Nothing Special   »   [go: up one dir, main page]

WO2015107820A1 - 酸性ガス分離用スパイラル型モジュールおよび製造方法 - Google Patents

酸性ガス分離用スパイラル型モジュールおよび製造方法 Download PDF

Info

Publication number
WO2015107820A1
WO2015107820A1 PCT/JP2014/083112 JP2014083112W WO2015107820A1 WO 2015107820 A1 WO2015107820 A1 WO 2015107820A1 JP 2014083112 W JP2014083112 W JP 2014083112W WO 2015107820 A1 WO2015107820 A1 WO 2015107820A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
gas
spiral
gas separation
acidic
Prior art date
Application number
PCT/JP2014/083112
Other languages
English (en)
French (fr)
Inventor
米山 聡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015107820A1 publication Critical patent/WO2015107820A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an acidic gas separation module that selectively separates acidic gas from raw material gas and a method for manufacturing the same.
  • an acidic gas separation module that separates an acidic gas from a raw material gas using an acidic gas separation membrane that selectively permeates the acidic gas has been developed.
  • a laminated body including an acidic gas separation membrane is multiplexed in a central tube (a central permeate collecting tube) for collecting separated acidic gas having a through-hole formed in a tube wall.
  • a wound acid gas separation module is disclosed.
  • the acid gas separation module disclosed in Patent Document 1 is a dissolution diffusion type acid gas separation module using a so-called dissolution diffusion membrane as the acid gas separation membrane.
  • the dissolution diffusion membrane separates the acid gas from the raw material gas by utilizing the difference in solubility between the acidic gas and the substance to be separated in the membrane and the diffusivity in the membrane.
  • Patent Document 2 the space is divided into a raw material chamber and a permeation chamber by an acidic gas separation membrane, and a raw material gas (a mixed gas composed of CO 2 , H 2, and H 2 O) is supplied to the raw material chamber.
  • An acidic gas separation module (experimental apparatus) is disclosed that extracts acidic gas selectively separated (permeated) by a gas separation membrane from a permeation chamber.
  • the acidic gas separation module disclosed in Patent Document 2 is a facilitated transport type acidic gas separation module using a so-called facilitated transport membrane as the acidic gas separation membrane.
  • the facilitated transport membrane has a carrier that reacts with the acid gas in the membrane, and the acidic gas is separated from the source gas by transporting the acidic gas to the opposite side of the membrane by the carrier.
  • an acidic gas separation module as shown in Patent Document 1, a laminate having an acidic gas separation membrane is wound around a central cylinder for collecting the separated acidic gas (wound around the central cylinder).
  • a so-called spiral acid gas separation module is known.
  • the spiral type acidic gas separation module can increase the area of the acidic gas separation membrane. Therefore, the spiral type acidic gas separation module can be efficiently processed.
  • JP-A-4-215824 Japanese Patent No. 4621295
  • such a spiral acidic gas separation module is generally provided with a supply gas channel member (supply spacer) whose inside is a source gas channel, and In many cases, a permeate gas channel member (permeate spacer) that is a separated acid gas channel is used.
  • a flow path member is usually composed of a mesh-like sheet.
  • the acidic gas separation module sandwiches the supply gas flow path member with the acidic gas separation membrane and sandwiches both surfaces thereof with the permeate gas flow path member.
  • the laminated body formed is wound around a central cylinder.
  • the facilitated transport film it is necessary to retain a large amount of moisture in the film in order to sufficiently function the carrier. That is, the more moisture held in the film, the higher the solubility of the carrier in the film and the higher the acid gas permeability. Therefore, water is supplied to the facilitated transport film by adding water vapor to the source gas.
  • water vapor can be supplied to the entire membrane area. Therefore, ideal separation performance can be obtained.
  • the present invention provides a spiral-type module for acidic gas separation that can supply moisture to the entire acidic gas separation membrane and improve the processing efficiency of the raw material gas, that is, the separation performance of the acidic gas, and a method for manufacturing the same. .
  • the inventor of the present application changes the flow path of the source gas to the inlet end side serving as the inlet of the source gas of the supply gas path member of the laminate.
  • the gap between the members of the two or more flow path changing members increases in the direction perpendicular to the inlet end side as the distance from the inlet end side increases. It has been found that moisture can be supplied to the entire membrane and the processing efficiency of the raw material gas, that is, the separation performance of the acidic gas can be improved, and the present invention has been completed. That is, this invention provides the spiral type module for acidic gas separation of the following structures, and its manufacturing method.
  • a central tube having a through-hole formed in the tube wall, a supply gas channel member serving as a source gas channel, and an acid gas separation for separating the acid gas from the source gas flowing through the supply gas channel member
  • An acidic gas separation layer having a membrane on the surface on the supply gas flow path member side, and a permeate gas flow path member serving as a flow path through which the acidic gas that has permeated the acidic gas separation membrane flows to the central cylinder
  • the passage member has two or more flow path changing members for changing the flow path of the source gas on the inlet end face side serving as the inlet of the source gas, and as the distance from the inlet end face increases in a direction perpendicular to the inlet end face.
  • At least one pair of two or more flow path changing members Spiral module for acid gas separation that increases the gap between them.
  • a plurality of sets of flow path changing members are arranged in a direction perpendicular to the inlet end face, and as the distance from the inlet end face increases in the direction perpendicular to the inlet end face, the gaps between the flow path changing members forming the set increase.
  • the spiral gas separation module for acid gas separation according to any one of (1) to (3) which is disposed closer to the center line than the pair of flow path changing members.
  • the length of the two or more flow path changing members is 10% or more of the length of the supply gas flow path member in the direction perpendicular to the inlet end face, according to any one of (1) to (5) Spiral type module for acid gas separation.
  • moisture can be supplied to the entire acidic gas separation membrane, and the raw material gas processing efficiency, that is, the acidic gas separation performance can be improved.
  • FIG. 3 (A) to 3 (C) are diagrams conceptually showing an example of a supply gas flow path member used in the acidic gas separation spiral module of the present invention. It is a schematic perspective view for demonstrating the effect
  • FIG. 5A and FIG. 5B are conceptual diagrams for explaining an example of a method for forming a flow path changing member.
  • 6 (A) and 6 (B) are conceptual diagrams for explaining a method of producing the acidic gas separating spiral module shown in FIG.
  • FIG. 8 (A) and 8 (B) are conceptual diagrams for explaining a method of manufacturing the spiral module for acid gas separation shown in FIG. It is a conceptual diagram for demonstrating the manufacturing method of the spiral type module for acidic gas separation shown in FIG. It is a conceptual diagram for demonstrating the manufacturing method of the spiral type module for acidic gas separation shown in FIG. It is a conceptual diagram for demonstrating the manufacturing method of the spiral type module for acidic gas separation shown in FIG. It is a conceptual diagram for demonstrating the flow velocity distribution of the conventional spiral type separation module.
  • FIG. 1 is a partially cutaway schematic perspective view of an example of a spiral-type module for acid gas separation according to the present invention.
  • the spiral type module 10 for acid gas separation basically includes a center tube 12, a laminate 14 having an acid gas separation membrane (facilitated transport membrane 20a), and a telescope prevention plate 16. It is configured.
  • the spiral module for acid gas separation is also simply referred to as a separation module.
  • the separation module 10 separates carbon dioxide as an acidic gas Gc from a raw material gas G containing, for example, carbon monoxide, carbon dioxide (CO 2 ), water (water vapor), and hydrogen.
  • the separation module 10 of the present invention is a so-called spiral type separation module. That is, in the separation module 10, one or a plurality of sheet-like laminates 14 are laminated and wound around the center tube 12, and the center tube 12 is inserted into both end surfaces of the wound product of the laminate 14. Thus, the telescope prevention plate 16 is provided. The outermost peripheral surface of the wound laminate 14 is covered with a gas impermeable coating layer 18.
  • a wound product of a product obtained by laminating a plurality of laminates 14 wound around the central cylinder 12 that is, a substantially cylindrical product by the laminate 14 wound by being laminated
  • a spiral laminate 14a a wound product of a product obtained by laminating a plurality of laminates 14 wound around the central cylinder 12
  • the source gas G from which the acidic gas is separated is supplied to the end surface of the spiral laminate 14a through, for example, the telescope prevention plate 16 (the opening 16d) on the far side in FIG. Then, the acid gas Gc is separated while flowing into the laminate 14 from the end face and flowing through the laminate 14. Further, the acidic gas Gc separated from the raw material gas G by the stacked body 14 is discharged from the central cylinder 12.
  • the source gas G from which the acidic gas has been separated (hereinafter referred to as the residual gas Gr for convenience) is discharged from the end face on the opposite side to the supply side of the spiral laminated body 14a (laminated body 14) to prevent telescoping. It is discharged out of the separation module 10 through the plate 16 (same as above).
  • the central cylinder (permeate gas collecting pipe) 12 is a cylindrical pipe whose end face on the source gas G supply side is closed, and a plurality of through holes 12a are formed on the peripheral surface (tube wall).
  • the acidic gas Gc separated from the raw material gas G passes through a permeating gas passage member 26 described later, reaches the inside of the central cylinder 12 from the through hole 12a, and is discharged from the open end 12b of the central cylinder 12.
  • the aperture ratio (area ratio of the through-hole 12 a occupying the outer peripheral surface of the center tube 12) in a region sealed with the adhesive layer 30 described later is preferably 1.5 to 80%, and preferably 3 to 75. % Is more preferable, and 5 to 70% is more preferable. Among these, from the practical viewpoint, the opening ratio of the center tube 12 is particularly preferably 5 to 25%.
  • the through hole 12a is preferably a circular hole having a diameter of 0.5 to 20 mm. Furthermore, it is preferable that the through holes 12 a are formed uniformly on the peripheral wall of the central cylinder 12.
  • the laminate 14 is formed by laminating an acidic gas separation layer 20, a supply gas flow path member 24, and a permeate gas flow path member 26.
  • reference numeral 30 denotes an acid gas Gc in the permeate gas flow path member 26 while the acid gas separation layer 20 and the permeate gas flow path member 26 are bonded together and the laminates 14 are bonded together.
  • This is an adhesive layer 30 in which the flow path is formed in an envelope shape opened on the center tube 12 side.
  • the separation module 10 in the illustrated example is formed by laminating a plurality of the laminates 14 and winding (wrapping) them around the central cylinder 12 to form a substantially cylindrical spiral laminate 14a. It has a configuration.
  • the supply direction of the source gas G is the x direction
  • the direction orthogonal to the x direction is the y direction.
  • the winding direction of the laminated body 14 coincides with the y direction. It coincides with a certain x direction.
  • the laminate 14 may be a single layer. However, as shown in the illustrated example, by laminating a plurality of laminated bodies 14, the membrane area of the acidic gas separation layer 20 can be increased, and the amount of the acidic gas Gc separated by one module can be improved.
  • the number of stacked layers 14 may be appropriately set according to the processing speed and processing amount required for the separation module 10, the size of the separation module 10, and the like.
  • the number of laminated bodies 14 to be laminated is preferably 50 or less, more preferably 45 or less, and particularly preferably 40 or less. By setting the number of laminated bodies 14 to be this number, winding of the laminated body 14 around the central cylinder 12 becomes easy, and workability can be improved.
  • the fragmentary sectional view of the laminated body 14 is shown.
  • the arrow x is the supply direction of the raw material gas G
  • the y direction orthogonal to the x direction coincides with the winding direction of the laminate 14 (hereinafter also referred to as the winding direction).
  • the laminated body 14 has a supply gas flow path member 24 sandwiched between two folded acid gas separation layers 20 to form a sandwiched body 36 (see FIG. 7).
  • the road member 26 is laminated. This configuration will be described in detail later.
  • the source gas G is supplied from one end face of the spiral laminated body 14 a through the telescope prevention plate 16. That is, the source gas G is supplied to the end portions (end surfaces) of the stacked bodies 14. As conceptually shown in FIG. 2, the source gas G supplied to the end face in the x direction of the stacked body 14 flows in the supply gas flow path member 24 in the x direction.
  • the supply gas flow path member 24 has flow path changing members (flow path walls 50a and 50b) that change the flow path of the source gas G flowing inside. Therefore, the flow velocity of the source gas G in the supply gas flow path member 24 can be made uniform. This will be described in detail later.
  • the acidic gas Gc in contact with the acidic gas separation layer 20 (facilitated transport membrane 20a) in the flow in the supply gas flow path member 24 is separated from the raw material gas G, and the acidic gas separation layer 20 is separated from the laminate 14.
  • the laminating direction transported in the laminating direction by the carrier of the facilitated transport film 20a
  • the acidic gas Gc that has flowed into the permeate gas flow path member 26 flows in the permeate gas flow path member 26 in the winding direction (the direction of the arrow y), reaches the central cylinder 12, and is centered from the through hole 12 a of the central cylinder 12. It flows into the cylinder 12.
  • the acidic gas Gc flowing into the central cylinder 12 flows through the central cylinder 12 in the x direction and is discharged from the open end 12b.
  • the residual gas Gr from which the acidic gas Gc has been removed flows in the supply gas flow path member 24 in the x direction, and is discharged from the opposite end face of the spiral laminated body 14a. 16d) and discharged to the outside of the separation module 10.
  • the supply gas flow path member 24 is a sheet-like member that is supplied with the source gas G from the end in the x direction and that contacts the source gas G flowing in the member with the acidic gas separation layer 20.
  • the supply gas flow path member 24 is rectangular as an example.
  • the supply gas flow path member 24 is provided therein with a flow path changing member that changes (forcibly changes) the flow path of the source gas G.
  • a supply gas flow path member 24 functions as a spacer of the acid gas separation layer 20 folded in half as described above, and constitutes a flow path for the source gas G.
  • the supply gas flow path member 24 preferably makes the source gas G turbulent.
  • the supply gas flow path member 24 is preferably a member having a mesh shape (net shape / mesh structure).
  • various materials can be used as long as they have sufficient heat resistance and moisture resistance.
  • paper materials such as paper, fine paper, coated paper, cast coated paper, and synthetic paper, resin materials such as cellulose, polyester, polyolefin, polyamide, polyimide, polysulfone, aramid, and polycarbonate, and inorganic materials such as metal, glass, and ceramics.
  • resin materials such as cellulose, polyester, polyolefin, polyamide, polyimide, polysulfone, aramid, and polycarbonate
  • inorganic materials such as metal, glass, and ceramics. A material etc. are illustrated suitably.
  • the resin material examples include polyethylene, polystyrene, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyethersulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSF), and polypropylene (PP).
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • PES polyethersulfone
  • PPS polyphenylene sulfide
  • PSF polysulfone
  • PP polypropylene
  • Polyimide, polyetherimide, polyetheretherketone, polyvinylidene fluoride and the like are preferably exemplified.
  • the thickness of the supply gas flow path member 24 may be appropriately determined according to the supply amount of the source gas G, the required processing capacity, and the like. Specifically, 100 to 1000 ⁇ m is preferable, 150 to 950 ⁇ m is more preferable, and 200 to 900 ⁇ m is particularly preferable.
  • a flow path changing member that changes the flow path of the source gas G is provided inside the supply gas flow path member 24.
  • FIG. 3A conceptually shows the supply gas flow path member 24 in a state in which the winding is rewound and planarized.
  • the mesh of the supply gas flow path member 24 is omitted in order to simplify the drawing and clearly show the configuration.
  • the supply gas flow path member 24 has flow path walls 50a and 50b as flow path regulating members therein. Both of the flow path walls 50a and 50b have a height corresponding to the entire region in the thickness direction of the supply gas flow path member 24, and extend in the surface direction of the supply gas flow path member 24. It is a member.
  • the flow path wall (flow path regulating member) may be lower than the entire area in the thickness direction of the supply gas flow path member 24. However, it is preferable that the flow path wall has a height that blocks the entire region of the supply gas flow path member 24 in the thickness direction in that the flow path of more source gas G can be changed.
  • the flow path wall 50a is formed in the supply gas flow path member 24 from the end face (hereinafter also referred to as the inlet end face) serving as the inlet of the source gas in the x direction (source gas supply direction). It is inclined in a direction away from the center tube 12 in the rotation direction, and extends toward the downstream side in the x direction (hereinafter also simply referred to as upstream / downstream).
  • the flow path wall 50b is provided on the central tube 12 side in the y direction with respect to the flow path wall 50a. The flow path wall 50b is inclined from the inlet end face toward the central tube 12 side in the y direction and extends in the x direction toward the downstream side.
  • both the flow path walls are formed so as not to reach the entire area in the x direction and the y direction.
  • the flow path walls 50a and 50b are arranged substantially symmetrically about the center line in the y direction. That is, the two flow path walls 50a and 50b are arranged on the inlet end face side, and are arranged so that the gap between the flow path wall 50a and the flow path wall 50b increases as the distance from the inlet end face in the x direction increases. Is done.
  • the center tube 12 side in the y direction is also referred to as a base end, and the opposite side of the center tube 12 is also referred to as a tip end.
  • the end surface opposite to the entrance end surface in the x direction is also referred to as the exit end surface.
  • each of the flow channel wall 50a and the flow channel wall 50b has a shape in which the tips of three linear (plate-shaped) members are connected at different angles, that is, refraction. It is a bent line shape.
  • the shape of the flow path wall 50a and the flow path wall 50b is not limited to this, and a straight line can be used as long as the gap between the flow path wall 50a and the flow path wall 50b increases as the distance from the inlet end surface increases. It may be a shape such as a shape or a curve.
  • symbol 52 in a figure is a wall-shaped member (wall member 52) similar to the flow-path wall 50a etc. formed in the whole area of a x direction in the front-end
  • the separation module 10 since the separation module 10 has a configuration in which a plurality of stacked bodies 14 are stacked and wound, the raw material gas G flowing into one supply gas flow path member 24 is basically supplied to the separation module 10. There is no discharge from the front end side of the gas flow path member 24. However, since the raw material gas G may be discharged from the front end side of the supply gas flow path member 24 even with a small amount, the raw material gas G can be more reliably provided by having the wall member 52 as shown in the illustrated example. Can be prevented from being discharged from the front end side of the supply gas flow path member 24, and the raw material gas can be processed more efficiently.
  • FIG. 11 is a conceptual diagram showing the flow velocity distribution of the source gas G in the supply gas flow path member in a conventional spiral type separation module in a planar shape. As conceptually shown in FIG.
  • the flow velocity of the raw material gas G flowing into the supply gas flow path member 124 from the inlet end face is high on the inlet end face side, and on the outlet end face side. It gets lower as you go. Further, the flow rate of the raw material gas is low near the center tube 112 and near the coating layer. That is, in the y direction, it is high at the center and low at the base end and the tip side (on the side of the center tube and the side opposite to the center tube).
  • the supply gas flow path member 24 has the flow path walls 50a and 50b.
  • the flow path walls 50a and 50b change the flow path of the raw material gas G flowing into the supply gas flow path member 24 to reduce the flow rate difference of the raw material gas G for each position of the supply gas flow path member 24.
  • the flow velocity distribution can be made uniform over the entire surface of the supply gas flow path member 24.
  • the central portion that is, the flow path wall 50 a and the flow path wall 50 b. Since the raw material gas G flowing in between flows in the flow path expanding toward the outlet end face, the flow velocity becomes slow while flowing between the flow path wall 50a and the flow path wall 50b.
  • the source gas G that has flowed in between the flow path wall 50a and the front end in the y direction and between the flow path wall 50b and the y direction base end flows through the flow path shrinking toward the outlet end face
  • the flow velocity increases while flowing between the flow path wall 50a and the distal end and between the flow path wall 50b and the proximal end. That is, the flow rate decreases at the center in the y direction where the flow rate of the raw material gas G is fast, and the flow rate increases at the distal end side and the proximal end side where the flow rate is slow.
  • the flow velocity difference of the source gas G for each position of the supply gas flow path member 24 can be reduced, and the flow velocity distribution can be made uniform over the entire surface of the supply gas flow path member 24.
  • the separation module of the present invention having the flow path walls 50a and 50b, the flow rate difference of the source gas G for each position of the supply gas flow path member 24 is reduced, so that the entire surface on the membrane surface of the facilitated transport film 20a. Furthermore, the raw material gas G, that is, water vapor can be supplied uniformly, and the processing efficiency of the raw material gas, that is, the separation performance of the acidic gas can be improved by effectively utilizing the entire surface of the facilitated transport film 20a.
  • the supply gas flow path member 24 shown in FIG. 3 (A) has two flow path walls. However, in the separation module of the present invention, there may be three or more flow path walls.
  • the supply gas flow path member 24 may have a plurality of sets of flow path walls, with two flow path walls as one set.
  • the supply gas flow path member 24 may have two sets of flow path walls in the x direction therein.
  • the flow path walls 50c and 50d have the same shape as the flow path walls 50a and 50b, respectively, and are formed closer to the outlet end face in the x direction than the flow path walls 50a and 50b.
  • the supply gas flow path member 24 may have two or more flow path walls in the y direction. Further, when a plurality of sets of flow path walls are provided, the shape of each flow path wall such as the length in the x direction may be different.
  • the supply gas flow path member 24 may have a plurality of sets of flow path walls with the center position in the y direction coincided with each other.
  • the supply gas flow path member 24 may have two sets of flow path walls with the center position in the y direction coincided with each other.
  • the illustrated example has two sets of flow path walls, flow path walls 50a and 50b and flow path walls 50e and 50f.
  • the channel wall 50e is formed on the tip side of the channel wall 50a.
  • the flow path wall 50f is formed on the proximal end side with respect to the flow path wall 50b.
  • the flow path wall 50e and the flow path wall 50f are longer in the x direction than the flow path wall 50a and the flow path wall 50b.
  • the flow path wall 50e and the flow path wall 50f are formed in an S shape.
  • both ends on the outlet side where the source gas is difficult to reach The raw material gas can be more suitably supplied to the section.
  • the source gas in the supply gas flow path member Can be made more uniform.
  • the shape (length, curvature, angle, etc.), arrangement position, number, etc. of the flow path wall are not limited to the above example, but depending on the flow velocity distribution of the source gas in the supply gas flow path member 24. What is necessary is just to determine suitably.
  • the distance between at least one pair of flow path walls only needs to increase in the flow direction, and the flow path walls have a relationship in which the distance between the flow path walls decreases in the flow direction. You may have.
  • the spiral separation module 10 has a configuration in which one or more sheet-like laminates 14 are laminated and wound around the central cylinder 12.
  • a flow path wall may be disposed in each of the supply gas flow path members 24 of each laminated body 14.
  • the size, length, A shape such as a curvature, an arrangement position, an interval between flow path walls, and an average angle formed by a pair of flow path walls may be different.
  • the positions of the laminated bodies 14 are shifted and wound.
  • the flow velocity distribution in the supply gas flow path member 24 is different for each laminate 14. Therefore, for example, depending on the position of the laminated body 14 at the time of winding, for each laminated body 14, the shape, the arrangement position, the interval between the flow path walls, the size, the length, the curvature and the like of the flow path wall, and You may change the average angle etc. which the flow-path wall used as a group makes.
  • the length of the flow path walls 50a and 50b in the x direction depends on the flow velocity distribution, flow rate and temperature of the supplied raw material gas G, the position and area of the supply gas flow path member 24, etc. Accordingly, it may be determined appropriately.
  • the length of the flow path walls 50a and 50b in the x direction is 10 times the length of the supply gas flow path member 24 in the x direction in that the flow velocity distribution in the supply gas flow path member 24 can be more preferably uniformized. % Or more is preferable, 10% to 90% is more preferable, and 30% to 60% is particularly preferable.
  • the thickness of the flow path wall is appropriately determined according to the flow velocity distribution, flow rate and temperature of the supplied raw material gas G, the arrangement position, area, etc. of the supply gas flow path member 24. do it.
  • the thickness of the flow path wall is preferably 5 to 50 mm, more preferably 5 to 30 mm, and particularly preferably 5 to 20 mm.
  • the formation area of the flow path wall (flow path changing member) in the surface direction of the supply gas flow path member 24 depends on the performance of the facilitated transport film 20a and the flow rate of the supplied raw material gas G. What is necessary is just to determine suitably according to distribution, flow volume, temperature, etc.
  • the formation area of the flow path wall is too small, the effect of forming the flow path wall cannot be sufficiently obtained, and if the formation area of the flow path wall is too large, Processing efficiency is lowered.
  • the formation area (area B) of the flow path wall is preferably 0.01 to 10% of the area (area A) of the supply gas flow path member 24 (that is, “0.01 ⁇ (( B / A) ⁇ 100 ⁇ 10 ”is preferred.
  • the flow path wall (flow path changing member) is disposed at a position extending from the inlet end surface of the supply gas flow path member 24, but is not limited thereto.
  • the flow path changing member extends in the x direction from the inlet end face of the supply gas flow path member 24 as shown in the example in that the flow rate of the raw material gas G can be made more uniform.
  • a wall shape is preferred.
  • the forming material of the flow path wall has various heat resistance and moisture resistance, and can form a wall-shaped member inside the mesh-shaped supply gas flow path member 24.
  • Material is available.
  • an adhesive, a thermoplastic resin, an adhesive tape, etc. are illustrated.
  • various known adhesives are suitably used in terms of the formability and convenience of the flow path wall, the degree of freedom of the flow path wall width, and the like.
  • adhesives examples include epoxy resins, vinyl chloride copolymers, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, butadiene-acrylonitrile copolymers, Polyamide resin, polyvinyl butyral, polyester, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, urea resin, melamine resin, phenoxy resin, silicone resin, urea formamide resin, etc.
  • an epoxy resin is illustrated more suitably from a heat resistant and moisture resistant viewpoint.
  • the flow path wall is formed of an adhesive or a thermoplastic resin solution. It can be formed by impregnating and curing a mesh-shaped supply gas flow path member.
  • 5A and 5B are schematic perspective views for explaining an example of a method for forming a flow path wall.
  • a solution (first solution) of the adhesive or thermoplastic resin that is a material for forming the flow path wall is prepared, and further, a solution (second solution) obtained by diluting the first solution with a solvent is prepared. To do.
  • the prepared second solution is impregnated in a predetermined position in the mesh-shaped supply gas flow path member 24 by using the cap 60a.
  • the prepared first solution is obtained using the base 60b.
  • the second solutions 62a and 62b are impregnated. That is, the first solution is further dissolved in the second solution in the supply gas flow path member 24. Thereafter, the second solutions 62a and 62b are dried and cured to form the flow path walls 50a and 50b.
  • the first solution that is the material of the flow path walls 50a and 50b is diluted with a solvent to prepare a second solution having a low viscosity, impregnated with the second solution, and further the first solution.
  • the solution By impregnating the solution, the solution can be impregnated in the entire thickness direction of the supply gas flow path member 24, and a flow path wall free from defects or the like can be formed.
  • the solvent for diluting the first solution is not particularly limited, and various known solvents used as solvents for the adhesive or thermoplastic resin solution such as acetone, MEK, methanol, hexane and the like. Is available.
  • the viscosity of the second solution is not particularly limited as long as it can be suitably impregnated in the supply gas flow path member 24, and the mesh diameter, thickness, porosity, and affinity with the solvent of the supply gas flow path member 24 are not limited. What is necessary is just to determine suitably by sex etc.
  • the formation method of the flow path walls 50a and 50b in the supply gas flow path member 24 is not limited to this.
  • the supply gas flow path member 24 may be directly impregnated with the adhesive or thermoplastic resin solution (first solution) which is a material for forming the flow path walls 50a and 50b.
  • the method for forming the flow path walls 50a, 50b by impregnating the supply gas flow path member 24 with the adhesive or the thermoplastic resin solution is not limited.
  • the flow path walls 50a and 50b are formed directly on the acidic gas separation layer 20 (facilitated transport film 20a), and the acidic gas separation layer 20 and the supply gas flow path member formed with the flow path walls 50a and 50b. 24 may be laminated.
  • a method of directly forming the flow path walls 50a and 50b on the acidic gas separation layer 20 (facilitated transport film 20a) a method of installing a sheet-like material such as an adhesive tape, a solution of the above-mentioned adhesive or thermoplastic resin is used.
  • a method of applying and curing on the acid gas separation layer 20 can be used.
  • Such a supply gas flow path member 24 is sandwiched between the acidic gas separation layers 20.
  • the acid gas separation layer 20 is, for example, a rectangular sheet.
  • the separation module 10 in the illustrated example is a facilitated transport type as a preferred embodiment. Therefore, the acidic gas separation layer 20 is composed of a facilitated transport film 20a and a porous support 20b.
  • the present invention is not limited to the facilitated transport type separation module, and may be a dissolution / diffusion type separation module using a dissolution / diffusion membrane as disclosed in Patent Document 1 described above.
  • the facilitated transport film 20a contains at least a carrier that reacts with the acidic gas Gc contained in the source gas G flowing through the supply gas flow path member 24, and a hydrophilic compound that supports the carrier.
  • a facilitated transport film 20a has a function of selectively permeating the acidic gas Gc from the source gas G (a function of selectively transporting the acidic gas Gc).
  • the facilitated transport type separation module is required to be used at high temperature and high humidity. Therefore, the facilitated transport film 20a has a function of selectively allowing the acidic gas Gc to permeate even at high temperatures (for example, 100 to 200 ° C.).
  • the hydrophilic compound absorbs water vapor and the facilitated transport film 20a retains moisture, so that the carrier can more easily transport the acidic gas Gc. Compared with the case, the separation efficiency is increased.
  • the membrane area of the facilitated transport membrane 20a may be set as appropriate according to the size of the separation module 10, the processing capacity required for the separation module 10, and the like. Specifically, 0.01 to 1000 m 2 is preferable, 0.02 to 750 m 2 is more preferable, and 0.025 m to 500 m 2 is more preferable. In particular, the membrane area of the facilitated transport film 20a is particularly preferably 1 to 100 m 2 from a practical viewpoint.
  • the length of the facilitated transport film 20a in the winding direction may be set as appropriate according to the size of the separation module 10, the processing capacity required for the separation module 10, and the like. Specifically, 100 to 10000 mm is preferable, 150 to 9000 mm is more preferable, and 200 to 8000 mm is even more preferable. In particular, the length of the facilitated transport film 20a is particularly preferably 800 to 4000 mm from a practical viewpoint.
  • the width of the facilitated transport film may be set as appropriate according to the size of the separation module 10 in the x direction.
  • the thickness of the facilitated transport film 20a may be appropriately set according to the size of the separation module 10, the processing capability required for the separation module 10, and the like. Specifically, it is preferably 1 to 200 ⁇ m, more preferably 2 to 175 ⁇ m. By setting the thickness of the facilitated transport membrane 20a within the above range, sufficient gas permeability and separation selectivity can be realized.
  • the hydrophilic compound functions as a binder, retains moisture in the facilitated transport film 20a, and exhibits a function of separating a gas such as carbon dioxide by the carrier. Moreover, it is preferable that a hydrophilic compound has a crosslinked structure from a heat resistant viewpoint. Examples of such hydrophilic compounds include hydrophilic polymers.
  • the hydrophilic compound can be dissolved in water to form a coating solution, and the facilitated transport film 20a preferably has high hydrophilicity (moisturizing property), those having high hydrophilicity are preferable.
  • the hydrophilic compound preferably has a hydrophilicity of 0.5 g / g or more, more preferably 1 g / g or more, more preferably 5 g / g of the physiological saline. More preferably, it has a hydrophilicity of g or more, particularly preferably has a hydrophilicity of 10 g / g or more, and most preferably has a hydrophilicity of 20 g / g or more.
  • the weight average molecular weight of a hydrophilic compound suitably in the range which can form a stable film
  • the weight average molecular weight of the hydrophilic compound By setting the weight average molecular weight of the hydrophilic compound to 20,000 or more, the facilitated transport film 20a having a stable and sufficient film strength can be obtained.
  • the hydrophilic compound has —OH as a crosslinkable group
  • the hydrophilic compound preferably has a weight average molecular weight of 30,000 or more. In this case, the weight average molecular weight is more preferably 40,000 or more, and more preferably 50,000 or more.
  • the weight average molecular weight is preferably 6,000,000 or less from the viewpoint of production suitability.
  • the hydrophilic compound preferably has a weight average molecular weight of 10,000 or more.
  • the weight average molecular weight of the hydrophilic compound is more preferably 15,000 or more, and particularly preferably 20,000 or more.
  • the weight average molecular weight is preferably 1,000,000 or less from the viewpoint of production suitability.
  • the weight average molecular weight of the hydrophilic compound may be a value measured according to JIS K 6726.
  • JIS K 6726 the weight average molecular weight of the hydrophilic compound
  • crosslinkable group forming the hydrophilic compound those capable of forming a hydrolysis-resistant crosslinked structure are preferably selected.
  • Specific examples include a hydroxy group (—OH), an amino group (—NH 2 ), a chlorine atom (—Cl), a cyano group (—CN), a carboxy group (—COOH), and an epoxy group.
  • an amino group and a hydroxy group are preferably exemplified.
  • a hydroxy group is illustrated from the viewpoint of affinity with a carrier and a carrier carrying effect.
  • hydrophilic compounds include those having a single crosslinkable group such as polyallylamine, polyacrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polyethyleneimine, polyvinylamine, polyornithine, polylysine, Examples include polyethylene oxide, water-soluble cellulose, starch, alginic acid, chitin, polysulfonic acid, polyhydroxymethacrylate, poly-N-vinylacetamide and the like. Most preferred is polyvinyl alcohol. Moreover, as a hydrophilic compound, these copolymers are also illustrated.
  • hydrophilic compounds having a plurality of crosslinkable groups include polyvinyl alcohol-polyacrylic acid copolymers.
  • a polyvinyl alcohol-polyacrylic salt copolymer is preferable because of its high water absorption ability and high hydrogel strength even at high water absorption.
  • the content of polyacrylic acid in the polyvinyl alcohol-polyacrylic acid copolymer is, for example, 1 to 95 mol%, preferably 2 to 70 mol%, more preferably 3 to 60 mol%, particularly preferably 5 to 50 mol%. It is.
  • the polyacrylic acid may be a salt.
  • the polyacrylic acid salt in this case include ammonium salts and organic ammonium salts in addition to alkali metal salts such as sodium salts and potassium salts.
  • Polyvinyl alcohol is also available as a commercial product. Specific examples include PVA117 (manufactured by Kuraray Co., Ltd.), Poval (manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (manufactured by Aldrich Co., Ltd.), J-Poval (manufactured by Nippon Vinebaum Poval Co., Ltd.), and the like. Various grades of molecular weight exist, but those having a weight average molecular weight of 130,000 to 300,000 are preferred.
  • a polyvinyl alcohol-polyacrylate copolymer (sodium salt) is also available as a commercial product. For example, Crustomer AP20 (made by Kuraray Co., Ltd.) is exemplified.
  • two or more hydrophilic compounds may be mixed and used.
  • the content of the hydrophilic compound in the facilitated transport film 20a functions as a binder for forming the facilitated transport film 20a, and the amount capable of sufficiently retaining moisture depends on the type of the hydrophilic composition or the carrier. It can be set as appropriate. Specifically, 0.5 to 50% by mass is preferable, 0.75 to 30% by mass is more preferable, and 1 to 15% by mass is particularly preferable. By setting the content of the hydrophilic compound within this range, the above-mentioned function as a binder and the moisture retention function can be stably and suitably expressed.
  • the crosslinked structure in the hydrophilic compound can be formed by a conventionally known method such as thermal crosslinking, ultraviolet crosslinking, electron beam crosslinking, radiation crosslinking, or photocrosslinking. Photocrosslinking or thermal crosslinking is preferred, and thermal crosslinking is most preferred.
  • the facilitated transport film 20a it is preferable to use a crosslinking agent together with the hydrophilic compound. That is, when forming the facilitated-transport film
  • the cross-linking agent one containing a cross-linking agent having two or more functional groups capable of reacting with a hydrophilic compound and capable of cross-linking such as thermal cross-linking or photo-crosslinking is selected.
  • the formed crosslinked structure is preferably a hydrolysis-resistant crosslinked structure.
  • the crosslinking agent used for forming the facilitated transport film 20a includes an epoxy crosslinking agent, a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde
  • Preferred examples include valent amines and organometallic crosslinking agents. More preferred are polyvalent aldehydes, organometallic crosslinking agents and epoxy crosslinking agents, and among them, polyvalent aldehydes such as glutaraldehyde and formaldehyde having two or more aldehyde groups are preferred.
  • Epoxy crosslinking agent it is a compound which has 2 or more of epoxy groups, and the compound which has 4 or more is also preferable.
  • Epoxy crosslinking agents are also available as commercial products, for example, trimethylolpropane triglycidyl ether (manufactured by Kyoeisha Chemical Co., Ltd., Epolite 100MF, etc.), Nagase ChemteX Corporation EX-411, EX-313, EX-614B, Examples include EX-810, EX-811, EX-821, EX-830, and Epiol E400 manufactured by NOF Corporation.
  • the oxetane compound which has cyclic ether as a compound similar to an epoxy crosslinking agent is also used preferably.
  • the oxetane compound is preferably a polyvalent glycidyl ether having two or more functional groups. Examples of commercially available products include EX-411, EX-313, EX-614B, EX-810, EX-811 manufactured by Nagase ChemteX Corporation. Examples include EX-821 and EX-830.
  • polyvalent glycidyl ether examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene Examples include glycol glycidyl ether and polypropylene glycol diglycidyl ether.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, diethanolamine, triethanolamine, polyoxypropyl, and oxyethylene oxypropylene block copolymer.
  • examples include coalescence, pentaerythritol, and sobitol.
  • Examples of the polyvalent isocyanate include 2,4-toluylene diisocyanate and hexamethylene diisocyanate.
  • Examples of the polyvalent aziridine include 2,2-bishydroxymethylbutanol-tris [3- (1-acyridinyl) propionate], 1,6-hexamethylenediethyleneurea, diphenylmethane-bis-4,4′-N, N Examples include '-diethylene urea.
  • Examples of the haloepoxy compound include epichlorohydrin and ⁇ -methylchlorohydrin.
  • Examples of the polyvalent aldehyde include glutaraldehyde and glyoxal.
  • Examples of the polyvalent amine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and polyethyleneimine.
  • examples of the organometallic crosslinking agent include organic titanium crosslinking agents and organic zirconia crosslinking agents.
  • polyvinyl alcohol having a weight average molecular weight of 130,000 or more when polyvinyl alcohol having a weight average molecular weight of 130,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure having good reactivity with this hydrophilic compound and excellent hydrolysis resistance. Therefore, an epoxy crosslinking agent and glutaraldehyde are preferably used. Further, when a polyvinyl alcohol-polyacrylic acid copolymer is used as the hydrophilic compound, an epoxy crosslinking agent or glutaraldehyde is preferably used. In addition, when a polyallylamine having a weight average molecular weight of 10,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure that has good reactivity with the hydrophilic compound and excellent hydrolysis resistance.
  • an epoxy crosslinking agent glutaraldehyde, and an organometallic crosslinking agent are preferably used. Further, when polyethyleneimine or polyallylamine is used as the hydrophilic compound, an epoxy crosslinking agent is preferably used.
  • the quantity of a crosslinking agent suitably according to the kind of hydrophilic compound and crosslinking agent which are used for formation of the facilitated-transport film
  • the amount is preferably 0.001 to 80 parts by mass, more preferably 0.01 to 60 parts by mass, and particularly preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the crosslinkable group possessed by the hydrophilic compound. preferable.
  • the crosslinked structure is formed by reacting 0.001 to 80 mol of a crosslinking agent with respect to 100 mol of the crosslinkable group possessed by the hydrophilic compound. preferable.
  • the facilitated transport film 20a contains a carrier in addition to such a hydrophilic compound.
  • the carrier is various water-soluble compounds having affinity with an acidic gas (for example, carbon dioxide gas) and showing basicity. Specific examples include alkali metal compounds, nitrogen-containing compounds, and sulfur oxides.
  • the carrier may react indirectly with the acid gas, or the carrier itself may react directly with the acid gas.
  • the former reacts with other gas contained in the supply gas, shows basicity, and the basic compound reacts with acidic gas. More specifically, OH react with steam (water) - was released, the OH - that reacts with CO 2, a compound can be incorporated selectively CO 2 in facilitated transport membrane 20a
  • an alkali metal compound is such that the carrier itself is basic, for example, a nitrogen-containing compound or a sulfur oxide.
  • alkali metal compound examples include alkali metal carbonate, alkali metal bicarbonate, and alkali metal hydroxide.
  • alkali metal an alkali metal element selected from cesium, rubidium, potassium, lithium, and sodium is preferably used.
  • an alkali metal compound contains the salt and its ion other than alkali metal itself.
  • Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
  • Examples of the alkali metal bicarbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate.
  • examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, an alkali metal carbonate is preferable, and a compound containing potassium, rubidium, and cesium having high solubility in water is preferable from the viewpoint of good affinity with acidic gas.
  • two or more kinds of carriers may be used in combination.
  • two or more types of carriers are present in the facilitated transport film 20a, different carriers can be separated from each other in the film.
  • the facilitated transport films 20a or the facilitated transport film 20a and other members are stuck together at the time of manufacture. (Blocking) can be suitably suppressed.
  • the deliquescence property is more excellent than the first compound having deliquescence and the first compound.
  • a second compound having a low specific gravity As an example, the first compound is exemplified by cesium carbonate, and the second compound is exemplified by potassium carbonate.
  • Nitrogen-containing compounds include amino acids such as glycine, alanine, serine, proline, histidine, taurine, diaminopropionic acid, hetero compounds such as pyridine, histidine, piperazine, imidazole, triazine, monoethanolamine, diethanolamine, triethanolamine , Alkanolamines such as monopropanolamine, dipropanolamine and tripropanolamine, cyclic polyetheramines such as cryptand [2.1] and cryptand [2.2], cryptand [2.2.1] and cryptand [ And bicyclic polyetheramines such as 2.2.2], porphyrin, phthalocyanine, ethylenediaminetetraacetic acid and the like.
  • examples of the sulfur compound include amino acids such as cystine and cysteine, polythiophene, dodecylthiol and the like.
  • the facilitated transport film 20a (composition for forming the facilitated transport film 20a) may contain various components as necessary in addition to such a hydrophilic compound, a crosslinking agent and a carrier.
  • antioxidants such as dibutylhydroxytoluene (BHT), compounds having 3 to 20 carbon atoms or fluorinated alkyl groups having 3 to 20 carbon atoms and hydrophilic groups, and siloxane structures.
  • BHT dibutylhydroxytoluene
  • Specific compounds such as compounds having a surfactant, surfactants such as sodium octoate and sodium 1-hexasulfonate, polymer particles such as polyolefin particles and polymethyl methacrylate particles, and the like.
  • a catalyst, a moisturizing (moisture absorbing) agent, an auxiliary solvent, a film strength adjusting agent, a defect detecting agent, and the like may be used as necessary.
  • the facilitated transport film 20a may be composed of a single layer or a plurality of layers.
  • the same film may be laminated. You may laminate.
  • the acidic gas separation layer 20 includes such a facilitated transport membrane 20a and a porous support 20b.
  • the porous support 20b has acid gas permeability and can be coated with a coating composition for forming the facilitated transport film 20a (supporting the coating film). It supports the transport film 20a.
  • As the material for forming the porous support 20b various known materials can be used as long as they can exhibit the above functions.
  • the porous support 20b constituting the acidic gas separation layer 20 may be a single layer, but has a two-layer structure including a porous membrane and an auxiliary support membrane. Is preferred. By having such two configurations, the porous support 20b more reliably expresses the functions of acid gas permeability, application of the coating composition to be the facilitated transport film 20a, and support of the facilitated transport film 20a. .
  • the porous support 20b is a single layer, various materials exemplified below as the porous film and the auxiliary support film can be used as the forming material.
  • the porous membrane is on the facilitated transport membrane 20a side.
  • the porous membrane is preferably made of a material having heat resistance and low hydrolyzability.
  • Specific examples of such a porous membrane include membrane filter membranes such as polysulfone, polyethersulfone, polypropylene, and cellulose, interfacially polymerized thin films of polyamide and polyimide, polytetrafluoroethylene (PTFE), and high molecular weight polyethylene.
  • PTFE polytetrafluoroethylene
  • An example is a stretched porous membrane.
  • a stretched porous membrane of PTFE or high molecular weight polyethylene has a high porosity, is small in inhibition of diffusion of acidic gas (especially carbon dioxide gas), and is preferable from the viewpoints of strength and manufacturing suitability.
  • a stretched porous membrane of PTFE is preferably used in terms of heat resistance and low hydrolyzability.
  • the porous membrane is hydrophobic because the facilitated transport membrane 20a containing moisture is likely to penetrate into the porous portion under the usage environment and does not cause deterioration in film thickness distribution or performance over time. Is preferred.
  • the porous membrane preferably has a maximum pore diameter of 1 ⁇ m or less. Further, the average pore diameter of the pores of the porous membrane is preferably 0.001 to 10 ⁇ m, more preferably 0.002 to 5 ⁇ m, and particularly preferably 0.005 to 1 ⁇ m. By setting the average pore diameter of the porous membrane within this range, it is possible to suitably prevent the adhesive application region described later from sufficiently impregnating the adhesive and preventing the porous membrane from passing the acidic gas. .
  • the auxiliary support membrane is provided for reinforcing the porous membrane.
  • Various materials can be used as the support membrane as long as the required strength, stretch resistance and gas permeability are satisfied.
  • a nonwoven fabric, a woven fabric, a net, and a mesh having an average pore diameter of 0.001 to 10 ⁇ m can be appropriately selected and used.
  • the auxiliary support membrane is also preferably made of a material having heat resistance and low hydrolyzability, like the porous membrane described above.
  • Non-woven fabrics, woven fabrics, and knitted fabrics that have excellent durability and heat resistance include polyolefins such as polypropylene (PP), modified polyamides such as aramid (trade name), polytetrafluoroethylene, polyvinylidene fluoride, etc.
  • a fiber made of a fluorine-containing resin is preferable. It is preferable to use the same material as the resin material constituting the mesh.
  • a non-woven fabric made of PP that is inexpensive and has high mechanical strength is particularly preferably exemplified.
  • the porous support 20b has an auxiliary support film, the mechanical strength can be improved. Therefore, for example, even when handling in a coating apparatus using a roll-to-roll (hereinafter also referred to as RtoR) described later, wrinkles on the porous support 20b can be prevented, and productivity can be increased. .
  • RtoR roll-to-roll
  • the thickness of the porous membrane is preferably 5 to 100 ⁇ m, and the thickness of the auxiliary support membrane is preferably 50 to 300 ⁇ m.
  • the thickness of the porous support 20b is preferably 30 to 500 ⁇ m.
  • Such an acidic gas separation layer 20 is prepared by preparing a liquid coating composition (coating / coating liquid) containing a component that becomes the facilitated transport film 20a, applying it to the porous support 20b, and drying it. It can be produced by a coating method. That is, first, a hydrophilic compound, a carrier, and other components to be added as necessary are respectively added to water (room temperature water or warm water) in appropriate amounts, and sufficiently stirred to facilitate transport film 20a. A coating composition is prepared. In the preparation of the coating composition, if necessary, dissolution of each component may be promoted by heating with stirring. Moreover, after adding a hydrophilic compound to water and melt
  • the acidic gas separation layer 20 is produced by applying this composition to the porous support 20b and drying it.
  • the application and drying of the composition may be performed in a so-called single-wafer type, which is performed on a cut sheet-like porous support 20b cut into a predetermined size.
  • the acid gas separation layer 20 is produced by so-called RtoR. That is, the prepared coating composition is applied while the porous support 20b is sent out from the feed roll formed by winding the long porous support 20b and conveyed in the longitudinal direction, and then the applied coating composition is applied.
  • the product (coating film) is dried to produce the acidic gas separation layer 20 formed by forming the facilitated transport film 20a on the surface of the porous support 20b, and the produced acidic gas separation layer 20 is wound up.
  • the conveying speed of the porous support 20b is preferably 0.5 m / min or more, more preferably 0.75 to 200 m / min, and particularly preferably 1 to 200 m / min.
  • Various known methods can be used for applying the coating composition. Specific examples include curtain flow coaters, extrusion die coaters, air doctor coaters, blade coaters, rod coaters, knife coaters, squeeze coaters, reverse roll coaters, bar coaters, and the like.
  • the coating film of the coating composition may be dried by a known method. As an example, drying with warm air is exemplified. The speed of the warm air may be set as appropriate so that the gel film can be quickly dried and the gel film is not broken. Specifically, 0.5 to 200 m / min is preferable, 0.75 to 200 m / min is more preferable, and 1 to 200 m / min is particularly preferable.
  • the temperature of the hot air may be appropriately set to a temperature at which the porous support 20b is not deformed and the gel membrane can be quickly dried. Specifically, the film surface temperature is preferably 1 to 120 ° C., more preferably 2 to 115 ° C., and particularly preferably 3 to 110 ° C. Moreover, you may use together heating of the porous support body 20b for drying of a coating film as needed.
  • the laminated body 14 is further laminated with a permeating gas flow path member 26.
  • the permeating gas channel member 26 is, for example, a rectangular sheet.
  • the permeating gas channel member 26 is a member for causing the acidic gas Gc that has reacted with the carrier and permeated the acidic gas separation layer 20 to flow through the through hole 12a of the central cylinder 12.
  • the laminate 14 includes the sandwiching body 36 in which the acidic gas separation layer 20 is folded in two with the facilitated transport film 20a inside, and the supply gas flow path member 24 is sandwiched therebetween. By laminating the permeating gas flow path member 26 on the sandwiching body 36 and bonding them with the adhesive layer 30, one laminated body 14 is configured.
  • the permeating gas flow path member 26 functions as a spacer between the stacked bodies 14, and the acidic gas separated from the source gas G reaches the through hole 12 a of the central cylinder 12 toward the winding center (inner side) of the stacked body 14. A flow path for the gas Gc is formed. Further, in order to properly form the flow path of the acidic gas Gc, the adhesive layer 30 described later needs to penetrate. Considering this point, the permeating gas channel member 26 is preferably a member having a mesh structure (net / mesh), like the supply gas channel member 24.
  • polyester-based materials such as epoxy-impregnated polyester, polyolefin-based materials such as polypropylene, fluorine-based materials such as polytetrafluoroethylene, inorganic materials such as metal, glass, and ceramics are preferably exemplified.
  • the thickness of the permeating gas channel member 26 may be appropriately determined according to the supply amount of the raw material gas G, the required processing capacity, and the like. Specifically, 100 to 1000 ⁇ m is preferable, 150 to 950 ⁇ m is more preferable, and 200 to 900 ⁇ m is particularly preferable.
  • the permeating gas flow path member 26 is a flow path of the acidic gas Gc that is separated from the source gas G and permeates the acidic gas separation layer 20. Therefore, it is preferable that the permeating gas channel member 26 has a low resistance to the flowing gas. Specifically, it is preferable that the porosity is high, the deformation is small when pressure is applied, and the pressure loss is small.
  • the porosity of the permeating gas channel member 26 is preferably 30 to 99%, more preferably 35 to 97.5%, and particularly preferably 40 to 95%. Further, deformation when pressure is applied can be approximated by elongation when a tensile test is performed. Specifically, the elongation when a load of 10 N / 10 mm width is applied is preferably within 5%, more preferably within 4%. Furthermore, the pressure loss can be approximated by a flow rate loss of compressed air that flows at a constant flow rate. Specifically, when 15 L / min of air is passed through the 15 cm square permeate gas channel member 26 at room temperature, the flow rate loss is preferably within 7.5 L / min, and within 7 L / min. More preferably.
  • FIGS. 6A to 9 used in the following description, the supply gas flow path member 24 and the permeate gas flow path member 26 have end faces (end faces) in order to simplify the drawings and clearly show the configuration. Part) is shown in net form.
  • the extending direction of the central cylinder 12 and the short direction coincide with each other, and a kapton tape, an adhesive, etc.
  • the end of the permeating gas flow path member 26 is fixed using the fixing means 34.
  • the tube wall of the center tube 12 is provided with a slit (not shown) along the axial direction.
  • the distal end portion of the permeating gas flow path member 26 is inserted into the slit, and is fixed to the inner peripheral surface of the central cylinder 12 by a fixing means.
  • the inner peripheral surface of the central tube 12 and the permeating gas channel Friction with the member 26 can prevent the permeate gas flow path member 26 from coming out of the slit, that is, the permeate gas flow path member 26 is fixed.
  • the acidic gas separation layer 20 is folded in half with the facilitated transport membrane 20a inside, and the supply gas flow path member 24 is sandwiched therebetween. That is, a sandwiching body 36 is produced in which the supply gas flow path member 24 is sandwiched between the acidic gas separation layers 20 folded in half.
  • the acidic gas separation layer 20 is not equally folded in half, but is folded in half so that one is slightly longer as shown in FIG.
  • a sheet-like protective member for example, Kapton tape
  • a PTFE tape is preferably disposed.
  • an adhesive 30a to be the adhesive layer 30 is applied to the shorter surface of the acid gas separation layer 20 folded in half (the surface of the porous support 20b).
  • the adhesive 30 a (that is, the adhesive layer 30) extends in the vicinity of both ends in the x direction and is applied to the entire area in the y direction. In the vicinity of the end on the opposite side, it extends over the entire region in the x direction and is applied in a strip shape.
  • the x direction source gas supply direction
  • the y direction orthogonal to the x direction coincides with the winding direction of the stacked body 14.
  • the surface coated with the adhesive 30 a is directed to the permeating gas flow path member 26, and the folded side is directed to the central cylinder 12.
  • the sandwiching body 36 is laminated on the permeate gas channel member 26 fixed to the central cylinder 12, and the permeate gas channel member 26 and the acidic gas separation layer 20 (porous support 20b) are bonded.
  • an adhesive 30a to be the adhesive layer 30 is applied to the upper surface of the laminated sandwiching body 36 (the surface of the long porous support 20b).
  • the direction opposite to the permeating gas flow path member 26 first fixed to the central cylinder 12 by the fixing means 34 is also referred to as the upper side.
  • the adhesive 30a on this surface is also applied in the form of a belt extending in the entire winding direction in the vicinity of both ends in the width direction, as described above, It extends in the entire width direction in the vicinity of the end on the opposite side and is applied in a strip shape.
  • a permeate gas flow path member 26 is laminated on the sandwiched body 36 coated with the adhesive 30 a, and the acidic gas separation layer 20 (porous support 20 b) and the permeate are permeated.
  • the gas flow path member 26 is bonded to form the laminate 14.
  • FIG. 7 As shown in FIG. 7, as shown in FIG. 7, a sandwiching body 36 in which the supply gas flow path member 24 is sandwiched by the acidic gas separation layer 20 is produced, and an adhesive 30 a that becomes the adhesive layer 30 is applied.
  • the permeated gas flow path member 26 and the sandwiching body 36 that are finally stacked are stacked and bonded with the side to which the adhesive is applied facing down.
  • an adhesive 30a is applied to the upper surface of the laminated sandwiching body 36 as shown in FIG. 8A, and then, as shown in FIG.
  • the member 26 is laminated and bonded, and the second layered laminate 14 is laminated.
  • the steps of FIGS. 7 to 9 are repeated to stack a predetermined number of stacked bodies 14 as conceptually shown in FIG.
  • the laminated body 14 is laminated so as to be gradually separated from the central tube 12 in the winding direction as it goes upward.
  • winding (wrapping) of the laminated body 14 around the center tube 12 is easily performed, and the end portion or the vicinity of the end portion of each permeate gas flow path member 26 on the center tube 12 side is preferably the center tube. 12 can be contacted.
  • the adhesive 38b is applied between the sandwiching body 36 and the adhesive 36b.
  • the laminated body 14 is wound (wound) around the central cylinder 12 so as to wind the laminated body 14.
  • the permeate gas flow path member 26 on the outermost periphery (that is, the lowermost layer first fixed to the central cylinder 12) is maintained for a predetermined time in a state where tension is applied in the pulling-out direction (winding and squeezing direction). Then, the adhesive 30a and the like are dried.
  • the outermost permeate gas channel member 26 is fixed by ultrasonic welding or the like at a position where it has made one round, and the excess permeate gas channel member 26 outside the fixed position is cut.
  • the spiral laminated body 14a formed by winding the laminated body 14 around the central cylinder 12 is completed.
  • the raw material gas G is supplied from the end of the supply gas flow path member 24, and the acidic gas Gc passes (transports) in the stacking direction through the acidic gas separation layer 20 to transmit the permeated gas flow. It flows into the road member 26, flows through the permeate gas flow path member 26, and reaches the central cylinder 12.
  • the adhesive 30a is applied to the porous support 20b, and the adhesive 30a is bonded to the permeated gas flow path member 26 having a network structure. Therefore, the adhesive 30a permeates (impregnates) into the porous support 20b and the permeating gas flow path member 26, and the adhesive layer 30 is formed in both. Further, as described above, the adhesive layer 30 (adhesive 30a) extends in the vicinity of both ends in the width direction (x direction) and extends in the entire winding direction (y direction) and is formed in a strip shape.
  • the adhesive layer 30 extends across the entire width direction in the vicinity of the end portion on the side opposite to the folded portion on the central tube 12 side so as to cross the adhesive layer 30 in the width direction in the vicinity of both ends in the width direction. Then, it is formed in a band shape. That is, the adhesive layer 30 is formed so as to surround the outer peripheries of the permeating gas flow path member 26 and the porous support 20b by opening the central tube 12 side. Further, the permeating gas channel member 26 is sandwiched between the facilitated transport films 20a. As a result, an envelope-like flow path is formed in the permeate gas flow path member 26 of the laminate 14 so that the central tube 12 side is open.
  • the acidic gas Gc that has passed through the acidic gas separation layer 20 and has flowed into the permeate gas flow path member 26 flows toward the central cylinder 12 in the permeate gas flow path member 26 without flowing out, It flows into the center tube 12 from the through hole 12a.
  • various known adhesives can be used as long as the adhesive layer 30 (adhesive 30a) has sufficient adhesive strength, heat resistance, and moisture resistance.
  • adhesives include epoxy resins, vinyl chloride copolymers, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, butadiene-acrylonitrile copolymers, polyamide resins, polyvinyl butyral.
  • Suitable examples include polyesters, cellulose derivatives (nitrocellulose, etc.), styrene-butadiene copolymers, various synthetic rubber resins, phenol resins, urea resins, melamine resins, phenoxy resins, silicon resins, urea formamide resins, and the like. .
  • the adhesive 30a to be the adhesive layer 30 may be applied once, but preferably, an adhesive diluted with an organic solvent such as acetone is applied first, and only the adhesive is applied thereon. preferable.
  • the adhesive diluted with an organic solvent is preferably applied in a wide width, and the adhesive is preferably applied in a narrower width.
  • the adhesive layer 30 (adhesive 30a) can be suitably infiltrated into the porous support 20b and the permeating gas channel member 26.
  • telescope prevention plates (telescope prevention members) 16 are disposed at both ends of the spiral laminate 14a produced in this way.
  • the telescope prevention plate 16 is a so-called telescope in which the spiral laminated body 14a is pressed by the source gas G, the supply-side end face is pushed in a nested manner, and the opposite end face protrudes in a nested manner. This is a member for preventing the phenomenon.
  • the telescope prevention plate 16 various known types used for spiral type separation modules can be used.
  • the telescope prevention plate includes an annular outer ring portion 16a, an annular inner ring portion 16b arranged in the outer ring portion 16a so as to coincide with the center, an outer ring portion 16a and an inner ring. And a rib (spoke) 16c for connecting and fixing the portion 16b.
  • the center tube 12 around which the stacked body 14 is wound passes through the inner ring portion 16b.
  • the ribs 16c are provided radially at equal angular intervals from the center of the outer ring part 16a and the inner ring part 16b, and between the outer ring part 16a and the inner ring part 16b and each rib 16c. Is an opening 16d through which the source gas G or the residual gas Gr passes.
  • the telescope prevention plate 16 may be disposed in contact with the end face of the spiral laminated body 14a. However, in general, in order to use the entire end face of the spiral laminate 14a for supplying the source gas and discharging the residual gas Gr, there is a slight gap between the telescope prevention plate 16 and the end face of the spiral laminate 14a. It is arranged.
  • Various materials having sufficient strength, heat resistance and moisture resistance can be used as the material for forming the telescope prevention plate 16.
  • metal materials for example, stainless steel (SUS), aluminum, aluminum alloy, tin, tin alloy, etc.
  • resin materials for example, polyethylene resin, polypropylene resin, aromatic polyamide resin, nylon 12, nylon 66, polysulfin resin
  • Polytetrafluoroethylene resin polycarbonate resin, acrylic / butadiene / styrene resin, acrylic / ethylene / styrene resin, epoxy resin, nitrile resin, polyetheretherketone resin (PEEK), polyacetal resin (POM), polyphenylene sulfide (PPS) Etc.
  • fiber reinforced plastics of these resins for example, as the fiber, glass fiber, carbon fiber, stainless steel fiber, aramid fiber, etc.
  • fiber reinforced plastics of these resins for example, as the fiber, glass fiber, carbon fiber, stainless steel fiber, aramid fiber, etc.
  • Fiber-reinforced polypropylene, long glass fiber-reinforced polyphenylene sulfide), as well as ceramics (such as zeolite, alumina, etc.) and the like are preferably exemplified.
  • ceramics such as zeolite, alumina, etc.
  • resin you may use resin reinforced with glass fiber etc.
  • the coating layer 18 covers the peripheral surface of the spiral laminated body 14a, and blocks the discharge of the raw material gas G and the residual gas Gr from the peripheral surface other than the end face of the spiral laminated body 14a to the outside.
  • the covering layer 18 may be a cylindrical member or may be configured by winding a wire or a sheet-like member.
  • a wire made of FRP is impregnated with the adhesive used for the adhesive layer 30 described above, and the wire impregnated with the adhesive is wound around the spiral laminated body 14a in multiple layers without a gap as necessary.
  • the covering layer 18 is illustrated.
  • a sheet-like member such as Kapton tape is provided between the coating layer 18 and the spiral laminate 14a to prevent the adhesive from penetrating into the spiral laminate 14a. Also good.
  • the separation module using the facilitated transport membrane is used, but a dissolution diffusion type separation module may be used.
  • the source gas can be uniformly supplied to the separation membrane, so that the gas separation performance of the separation module can be improved.
  • this invention is used suitably for the separation module using the facilitated-transport film
  • Example 1 ⁇ Production of acid gas separation layer> 3.3% by mass of polyvinyl alcohol-polyacrylic acid copolymer (Kuraray Co., Ltd., Crustomer AP-20), 0.016% by mass of a cross-linking agent (25% by mass aqueous glutaraldehyde manufactured by Wako Pure Chemical Industries, Ltd.), An aqueous solution containing was prepared. To this aqueous solution, 1M hydrochloric acid was added for crosslinking. After crosslinking, a 40% aqueous cesium carbonate solution (manufactured by Rare Metal Co., Ltd.) was added so that the concentration of cesium carbonate was 7.0% by weight and defoamed to prepare a coating composition. That is, in this example, cesium carbonate serves as a carrier for the facilitated transport film 20a.
  • the facilitated transport film 20a and the porous support 20b (a laminate (manufactured by GE)) obtained by laminating porous PTFE on the surface of a PP nonwoven fabric and dried are applied.
  • An acidic gas separation layer 20 composed of the support 20b was produced.
  • the thickness of the facilitated transport film 20a was 50 ⁇ m.
  • a central cylinder 12 having a slit extending in the center line direction on the side surface was prepared.
  • a permeating gas flow path member 26 (tricot knitted epoxy-impregnated polyester) is fixed to the slit of the central cylinder 12 so as to be in a state shown in FIG.
  • the center tube 12 has a partition inside.
  • the produced acidic gas separation layer 20 was folded in two with the facilitated transport membrane 20a inside. As shown in FIG. 7, the half-folding was performed so that one acidic gas separation layer 20 was slightly longer. Kapton tape was attached to the valley of the acid gas separation layer 20 folded in half, and the end of the supply gas flow path member 24 was reinforced so as not to damage the valley of the facilitated transport film 20a. Subsequently, the supply gas flow path member 24 (a polypropylene net having a thickness of 0.44 mm, a size (x direction ⁇ y direction) 500 mm ⁇ 800 mm) is sandwiched between the acid gas separation layer 20 folded in half, and the sandwich body 36 is Produced.
  • Kapton tape was attached to the valley of the acid gas separation layer 20 folded in half, and the end of the supply gas flow path member 24 was reinforced so as not to damage the valley of the facilitated transport film 20a.
  • the supply gas flow path member 24 (a polypropylene net having a thickness of 0.44 mm, a size (x direction
  • the supply gas flow path member 24 has flow path walls 50a and 50b as conceptually shown in FIG. 3A as flow path changing members for the source gas G. .
  • the channel walls 50a and 50b were formed of an epoxy adhesive.
  • the thickness of the channel walls 50a and 50b was 8 mm.
  • the flow path walls 50 a and 50 b were arranged at positions symmetrical to the center line in the y direction on the inlet end face side of the supply gas flow path member 24.
  • the length of the channel walls 50a and 50b in the x direction was 250 mm. That is, it was set to 50% of the length of the supply gas flow path member.
  • the distance between the flow path walls 50a and 50b was 50 mm at the inlet end face.
  • the angle formed by the channel walls 50a and 50b was an average angle of 30 °.
  • the entire region in the winding direction (y direction) is located near both ends in the width direction (x direction).
  • an adhesive 30a made of an epoxy resin having a high viscosity (about 40 Pa ⁇ s) extending in the entire width direction in the vicinity of the end opposite to the folded portion in the winding direction. E120HP manufactured by Henkel Japan KK was applied.
  • the side to which the adhesive 30a was applied was directed downward, and as shown in FIG. 8A, the sandwiching body 36 and the permeating gas channel member 26 fixed to the central cylinder 12 were laminated and bonded.
  • the adhesive 30a was applied to the entire region in the width direction in the vicinity of the end on the side opposite to the folded portion in the winding direction. Furthermore, as shown in FIG. 9, the permeated gas flow path member 26 is laminated on the acidic gas separation layer 20 coated with the adhesive 30a and bonded to form the first layered product 14. did.
  • the sandwiched body 36 is set to the first layered body 14 (the permeate gas flow path member 26) formed first on the side to which the adhesive 30 a has been applied. It laminated
  • an adhesive 38a is applied to the peripheral surface of the central cylinder 12, as shown in FIG.
  • the adhesive 38b was applied onto the permeating gas flow path member 26 between the central cylinder 12 and the lowermost layered laminate 14.
  • the adhesives 38a and 38b were the same as the adhesive 30a.
  • the central cylinder 12 is rotated in the direction of the arrow yx in FIG. Thus, a spiral laminate 14a was obtained.
  • the center tube 12 was inserted into the inner ring portion 16b at both ends of the spiral laminate 14a, and the PPS telescope prevention plate 16 made of 40% glass fiber having the shape shown in FIG. 10 was attached. Further, the coating layer 18 was formed by performing FRP processing on the peripheral surface of the telescope prevention plate 16 and the peripheral surface of the spiral laminated body 14a, and the separation module 10 was created.
  • the membrane area of the created separation module 10 is 1.2 m 2 in total for the three layers (design value).
  • Example 2 A separation module was produced in the same manner as in Example 1 except that the length of the flow path wall 50a and the flow path wall 50b in the x direction was 50 mm, that is, 10% of the length of the supply gas flow path member.
  • Example 3 A separation module was produced in the same manner as in Example 1 except that the length in the x direction of the flow path wall 50a and the flow path wall 50b was 450 mm, that is, 90% of the length of the supply gas flow path member.
  • Example 4 A separation module was produced in the same manner as in Example 1 except that the length in the x direction of the flow path wall 50a and the flow path wall 50b was 150 mm, that is, 30% of the length of the supply gas flow path member.
  • Example 5 A separation module was produced in the same manner as in Example 1 except that the length in the x direction of the flow path wall 50a and the flow path wall 50b was 25 mm, that is, 5% of the length of the supply gas flow path member.
  • ⁇ Module factor> By measuring the separation factors of the separation modules of the produced separation modules of Examples and Comparative Examples, the separation module and the facilitated transport membrane 20a itself on the porous support 20b used in the separation module, Calculated. In this example, the CO 2 / H 2 separation factor and the CO 2 / N 2 separation factor were measured, and the module factor was calculated for each separation factor.
  • Module factor ( ⁇ ) of separation module / ( ⁇ ) of facilitated transport membrane 20a The results are shown in the table below.
  • the separation module of the present invention having the flow path wall in the supply gas flow path member 24 shows a higher module factor than the separation module of the comparative example having no flow path wall. It can be seen that it has excellent separation performance.
  • the length of the flow path changing member is preferably 10% or more of the length of the supply gas flow path member, and is preferably 30 to 60%. Is more preferable. From the above results, the effects of the present invention are clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 酸性ガス分離膜全体に水分を供給することができ、原料ガスの処理効率すなわち酸性ガスの分離性能を向上できる酸性ガス分離用スパイラル型モジュールおよびその製造方法を提供する。原料ガスの流路となる供給ガス流路用部材と、原料ガスから酸性ガスを分離する酸性ガス分離膜を有する酸性ガス分離層と、分離した酸性ガスの流路となる透過ガス流路用部材とを有する積層体を、1以上、中心筒に巻回してなる酸性ガス分離用スパイラル型モジュールであって、供給ガス流路用部材の、原料ガスの入口となる入口端面側に、原料ガスの流路を変更する2以上の流路変更部材を有し、入口端面から離間するにしたがって、少なくとも1対の流路変更部材同士の間隙が大きくなる。

Description

酸性ガス分離用スパイラル型モジュールおよび製造方法
 本発明は、原料ガスから酸性ガスを選択的に分離する、酸性ガス分離モジュールおよびその製造方法に関する。
 近年、原料ガス(被処理ガス)から、炭酸ガスなどの酸性ガスを選択的に分離する技術の開発が進んでいる。例えば、酸性ガスを選択的に透過する酸性ガス分離膜を用いて、原料ガスから酸性ガスを分離する酸性ガス分離モジュールが開発されている。
 一例として、特許文献1には、管壁に貫通孔が形成された、分離した酸性ガスを収集するための中心筒(中心透過物収集管)に、酸性ガス分離膜を含む積層体を多重に巻き付けてなる酸性ガス分離モジュールが開示されている。
 この特許文献1に開示される酸性ガス分離モジュールは、酸性ガス分離膜として、いわゆる溶解拡散膜を用いる、溶解拡散型の酸性ガス分離モジュールである。この溶解拡散膜は、膜に対する酸性ガスと分離対象物質との溶解性、および、膜中の拡散性の差を利用して、原料ガスから酸性ガスを分離する。
 また、特許文献2には、空間を酸性ガス分離膜で原料室と透過室とに分けて、原料室に原料ガス(CO2、H2およびH2Oからなる混合ガス)を供給し、酸性ガス分離膜で選択的に分離(透過)した酸性ガスを、透過室から取り出す酸性ガス分離モジュール(実験装置)が開示されている。
 この特許文献2に開示される酸性ガス分離モジュールは、酸性ガス分離膜として、いわゆる促進輸送膜を用いる、促進輸送型の酸性ガス分離モジュールである。この促進輸送膜は、膜中に酸性ガスと反応するキャリアを有し、このキャリアによって酸性ガスを膜の反対側に輸送することで、原料ガスから酸性ガスを分離する。
 このような酸性ガス分離モジュールにおいて、特許文献1に示されるような、酸性ガス分離膜を有する積層体を、分離した酸性ガスを収集する中心筒に巻回してなる(中心筒に巻き付けた)、いわゆるスパイラル型の酸性ガス分離モジュールが知られている。スパイラル型の酸性ガス分離モジュールは、酸性ガス分離膜の面積を大きくできる。そのため、スパイラル型の酸性ガス分離モジュールは、効率の良い処理が可能である。
特開平4-215824号公報 特許第4621295号公報
 特許文献1にも示されるように、このようなスパイラル型の酸性ガス分離モジュールは、一般的に、その内部が原料ガスの流路となる供給ガス流路用部材(供給物スペーサ)、および、その内部が分離した酸性ガスの流路となる透過ガス流路用部材(透過物スペーサ)を用いる場合が多い。このような流路用部材は、通常、メッシュ状のシート状物で構成される。
 この場合には、一例として、特許文献1にも示されるように、酸性ガス分離モジュールは、供給ガス流路用部材を酸性ガス分離膜で挟持し、その両面を透過ガス流路用部材で挟持してなる積層体を、中心筒に巻き回して、構成される。
 ところで、促進輸送膜では、キャリアを十分に機能させるために、膜中に多量の水分を保持させる必要がある。すなわち、膜中に保持する水分が多いほど、キャリアの膜中への溶解性が高くなり、酸性ガスの透過度が高くなる。そのため、原料ガスに水蒸気を含有させて促進輸送膜に水分を供給することが行われる。
 このような促進輸送膜を一般的なバッチ式の平膜として評価する場合には、膜面積全体に水蒸気を供給できる。そのため、理想的な分離性能を得ることができる。
 しかしながら、本願発明者の検討によれば、このような促進輸送膜をスパイラル型の分離モジュールとして用いた場合には、平膜として促進輸送膜を評価した場合よりも分離性能が低くなるという問題があることがわかった。
 この主要因の一つが、供給された原料ガスの分離モジュール内での流速分布である。分離モジュール内の中心筒周辺や外周部周辺、あるいは、原料ガスの出口となる端面側では、原料ガスの入り口となる端面側よりも流速が遅くなる(図11参照)。流速が遅い部分は単位時間当たりの供給水分量が少なくなるため、促進輸送膜の性能を十分に引き出すことができないことがわかった。すなわち、促進輸送膜をスパイラル型の分離モジュールとして利用する場合には、促進輸送膜の膜面上の大部分は水分が枯渇して、本来発現できる性能を十分に発揮できないという問題があることがわかった。
 そこで本発明は、酸性ガス分離膜全体に水分を供給することができ、原料ガスの処理効率すなわち酸性ガスの分離性能を向上できる酸性ガス分離用スパイラル型モジュールおよびその製造方法を提供することに有る。
 本願発明者は、上記課題を達成すべく鋭意研究した結果、積層体の供給ガス流路用部材の、原料ガスの入口となる入口端辺側に、原料ガスの流路を変更する2以上の流路変更部材を有し、入口端辺に直交する方向において、入口端辺から離間するにしたがって、2以上の流路変更部材の部材同士の間隙が大きくなる構成とすることにより、酸性ガス分離膜全体に水分を供給することができ、原料ガスの処理効率すなわち酸性ガスの分離性能を向上できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の構成の酸性ガス分離用スパイラル型モジュールおよびその製造方法を提供する。
 (1) 管壁に貫通孔が形成された中心筒と、原料ガスの流路となる供給ガス流路用部材と、供給ガス流路用部材を流れる原料ガスから酸性ガスを分離する酸性ガス分離膜を、供給ガス流路用部材側の面に有する酸性ガス分離層と、酸性ガス分離膜を透過した酸性ガスが中心筒まで流れる流路となる透過ガス流路用部材とを有し、供給ガス流路用部材、酸性ガス分離層および透過ガス流路用部材を有する積層体を、1以上、中心筒に巻回してなる酸性ガス分離用スパイラル型モジュールであって、積層体の供給ガス流路用部材の、原料ガスの入口となる入口端面側に、原料ガスの流路を変更する2以上の流路変更部材を有し、入口端面に垂直な方向において、入口端面から離間するにしたがって、2以上の流路変更部材の少なくとも1対の部材同士の間隙が大きくなる酸性ガス分離用スパイラル型モジュール。
 (2) 酸性ガス分離膜が、酸性ガスと反応するキャリアおよびキャリアを担持するための親水性化合物を含有する促進輸送膜である(1)に記載の酸性ガス分離用スパイラル型モジュール。
 (3) 2以上の流路変更部材は、供給ガス流路用部材の入口端面の延在方向の中心線を軸にして対称に配置される(1)または(2)に記載の酸性ガス分離用スパイラル型モジュール。
 (4) 入口端面に垂直な方向に、複数組の流路変更部材が配置され、入口端面に垂直な方向において入口端面から離間するにしたがって、組となる流路変更部材同士の間隙がそれぞれ大きくなる(1)~(3)のいずれかに記載の酸性ガス分離用スパイラル型モジュール。
 (5) 供給ガス流路用部材の入口端面の延在方向の中心線を軸にして対称に配置される流路変更部材を2組有し、一方の組の流路変更部材は、他方の組の流路変更部材よりも、中心線に近い位置に配置される(1)~(3)のいずれかに記載の酸性ガス分離用スパイラル型モジュール。
 (6) 入口端面に垂直な方向において、2以上の流路変更部材の長さが、供給ガス流路用部材の長さの10%以上である(1)~(5)のいずれかに記載の酸性ガス分離用スパイラル型モジュール。
 (7) 積層体を2以上有し、積層体ごとに、2以上の流路変更部材の配置位置が異なる(1)~(6)のいずれかに記載の酸性ガス分離用スパイラル型モジュール。
 (8) 積層体を2以上有し、積層体ごとに、2以上の流路変更部材の形状が異なる(1)~(7)のいずれかに記載の酸性ガス分離用スパイラル型モジュール。
 (9) (1)~(8)のいずれかに記載の酸性ガス分離用スパイラル型モジュールの製造方法であって、2以上の流路変更部材の材料となる第1の溶液を溶剤で希釈した第2の溶液を供給ガス流路用部材の、2以上の流路変更部材の形成位置に含浸させる工程と、第2の溶液を含浸させた位置に、第1の溶液を含浸させる工程とを有する酸性ガス分離用スパイラル型モジュールの製造方法。
 (10) (1)~(8)のいずれかに記載の酸性ガス分離用スパイラル型モジュールの製造方法であって、酸性ガス分離膜の表面に2以上の流路変更部材を形成する工程と、2以上の流路変更部材を形成した酸性ガス分離層と供給ガス流路用部材とを積層する工程とを有する酸性ガス分離用スパイラル型モジュールの製造方法。
 本発明によれば酸性ガス分離膜全体に水分を供給することができ、原料ガスの処理効率すなわち酸性ガスの分離性能を向上できる。
本発明の酸性ガス分離用スパイラル型モジュールの一例を一部切り欠いて示す概略斜視図である。 図1に示す酸性ガス分離用スパイラル型モジュールの積層体の概略断面図である。 図3(A)~図3(C)は、本発明の酸性ガス分離用スパイラル型モジュールに用いられる供給ガス流路用部材の一例を概念的に示す図である。 流路変更部材の作用を説明するための概略斜視図である。 図5(A)および図5(B)は、流路変更部材の形成方法の一例を説明するための概念図である。 図6(A)および図6(B)は、図1に示す酸性ガス分離用スパイラル型モジュールの作製方法を説明するための概念図である。 図1に示す酸性ガス分離用スパイラル型モジュールの作製方法を説明するための概念図である。 図8(A)および図8(B)は、図1に示す酸性ガス分離用スパイラル型モジュールの作製方法を説明するための概念図である。 図1に示す酸性ガス分離用スパイラル型モジュールの作製方法を説明するための概念図である。 図1に示す酸性ガス分離用スパイラル型モジュールの作製方法を説明するための概念図である。 従来のスパイラル型の分離モジュールの流速分布を説明するための概念図である。
 以下、本発明の酸性ガス分離用スパイラル型モジュールについて、添付の図面に示される好適実施例を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 図1に本発明の酸性ガス分離用スパイラル型モジュールの一例の一部切欠き概略斜視図を示す。
 図1に示すように、酸性ガス分離用スパイラル型モジュール10は、基本的に、中心筒12と、酸性ガス分離膜(促進輸送膜20a)を有する積層体14と、テレスコープ防止板16とを有して構成される。なお、以下の説明では、酸性ガス分離用スパイラル型モジュールを、単に、分離モジュールとも言う。
 分離モジュール10は、例えば、一酸化炭素、炭酸ガス(CO2)、水(水蒸気)および水素を含有する原料ガスGから、酸性ガスGcとして炭酸ガスを分離するものである。
 本発明の分離モジュール10は、いわゆるスパイラル型の分離モジュールである。すなわち、分離モジュール10は、シート状の積層体14を、1層、もしくは、複数積層して、中心筒12に巻回して、積層体14の巻回物の両端面に、中心筒12を挿通してテレスコープ防止板16を設けてなる構成を有する。また、巻回した積層体14の最外周面は、ガス非透過性の被覆層18で覆われている。
 なお、以下の説明では、中心筒12に巻回された、複数の積層体14を積層した物の巻回物(すなわち、積層されて巻回された積層体14による略円筒状物)を、便宜的に、スパイラル積層体14aとも言う。
 図1に示す分離モジュール10において、酸性ガスを分離される原料ガスGは、例えば図1中奥手側のテレスコープ防止板16(その開口部16d)を通って、スパイラル積層体14aの端面に供給され、端面から積層体14に流入して、積層体14内を流れつつ、酸性ガスGcを分離される。
 また、積層体14によって原料ガスGから分離された酸性ガスGcは、中心筒12から排出される。他方、酸性ガスを分離された原料ガスG(以下、便宜的に残余ガスGrとする)は、スパイラル積層体14a(積層体14)の供給側とは逆側の端面から排出され、テレスコープ防止板16(同前)を通って分離モジュール10の外部に排出される。
 中心筒(透過ガス集合管)12は、原料ガスG供給側の端面が閉塞する円筒状の管で、周面(管壁)には複数の貫通孔12aが形成される。
 原料ガスGから分離された酸性ガスGcは、後述する透過ガス流路用部材26を通って、貫通孔12aから中心筒12内に至り、中心筒12の開放端12bから排出される。
 中心筒12において、後述する接着剤層30で封止される領域における開口率(中心筒12の外周面に占める貫通孔12aの面積率)は、1.5~80%が好ましく、3~75%がより好ましく、5~70%がさらに好ましい。中でも、実用的な観点から、中心筒12の開口率は、5~25%が、特に好ましい。
 中心筒12の開口率を上記範囲とすることにより、効率的に酸性ガスGcを収集することができ、また、中心筒12の強度を高め、加工適性を十分に確保できる。
 また、貫通孔12aは、直径0.5~20mmの円形の孔であるのが好ましい。さらに、貫通孔12aは、中心筒12の周壁に、均一に形成されるのが好ましい。
 なお、中心筒12には、必要に応じて、分離した酸性ガスGcを開放端12b側に流すためのガス(スイープガス)を供給する供給口(供給部)を設けてもよい。
 積層体14は、酸性ガス分離層20と、供給ガス流路用部材24と、透過ガス流路用部材26とを積層してなるものである。
 なお、図1において、符号30は、酸性ガス分離層20と透過ガス流路用部材26とを接着し、かつ、積層体14同士を接着すると共に、透過ガス流路用部材26における酸性ガスGcの流路を、中心筒12側が開口するエンベロープ状にする接着剤層30である。
 前述のように、図示例の分離モジュール10は、この積層体14を、複数、積層して、中心筒12に巻回して(巻き付けて)、略円筒状のスパイラル積層体14aを形成してなる構成を有する。
 ここで、本発明においては、便宜的に、原料ガスGの供給方向をx方向、x方向と直交する方向をy方向とする。スパイラル型である図示例の分離モジュール10においては、この積層体14の巻回方向はy方向と一致し、従って、積層体14の巻回方向と直交する方向は、原料ガスGの供給方向であるx方向と一致する。
 分離モジュール10において、積層体14は1層でもよい。しかしながら、図示例のように、複数の積層体14を積層することにより、酸性ガス分離層20の膜面積を大きくして、1つのモジュールで分離する酸性ガスGcの量を向上できる。
 積層体14の積層数は、分離モジュール10に要求される処理速度や処理量、分離モジュール10の大きさ等に応じて、適宜、設定すればよい。ここで、積層する積層体14の数は、50以下が好ましく、45以下がより好ましく、40以下が特に好ましい。積層体14の積層数を、この数とすることで、中心筒12への積層体14の巻回が容易になり、加工性を向上できる。
 図2に、積層体14の部分断面図を示す。前述のように、矢印xは原料ガスGの供給方向であり、x方向と直交するy方向は積層体14の巻回方向(以下、巻回方向とも言う)と一致する。
 図示例において、積層体14は、二つ折りにした酸性ガス分離層20の間に供給ガス流路用部材24を挟み込んで挟持体36とし(図7参照)、この挟持体36に、透過ガス流路用部材26を積層してなる構成を有する。この構成については、後に詳述する。
 前述のように、分離モジュール10において、原料ガスGは、テレスコープ防止板16を通って、スパイラル積層体14aの一方の端面から供給される。すなわち、原料ガスGは、各積層体14の端部(端面)に供給される。
 図2に概念的に示すように、積層体14のx方向の端面に供給された原料ガスGは、供給ガス流路用部材24内をx方向に流れる。ここで、本発明の分離モジュール10において、供給ガス流路用部材24は、内部を流れる原料ガスGの流路を変更する流路変更部材(流路壁50aおよび50b)を有する。そのため、供給ガス流路用部材24内における原料ガスGの流速を均一化できる。この点に関しては、後に詳述する。
 供給ガス流路用部材24内における流れの中で、酸性ガス分離層20(促進輸送膜20a)に接触した酸性ガスGcは、原料ガスGから分離されて、酸性ガス分離層20を積層体14の積層方向に通過して(促進輸送膜20aのキャリアによって積層方向に輸送されて)、透過ガス流路用部材26に流入する。
 透過ガス流路用部材26に流入した酸性ガスGcは、透過ガス流路用部材26を巻回方向(矢印y方向)に流れて、中心筒12に至り、中心筒12の貫通孔12aから中心筒12内に流入する。中心筒12内に流入した酸性ガスGcは、中心筒12をx方向に流れて、開放端12bから排出される。
 また、酸性ガスGcを除去された残余ガスGrは、供給ガス流路用部材24をx方向に流れて、スパイラル積層体14aの逆側の端面から排出され、テレスコープ防止板16(その開口部16d)を通って、分離モジュール10の外部に排出される。
 供給ガス流路用部材24は、x方向の端部から、原料ガスGを供給され、部材内を流れる原料ガスGと、酸性ガス分離層20とを接触させる、シート状の部材である。図示例においては、供給ガス流路用部材24は、一例として、長方形である。また、前述のように、供給ガス流路用部材24は、その内部に、原料ガスGの流路を変更(強制的に変更)する、流路変更部材が設けられる。
 このような供給ガス流路用部材24は、前述のように二つ折りされた酸性ガス分離層20のスペーサとして機能して、原料ガスGの流路を構成する。また、供給ガス流路用部材24は、原料ガスGを乱流にするのが好ましい。この点を考慮すると、供給ガス流路用部材24は、メッシュ状(ネット状/網目構造)を有する部材が好ましい。
 このような供給ガス流路用部材24の形成材料としては、十分な耐熱性および耐湿性を有するものであれば、各種の材料が利用可能である。
 一例として、紙、上質紙、コート紙、キャストコート紙、合成紙などの紙材料、セルロース、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリスルホン、アラミド、ポリカーボネートなどの樹脂材料、金属、ガラス、セラミックスなどの無機材料等が、好適に例示される。
 樹脂材料としては、具体的には、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリプロピレン(PP)、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトンおよびポリフッ化ビニリデン等が、好適に例示される。
 供給ガス流路用部材24の厚さは、原料ガスGの供給量や要求される処理能力等に応じて、適宜、決定すれば良い。
 具体的には、100~1000μmが好ましく、150~950μmがより好ましく、200~900μmが特に好ましい。
 ここで、本発明の分離モジュール10においては、この供給ガス流路用部材24の内部に、原料ガスGの流路を変更する流路変更部材が設けられる。
 図3(A)に、巻回を巻き戻して平面状にした状態の供給ガス流路用部材24を概念的に示す。なお、図3(A)~図3(C)においては、図面を簡潔にし、構成を明瞭に示すために、供給ガス流路用部材24のメッシュは省略する。
 図3(A)に示すように、供給ガス流路用部材24は、内部に、流路規制部材としての流路壁50aおよび50bを有する。流路壁50aおよび50bは、共に、供給ガス流路用部材24の厚さ方向の全域に対応する高さを有し、供給ガス流路用部材24の面方向に延在する、壁状の部材である。
 なお、流路壁(流路規制部材)は、供給ガス流路用部材24の厚さ方向の全域よりも低くても良い。しかしながら、より多くの原料ガスGの流路を変更できる等の点で、流路壁は、厚さ方向に供給ガス流路用部材24の全域を閉塞する高さを有するのが好ましい。
 図示例において、流路壁50aは、供給ガス流路用部材24内において、x方向(原料ガス供給方向)の原料ガスの入口となる端面(以下、入口端面とも言う)から、y方向(巻回方向)の中心筒12から離れる方向に傾斜して、x方向の下流側(以下、単に上流/下流ともいう)に向かって延在する。他方、流路壁50bは、流路壁50aに対してy方向の中心筒12側に設けられる。流路壁50bは、入口端面から、y方向の中心筒12側に傾斜して、下流側に向かってx方向に延在する。また、両流路壁は、共に、x方向およびy方向の全域には至らないように形成される。また、流路壁50aおよび50bは、y方向の中心線を軸に略対称に配置される。
 すなわち、2つの流路壁50aおよび50bは、入口端面側に配置されると共に、x方向に入口端面から離間するにしたがって、流路壁50aと流路壁50bとの間隙が大きくなるように配置される。
 なお、以下の説明では、便宜的に、y方向の中心筒12側を基端、同中心筒12と逆側を先端とも言う。また、x方向の入口端面とは反対側の端面を出口端面とも言う。
 なお、図3(A)に示す例においては、流路壁50aおよび流路壁50bは、それぞれ3つの直線状(板状)の部材の先端同士を角度を変えて連結した形状、すなわち、屈折(屈曲)した折れ線状である。しかしながら、流路壁50aおよび流路壁50bの形状はこれに限定はされず、入口端面から離間するにしたがって、流路壁50aと流路壁50bとの間隙が大きくなる形状であれば、直線状、曲線状等の形状であってもよい。
 なお、図中の符号52は、供給ガス流路用部材24の先端において、x方向の全域に形成される、流路壁50a等と同様の壁状の部材(壁部材52)である。
 後述するが、分離モジュール10は、積層体14を、複数、積層して巻回した構成を有するので、基本的に、1つの供給ガス流路用部材24に流入した原料ガスGが、この供給ガス流路用部材24の先端側から排出されることは無い。しかしながら、微量でも、原料ガスGが、この供給ガス流路用部材24の先端側から排出される場合も有るので、図示例のような壁部材52を有することにより、より確実に、原料ガスGが供給ガス流路用部材24の先端側から排出されることを防止して、より効率の良い原料ガスの処理を行うことが可能となる。
 前述のとおり、従来のスパイラル型の分離モジュールにおいては、原料ガスの流速が遅くなる領域がある。そのため、流速が遅い領域では単位時間当たりの促進輸送膜への供給水分量が少なくなり、促進輸送膜の性能を十分に引き出すことができないという問題があった。
 具体的には、流路壁50aおよび50bを有さない場合の供給ガス流路用部材24内における原料ガスGの流速分布について、図11を用いて説明する。
 図11は、従来のスパイラル型の分離モジュールにおける供給ガス流路用部材内の原料ガスGの流速分布を平面状にして表す概念図である。
 図11に概念的に示すように、従来のスパイラル型の分離モジュールにおいては、入口端面から供給ガス流路用部材124に流入した原料ガスGの流速は、入口端面側で高く、出口端面側に向かうにしたがって低くなる。また、原料ガスの流速は、中心筒112の近く、および、被覆層近くでは低くなる。すなわち、y方向において、中央で高く、基端および先端側(中心筒側および中心筒とは反対側)で低くなる。
 このように原料ガスの流速が遅くなる領域では、原料ガスに含まれる水蒸気が促進輸送膜に十分に供給されないため、単位時間当たりの促進輸送膜への供給水分量が少なくなり、促進輸送膜の性能を十分に引き出すことができないという問題があった。
 促進輸送膜の吸水性を高くすることにより、供給水分量への依存性を低減することができる。しかしながら、促進輸送膜の吸水性を高くすると非常に柔らかい(粘性が低い)、ゲル膜となるため、擦れ等により欠陥が発生しやすくなる。従って、促進輸送膜の吸水性、保水性を高くするのは限界がある。
 これに対して、本発明の分離モジュール10は、供給ガス流路用部材24が上記流路壁50aおよび50bを有する。流路壁50aおよび50bは、供給ガス流路用部材24に流入した原料ガスGの流路を変更して、供給ガス流路用部材24の位置ごとの原料ガスGの流速差を小さくし、供給ガス流路用部材24の全面で流速分布が均一になるようにすることができる。
 具体的には、図4に概念的に示すように、入口端面から供給ガス流路用部材24に流入した原料ガスGのうち、中央部、すなわち、流路壁50aと流路壁50bとの間から流入した原料ガスGは、出口端面に向かって拡大する流路を流れるため、流路壁50aと流路壁50bとの間を流れる間に流速が遅くなる。
 一方、流路壁50aとy方向先端との間、ならびに、流路壁50bとy方向基端との間から流入した原料ガスGは、出口端面に向かって縮小する流路を流れるため、それぞれ、流路壁50aと先端との間、流路壁50bと基端との間を流れる間に流速が速くなる。
 すなわち、原料ガスGの流速が速いy方向中央部においては、流速が下がり、流速が遅い先端側および基端側においては、流速が上がる。これにより、供給ガス流路用部材24の位置ごとの原料ガスGの流速差を小さくし、供給ガス流路用部材24の全面で流速分布が均一になるようにすることができる。
 前述のとおり、促進輸送膜では、膜中に保持する水分が多いほど、キャリアの膜中への溶解性が高くなり、酸性ガスの透過度が高くなる。
 従って、流路壁50aおよび50bを有する本発明の分離モジュールでは、供給ガス流路用部材24の位置ごとの原料ガスGの流速差を小さくすることで、促進輸送膜20aの膜面上の全面に、均一に原料ガスG、すなわち、水蒸気を供給することができ、促進輸送膜20aの全面を有効に利用して原料ガスの処理効率すなわち酸性ガスの分離性能を向上できる。
 図3(A)に示す供給ガス流路用部材24は、2つの流路壁を有しているが、本発明の分離モジュールにおいては、流路壁は3つ以上であってもよい。
 また、供給ガス流路用部材24は、2つの流路壁を1組として、複数組の流路壁を有していてもよい。
 例えば、図3(B)に概念的に示すように、供給ガス流路用部材24は、その内部にx方向に2組の流路壁を有してもよい。流路壁50cおよび50dはそれぞれ、流路壁50aおよび50bと同じ形状であり、流路壁50aおよび50bよりもx方向の出口端面側に形成される。
 あるいは、供給ガス流路用部材24は、その内部にy方向に2組以上の流路壁を有していてもよい。
 また、複数組の流路壁を有する場合には、各流路壁のx方向の長さ等の形状は異なっていてもよい。
 また、供給ガス流路用部材24は、その内部にy方向の中心位置を一致させて複数組の流路壁を有していてもよい。
 例えば、図3(C)に概念的に示すように、供給ガス流路用部材24は、その内部にy方向の中心位置を一致させて2組の流路壁を有してもよい。図示例は、流路壁50aおよび50bと、流路壁50eおよび50fの2組の流路壁を有する。流路壁50eは、流路壁50aよりも先端側に形成される。また、流路壁50fは、流路壁50bよりも基端側に形成される。流路壁50eおよび流路壁50fは、流路壁50aおよび流路壁50bよりもx方向の長さが長い。また、図に示すように、流路壁50eおよび流路壁50fは、S字形状に形成される。
 なお、供給ガス流路用部材の先端側および基端側に配置される流路壁の長さを中心側に配置される流路壁よりも長くすることで、原料ガスが届きにくい出口側両端部に原料ガスをより好適に供給することができる。
 このように、供給ガス流路用部材に複数組の流路壁を配置したり、配置位置に応じて、流路壁ごとに形状を変更することにより、供給ガス流路用部材中の原料ガスの流速をより均一にすることができる。
 なお、流路壁の形状(長さ、曲率、角度等)、配置位置、個数等は、上記の例に限定はされず、供給ガス流路用部材24中の原料ガスの流速分布に応じて適宜決定すればよい。
 また、3以上の流路壁を有する場合は、少なくとも1対の流路壁同士の間隔が流れ方向に大きくなればよく、流路壁同士の間隔が流れ方向に狭くなる関係にある流路壁を有していてもよい。
 ここで、前述のとおり、スパイラル型の分離モジュール10は、シート状の積層体14を、1層、もしくは、複数積層して、中心筒12に巻回してなる構成を有する。複数の積層体14を有する場合には、各積層体14の供給ガス流路用部材24それぞれに流路壁を配置すればよい。
 また、複数の積層体14を有し、各積層体14の供給ガス流路用部材24それぞれに流路壁を配置する場合には、積層体14ごとに流路壁の大きさ、長さ、曲率等の形状、配置位置、流路壁間の間隔、および、組となる流路壁がなす平均角度等が異なっていてもよい。
 複数の積層体14を有する場合には、各積層体14の位置をずらして積層し巻き回している。そのため、積層体14ごとに供給ガス流路用部材24中の流速分布は異なっている。従って、例えば、巻回した際における積層体14の位置に応じて、積層体14ごとに流路壁の大きさ、長さ、曲率等の形状、配置位置、流路壁間の間隔、および、組となる流路壁がなす平均角度等を変更してもよい。
 本発明の分離モジュール10において、流路壁50a、50bのx方向の長さは、供給される原料ガスGの流速分布、流量や温度、供給ガス流路用部材24の配置位置、面積等に応じて、適宜、決定すればよい。
 供給ガス流路用部材24中の流速分布をより好適に均一化できる点で、流路壁50a、50bのx方向の長さは、供給ガス流路用部材24のx方向の長さの10%以上であるのが好ましく、10%~90%であるのがより好ましく、30%~60%であるのが特に好ましい。
 本発明の分離モジュール10において、流路壁の厚さは、供給される原料ガスGの流速分布、流量や温度、供給ガス流路用部材24の配置位置、面積等に応じて、適宜、決定すればよい。
 ここで、流路壁の厚さが薄すぎると、流路壁の強度が不十分で使用中に損傷する可能性が有る。また、流路壁が存在する位置は、酸性ガス分離層20(促進輸送膜20a)が有効に使用できないので、流路壁の厚さが厚すぎると、原料ガスGの処理効率が低くなってしまう。
 この点を考慮すると、流路壁の厚さは、5~50mmが好ましく、5~30mmがより好ましく、5~20mmが特に好ましい。
 また、本発明の分離モジュール10において、供給ガス流路用部材24の面方向における流路壁(流路変更部材)の形成面積は、促進輸送膜20aの性能、供給される原料ガスGの流速分布、流量や温度等に応じて、適宜、決定すればよい。
 ここで、流路壁の形成面積が小さ過ぎると、流路壁を形成する効果が十分に得られず、流路壁の形成面積が大き過ぎると、先と同様の理由で、原料ガスGの処理効率が低くなってしまう。
 この点を考慮すると、流路壁の形成面積(面積B)は、供給ガス流路用部材24の面積(面積A)の0.01~10%が好ましい(すなわち、『0.01≦((B/A)×100≦10』が好ましい)。
 また、図3(A)に示す例では、流路壁(流路変更部材)は、供給ガス流路用部材24の入口端面から延在する位置に配置されるが、これに限定はされない。例えば、供給ガス流路用部材24の入口端面に接触しない位置に配置されてもよい。
 しかしながら、より好適に原料ガスGの流速を均一にできる等の点で、流路変更部材は、図示例のような、供給ガス流路用部材24の入口端面から、x方向に向かって延在する壁状が好ましい。
 流路壁(流路変更部材)の形成材料は、十分な耐熱性および耐湿性を有し、かつ、メッシュ状の供給ガス流路用部材24の内部に壁状の部材を形成できる、各種の材料が利用可能である。
 一例として、接着剤、熱可塑性樹脂、粘着テープ等が例示される。
 中でも、流路壁の形成性や利便性、流路壁幅の自由度等の点で、各種の公知の接着剤は好適に利用される。
 接着剤としては、一例として、エポキシ樹脂、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、尿素ホルムアミド樹脂等が好適に例示される。
 中でも、耐熱性および耐湿性の観点から、エポキシ樹脂は、より好適に例示される。
 供給ガス流路用部材中の流路壁の形成方法としては、例えば、流路壁を接着剤または熱可塑性樹脂で形成する場合には、流路壁は、接着剤または熱可塑性樹脂の溶液を、メッシュ状の供給ガス流路用部材に含浸させて、硬化させることで形成することができる。
 図5(A)および図5(B)に、流路壁の形成方法の一例を説明するための概略斜視図を示す。
 まず、流路壁の形成材料である上記接着剤または熱可塑性樹脂の溶液(第1の溶液)を調製し、さらに、この第1の溶液を溶剤により希釈した溶液(第2の溶液)を調製する。
 次に、図5(A)に示すように、口金60aを用いて、調製した第2の溶液を、メッシュ状の供給ガス流路用部材24中の所定の位置に含浸させる。
 さらに、図5(B)に示すように、供給ガス流路用部材24に含浸させた第2の溶液62a、62bが乾燥する前に、口金60bを用いて、調製した第1の溶液を、第2の溶液62a、62bに含浸させる。すなわち、供給ガス流路用部材24中の第2の溶液に第1の溶液をさらに溶解させる。
 その後、第2の溶液62a、62bを乾燥・硬化して流路壁50a、50bを形成する。
 このように、流路壁50a、50bの材料となる第1の溶液を溶剤で希釈して粘度が低い第2の溶液を調製し、第2の溶液を含浸させて、さらに、第1の溶液を含浸させることで、供給ガス流路用部材24の厚さ方向全域に溶液を含浸させることができ、欠陥等のない流路壁を形成することができる。
 ここで、第1の溶液を希釈するための溶剤としては、特に限定はなく、アセトン、MEK、メタノール、ヘキサン等の上記接着剤または熱可塑性樹脂の溶液の溶剤として用いられる種々の公知の溶剤が利用可能である。
 また、第2の溶液の粘度は、供給ガス流路用部材24中に好適に含浸できれば、特に限定はなく、供給ガス流路用部材24のメッシュ径、厚さ、空隙率、溶剤との親和性等により適宜決定すればよい。
 なお、供給ガス流路用部材24中の流路壁50a、50bの形成方法はこれに限定はされない。例えば、流路壁50a、50bの形成材料である上記接着剤または熱可塑性樹脂の溶液(第1の溶液)を直接、供給ガス流路用部材24に含浸させてもよい。
 また、供給ガス流路用部材24中に上記接着剤または熱可塑性樹脂の溶液を含浸させて流路壁50a、50bを形成する方法に限定はされない。
 例えば、酸性ガス分離層20(促進輸送膜20a)上に直接、流路壁50a、50bを形成して、流路壁50a、50bが形成された酸性ガス分離層20と供給ガス流路用部材24とを積層する構成としてもよい。
 流路壁50a、50bを酸性ガス分離層20(促進輸送膜20a)上に直接、形成する方法としては、粘着テープ等のシート状物を設置する方法、上記接着剤または熱可塑性樹脂の溶液を酸性ガス分離層20上に塗布し硬化させる方法等が利用可能である。
 このような供給ガス流路用部材24は、酸性ガス分離層20に挟持される。図示例においては、酸性ガス分離層20は、一例として、長方形のシート状物である。
 図示例の分離モジュール10は好ましい態様として、促進輸送型である。そのため、酸性ガス分離層20は、促進輸送膜20aと、多孔質支持体20bとから構成される。
 なお、本発明は、促進輸送型の分離モジュールに限定はされず、前述の特許文献1に示されるような、溶解拡散膜を用いる溶解拡散型の分離モジュールであってもよい。
 促進輸送膜20aは、少なくとも、供給ガス流路用部材24を流れる原料ガスGに含有される酸性ガスGcと反応するキャリア、および、このキャリアを担持する親水性化合物を含有する。このような促進輸送膜20aは、原料ガスGから酸性ガスGcを選択的に透過させる機能(酸性ガスGcを選択的に輸送する機能)を有している。
 促進輸送型の分離モジュールは、高温かつ高湿での使用が必要条件である。従って、促進輸送膜20aは、高温下(例えば、100~200℃)でも、酸性ガスGcを選択的に透過させる機能を有する。また、原料ガスGが水蒸気を含んでも、水蒸気を親水性化合物が吸湿して促進輸送膜20aが水分を保持することで、さらにキャリアが酸性ガスGcを輸送し易くなるので、溶解拡散膜を用いる場合に比べて分離効率が高まる。
 促進輸送膜20aの膜面積は、分離モジュール10の大きさ、分離モジュール10に要求される処理能力等に応じて、適宜、設定すればよい。具体的には、0.01~1000m2が好ましく、0.02~750m2がより好ましく、0.025m~500m2がさらに好ましい。中でも、促進輸送膜20aの膜面積は、実用的な観点から、1~100m2が、特に好ましい。
 促進輸送膜20aの膜面積を上記範囲とすることにより、膜面積に対して効率よく酸性ガスGcを分離でき、また、加工性も良好になる。
 促進輸送膜20aの巻回方向の長さ(二つ折りする前の全長)も、分離モジュール10の大きさや分離モジュール10に要求される処理能力等に応じて、適宜、設定すればよい。具体的には、100~10000mmが好ましく、150~9000mmがより好ましく、200~8000mmがさらにより好ましい。中でも、促進輸送膜20aの長さは、実用的な観点から、800~4000mmが、特に好ましい。
 促進輸送膜20aの巻回方向の長さを、上記範囲とすることにより、膜面積に対して効率よく酸性ガスGcを分離することができ、さらに、積層体14を巻回する際の巻きずれの発生が抑制され、加工性が容易となる。
 なお、促進輸送膜の幅も、分離モジュール10のx方向のサイズに応じて、適宜、設定すれば良い。
 促進輸送膜20aの厚さも、分離モジュール10の大きさや分離モジュール10に要求される処理能力等に応じて、適宜、設定すればよい。具体的には、1~200μmが好ましく、2~175μmがより好ましい。
 促進輸送膜20aの厚さを、上記範囲にすることにより、十分なガス透過性と分離選択性とを実現できる。
 親水性化合物はバインダとして機能するものであり、促進輸送膜20aにおいて、水分を保持して、キャリアによる二酸化炭素等のガスの分離機能を発揮させる。また、親水性化合物は、耐熱性の観点から、架橋構造を有するのが好ましい。
 このような親水性化合物としては、親水性ポリマーが例示される。
 親水性化合物は、水に溶けて塗布液を形成できると共に、促進輸送膜20aが高い親水性(保湿性)を有するのが好ましいという観点から、親水性が高いものが好ましい。
 具体的には、親水性化合物は、生理食塩液の吸水量が0.5g/g以上の親水性を有することが好ましく、同1g/g以上の親水性を有することがより好ましく、同5g/g以上の親水性を有することがさらに好ましく、同10g/g以上の親水性を有することが特に好ましく、さらには、同20g/g以上の親水性を有することが最も好ましい。
 親水性化合物の重量平均分子量は、安定な膜を形成し得る範囲で、適宜、選択すればよい。具体的には、20,000~2,000,000が好ましく、25,000~2,000,000がより好ましく、30,000~2,000,000が特に好ましい。
 親水性化合物の重量平均分子量を20,000以上とすることで、安定して十分な膜強度を有する促進輸送膜20aを得ることができる。
 特に、親水性化合物が架橋可能基として-OHを有する場合には、親水性化合物は、重量平均分子量が30,000以上であるのが好ましい。この際には、重量平均分子量は更に好ましくは40,000以上であり、より好ましくは、50,000以上である。また、親水性化合物が架橋可能基として-OHを有する場合には、製造適性の観点から、重量平均分子量は、6,000,000以下であることが好ましい。
 また、架橋可能基として-NH2を有する場合には、親水性化合物は、重量平均分子量が10,000以上であるものが好ましい。この際には、親水性化合物の重量平均分子量は、15,000以上であるのがより好ましく、20,000以上であるのが特に好ましい。また、親水性化合物が、架橋可能基として-NH2を有する場合には、製造適性の観点から、重量平均分子量は、1,000,000以下であるのが好ましい。
 なお、親水性化合物の重量平均分子量は、例えば、親水性化合物としてPVAを用いる場合には、JIS K 6726に準じて測定した値を用いればよい。また、市販品を用いる場合には、カタログ、仕様書などで公称される分子量を用いればよい。
 親水性化合物を形成する架橋可能基としては、耐加水分解性の架橋構造を形成し得るものが、好ましく選択される。
 具体的には、ヒドロキシ基(-OH)、アミノ基(-NH2)、塩素原子(-Cl)、シアノ基(-CN)、カルボキシ基(-COOH)、および、エポキシ基等が例示される。これらの中でも、アミノ基およびヒドロキシ基が好ましく例示される。さらに、最も好ましくは、キャリアとの親和性およびキャリア担持効果の観点から、ヒドロキシ基が例示される。
 親水性化合物としては、具体的には、単一の架橋可能基を有するものとしては、ポリアリルアミン、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリエチレンイミン、ポリビニルアミン、ポリオルニチン、ポリリジン、ポリエチレンオキサイド、水溶性セルロース、デンプン、アルギン酸、キチン、ポリスルホン酸、ポリヒドロキシメタクリレート、ポリ-N-ビニルアセトアミドなどが例示される。最も好ましくはポリビニルアルコールである。また、親水性化合物としては、これらの共重合体も例示される。
 また、複数の架橋可能基を有する親水性化合物としては、ポリビニルアルコール-ポリアクリル酸共重合体が例示される。ポリビニルアルコール-ポリアクリル塩共重合体は、吸水能が高い上に、高吸水時においてもハイドロゲルの強度が大きいため好ましい。
 ポリビニルアルコール-ポリアクリル酸共重合体におけるポリアクリル酸の含有率は、例えば1~95モル%、好ましくは2~70モル%、より好ましくは3~60モル%、特に好ましくは5~50モル%である。
 なお、ポリビニルアルコール-ポリアクリル酸共重合体において、ポリアクリル酸は、塩であってもよい。この際におけるポリアクリル酸塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩の他、アンモニウム塩や有機アンモニウム塩等が例示される。
 ポリビニルアルコールは市販品としても入手可能である。具体的には、PVA117(株式会社クラレ製)、ポバール(株式会社クラレ製)、ポリビニルアルコール(アルドリッチ社製)、J-ポバール(日本酢ビ・ポバール株式会社製)等が例示される。分子量のグレードは種々存在するが、重量平均分子量が130,000~300,000のものが好ましい。
 ポリビニルアルコール-ポリアクリル酸塩共重合体(ナトリウム塩)も、市販品として入手可能である。例えば、クラストマーAP20(株式会社クラレ製)が例示される。
 なお、本発明の分離モジュール10の促進輸送膜20aにおいて、親水性化合物は、2種以上を混合して使用してもよい。
 促進輸送膜20aにおける親水性化合物の含有量は、促進輸送膜20aを形成するためのバインダーとして機能し、かつ、水分を十分に保持できる量を、親水性組成物やキャリアの種類等に応じて、適宜、設定すればよい。
 具体的には、0.5~50質量%が好ましく、0.75~30質量%がより好ましく、1~15質量%が特に好ましい。親水性化合物の含有量を、この範囲とすることにより、上述のバインダとしての機能および水分保持機能を、安定して、好適に発現できる。
 親水性化合物における架橋構造は、熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等、従来公知の手法により形成できる。
 好ましくは光架橋もしくは熱架橋であり、最も好ましくは熱架橋である。
 また、促進輸送膜20aの形成には、親水性化合物と共に、架橋剤を用いるのが好ましい。すなわち、塗布法によって促進輸送膜20aを形成する際には、架橋剤を含む塗布組成物を用いるのが好ましい。
 架橋剤としては、親水性化合物と反応し、熱架橋や光架橋等の架橋をし得る官能基を2以上有する架橋剤を含むものが選択される。また、形成された架橋構造は、耐加水分解性の架橋構造となるのが好ましい。
 このような観点から、促進輸送膜20aの形成に利用される架橋剤としては、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤などが好適に例示される。より好ましくは多価アルデヒド、有機金属系架橋剤およびエポキシ架橋剤であり、中でも、アルデヒド基を2以上有するグルタルアルデヒドやホルムアルデヒドなどの多価アルデヒドが好ましい。
 エポキシ架橋剤としては、エポキシ基を2以上有する化合物であり、4以上有する化合物も好ましい。エポキシ架橋剤は市販品としても入手可能であり、例えば、トリメチロールプロパントリグリシジルエーテル(共栄社化学株式会社製、エポライト100MF等)、ナガセケムテックス社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、日油株式会社製エピオールE400などが例示される。
 また、エポキシ架橋剤に類似する化合物として、環状エーテルを有するオキセタン化合物も、また、好ましく使用される。オキセタン化合物としては、官能基を2以上有する多価グリシジルエーテルが好ましく、市販品としては、例えばナガセケムテックス株式会社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、などが例示される。
 多価グリシジルエーテルとしては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、プロピレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が例示される。
 多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、プロピレングリコール、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピル、オキシエチエンオキシプロピレンブロック共重合体、ペンタエリスリトール、ソビトール等が例示される。
 多価イソシアネートとしては、例えば、2,4-トルイレンジイソシアネート、ヘキサメチレンジイソシアネート等が例示される。
 多価アジリジンとしては、例えば、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アシリジニル)プロピオネート]、1,6-ヘキサメチレンジエチレンウレア、ジフェニルメタン-ビス-4,4’-N,N’-ジエチレンウレア等が例示される。
 ハロエポキシ化合物としては、例えば、エピクロルヒドリン、α-メチルクロルヒドリン等が例示される。
 多価アルデヒドとしては、例えば、グルタルアルデヒド、グリオキサール等が例示される。
 多価アミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等が例示される。
 さらに、有機金属系架橋剤としては、例えば、有機チタン架橋剤、有機ジルコニア架橋剤等が例示される。
 例えば、親水性化合物として、重量平均分子量が130,000以上のポリビニルアルコールを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から,エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
 また、親水性化合物として、ポリビニールアルコール-ポリアクリル酸共重合体を用いる場合は、エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
 また、親水性化合物として、重量平均分子量が10,000以上のポリアリルアミンを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から、エポキシ架橋剤、グルタルアルデヒド、および、有機金属架橋剤が好ましく利用される。
 さらに、親水性化合物として、ポリエチレンイミンやポリアリルアミンを用いる場合には、エポキシ架橋剤が好ましく利用される。
 架橋剤の量は、促進輸送膜20aの形成に使用する親水性化合物や架橋剤の種類に応じて、適宜、設定すればよい。
 具体的には、親水性化合物が有する架橋可能基量100質量部に対して0.001~80質量部が好ましく、0.01~60質量部がより好ましく、0.1~50質量部が特に好ましい。架橋剤の含有量を上記範囲とすることにより、架橋構造の形成性が良好であり、かつ、形状維持性に優れる促進輸送膜を得ることができる。
 また、親水性化合物が有する架橋可能基に着目すれば、架橋構造は、親水性化合物が有する架橋可能基100molに対し、架橋剤0.001~80molを反応させて形成されたものであるのが好ましい。
 前述のように、分離モジュール10の酸性ガス分離層20において、促進輸送膜20aは、このような親水性化合物に加え、キャリアを含有する。
 キャリアは、酸性ガス(例えば、炭酸ガス)と親和性を有し、かつ、塩基性を示す各種の水溶性の化合物である。具体的には、アルカリ金属化合物、窒素含有化合物および硫黄酸化物等が例示される。
 なお、キャリアは、間接的に酸性ガスと反応するものでも、キャリア自体が、直接、酸性ガスと反応するものでもよい。
 前者は、供給ガス中に含まれる他のガスと反応し、塩基性を示し、その塩基性化合物と酸性ガスが反応するものなどが例示される。より具体的には、スチーム(水分)と反応してOH-を放出し、そのOH-がCO2と反応することで、促進輸送膜20a中に選択的にCO2を取り込むことができる化合物であり、例えば、アルカリ金属化合物である。
 後者は、キャリア自体が塩基性であるようなもので、例えば、窒素含有化合物や硫黄酸化物である。
 アルカリ金属化合物としては、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、および、アルカリ金属水酸化物等が例示される。ここで、アルカリ金属としては、セシウム、ルビジウム、カリウム、リチウム、および、ナトリウムから選ばれたアルカリ金属元素が好ましく用いられる。なお、本発明において、アルカリ金属化合物とは、アルカリ金属そのもののほか、その塩およびそのイオンも含む。
 アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、および、炭酸セシウム等が例示される。
 アルカリ金属重炭酸塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、および、炭酸水素セシウム等が例示される。
 さらに、アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、および、水酸化セシウム等が例示される。
 これらの中でも、アルカリ金属炭酸塩が好ましく、また、酸性ガスとの親和性が良いという観点から、水に対する溶解度の高いカリウム、ルビジウム、および、セシウムを含む化合物が好ましい。
 また、キャリアとしてアルカリ金属化合物を用いる際には、2種以上のキャリアを併用してもよい。
 促進輸送膜20a中に2種以上のキャリアが存在することにより、膜中で異なるキャリアを距離的に離間させることができる。これにより、複数のキャリアの潮解性の違いによって、促進輸送膜20aの吸湿性に起因して、製造時等に促進輸送膜20a同士や、促進輸送膜20aと他の部材とが貼着すること(ブロッキング)を、好適に抑制できる。
 また、ブロッキングの抑制効果を、より好適に得られる等の点で、2種以上のアルカリ金属化合物をキャリアとして用いる場合には、潮解性を有する第1化合物と、第1化合物よりも潮解性が低く比重が小さい第2化合物を含むのが好ましい。一例として、第1化合物としては炭酸セシウムが、第2化合物としては炭酸カリウムが、例示される。
 窒素含有化合物としては、グリシン、アラニン、セリン、プロリン、ヒスチジン、タウリン、ジアミノプロピオン酸などのアミノ酸類、ピリジン、ヒスチジン、ピペラジン、イミダゾール、トリアジンなどのヘテロ化合物類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミンなどのアルカノールアミン類、クリプタンド[2.1]、クリプタンド[2.2]などの環状ポリエーテルアミン類、クリプタンド[2.2.1]、クリプタンド[2.2.2]などの双環式ポリエーテルアミン類,ポルフィリン、フタロシアニン、エチレンジアミン四酢酸等が例示される。
 さらに、硫黄化合物としては、シスチン、システインなどのアミノ酸類、ポリチオフェン、ドデシルチオール等が例示される。
 促進輸送膜20aにおけるキャリアの含有量は、キャリアや親水性化合物の種類等に応じて、適宜、設定すればよい。具体的には、0.3~30質量%が好ましく、0.5~25質量%がより好ましく、1~20質量%が特に好ましい。
 促進輸送膜20aにおけるキャリアの含有量を、上記範囲とすることにより、促進輸送膜20aを形成するための組成物(塗料)において、塗布前の塩析を好適に防ぐことができ、さらに、促進輸送膜20aが、酸性ガスの分離機能を確実に発揮できる。
 促進輸送膜20a(促進輸送膜20aを形成するための組成物)は、このような親水性化合物、架橋剤およびキャリアに加え、必要に応じて、各種の成分を含有してもよい。
 このような成分としては、ジブチルヒドロキシトルエン(BHT)等の酸化防止剤、炭素数3~20のアルキル基または炭素数3~20のフッ化アルキル基と親水性基とを有する化合物やシロキサン構造を有する化合物等の特定化合物、オクタン酸ナトリウムや1-ヘキサスルホン酸ナトリウム等の界面活性剤、ポリオレフィン粒子やポリメタクリル酸メチル粒子等のポリマー粒子等が例示される。
 その他、必要に応じて、触媒、保湿(吸湿)剤、補助溶剤、膜強度調整剤、欠陥検出剤等を用いてもよい。
 促進輸送膜20aは、単層構成でも、複数層から構成されるものでもよい。
 ここで、促進輸送膜20aが複数層から構成される場合には、同じ膜を積層してもよく、組成、含有する成分の種類や数、pH、含有する各成分の濃度等が異なる膜を積層してもよい。
 酸性ガス分離層20は、このような促進輸送膜20aと、多孔質支持体20bとから構成される。
 多孔質支持体20bは、酸性ガス透過性を有し、かつ、促進輸送膜20aを形成するための塗布組成物の塗布が可能(塗膜の支持が可能)であり、さらに、形成された促進輸送膜20aを支持するものである。
 多孔質支持体20bの形成材料は、上記機能を発現できる物であれば、公知の各種の物が利用可能である。
 ここで、本発明の分離モジュール10において、酸性ガス分離層20を構成する多孔質支持体20bは、単層であってもよいが、多孔質膜と補助支持膜とからなる2層構成であるのが好ましい。このような2構成を有することにより、多孔質支持体20bは、上記酸性ガス透過性、促進輸送膜20aとなる塗布組成物の塗布および促進輸送膜20aの支持という機能を、より確実に発現する。
 なお、多孔質支持体20bが単層である場合には、形成材料としては、以下に多孔質膜および補助支持膜で例示する各種の材料が利用可能である。
 この2層構成の多孔質支持体20bでは、多孔質膜が促進輸送膜20a側となる。
 多孔質膜は、耐熱性を有し、また加水分解性の少ない材料からなることが好ましい。このような多孔質膜としては、具体的には、ポリスルフォン、ポリエーテルスルホン、ポリプロピレン、セルロースなどのメンブレンフィルター膜、ポリアミドやポリイミドの界面重合薄膜、ポリテトラフルオロエチレン(PTFE)や高分子量ポリエチレンの延伸多孔膜等が例示される。
 中でも、PTFEや高分子量ポリエチレンの延伸多孔膜は、高い空隙率を有し、酸性ガス(特に炭酸ガス)の拡散阻害が小さく、さらに、強度、製造適性などの観点から好ましい。その中でも、耐熱性を有し、また加水分解性の少ない等の点で、PTFEの延伸多孔膜が、好適に利用される。
 多孔質膜は、使用環境下において、水分を含有した促進輸送膜20aが多孔部分に浸み込み易くなり、かつ、膜厚分布や経時での性能劣化を引き起こさないために、疎水性であるのが好ましい。
 また、多孔質膜は、孔の最大孔径が1μm以下であるのが好ましい。
 さらに、多孔質膜の孔の平均孔径は、0.001~10μmが好ましく、0.002~5μmがより好ましく、0.005~1μmが特に好ましい。多孔質膜の平均孔径をこの範囲とすることにより、後述する接着剤の塗布領域は接着剤を十分に染み込ませ、かつ、多孔質膜が酸性ガスの通過の妨げとなることを好適に防止できる。
 補助支持膜は、多孔質膜の補強用に備えられるものである。
 この支持膜は、要求される強度、耐延伸性および気体透過性を満たすものであれば、各種の物が利用可能である。例えば、不織布、織布、ネット、および、平均孔径が0.001~10μmのメッシュなどを、適宜、選択して用いることができる。
 補助支持膜も、前述の多孔質膜と同様、耐熱性を有し、また加水分解性の少ない素材からなることが好ましい。
 不織布、織布、編布を構成する繊維としては、耐久性や耐熱性に優れる、ポリプロピレン(PP)などのポリオレフィン、アラミド(商品名)などの改質ポリアミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素含有樹脂などからなる繊維が好ましい。メッシュを構成する樹脂材料も同様の素材を用いるのが好ましい。これらの材料のうち、安価で力学的強度の強いPPからなる不織布は、特に好適に例示される。
 多孔質支持体20bが補助支持膜を有することにより、力学的強度を向上させることができる。そのため、例えば、後述するロール・トゥ・ロール(以下、RtoRとも言う)を利用する塗布装置においてハンドリングしても、多孔質支持体20bに皺がよることを防止でき、生産性を高めることもできる。
 多孔質支持体20bは、薄すぎると強度に難がある。この点を考慮すると、多孔質膜の膜厚は5~100μm、補助支持膜の膜厚は50~300μmが好ましい。
 また、多孔質支持体20bを単層にする場合には、多孔質支持体20bの厚さは、30~500μmが好ましい。
 このような酸性ガス分離層20は、促進輸送膜20aとなる成分を含む液体状の塗布組成物(塗料/塗布液)を調製して、多孔質支持体20bに塗布して、乾燥する、いわゆる塗布法で作製できる。
 すなわち、まず、親水性化合物、キャリア、および、必要に応じて添加するその他の成分を、それぞれ適量で水(常温水または加温水)に添加して、十分、攪拌することで、促進輸送膜20aとなる塗布組成物を調製する。
 この塗布組成物の調製では、必要に応じて、攪拌しつつ加熱することで、各成分の溶解を促進させてもよい。また、親水性化合物を水に加えて溶解した後、キャリアを徐々に加えて攪拌することで、親水性化合物の析出(塩析)を効果的に防ぐことができる。
 この組成物を多孔質支持体20bに塗布して、乾燥することで、酸性ガス分離層20を作製する。
 ここで、組成物の塗布および乾燥は、所定のサイズに切断されたカットシート状の多孔質支持体20bに行う、いわゆる枚葉式で行ってもよい。
 好ましくは、酸性ガス分離層20の作製は、いわゆるRtoRによって行う。すなわち、長尺な多孔質支持体20bを巻回してなる送り出しロールから、多孔質支持体20bを送り出して、長手方向に搬送しつつ、調製した塗布組成物を塗布し、次いで、塗布した塗布組成物(塗膜)を乾燥して、多孔質支持体20bの表面に促進輸送膜20aを形成してなる酸性ガス分離層20を作製し、作製した酸性ガス分離層20を巻き取る。
 RtoRにおける多孔質支持体20bの搬送速度は、多孔質支持体20bの種類や塗布液の粘度等に応じて、適宜、設定すればよい。
 ここで、多孔質支持体20bの搬送速度が速すぎると、塗布組成物の塗膜の膜厚均一性が低下するおそれがあり、遅過ぎると生産性が低下する。この点を考慮すると、多孔質支持体20bの搬送速度は、0.5m/分以上が好ましく、0.75~200m/分がより好ましく、1~200m/分が特に好ましい。
 塗布組成物の塗布方法は、公知の方法が、各種、利用可能である。
 具体的には、カーテンフローコーター、エクストルージョンダイコーター、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、リバースロールコーター、バーコーター等が例示される。
 塗布組成物の塗膜の乾燥も、公知の方法で行えばよい。一例として、温風による乾燥が例示される。
 温風の風速は、ゲル膜反を迅速に乾燥させることができるともにゲル膜反が崩れない速度を、適宜、設定すればよい。具体的には、0.5~200m/分が好ましく、0.75~200m/分がより好ましく、1~200m/分が特に好ましい。
 温風の温度は、多孔質支持体20bの変形などが生じず、かつ、ゲル膜反を迅速に乾燥させることができる温度を、適宜、設定すればよい。具体的には、膜面温度で、1~120℃が好ましく、2~115℃がより好ましく、3~110℃が特に好ましい。
 また、塗膜の乾燥には、必要に応じて、多孔質支持体20bの加熱を併用してもよい。
 積層体14には、さらに、透過ガス流路用部材26が積層される。図示例において、透過ガス流路用部材26は、一例として長方形のシート状物である。
 透過ガス流路用部材26は、キャリアと反応して酸性ガス分離層20を透過した酸性ガスGcを、中心筒12の貫通孔12aに流すための部材である。
 前述のように、図示例において、積層体14は、酸性ガス分離層20を促進輸送膜20aを内側にして二つ折りにして、供給ガス流路用部材24を挟み込んだ挟持体36を有する。この挟持体36に、透過ガス流路用部材26を積層して、接着剤層30で接着することにより、1つの積層体14が構成される。
 透過ガス流路用部材26は、積層体14間でスペーサとして機能して、積層体14の巻回中心(内側)に向かって中心筒12の貫通孔12aに至る、原料ガスGから分離した酸性ガスGcの流路を構成する。また、この酸性ガスGcの流路を適正に形成するために、後述する接着剤層30が浸透する必要が有る。この点を考慮すると、透過ガス流路用部材26は、供給ガス流路用部材24と同様、網目構造(ネット状/メッシュ状)の部材が好ましい。
 透過ガス流路用部材26の形成材料は、十分な強度や耐熱性を有するものであれば、各種の材料が利用可能である。具体的には、エポキシ含浸ポリエステルなどポリエステル系の材料、ポリプロピレンなどポリオレフィン系材料、ポリテトラフルオロエチレンなどフッ素系の材料、金属、ガラス、セラミックスなどの無機材料等が、好適に例示される。
 透過ガス流路用部材26の厚さは、原料ガスGの供給量や要求される処理能力等に応じて、適宜、決定すれば良い。
 具体的には、100~1000μmが好ましく、150~950μmがより好ましく、200~900μmが特に好ましい。
 前述のように、透過ガス流路用部材26は、原料ガスGから分離されて酸性ガス分離層20を透過した酸性ガスGcの流路となる。
 そのため、透過ガス流路用部材26は、流れるガスに対しての抵抗が少ないのが好ましい。具体的には、空隙率が高く、圧をかけたときの変形が少なく、かつ、圧損が少ないのが好ましい。
 透過ガス流路用部材26の空隙率は、30~99%が好ましく、35~97.5%がより好ましく、40~95%が特に好ましい。
 また、圧をかけたときの変形は、引張試験を行ったときの伸度で近似できる。具体的には、10N/10mm幅の荷重をかけたときの伸度が5%以内であることが好ましく、4%以内であることがより好ましい。
 さらに、圧損は、一定の流量で流した圧縮空気の流量損失で近似できる。具体的には、15cm角の透過ガス流路用部材26に、室温で15L/分の空気を流した際に、流量損失が7.5L/分以内であるのが好ましく、7L/分以内であるのがより好ましい。
 以下、積層体14の積層方法、および、積層した積層体14の巻回方法すなわちスパイラル積層体14aの作製方法を説明する。なお、以下の説明に用いる図6(A)~図9では、図面を簡潔にして構成を明確に示すために、供給ガス流路用部材24および透過ガス流路用部材26は、端面(端部)のみをネット状で示す。
 まず、図6(A)および図6(B)に概念的に示すように、中心筒12の延在方向と短手方向とを一致して、中心筒12に、カプトンテープや接着剤等の固定手段34を用いて、透過ガス流路用部材26の端部を固定する。
 ここで、中心筒12の管壁には、軸方向に沿ってスリット(図示省略)が設けられているのが好ましい。この場合、スリットに、透過ガス流路用部材26の先端部を入れ込み、中心筒12の内周面に固定手段で固定するようにする。この構成によれば、透過ガス流路用部材26を含んだ積層体を中心筒12に巻き付ける際に、テンションをかけながら巻き付けるようにしても、中心筒12の内周面と透過ガス流路用部材26との摩擦で、透過ガス流路用部材26がスリットから抜けることを防止でき、すなわち、透過ガス流路用部材26の固定が維持される。
 一方で、図7に概念的に示すように、酸性ガス分離層20を、促進輸送膜20aを内側にして二つ折りにし、間に供給ガス流路用部材24を挟み込む。すなわち、供給ガス流路用部材24を、二つ折りにした酸性ガス分離層20で挟持した挟持体36を作製する。なお、この際には、酸性ガス分離層20は均等に二つ折りにするのではなく、図7に示すように、一方が、若干、長くなるように、二つ折りする。
 また、供給ガス流路用部材24による促進輸送膜20aの損傷を防止するために、酸性ガス分離層20を二つ折りにした谷部に、二つ折りにしたシート状の保護部材(例えば、カプトンテープやPTFEテープなど)を配置するのが好ましい。
 さらに、二つ折りにした酸性ガス分離層20の短い方の表面(多孔質支持体20bの表面)に、接着剤層30となる接着剤30aを塗布する。
 ここで、接着剤30a(すなわち、接着剤層30)は、図7に示すように、x方向の両端部近傍で、y方向の全域に延在して帯状に塗布し、さらに、折り返し部と逆側の端部近傍でx方向の全域に延在して帯状に塗布する。
 以下、x方向(原料ガス供給方向)を、幅方向とも言う。また、前述のように、x方向と直交するy方向は、積層体14の巻回方向と一致する。
 次いで、図8(A)および図8(B)に概念的に示すように、接着剤30aを塗布した面を透過ガス流路用部材26に向け、かつ、折り返し側を中心筒12に向けて、挟持体36を、中心筒12に固定した透過ガス流路用部材26に積層し、透過ガス流路用部材26と酸性ガス分離層20(多孔質支持体20b)とを接着する。
 さらに、図8(A)に示すように、積層した挟持体36の上面(長い側の多孔質支持体20bの表面)に、接着剤層30となる接着剤30aを塗布する。なお、以下の説明では、最初に固定手段34で中心筒12に固定された透過ガス流路用部材26と逆側の方向を、上側とも言う。
 図8(A)に示すように、この面の接着剤30aも、先と同様、幅方向の両端部近傍で、巻回方向の全域に延在して帯状に塗布し、さらに、折り返し部と逆側の端部近傍で幅方向の全域に延在して帯状に塗布する。
 次いで、図9に概念的に示すように、接着剤30aを塗布した挟持体36の上に、透過ガス流路用部材26を積層し、酸性ガス分離層20(多孔質支持体20b)と透過ガス流路用部材26とを接着し、積層体14が形成される。
 次いで、先と同様、図7に示すように、酸性ガス分離層20で供給ガス流路用部材24を挟み込んだ挟持体36を作製して、接着剤層30となる接着剤30aを塗布して、接着剤を塗布した側を下に向けて、最後に積層した透過ガス流路用部材26と挟持体36とを積層して、接着する。
 さらに、先と同様、積層した挟持体36の上面に、図8(A)に示すように接着剤30aを塗布して、次いで、図9に示すように、その上に、透過ガス流路用部材26を積層して、接着し、2層目の積層体14を積層する。
 以下、図7~図9の工程を繰り返して、図10に概念的に示すように、所定数の積層体14を積層する。
 なお、この際においては、図10に示すように、積層体14は、上方に行くにしたがって、次第に、巻回方向に中心筒12から離間するように積層するのが好ましい。これにより、中心筒12への積層体14の巻回(巻き付け)を容易に行い、かつ、各透過ガス流路用部材26の中心筒12側の端部もしくは端部近傍が、好適に中心筒12に当接できる。
 所定数の積層体14を積層したら、図10に示すように、中心筒12の外周面に接着剤38aを、最初に中心筒12に固定した透過ガス流路用部材26の上面の中心筒12と挟持体36との間に接着剤38bを、それぞれ、塗布する。
 次いで、図10に矢印ywで示すように、積層した積層体14を巻き込むようにして、積層体14を中心筒12に巻回する(巻き付ける)。
 巻き終わったら、最外周(すなわち、最初に中心筒12に固定した最下層)の透過ガス流路用部材26に、ひき出す方向(巻き絞める方向)の張力を掛けた状態で、所定時間、維持して、接着剤30a等を乾燥させる。
 所定時間が経過したら、最外周の透過ガス流路用部材26を1周した位置で超音波融着等によって固定し、固定位置よりも外方の余分な透過ガス流路用部材26を切断して、積層した積層体14を中心筒12に巻回してなるスパイラル積層体14aを完成する。
 前述のように、原料ガスGは、供給ガス流路用部材24の端部から供給され、酸性ガスGcは、酸性ガス分離層20を積層方向に通過して(輸送されて)、透過ガス流路用部材26に流入し、透過ガス流路用部材26内を流れて、中心筒12に至る。
 ここで、接着剤30aを塗布されるのは、多孔質支持体20bであり、また、接着剤30aによって接着されるのは、網目構造の透過ガス流路用部材26である。従って、接着剤30aは、多孔質支持体20bおよび透過ガス流路用部材26内に浸透(含浸)し、両者の内部に接着剤層30が形成される。
 また、接着剤層30(接着剤30a)は、前述のように、幅方向(x方向)の両端部近傍で、巻回方向(y方向)の全域に延在して帯状に形成される。さらに、接着剤層30は、この幅方向両端部近傍の接着剤層30を幅方向に横切るように、中心筒12側となる折り返し部と逆側の端部近傍で幅方向の全域に延在して帯状に形成される。すなわち、接着剤層30は、中心筒12側を開放して、透過ガス流路用部材26および多孔質支持体20bの外周を囲むように形成される。また、透過ガス流路用部材26は、促進輸送膜20aによって挟まれた状態となっている。
 これにより、積層体14の透過ガス流路用部材26には、中心筒12側が開放するエンベロープ状の流路が形成される。従って、酸性ガス分離層20を透過して透過ガス流路用部材26に流入した酸性ガスGcは、外部に流出することなく、透過ガス流路用部材26内を中心筒12に向かって流れ、貫通孔12aから中心筒12内に流入する。
 本発明の分離モジュール10において、接着剤層30(接着剤30a)は、十分な接着力、耐熱性および耐湿性を有するものであれば、各種の公知の接着剤が利用可能である。
 一例として、エポキシ樹脂、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、尿素ホルムアミド樹脂等が好適に例示される。
 なお、接着剤層30となる接着剤30aは、一度塗りでもよいが、好ましくは、最初はアセトン等の有機溶剤で希釈した接着剤を塗布し、その上に、接着剤のみを塗布するのが好ましい。また、この際には、有機溶剤で希釈した接着剤は幅広に塗布し、接着剤は、これよりも狭い幅で塗布するのが好ましい。
 これにより、多孔質支持体20bおよび透過ガス流路用部材26に、好適に接着剤層30(接着剤30a)を浸透させることができる。
 本発明の分離モジュール10において、このようにして作製されるスパイラル積層体14aの両端部には、テレスコープ防止板(テレスコープ防止部材)16が配置される。
 前述のように、テレスコープ防止板16は、スパイラル積層体14aが原料ガスGによって押圧されて、供給側の端面が入れ子状に押し込まれ、逆側の端面が入れ子状に突出する、いわゆるテレスコープ現象を防止するための部材である。
 本発明において、テレスコープ防止板16は、スパイラル型の分離モジュールに用いられる公知のものが、各種、利用可能である。
 図示例において、テレスコープ防止板は、円環状の外環部16aと、外環部16aの中に中心を一致して配置される円環状の内環部16bと、外環部16aおよび内環部16bを連結して固定するリブ(スポーク)16cとを有して構成される。前述のように、積層体14が巻回される中心筒12は、内環部16bを挿通する。
 図示例において、リブ16cは、外環部16aおよび内環部16bの中心から、等角度間隔で放射状に設けられおり、外環部16aと内環部16bとの間で、かつ、各リブ16cの間隙が、原料ガスGもしくは残余ガスGrが通過する開口部16dとなっている。
 また、テレスコープ防止板16は、スパイラル積層体14aの端面に接触して配置しても良い。しかしながら、一般的には、スパイラル積層体14aの端面全域を原料ガスの供給や残余ガスGrの排出に使用するために、テレスコープ防止板16とスパイラル積層体14aの端面とは、若干の間隙を有して配置される。
 テレスコープ防止板16の形成材料は、十分な強度と、耐熱性および耐湿性を有する、各種の材料が利用可能である。
 具体的には、金属材料(例えば、ステンレス(SUS)、アルミニウム、アルミニウム合金、錫、錫合金等)、樹脂材料(例えばポリエチレン樹脂、ポリプロピレン樹脂、芳香族ポリアミド樹脂、ナイロン12、ナイロン66、ポリサルフィン樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、アクリル・ブタジエン・スチレン樹脂、アクリル・エチレン・スチレン樹脂、エポキシ樹脂、ニトリル樹脂、ポリエーテルエーテルケトン樹脂(PEEK)、ポリアセタール樹脂(POM)、ポリフェニレンサルファイド(PPS)等)、およびこれら樹脂の繊維強化プラスチック(例えば繊維としては、ガラス繊維、カーボン繊維、ステンレス繊維、アラミド繊維などで、特に長繊維が好ましい。具体例としては、例えばガラス長繊維強化ポリプロピレン、ガラス長繊維強化ポリフェニレンサルファイドなど)、並びに、セラミックス(例えばゼオライト、アルミナなど)等が好適に例示される。
 なお、樹脂を用いる際には、ガラス繊維等で強化した樹脂を用いてもよい。
 被覆層18は、スパイラル積層体14aの周面を覆って、この周面すなわちスパイラル積層体14aの端面以外から外部への原料ガスGや残余ガスGrの排出を遮断するためのものである。
 被覆層18は、原料ガスG等を遮蔽できる物が、各種、利用可能である。また、被覆層18は、筒状の部材であってもよく、線材やシート状の部材を巻回して構成してもよい。
 一例として、FRP製の線材に、前述の接着剤層30に利用される接着剤を含浸して、接着剤を含浸した線材を、隙間無く、必要に応じて多重に、スパイラル積層体14aに巻き付けてなる被覆層18が例示される。
 なお、この際においては、必要に応じて、被覆層18とスパイラル積層体14aとの間に、スパイラル積層体14aへの接着剤の染み込みを防止するためのカプトンテープ等のシート状部材を設けてもよい。
 以上、本発明の分離モジュール(酸性ガス分離用スパイラル型モジュール)について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 例えば、上記実施形態においては、促進輸送膜を用いる分離モジュールとしたが、溶解拡散型の分離モジュールであってもよい。溶解拡散型の分離モジュールに本発明を適用することで、原料ガスを均一に分離膜に供給することができるので、分離モジュールのガス分離性能を向上できる。
 なお、本発明は、性能向上のために、分離膜に水分を均一に供給する必要がある促進輸送膜を用いる分離モジュールに好適に用いられる。
 以下、本発明の具体的実施例を挙げ、本発明の酸性ガス分離用スパイラル型モジュールについて、より詳細に説明する。
 [実施例1]
<酸性ガス分離層の作製>
 ポリビニルアルコール-ポリアクリル酸共重合体(株式会社クラレ製 クラストマーAP-20)を3.3質量%、架橋剤(和光純薬工業株式会社製 25質量%グルタルアルデヒド水溶液)を0.016質量%、含む水溶液を調製した。この水溶液に、1M塩酸を添加して、架橋させた。
 架橋後、40%炭酸セシウム水溶液(稀産金属株式会社製)を炭酸セシウム濃度が7.0重量%になるように添加して、脱泡し、塗布組成物を調製した。すなわち、本例では、炭酸セシウムが促進輸送膜20aのキャリアとなる。
 次いで、多孔質支持体20b(PP不織布の表面に多孔質のPTFEを積層してなる積層体(GE社製))に塗布組成物を塗布して乾燥することで、促進輸送膜20aと多孔質支持体20bとからなる酸性ガス分離層20を作製した。
 なお、促進輸送膜20aの厚さは50μmとした。
 <分離モジュールの作製>
 側面に中心線方向に延在するスリットを有する中心筒12を用意した。この中心筒12のスリットに、透過ガス流路用部材26(トリコット編みのエポキシ含浸ポリエステル)を挟み込むようにして固定して、図6に示すような状態とした。なお、中心筒12は、内部に仕切りが付いている。
 一方、作製した酸性ガス分離層20を促進輸送膜20aを内側にして二つ折りした。二つ折りは、図7に示すように、一方の酸性ガス分離層20が、若干、長くなるように行った。二つ折りした酸性ガス分離層20の谷部にカプトンテープを貼り、供給ガス流路用部材24の端部が促進輸送膜20aの谷部を傷つけないように補強した。
 次いで、二つ折りした酸性ガス分離層20に、供給ガス流路用部材24(厚さ0.44mmのポリプロピレン製ネット、大きさ(x方向×y方向)500mm×800mmを挟み込んで、挟持体36を作製した。
 なお、この供給ガス流路用部材24には、内部に、原料ガスGの流路変更部材として、図3(A)に概念的に示すような、流路壁50aおよび50bが形成されている。
 流路壁50aおよび50bは、エポキシ系接着剤で形成した。流路壁50aおよび50bの厚さは8mmとした。流路壁50aおよび50bは、供給ガス流路用部材24の入口端面側のy方向の中心線に対称となる位置に配置した。流路壁50aおよび50bのx方向の長さは250mmとした。すなわち、供給ガス流路用部材の長さの50%とした。流路壁50aおよび50bの間隔は、入口端面において50mmとした。流路壁50aおよび50bのなす角度は、平均角度30°とした。
 この挟持体36の酸性ガス分離層20が短い方の多孔質支持体20b側に、図7に示すように、幅方向(x方向)の両端部近傍に、巻回方向(y方向)の全域に延在し、かつ、巻回方向の折り返し部と逆側の端部近傍に、幅方向の全域に延在して、高粘度(約40Pa・s)のエポキシ系樹脂からなる接着剤30a(ヘンケルジャパン株式会社製 E120HP)を塗布した。
 次いで、接着剤30aを塗布した側を下方に向けて、図8(A)に示すように、挟持体36と中心筒12に固定した透過ガス流路用部材26とを積層し、接着した。
 次いで、透過ガス流路用部材26に積層した挟持体36の酸性ガス分離層20の上面に、図8(A)に示すように、幅方向の両端部近傍に、巻回方向の全域に延在し、かつ、巻回方向の折り返し部と逆側の端部近傍に、幅方向の全域に延在して、接着剤30aを塗布した。さらに、接着剤30aを塗布した酸性ガス分離層20の上に、図9に示すように、透過ガス流路用部材26を積層して、接着することにより、1層目の積層体14を形成した。
 先と同様にして、図7に示す挟持体36を、もう一つ作製し、同様に、短い側の酸性ガス分離層20の多孔質支持体20b側に、同様に接着剤30aを塗布した。次いで、図8(A)と同様に、接着剤30aを塗布した側を先に形成した1層目の積層体14(その透過ガス流路用部材26)に向けて、挟持体36を、1層目の積層体14(透過ガス流路用部材26)の上に積層し、接着した。さらに、この挟持体36の上面に、図8(A)と同様に接着剤30aを塗布し、その上に、図9と同様に透過ガス流路用部材26を積層して、接着することにより、2層目の積層体14を形成した。
 さらに、上記2層目と同様にして、2層目の積層体14の上に、3層目の積層体14を形成した。
 中心筒12に固定した透過ガス流路用部材26の上に、3層の積層体14を積層した後、図10に示すように、中心筒12の周面に接着剤38aを塗布し、さらに、中心筒12と最下層の積層体14との間の透過ガス流路用部材26上に、接着剤38bを塗布した。接着剤38aおよび38bは、接着剤30aと同じ物を用いた。
 次いで、図10の矢印yx方向に中心筒12を回転することで、積層した3層の積層体14を巻き込むようにして中心筒12に多重に巻き付け、積層体14を牽引する方向に張力を掛けてスパイラル積層体14aとした。
 さらに、スパイラル積層体14aの両端部に、内環部16bに中心筒12を挿通して、図10に示される形状の、ガラス繊維を40%含むPPS製のテレスコープ防止板16を取り付けた。
 さらに、テレスコープ防止板16の周面およびスパイラル積層体14aの周面に、FRP加工を行うことで被覆層18を形成して、分離モジュール10を作成した。
 作成した分離モジュール10の膜面積は、3層の合計で1.2m2である(設計値)。
 [実施例2]
 流路壁50aおよび流路壁50bのx方向の長さを50mm、すなわち、供給ガス流路用部材の長さの10%とした以外は、実施例1と同様にして分離モジュールを作製した。
 [実施例3]
 流路壁50aおよび流路壁50bのx方向の長さを450mm、すなわち、供給ガス流路用部材の長さの90%とした以外は、実施例1と同様にして分離モジュールを作製した。
 [実施例4]
 流路壁50aおよび流路壁50bのx方向の長さを150mm、すなわち、供給ガス流路用部材の長さの30%とした以外は、実施例1と同様にして分離モジュールを作製した。
 [実施例5]
 流路壁50aおよび流路壁50bのx方向の長さを25mm、すなわち、供給ガス流路用部材の長さの5%とした以外は、実施例1と同様にして分離モジュールを作製した。
 [比較例1]
 供給ガス流路用部材24が流路壁50aおよび50bを有さない以外は、実施例1と同様に分離モジュールを作成した。
<モジュールファクタ>
 作製した各実施例および比較例の分離モジュールのモジュールファクタを、分離モジュールと、分離モジュールに用いた多孔質支持体20b上の促進輸送膜20a自体との、それぞれの分離係数を測定することで、算出した。
 なお、本例では、CO2/H2分離係数およびCO2/N2分離係数を測定し、各分離係数毎に、モジュールファクタを算出した。
 (分離モジュールの分離係数測定)
 CO2/H2分離係数; H2:CO2:H2O=45:5:50(分圧比)の原料ガスG(流量2.2L(リットル)/min)を温度130℃、全圧301.3kPaで、各分離モジュールに供給し、透過側にArガス(流量0.9L/min)をフローさせた。透過してきたガスをガスクロマトグラフで分析し、CO2/H2分離係数(α)を算出した。
 CO2/N2分離係数; N2:CO2:H2O=66:21:13(分圧比)の原料ガスG(流量1.72L/min)を温度130℃、全圧2001.3kPaで、各分離モジュールに供給した。透過してきたガスをガスクロマトグラフで分析し、CO2/N2分離係数(α)を算出した。
(多孔質支持体20b上の促進輸送膜20a自体の分離係数測定)
 CO2/H2分離係数; H2:CO2:H2O=45:5:50(分圧比)の原料ガスG(流量0.32L/min)を温度130℃、全圧301.3kPaで、促進輸送膜20aに供給し、透過側にArガス(流量0.04L/min)をフローさせた。透過してきたガスをガスクロマトグラフで分析し、CO2/H2分離係数(α)を算出した。
 CO2/N2分離係数; N2:CO2:H2O=66:21:13(分圧比)の原料ガスG(流量0.32L/min)を温度130℃、全圧2001.3kPaで、促進輸送膜20aに供給した。透過してきたガスをガスクロマトグラフで分析し、CO2/N2分離係数(α)を算出した。
 以上のように測定したCO2/H2分離係数(α)およびCO2/N2分離係数(α)を用いて、下記式によってモジュールファクタを算出した。
 モジュールファクタ=分離モジュールの(α)/促進輸送膜20aの(α)
 結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表に示されるように、供給ガス流路用部材24に流路壁を有する本発明の分離モジュールは、流路壁を有さない比較例の分離モジュールよりも、高いモジュールファクタを示しており、優れた分離性能を有していることがわかる。
 また、実施例1~5の対比から、x方向において、流路変更部材の長さは、供給ガス流路用部材の長さの10%以上であるのが好ましく、30~60%であるのがより好ましいことがわかる。
 以上の結果より、本発明の効果は明らかである。
 水素ガスの製造や天然ガスの精製等に好適に利用可能である。
 10  分離モジュール
 12  中心筒
 12a 貫通孔
 12b 開放端
 14  積層体
 14a スパイラル積層体
 16  テレスコープ防止板
 16a 外環部
 16b 内環部
 16c リブ
 16d 開口部
 18  被覆層
 20  酸性ガス分離層
 20a 促進輸送膜
 20b 多孔質支持体
 24  供給ガス流路用部材
 26  透過ガス流路用部材
 30  接着剤層
 30a、38a、38b 接着剤
 34  固定手段
 36  挟持体
 40  接着部材
 50a、50b、50c、50d、50e、50f 流路壁
 52  壁部材
 60a、60b 口金
 62a、62b 第2の溶液

Claims (10)

  1.  管壁に貫通孔が形成された中心筒と、原料ガスの流路となる供給ガス流路用部材と、前記供給ガス流路用部材を流れる原料ガスから酸性ガスを分離する酸性ガス分離膜を、前記供給ガス流路用部材側の面に有する酸性ガス分離層と、前記酸性ガス分離膜を透過した酸性ガスが前記中心筒まで流れる流路となる透過ガス流路用部材とを有し、前記供給ガス流路用部材、酸性ガス分離層および透過ガス流路用部材を有する積層体を、1以上、前記中心筒に巻回してなる酸性ガス分離用スパイラル型モジュールであって、
     前記積層体の前記供給ガス流路用部材の、原料ガスの入口となる入口端面側に、原料ガスの流路を変更する2以上の流路変更部材を有し、
     前記入口端面に垂直な方向において前記入口端面から離間するにしたがって、前記2以上の流路変更部材の少なくとも1対の部材同士の間隙が大きくなる酸性ガス分離用スパイラル型モジュール。
  2.  前記酸性ガス分離膜が、酸性ガスと反応するキャリアおよび前記キャリアを担持するための親水性化合物を含有する促進輸送膜である請求項1に記載の酸性ガス分離用スパイラル型モジュール。
  3.  前記2以上の流路変更部材は、前記供給ガス流路用部材の入口端面の延在方向の中心線を軸にして対称に配置される請求項1または2に記載の酸性ガス分離用スパイラル型モジュール。
  4.  前記入口端面に垂直な方向に、複数組の前記流路変更部材が配置され、
     前記入口端面に垂直な方向において前記入口端面から離間するにしたがって、組となる前記流路変更部材同士の間隙がそれぞれ大きくなる請求項1~3のいずれか1項に記載の酸性ガス分離用スパイラル型モジュール。
  5.  前記供給ガス流路用部材の入口端面の延在方向の中心線を軸にして対称に配置される前記流路変更部材を2組有し、
     一方の組の前記流路変更部材は、他方の組の前記流路変更部材よりも、前記中心線に近い位置に配置される請求項1~3のいずれか1項に記載の酸性ガス分離用スパイラル型モジュール。
  6.  前記入口端面に垂直な方向において、前記2以上の流路変更部材の長さが、前記供給ガス流路用部材の長さの10%以上である請求項1~5のいずれか1項に記載の酸性ガス分離用スパイラル型モジュール。
  7.  前記積層体を2以上有し、
     前記積層体ごとに、前記2以上の流路変更部材の配置位置が異なる請求項1~6のいずれか1項に記載の酸性ガス分離用スパイラル型モジュール。
  8.  前記積層体を2以上有し、
     前記積層体ごとに、前記2以上の流路変更部材の形状が異なる請求項1~7のいずれか1項に記載の酸性ガス分離用スパイラル型モジュール。
  9.  請求項1~8のいずれか1項に記載の酸性ガス分離用スパイラル型モジュールの製造方法であって、
     前記2以上の流路変更部材の材料となる第1の溶液を溶剤で希釈した第2の溶液を前記供給ガス流路用部材の、前記2以上の流路変更部材の形成位置に含浸させる工程と、
     前記供給ガス流路用部材に含浸した前記第2の溶液中に、さらに、前記第1の溶液を溶解させる工程とを有する酸性ガス分離用スパイラル型モジュールの製造方法。
  10.  請求項1~8のいずれか1項に記載の酸性ガス分離用スパイラル型モジュールの製造方法であって、
     前記酸性ガス分離膜の表面に前記2以上の流路変更部材を形成する工程と、
     前記2以上の流路変更部材を形成した前記酸性ガス分離層と前記供給ガス流路用部材とを積層する工程とを有する酸性ガス分離用スパイラル型モジュールの製造方法。
PCT/JP2014/083112 2014-01-20 2014-12-15 酸性ガス分離用スパイラル型モジュールおよび製造方法 WO2015107820A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-007803 2014-01-20
JP2014007803A JP2015136634A (ja) 2014-01-20 2014-01-20 酸性ガス分離用スパイラル型モジュールおよび製造方法

Publications (1)

Publication Number Publication Date
WO2015107820A1 true WO2015107820A1 (ja) 2015-07-23

Family

ID=53542723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083112 WO2015107820A1 (ja) 2014-01-20 2014-12-15 酸性ガス分離用スパイラル型モジュールおよび製造方法

Country Status (2)

Country Link
JP (1) JP2015136634A (ja)
WO (1) WO2015107820A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222620B (zh) 2019-08-30 2023-11-17 东丽株式会社 气体分离膜模块
CA3168483A1 (en) * 2020-01-21 2021-07-29 Membrane Technology And Research, Inc. Counterflow membrane module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654903U (ja) * 1979-10-02 1981-05-13
JPH0593532U (ja) * 1992-05-21 1993-12-21 日東電工株式会社 スパイラル型膜モジュ−ル
WO2010024291A1 (ja) * 2008-08-29 2010-03-04 富士フイルム株式会社 膜脱気モジュール
JP2012518538A (ja) * 2009-02-25 2012-08-16 プラット アンド ホイットニー ロケットダイン,インコーポレイテッド ファウリングが低減された流体分離システム
WO2013018538A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール
WO2013080391A1 (ja) * 2011-12-02 2013-06-06 東レ株式会社 分離膜エレメントおよび分離膜エレメントの製造方法
JP2015027651A (ja) * 2013-07-30 2015-02-12 富士フイルム株式会社 酸性ガス分離モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654903U (ja) * 1979-10-02 1981-05-13
JPH0593532U (ja) * 1992-05-21 1993-12-21 日東電工株式会社 スパイラル型膜モジュ−ル
WO2010024291A1 (ja) * 2008-08-29 2010-03-04 富士フイルム株式会社 膜脱気モジュール
JP2012518538A (ja) * 2009-02-25 2012-08-16 プラット アンド ホイットニー ロケットダイン,インコーポレイテッド ファウリングが低減された流体分離システム
WO2013018538A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール
WO2013080391A1 (ja) * 2011-12-02 2013-06-06 東レ株式会社 分離膜エレメントおよび分離膜エレメントの製造方法
JP2015027651A (ja) * 2013-07-30 2015-02-12 富士フイルム株式会社 酸性ガス分離モジュール

Also Published As

Publication number Publication date
JP2015136634A (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6071004B2 (ja) 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
JP5990556B2 (ja) 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
JP6001013B2 (ja) 酸性ガス分離用スパイラル型モジュール
JP6067649B2 (ja) 酸性ガス分離モジュール
US10005024B2 (en) Acidic-gas separation module
JP2016137462A (ja) 酸性ガス分離用スパイラル型モジュール
JP5990225B2 (ja) 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
WO2015025812A1 (ja) 酸性ガス分離用スパイラル型モジュール
JP6276598B2 (ja) 酸性ガス分離用モジュール
JP6145349B2 (ja) 酸性ガス分離モジュール
JP5999844B2 (ja) 酸性ガス分離用モジュール
WO2015107820A1 (ja) 酸性ガス分離用スパイラル型モジュールおよび製造方法
JP6037965B2 (ja) 酸性ガス分離モジュール
JP2015061721A (ja) 酸性ガス分離層、酸性ガス分離層の製造方法、および、酸性ガス分離モジュール
WO2016117349A1 (ja) 酸性ガス分離モジュール
JP5972232B2 (ja) 酸性ガス分離モジュール
JP6145431B2 (ja) 酸性ガス分離モジュールの製造方法および酸性ガス分離モジュール
JP6005003B2 (ja) 酸性ガス分離用スパイラル型モジュール
JP2015020147A (ja) 酸性ガス分離用スパイラル型モジュール
JP2015029959A (ja) 酸性ガス分離モジュール
JP2016064384A (ja) 酸性ガス分離モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878475

Country of ref document: EP

Kind code of ref document: A1