogen atom.
  • Examples of the diamine residue having the structure represented by the formula (35) include 2,6-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminotoluene, 3,4-diaminotoluene, 2,3 -Diaminotoluene, 4-fluoro-1,2-phenylenediamine, 4-fluoro-1,3-phenylenediamine, 4-nitro-1,2-phenylenediamine, 4-nitro-1,3-phenylenediamine, 2- Nitro-1,2-phenylenediamine, 3-trifluoromethyl-1,5-phenylenediamine, 4-trifluoromethyl-1,5-phenylenediamine, 4-trifluoromethyl-1,2-phenylenediamine, 3- Hydroxy-1,5-phenylenediamine, 4-hydroxy-1,5-phenylenediamine, 4-hydroxy-1,2- Derived diamine residue from a diamine compound such Enirenjiamin like.
  • Examples of the tetracarboxylic acid residue in which two or more aromatic rings are bonded by a quaternary carbon atom include 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, 4,4′-isopropylpropylene. Redene diphthalic anhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis (2,3 A tetracarboxylic acid residue derived from a tetracarboxylic dianhydride such as -dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride.
  • Examples of the tetracarboxylic acid residue in which two or more aromatic rings are bonded by a hexavalent sulfur atom include, for example, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,3,3 ', 4'-Diphenylsulfonetetracarboxylic dianhydride, 2,2', 3,3'-diphenylsulfonetetracarboxylic dianhydride, 4,4 '-[p-sulfonylbis (phenylenesulfanyl)] diphthalic acid
  • tetracarboxylic acid residues derived from tetracarboxylic dianhydrides such as anhydrides and 3,3 ′-[p-sulfonylbis (phenylenesulfanyl)] diphthalic anhydride.
  • Examples of the diamine residue in which two or more aromatic rings are bonded by a quaternary carbon atom include 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis (3-aminophenyl) hexa Fluoropropane, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) propane, 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene, 1,4-bis [2- (4-aminopheny) -2-propyl] benzene, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4) -Hydroxyphenyl) propane, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (3-aminophenyl) fluorene, 9,9-bis (2-aminophenyl) Nyl
  • Examples of the diamine residue in which two or more aromatic rings are connected by a hexavalent sulfur atom include, for example, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, and 3,4′-diaminodiphenylsulfone.
  • the weight average molecular weight (Mw) of the polyimide precursor and / or polyimide contained in the composition is not particularly limited, but is usually 1000 or more, preferably 3000 or more, more preferably 5000 or more, more preferably, in terms of polystyrene equivalent weight average molecular weight. 10,000 or more. Moreover, it is 200000 or less normally, Preferably it is 180000 or less, More preferably, it is 150,000 or less. By being in this range, the solubility, solution viscosity, composition viscosity, melt viscosity, and the like are in a range that can be easily handled by ordinary production equipment, which is preferable.
  • the polystyrene-reduced weight average molecular weight can be determined by gel permeation chromatography (GPC).
  • the number average molecular weight (Mn) of the polyimide precursor and / or polyimide contained in the composition is not particularly limited, but is usually 500 or more, preferably 1000 or more, more preferably 2500 or more, more preferably, in terms of number average molecular weight in terms of polystyrene. It is 5000 or more. Moreover, it is usually 100,000 or less, preferably 90000 or less, more preferably 80000 or less. By being in this range, solubility, solution viscosity, composition viscosity, melt viscosity, and the like are in a range that can be easily handled by ordinary production equipment, which is preferable.
  • the number average molecular weight of the polyimide precursor and / or polyimide can be measured by the same method as the weight average molecular weight.
  • the molecular weight distribution (PDI, (weight average molecular weight / number average molecular weight (Mw / Mn))) of the polyimide precursor and / or polyimide contained in the composition is usually 1 or more, preferably 1.1 or more, more preferably 1 .2 or more, usually 10 or less, preferably 9 or less, more preferably 8 or less.
  • the molecular weight distribution is preferably in this range in that a composition with high uniformity tends to be obtained. Further, in the prevention of whitening of the film, being in the above range tends to obtain a film excellent in uniformity of components in the film, suppression of whitening and smoothness of the film.
  • the molecular weight distribution of a polyimide precursor precursor and / or a polyimide can be calculated
  • the imidation rate of the polyimide precursor contained in a polyimide precursor composition there is no restriction
  • the imidation ratio of the polyimide precursor contained in the polyimide precursor composition can be determined by a conventionally known method such as the NMR method, the IR method, and the titration method.
  • the polyimide precursor and / or polyimide composition of the present invention can contain other components in addition to the polyimide precursor and / or polyimide and solvent described above as long as the effects of the present invention are not impaired.
  • examples of other components include surfactants, solvents, antioxidants, lubricants, colorants, stabilizers, UV absorbers, antistatic agents, flame retardants, plasticizers, mold release agents, leveling agents, and antifoaming agents. Etc.
  • These additive components may be added at any stage of any process for producing a polyimide precursor and / or a polyimide composition.
  • the leveling agent include silicone compounds.
  • the silicone compound is not particularly limited.
  • examples thereof include polydimethylsiloxane, polyester-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, highly polymerized silicone, amino-modified silicone, amino-derivative silicone, phenyl-modified silicone, and polyether-modified silicone.
  • Reaction which obtains a polyimide precursor from tetracarboxylic dianhydride and a diamine compound can be performed on conventionally known conditions. There are no particular limitations on the order of addition or addition method of the tetracarboxylic dianhydride and the diamine compound.
  • a polyimide precursor can be obtained by sequentially adding a tetracarboxylic dianhydride and a diamine compound to a solvent and stirring at an appropriate temperature.
  • the amount of the diamine compound is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of tetracarboxylic dianhydride.
  • the concentration of tetracarboxylic dianhydride and diamine compound in the solvent can be appropriately set according to the reaction conditions and the viscosity of the polyimide precursor.
  • the total mass% of the tetracarboxylic dianhydride and the diamine compound is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably with respect to the total liquid amount. Is 50% by mass or less, more preferably 40% by mass or less.
  • the reaction temperature is not particularly limited as long as the reaction proceeds, but is usually 0 ° C or higher, preferably 20 ° C or higher, and usually 120 ° C or lower, preferably 100 ° C or lower.
  • the reaction time is usually 1 hour or more, preferably 2 hours or more, usually 100 hours or less, preferably 42 hours or less, more preferably 24 hours or less. By performing the reaction under such conditions, a polyimide precursor can be obtained at low cost and high yield.
  • the pressure during the reaction may be normal pressure, increased pressure, or reduced pressure.
  • the atmosphere may be air or an inert atmosphere.
  • the solvent used in this reaction is not particularly limited.
  • hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mesitylene, anisole; carbon tetrachloride, methylene chloride, chloroform, 1,2-dichloroethane
  • Halogenated hydrocarbon solvents such as chlorobenzene, dichlorobenzene and fluorobenzene
  • ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane and methoxybenzene
  • ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone
  • Ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomer Gly
  • the obtained polyimide precursor may be used as it is, or may be added to a poor solvent to be precipitated in a solid state and then re-dissolved in another solvent to obtain a polyimide precursor composition.
  • the poor solvent at this time is not particularly limited and may be appropriately selected depending on the type of the polyimide precursor, but an ether solvent such as diethyl ether or diisopropyl ether; a ketone solvent such as acetone, methyl ethyl ketone, isobutyl ketone, methyl isobutyl ketone; Examples thereof include alcohol solvents such as methanol, ethanol, isopropyl alcohol and the like. Among them, alcohol solvents such as isopropyl alcohol are preferable in that precipitates can be obtained efficiently, the boiling point is low, and drying is easy. These solvents may be used alone or in combination of two or more in any ratio and combination.
  • the solvent for dissolving the polyimide precursor is not particularly limited.
  • hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mesitylene, anisole; N, N-dimethylformamide, N, N-dimethylacetamide
  • Amide solvents such as N-methyl-2-pyrrolidone; aprotic solvents such as dimethyl sulfoxide; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate Solvent; and the like.
  • anisole N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ethylene glycol dimethyl ether and ethylene glycol monomethyl ether are particularly preferable.
  • These solvents may be used alone or in combination of two or more in any ratio and combination.
  • the composition of the present invention may contain other solvents without departing from the gist of the present invention.
  • the type is not particularly limited, but alcohol is preferred because of good coatability. There is no restriction
  • the vapor pressure at 20 ° C. is not particularly limited, but is preferably 50000 Pa or less, more preferably 20000 Pa or less, further preferably 10,000 Pa or less, and more preferably 5000 Pa or less. Moreover, there is no lower limit, and the lower one is preferable, but it is, for example, 1 Pa or more. When the vapor pressure is within this range, a film excellent in uniformity of the composition and in-film components, whitening suppression, and smoothness tends to be obtained.
  • the boiling point of the alcohol added to the composition is not particularly limited, but is preferably 60 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher. Moreover, Preferably it is 300 degrees C or less, More preferably, it is 280 degrees C or less, More preferably, it is 250 degrees C or less. When the boiling point is within this range, the concentration change of the polyimide precursor composition during film formation such as coating is reduced, so that a film excellent in uniformity of components in the film, suppression of whitening and smoothness of the film can be obtained. There is a tendency. Furthermore, the residual solvent in the film after drying or heating tends to decrease.
  • the octanol / water partition coefficient (log ⁇ ) of the alcohol added to the composition is not particularly limited, but is preferably 0 or more, more preferably 0.5 or more, and even more preferably 1 or more. There is no upper limit, and a larger one is preferred. When log ⁇ is within this range, the influence of moisture on the film is reduced, and whitening during film formation tends to be suppressed.
  • the ratio of alcohol added to the composition with respect to the total solvent is not particularly limited, but is preferably 50% by mass or less, more preferably 30% by mass or less, and still more preferably 20% by mass or less. Moreover, 0.1 mass% or more is preferable, 0.5 mass% or more is more preferable, and 1.0 mass% or more is further more preferable. By being in this range, the solubility of the polyimide precursor and / or polyimide is increased, and whitening during film formation tends to be suppressed.
  • the alcohol added to the composition is preferably at least one selected from the group consisting of aromatic alcohols, aliphatic alcohols and glycol monoether alcohols. These solvents may be used alone or in combination at any ratio. Especially, since the solubility of a polyimide precursor and / or a polyimide becomes high, an aliphatic alcohol or glycol monoether type alcohol is preferable, and an aliphatic alcohol is especially preferable.
  • the number of carbon atoms is preferably 4 or more, and more preferably 5 or more. Moreover, it is preferable that it is 20 or less, and it is still more preferable that it is 15 or less.
  • the branch position is ⁇ and / or ⁇ .
  • the alcohol added to a composition is not specifically limited, The following are mentioned specifically.
  • aromatic alcohol examples include benzyl alcohol, salicyl alcohol, diphenylmethanol, and vanillyl alcohol.
  • aliphatic alcohol examples include methanol having 1 carbon; ethanol having 2 carbons; 1-propanol and 2-propanol having 3 carbons; 1-butanol, 2-butanol and isobutanol having 4 carbons.
  • glycol monoether alcohol examples include ethylene glycol monomethyl ether and ethylene glycol monoethyl ether.
  • the resulting film tends to be easily affected by the environment in which the film is formed. is there.
  • the solubility of the composition decreases due to moisture absorption before drying, and a polyimide precursor or polyimide may be deposited, resulting in whitening (whitening) of the film.
  • original polyimide characteristics such as heat resistance and mechanical characteristics cannot be obtained even if drying or heating is performed on a film that has been whitened.
  • the solvent is selected from the group consisting of ether solvents, ketone solvents, amide solvents, sulfone solvents, heterocyclic solvents, phenol solvents, lactone solvents, and ester solvents.
  • a solvent having a vapor pressure at 20 ° C. of 50000 Pa or less hereinafter sometimes referred to as solvent A
  • an alcohol hereinafter sometimes referred to as solvent B
  • the solvent B is preferably at least one selected from the group consisting of aromatic alcohols, aliphatic alcohols, and glycol monoether alcohols. These solvents may be used alone or in combination at any ratio. Especially, since the solubility of a polyimide precursor becomes high, aliphatic alcohol or glycol monoether type
  • the number of carbon atoms is preferably 4 or more, and more preferably 5 or more. Moreover, it is preferable that it is 20 or less, and it is still more preferable that it is 15 or less.
  • the branch position is particularly preferably a ⁇ and / or ⁇ position.
  • the vapor pressure difference between the solvent A and the solvent B is not particularly limited, but is preferably 10,000 Pa or less, more preferably 5000 Pa or less, and still more preferably 1000 Pa or less. There is no lower limit, and the vapor pressure difference may be zero. Further, either the solvent A or the solvent B may have a higher vapor pressure.
  • the concentration change of the polyimide precursor composition during film formation such as coating is reduced. Therefore, it is excellent in whitening suppression, uniformity of components in the film, and film smoothness. A film tends to be obtained. Further, the residual solvent in the film after drying or heating tends to decrease.
  • the difference in boiling point between the solvent A and the solvent B is not particularly limited, but is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 50 ° C. or lower. There is no lower limit, and the boiling point difference may be zero. Further, either of the boiling points of the solvent A and the solvent B may be higher.
  • the difference in boiling point is within a specific range, the concentration change of the polyimide precursor composition during film formation is reduced, and thus a film excellent in whitening suppression, uniformity of components in the film and film smoothness can be obtained. There is a tendency. Further, the residual solvent in the film after drying or heating tends to decrease.
  • the ratio of the ratio of the solvent A and the solvent B to the total solvent is not particularly limited. preferable. Moreover, 0.1 mass% or more is preferable, 0.5 mass% or more is more preferable, and 1.0 mass% or more is further more preferable. When the ratio of the ratio of the solvent A and the solvent B is within this range, the solubility of the polyimide precursor is maintained and the whitening suppression effect tends to be obtained.
  • the film formed using the above solvent is particularly excellent in transparency and low colorability, it can be suitably used for applications such as coating materials, surface protective layers, adhesives, device substrates and insulating films.
  • the viscosity of the composition of the present invention is not particularly limited, but is usually 200 cP or more, preferably 300 cP or more, more preferably 500 cP or more at a viscosity of 20% at 25 ° C., usually 200000 cP or less, preferably 100000 cP or less, Preferably it is 80,000 cP or less.
  • the viscosity of the composition can be measured by a conventionally known method. For example, a vibration type viscometer, an E type viscometer, or the like can be used.
  • the concentration of the polyimide precursor and / or polyimide contained in the composition of the present invention is not particularly limited, but is usually 3% by mass or more, preferably 5% by mass or more, more preferably 7% by mass or more, and usually 60%. It is not more than mass%, preferably not more than 50 mass%, more preferably not more than 45 mass%. When the concentration is within this range, the production becomes easy, and the film thickness tends to be uniform during film formation.
  • the concentration of the composition can be measured by a conventionally known method. For example, it can be determined by the method described above.
  • polyimide contained in the composition there is no particular limitation on the method for producing the polyimide contained in the composition.
  • the method of manufacturing a polyimide precursor and obtaining a polyimide the method of manufacturing a polyimide directly from tetracarboxylic dianhydride and a diamine compound, etc. can be used.
  • a polyimide can be obtained by dehydrating and cyclizing the polyimide precursor obtained by the above method in the presence of a solvent.
  • imidation can be performed using any conventionally known method, for example, thermal imidization for thermal cyclization, chemical imidization for chemical cyclization, and the like can be given. These imidation reactions may be performed alone or in combination.
  • Examples of the solvent for imidizing the polyimide precursor include the same solvents as those used in the reaction for obtaining the polyimide precursor.
  • the solvent at the time of manufacturing the polyimide precursor and the solvent at the time of manufacturing the polyimide may be the same or different.
  • water generated by imidization may be discharged out of the system in order to inhibit the ring closure reaction.
  • the concentration of the polyimide precursor during the imidation reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. By carrying out in this range, the production efficiency tends to be high and the solution viscosity tends to be easy to produce.
  • the imidation reaction temperature is not particularly limited, but is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 300 ° C. or lower, preferably 280 ° C. or lower, more preferably 250 ° C. or lower. Performing in this range is preferable because the imidization reaction proceeds efficiently and reactions other than the imidization reaction tend to be suppressed.
  • the pressure during the reaction may be normal pressure, pressurization, or reduced pressure.
  • the atmosphere may be air or an inert atmosphere.
  • a compound having a function of enhancing nucleophilicity and electrophilicity can be added.
  • tertiary amine compounds or heterocyclic compounds are preferable, and triethylamine, imidazole, or pyridine is more preferable because it tends to control the imidation rate.
  • These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
  • the amount of the imidization accelerator used is usually 0.01 mol% or more, preferably 0.1 mol% or more, more preferably 1 mol% or more based on the carboxyl group or ester group. Moreover, it is preferable that it is 50 mol% or less, and it is more preferable that it is 10 mol% or less.
  • the usage-amount of a catalyst exists in such a range, it exists in the tendency for the imidation reaction to advance efficiently and to obtain the polyimide which controlled the imidation ratio.
  • the timing which adds an imidation promoter can be adjusted suitably in order to make it a desired imidation rate, may be before a heating start, and may be during a heating. Moreover, you may add in multiple times.
  • a polyimide can be obtained by chemically imidizing a polyimide precursor using a dehydration condensing agent in the presence of a solvent.
  • a solvent used in the chemical imidization include the same solvents as those used in the reaction for obtaining the polyimide precursor.
  • dehydrating condensing agent examples include N, N-2-substituted carbodiimides such as N, N-dicyclohexylcarbodiimide and N, N-diphenylcarbodiimide; acid anhydrides such as acetic anhydride and trifluoroacetic anhydride; thionyl chloride and tosyl chloride and the like.
  • acid anhydrides and halogenated compounds are preferable, and in particular, acid anhydrides tend to allow the imidization reaction to proceed efficiently and to obtain a polyimide with a controlled imidization rate.
  • acid anhydrides tend to allow the imidization reaction to proceed efficiently and to obtain a polyimide with a controlled imidization rate.
  • These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
  • the amount of these dehydrating condensing agents to be used is usually 0.1 mol or more, preferably 0.2 mol or more, usually 1.0 mol or less, preferably 0.9 mol or less with respect to 1 mol of the polyimide precursor.
  • the imidation rate can be controlled, production efficiency tends to be high, and the solution viscosity tends to be easy to manufacture.
  • the imidation reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and is usually 150 ° C. or lower, preferably 130 ° C. or lower, more preferably 100 ° C. or lower. It is preferable to carry out in this range since the imidization reaction proceeds efficiently and a polyimide having a controlled imidization rate tends to be obtained. Furthermore, it is preferable because side reactions other than the imidization reaction are suppressed.
  • the pressure during the reaction may be normal pressure, increased pressure, or reduced pressure.
  • the atmosphere may be air or an inert atmosphere.
  • the above-mentioned tertiary amines can be added in the same manner as in the heating imidization.
  • a polyimide can be directly obtained from a tetracarboxylic dianhydride and a diamine compound using a conventionally known method. This method performs imidization from synthesis of a poimide precursor to imidization without stopping the reaction or isolating the precursor.
  • tetracarboxylic dianhydride and diamine compound there are no particular limitations on the order and method of addition of tetracarboxylic dianhydride and diamine compound.
  • the temperature at which the reaction until imidization proceeds by sequentially adding tetracarboxylic dianhydride and diamine compound to the solvent.
  • the polyimide is obtained by stirring at.
  • the amount of the diamine compound is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of tetracarboxylic dianhydride.
  • the concentration of tetracarboxylic dianhydride and diamine compound in the solvent can be set as appropriate for each condition and viscosity during polymerization, but the total mass of tetracarboxylic dianhydride and diamine compound is a special setting. However, it is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less, based on the total liquid amount. When the concentration in the solvent is within an appropriate range, elongation of molecular weight tends to occur, and stirring tends to be facilitated.
  • Examples of the solvent used in this reaction include the same solvents as those used in the reaction for obtaining the polyimide precursor. Moreover, also when obtaining a polyimide from a tetracarboxylic dianhydride and a diamine compound, heating imidation and / or chemical imidation can be used similarly to the case where a polyimide is obtained from a polyimide precursor.
  • the reaction conditions for heating imidization and chemical imidization in this case are the same as described above.
  • the obtained polyimide may be used as it is as a polyimide composition, or may be added to a poor solvent to precipitate the polyimide in a solid state, and then re-dissolved in another solvent to be used as a polyimide composition. it can.
  • the poor solvent at this time is not particularly limited and may be appropriately selected depending on the type of polyimide.
  • ether solvents such as diethyl ether and diisopropyl ether
  • ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone
  • alcohol solvents such as methanol, ethanol, isopropyl alcohol, and the like.
  • alcohol solvents such as isopropyl alcohol are preferable because precipitates can be obtained efficiently and the boiling point is low and the drying tends to be easy.
  • These solvents may be used alone or in combination of two or more in any ratio and combination.
  • Examples of the solvent for re-dissolving polyimide include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mesitylene, and anisole; N, N-dimethylformamide, N, N-dimethylacetamide, N An amide solvent such as methyl-2-pyrrolidone; an aprotic solvent such as dimethyl sulfoxide; a glycol solvent such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate; Etc.
  • hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mesitylene, and anisole
  • N N-dimethylformamide
  • N N-dimethylace
  • anisole N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ethylene glycol dimethyl ether, and ethylene glycol monomethyl ether are particularly preferable.
  • These solvents may be used alone or in combination of two or more in any ratio and combination.
  • composition of the present invention may contain other solvents without departing from the gist of the present invention.
  • the type is not particularly limited, but alcohol is preferred because of good coatability. Preferred alcohols are the same as those described above.
  • a coupling agent such as a silane coupling agent or a titanium coupling agent can be added in order to adjust the adhesion to the coated body.
  • silane coupling agent examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltripropoxysilane, ⁇ -aminopropyltributoxysilane, ⁇ -aminoethyltriethoxysilane, ⁇ -Aminoethyltrimethoxysilane, ⁇ -aminoethyltripropoxysilane, ⁇ -aminoethyltributoxysilane, ⁇ -aminobutyltriethoxysilane, ⁇ -aminobutyltrimethoxysilane, ⁇ -aminobutyltripropoxysilane, ⁇ -amino Examples include butyltributoxysilane.
  • titanium coupling agent examples include ⁇ -aminopropyltriethoxytitanium, ⁇ -aminopropyltrimethoxytitanium, ⁇ -aminopropyltripropoxytitanium, ⁇ -aminopropyltributoxytitanium, ⁇ -aminoethyltriethoxytitanium, ⁇ -Aminoethyltrimethoxytitanium, ⁇ -aminoethyltripropoxytitanium, ⁇ -aminoethyltributoxytitanium, ⁇ -aminobutyltriethoxytitanium, ⁇ -aminobutyltrimethoxytitanium, ⁇ -aminobutyltripropoxytitanium, ⁇ -amino Examples thereof include butyl tributoxy titanium.
  • These coupling agents may be used singly or in combination of two or more in any ratio and combination.
  • the amount used at this time is preferably 0.1% by mass or more and 3% by mass or less with respect to the polyimide.
  • additives can be blended as necessary.
  • other powdery, granular, plate-like, fiber-like inorganic fillers and organic fillers can be blended within a range not impairing the effects of the present invention.
  • fillers may be processed into a flat shape such as a non-woven fabric or may be used in combination.
  • various additives commonly used in resin compositions such as lubricants, colorants, stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, plasticizers, mold release agents, etc. Can be blended. These various fillers and additive components may be added at any stage of any process for producing polyimide.
  • the polyimide according to the present invention contains a tetracarboxylic acid residue and a diamine residue, and has a partial structure selected from group III and one or more partial groups selected from group IV as a tetracarboxylic acid residue.
  • the diamine residue has a partial structure represented by the formula (11).
  • X 1 represents a direct bond, an alkylene group, a carbonyl group, an ether bond or a sulfonyl group.
  • n ′ and m ′ each independently represent 0 or 1
  • R 5 and R 6 each independently represents an alkyl group, an alkenyl group or an aromatic ring.
  • R 5 and R 6 may be different or the same, and may form a ring.
  • Y ′ represents a direct bond or a divalent organic group.
  • R 7 and R 8 each independently represents an alkyl group, an alkoxy group, an amino group or a hydroxyl group.
  • X 1 in formula (7) has the same meaning as X in formula (1), and the preferred range and the substituent that may be present are also synonymous.
  • N ′ and m ′ in the formula (9) have the same meanings as n and m in the formula (3), respectively, and a preferable range is also the same.
  • R ⁇ 5 > and R ⁇ 6 > are synonymous with R ⁇ 1 > and R ⁇ 2 > of Formula (3), respectively, A preferable range and the substituent which may have are also synonymous.
  • Y ′ in formula (10) has the same meaning as Y in formula (4), and the preferred range and the substituent that may be present are also synonymous.
  • R 7 and R 8 in the formula (11) have the same meanings as R 3 and R 4 in the formula (5), respectively, and the preferred range and the substituents that may be included are also the same.
  • the polyimide of the present invention has a tetracarboxylic acid residue having a structure other than the partial structure represented by the above formula (7), formula (8), formula (9) and formula (10) without departing from the gist of the present invention. You may have. Moreover, you may have the diamine residue which has other than the partial structure shown by Formula (11). Examples of the tetracarboxylic acid residue having other than the partial structure represented by the above formula (7), formula (8), formula (9) and formula (10) include the above formula (1), formula (2) and formula (3).
  • tetracarboxylic dianhydrides such as aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides, shown as tetracarboxylic acid residues having other than the partial structure represented by formula (4) And tetracarboxylic acid residues derived from.
  • diamine residue having other than the partial structure represented by the above formula (11) a diamine residue derived from a diamine compound represented as a diamine residue having other than the partial structure represented by the above formula (5) Can be mentioned.
  • the polyimide of the present invention preferably has a tetracarboxylic acid residue and / or a diamine residue having a bent portion, since it tends to improve optical properties.
  • a tetracarboxylic acid and / or diamine residue having a bent portion the tetracarboxylic acid and / or diamine residue having a bent portion which may be included in the polyimide precursor and / or polyimide in the composition of the present invention. It is synonymous with group, and its preferable range is also synonymous.
  • diamine residues having other than the partial structure represented by formula (11) it is preferable to have a diamine residue having a partial structure represented by formula (12) in order to improve optical properties.
  • Z ′ represents a direct bond, a sulfonyl group, an alkylene group, a carbonyl group or an ether bond
  • a ′ and B ′ each independently represent a direct bond, a divalent aromatic ring, a divalent heterocyclic ring or a phenyl ether group.
  • Z ′, A ′, and B ′ in the formula (12) have the same meanings as Z, A, and B in the formula (6), respectively, and the preferred ranges and the substituents that may be included are also the same.
  • the partial structure contained in the polyimide can be obtained by analyzing the composition of the raw material monomer by solid-state NMR, IR, or the like. Further, after dissolution with alkali, it can be determined by gas chromatography (GC), 1 H-NMR, 13 C-NMR, two-dimensional NMR, mass spectrometry, and the like.
  • GC gas chromatography
  • the shape of the polyimide of the present invention is not particularly limited, but can take various forms such as powder, pellets, and films.
  • the polyimide of the present invention is preferably soluble in a solvent.
  • Soluble in a solvent is as defined above, and the solvent used is also synonymous.
  • Polyimide properties The properties and properties of the polyimide of the present invention are not particularly limited without departing from the gist of the present invention.
  • the tensile strength of the polyimide of the present invention is not particularly limited, but is usually 50 MPa or more, preferably 70 MPa or more, usually 400 MPa or less, preferably 300 MPa or less.
  • the tensile elastic modulus is not particularly limited, but is usually 1000 MPa or more, preferably 1500 MPa or more, and usually 20 GPa or less, preferably 10 GPa or less.
  • the tensile elongation is not particularly limited, but is usually 5% GL or more, preferably 10% GL or more, more preferably 20 GL% or more, and usually 300% GL or less, preferably 200 GL% or less. By being in the range as described above, there is strength, which is particularly useful when a film is used.
  • These tensile strength, tensile elastic modulus, and tensile elongation can be determined, for example, by measuring film-like polyimide with a tensile tester.
  • the glass transition temperature of the polyimide of the present invention is not particularly limited, but is usually 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher. When the glass transition temperature is within this range, heat resistance can be obtained.
  • the glass transition temperature can be measured by using, for example, differential scanning calorimetry, viscoelasticity measurement, thermogravimetric / differential thermal simultaneous analysis, and the like.
  • the linear expansion coefficient of the polyimide of the present invention is usually 60 ppm / K or less, preferably 50 ppm / K or less, more preferably 45 ppm / K or less, still more preferably 40 ppm / K, particularly preferably in the range of 100 ° C. to 150 ° C. 30 ppm / K or less.
  • This range is preferable because, for example, when a device using polyimide as a film is produced, the dimensional stability is high, and it is difficult for members such as electronic elements and color filters to break and deform.
  • the measuring method is not specifically limited, For example, it can measure by the method of an Example using a film-like polyimide.
  • the transmittance of the polyimide of the present invention is a film, and when the film thickness is 1 to 100 ⁇ m, the transmittance with respect to a light beam of 500 nm is usually 55% or more, preferably 60% or more, more preferably 70% or more. By being in this range, the light emission efficiency of the device can be used effectively.
  • the transmittance can be measured by the method described in JIS K 7361-1 (1997).
  • the retardation is a wavelength to be used, for example, an arbitrary wavelength between 400 and 800 nm for device use, and the retardation in the thickness direction of the film (Rth) is usually 300 nm or less, Preferably it is 200 nm or less, More preferably, it is 170 nm or less, More preferably, it is 150 nm or less, More preferably, it is 140 nm or less, Most preferably, it is 120 nm or less.
  • the in-plane retardation (R0) of the film is usually 10 nm or less, preferably 5 nm or less, more preferably 3 nm or less, and even more preferably 1 nm or less. This range is preferable because the visibility of the device is improved.
  • the polyimide of the present invention is useful for film applications. In addition to film applications, it can be applied to a wide range of applications. For example, it can be used for production of a flexible solar cell member, a display member, a liquid crystal display carrier, a heat-resistant insulating tape, a heat-resistant adhesive tape, a capacitor or a film for a flexible printed circuit board. Further, for example, it can be used for manufacturing a structural member reinforced with glass fiber or carbon fiber, a small coil bobbin, or a molded product of a terminal insulating tube.
  • laminated materials such as insulating spacers, magnetic head spacers or transformer spacers.
  • enamel coating materials such as electric wire / cable insulation coating materials, low-temperature storage tanks, space insulation materials, and integrated circuits.
  • heat-resistant yarns woven fabrics or nonwoven fabrics.
  • the present invention is a polyimide film containing a tetracarboxylic acid residue and a diamine residue, wherein at least one of the tetracarboxylic acid residue and the diamine residue has a bent portion, and the linear expansion coefficient is 60 ppm / It is related also to the polyimide film characterized by being below K and retardation being below 200 nm.
  • the definition of the bending part which at least any one of a tetracarboxylic acid residue and a diamine residue has is the same as that of the bending part mentioned above, and its preferable structure is also the same.
  • the linear expansion coefficient of the polyimide film may be 60 ppm / K or less, preferably 50 ppm / K or less, more preferably 45 ppm / K or less, still more preferably 40 ppm / K, and particularly preferably 30 ppm / K or less.
  • the measuring method is not specifically limited, For example, it can measure by the method of an Example using a film-like polyimide.
  • the method of setting the linear expansion coefficient of the polyimide film to 60 ppm / K or less is not particularly limited.
  • the linear expansion coefficient of a polyimide film can be made in the said range by performing the method of extending
  • the filler and the like are not particularly limited, and examples thereof include inorganic fillers such as powder, granule, plate, and fiber, or organic fillers.
  • inorganic fillers include oxides such as silica, diatomaceous earth, barium ferrite, beryllium oxide, pumice and pumice balloon; hydroxides such as aluminum hydroxide, magnesium hydroxide and basic magnesium carbonate; calcium carbonate Carbonates such as magnesium carbonate, dolomite, and dawsonite; sulfates and sulfites such as calcium sulfate, barium sulfate, ammonium sulfate, and calcium sulfite; talc, clay, mica, asbestos, glass fiber, glass balloon, glass beads, calcium silicate Silicates such as carbon fiber, carbon black, graphite and carbon hollow spheres; powders of molybdenum sulfide, zinc borate, barium metaborate, calcium borate, sodium borate, boron fiber, etc.
  • oxides such as silica, diatomaceous earth, barium ferrite, beryllium oxide, pumice and pumice balloon
  • hydroxides such as
  • examples of the organic filler include carbon nanotubes, fullerenes, aromatic polyamide fibers, cellulose fibers, nylon fibers, polyester fibers, polypropylene fibers, thermosetting resin powders, and rubbers.
  • a filler what processed into flat form, such as a nonwoven fabric, may be used, and several materials may be mixed and used. The linear expansion coefficient can be measured by a thermomechanical device.
  • the retardation of the polyimide film may be 200 nm or less, preferably 170 nm or less, more preferably 150 nm or less, still more preferably 140 nm or less, and particularly preferably 120 nm or less.
  • the in-plane retardation (R0) of the film is usually 10 nm or less, preferably 5 nm or less, more preferably 3 nm or less, and even more preferably 1 nm or less. This range is preferable because the visibility of the device is improved.
  • the method of setting the retardation of the polyimide film to 200 nm or less is not particularly limited.
  • a method using a composition containing at least one of the polyimide precursor and polyimide, a method of mixing a compound having a negative retardation, or a resin The retardation of a polyimide film can be made into the said range by using the method etc. which form into a film using the base material which has a linear expansion coefficient equivalent to a polyimide.
  • the compound or resin having negative retardation is not particularly limited, and examples thereof include a styrene compound, an acrylic compound, a styrene resin, and an acrylic resin.
  • Examples of the base material having a linear expansion coefficient equivalent to that of polyimide include a metal foil and a resin substrate. Retardation can be measured by a retardation film / optical material inspection apparatus or the like.
  • the transmittance of the polyimide film of the present invention is usually 55% or more, preferably 60% or more, more preferably 70% or more with respect to a light beam of 500 nm. By being in this range, the light emission efficiency of the device can be used effectively.
  • the transmittance can be measured by the method described in JIS K 7361-1 (1997).
  • the yellowness (yellow index: YI) at a film thickness of 10 ⁇ m is usually ⁇ 10 or more, preferably ⁇ 5 or more, more preferably ⁇ 1 or more. On the other hand, it is usually 20 or less, preferably 15 or less, more preferably 10 or less. By being in this range, when polyimide is used as a device member, the efficiency of light emission can be used effectively.
  • the yellow index can be measured by using, for example, a spectral color meter.
  • the thickness of the polyimide film is not particularly limited, but is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and is usually 200 ⁇ m or less, preferably 100 ⁇ m or less. When the film has an appropriate thickness, sufficient resistance can be maintained and the flexible device can be thinned.
  • a substrate made of glass such as float glass or soda glass, or a plastic such as polyethylene terephthalate, polycarbonate, or polyolefin can be used.
  • a functional silane-containing compound or a functional titanium-containing compound can be prefaced on the surface of the substrate. Further, ultraviolet treatment, plasma treatment, or the like can be performed.
  • the method for volatilizing the solvent of the polyimide precursor and / or the polyimide composition is not particularly limited.
  • the solvent is volatilized by heating the applied material to be coated and / or by volatilizing the solvent under reduced pressure.
  • the heating method is not particularly limited, and examples thereof include hot air heating, vacuum heating, infrared heating, microwave heating, heating by contact using a hot plate or a hot roll, and the like.
  • the heating temperature for volatilizing the solvent can be a suitable temperature depending on the type of the solvent, but is usually 20 ° C. or higher, preferably 40 ° C. or higher, more preferably 50 ° C. or higher, more preferably 60 ° C. or higher. It is. Moreover, it is 400 degrees C or less normally, Preferably it is 380 degrees C or less, More preferably, it is 350 degrees C or less, More preferably, it is 300 degrees C or less.
  • the temperature is equal to or higher than the above lower limit, the residual solvent can be reduced and the film can be sufficiently dried. Moreover, by being below the said upper limit, the bubble etc. which generate
  • the heating atmosphere may be either air or an inert atmosphere, and is not particularly limited. However, if the polyimide film is required to be colorless and transparent, it can be heated under an inert atmosphere such as nitrogen to suppress coloring. preferable.
  • the method for peeling the polyimide film formed on the carrier by coating and drying is not particularly limited, and examples thereof include laser peeling, mechanical peeling, and peeling by immersion in water or hot water.
  • a method for melting and molding the polyimide precursor resin and / or polyimide resin for example, an injection molding method, an extrusion molding method, a hollow molding method.
  • the present invention will be described in more detail with reference to examples and comparative examples.
  • the following examples are shown in order to describe the present invention in detail, and the present invention is not limited to the following examples unless it is contrary to the gist thereof.
  • the values of various conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the above upper limit or lower limit value. It may be a range defined by a combination of values of the examples or values between the examples.
  • Example 1 In a four-necked flask equipped with a reflux nitrogen gas inlet tube, a condenser, and a stirrer, 5.7 g (0.019 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3, 2.6 g (0.009 mol) of 3 ′, 4,4′-bicyclohexanetetracarboxylic dianhydride (H-BPDA), 1.4 g (0.006 mol) of pyromellitic anhydride (PMDA), 2,2 5.6 g (0.018 mol) of '-bis (trifluoromethyl) benzidine (6F-m-TB), 4.3 g (0.018 mol) of 4,4'-diaminodiphenylsulfone, N-methyl-2-pyrrolidone ( NMP) 73 g was added. The mixture was heated while stirring and reacted at 80 ° C. for 6 hours to obtain
  • composition 1 was applied on a glass substrate using a 100 ⁇ m applicator and heated at 350 ° C. for 30 minutes to obtain a polyimide film 1 having a thickness of 10 ⁇ m.
  • CTE linear expansion coefficient
  • the retardation (Rth) value in the thickness direction of the film 1 was measured and calculated using a measurement retardation film / optical material inspection apparatus ("RETS100" manufactured by Otsuka Electronics Co., Ltd.). The measurement results are shown in Table 2.
  • the retardation (Rth) value in the thickness direction of the film used this time is a value at a wavelength of 460 nm and a film thickness of 10 ⁇ m.
  • the yellow index (YI) value of the polyimide film 1 was measured using SM color computer SM5 manufactured by Suga Test Instruments Co., Ltd.
  • the YI value used this time is a value calculated as a YI value per 10 ⁇ m of film thickness.
  • Example 2 In Example 1, BPAD was 1.7 g (0.006 mol), H-BPDA was 1.8 g (0.006 mol), PMDA was 3.9 g (0.018 mol), and 6F-m-TB was 5.5 g (0 0.017 mol), polyimide precursor composition 2 and polyimide film 2 were prepared in the same manner as in Example 1 except that 3.2 g (0.013 mol) of 4,4′-diaminodiphenylsulfone and NMP were changed to 65 g. Obtained. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 3 5.3 g (0.018 mol) of BPDA of Example 1, 2.5 g (0.008 mol) of H-BPDA, 1.3 g (0.006 mol) of PMDA, 7.9 g of 0F-m-TB (0 0.025 mol), 4,4′-diaminodiphenylsulfone was changed to 2.0 g (0.008 mol), and NMP was changed to 71 g, and polyimide precursor composition 3 and polyimide film 3 were prepared in the same manner as in Example 1. Obtained. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 4 5.4 g (0.018 mol) of BPDA of Example 1, 2.5 g (0.008 mol) of H-BPDA, 1.3 g (0.006 mol) of PMDA, 9.5 g of 6F-m-TB (0 0.03 mol), 4,4′-diaminodiphenyl sulfone was changed to 0.8 g (0.003 mol), and NMP was changed to 78 g to obtain a polyimide precursor composition 4 and a polyimide film 4 in the same manner as in Example 1. It was. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 5 A four-necked flask equipped with a reflux nitrogen gas inlet tube, a condenser, a Dean-Stark agglomerator filled with toluene, and a stirrer was charged with 4.9 g (0.017 mol) of BPDA, 2.3 g (0.007 mol) of H-BPDA, and PMDA1. 0.2 g (0.006 mol), 6F-m-TB 8.6 g (0.027 mol), 4,4′-diaminodiphenylsulfone 0.7 g (0.003 mol), NMP 71 g, and toluene 14 g were added. The mixture was heated to reflux at 200 ° C. for 13 hours with stirring to obtain a polyimide composition 5.
  • Example 6 4.1 g (0.014 mol) of BPDA of Example 1, 2.1 g (0.007 mol) of H-BPDA, 1.9 g (0.009 mol) of PMDA, and 8.4 g of 0F-m-TB (0 .026 mol), 2.2 g (0.009 mol) of 4,4′-diaminodiphenylsulfone and NMP of 82 g were changed to 1.9 g of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride.
  • a polyimide precursor composition 6 and a polyimide film 6 were obtained in the same manner as in Example 1 except that (0.005 mol) was added. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 7 5.4 g (0.018 mol) of BPDA of Example 6, 1.2 g (0.004 mol) of H-BPDA, 1.3 g (0.006 mol) of PMDA, 3,3 ′, 4,4′-diphenyl 1.5 g (0.004 mol) of sulfonetetracarboxylic dianhydride, 7.9 g (0.025 mol) of 6F-m-TB, 2.0 g (0.008 mol) of 4,4′-diaminodiphenylsulfone, A polyimide precursor composition 7 and a polyimide film 7 were obtained in the same manner as in Example 6 except that NMP was changed to 78 g. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 8 5.4 g (0.018 mol) of BPDA of Example 6, 2.0 g (0.007 mol) of H-BPDA, 1.3 g (0.006 mol) of PMDA, 3,3 ′, 4,4′-diphenyl 0.6 g (0.002 mol) of sulfonetetracarboxylic dianhydride, 7.9 g (0.025 mol) of 6F-m-TB, 2.0 g (0.008 mol) of 4,4′-diaminodiphenylsulfone,
  • a polyimide precursor composition 8 and a polyimide film 8 were obtained in the same manner as in Example 6 except that NMP was changed to 77 g.
  • CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 9 In Example 6, 5.9 g (0.019 mol) of BPDA, 1.9 g (0.006 mol) of H-BPDA, 1.4 g (0.006 mol) of PMDA, 7.7 g of 0F-m-TB (0 .024 mol), 4,4′-diaminodiphenylsulfone 1.2 g (0.005 mol), NMP 76 g, and 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride 9, A polyimide precursor composition 9 and a polyimide film 9 were obtained in the same manner as in Example 6 except that the amount was changed to 1.1 g (0.003 mol) of 9-bis (4-aminophenyl) fluorene. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 10 9.8 g (0.033 mol) of BPDA of Example 6, 2.3 g (0.007 mol) of H-BPDA, 2.4 g (0.011 mol) of PMDA, and 18.0 g (0 of 0) of F-m-TB 0.056 mol), 4.7 g (0.019 mol) of 4,4′-diaminodiphenylsulfone, and 141 g of NMP, and 2,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride was changed to 2, The same as Example 6 except that the amount was changed to 9.9 g (0.022 mol) of 2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride.
  • the polyimide precursor composition 10 and the polyimide film 10 were obtained by the method. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results
  • Example 11 3.8 g (0.013 mol) of BPDA of Example 10, 2.0 g (0.007 mol) of H-BPDA, 1.7 g (0.008 mol) of PMDA, 2,2-bis (3,4-di Carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride 2.1 g (0.005 mol), 6F-m-TB 7.9 g (0.025 mol), 4,4 A polyimide precursor composition 11 and a polyimide film 11 were obtained in the same manner as in Example 10, except that 2.0 g (0.008 mol) of '-diaminodiphenylsulfone and 79 g of NMP were changed. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 12 Example 10 except that BPDA of Example 10 was changed to 6.6 g (0.022 mol), H-BPDA was changed to 2.2 g (0.007 mol), PMDA was changed to 4.9 g (0.022 mol), and NMP was changed to 139 g.
  • the polyimide precursor composition 12 and the polyimide film 12 were obtained by the same method. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 13 5.2 g (0.018 mol) of BPDA of Example 9, 1.8 g (0.006 mol) of H-BPDA, 1.3 g (0.006 mol) of PMDA, 6.2 g of 6F-m-TB (0 .020 mol), 1.9 g (0.008 mol) of 4,4′-diaminodiphenylsulfone, 53 g of NMP, and 9,9-bis (4-aminophenyl) fluorene with 2,2-bis (3- A polyimide precursor composition 13 and a polyimide film 13 were obtained in the same manner as in Example 9 except that 1.1 g (0.003 mol) of amino-4-hydroxyphenyl) -hexafluoropropane was used. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 14 The BPAD of Example 1 was 6.6 g (0.022 mol), H-BPDA was 3.0 g (0.010 mol), PMDA was 1.6 g (0.007 mol), and 6F-m-TB was 9.6 g (0 .030 mol), NMP was changed to 73 g, and 4,4′-diaminodiphenyl sulfone was changed to 3.4 g (0.010 mol) of 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene.
  • a polyimide precursor composition 14 and a polyimide film 14 were obtained by the same method as in Example 1 except that. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 15 Except that 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene of Example 14 was changed to 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene A polyimide precursor composition 14 and a polyimide film 14 were obtained by the same method as in Example 13. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 2 A polyimide film 18 was obtained from the obtained composition 18 in the same manner as in Example 1. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Comparative Example 8 Comparative Example 7 and Comparative Example 7 except that 6.8 g (0.022 mol) of H-BPDA, 5.9 g (0.023 mol) of 4,4′-diaminodiphenylsulfone, and DMAc were changed to 37 g of NMP.
  • the polyimide precursor composition 24 and the polyimide film 24 were obtained by the same method. In the same manner as in Example 1, CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • Example 2 CTE, Rth, and YI of the polyimide film were measured. The results are shown in Table 2.
  • the ratio of the tetracarboxylic dianhydride to the diamine compound was adjusted so that the viscosity of the composition in the raw material was 200 to 600 cP, whereby a composition 27 was obtained. The ratio is shown in Table 3.
  • the composition 27 was applied on a glass substrate and heated. When the obtained film was peeled off, cracks occurred and the film could not be obtained.
  • the ratio of the tetracarboxylic dianhydride to the raw material diamine compound used in Example 7 was adjusted so that the viscosity of the composition was 200 to 600 cP, whereby a composition 28 was obtained.
  • the ratio is shown in Table 3.
  • the composition 28 was applied on a glass substrate and heated. The obtained film did not crack and could be peeled off.
  • the polyimide films 1 to 15 of the present invention have both a low linear expansion coefficient and a low retardation.
  • the polyimide film shown in the comparative example cannot achieve both a low linear expansion coefficient and a low retardation.
  • the composition 28 containing the bent portion could be formed into a film even when the viscosity was reduced to 200 to 600 cP, but the composition containing no bent portion was not included. 27, it was difficult to form a film when the viscosity was lowered. Therefore, it was shown that the composition can be obtained in a wide viscosity range by having a bent portion and can be applied to various coating methods. It was.
  • the polyimide precursor composition of the present invention can be used for coating materials, surface protective layers, adhesives, device substrates, insulating films and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は耐熱性、透過率、低線膨張係数及び低リタデーションに優れたポリイミド材料を提供することを目的とする。本発明はテトラカルボン酸残基及びジアミン残基を含むポリイミドフィルムであって、前記テトラカルボン酸残基及びジアミン残基の少なくともいずれか一方が屈曲部位を有し、線膨張係数が60ppm/K以下であり、かつ、リタデーションが200nm以下であることを特徴とするポリイミドフィルムに関する。

Description

ポリイミド前駆体及び/又はポリイミドを含む組成物、並びにポリイミドフィルム
 本発明は、特定の部分構造を有するポリイミド前駆体及び/又はポリイミド組成物、膜を形成する際の、膜の白化を抑制するポリイミド前駆体組成物、特定の部分構造を有し、耐熱性、透過率、低線膨張係数及び低リタデーションに優れたポリイミド並びにポリイミドフィルムに関する。
 近年、電気、電子部品、輸送機器、宇宙及び航空機等の分野において、デバイスの薄型化や軽量化、さらにはフレキシブル化が要求されるようになってきた。これらのデバイスには、ガラス基板上に薄型トランジスタや透明電極等の電子素子が形成されているが、このガラス基板をプラスチック材料に変えることにより、パネル自体のフレキシブル化、薄型化、軽量化が図られる。
 このようなデバイスの製造工程では、高温となる工程があるため、デバイス用基板には高い耐熱性が求められる。そこで、高耐熱プラスチックの一つとしてポリイミド材料の開発が行われている。また、デバイス用基板は加熱工程等における寸法変化が大きいと、電子素子やカラーフィルター等の部材の破断、変形等の原因となり、品質安定性が悪くなってしまう。
 また、耐熱性の他に、電気絶縁性、耐摩耗性、耐薬品性及び機械特性等に優れたポリイミド材料の開発が行われている。
 特許文献1では、耐熱性を有し、寸法変化の少ない(線膨張係数の小さい)ポリイミド材料が挙げられている。また、特許文献2ではアミド結合を有するアミドイミド材料が提案されている。
日本国特開2012-144603号公報 日本国特開2013-028688号公報
 しかし、特許文献1で提案されているように、ポリイミドを構成するモノマーが芳香族化合物のみの場合、面内配向が強くなりリタデーションが高く、位相差を生じてしまう。このような位相差を生じる材料を用いると、例えばディスプレイの正面や斜め方向の視野性が悪くなってしまう傾向にある。
 また、特許文献2で提案されたアミドイミド材料のようにアミド結合を有する場合、アミド結合は、吸水性、溶媒親和性が高いため、得られるポリイミド樹脂の加水分解性が高くなってしまう傾向にある。
 以上のように、デバイス用材料に適用するために必要な特性である、耐熱性、透過率、低線膨張係数、及び低リタデーションを同時に満たす材料は提案されていない。
 本発明は、前記課題を鑑みて成し遂げられたものであり、耐熱性、透過率、低線膨張係数及び低リタデーションに優れたポリイミド材料を提供することにある。
 本発明は以下の構成を有するものである。
[1]テトラカルボン酸残基及びジアミン残基を含むポリイミドフィルムであって、前記テトラカルボン酸残基及びジアミン残基の少なくともいずれか一方が屈曲部位を有し、線膨張係数が60ppm/K以下であり、かつ、リタデーションが200nm以下であることを特徴とするポリイミドフィルム。
[2]フィルムの膜厚が10μmの際のイエローインデックスが、-10以上、20以下である、前記[1]に記載のポリイミドフィルム。
[3]ポリイミド前駆体及びポリイミドの少なくともいずれか一方を含む組成物であって、前記ポリイミド前駆体及びポリイミドは、テトラカルボン酸残基及びジアミン残基を含み、前記テトラカルボン酸残基が下記式(1’)で表される部分構造、下記式(2)で表される部分構造及び下記式(4’)で表される部分構造を有し、前記ジアミン残基が下記式(5)で表される部分構造を有し、更に、前記テトラカルボン酸残基及びジアミン残基の少なくともいずれか一方が屈曲部位を有することを特徴とする組成物。
Figure JPOXMLDOC01-appb-C000002
 ただし式中の記号は以下の意味を表す。
 Xは直接結合、2級若しくは3級炭素原子を有する結合、またはエーテル結合である。
 R及びRはそれぞれ独立して、アルキル基、アルコキシ基、アミノ基及び水酸基からなる群より選ばれる官能基である。
[4]前記テトラカルボン酸残基中の前記式(4’)で表される部分構造を有するテトラカルボン酸残基の割合が、2mol%以上、95mol%以下である、前記[3]に記載の組成物。
[5]前記テトラカルボン酸残基中の前記式(1’)で表される部分構造を有するテトラカルボン酸残基及び前記式(2)で表される部分構造を有するテトラカルボン酸残基の和の割合が、5mol%以上、95mol%以下である、前記[3]又は[4]に記載の組成物。
[6]前記テトラカルボン酸残基及びジアミン残基の和に対する、前記屈曲部位の割合が、0.1mol%以上、150mol%以下である、前記[3]乃至[5]の何れか1に記載の組成物。
 本発明によれば、耐熱性、透過率、低線膨張係数及び低リタデーションに優れた、ポリイミド前駆体及び/又はポリイミド組成物、ポリイミド並びにポリイミドフィルムを提供することができる。
 以下に、本発明の実施の形態を詳細に説明するが、以下に例示する物や方法等は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を逸脱しない限り、これらの内容に限定されない。
 ここで、“重量%”と“質量%”とは同義である。
[組成物]
 本発明の組成物は、ポリイミド前駆体及びポリイミドの少なくともいずれか一方を含む組成物であって、前記ポリイミド前駆体及び/又はポリイミドは、テトラカルボン酸残基とジアミン残基を含み、前記テトラカルボン酸残基は、下記に示すI群から1つ以上選択される部分構造と下記に示すII群から1つ以上選択される部分構造とを有し、前記ジアミン残基は、下記式(5)で表される部分構造を有することを特徴とする組成物である。
 ただし式中の記号は以下の意味を表す。
 Xは直接結合、アルキレン基、カルボニル基、エーテル結合又はスルホニル基を示す。
 n及びmは、それぞれ独立して、0又は1を示す。
 R及びRは、それぞれ独立して、アルキレン基、アルケニレン基又は芳香環を示す。R及びRは互いに結合して環を形成していてもよい。
 Yは、直接結合又は2価の有機基を示す。
 R及びRは、それぞれ独立して、アルキル基、アルコキシ基、アミノ基又は水酸基を示す。
 テトラカルボン酸残基として、I群から1つ以上選択される部分構造及びII群から1つ以上選択される部分構造を有し、ジアミン残基として、式(5)で表される部分構造を有することで、本願発明の効果を奏する理由としては以下が推測される。
 I群から選択されるテトラカルボン酸残基と、式(5)で表されるジアミン残基を有することで、耐熱性及び機械特性の向上、並びに線膨張係数を下げる効果が得られる。しかし、芳香環化合物のみであると、前記のように、面内配向が強くなりリタデーションが高くなる傾向となるが、II群から選択されるテトラカルボン酸残基を有することで、これらの効果を得ながらも、リタデーションを制御することが可能となる。また、II群から選択されるテトラカルボン酸残基を有することで、さらに高い透過率が得られ、加えて低屈折率、有機溶媒に対する溶解性、成型体の可撓性向上の効果も得られると推測される。
 なお、本発明において、テトラカルボン酸残基とは、テトラカルボン酸二無水物から誘導された、四価の基のことを表す。また、本発明において、ジアミン残基とは、ジアミン化合物又はジイソシアネート化合物から誘導された、2価の基のことを表す。
 本発明にかかる組成物において、前記I群から選択される部分構造が下記式(1’)で表される部分構造及び式(2)で表される部分構造であり、前記II群から選択される部分構造が下記式(4’)で表される部分構造であり、ジアミン残基の部分構造が下記式(5)で表される部分構造であることが線膨張係数と光学特性のバランスを取りやすいため好ましく、さらにテトラカルボン酸残基及びジアミン残基の少なくとも一方が屈曲部位を有することがさらに好ましい。
 各部分構造および屈曲部位の詳細については後述する。
Figure JPOXMLDOC01-appb-C000004
 ただし式中の記号は以下の意味を表す。
 Xは直接結合、2級若しくは3級炭素原子を有する結合、またはエーテル結合である。
 R及びRはそれぞれ独立して、アルキル基、アルコキシ基、アミノ基及び水酸基からなる群より選ばれる官能基である。
 本発明の組成物は、前記ポリイミド前駆体及び/又はポリイミド以外にも他の成分を含んでいてもよい。例えば、成膜の際にイミド化率をさらに上げるために、イミド化剤を添加することができる。
[組成物に含まれるポリイミド前駆体及び/又はポリイミド]
 本発明に係る組成物に含まれるポリイミド前駆体及び/又はポリイミドは、テトラカルボン酸残基とジアミン残基を含むものである。前記テトラカルボン酸残基としてI群から1つ以上選択される部分構造及びII群から1つ以上選択される部分構造を有し、前記ジアミン残基として、式(5)で表される部分構造を有するものであれば特に限定されない。また、これらは溶媒に可溶な化合物であることが好ましい。
 本発明の組成物は、ポリイミド前駆体及び/又はポリイミドとして、テトラカルボン酸残基としてI群及びII群の部分構造を有さないものを有していてもよい。また、ジアミン残基として式(5)で表される部分構造を有さないものを有していてもよい。
 本発明において、「溶媒に可溶」とは、組成物を構成する溶媒中で、ポリイミド前駆体及び/又はポリイミドを室温(25℃)において、0.5質量%で溶解させた場合に完溶することをいう。
 完溶する濃度としては通常0.5質量%以上であり、好ましくは1質量%以上、より好ましくは10質量%以上である。
 組成物を構成する溶媒とは、後述する本発明の組成物に含まれるポリイミド前駆体及びポリイミドを得る際に用いる溶媒、再沈させる際に用いる溶媒等が挙げられる。
 組成物中のポリイミド前駆体及び/又はポリイミドの濃度は、従来知られている方法を用いて適宜確認することができる。例えば、組成物の溶媒を、減圧乾燥等の方法を用いて留去し、留去する前後の質量比から求めることができる。
 組成物の濃度が0.5質量%より薄い場合は、溶媒の減圧留去等の方法を用いて、組成物を濃縮し、溶媒に可溶か否かを判断することができる。組成物の濃度が濃い場合は、組成物の溶媒を用いて希釈することによって、濃度を0.5質量%とすることができる。また組成物の溶媒が不明の場合は、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系溶媒;アニソール、クレゾール、キシレン、トルエン等の芳香族系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒等を用いて希釈することができる。
 テトラカルボン酸残基として、I群及びII群の部分構造が挙げられる。テトラカルボン酸残基として、I群から1つ以上選択される部分構造及びII群から1つ以上選択される部分構造を有すれば特に限定はなく、例えば、I群から複数の部分構造を有していてもよく、式(1)で表される部分構造を複数有していてもよい。
 I群の中では、線膨張係数を低くする効果が高いため、式(1)で表される部分構造を有することが好ましく、式(1)で表される部分構造と式(2)で表される部分構造を両方有することが、耐熱性の向上、機械特性の向上及び線膨張係数を下げる効果が得られる傾向となるためさらに好ましい。
 また、II群の中では、光学特性が向上するため式(4)で表される部分構造を有することが好ましい。
 本発明の組成物に含まれるテトラカルボン酸残基の内、I群及びII群の各群から選択される部分構造を有するテトラカルボン酸残基が占める割合は、特に制限はないが、通常10mol%以上、好ましくは30mol%以上、より好ましくは50mol%以上である。この範囲にあることで、光学特性が良好で、線膨張係数の低い、ポリイミド前駆体及び/又はポリイミド組成物を得ることができる。
 I群から選択される部分構造を有するテトラカルボン酸残基とII群から選択される部分を有するテトラカルボン酸残基との割合は、特に制限はない。
 本発明の組成物に含まれるテトラカルボン酸残基の内、I群から選択される部分構造を有するテトラカルボン酸残基が占める割合は、通常5mol%以上、好ましくは10mol%以上、より好ましくは15mol%以上、通常95mol%以下、好ましくは90mol%以下、より好ましくは85mol%以下である。この範囲にあることで、光学特性が良好で、線膨張係数の低いポリイミド前駆体及び/又はポリイミド組成物を得ることができる。
 I群から選択される部分構造を有するテトラカルボン酸残基とII群から選択される部分構造を有するテトラカルボン酸残基の比率は特に制限はないが、II群のI群に対する割合で、通常5mol%以上、好ましくは10mol%以上、より好ましくは15mol%以上であり、通常500mol%以下、好ましくは300mol%以下、より好ましくは200mol%以下、さらに好ましくは150mol%以下である。
 本発明の組成物に含まれるテトラカルボン酸残基の内、式(1’)で表される部分構造を有するテトラカルボン酸残基、式(2)で表される部分構造を有するテトラカルボン酸残基及び式(4’)で表される部分構造を有するテトラカルボン酸残基が占める和の割合は、特に制限はないが、通常10mol%以上、好ましくは30mol%以上、より好ましくは50mol%以上である。この範囲にあることで、光学特性が良好で、線膨張係数の低い、ポリイミド前駆体及び/又はポリイミド組成物を得ることができる。
 式(1’)で表される部分構造を有するテトラカルボン酸残基及び式(2)で表される部分構造を有するテトラカルボン酸残基と式(4’)で表される部分構造を有するテトラカルボン酸残基との割合は、特に制限はない。
 本発明の組成物に含まれるテトラカルボン酸残基の内、式(1’)で表される部分構造を有するテトラカルボン酸残基及び式(2)で表される部分構造を有するテトラカルボン酸残基が占める和の割合は、通常5mol%以上、好ましくは10mol%以上、より好ましくは15mol%以上、通常95mol%以下、好ましくは90mol%以下、より好ましくは85mol%以下である。この範囲にあることで、光学特性が良好で、線膨張係数の低いポリイミド前駆体及び/又はポリイミド組成物を得ることができる。また、該組成物から得られるポリイミドフイルムにおいて、レーザー加工に用いられる308nm、355nm付近の吸収が増加し、レーザー加工に対応可能となり得る。
 式(1’)で表される部分構造を有するテトラカルボン酸残基及び式(2)で表される部分構造を有するテトラカルボン酸残基と式(4’)で表される部分構造を有するテトラカルボン酸残基との比率は特に制限はないが、式(1’)で表される部分構造を有するテトラカルボン酸残基及び式(2)で表される部分構造を有するテトラカルボン酸残基の和に対する式(4’)で表される部分構造を有するテトラカルボン酸残基の割合で、通常5mol%以上、好ましくは10mol%以上、より好ましくは15mol%以上であり、通常500mol%以下、好ましくは300mol%以下、より好ましくは200mol%以下、さらに好ましくは150mol%以下である。この範囲にあることで、光学特性が良好で、線膨張係数の低いポリイミド前駆体及び/又はポリイミド組成物を得ることができる。
 本発明の組成物に含まれるテトラカルボン酸残基の内、式(4’)で表される部分構造を有するテトラカルボン酸残基が占める割合は、通常2mol%以上、好ましくは5mol%以上、より好ましくは8mol%以上、通常95mol%以下、好ましくは90mol%以下、より好ましくは85mol%以下である。この範囲にあることで、光学特性が良好で、線膨張係数の低いポリイミド前駆体及び/又はポリイミド組成物を得ることができる。
 式(1’)で表される部分構造を有するテトラカルボン酸残基に対する、式(2)で表される部分構造を有するテトラカルボン酸残基の比は特に制限はないが、通常0.5mol%以上、好ましくは1mol%以上、より好ましくは3mol%以上であり、通常500mol%以下、好ましくは400mol%以下、より好ましくは300mol%以下である。この範囲にあることで、光学特性が良好で、線膨張係数の低いポリイミド前駆体及び/又はポリイミド組成物を得ることができる。
 式(2)で表される部分構造を有するテトラカルボン酸残基中の式(1’)で表される部分構造を有するテトラカルボン酸残基及び式(2)で表される部分構造を有するテトラカルボン酸残基の和に対する割合は特に制限はないが、通常1mol%以上、好ましくは3mol%以上、より好ましくは5mol%以上であり、通常95mol%以下、好ましくは90mol%以下、より好ましくは85mol%以下である。この範囲にあることで、光学特性が良好で、線膨張係数の低いポリイミド前駆体及び/又はポリイミド組成物を得ることができる。
 テトラカルボン酸残基の割合は、NMR、固体NMR、IR等によって原料モノマーの組成を解析することにより求めることができる。また、アルカリで溶解した後に、ガスクロマトグラフィー(GC)、H-NMR、13C-NMR、二次元NMR及び質量分析等によって求めることができる。
 ジアミン残基中に占める式(5)で表される部分構造を有するジアミン残基の割合は、特に制限はないが、通常0.1mol%以上、好ましくは1mol%以上、より好ましくは5mol%以上、さらに好ましくは7mol%以上、さらに好ましくは20mol%以上、さらに好ましくは30mol%以上、さらに好ましくは40mol%以上、さらに好ましくは50mol%以上である。また、特に上限はなく100mol%でもよい。ジアミン残基中に占める式(5)で表される部分構造を有するジアミン残基を特定量以上含むことで、線膨張係数の低いポリイミドを得るためのポリイミド前駆体及び/又はポリイミド組成物を得ることができる。
 ジアミン残基を誘導するジアミン化合物の量は、テトラカルボン酸二無水物1molに対して、通常0.7mol以上、好ましくは0.8mol以上であり、通常1.3mol以下、好ましくは1.2mol以下である。ジアミン化合物の量をこの範囲とすることにより、分子量が適正な範囲のポリイミド前駆体及び/又はポリイミドを得ることができる。
(I群及びII群)
I群:下記式(1)及び式(2)を示す。
Figure JPOXMLDOC01-appb-C000005
[式(1)において、
Xは直接結合、アルキレン基、カルボニル基、エーテル結合又はスルホニル基を示す。]
Figure JPOXMLDOC01-appb-C000006
II群:下記式(3)及び式(4)を示す。
Figure JPOXMLDOC01-appb-C000007
[式(3)において、
n、mは、それぞれ独立に、0又は1を示し、
及びRは、それぞれ独立に、アルキレン基、アルケニレン基又は芳香環を示す。
及びRは、異なっていても同じでもよく、また環を形成していてよい。]
Figure JPOXMLDOC01-appb-C000008
[式(4)において、
Yは、直接結合又は2価の有機基を示す。]
(I群)
(式(1)で表される部分構造を有するテトラカルボン酸残基)
 式(1)において、Xは、直接結合、アルキレン基、カルボニル基、エーテル結合又はスルホニル基を示す。前記の中でも、線膨張係数を低くする効果が高いため、Xは直接結合、カルボニル基又はスルホニル基が好ましく、直接結合がより好ましい。
 前記アルキレン基としては、特に限定されないが、炭素数1以上であることが好ましく、2以上がさらに好ましい。一方、8以下が好ましく、5以下が更に好ましい。また、前記アルキレン基は置換基を有していてもよく、例えば、アミノ基、ヒドロキシル基、ハロゲン原子等が挙げられる。
 式(1)で表される部分構造を有するテトラカルボン酸残基は特に限定されないが、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物等のXが直接結合であるテトラカルボン酸二無水物;ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、2,3,3’,4’-テトラカルボキシフェニルメタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-(2,3,3’,4’-テトラカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)1,1,1,3,3,3-ヘキサフルオロプロパン二無水物等のXがアルキレン基であるテトラカルボン酸二無水物;3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物等のXがカルボニル基であるテトラカルボン酸二無水物;4,4’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、3,3’-オキシジフタル酸無水物等のXがエーテル結合であるテトラカルボン酸二無水物;3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルスルホンテトラカルボン酸二無水物等のXがスルホニル基であるテトラカルボン酸二無水物;等のテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が挙げられる。
 テトラカルボン酸残基の式(1)で表される部分構造は、下記式(1’)で表される部分構造であることが、耐熱性及び機械特性の向上、並びに線膨張係数を下げる効果が得られる傾向にあるため好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(1’)においてXは直接結合、2級若しくは3級炭素原子を有する結合、またはエーテル結合であり、中でも、直接結合が機械特性が向上するため好ましい。また、該組成物から得られるポリイミドフィルムにおいて、レーザー加工に用いられる308nm、355nm付近の吸収が増加し、レーザー加工に対応可能となり得るため好ましい。
 2級又は3級炭素原子を有する結合とは、Xが炭素数1の2級又は3級炭素原子であることを表す。Xの炭素原子は、式(1’)中のベンゼン環に連結している以外には水素原子及び/又は置換基に連結している。Xの炭素原子に連結している置換基として、ハロゲン原子、シアノ基、ニトロ基、スルホ基等が挙げられる。
(式(2)で表される部分構造を有するテトラカルボン酸残基)
 式(2)で表される部分構造を有するテトラカルボン酸残基を誘導するテトラカルボン酸二無水物は、ピロメリット酸二無水物等が挙げられる。
(II群)
(式(3)で表される部分構造を有するテトラカルボン酸残基)
 式(3)において、n及びmは、それぞれ独立に、0又は1を示す。特に限定されないが、イミド化の反応性の点から、n又はmの少なくとも一方が1であることが好ましい。R及びRは、それぞれ独立に、アルキル基、アルケニル基又は芳香環を示す。R及びRは、異なっていても同じでもよく、環を形成していてもよい。また、アルキル基、アルケニル基及び芳香環は、置換基を有していてもよい。
 アルキル基及びアルケニル基としては、それぞれ独立に、炭素数1以上が好ましい。一方、10以下が好ましく、8以下が更に好ましい。この範囲であることで、有機溶媒への溶解性が高くなる傾向にある。
 芳香環としては、単環及び縮合環のどちらでもよい。具体的にはベンゼン環、ナフタレン環、アントラセン環等が挙げられる。特に有機溶媒への溶解性が高くなる傾向にあるため、ベンゼン環が好ましい。
 式(3)で表される部分構造を有するテトラカルボン酸残基は、特に限定されないが、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,4,6-テトラカルボン酸二無水物、トリシクロ[6,4,0,02,7]ドデカン-1,8:2,7-テトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等のテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が挙げられる。
(式(4)で表される部分構造を有するテトラカルボン酸残基)
 Yは、直接結合又は2価の有機基を示す。2価の有機基としては特に限定されないが、例えば、アルキレン基、カルボニル基、エーテル結合、スルホニル基等が挙げられる。この中でも、Yは、光学特性が向上する傾向にあるため、直接結合が好ましい。
 前記アルキレン基は、式(1)のXのアルキレン基の好ましい範囲と同義であり、有していてもよい置換基も同義である。
 式(4)で表される部分構造を有するテトラカルボン酸残基は、特に限定されないが、例えば、ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸二無水物、ビシクロヘキサン-2,3,3’,4’-テトラカルボン酸二無水物、ビシクロヘキサン-2,2’,3,3’-テトラカルボン酸二無水物等のテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基等が挙げられる。
 これらの中でも光学特性が向上する傾向にあるため、ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が好ましい。
 テトラカルボン酸残基の式(4)で表される部分構造は、下記式(4’)で表される部分構造であることで、光学特性が向上するため好ましい。
Figure JPOXMLDOC01-appb-C000010
(ジアミン残基)
 ジアミン残基として、式(5)で表される部分構造が挙げられる。
Figure JPOXMLDOC01-appb-C000011
[式(5)において、R及びRは、それぞれ独立に、アルキル基、アルコキシ基、アミノ基又は水酸基を示す。]
(式(5)で表される部分構造を有するジアミン残基)
 R及びRは、それぞれ独立に、アルキル基、アルコキシ基、アミノ基又は水酸基を示す。
 アルキル基及びアルコキシ基は、それぞれ独立に、炭素数1以上が好ましい。一方、10以下が好ましく、8以下が更に好ましく、6以下が特に好ましい。この範囲であることで、線膨張係数が低くなる傾向にあるため好ましい。
 また、アルキル基及びアルコキシ基は、それぞれ置換基を有していてもよい。アルキル基が有していてもよい置換基としては、ハロゲン原子、シアノ基、ニトロ基、スルホ基等が挙げられる。これらの中でもハロゲン原子を有することが好ましく、フッ素原子が特に好ましい。この範囲であることで、線膨張係数が低くなる傾向にある。
 アルコキシ基が有していてもよい置換基としては、炭素数1以上、6以下のアルキル基、ハロゲン原子、シアノ基、ニトロ基、スルホ基、アリル基等が挙げられる。
 この中でも、R及びRは光学特性と線膨張係数が向上するため、アルキル基又はアルコキシ基が好ましく、さらに、置換基としてハロゲン原子を有するアルキル基が、線膨張係数が低くなる傾向にあるためより好ましい。また、R及びRは同一でも異なっていてもよいが、同一であることが製造容易性の点から好ましい。
 式(5)で表される部分構造を有するジアミン残基は特に限定されない。例えば、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジエチルビフェニル、4,4’-ジアミノ-2,2’-ジプロピルビフェニル等のR及びRがアルキル基を有するジアミン化合物;4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ジアミノ-2-メチル-2’-トリフルオロメチルビフェニル等のR及びRがハロゲン化アルキル基を有するジアミン化合物;4,4’-ジアミノ-2,2’-ジメトキシビフェニル、4,4’-ジアミノ-2,2’-ジエトキシビフェニル、アミノ基を有する2,2’,4,4’-テトラアミノビフェニル、水酸基を有する、4,4’-ジアミノ-2,2’-ジヒドロキシビフェニル等のR及びRがアルコキシ基を有するジアミン化合物;等のジアミン化合物から誘導されるジアミン残基が挙げられる。
(式(1)、式(2)、式(3)及び式(4)で表される部分構造以外を有するテトラカルボン酸残基、並びに式(1’)、式(2)、式(4’)及び式(5)で表される部分構造以外を有するテトラカルボン酸残基)
 本発明の主旨を逸脱しない範囲で、式(1)、式(2)、式(3)及び式(4)で表される部分構造以外を有するテトラカルボン酸残基として、下記に示す芳香族テトラカルボン酸二無水物及び脂肪族テトラカルボン酸二無水物等のテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基を用いることができる。
 また、本発明に係る組成物が、式(1’)、式(2)、式(4’)及び式(5)で表される部分構造を有し、テトラカルボン酸残基及びジアミン残基の少なくとも一方は後述する屈曲部位を有する場合、式(1’)、式(2)、式(4’)及び式(5)で表される部分構造以外を有するテトラカルボン酸残基としては、下記に示す芳香族テトラカルボン酸二無水物及び脂肪族テトラカルボン酸二無水物等のテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基及び式(3)で表される部分構造以外を有するテトラカルボン酸残基が挙げられる。
(芳香族テトラカルボン酸二無水物)
 芳香族テトラカルボン酸二無水物としては、例えば、1,2,3,4-ベンゼンテトラカルボン酸二無水物等の分子内に含まれる芳香環が1つであるテトラカルボン酸二無水物;2,2’,6,6’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2’-ビス(トリフルオロメチル)-4,4’,5,5’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロトリメチレン)-ジフタル酸二無水物、4,4’-(オクタフルオロテトラメチレン)-ジフタル酸二無水物等の独立した2つ以上の芳香環を有するテトラカルボン酸二無水物;1,2,5,6-ナフタレンジカルボン酸二無水物、1,4,5,8-ナフタレンジカルボン酸二無水物、2,3,6,7-ナフタレンジカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等の縮合芳香環を有するテトラカルボン酸二無水物;等が挙げられる。
(脂肪族テトラカルボン酸二無水物)
 脂肪族テトラカルボン酸二無水物としては、例えば、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等の脂環式テトラカルボン酸二無水物;エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、meso-ブタン-1,2,3,4-テトラカルボン酸二無水物等の鎖状脂肪族テトラカルボン酸二無水物;等が挙げられる。
(式(5)で表される部分構造以外を有するジアミン残基)
 本発明の主旨を逸脱しない範囲で、式(5)で表される部分構造以外を有するジアミン残基として、下記に示すジアミン化合物から誘導されるジアミン残基を用いることができる。
 その他のジアミン化合物としては、例えば、1,4-フェニレンジアミン、1,2-フェニレンジアミン、1,3-フェニレンジアミン等の分子内に含まれる芳香環が1つであるジアミン化合物;4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、ビス(4-アミノ-3-カルボキシフェニル)メタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、N-(4-アミノフェノキシ)-4-アミノベンズアミン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、ビス(3-アミノフェニル)スルホン、ノルボルナンジアミン、4,4’-ジアミノ-2-(トリフルオロメチル)ジフェニルエーテル、5-トリフルオロメチル-1,3-ベンゼンジアミン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2-ビス[4-{4-アミノ-2-(トリフルオロメチル)フェノキシ}フェニル]ヘキサフルオロプロパン、2-トリフルオロメチル-p-フェニレンジアミン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)アセチレン等の独立した2つ以上の芳香環を有するジアミン化合物;4,4’-(9-フルオレニリデン)ジアニリン、2,7-ジアミノフルオレン、1,5-ジアミノナフタレン、3,7-ジアミノ-2,8-ジメチルジベンゾチオフェン5,5-ジオキシド等の縮合芳香環を有するジアミン化合物;等が挙げられる。
 式(5)で表される部分構造以外を有するジアミン残基の中でも、光学特性が向上するため、式(6)で表される部分構造を有するジアミン残基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000012
[式(6)において、
Zは直接結合、スルホニル基、アルキレン基、カルボニル基又はエーテル結合を示し、A及びBはそれぞれ独立に、直接結合、2価の芳香環、2価の複素環又はフェニルエーテル基を示す。]
 Zの中でも、より光学特性を向上させるため、スルホニル基、エーテル結合又はカルボニル基が好ましく、スルホニル基がより好ましい。
 Zのアルキレン基としては、特に限定されないが、炭素数1以上であることが好ましく、2以上がさらに好ましい。一方、8以下が好ましく、5以下が更に好ましい。
 A及びBは、それぞれ独立に、直接結合、2価の芳香環、2価の複素環又はフェニルエーテル基を示す。2価の芳香環及び2価の複素環は、置換基を有していてもよい。
 この中でも溶媒への溶解性が高くなる傾向にあるため、フェニルエーテル基が好ましい。A及びBは、同一でも異なっていてもよいが、同一であることが、製造容易性の点から好ましい。
 A及びBの2価の芳香環としては、具体的にはベンゼン環、ナフタレン環、アントラセン環等が挙げられる。この中でも、溶媒への溶解性が高くなる傾向にあるため、ベンゼン環が好ましい。A及びBの2価の複素環としては、具体的には、フラン、チオフェン、ピロール、イミダゾール、ピリジン、ピリミジン、ピラジン、オキサゾール、ベンズイミダゾール、ベンズオキサゾール等が挙げられる。
 式(6)で表される部分構造を有するジアミン残基として、例えば、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、3,4’-ビス(4-アミノフェノキシ)ビフェニル等のZが直接結合であるジアミン化合物;3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、2,3’-ジアミノジフェニルスルホン、2,4’-ジアミノジフェニルスルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン等のZがスルホニル基であるジアミン化合物;2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、ビス(4-アミノ-3-カルボキシフェニル)メタン等のZがアルキレン基であるジアミン化合物;4,4’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,3’-ジアミノジフェニルケトン、2,4’-ジアミノジフェニルケトン等のZがカルボニル基であるジアミン化合物;3,3’,4,4’-テトラアミノジフェニルケトン、4,4’-ビス(4-アミノフェノキシ)ベンゾフェノン、4,4’-ビス(3-アミノフェノキシ)ベンゾフェノン等のZがエーテル結合であるジアミン化合物;等のジアミン化合物から誘導されるジアミン残基が挙げられる。
(屈曲部位を有する、テトラカルボン酸残基及び/又はジアミン残基)
 本発明の組成物中のポリイミド前駆体及び/又はポリイミドにおいて、屈曲部位を有する、テトラカルボン酸残基及び/又はジアミン残基を有することが、光学特性を向上させる傾向にあるため好ましい。
 本発明において、屈曲部位とは、変形が抑制された屈曲部位であり、屈曲部位を中心とした環の結合角度、屈曲部位に結合した環の面角度、回転、振動等のテトラカルボン酸残基及び/又はジアミン残基を含む分子の動きを抑制するものを言う。中でも、屈曲部位を中心とした環の結合角度及び回転の動きを抑制するものが好ましい。
 すなわち、屈曲部位とは環状構造と環状構造に直接結合し、環状構造同士の結合角が180度未満となる3価以上の基であることが好ましく、好ましくは160度以下、より好ましくは130度以下である。特に下限はないが、通常90度以上である。
 上記角度は、従来既知の計算方法で求めることができる。例えば、ヒュッケル法、拡張ヒュッケル法等の経験的分子軌道法、ハートリーフォック法、配置換相互作用法、多配置SCF法等の非経験的分子軌道法、PPP近似、CNDO/2、INDO、MNDO、AM1、PM3等の半経験的分子軌道法、MM2等の分子動力学法、BLYP、B3LYPなどの密度汎関数法等が挙げられる。
 本発明において、屈曲部位を有することで、ポリイミド前駆体及び/またはポリイミド鎖全体の熱振動が抑制され、線膨張係数が向上する傾向にある。さらに、ポリイミド前駆体及び/またはポリイミド鎖間の相互作用が抑制されることで、透過率、YI等の光学特性が向上する傾向にあり、同鎖の規則的な配向が乱されることで、リタデーションが向上する傾向にある。
 また、ポリイミド前駆体及び/またはポリイミドの分子鎖の絡まりが増加し、同鎖内の芳香環量が増えることで、耐熱性が向上する傾向にある。
 本発明の組成物中のポリイミド前駆体及び/又はポリイミドは、通常、屈曲部位を有する、テトラカルボン酸残基及びジアミン残基の両方を有していてもよく、屈曲部位を有する、テトラカルボン酸残基又はジアミン残基を有していてもよい。これらの中でも光学特性が向上しやすい傾向にあるため、ジアミン残基が、屈曲部位を有することが好ましい。又、テトラカルボン酸残基及びジアミン残基が、屈曲部位を有することも、光学特性が向上しやすい傾向にあるため好ましい。
 本発明において、テトラカルボン酸残基及び/又はジアミン残基屈曲部位中に屈曲部位を複数有していてもよいが、複数の屈曲部位が、連結していないことが好ましい。屈曲部位が連結しないことで、重合性を維持及び向上することができる傾向にある。
 本発明において、屈曲部位には環状構造が直接結合していることが好ましい。環状構造が直接結合することで、結合角度、屈曲部位に結合した環の面角度、回転、振動等の変形がより抑制される。屈曲部位に直接結合する環状構造は、屈曲部位と同じテトラカルボン酸残基/ジアミン残基由来でもよく、異なっていてもよい。屈曲部位と同じテトラカルボン酸残基/ジアミン残基由来の場合、環状構造はテトラカルボン酸モノマー/ジアミンモノマーが有する構造となる。屈曲部位と同じテトラカルボン酸残基/ジアミン残基由来ではない場合、環状構造は環状イミド構造である。
 屈曲部位を有するテトラカルボン酸残基は、上記式(1)、式(2)、式(3)及び式(4)で表される部分構造を有するテトラカルボン酸残基であってもよく、式(1)、式(2)、式(3)及び式(4)で表される部分構造以外を有するテトラカルボン酸残基であってもよい。
 低線膨張係数及び低リタデーションの両立の点から、好ましくは、屈曲部位を有するテトラカルボン酸残基は、式(1)、式(2)、式(3)及び式(4)で表される部分構造以外を有するテトラカルボン酸残基である。さらに、低線膨張係数及び低リタデーションの両立の点から、屈曲部位を有するテトラカルボン酸残基は、上記式(1’)、式(2)及び式(4’)で表される部分構造以外を有するテトラカルボン酸残基である。
 また、屈曲部位を有するテトラカルボン酸残基を複数有していてもよい。
 屈曲部位を有するジアミン残基は、上記式(5)で表される部分構造以外であり、複数有していてもよい。
 屈曲部位の含有量は特に制限はないが、組成物中のテトラカルボン酸残基及びジアミン残基の和に対する割合で、通常0.1mol%以上、好ましくは0.5mol%、より好ましくは1mol%以上、さらに好ましくは5mol%以上である。また、通常150mol%以下、好ましくは100mol%以下、より好ましくは50mol%以下である。これらの範囲であることで、光学特性が良好となり、機械物性が向上する傾向にある。
 屈曲部位としては、環と結合した、主鎖を構成する元素に3価以上の結合を有することが好ましい。3価以上の結合の中でも、4級炭素原子、6価の硫黄原子、3級アミン、ベンゼン環から選ばれる少なくとも1つが好ましい。特に、屈曲部位を有する、テトラカルボン酸及び/又はジアミン残基が、4級炭素原子及び/又は6価の硫黄原子によって2つ以上の芳香環が結合されるものであることが光学特性を向上させる傾向にあるため好ましい。
 3価以上の結合を有するものは本発明の主旨を逸脱しない限り特に制限はないが、例えば、以下式(30)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式(30)中、Zは4級炭素原子、6価の硫黄原子、3級アミン又はベンゼン環を表す。Y及びYはそれぞれ独立して、環状構造を表す。
 4級炭素としてはヘキサフルオロプロパン、プロパン、フルオレン等が光学特性が向上するため好ましい。6価の硫黄としてはスルホニル基が光学特性が向上するため好ましい。3級アミンとしてはトリメチルアミンが好ましい。
 Y及びYの環状構造とは、芳香族化合物、脂環系化合物又はイミド環を示す。
 芳香族化合物とは、1つの環を形成する元素数が5以上、8以下であり、単環又は2つの環が縮合していてもよい。具体的には、ベンゼン環、縮合芳香環又は複素環である。
 縮合芳香環の環数は特に限定されないが、2以上、5以下が耐熱性と光学特性が両立できる傾向にあるため好ましい。
 複素環は、特に限定はないが、具体的には、フラン、チオフェン、ピロール、イミダゾール、ピリジン、ピリミジン、ピラジン、オキサゾール、ベンズイミダゾール、ベンズオキサゾール等が挙げられる。
 芳香族化合物が有していてもよい置換基は、炭素数1以上、6以下のアルキル基、炭素数1以上、6以下のアルコキシ基、アミノ基、ヒドロキシル基等が挙げられる。
 炭素数1以上、6以下のアルキル基及び炭素数1以上、6以下のアルコキシ基は置換基を有していてもよい。
 炭素数1以上、6以下のアルキル基が有していてもよい置換基は、ハロゲン原子、水酸基等が挙げられる。
 炭素数1以上、6以下のアルコキシ基が有していてもよい置換基は、ハロゲン原子、水酸基等が挙げられる。
 脂環系化合物とは、1つの環を形成する炭素数が4以上、8以下であり、単環又は2つの環が縮合していてもよい。また、環中に不飽和結合を有していてもよい。
 具体的には、シクロブタン、シクロブタジエン、シクロペンタン、シクロペンタエン、シクロヘキサン、シクロヘキサエン、シクロヘキサジエン、シクロヘプタン、シクロヘプタエン、シクロオクタン等が挙げられる。
 脂環系化合物は、置換基を有していてもよく、有していてもよい置換基としては、炭素数1以上、6以下のアルキル基、炭素数1以上、6以下のアルコキシ基、アミノ基、ヒドロキシル基等が挙げられる。炭素数1以上、6以下のアルキル基及び炭素数1以上、6以下のアルコキシ基は置換基を有していてもよく、有していてもよい置換基としては、上記芳香族化合物で挙げたものと同義である。
 イミド環とは、イミド結合を有する環であり、1つの環を形成する元素数が4以上、6以下であり、イミド環のみでもよく、他の環と縮合していてもよい。縮合していてもよい環としては、置換基を有していてもよい芳香族化合物、置換基を有していてもよい脂環系化合物である。縮合する場合の環数は特に限定されないが、2以上、4以下が、耐熱性と光学特性が両立できる傾向にあるため好ましい。
 式(30)で表される構造の中でも、下記式(31)~(35)で表される構造から選ばれる部位であることが光学特性向上の点から好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(31)中、R10、R11はそれぞれ独立に、アルキル基、アミノ基又はヒドロキシル基を表し、Y及びYはそれぞれ独立して、芳香族炭化水素、脂環系化合物又はイミド環を表す。
 R10、R11のアルキル基は、炭素数1以上が好ましい。一方、10以下が好ましく、8以下が更に好ましく、6以下が特に好ましい。この範囲であることで、線膨張係数が低くなる傾向にあるため好ましい。また、アルキル基は、置換基を有していてもよい。アルキル基が有していてもよい置換基としては、ハロゲン原子、シアノ基、ニトロ基、スルホ基等が挙げられる。これらの中でも無置換又はハロゲン原子を有することが好ましく、フッ素原子が特に好ましい。この範囲であることで、線膨張係数が低くなる傾向にある。
 Y及びYは、式(30)のY及びYとそれぞれ同義であり、具体例、好ましい範囲及び有していてもよい置換基も同義である。
Figure JPOXMLDOC01-appb-C000015
 式(32)中、R12~R15はそれぞれ独立に、アルキル基又はヒドロキシル基を示す。
 R12~R15のアルキル基は、それぞれ独立に、炭素数1以上が好ましい。一方、10以下が好ましく、8以下が更に好ましく、6以下が特に好ましい。この範囲であることで、線膨張係数が低くなる傾向にあるため好ましい。また、アルキル基は、置換基を有していてもよい。アルキル基が有していてもよい置換基としては、ハロゲン原子、シアノ基、ニトロ基、スルホ基等が挙げられる。これらの中でもハロゲン原子を有することが好ましく、フッ素原子が特に好ましい。この範囲であることで、線膨張係数が低くなる傾向にある。
 Y及びYは、式(30)のY及びYとそれぞれ同義であり、具体例、好ましい範囲及び有していてもよい置換基も同義である。
Figure JPOXMLDOC01-appb-C000016
 式(33)中、Y及びYは、式(30)のY及びYとそれぞれ同義であり、具体例、好ましい範囲及び有していてもよい置換基も同義である。
Figure JPOXMLDOC01-appb-C000017
 式(34)中、R16はアルキル基又は芳香族化合物を示す。Y及びYは、式(30)のY及びYとそれぞれ同義であり、具体例、好ましい範囲及び有していてもよい置換基も同義である。
 R16のアルキル基は、炭素数1以上が好ましい。一方、10以下が好ましく、8以下が更に好ましく、6以下が特に好ましい。この範囲であることで、線膨張係数が低くなる傾向にあるため好ましい。また、アルキル基は、置換基を有していてもよい。アルキル基が有していてもよい置換基としては、ハロゲン原子、シアノ基、ニトロ基、スルホ基等が挙げられる。これらの中でもハロゲン原子を有することが好ましく、フッ素原子が特に好ましい。この範囲であることで、線膨張係数が低くなる傾向にある。
 R16の芳香族化合物は、1つの環を形成する元素数が5以上、8以下であり、単環又は2つの環が縮合していてもよい。具体的には、ベンゼン環、縮合芳香環又は複素環である。これらの中でも、単環のベンゼン環、ベンゼン環が縮合した縮合芳香環が線膨張係数が低くなる傾向にあるため好ましい。
 縮合芳香環の環数は特に限定されないが、2以上、5以下が耐熱性と光学特性が両立できる傾向にあるため好ましい。
 複素環は、特に限定はないが、具体的には、フラン、チオフェン、ピロール、イミダゾール、ピリジン、ピリミジン、ピラジン、オキサゾール、ベンズイミダゾール、ベンズオキサゾール等が挙げられる。
 芳香族化合物が有していてもよい置換基は、炭素数1以上、6以下のアルキル基、炭素数1以上、6以下のアルコキシ基、アミノ基、ヒドロキシル基等が挙げられる。
 炭素数1以上、6以下のアルキル基及び炭素数1以上、6以下のアルコキシ基は置換基を有していてもよい。
 炭素数1以上、6以下のアルキル基が有していてもよい置換基は、ハロゲン原子、水酸基等が挙げられる。
 炭素数1以上、6以下のアルコキシ基が有していてもよい置換基は、ハロゲン原子、水酸基等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 式(35)中、Rは、アルキル基、ニトロ基、アミノ基、水酸基又はハロゲン原子を示す。
 前記アルキル基としては、特に限定されないが、炭素数1以上であることが好ましい。一方、8以下が好ましく、5以下が更に好ましい。これらの範囲であることで、溶媒との相溶性が良くなる傾向にある。
 アルキル基は置換基を有していてもよく、例えば、アミノ基、ヒドロキシル基、ニトロ基、ハロゲン原子等が挙げられる。
 式(35)で表される構造を有するジアミン残基としては、例えば、2,6-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノトルエン、3,4-ジアミノトルエン、2,3-ジアミノトルエン、4-フルオロ-1,2-フェニレンジアミン、4-フルオロ-1,3―フェニレンジアミン、4-ニトロ-1,2-フェニレンジアミン、4-ニトロ-1,3-フェニレンジアミン、2-ニトロ-1,2-フェニレンジアミン、3-トリフルオロメチル-1,5-フェニレンジアミン、4-トリフルオロメチル-1,5-フェニレンジアミン、4―トリフルオロメチル-1,2-フェニレンジアミン、3-ヒドロキシ-1,5-フェニレンジアミン、4-ヒドロキシ-1,5-フェニレンジアミン、4―ヒドロキシ-1,2-フェニレンジアミン等のジアミン化合物から誘導されたジアミン残基が挙げられる。
 2つ以上の芳香環が4級炭素原子によって結合されたテトラカルボン酸残基としては、例えば、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、4,4’-イソプロピリデンジフタル酸無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物等のテトラカルボン酸二無水物から誘導されたテトラカルボン酸残基が挙げられる。
 2つ以上の芳香環が6価の硫黄原子によって結合されたテトラカルボン酸残基としては、例えば、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-[p-スルホニルビス(フェニレンスルファニル)]ジフタル酸無水物、3,3’-[p-スルホニルビス(フェニレンスルファニル)]ジフタル酸無水物等のテトラカルボン酸二無水物から誘導されたテトラカルボン酸残基が挙げられる。
 2つ以上の芳香環が4級炭素原子によって結合されたジアミン残基としては、例えば、2、2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-アミノフェニ)-2-プロピル]ベンゼン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3―アミノ-4-ヒドロキシフェニル)プロパン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(3-アミノフェニル)フルオレン、9,9-ビス(2-アミノフェニル)フルオレン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-{4-アミノ-2-(トリフルオロメチル)フェノキシ}フェニル]ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジブロモフェニル}ヘキサフルオロプロパン等のジアミン化合物から誘導されたジアミン残基が挙げられる。
 2つ以上の芳香環が6価の硫黄原子によって繋がれたジアミン残基としては、例えば、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ビス(4-アミノフェニレンスルファニル)ジフェニルスルホン、3,3’-ビス(4-アミノフェニレンスルファニル)ジフェニルスルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、3,3’,4,4’-テトラアミノジフェニルスルホン等のジアミン化合物から誘導されたジアミン残基が挙げられる。
(組成物に含まれるポリイミド前駆体及び/又はポリイミドの物性)
 組成物に含まれるポリイミド前駆体及び/又はポリイミドの重量平均分子量(Mw)は特に制限されないが、ポリスチレン換算の重量平均分子量で通常1000以上、好ましくは3000以上、より好ましくは5000以上、さらに好ましくは10000以上である。また、通常200000以下であり、好ましくは180000以下であり、より好ましくは150000以下である。この範囲となることで、溶解性、溶液粘度、組成物粘度、溶融粘度等が通常の製造設備で扱いやすい範囲となるため好ましい。なおポリスチレン換算の重量平均分子量は、ゲル浸透クロマトグラフィ(GPC)により求めることができる。
 組成物に含まれるポリイミド前駆体及び/又はポリイミドの数平均分子量(Mn)は特に限定されないが、ポリスチレン換算の数平均分子量で通常500以上、好ましくは1000以上、より好ましくは2500以上、さらに好ましくは5000以上である。また、通常100000以下、好ましくは90000以下、より好ましくは80000以下である。この範囲となることで、溶解性、溶液粘度、組成物粘度、溶融粘度等が通常の製造設備で扱いやすい範囲となるため好ましい。ポリイミド前駆体及び/又はポリイミドの数平均分子量は、前記重量平均分子量と同様の方法で測定することができる。
 組成物に含まれるポリイミド前駆体及び/又はポリイミドの分子量分布(PDI、(重量平均分子量/数平均分子量(Mw/Mn)))は、通常1以上、好ましくは1.1以上、より好ましくは1.2以上であり、通常10以下、好ましくは9以下、より好ましくは8以下である。均一性の高い組成物が得られる傾向にあるという点で、分子量分布がこの範囲にあることが好ましい。また、膜の白化防止においては、上記範囲にあることで、膜中成分の均一性、白化抑制及び膜の平滑性に優れた膜が得られる傾向にある。なお、ポリイミド前駆体前駆体及び/又はポリイミドの分子量分布は、前記重量平均分子量と数平均分子量の値から求めることができる。
 ポリイミド前駆体組成物に含まれるポリイミド前駆体のイミド化率は、特に制限はない。通常100%未満、好ましくは80%以下、より好ましくは60%以下であり、さらに好ましくは50%以下であり、下限はなく、イミド化率が0%でもよい。イミド化率がこの範囲となることで、ポリイミド前駆体組成物に用いる溶媒への溶解性が高くなり、ポリイミド前駆体組成物の安定性が増す傾向にあるため好ましい。ポリイミド前駆体組成物に含まれるポリイミド前駆体のイミド化率は、従来既知の方法、例えばNMR法、IR法及び滴定法等で求めることができる。
(ポリイミド前駆体及び/又はポリイミド組成物のその他の成分)
 本発明のポリイミド前駆体及び/又はポリイミド組成物は、上述したポリイミド前駆体及び/又はポリイミド及び溶媒以外に、本発明の効果を損なわない限りその他の成分を含むことができる。その他の成分としては、例えば、界面活性剤、溶媒、酸化防止剤、滑剤、着色剤、安定剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、離型剤、レベリング剤、消泡剤等が挙げられる。また、その他必要に応じて、発明の目的を損なわない範囲で、粉末状、粒状、板状及び繊維状等の無機系充填剤又は有機系充填剤を配合してもよい。これらの添加成分は、ポリイミド前駆体及び/又はポリイミド組成物を製造するどの工程のどの段階で添加してもよい。
 これらの成分の中で、レベリング剤を含むことが膜の平滑性が向上する傾向となるため好ましい。レベリング剤としては、例えばシリコーン系化合物等が挙げられる。シリコーン系化合物は特に限定はないが、例えば、ポリエーテル変性シロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性水酸基含有ポリジメチルシロキサン、ポリエーテル変性ポリメチルアルキルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリエステル変性水酸基含有ポリジメチルシロキサン、ポリエステル変性ポリメチルアルキルシロキサン、アラルキル変性ポリメチルアルキルシロキサン、高重合シリコーン、アミノ変性シリコーン、アミノ誘導体シリコーン、フェニル変性シリコーン及びポリエーテル変性シリコーン等が挙げられる。
(組成物に含まれるポリイミド前駆体の製造)
 テトラカルボン酸二無水物とジアミン化合物からポリイミド前駆体を得る反応は、従来から知られている条件で行うことができる。テトラカルボン酸二無水物とジアミン化合物の添加順序や添加方法には特に限定はない。例えば、溶媒にテトラカルボン酸二無水物とジアミン化合物を順に投入し、適切な温度で撹拌することにより、ポリイミド前駆体は得られる。
 ジアミン化合物の量は、テトラカルボン酸二無水物1molに対して、通常0.7mol以上、好ましくは0.8mol以上であり、通常1.3mol以下、好ましくは1.2mol以下である。ジアミン化合物をこのような範囲とすることで、得られるポリイミド前駆体の収率が向上する傾向にある。
 ジアミン化合物の量がこの範囲にあることで、組成物の粘度が塗布に適した範囲になりやすく、また強靭なフィルムが得やすい傾向にある。
 溶媒中のテトラカルボン酸二無水物及びジアミン化合物の濃度は、反応条件やポリイミド前駆体の粘度に応じて適宜設定できる。例えば、テトラカルボン酸二無水物とジアミン化合物の合計の質量%は特に制限されないが、全液量に対し、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下である。反応基質をこの範囲とすることによって、低コストで収率よくポリイミド前駆体を得ることができる。さらには分子量の伸長が起こりやすい傾向にあり、粘度が高くなり過ぎず、溶液の撹拌が容易である傾向にもある。
 反応温度は、反応が進行する温度であれば特に制限はないが、通常0℃以上、好ましくは20℃以上であり、通常120℃以下、好ましくは100℃以下である。反応時間は通常1時間以上、好ましくは2時間以上であり、通常100時間以下、好ましくは42時間以下であり、より好ましくは24時間以下である。このような条件で反応を行うことによって、低コストで収率よくポリイミド前駆体を得ることができる。
 反応時の圧力は、常圧、加圧又は減圧のいずれかでもよい。
 雰囲気は空気下でも不活性雰囲気下でもよい。
 この反応で用いる溶媒としては特に限定されないが、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、アニソール等の炭化水素系溶媒;四塩化炭素、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、フルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メトキシベンゼン等のエーテル系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系極性溶媒;ピリジン、ピコリン、ルチジン、キノリン、イソキノリン等の複素環系溶媒;フェノール、クレゾール等のフェノール系溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒等が挙げられる。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
 得られたポリイミド前駆体はそのまま用いてもよく、また貧溶媒中に添加することで固体状に析出させた後に他の溶媒に再溶解させてポリイミド前駆体組成物として得ることもできる。
 この時の貧溶媒は特に制限はなく、ポリイミド前駆体の種類によって適宜選択し得るが、ジエチルエーテル又はジイソプロピルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、イソブチルケトン、メチルイソブチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒等が挙げられる。中でも、イソプロピルアルコール等のアルコール系溶媒が効率よく析出物がえられ、沸点が低く乾燥が容易である点で好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
 ポリイミド前駆体を溶解させる溶媒は特に限定されないが、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、アニソール等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;等が挙げられる。この中でも特にアニソール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、エチレングリコールジメチルエーテル及びエチレングリコールモノメチルエーテルが好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
 本発明の組成物は、本発明の主旨を逸脱しない限りその他の溶媒を含んでもよい。その種類は特に限定されないが、塗工性が良くなるためアルコールが好ましい。
 アルコールとしては特に制限はない。20℃における蒸気圧は特に制限はないが、好ましくは50000Pa以下、より好ましくは20000Pa以下、さらに好ましくは10000Pa以下、より好ましくは5000Pa以下である。また、下限はなく、低い方が好ましいが、例えば1Pa以上である。蒸気圧がこの範囲であることで、組成物及びフィルム中成分の均一性、白化抑制、並びに平滑性に優れたフィルムが得られる傾向にある。
 組成物に添加するアルコールの沸点は特に制限はないが、好ましくは60℃以上、より好ましくは100℃以上、さらに好ましくは120℃以上である。また好ましくは300℃以下、より好ましくは280℃以下、さらに好ましくは250℃以下である。
 沸点がこの範囲であることで、塗布等のフィルム形成時のポリイミド前駆体組成物の濃度変化が少なくなり、そのためフィルム中成分の均一性、白化抑制及び膜の平滑性に優れた膜が得られる傾向にある。さらに、乾燥後や加熱後のフィルム中の残留溶媒が少なくなる傾向にある。
 組成物に添加するアルコールのオクタノール/水分配係数(logρ)は特に制限はないが、好ましくは0以上、より好ましくは0.5以上、さらに好ましくは1以上である。また上限はなく、大きい方が好ましい。logρがこの範囲であることで、フィルムへの水分の影響が少なくなり、フィルム形成時の白化が抑制される傾向にある。
 組成物に添加するアルコールの全溶媒に対する割合は特に制限はないが、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。また、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましい。この範囲であることで、ポリイミド前駆体及び/またはポリイミドの溶解性が高くなり、またフィルム形成時の白化が抑制される傾向にある。
 組成物に添加するアルコールは、芳香族アルコール、脂肪族アルコール及びグリコールモノエーテル系アルコールからなる群より選ばれる1種以上であることが好ましい。これらの溶媒は、単独で用いてもよく、任意の割合で併用してもよい。
 中でも、ポリイミド前駆体及び/又はポリイミドの溶解性が高くなるため、脂肪族アルコール又はグリコールモノエーテル系アルコールが好ましく、特に脂肪族アルコールが好ましい。
 脂肪族アルコールの中でも、炭素数が4以上であることが好ましく、炭素数が5以上であることがより好ましい。また20以下であることが好ましく、15以下であることが更に好ましい。
 また、脂肪族アルコールの中でも、環状及び分岐を有することが好ましく、分岐の場合、分岐位置がβ及び/またはγ位であることが特に好ましい。
 上記のように適当な炭素数及び/又は置換位置を有することで、ポリイミド前駆体及び/又はポリイミドの溶解性が高くなる傾向にある。
 組成物に添加するアルコールは特に限定されないが、具体的には以下が挙げられる。
(芳香族アルコール)
 芳香族アルコールとしては、ベンジルアルコール、サリチルアルコール、ジフェニルメタノール、及びバニリルアルコール等が挙げられる。
(脂肪族アルコール)
 脂肪族アルコールとしては、例えば、炭素数1であるメタノール;炭素数2であるエタノール;炭素数3である1-プロパノール及び2-プロパノール;炭素数4である1-ブタノール、2-ブタノール、イソブタノール及びt-ブタノール;炭素数5である1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール及び2-エチル-1-プロパノール;炭素数6である1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチル-1-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、2-メチル-3-ペンタノール、2-エチル-1-ブタノール、3-エチル-2-ブタノール、2,3-ジメチル-1-ブタノール及びシクロヘキサノール;炭素数7である1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、4-ヘプタノール、2-メチル-1-ヘキサノール、2-メチル-3-ヘキサノール、2-メチル-4-ヘキサノール、3-メチル-1-ヘキサノール、3-メチル―2-ヘキサノール、3-メチル-4-ヘキサノール、2-エチル-1-ペンタノール、2-エチル-3-ペンタノール、2,2-ジメチル-1-ペンタノール、2,3-ジメチル-1-ペンタノール及び2,4-ジメチル-1-ペンタノール;炭素数8である1-オクタノール、2-オクタノール、3-オクタノール、4-オクタノール、2-メチル-1-ヘプタノール、2-メチル-3-ヘプタノール、2-メチル-4-ヘプタノール、2-エチル-1-ヘキサノール、2-エチル-3-ヘキサノール、2-エチル-4-ヘキサノール、2-プロピル-1-ペンタノール、2-プロピル-3-ペンタノール、2-プロピル-4-ペンタノール、2,3-ジメチル-1-ヘキサノール及び2,4-ジメチル-1-ヘキサノール;炭素数9である1-ノナノール、2-ノナノール、3-ノナノール、4-ノナノール、5-ノナノール、2-メチル-1-オクタノール、2-メチル-3-オクタノール、2-メチル-4-オクタノール、2-メチル-5-オクタノール、2-メチル-6-オクタノール、2-エチル-1-ヘプタノール、2-エチル-3-ヘプタノール、2-エチル-4-ヘプタノール、2-エチル-5-ヘプタノール、2,6-ジメチル-1-ヘプタノール、2,6-ジメチル-4-ヘプタノール、3,5,5-トリメチル-1-ヘキサノール、3,5,5-トリメチル-2-ヘキサノール及び2,2,4-トリメチル-1-ヘキサノール;炭素数10である1-デカノール、2-デカノール、3-デカノール、4-デカノール、5-デカノール、2-メチル-1-ノナノール、2-メチル-3-ノナノール、2-メチル-4-ノナノール、2-メチル-5-ノナノール、2-エチル-1-オクタノール、2-エチル-3-オクタノール、2-エチル-4-オクタノール及び2-エチル-5-オクタノール;炭素数11である1-ウンデカノール、2-ウンデカノール、3-ウンデカノール、4-ウンデカノール、2-メチルー1-デカノール、2-エチル-1-ノナノール及び2-プロピル-1-オクタノール;炭素数12である1-ドデカノール、2―ドデカノール、3-ドデカノール、1-エチル-1-デカノール、2-エチル-1-デカノール、3-エチル-1-デカノール及び2-ブチル-1-オクタノール;炭素数13である1-トリデカノール、2―トリデカノール、3-トリデカノール、1-エチル-1-ウンデカノール、2-エチル-1-ウンデカノール、3-エチルー1-ウンデカノール及び2-ブチル-1-ノナノール;炭素数14である1-テトラデカノール、2-テトラデカノール、3-テトラデカノール、2-メチル-1-トリデカノール、2-エチル-1-ドデカノール及び2-プロピル-1-ウンデカノール;炭素数15である1-ペンタデカノール、2-ペンタデカノール、3-ペンタデカノール、2-メチル-1-テトラデカノール、2-エチル-1-トリデカノール及び2-プロピル-1-ドデカノール;炭素数16である1-ヘキサデカノール、2-ヘキサデカノール、3-ヘキサデカノール、2-メチル-1-ペンタデカノール、2-エチル-1-テトラデカノール及び2-プロピル-1-トリデカノール;炭素数17である1-ヘプタデカノール、2-ヘプタデカノール、3-ヘプタデカノール、2-メチル-1-ヘキサデカノール、2-エチル-1-ペンタデカノール及び2-プロピル-1-テトラデカノール;炭素数18である1-オクタデカノール、2-オクタデカノール、3-オクタデカノール、2-メチル-1-ヘプタデカノール、2-エチル-1-ヘキサデカノール及び2-プロピル-1-ペンタデカノール;炭素数19である1-ノナデカノール、2-ノナデカノール、3-ノナデカノール、2-メチル-1-オクタデカノール、2-エチル-1-ヘプタデカノール及び2-プロピル-1-ヘキサデカノール;炭素数20である1-エイコサノール、2-エイコサノール、3-エイコサノール、2-メチル-1-ノナデカノール、2-エチル-1-オクタデカノール及び2-プロピル-1-ヘプタデカノール;等が挙げられる。
(グリコールモノエーテル系アルコール)
 グリコールモノエーテル系アルコールとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等が挙げられる。
 ポリイミド前駆体やポリイミドを含む組成物を基体に塗布等を行い、加熱及び/又は乾燥することによりフィルムを得る場合、得られるフィルムが、塗布等のフィルムを形成する環境の影響を受けやすい傾向にある。特に湿度が高い環境で塗布等を行うと、乾燥前の吸湿によって組成物の溶解性が下がり、ポリイミド前駆体やポリイミドが析出し、フィルムが白くなる(白化)場合がある。また、白化が起こったフィルムに対して乾燥や加熱を行っても、耐熱性及び機械特性等の本来のポリイミドの特性が得られないという問題点がある。これらを解決するために、溶媒としては、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、スルホン系溶媒、複素環系溶媒、フェノール系溶媒、ラクトン系溶媒及びエステル系溶媒からなる群より選ばれる1種以上であり、且つ、20℃における蒸気圧が50000Pa以下である溶媒(以下、溶媒Aと表すことがある。)、並びにアルコール(以下、溶媒Bと表すことがある)を用いてもよい。溶媒A及び溶媒Bを含むことで白化が抑制できるのは、組成物全体の疎水性が上がり、吸湿が抑制されるためと推測される。
 溶媒Bは、芳香族アルコール、脂肪族アルコール及びグリコールモノエーテル系アルコールからなる群より選ばれる1種以上であることが好ましい。これらの溶媒は、単独で用いてもよく、任意の割合で併用してもよい。
 中でも、ポリイミド前駆体の溶解性が高くなるため、脂肪族アルコール又はグリコールモノエーテル系アルコールが好ましく、特に、脂肪族アルコールが好ましい。
 脂肪族アルコールの中でも、炭素数が4以上であることが好ましく、炭素数が5以上であることがより好ましい。また20以下であることが好ましく、15以下であることが更に好ましい。
 また、脂肪族アルコールの中でも、環状及び分岐を有することが好ましく、分岐の場合、分岐位置がβ及び/又はγ位であることが特に好ましい。
 上記のように適当な炭素数及び/又は置換位置を有することで、ポリイミド前駆体の溶解性が高くなる傾向にある。
 溶媒A及び溶媒Bの蒸気圧差は特に制限はないが、好ましくは10000Pa以下、より好ましくは5000Pa以下、さらに好ましくは1000Pa以下である。また、下限は無く、蒸気圧差はゼロでもよい。さらに、溶媒A及び溶媒Bの蒸気圧はどちらが高くてもよい。
 蒸気圧差が特定の範囲であることで、塗布等の膜形成時のポリイミド前駆体組成物の濃度変化が少なくなり、そのため、白化抑制、膜中成分の均一性、及び膜の平滑性に優れた膜が得られる傾向にある。さらに、膜の乾燥後や加熱後の膜中の残留溶媒が少なくなる傾向にある。
 溶媒A及び溶媒Bの沸点差は特に制限はないが、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは50℃以下である。また、下限は無く、沸点差はゼロでもよい。さらに、溶媒A及び溶媒Bの沸点はどちらが高くてもよい。
 沸点差が特定の範囲であることで、膜形成時のポリイミド前駆体組成物の濃度変化が少なくなり、そのため、白化抑制、膜中成分の均一性及び膜の平滑性に優れた膜が得られる傾向にある。さらに、膜の乾燥後や加熱後の膜中の残留溶媒が少なくなる傾向にある。
 溶媒A及び溶媒Bの全溶媒に対する割合の比は特に制限はないが、溶媒Aに対して、溶媒Bは、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。また、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましい。溶媒A及び溶媒Bの割合の比がこの範囲であることで、ポリイミド前駆体の溶解性を維持し、かつ、白化抑制効果が得られる傾向にある。
 上記溶媒を用いて形成されたフィルムは、特に透明性や低着色性に優れるため、コーティング材料、表面保護層、接着剤、デバイス用基板及び絶縁膜等の用途に好適に用いることができる。
(組成物の粘度)
 本発明の組成物の粘度は特に制限はないが、25℃における濃度20%の粘度で通常200cP以上、好ましくは300cP以上、さらに好ましくは500cP以上であり、通常200000cP以下、好ましくは100000cP以下、さらに好ましくは80000cP以下である。組成物の粘度がこの範囲であることで、製造時の取り扱いがしやすくなり、また製膜時に膜厚が均一になりやすい傾向にある。
 組成物の粘度は、従来知られている方法で測定することができる。例えば、振動式粘度計、E型粘度計等を用いることができる。
(組成物の濃度)
 本発明の組成物に含まれるポリイミド前駆体及び/又はポリイミドの濃度は、特に制限はないが、通常3質量%以上、好ましくは5質量%以上、さらに好ましくは7質量%以上であり、通常60質量%以下、好ましくは50質量%以下、さらに好ましくは45質量%以下である。濃度がこの範囲であることで、製造が容易となり、また製膜時に膜厚が均一になりやすい傾向にある。
 組成物の濃度は従来知られている方法で測定することができる。例えば、前述の方法で求めることができる。
(組成物に含まれるポリイミドの製造)
 組成物に含まれるポリイミドの製造方法は、特段制限はない。例えば、ポリイミド前駆体を製造しポリイミドを得る方法、テトラカルボン酸二無水物とジアミン化合物から直接ポリイミドを製造する方法等を用いることができる。
(ポリイミド前駆体から製造する方法)
 前記の方法等で得られたポリイミド前駆体を溶媒存在下で脱水環化することにより、ポリイミドを得ることができる。イミド化は従来知られている任意の方法を用いて行うことができるが、例えば熱的に環化させる加熱イミド化、化学的に環化させる化学イミド化等が挙げられる。これらのイミド化反応は単独で行っても、複数組み合わせて行ってもよい。
(加熱イミド化)
 ポリイミド前駆体をイミド化する際の溶媒は、前記のポリイミド前駆体を得る反応時に使用した溶媒と同様のものが挙げられる。ポリイミド前駆体製造時の溶媒と、ポリイミド製造時の溶媒は同じものを用いても、異なるものを用いてもよい。
 この場合、イミド化によって生じた水は閉環反応を阻害するため、系外に排出してもよい。イミド化反応時のポリイミド前駆体の濃度は特に制限はないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。この範囲で行うことによって、生産効率が高く、また製造しやすい溶液粘度で製造することができる傾向にある。
 イミド化反応温度は特に制限されないが、通常50℃以上、好ましくは80℃以上、さらに好ましくは100℃以上であり、通常300℃以下、好ましくは280℃以下、より好ましくは250℃以下である。この範囲で行うことで、イミド化反応が効率よく進行し、イミド化反応以外の反応が抑制される傾向にあるため好ましい。
 反応時の圧力は常圧、加圧、減圧のいずれでもよい。雰囲気は、空気下でも不活性雰囲気下でもよい。
 また、イミド化を促進するイミド化促進剤として、求核性、求電子性を高める働きをもつ化合物を加えることもできる。具体的には、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリン等の三級アミン化合物;4-ヒドロキシフェニル酢酸、3-ヒドロキシ安息香酸、N-アセチルグリシン、N-ベンゾイルグリシン等のカルボン酸化合物;3,5-ジヒドロキシアセトフェノン、3,5-ジヒドロキシ安息香酸メチル、ピロガロール、メチルガレート、エチルガレート、ナフタレン-1,6-ジオール等の多価フェノール化合物;2-ヒドロキシピリジン、3-ヒドロキシピリジン、4-ヒドロキシピリジン、4-ピリジンメタノール、N,N-ジメチルアミノピリジン、ニコチンアルデヒド、イソニコチンアルデヒド、ピコリンアルデヒド、ピコリンアルデヒドオキシム、ニコチンアルデヒドオキシム、イソニコチンアルデヒドオキシム、ピコリン酸エチル、ニコチン酸エチル、イソニコチン酸エチル、ニコチンアミド、イソニコチンアミド、2-ヒドロキシニコチン酸、2,2’-ジピリジル、4,4’-ジピリジル、3-メチルピリダジン、キノリン、イソキノリン、フェナントロリン、1,10-フェナントロリン、イミダゾール、ベンズイミダゾール、1,2,4-トリアゾール等の複素環化合物;等が挙げられる。
 これらの中で、三級アミン化合物又は複素環化合物が好ましく、トリエチルアミン、イミダゾール又はピリジンが、イミド化率を制御しやすい傾向があるためより好ましい。これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
 イミド化促進剤の使用量は、カルボキシル基又はエステル基に対して、通常0.01mol%以上であり、0.1mol%以上が好ましく、1mol%以上が更に好ましい。また、50mol%以下であることが好ましく、10mol%以下であることがより好ましい。触媒の使用量がこのような範囲にあることにより、イミド化反応が効率よく進行し、且つ、イミド化率を制御したポリイミドを得ることができる傾向にある。
 また、イミド化促進剤を添加するタイミングは、所望のイミド化率にするために適宜調整することができ、加熱開始前でもよく、加熱中でもよい。また複数回に分けて添加してもよい。
(化学イミド化)
 ポリイミド前駆体を溶媒存在下で、脱水縮合剤を用いて化学的にイミド化することにより、ポリイミドを得ることができる。
 化学イミド化の際に使用する溶媒としては前記のポリイミド前駆体を得る反応時に使用した溶媒と同様のものが挙げられる。
 脱水縮合剤としては、例えば、N,N-ジシクロヘキシルカルボジイミド、N,N-ジフェニルカルボジイミド等のN,N-2置換カルボジイミド;無水酢酸、無水トリフルオロ酢酸等の酸無水物;塩化チオニル、塩化トシル等の塩化物;アセチルクロライド、アセチルブロマイド、プロピオニルアイオダイド、アセチルフルオライド、プロピオニルクロライド、プロピオニルブロマイド、プロピオニルアイオダイド、プロピオニルフルオライド、イソブチリルクロライド、イソブチリルブロマイド、イソブチリルアイオダイド、イソブチリルフルオライド、n-ブチリルクロライド、n-ブチリルブロマイド、n-ブチリルアイオダイド、n-ブチリルフルオライド、モノ-,ジ-,トリ-クロロアセチルクロライド、モノ-,ジ-,トリ-ブロモアセチルクロライド、モノ-,ジ-,トリ-アイオドアセチルクロライド、モノ-,ジ-,トリ-フルオロアセチルクロライド、無水クロロ酢酸、フェニルホスフォニックジクロライド、チオニルクロライド、チオニルブロマイド、チオニルアイオダイド、チオニルフルオライド等のハロゲン化化合物;三塩化リン、亜リン酸トリフェニル、ジエチルリン酸シアニド等のリン化合物;等が挙げられる。
 これらの中で、酸無水物及びハロゲン化化合物が好ましく、特に、酸無水物が、イミド化反応が効率よく進行し、且つ、イミド化率を制御したポリイミドを得ることができる傾向にあるためより好ましい。これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
 これらの脱水縮合剤の使用量は、ポリイミド前駆体1molに対して、通常0.1mol以上、好ましくは0.2mol以上であり、通常1.0mol以下、好ましくは0.9mol以下である。脱水縮合剤をこの範囲とすることで、イミド化率を制御することができる。
 イミド化反応時のポリイミド前駆体の濃度に特に制限はないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。この範囲とすることで、イミド化率を制御でき、生産効率が高く、また製造しやすい溶液粘度で製造することができる傾向にある。
 イミド化反応温度は特に制限されないが、通常0℃以上、好ましくは10℃以上、さらに好ましくは20℃以上であり、通常150℃以下、好ましくは130℃以下、さらに好ましくは100℃以下である。この範囲で行うことで、イミド化反応が効率よく進行し、且つ、イミド化率を制御したポリイミドを得ることができる傾向にあるため好ましい。さらに、イミド化反応以外の副反応が抑制されるため好ましい。
 反応時の圧力は常圧、加圧又は減圧のいずれでもよい。雰囲気は、空気下でも不活性雰囲気下でもよい。
 また、イミド化を促進する触媒として、前記の三級アミン類等を加熱イミド化と同様に加えることもできる。
(テトラカルボン酸二無水物とジアミン化合物からポリイミドを製造する方法)
 テトラカルボン酸二無水物とジアミン化合物から、従来既知の方法を用いて、直接ポリイミドを得ることができる。この方法はポイミド前駆体の合成からイミド化を、反応の停止や前駆体の単離を経ることなく、イミド化までを行うものである。
 テトラカルボン酸二無水物とジアミン化合物の添加順序や添加方法には特に限定はないが、例えば、溶媒にテトラカルボン酸二無水物とジアミン化合物を順に投入し、イミド化までの反応が進行する温度で撹拌することでポリイミドが得られる。
 ジアミン化合物の量は、テトラカルボン酸二無水物1molに対して、通常0.7mol以上、好ましくは0.8mol以上であり、通常1.3mol以下、好ましくは1.2mol以下である。ジアミン化合物の量をこのような範囲とすることにより、イミド化率を制御したポリイミドを得ることができ、得られるポリイミド組成物の収率が向上する傾向にある。
 溶媒中のテトラカルボン酸二無水物とジアミン化合物の濃度は、各々の条件や重合中の粘度に対して適宜設定しうるが、テトラカルボン酸二無水物とジアミン化合物の合計質量は、特段の設定ないが、全液量に対し、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。溶媒中の濃度が適当な範囲であることで、分子量の伸長が起こりやすくなり、また、撹拌も容易となる傾向にある。
 この反応で用いる溶媒としては、前記のポリイミド前駆体を得る反応時に使用した溶媒と同様のものが挙げられる。
 また、テトラカルボン酸二無水物とジアミン化合物からポリイミドを得る場合も、ポリイミド前駆体からポリイミドを得る場合と同様に、加熱イミド化及び/又は化学イミド化を用いることができる。この場合の加熱イミド化や化学イミド化の反応条件等は、前記と同様である。
(組成物に含まれるポリイミドの再沈再溶解)
 得られたポリイミドは、そのままポリイミド組成物として用いてもよく、また貧溶媒中に添加することでポリイミドを固体状に析出させた後に、他の溶媒に再溶解させてポリイミド組成物として用いることもできる。
 この時の貧溶媒は特に制限はなく、ポリイミドの種類によって適宜選択しうるが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、イソブチルケトン、メチルイソブチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;等が挙げられる。中でも、イソプロピルアルコール等のアルコール系溶媒が効率よく析出物が得られ、沸点が低く乾燥が容易となる傾向にあるため好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
 また、ポリイミドを再溶解させる溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、アニソール等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;等が挙げられる。この中でも特にアニソール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、エチレングリコールジメチルエーテル、及びエチレングリコールモノメチルエーテルが好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
 本発明の組成物には本発明の主旨を逸脱しない限りその他の溶媒を含んでもよい。その種類は特に限定されないが、塗工性が良くなるためアルコールが好ましい。好ましいアルコールは前述のものと同様である。
 本発明の組成物には、被塗布体との接着性を調節するため、シランカップリング剤、チタンカップリング剤等のカップリング剤を添加することができる。
 シランカップリング剤としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリプロポキシシラン、γ-アミノプロピルトリブトキシシラン、γ-アミノエチルトリエトキシシラン、γ-アミノエチルトリメトキシシラン、γ-アミノエチルトリプロポキシシラン、γ-アミノエチルトリブトキシシラン、γ-アミノブチルトリエトキシシラン、γ-アミノブチルトリメトキシシラン、γ-アミノブチルトリプロポキシシラン、γ-アミノブチルトリブトキシシラン等が挙げられる。
 チタンカップリング剤としては、例えば、γ-アミノプロピルトリエトキシチタン、γ-アミノプロピルトリメトキシチタン、γ-アミノプロピルトリプロポキシチタン、γ-アミノプロピルトリブトキシチタン、γ-アミノエチルトリエトキシチタン、γ-アミノエチルトリメトキシチタン、γ-アミノエチルトリプロポキシチタン、γ-アミノエチルトリブトキシチタン、γ-アミノブチルトリエトキシチタン、γ-アミノブチルトリメトキシチタン、γ-アミノブチルトリプロポキシチタン、γ-アミノブチルトリブトキシチタン等が挙げられる。
 これらのカップリング剤は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。このときの使用量は、ポリイミドに対して、0.1質量%以上、3質量%以下が好ましい。
 その他、必要に応じて、各種添加剤を配合することも可能である。例えば本発明の効果を損なわない範囲で、他の粉末状、粒状、板状、繊維状等の無機系充填剤や有機系充填剤を配合することができる。
 これら充填剤は不織布等のような平板状に加工したものを用いてもよく、複数を混ぜて用いてもよい。さらに所望に応じ、樹脂組成物に通常用いられている各種添加剤、例えば滑剤、着色剤、安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、離型剤等を配合することができる。これら各種充填剤及び添加成分はポリイミドを製造するどの工程のどの段階で添加してもよい。
(ポリイミド)
 本発明に係るポリイミドは、テトラカルボン酸残及びジアミン残基を含み、テトラカルボン酸残基としてIII群から1つ以上選択される部分構造及びIV群から1つ以上選択される部分構造を有し、ジアミン残基として式(11)で示される部分構造を有するものである。
III群:下記式(7)及び式(8)を示す。
Figure JPOXMLDOC01-appb-C000019
[式(7)において、
は直接結合、アルキレン基、カルボニル基、エーテル結合又はスルホニル基を示す。]
Figure JPOXMLDOC01-appb-C000020
IV群:下記式(9)及び式(10)を示す。
Figure JPOXMLDOC01-appb-C000021
[式(9)において、
n’及びm’は、それぞれ独立に、0又は1を示し、
及びRは、それぞれ独立に、アルキル基、アルケニル基又は芳香環を示す。R及びRは、異なっていても同じでもよく、また環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000022
[式(10)において、
Y’は、直接結合又は2価の有機基を示す。]
Figure JPOXMLDOC01-appb-C000023
[式(11)において、
及びRは、それぞれ独立に、アルキル基、アルコキシ基、アミノ基又は水酸基を示す。]
 式(7)のXは、式(1)のXと同義であり、好ましい範囲及び有していてもよい置換基も同義である。
 式(9)のn’及びm’は、式(3)のn及びmとそれぞれ同義であり、好ましい範囲も同義である。また、R及びRは、式(3)のR及びRとそれぞれ同義であり、好ましい範囲及び有していてもよい置換基も同義である。
 式(10)のY’は、式(4)のYと同義であり、好ましい範囲及び有していてもよい置換基も同義である。
 式(11)のR及びRは、式(5)のR及びRとそれぞれ同義であり、好ましい範囲及び有していてもよい置換基も同義である。
 本発明のポリイミドは、本発明の主旨を逸脱しない範囲で、上記式(7)、式(8)、式(9)及び式(10)で示される部分構造以外を有するテトラカルボン酸残基を有していてもよい。また、式(11)で示される部分構造以外を有するジアミン残基を有していてもよい。
 上記式(7)、式(8)、式(9)及び式(10)で示される部分構造以外を有するテトラカルボン酸残基としては、上記式(1)、式(2)、式(3)及び式(4)で表される部分構造以外を有するテトラカルボン酸残基として示された、芳香族テトラカルボン酸二無水物及び脂肪族テトラカルボン酸二無水物等のテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が挙げられる。
 上記式(11)で示される部分構造以外を有するジアミン残基としては、上記式(5)で表される部分構造以外を有するジアミン残基として示されたジアミン化合物から誘導されるジアミン残基が挙げられる。
 本発明のポリイミドは、屈曲部位を有する、テトラカルボン酸残基及び/又はジアミン残基を有することが、光学特性を向上させる傾向にあるため好ましい。
 屈曲部位を有するテトラカルボン酸及び/又はジアミン残基としては、前記本発明の組成物中のポリイミド前駆体及び/又はポリイミドが有していてもよい屈曲部位を有するテトラカルボン酸及び/又はジアミン残基と同義であり、好ましい範囲も同義である。
 式(11)で表される部分構造以外を有するジアミン残基の中でも、光学特性が向上するため、式(12)で表される部分構造を有するジアミン残基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000024
[式(12)において、
Z’は直接結合、スルホニル基、アルキレン基、カルボニル基又はエーテル結合を示し、
A’及びB’はそれぞれ独立に、直接結合、2価の芳香環、2価の複素環又はフェニルエーテル基を示す。]
 式(12)のZ’、A’及びB’は、式(6)のZ、A及びBとそれぞれ同義であり、好ましい範囲及び有していてもよい置換基もそれぞれ同義である。
 ポリイミドに含まれる部分構造は、固体NMR、IR等によって原料モノマーの組成を解析することにより求めることができる。
 また、アルカリで溶解した後に、ガスクロマトグラフィー(GC)、H-NMR、13C-NMR、二次元NMR及び質量分析等によって求めることができる。
 本発明のポリイミドの形状は特に限定されないが、例えば、粉末状、ペレット状、フィルム状等様々な形態をとることができる。
 本発明のポリイミドは、溶媒に可溶であることが好ましい。溶媒に可溶とは、前記で定義した通りであり、用いる溶媒も同義である。溶媒に可溶であることで、キャストやコート等の加工が可能となり、その際に、イミド化反応を伴わないため、温和な条件で加工をすることができる。また、溶液の保存安定性を向上させることができる。
(ポリイミドの性質)
 本発明のポリイミドの性状及び性質は本発明の主旨を逸脱しない限り特に制限されない。
 本発明のポリイミドの引っ張り強度は、特に制限はないが、通常50MPa以上、好ましくは70MPa以上であり、通常400MPa以下であり、好ましくは300MPa以下である。
 引っ張り弾性率は、特に制限はないが、通常1000MPa以上、好ましくは1500MPa以上であり、通常20GPa以下、好ましくは10GPa以下である。
 引っ張り伸度は、特段の制限はないが、通常5%GL以上、好ましくは10%GL以上、さらに好ましくは20GL%以上であり、通常300%GL以下、好ましくは200GL%以下である。
 前記したような範囲にあることで、強度があり、特にフィルムとする場合に有用である。これら引っ張り強度、引っ張り弾性率及び引っ張り伸度は、例えば、フィルム状のポリイミドを引っ張り試験機で測定することで求めることができる。
 本発明のポリイミドのガラス転位温度は、特に制限はないが、通常100℃以上、好ましくは150℃以上、より好ましくは200℃以上である。ガラス転位温度がこの範囲であることで、耐熱性を得ることができる。ガラス転位温度は、例えば、示差走査熱量測定、粘弾性測定、熱重量・示差熱同時分析等を用いることで測定することができる。
 本発明のポリイミドの線膨張係数は、100℃から150℃の範囲において、通常60ppm/K以下、好ましくは50ppm/K以下、より好ましくは45ppm/K以下、さらに好ましくは40ppm/K、特に好ましくは30ppm/K以下である。この範囲であることで、例えば、ポリイミドをフィルムとして用いたデバイスを作製する際に、寸法安定性が高く、電子素子やカラーフィルター等の部材の破断、変形等を起こしにくくなるため好ましい。測定方法は特に限定されないが、例えば、フィルム状のポリイミドを用いて、実施例の方法にて測定することができる。
 本発明のポリイミドの透過率は、フィルムとし、その膜厚が1~100μmの場合において、500nmの光線に対する透過率が通常55%以上、好ましくは60%以上、より好ましくは70%以上である。この範囲となることでデバイスの発光の効率を有効に使用することができる。透過率は、JIS K 7361-1(1997年)に記載の方法で測定することができる。
 本発明のポリイミドをフィルムとした際のリタデーションは、使用する波長、例えばデバイス用途であれば400~800nmの間の任意の波長で、フィルムの厚さ方向のリタデーション(Rth)は、通常300nm以下、好ましくは200nm以下、より好ましくは170nm以下、さらに好ましくは150nm以下、よりさらに好ましくは140nm以下、特に好ましくは120nm以下である。フィルムの面内方向のリタデーション(R0)は、通常10nm以下、好ましくは5nm以下、より好ましくは3nm以下、さらに好ましくは1nm以下である。この範囲となることでデバイスの視野性が上がるため好ましい。
 本発明のポリイミドは、フィルム用途に有用である。また、フィルム用途だけでなく、幅広い用途への応用が可能である。例えば、フレキシブル太陽電池用部材、ディスプレイ用部材、液晶ディスプレイキャリア、耐熱絶縁テープ、耐熱粘着テープ又はコンデンサー若しくはフレキシブルプリント基板用のフィルム等の製造に用いることができる。また、例えば、ガラス繊維や炭素繊維等で補強した構造部材、小型コイルのボビン又は端末絶縁用チューブの成形品の製造等にも用いられる。
 また、絶縁スペーサー、磁気ヘッドスペーサー又はトランスのスペーサー等の積層材の製造に用いることができる。また、電線・ケーブル絶縁被覆材、低温貯蔵タンク、宇宙断熱材又は集積回路等のエナメルコーティング材の製造に用いることができる。さらに耐熱性を有する糸、織物又は不織布等の製造にも用いることができる。
(ポリイミドフィルム)
 本発明にかかるポリイミドを用いたポリイミドフィルムの他に、以下の特徴を有するポリイミドフィルムも好ましく用いられる。
 すなわち、本発明はテトラカルボン酸残基及びジアミン残基を含むポリイミドフィルムであって、前記テトラカルボン酸残基及びジアミン残基の少なくともいずれか一方が屈曲部位を有し、線膨張係数が60ppm/K以下であり、かつ、リタデーションが200nm以下であることを特徴とするポリイミドフィルムにも関する。
 テトラカルボン酸残基及びジアミン残基の少なくともいずれか一方が有する屈曲部位の定義は先述した屈曲部位と同様であり、好ましい構造も同様である。
 ポリイミドフィルムの線膨張係数は60ppm/K以下であればよく、好ましくは50ppm/K以下、より好ましくは45ppm/K以下、さらに好ましくは40ppm/K、特に好ましくは30ppm/K以下である。また、下限は無く低い方が好ましい。この範囲であることで、例えば、ポリイミドをフィルムとして用いたデバイスを作製する際に、寸法安定性が高く、電子素子やカラーフィルター等の部材の破断、変形等を起こしにくくなるため好ましい。測定方法は特に限定されないが、例えば、フィルム状のポリイミドを用いて、実施例の方法にて測定することができる。
 ポリイミドフィルムの線膨張係数は60ppm/K以下とする方法は特に限定されず、例えば、上記ポリイミド前駆体及びポリイミドの少なくともいずれか一方を含む組成物を用いる方法、充填剤等を添加する方法、フィルムを延伸する方法等を行い、これらを適宜調整することで、ポリイミドフィルムの線膨張係数を上記範囲内にすることができる。
 充填剤等は特に限定されないが、例えば、粉末状、粒状、板状、繊維状等の無機系充填剤又は有機系充填剤などが挙げられる。

 無機系充填剤としては、例えば、シリカ、ケイ藻土、バリウムフェライト、酸化ベリリウム、軽石、軽石バルーン等の酸化物;水酸化アルミニウム、水酸化マグネシウム、塩基性炭酸マグネシウム等の水酸化物;炭酸カルシウム、炭酸マグネシウム、ドロマイト、ドーソナイト等の炭酸塩;硫酸カルシウム、硫酸バリウム、硫酸アンモニウム、亜硫酸カルシウム等の硫酸塩及び亜硫酸塩;タルク、クレー、マイカ、アスベスト、ガラス繊維、ガラスバルーン、ガラスビーズ、ケイ酸カルシウム、モンモリロナイト、ベントナイト等のケイ酸塩;炭素繊維、カーボンブラック、グラファイト、炭素中空球等の炭素類;硫化モリブデン、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸カルシウム、ホウ酸ナトリウム、ボロン繊維等の粉末状、粒状、板状、繊維状の無機質充填剤;金属元素、金属化合物、合金等の粉末状、粒状、繊維状、ウイスカー状の金属充填剤;炭化ケイ素、窒化ケイ素、ジルコニア、窒化アルミニウム、炭化チタン、チタン酸カリウム等の粉末状、粒状、繊維状、ウイスカー状のセラミックス充填剤;等が挙げられる。
 一方、有機系充填剤としては、例えば、カーボンナノチューブ、フラーレン、芳香族ポリアミド繊維、セルロース繊維、ナイロン繊維、ポリエステル繊維、ポリプロピレン繊維、熱硬化性樹脂粉末、ゴム等を挙げることができる。
 充填剤としては、不織布等平板状に加工したものを用いてもよいし、複数の材料を混ぜて用いてもよい。
 線膨張係数は熱機械的装置により測定することができる。
 ポリイミドフィルムのリタデーションは200nm以下であればよく、好ましくは170nm以下、より好ましくは150nm以下、更に好ましくは140nm以下、特に好ましくは120nm以下である。フィルムの面内方向のリタデーション(R0)は、通常10nm以下、好ましくは5nm以下、より好ましくは3nm以下、さらに好ましくは1nm以下である。この範囲となることでデバイスの視野性が上がるため好ましい。
 ポリイミドフィルムのリタデーションを200nm以下とする方法は特に限定されず、例えば、上記ポリイミド前駆体及びポリイミドの少なくともいずれか一方を含む組成物を用いる方法、負のリタデーションを有する化合物又は樹脂を混合する方法、ポリイミドと同等の線膨張係数を有する基材を用いて製膜する方法等を用いることで、ポリイミドフィルムのリタデーションを上記範囲内にすることができる。
 負のリタデーションを有する化合物又は樹脂は特に限定されないが、例えば、スチレン系化合物、アクリル系化合物、スチレン系樹脂、アクリル樹脂等が挙げられる。
 ポリイミドと同等の線膨張係数を有する基材としては、金属箔、樹脂基板等が挙げられる。
 リタデーションは位相差フィルム・光学材料検査装置などにより測定することができる。
 本発明のポリイミドフィルムの透過率は、その膜厚が1~100μmの場合において、500nmの光線に対する透過率が通常55%以上、好ましくは60%以上、より好ましくは70%以上である。この範囲となることでデバイスの発光の効率を有効に使用することができる。透過率は、JIS K 7361-1(1997年)に記載の方法で測定することができる。
 本発明のポリイミドフィルムにおいて、膜厚10μmでの黄色度(イエローインデックス:YI)は、通常-10以上、好ましくは-5以上、より好ましくは-1以上である。一方、通常20以下、好ましくは15以下、より好ましくは10以下である。この範囲となることで、ポリイミドをデバイス部材として用いた際に、発光の効率を有効に使用することができる。イエローインデックスは、例えば分光側色計等を用いることで測定することができる。
 ポリイミドフィルムの厚さは、特に制限はないが、通常1μm以上、好ましくは2μm以上であり、一方、通常200μm以下、好ましくは100μm以下である。フィルムが適当な厚さであることで、十分な耐性を保持し、且つ、フレキシブルデバイスの薄型化が可能となる。
(ポリイミドフィルムの製造方法)
 本発明のポリイミドフィルムの製造方法は特に制限はないが、例えば、前記方法によって得られたポリイミド前駆体及び/又はポリイミドを含む組成物をキャリア基板上に塗布した後、溶媒を揮発させることによって得ることができる。塗布の方法は、均一な厚さの層を形成できる方法であれば特に制限されないが、例えば、ダイコーティング、スピンコーティング、スクリーン印刷、スプレー、アプリケーターを用いたキャスティング法、コーターを用いる方法、吹き付けによる方法、浸漬法、カレンダー法、流延法等が挙げられる。これらの方法は、塗布面積及び被塗布面の形状等に応じて適宜選択することができる。
 被塗布材料の基板としては、例えば、フロートガラス、ソーダガラス等のガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリオレフィン等のプラスチックからなる基板を用いることができる。このような基板に塗布する際には、基板の表面に、官能性シラン含有化合物、官能性チタン含有化合物をあらかじめと伏せうることもできる。また、紫外線処理、プラズマ処理等を行うこともできる。
 ポリイミド前駆体及び/又はポリイミド組成物の溶媒を揮発させる方法も特に制限されない。通常は、溶媒を減圧下で揮発させる方法及び/又は、塗布された被塗布材料を加熱することにより、溶媒が揮発させられる。加熱方法は特に限定されず、熱風加熱、真空加熱、赤外線加熱、マイクロ波加熱、熱板もしくはホットロール等を用いた接触による加熱等が挙げられる。
 溶媒を揮発させるときの加熱温度は、溶媒の種類に応じて好適な温度を用いることができるが、通常20℃以上、好ましくは40℃以上、より好ましくは50℃以上、さらに好ましくは60℃以上である。また通常400℃以下、好ましくは380℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下である。温度が上記下限以上であることで、残留溶媒を低減することができ、十分に乾燥することができる。また、上記上限以下であることで、急激な揮発によって発生する気泡等を抑制することができ、外観や品質を良好に保つことができる。
 加熱の雰囲気は、空気下でも不活性雰囲気下でも良く特に制限はないが、ポリイミドフィルムに無色透明性が要求される場合は、着色抑制のために窒素などの不活性雰囲気下で加熱することが好ましい。
 上記塗布、乾燥によってキャリア上に形成されたポリイミドフィルムを剥離する方法は特に制限はないが、例えばレーザー剥離、機械剥離、水やお湯への浸漬による剥離などが挙げられる。
 ポリイミド前駆体組成物を用いた膜及び/またはポリイミドフィルムを製造する方法として、前記ポリイミド前駆体樹脂及び/又はポリイミド樹脂を溶融し、成形する方法、例えば、射出成型法、押出成形法、中空成形法、圧縮成型法、積層形成法、ロール加工法、延伸加工法、スタンプ加工法、熱プレス法、T-ダイ法等が挙げられる。
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその主旨に反しない限り、以下の実施例に限定されるものではない。なお、以下の実施例における各種の条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としても意味を持つものであり、好ましい範囲は、前記の上限又は下限の値と実施例の値又は実施例同士の値との組み合わせにて規定される範囲であってもよい。
 [実施例1] 
 還流窒素ガス導入管、冷却器、攪拌機を備えた4つ口フラスコに、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)5.7g(0.019mol)、3,3’,4,4’-ビシクロヘキサンテトラカルボン酸二無水物(H-BPDA)2.6g(0.009mol)、ピロメリット酸無水物(PMDA)1.4g(0.006mol)、2,2’-ビス(トリフルオロメチル)ベンジジン(6F-m-TB)5.6g(0.018mol)、4,4’-ジアミノジフェニルスルホン4.3g(0.018mol)、N-メチル-2-ピロリドン(NMP)73gを加えた。この混合物を撹拌しながら昇温し、80℃で6時間反応させ、ポリイミド前駆体を含む組成物1を得た。
(ポリイミドフィルムの作製)
 得られた組成物1をガラス基板上に100μmのアプリケーターを用いて塗布し、350℃で30分加熱することによって、膜厚10μmのポリイミドフィルム1を得た。
(線膨張係数(CTE)の測定)
 気温25℃湿度50%の恒温恒湿室で一晩以上調湿したポリイミドフィルム1を幅4mm、長さ40mmのスーパーストレートカッターにより打ち抜き、エスアイアイ・ナノテクノロジー社製TMA/SS6100を使用して測定した。フィルムサンプルのチャック間距離は10mm、窒素120mL/min、30℃から210℃に昇温速度10℃/minのときの100℃と150℃の間のCTEを表2に記載した。
(フィルムの厚さ方向のリタデーション(Rth)値の測定)
 ポリイミドフィルム1のフィルムの厚さ方向のリタデーション(Rth)値を、測定位相差フィルム・光学材料検査装置(大塚電子社製「RETS100」)を用いて測定・算出を行った。測定結果を表2に示す。今回用いたフィルムの厚さ方向のリタデーション(Rth)値は、波長460nm、フィルム厚さ10μmのときの値である。
(イエローインデックス(YI)値の測定)
 ポリイミドフィルム1のイエローインデックス(YI)値を、スガ試験機(株)製SMカラーコンピューターSM5を用いて測定した。今回用いたYI値はフィルム膜厚10μmあたりのYI値として算出した値である。
[実施例2]
 実施例1のBPADを1.7g(0.006mol)、H-BPDAを1.8g(0.006mol)、PMDAを3.9g(0.018mol)、6F-m-TBを5.5g(0.017mol)、4,4’-ジアミノジフェニルスルホンを3.2g(0.013mol)、NMPを65gに変更した以外は実施例1と同法の方法でポリイミド前駆体組成物2及びポリイミドフィルム2を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
 [実施例3]
 実施例1のBPDAを5.3g(0.018mol)、H-BPDAを2.5g(0.008mol)、PMDAを1.3g(0.006mol)、6F-m-TBを7.9g(0.025mol)、4,4’-ジアミノジフェニルスルホンを2.0g(0.008mol)に、NMPを71gに変更した以外は実施例1と同様の方法でポリイミド前駆体組成物3及びポリイミドフィルム3を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例4]
 実施例1のBPDAを5.4g(0.018mol)、H-BPDAを2.5g(0.008mol)、PMDAを1.3g(0.006mol)、6F-m-TBを9.5g(0.03mol)、4,4’-ジアミノジフェニルスルホンを0.8g(0.003mol)、NMPを78gに変更した以外は実施例1と同様の方法でポリイミド前駆体組成物4及びポリイミドフィルム4を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例5]
 還流窒素ガス導入管、冷却器、トルエンを満たしたディーンスターク凝集器、及び攪拌機を備えた4つ口フラスコに、BPDA4.9g(0.017mol)、H-BPDA2.3g(0.007mol)、PMDA1.2g(0.006mol)、6F-m-TB8.6g(0.027mol)、4,4’-ジアミノジフェニルスルホン0.7g(0.003mol)、NMP71g、トルエン14gを加えた。この混合物を撹拌しながら200℃で13時間加熱還流し、ポリイミド組成物5を得た。
[実施例6]
 実施例1のBPDAを4.1g(0.014mol)、H-BPDAを2.1g(0.007mol)、PMDAを1.9g(0.009mol)、6F-m-TBを8.4g(0.026mol)、4,4’-ジアミノジフェニルスルホンを2.2g(0.009mol)、NMPを82gに変更し、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物1.9g(0.005mol)を追加した以外は実施例1と同様の方法でポリイミド前駆体組成物6及びポリイミドフィルム6を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例7]
 実施例6のBPDAを5.4g(0.018mol)、H-BPDAを1.2g(0.004mol)、PMDAを1.3g(0.006mol)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物を1.5g(0.004mol)、6F-m-TBを7.9g(0.025mol)、4,4’-ジアミノジフェニルスルホンを2.0g(0.008mol)、NMPを78gに変更した以外は実施例6と同様の方法でポリイミド前駆体組成物7及びポリイミドフィルム7を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例8]
 実施例6のBPDAを5.4g(0.018mol)、H-BPDAを2.0g(0.007mol)、PMDAを1.3g(0.006mol)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物を0.6g(0.002mol)、6F-m-TBを7.9g(0.025mol)、4,4’-ジアミノジフェニルスルホンを2.0g(0.008mol)、NMPを77gに変更した以外は実施例6と同様の方法でポリイミド前駆体組成物8及びポリイミドフィルム8を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例9]
 実施例6のBPDAを5.9g(0.019mol)、H-BPDAを1.9g(0.006mol)、PMDAを1.4g(0.006mol)、6F-m-TBを7.7g(0.024mol)、4,4’-ジアミノジフェニルスルホンを1.2g(0.005mol)、NMPを76gに変更し、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物を9,9-ビス(4-アミノフェニル)フルオレン1.1g(0.003mol)に変更した以外は実施例6と同様の方法でポリイミド前駆体組成物9及びポリイミドフィルム9を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例10]
 実施例6のBPDAを9.8g(0.033mol)、H-BPDAを2.3g(0.007mol)、PMDAを2.4g(0.011mol)、6F-m-TBを18.0g(0.056mol)、4,4’-ジアミノジフェニルスルホンを4.7g(0.019mol)、NMPを141gに変更し、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物を2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物9.9g(0.022mol)に変更した以外は実施例6と同様の方法でポリイミド前駆体組成物10及びポリイミドフィルム10を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例11]
 実施例10のBPDAを3.8g(0.013mol)、H-BPDAを2.0g(0.007mol)、PMDAを1.7g(0.008mol)、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物を2.1g(0.005mol)、6F-m-TBを7.9g(0.025mol)、4,4’-ジアミノジフェニルスルホンを2.0g(0.008mol)、NMPを79gに変更した以外は実施例10と同様の方法でポリイミド前駆体組成物11及びポリイミドフィルム11を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例12]
 実施例10のBPDAを6.6g(0.022mol)、H-BPDAを2.2g(0.007mol)、PMDAを4.9g(0.022mol)、NMPを139gに変更した以外は実施例10と同様の方法でポリイミド前駆体組成物12及びポリイミドフィルム12を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例13]
 実施例9のBPDAを5.2g(0.018mol)、H-BPDAを1.8g(0.006mol)、PMDAを1.3g(0.006mol)、6F-m-TBを6.2g(0.020mol)、4,4’-ジアミノジフェニルスルホンを1.9g(0.008mol)、NMPを53gに変更し、9,9-ビス(4-アミノフェニル)フルオレンを2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン1.1g(0.003mol)に変更した以外は実施例9と同様の方法でポリイミド前駆体組成物13及びポリイミドフィルム13を得た。実施例1と同様にポリイミドフィルムのCTE、Rth、及びYIの測定を行った。結果を表2に示す。
[実施例14]
 実施例1のBPADを6.6g(0.022mol)、H-BPDAを3.0g(0.010mol)、PMDAを1.6g(0.007mol)、6F-m-TBを9.6g(0.030mol)、NMPを73gに変更し、4,4’-ジアミノジフェニルスルホンを1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン3.4g(0.010mol)に変更した以外は実施例1と同法の方法でポリイミド前駆体組成物14及びポリイミドフィルム14を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[実施例15]
 実施例14の1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼンを1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼンに変更した以外は実施例13と同法の方法でポリイミド前駆体組成物14及びポリイミドフィルム14を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例1]
 還流窒素ガス導入管、冷却器、攪拌機を備えた4つ口フラスコに、BPDA4.4g(0.015mol)、H-BPDA2.3g(0.008mol)、PMDA3.3g(0.015mol)、6F-m-TB12.2g(0.038mol)、NMP76gを加えた。この混合物を撹拌しながら昇温し、80℃で6時間反応させ、ポリイミド前駆体を含む組成物16を得た。得られた組成物16から実施例1と同様にして、ポリイミドフィルム16を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例2]
 還流窒素ガス導入管、冷却器、攪拌機を備えた4つ口フラスコに、H-BPDA1.8g(0.006mol)、PMDA5.2g(0.024mol)、6F-m-TB7.2g(0.023mol)、4,4’-ジアミノジフェニルスルホン1.9g(0.008mol)、NMP64gを加えた。この混合物を撹拌しながら昇温し、80℃で6時間反応させ、ポリイミド前駆体を含む組成物17を得た。得られた組成物17から実施例1と同様にポリイミドフィルム17を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例3]
 還流窒素ガス導入管、冷却器、アニソールを満たしたディーンスターク凝集器及び攪拌機を備えた4つ口フラスコに、BPDA14.6g(0.050mol)、H-BPDA15.2g(0.050mol)、6F-m-TB16.0g(0.05mol)、4,4’-ジアミノジフェニルスルホン9.9g(0.04mol)、3,3’-ジアミノジフェニルスルホン2.5g(0.01mol)、NMP87g、アニソール87gを加えた。この混合物を撹拌しながら200℃で13時間加熱還流し、ポリイミド組成物18を得た。得られた組成物18から実施例1と同様にポリイミドフィルム18を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例4]
 実施例1のBPADを5.6g(0.019mol)、PMDAを1.4g(0.006mol)、6F-m-TBを7.7g(0.024mol)、4,4’-ジアミノジフェニルスルホンを2.0g(0.008mol)、NMPを76gに変更し、H-BPDAを3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物2.3g(0.006mol)に変更した以外は実施例1と同法の方法でポリイミド前駆体組成物19及びポリイミドフィルム19得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例5]
 還流窒素ガス導入管、冷却器、攪拌機を備えた4つ口フラスコに、BPDA3.6g(0.012mol)、H-BPDA3.8g(0.012mol)、2、2’-ジメチルベンジジン(m-TB)5.3g(0.025mol)、N,N-ジメチルアセトアミド(DMAc)38gを加えた。この混合物を撹拌しながら昇温し80℃で6時間反応させ、ポリイミド前駆体を含む組成物21を得た。得られた組成物21から実施例1と同様にポリイミドフィルム21を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例6]
 還流窒素ガス導入管、冷却器、攪拌機を備えた4つ口フラスコに、BPDA5.8g(0.02mol)、6F-m-TB6.4g(0.020mol)、N,N-ジメチルアセトアミド(DMAc)37gを加えた。この混合物を撹拌しながら昇温し80℃で6時間反応させ、ポリイミド前駆体を含む組成物22を得た。得られた組成物22から実施例1と同様にポリイミドフィルム22を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例7]
 還流窒素ガス導入管、冷却器、攪拌機を備えた4つ口フラスコに、H-BPDA21.2g(0.069mol)、m-TB14.7g(0.070mol)、DMAc108gを加えた。この混合物を撹拌しながら昇温し80℃で6時間反応させ、ポリイミド前駆体を含む組成物23を得た。得られた組成物23から実施例1と同様にポリイミドフィルム23を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例8]
 比較例7のH-BPDAを6.8g(0.022mol)、m-TBを4,4’-ジアミノジフェニルスルホン5.9g(0.023mol)、DMAcをNMP37gに変更した以外は比較例7と同様の方法でポリイミド前駆体組成物24及びポリイミドフィルム24を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[比較例9]
 比較例2のPMDAを3.2g(0.015mol)、6F-m-TBを8.8g(0.027mol)、NMPを69gに変更し、H-BPDAをBPDA4.4g(0.015mol)、4,4’-ジアミノジフェニルスルホンを9,9-ビス(4-アミノフェニル)フルオレン0.9g(0.003mol)に変更した以外は比較例2と同様の方法でポリイミド前駆体組成物25及びポリイミドフィルム25を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[参考例1]
 比較例6のBPDAを2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物8.7g(0.020mol)、6F-m-TBを6.4g(0.02mol)、DMAcを46gに変更した以外は比較例6と同様の方法でポリイミド前駆体組成物26及びポリイミドフィルム26を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。
[参考例2]
 還流窒素ガス導入管、冷却器、攪拌機を備えた4つ口フラスコに、BPDA2.9g(0.01mol)、H-BPDA3.0g(0.01mol)、6F-m-TB6.4g(0.020mol)、N,N-ジメチルアセトアミド(DMAc)37gを加えた。この混合物を撹拌しながら昇温し80℃で6時間反応させ、ポリイミド前駆体を含む組成物20を得た。得られた組成物20から実施例1と同様にポリイミドフィルム20を得た。実施例1と同様にポリイミドフィルムのCTE、Rth及びYIの測定を行った。結果を表2に示す。また、上記原料において、組成物の粘度が200~600cPとなるようにジアミン化合物に対するテトラカルボン酸二無水物の比を調整し、組成物27を得た。該比は表3に示す。
 実施例1と同様に、組成物27をガラス基板上に塗布し、加熱した。得られたフィルムを剥離する際に、亀裂が生じ、フィルムを得ることができなかった。
 一方、組成物の粘度が200~600cPとなるように、実施例7で用いた原料のジアミン化合物に対するテトラカルボン酸二無水物の比を調整し、組成物28を得た。該比は表3に示す。
 実施例1と同様に、組成物28をガラス基板上に塗布し、加熱した。得られたフィルムは亀裂等が発生せず、剥離することができた。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 表2に示すように、本発明のポリイミドフィルム1~15は、低線膨張係数及び低リタデーションの両立がなされていることが示された。一方、比較例に示すポリイミドフィルムは低線膨張係数及び低リタデーションの両立ができていないことが示された。
 参考例2及び表3に示すように、屈曲部位の入っている組成物28では、200~600cPと低粘度化を行ってもフィルム化が可能であったが、屈曲部位の入っていない組成物27では低粘度化を行うとフィルム化が困難であったことから、屈曲部位を有することで、幅広い粘度域で組成物を得ることができ、様々な塗布方法に適用可能となることが示された。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2014年2月21日出願の日本特許出願(特願2014-032147)、2014年6月26日出願の日本特許出願(特願2014-131668)および、2015年1月6日出願の日本特許出願(特願2015-000993)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のポリイミド前駆体組成物は、コーティング材料、表面保護層、接着剤、デバイス用基板及び絶縁膜等に用いることができる。

Claims (6)

  1.  テトラカルボン酸残基及びジアミン残基を含むポリイミドフィルムであって、
     前記テトラカルボン酸残基及びジアミン残基の少なくともいずれか一方が屈曲部位を有し、
     線膨張係数が60ppm/K以下であり、かつ、
     リタデーションが200nm以下であることを特徴とするポリイミドフィルム。
  2.  フィルムの膜厚が10μmの際のイエローインデックスが、-10以上、20以下である、請求項1に記載のポリイミドフィルム。
  3.  ポリイミド前駆体及びポリイミドの少なくともいずれか一方を含む組成物であって、
     前記ポリイミド前駆体及びポリイミドはテトラカルボン酸残基及びジアミン残基を含み、
     前記テトラカルボン酸残基が下記式(1’)で表される部分構造、下記式(2)で表される部分構造及び下記式(4’)で表される部分構造を有し、
     前記ジアミン残基が下記式(5)で表される部分構造を有し、
     更に、前記テトラカルボン酸残基及びジアミン残基の少なくともいずれか一方が屈曲部位を有することを特徴とする組成物。
    Figure JPOXMLDOC01-appb-C000001
     ただし式中の記号は以下の意味を表す。
     Xは直接結合、2級若しくは3級炭素原子を有する結合、またはエーテル結合である。
     R及びRはそれぞれ独立して、アルキル基、アルコキシ基、アミノ基及び水酸基からなる群より選ばれる官能基である。
  4.  前記テトラカルボン酸残基中の前記式(4’)で表される部分構造を有するテトラカルボン酸残基の割合が、2mol%以上、95mol%以下である、請求項3に記載の組成物。
  5.  前記テトラカルボン酸残基中の前記式(1’)で表される部分構造を有するテトラカルボン酸残基及び前記式(2)で表される部分構造を有するテトラカルボン酸残基の和の割合が、5mol%以上、95mol%以下である、請求項3又は4に記載の組成物。
  6.  前記テトラカルボン酸残基及びジアミン残基の和に対する、前記屈曲部位の割合が、0.1mol%以上、150mol%以下である、請求項3乃至5の何れか1項に記載の組成物。
PCT/JP2015/054691 2014-02-21 2015-02-19 ポリイミド前駆体及び/又はポリイミドを含む組成物、並びにポリイミドフィルム WO2015125895A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015538174A JP5888472B2 (ja) 2014-02-21 2015-02-19 ポリイミド前駆体及び/又はポリイミドを含む組成物、並びにポリイミドフィルム
CN201580009667.0A CN106029743B (zh) 2014-02-21 2015-02-19 含聚酰亚胺前驱体和/或聚酰亚胺的组合物,以及聚酰亚胺膜
KR1020167022628A KR102268406B1 (ko) 2014-02-21 2015-02-19 폴리이미드 전구체 및/또는 폴리이미드를 포함하는 조성물, 및 폴리이미드 필름

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014032147 2014-02-21
JP2014-032147 2014-02-21
JP2014-131668 2014-06-26
JP2014131668 2014-06-26
JP2015-000993 2015-01-06
JP2015000993 2015-01-06

Publications (1)

Publication Number Publication Date
WO2015125895A1 true WO2015125895A1 (ja) 2015-08-27

Family

ID=53878392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054691 WO2015125895A1 (ja) 2014-02-21 2015-02-19 ポリイミド前駆体及び/又はポリイミドを含む組成物、並びにポリイミドフィルム

Country Status (5)

Country Link
JP (2) JP5888472B2 (ja)
KR (1) KR102268406B1 (ja)
CN (1) CN106029743B (ja)
TW (1) TWI660980B (ja)
WO (1) WO2015125895A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273189A (zh) * 2015-10-29 2016-01-27 阜新泓扬光电材料有限公司 具有阻隔紫外线作用的透明聚酰亚胺薄膜及其制备和应用
WO2017010566A1 (ja) * 2015-07-16 2017-01-19 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
JP2017025163A (ja) * 2015-07-17 2017-02-02 Jnc株式会社 樹脂溶液組成物およびポリイミドフィルム
JP2017115098A (ja) * 2015-12-25 2017-06-29 ソマール株式会社 ポリイミド共重合体及びそれを用いた成形体
WO2017175869A1 (ja) * 2016-04-07 2017-10-12 株式会社カネカ ポリイミド樹脂、ポリイミド溶液、フィルムおよびその製造方法
JPWO2016158825A1 (ja) * 2015-03-31 2018-01-11 旭化成株式会社 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体
JPWO2017051827A1 (ja) * 2015-09-24 2018-03-22 旭化成株式会社 ポリイミド前駆体、樹脂組成物および樹脂フィルムの製造方法
WO2018208639A1 (en) * 2017-05-10 2018-11-15 E. I. Du Pont De Nemours And Company Low-color polymers for flexible substrates in electronic devices
JP2019500487A (ja) * 2015-12-21 2019-01-10 ドゥーサン コーポレイション 脂環族モノマーが適用されたポリアミック酸組成物及びこれを用いた透明ポリイミドフィルム
CN109281702A (zh) * 2018-09-28 2019-01-29 黄旭东 一种防治煤炭自燃用阻化剂的制备方法
JPWO2017195574A1 (ja) * 2016-05-09 2019-03-07 三菱瓦斯化学株式会社 ポリイミド樹脂及びポリイミド樹脂組成物
KR20210013188A (ko) 2018-06-22 2021-02-03 미쯔비시 케미컬 주식회사 제올라이트 함유 폴리이미드 수지 복합재, 제올라이트 함유 폴리이미드 수지 전구체 조성물, 필름, 및 전자 디바이스
KR20210047858A (ko) 2018-08-24 2021-04-30 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드수지, 폴리이미드바니시 및 폴리이미드필름
KR20210068394A (ko) 2018-09-29 2021-06-09 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 전구체와 그것으로부터 생성되는 폴리이미드, 및 플렉시블 디바이스
CN114181394A (zh) * 2020-09-15 2022-03-15 航天特种材料及工艺技术研究所 低粘度聚酰亚胺前驱体溶液及其制备方法、用途
KR20220123392A (ko) 2019-12-26 2022-09-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 수지 조성물, 폴리이미드 바니시 및 폴리이미드 필름

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2760976T3 (es) * 2015-02-11 2020-05-18 Kolon Inc Acido poliámico, resina de poliimida y película de poliimida
WO2018042999A1 (ja) * 2016-08-31 2018-03-08 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
WO2018135432A1 (ja) * 2017-01-20 2018-07-26 住友化学株式会社 フィルム、樹脂組成物及びポリアミドイミド樹脂の製造方法
KR101912737B1 (ko) * 2017-05-23 2018-10-30 주식회사 대림코퍼레이션 레이저 박리 용이성 및 고내열성을 갖는 폴리아믹산 수지의 제조방법 및 이를 이용하여 제조한 폴리이미드 필름
JP2019049661A (ja) * 2017-09-11 2019-03-28 シャープ株式会社 配向膜、液晶パネル及び液晶パネルの製造方法
KR102030841B1 (ko) * 2018-07-26 2019-10-10 에스케이씨코오롱피아이 주식회사 방향족 카르복실산을 포함하는 폴리이미드 전구체 조성물 및 이를 이용하여 제조되는 폴리이미드 필름
KR101992576B1 (ko) * 2018-10-31 2019-06-24 에스케이씨코오롱피아이 주식회사 폴리이미드 피복물의 내열성을 향상시키기 위한 도체 피복용 폴리이미드 바니쉬 및 이로부터 제조된 폴리이미드 피복물
KR102004659B1 (ko) * 2018-10-31 2019-10-01 에스케이씨코오롱피아이 주식회사 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
DE102019206559A1 (de) * 2019-05-07 2020-11-26 Aktiebolaget Skf Imidzusammensetzung und Schutzmittelzusammensetzung mit der Imidzusammensetzung
KR102121307B1 (ko) * 2019-07-19 2020-06-11 에스케이씨코오롱피아이 주식회사 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
KR102246227B1 (ko) * 2019-09-27 2021-04-29 피아이첨단소재 주식회사 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
KR102246218B1 (ko) * 2019-09-27 2021-04-29 피아이첨단소재 주식회사 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
CN111363354A (zh) * 2020-03-27 2020-07-03 中天电子材料有限公司 聚酰亚胺无色透明薄膜及其制备方法、光学pi膜
CN114008110A (zh) * 2020-05-14 2022-02-01 律胜科技股份有限公司 聚酰亚胺膜及其制造方法
CN113745761A (zh) * 2021-08-19 2021-12-03 中国科学院上海硅酸盐研究所 一种聚酰亚胺/氮化硅晶须复合锂离子电池隔膜及其制备方法
CN115678009B (zh) * 2022-09-26 2023-12-15 深圳市华之美科技有限公司 一种基于酰亚胺的聚合物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249116A (ja) * 2005-03-08 2006-09-21 Fuji Photo Film Co Ltd ポリイミドおよびそれを用いた光学フィルム
JP2007063417A (ja) * 2005-08-31 2007-03-15 Fujifilm Corp フィルムおよびフィルムの製造方法、ガスバリア層付フィルム、透明導電層付フィルム、並びに、画像表示装置
JP2007161930A (ja) * 2005-12-15 2007-06-28 Fujifilm Corp 光学フィルムおよび画像表示装置
JP2011111596A (ja) * 2009-11-30 2011-06-09 Kaneka Corp ポリイミドフィルムの製造方法及びポリイミドフィルム
JP2012233083A (ja) * 2011-04-28 2012-11-29 Mitsubishi Chemicals Corp デバイス製造方法
JP2013082774A (ja) * 2011-10-06 2013-05-09 Kaneka Corp 透明ポリイミドフィルムおよびその製造方法
JP2014019108A (ja) * 2012-07-20 2014-02-03 Nippon Steel & Sumikin Chemical Co Ltd 透明導電性フィルム及びその製造用ポリイミドフィルム
JP2014133887A (ja) * 2012-12-14 2014-07-24 Mitsubishi Chemicals Corp ポリイミド樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163107A (ja) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc 光学部材
JP2012144603A (ja) 2011-01-07 2012-08-02 Kaneka Corp 透明ポリイミドフィルムおよびその製造方法
JP5785018B2 (ja) 2011-07-27 2015-09-24 株式会社カネカ 製膜性が改善されたポリイミド樹脂及び光学フィルム
TWI495404B (zh) * 2013-06-21 2015-08-01 Chi Mei Corp 軟性基板用組成物及軟性基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249116A (ja) * 2005-03-08 2006-09-21 Fuji Photo Film Co Ltd ポリイミドおよびそれを用いた光学フィルム
JP2007063417A (ja) * 2005-08-31 2007-03-15 Fujifilm Corp フィルムおよびフィルムの製造方法、ガスバリア層付フィルム、透明導電層付フィルム、並びに、画像表示装置
JP2007161930A (ja) * 2005-12-15 2007-06-28 Fujifilm Corp 光学フィルムおよび画像表示装置
JP2011111596A (ja) * 2009-11-30 2011-06-09 Kaneka Corp ポリイミドフィルムの製造方法及びポリイミドフィルム
JP2012233083A (ja) * 2011-04-28 2012-11-29 Mitsubishi Chemicals Corp デバイス製造方法
JP2013082774A (ja) * 2011-10-06 2013-05-09 Kaneka Corp 透明ポリイミドフィルムおよびその製造方法
JP2014019108A (ja) * 2012-07-20 2014-02-03 Nippon Steel & Sumikin Chemical Co Ltd 透明導電性フィルム及びその製造用ポリイミドフィルム
JP2014133887A (ja) * 2012-12-14 2014-07-24 Mitsubishi Chemicals Corp ポリイミド樹脂組成物

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016158825A1 (ja) * 2015-03-31 2018-01-11 旭化成株式会社 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体
WO2017010566A1 (ja) * 2015-07-16 2017-01-19 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
JP2017025163A (ja) * 2015-07-17 2017-02-02 Jnc株式会社 樹脂溶液組成物およびポリイミドフィルム
JPWO2017051827A1 (ja) * 2015-09-24 2018-03-22 旭化成株式会社 ポリイミド前駆体、樹脂組成物および樹脂フィルムの製造方法
CN105273189A (zh) * 2015-10-29 2016-01-27 阜新泓扬光电材料有限公司 具有阻隔紫外线作用的透明聚酰亚胺薄膜及其制备和应用
JP2019500487A (ja) * 2015-12-21 2019-01-10 ドゥーサン コーポレイション 脂環族モノマーが適用されたポリアミック酸組成物及びこれを用いた透明ポリイミドフィルム
JP2017115098A (ja) * 2015-12-25 2017-06-29 ソマール株式会社 ポリイミド共重合体及びそれを用いた成形体
WO2017111134A1 (ja) * 2015-12-25 2017-06-29 ソマール株式会社 ポリイミド共重合体及びそれを用いた成形体
KR102390851B1 (ko) 2015-12-25 2022-04-26 소마아루 가부시끼가이샤 폴리이미드 공중합체 및 이를 이용한 성형체
CN108431087A (zh) * 2015-12-25 2018-08-21 索玛尔株式会社 聚酰亚胺共聚物及使用其的成形体
KR20180098253A (ko) * 2015-12-25 2018-09-03 소마아루 가부시끼가이샤 폴리이미드 공중합체 및 이를 이용한 성형체
WO2017175869A1 (ja) * 2016-04-07 2017-10-12 株式会社カネカ ポリイミド樹脂、ポリイミド溶液、フィルムおよびその製造方法
US10745519B2 (en) 2016-04-07 2020-08-18 Kaneka Corporation Polyimide resin, polyimide solution, film, and method for producing same
JP2017186473A (ja) * 2016-04-07 2017-10-12 株式会社カネカ フィルム
JPWO2017195574A1 (ja) * 2016-05-09 2019-03-07 三菱瓦斯化学株式会社 ポリイミド樹脂及びポリイミド樹脂組成物
WO2018208639A1 (en) * 2017-05-10 2018-11-15 E. I. Du Pont De Nemours And Company Low-color polymers for flexible substrates in electronic devices
JP2020528086A (ja) * 2017-05-10 2020-09-17 デュポン エレクトロニクス インコーポレイテッド 電子デバイスにおけるフレキシブル基板のためのロ−カラーポリマー
KR20210013188A (ko) 2018-06-22 2021-02-03 미쯔비시 케미컬 주식회사 제올라이트 함유 폴리이미드 수지 복합재, 제올라이트 함유 폴리이미드 수지 전구체 조성물, 필름, 및 전자 디바이스
KR20210047858A (ko) 2018-08-24 2021-04-30 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드수지, 폴리이미드바니시 및 폴리이미드필름
CN109281702A (zh) * 2018-09-28 2019-01-29 黄旭东 一种防治煤炭自燃用阻化剂的制备方法
KR20210068394A (ko) 2018-09-29 2021-06-09 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 전구체와 그것으로부터 생성되는 폴리이미드, 및 플렉시블 디바이스
KR20220123392A (ko) 2019-12-26 2022-09-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 수지 조성물, 폴리이미드 바니시 및 폴리이미드 필름
CN114181394A (zh) * 2020-09-15 2022-03-15 航天特种材料及工艺技术研究所 低粘度聚酰亚胺前驱体溶液及其制备方法、用途

Also Published As

Publication number Publication date
JPWO2015125895A1 (ja) 2017-03-30
JP6540382B2 (ja) 2019-07-10
JP2016128555A (ja) 2016-07-14
CN106029743A (zh) 2016-10-12
CN106029743B (zh) 2019-03-29
KR20160125377A (ko) 2016-10-31
TWI660980B (zh) 2019-06-01
JP5888472B2 (ja) 2016-03-22
TW201538572A (zh) 2015-10-16
KR102268406B1 (ko) 2021-06-23

Similar Documents

Publication Publication Date Title
JP5888472B2 (ja) ポリイミド前駆体及び/又はポリイミドを含む組成物、並びにポリイミドフィルム
JP7163437B2 (ja) 接着力が向上したポリアミック酸組成物及びこれを含むポリイミドフィルム
JP6899830B2 (ja) 新規な構造を有するジアミンモノマーを適用したポリアミック酸溶液及びこれを含むポリイミドフィルム
JP6669074B2 (ja) ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
JP6607193B2 (ja) ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
JP5650458B2 (ja) 積層体の製造方法、及びフレキシブルデバイスの製造方法
JP7392660B2 (ja) イミド-アミド酸共重合体及びその製造方法、ワニス、並びにポリイミドフィルム
KR102663662B1 (ko) 폴리이미드 수지 조성물 및 폴리이미드 필름
TW202319447A (zh) 樹脂組合物、成形體及薄膜
JP5551753B2 (ja) ポリシロキサングラフト化ポリイミド樹脂組成物及びその応用
JP7407501B2 (ja) ポリイミド積層体
TW202222910A (zh) 聚合物組成物、清漆、以及聚醯亞胺薄膜
WO2020189556A1 (ja) ポリイミドフィルム
WO2020158736A1 (ja) 組成物及び金属絶縁被覆材
JP6794682B2 (ja) ポリイミド前駆体及び/又はポリイミドを含む組成物
TW202302713A (zh) 聚醯亞胺樹脂組成物、聚醯亞胺前驅體組成物、清漆、及聚醯亞胺薄膜
JP2018016787A (ja) ポリイミド組成物、該ポリイミド組成物より得られるポリイミドフィルム及びポリイミド積層体並びにポリイミド積層体の製造方法
TWI774848B (zh) 聚醯亞胺樹脂、聚醯亞胺清漆及聚醯亞胺薄膜
WO2020189555A1 (ja) ポリイミド
TWI783922B (zh) 聚醯亞胺骨架構造之控制方法及聚醯亞胺之製造方法
WO2023199718A1 (ja) 共重合ポリイミド
WO2020189557A1 (ja) ポリイミドフィルム
JP2024018828A (ja) ポリイミド前駆体組成物、ポリイミドフィルムおよびポリイミドフィルム/基材積層体
TW202330710A (zh) 樹脂組合物、成形體及膜
KR20230075391A (ko) 폴리아미드이미드 공중합체 및 이것을 사용한 필름

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015538174

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167022628

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752824

Country of ref document: EP

Kind code of ref document: A1