Nothing Special   »   [go: up one dir, main page]

WO2015029382A1 - 排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法 - Google Patents

排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法 Download PDF

Info

Publication number
WO2015029382A1
WO2015029382A1 PCT/JP2014/004260 JP2014004260W WO2015029382A1 WO 2015029382 A1 WO2015029382 A1 WO 2015029382A1 JP 2014004260 W JP2014004260 W JP 2014004260W WO 2015029382 A1 WO2015029382 A1 WO 2015029382A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
exhaust gas
catalyst
lnt
oxidation catalyst
Prior art date
Application number
PCT/JP2014/004260
Other languages
English (en)
French (fr)
Inventor
誉士 馬場
山田 啓司
原田 浩一郎
義志 佐藤
重津 雅彦
明秀 ▲高▼見
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US14/430,769 priority Critical patent/US9566573B2/en
Priority to CN201480002523.8A priority patent/CN105263620B/zh
Priority to DE112014000482.0T priority patent/DE112014000482T8/de
Publication of WO2015029382A1 publication Critical patent/WO2015029382A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9025Three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/912HC-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • An exhaust gas treatment device of a diesel engine is generally constituted by an oxidation catalyst (DOC) and a diesel particulate filter (DPF) disposed downstream thereof.
  • DOC oxidation catalyst
  • DPF diesel particulate filter
  • hydrocarbon (HC) and carbon monoxide (CO) in the exhaust gas are oxidized and purified, and NO in the nitrogen oxide (NO x ) is oxidized to NO 2 .
  • NO x nitrogen oxide
  • Hakare Atsushi Nobori of the DPF by catalytic reaction heat in DOC combustion of strong oxidizing power by particulate matter deposited in the DPF having the NO 2 (PM) is promoted. Since the activity of DOC is low immediately after the engine is started, zeolite is provided in the DOC as an HC trap material so that HC is not discharged without being purified.
  • lean NO x trap catalyst is lean burn gasoline engine or a diesel engine (LNT catalyst) has also been utilized.
  • the LNT catalyst occludes NO x when the air-fuel ratio of the exhaust gas by the NO x storage material is lean.
  • rich purge modulating the air-fuel ratio of the engine to rich NO x emissions from the NO x storage material, and the reduction of the NO x by unburned gas is performed.
  • an alkali metal or an alkaline earth metal can be used as the NO x storage material.
  • an alkali metal reduces the support strength by forming a glass phase at the cordierite grain boundary forming the catalyst support, an alkaline earth metal that does not have such a problem is generally employed.
  • a catalyst having an HC adsorbent layer and a catalytic metal layer containing a NO x storage material and having both HC adsorption performance and LNT performance has already been proposed. This is because HC desorbed in the lower layer reaches the upper layer and reacts with NO x trapped in the upper layer to purify NO x , but the desorption temperature range of HC is limited and various. in do operating condition, or the amount of HC desorbed is sufficient HC amount to cause purify nO x is not clear. For this reason, when reducing and purifying NO x using desorbed HC, there is a high possibility that unpurified NO x remains.
  • the present invention has been made in view of the above problems, its object is a catalyst layer having a HC and CO oxidation capacity, the exhaust gas purifying catalyst having a catalyst layer having a the NO x reduction ability, The object is to obtain a catalyst capable of purifying HC, CO and NO x with high efficiency.
  • the exhaust gas purifying catalyst according to the present invention is formed on a support, and is formed on an oxidation catalyst layer containing zeolite and at least one catalyst metal, on the oxidation catalyst layer, and a NO x storage material and and LNT layer comprising at least one catalytic metal, is formed on the LNT layer, and a the NO x reduction layer containing Rh as at least one and catalytic metal of alumina and zirconia, the NO x reduction layer
  • Rh as at least one and catalytic metal of alumina and zirconia
  • the released NO x is reduced and purified by Rh, which is the catalyst metal of the NO x reduction layer.
  • the NO x reduction layer is provided on the LNT layer, that is, on the exhaust gas passage side.
  • the NO x reduction layer passes through the NO x reduction layer and passes through the NO x reduction layer.
  • the NO x reducing layer contains zirconia and alumina having a high affinity with Rh, it is advantageous for efficiently incorporating Rh into the NO x reducing layer.
  • the oxidation catalyst layer includes a first oxidation catalyst layer containing alumina and ceria, and a second oxidation catalyst layer containing zeolite formed on the first oxidation catalyst layer. It is preferable to include.
  • the zeolite is arranged on the upper side of the oxidation catalyst layer, it is advantageous for adsorption of HC in the exhaust gas, and further, HC desorbed from the zeolite is supported on the catalyst metal supported on the zeolite. Is efficiently purified. Further, the whole of the NO x storage by adsorption of the NO x by the ceria in the first oxidation catalyst layer, together with the adsorbed amount increases, the hydrogen as the NO x reduction agent produced by the water gas shift reaction over a ceria, reduction of the NO x Is promoted. Further, when the air-fuel ratio to the rich side, Hakare the activity promoter of the catalyst by the heat of reaction with oxygen occluded in the ceria and the reducing agent (HC and CO), NO x purification ratio is improved.
  • the alumina improved heat resistance by containing, in the same manner as described above, the whole of the NO x storage by adsorption of the NO x by ceria, with the adsorption amount increases, NO by the water gas shift reaction over a ceria Hydrogen as an x reducing agent is generated, and reduction of NO x is promoted. Further, when the air-fuel ratio to the rich side, Hakare the activity promoter of the catalyst by the heat of reaction with oxygen occluded in the ceria and the reducing agent (HC and CO), NO x purification ratio is improved.
  • the zeolite in the oxidation catalyst layer preferably has an average particle size of 0.5 ⁇ m or more and 4.8 ⁇ m or less.
  • Rh and NO are formed in the catalyst layer. Since the solution containing the x storage material is impregnated, a large amount of Rh is selectively contained in the support material layer for Rh. In this way, a catalyst containing a large amount of Rh in the uppermost layer capable of exhibiting the above-described effects can be easily produced.
  • the exhaust gas purification catalyst is disposed upstream of the particulate filter provided in the exhaust gas passage of the engine in the exhaust gas flow direction.
  • the in the lean after the NO x in the exhaust gas was occluded in the NO x storage material, when the NO x storage amount of the NO x storage material is greater than or equal to a predetermined value, the compression stroke top dead center in the combustion chamber of an engine
  • fuel is injected and supplied in the expansion stroke or exhaust stroke and then injected to include HC and CO in the exhaust gas so that the air-fuel ratio of the exhaust gas becomes rich Control to release NO x from the NO x storage material.
  • a single exhaust gas catalyst has both oxidation performance and LNT performance, and the NO x stored in the lean state is controlled to a rich state so that NO x is reduced.
  • the exhaust gas temperature can be raised by oxidizing and burning HC and CO generated by post-injection of fuel, so that the particulate filter can be regenerated and purified by reduction. It is not necessary to arrange the catalyst, and the capacity of the catalyst can be reduced.
  • HC, CO and NO x can be purified with high efficiency, and according to the method for producing an exhaust gas purifying catalyst according to the present invention, the above catalyst can be easily used. Obtainable. Further, according to the method for purifying exhaust gas using the exhaust gas purifying catalyst according to the present invention, NO x storage under lean exhaust gas using the NO x reduction, and oxidation heat during regeneration of the particulate filter rich Since the temperature rise can be covered by one catalyst, the catalyst capacity can be reduced.
  • FIG. 1 is a cross-sectional view showing a part of an exhaust gas purifying catalyst according to an embodiment of the present invention. It is sectional drawing which shows the catalyst layer structure of the exhaust gas purification catalyst which concerns on one Embodiment of this invention. It is sectional drawing which shows the modification of the catalyst layer structure of the exhaust gas purification catalyst which concerns on one Embodiment of this invention. It is a graph which shows the change of the total HC density
  • FIG. 1 is a cross-sectional view showing a part of an exhaust gas purification catalyst according to the present embodiment
  • FIG. 2 is a cross-sectional view showing a catalyst layer structure of the exhaust gas purification catalyst.
  • the exhaust gas purifying catalyst is an exhaust gas purifying catalyst discharged from a diesel engine (not shown), and is oxidized on the cell wall 1 of the honeycomb carrier.
  • a DOC layer 2 that is a catalyst layer, an LNT layer 3 that is a lean NO x trap catalyst layer, and an NO x reduction layer 4 are sequentially formed, and an inner space serves as an exhaust gas passage 5.
  • the honeycomb carrier has a hexagonal cell honeycomb structure whose cell cross-sectional shape is a hexagon. In FIG. 1, the catalyst layer is drawn only in one cell for simplification of the drawing, but the catalyst layer is formed in all cells.
  • the DOC layer 2 is formed on the cell wall 1 of the support, which is formed by supporting catalyst metals such as Pt and Pd on zeolite.
  • the DOC layer 2 may further include a mixture of activated alumina and ceria on which the catalytic metal is supported.
  • the LNT layer 3 formed on the DOC layer 2 carries a NO x storage material and a catalyst metal such as Pt and Rh.
  • the NO x storage material and the catalyst metal are preferably supported on activated alumina and ceria.
  • the activated alumina may be a complex oxide stabilized with Zr, La, or the like, or a complex oxide with ceria, Zr, Nd, Pr, or the like.
  • the NO x reduction layer 4 formed on the LNT layer 3 is formed by supporting Rh as a catalyst metal on at least one of alumina and zirconia. Note that the NO x reduction layer 4 is configured to have a larger Rh content than the DOC layer 2 and the LNT layer 3.
  • NO x in which the air-fuel ratio is stored in the NO x storage material of LNT layer 3 when the lean exhaust gas the exhaust gas through the NO x reduction layer 4 from LNT layer 3 when a rich state to be released into the passage 5, it is possible to reduce and purify efficiently NO x by the action of a number included the Rh in the NO x reduction layer 4.
  • the catalyst in which the DOC layer 2 has a one-layer structure has been described.
  • the DOC layer 2 has a two-layer structure of a lower first DOC layer 2a and an upper second DOC layer 2b.
  • a catalyst metal such as Pt and Pd is supported on a mixture of activated alumina and ceria
  • a catalyst metal such as Pt and Pd is supported on zeolite.
  • the zeolite is arranged on the upper side of the DOC layer 2, it is advantageous for adsorption of HC in the exhaust gas, and further, HC desorbed from the zeolite is absorbed by the catalyst metal supported on the zeolite. It is efficiently purified.
  • the average particle diameter (D50) of zeolite which is a constituent component of the DOC layer 2 is preferably 0.5 ⁇ m or more and 4.8 ⁇ m or less. If the average particle size of the zeolite is too large, the exposed surface area of the particles is reduced, and the amount of HC adsorbed is reduced.
  • DOC powder as a material for forming the DOC layer 2 containing zeolite, activated alumina, ceria and catalytic metals Pt and Pd as catalyst components
  • zeolite, activated alumina and ceria are mixed, and a catalytic metal such as Pt and Pd is supported on the mixture by evaporation to dryness.
  • water is added to a mixture of zeolite, activated alumina and ceria and stirred to form a slurry. While stirring this slurry, an aqueous nitrate solution of catalyst metal is added dropwise thereto. Thereafter, stirring is continued while heating to completely evaporate water.
  • the obtained dried product is fired in the air and pulverized to obtain a DOC powder.
  • the DOC powder is preferably pulverized until the average particle diameter (D50) of the zeolite is 0.5 ⁇ m or more and 4.8 ⁇ m or less.
  • the DOC layer 2 is formed on the cell wall 1 of the honeycomb carrier using the DOC powder prepared as described above.
  • the obtained DOC powder is mixed with a binder and water, and a nitric acid aqueous solution for adjusting slurry viscosity is further added and stirred to form a slurry.
  • This slurry is coated on the cell wall 1 of the honeycomb carrier, dried and then fired. Thereby, the DOC layer 2 is formed on the cell wall of the carrier.
  • zeolite and a mixture of activated alumina and ceria are separately supported by a catalyst metal by evaporation to dryness to obtain respective powders. Thereafter, they are made into a slurry, and first, a slurry containing a mixture of activated alumina and ceria is coated on the cell wall 1 of the support and dried, and then a slurry containing zeolite is coated thereon, dried and fired.
  • the first DOC layer 2a is formed on the cell wall 1 of the carrier, and the second DOC layer 2b is formed on the first DOC layer 2a.
  • a DOC layer 2 having a two-layer structure is formed.
  • an LNT support material layer to be the LNT layer 3 later is formed on the DOC layer 2.
  • activated alumina and ceria are mixed.
  • a binder and water are added to this mixture and stirred to form a slurry.
  • This slurry is coated on the DOC layer 2, dried, and then fired. Thereby, an LNT support material layer is formed on the DOC layer 2.
  • a support material layer for Rh that will later become the NO x reduction layer 4 is formed.
  • a binder and water are added to basic activated alumina or zirconia, and stirred to form a slurry.
  • This slurry is coated on the LNT support material layer, dried and then fired.
  • the support material layer for Rh is formed on the LNT support material layer.
  • activated alumina or zirconia was used as the material of the support material layer for Rh, a mixture of activated alumina and zirconia may be used.
  • a mixed solution of a catalyst metal of Pt and Rh and a NO x storage material made of an alkaline earth metal is prepared, and this support is impregnated on the carrier on which each of the layers is formed. Thereafter, the honeycomb carrier impregnated with the mixed solution is dried and fired. As a result, the LNT layer 3 in which the catalyst metal and the NO x storage material are impregnated and supported on the LNT support material layer, and the NO x reduction layer 4 in which Rh is impregnated and supported as the catalyst metal on the support material layer for Rh are formed. . At this time, an alkaline earth metal acetate or nitrate aqueous solution is used as the NO x storage material.
  • the drying can be performed, for example, by holding at a temperature of about 100 ° C. to 250 ° C. for a predetermined time in an air atmosphere.
  • the firing can be performed, for example, by holding at a temperature of about 400 ° C. to 600 ° C. for several hours in an air atmosphere.
  • the LNT layer and the NO x reduction layer are formed by impregnating a solution containing Rh and NO x storage material.
  • the NO x reducing layer containing Rh may be formed directly on the LNT support material layer after the DOC layer and the LNT support material layer are formed as described above.
  • a powder obtained by supporting Rh on alumina, zirconia, or a mixture thereof in advance is made into a slurry by the above evaporation and drying method, and coated on the LNT support material layer. Thereafter, it by drying and firing, it is possible to form the the NO x reduction layer containing Rh. At this time, the amount of Rh in the NO x reducing layer is adjusted to be larger than that in the other layers.
  • the LNT support material layer is impregnated with a solution containing NO x storage material and Rh as the catalyst metal, dried and fired, whereby the LNT layer can be obtained.
  • the exhaust gas purifying catalyst according to the embodiment can be obtained.
  • the NO x reduction layer is the uppermost layer of the catalyst contained many Rh than other bed catalyst can be obtained conveniently.
  • the exhaust gas purifying catalyst according to the present embodiment exhibits the effects as described above.
  • the exhaust gas purifying catalyst is disposed upstream of the particulate filter in the exhaust gas passage, and by controlling the air-fuel ratio of the exhaust gas, It is also possible to improve the combustion efficiency of particulate matter (PM) deposited on the particulate filter.
  • PM particulate matter
  • Example of usage of catalyst Disposed exhaust gas purifying catalyst according to the present embodiment in an exhaust gas flow direction upstream side of the particulate filter provided in an exhaust gas passage of an engine, provided with a NO x sensor which detects the concentration of NO x downstream thereof
  • the pressure sensors are provided on the inlet side and the outlet side of the filter.
  • the concentration of NO x in the exhaust gas passing through the catalyst can measure the NO x storage amount stored in the NO x storage material in the catalyst, also provided on the inlet side and the outlet side of the filter Based on the differential pressure detected by the pressure sensor, the PM deposition amount on the filter can be measured.
  • the NO x storage amount in the NO x storage material and the PM accumulation amount on the particulate filter are determined in advance, and when the NO x storage amount or the PM accumulation amount becomes equal to or greater than that, the NO x storage amount is compressed into the combustion chamber of the engine. Control is performed so that after the main injection in which fuel is injected near the top dead center of the stroke, the fuel is injected and supplied in the expansion stroke or the exhaust stroke. Accordingly, when to reduce and purify NO x is to the exhaust gas by including HC and CO to the air-fuel ratio of the exhaust gas rich state. When oxidizing and burning PM, HC and CO are included in the exhaust gas, the air-fuel ratio remains lean, and the catalyst temperature is raised using oxidation heat. It is preferable to provide a controller for performing fuel injection control connected to the NO x sensor and the pressure sensor.
  • the air-fuel ratio of the exhaust gas when the lean state, NO x street exhaust gas described above stored in the NO x storage material, HC in the exhaust gas is adsorbed by the zeolite. Thereafter, when the NO x storage amount is equal to or larger than a predetermined value set above, the air-fuel ratio of the exhaust gas by post-injection as described above by the rich state, to release NO x from the NO x storage material , released NO x is reduced and purified by the Rh in the NO x reduction layer when passing through the NO x reduction layer.
  • the exhaust gas when the amount of PM accumulated on the particulate filter disposed downstream becomes equal to or greater than a predetermined value, the exhaust gas remains in a lean state and post-injection is performed, so that the HC in the exhaust gas is reduced to Pt, Pd, etc. It is oxidized and burned by the catalytic metal, and HC adsorbed on the zeolite is desorbed and oxidized and burned. As a result, the temperature of the exhaust gas flowing into the particulate filter rises, whereby the particulate matter can be burned with high efficiency.
  • the catalyst capacity can be reduced.
  • the cordierite hexagonal cell honeycomb carrier having a cell wall thickness of 4.5 mil (1.143 ⁇ 10 ⁇ 1 mm) and 400 cells per square inch (645.16 mm 2 ).
  • An exhaust gas purification catalyst was prepared by the above method for producing an exhaust gas purification catalyst using (diameter 25.4 mm, length 50 mm). The catalyst was evaluated for HC purification performance and NO x storage performance.
  • the DOC layer had a two-layer structure as shown in FIG. 3, and each catalyst was produced by the production method described above.
  • the supported amount of the catalyst component of the first DOC layer, which is the lower layer of the DOC layer is 60 g / L of activated alumina, 40 g / L of ceria, 1.2 g / L. Of Pt, 0.6 g / L of Pd.
  • the supported amount of the catalyst component of the second DOC layer as the upper layer is 100 g / L of zeolite, 0.4 g / L of Pt, and 0.2 g / L of Pd.
  • the supported amount of the catalyst component of the LNT support material layer is 40 g / L of activated alumina and 40 g / L of ceria.
  • the supported amount of the catalyst component of the support material layer for Rh is 20 g / L in Example 1.
  • Example 3 is a composite oxide of 20 g / L of activated alumina and zirconia.
  • This composite oxide is prepared by adding a basic solution such as ammonia water to an acidic solution containing aluminum ions and zirconium ions to co-precipitate an alumina precursor and a zirconia precursor, followed by drying and firing. It is a composite oxide particle that can be obtained and in which primary particles of alumina and primary particles of zirconia are mixed substantially uniformly. After forming these layers, Pt carriers to 4.3 g / L, Rh of 0.5 g / L, and impregnation of Sr and Ba and 10 g / L of 30 g / L as the NO x storage material, LNT support material layer and Rh for support material layer was LNT layer and the NO x reduction layer, respectively.
  • a basic solution such as ammonia water
  • an acidic solution containing aluminum ions and zirconium ions to co-precipitate an alumina precursor and a zirconia precursor
  • It is a composite oxide particle that can be obtained and in which primary particles of alumina and primary particles
  • the catalyst of Comparative Example 1 was configured such that only a single-layer DOC layer was provided on the support.
  • the loading amount of the catalyst component of the DOC layer having a single layer structure is 100 g / L of zeolite, 60 g / L of activated alumina, 40 g / L of ceria, 1.6 g / L of Pt, and 0.8 g / L of Pd. .
  • a support material layer for Rh containing 20 g / L of active alumina as a constituent component is formed on the DOC layer having a single layer structure, and 4.3 g / L of Pt, 0.5 g is formed on the carrier.
  • Comparative Example 3 is different from Comparative Example 2 only in that the DOC layer has the above two-layer structure, and the other structure is the same.
  • Comparative Example 4 differs from Comparative Example 2 only in using 20 g / L of zirconia as a constituent component of the support material layer for Rh, and the rest is the same.
  • Comparative Example 5 differs from Comparative Example 3 only in that 20 g / L zirconia was used as a constituent component of the support material layer for Rh, and the rest was the same.
  • Examples 1 to 3 and Comparative Examples 1 to 5 ⁇ -zeolite was used as the zeolite. Further, the firing in the preparation of each catalyst powder and the firing after coating of the catalyst powder were both performed in the atmosphere, and in each case, the firing temperature was 500 ° C. and the firing time was 2 hours.
  • the model gas composition is 600 ppmC for n-octane, 150 ppmC for ethylene, 50 ppmC for propylene, 1500 ppm for CO, 30 ppm for NO, 10% for O 2 , 10% for H 2 O, and the balance for N 2. 72000 / h.
  • the catalyst inlet gas temperature was raised from the time when 2 minutes passed after the start of the model gas introduction, and the total HC concentration (THC) of the gas flowing out from the honeycomb catalyst was measured.
  • THC total HC concentration
  • the catalyst temperature is low for a while after the introduction of the model gas, so HC in the model gas is adsorbed on the zeolite. Therefore, the THC of the outflow gas is lower than 800 ppmC, which is the THC of the model gas.
  • the amount of HC adsorbed by the zeolite gradually decreases.
  • the catalyst inlet gas temperature is close to 200 ° C.
  • the amount of HC desorbed is larger than the amount of HC adsorbed on the zeolite, and THC increases rapidly and becomes higher than 800 ppmC.
  • the catalyst temperature rises the catalyst becomes active, and purification of the desorbed HC by the DOC layer starts. For this reason, THC decreases rapidly and becomes lower than 800 ppmC.
  • the HC purification rates from the start of model gas introduction until the gas temperature reached 300 ° C. were obtained.
  • the HC purification rate was calculated by subtracting the HC desorption amount (C) from the sum of the THC reduction amount (A) accompanying HC adsorption and the THC reduction amount (B) accompanying HC purification shown in FIG. The result is shown in FIG.
  • the honeycomb catalyst of each of Examples 1 to 3 and Comparative Examples 1 to 5 was subjected to the same aging treatment as that for the above HC purification rate measurement, and then the honeycomb catalyst was It was attached to a model gas flow reactor.
  • the catalyst inlet gas temperature is maintained at 200 ° C. with the air-fuel ratio rich model gas flowing through the honeycomb catalyst, and the model gas is switched to the air-fuel ratio lean model gas while maintaining the temperature. After passing, the air-fuel ratio rich model gas was switched.
  • FIG. 1 An example of the result of measuring the NO x concentration of the gas flowing out of the honeycomb catalyst is shown in FIG.
  • the NO x concentration increases with time, and the NO x concentration of the model gas gradually approaches 220 ppm as the NO x storage amount approaches saturation.
  • the model gas is switched from lean to rich, NO x is released from the NO x storage material, but the reduction of NO x by Pt and Rh is abruptly caused by the supply of reducing agents (HC and CO) due to the switching to rich. to proceed, NO x concentration of the effluent gas decreases rapidly.
  • the composition of the rich model gas is 220 ppm NO, 3400 ppm HC, 1.0% CO, 0.5% O 2 , 6% CO 2 , 10% H 2 O and the balance N 2 .
  • the composition of the lean model gas is 220 ppm NO, 400 ppm HC, 0.15% CO, 10% O 2 , 6% CO 2 , 10% H 2 O, and the balance N 2 .
  • the results of the NO x storage performance measurement test are shown in FIG.
  • the catalyst constituted by the DOC layer, the LNT layer, and the NO x reduction layer is more than the catalyst consisting of only the DOC layer or the DOC layer and the NO x reduction layer. It can be seen that the HC purification performance and the NO x purification performance are high.
  • the reason for the high HC purification performance is that after forming a layer containing ceria and alumina having high affinity with the NO x storage material on the DOC layer containing zeolite, the solution containing the NO x storage material was impregnated.
  • the use of the exhaust gas purifying catalyst according to the present invention is advantageous for HC oxidation purification and NO x reduction purification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 排気ガス浄化触媒は、担体1上に形成され、ゼオライト及び少なくとも1種の触媒金属を含む酸化触媒層2と、酸化触媒層2の上に形成され、NO吸蔵材及び少なくとも1種の触媒金属を含むLNT層3と、LNT層3の上に形成され、アルミナ及びジルコニアのうちの少なくとも1つ並びに触媒金属としてのRhを含むNO還元層4とを備え、NO還元層4は、酸化触媒層2及びLNT層3よりもRhの含有量が大きい。

Description

排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法
 本発明は、排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法に関する。
 ディーゼルエンジンの排気ガス処理装置は、一般に酸化触媒(DOC)とその下流に配設されたディーゼルパティキュレートフィルタ(DPF)によって構成されている。DOCによって、排気ガス中の炭化水素(HC)及び一酸化炭素(CO)が酸化浄化され、窒素酸化物(NO)のうちのNOがNOに酸化される。DOCでの触媒反応熱によりDPFの昇温が図れ、NOの有する強い酸化力によりDPFに堆積したパティキュレートマター(PM)の燃焼が促進される。エンジン始動直後はDOCの活性が低いことから、HCが未浄化のまま排出されないように、DOCにゼオライトをHCトラップ材として設けることが行われている。
 一方、NOの浄化のために、リーンバーンガソリンエンジンやディーゼルエンジンではリーンNOトラップ触媒(LNT触媒)も利用されている。このLNT触媒は、NO吸蔵材によって排気ガスの空燃比がリーンであるときにNOを吸蔵する。そして、エンジンの空燃比をリッチに変調するリッチパージにより、NO吸蔵材からのNOの放出、及び未燃ガスによるNOの還元が行われる。NO吸蔵材としては、アルカリ金属やアルカリ土類金属を利用することが可能である。但し、アルカリ金属は触媒担体を形成するコージェライトの粒界にガラス相を形成して担体強度を低下させることから、実際にはそのような問題がないアルカリ土類金属が一般に採用されている。
 また、特許文献1に記載されているように、ガソリンエンジンの排気ガス浄化用触媒においては、一体構造型担体にゼオライトを含有するHC吸着材層とNO吸蔵材を含有する触媒金属層とを積層状態に設けるという提案がある。このようにすることで、エンジン始動直後の排気ガス中のHC及びNOを共に吸着することができ、触媒金属の活性化後に、HC及びNOの排出と共にそれらを反応させることでHC及びNOの両方を浄化可能にしている。
特開2001-113173号公報
 特許文献1のように、HC吸着材層とNO吸蔵材を含有する触媒金属層とを有し、HC吸着性能及びLNT性能を併せ持つ触媒は既に提案されている。これは、下層で脱離したHCが上層に達し、上層にトラップされているNOと反応することによりNOを浄化させるものであるが、HCの脱離温度範囲には限りがあり、多様な運転条件において、脱離するHC量がNOを浄化させるのに十分なHC量となるかは明らかでない。このため、脱離HCを用いてNOを還元浄化させる場合、未浄化のNOが残存する可能性が高い。
 また、今後の厳しい自動車排出ガス規制に鑑み、高いHC及びCO酸化性能を維持、又は改善しつつ、より効率良くLNT性能を発揮できる触媒が求められる。このためには、HC脱離を用いたNO浄化という既存技術だけでなく、HC吸着・浄化性能の向上や、NOの還元浄化をも考慮した触媒層の層構造及びその組成の工夫が必要となる。
 そこで本発明は、前記の問題に鑑みてなされたものであり、その目的は、HC及びCO酸化能を有する触媒層と、NO還元能を有する触媒層とを備えた排気ガス浄化触媒において、高効率でHC、CO及びNOを浄化できる触媒を得られるようにすることにある。
 前記の目的を達成するために、本発明の排気ガス浄化用触媒では、酸化触媒層の上にLNT層が積層された構造とし、さらにLNT層の上に、NOの還元性能が高い触媒金属としてのRhを多く含有するNO還元層を設けた。
 具体的に、本発明に係る排気ガス浄化用触媒は、担体上に形成され、ゼオライト及び少なくとも1種の触媒金属を含む酸化触媒層と、酸化触媒層の上に形成され、NO吸蔵材及び少なくとも1種の触媒金属を含むLNT層と、LNT層の上に形成され、アルミナ及びジルコニアのうちの少なくとも1つ並びに触媒金属としてのRhを含むNO還元層とを備え、NO還元層は、酸化触媒層及びLNT層よりもRhの含有量が大きいことを特徴とする。
 本発明に係る排気ガス浄化用触媒において、触媒温度が低いときは排気ガス中のHCが酸化触媒層のゼオライトに吸着され、触媒温度が上昇すると、ゼオライトからHCが放出される。放出されたHCは、排気ガス中のCOと共に温度上昇によって活性が高くなっている触媒金属により酸化浄化される。また、排気ガスの空燃比がリーンであるときは、NOがLNT層のNO吸蔵材に吸蔵され、その空燃比が理論空燃比近傍又はリッチになったときにNO吸蔵材からNOが放出される。放出されたNOは、NO還元層の触媒金属であるRhにより還元浄化される。また、NO還元層は、LNT層の上、すなわち排気ガス通路側に設けられており、NOがLNT層から排気ガス通路に放出される際にNO還元層を通り、NO還元層には他の層よりも多くRhが含有されているため、放出されたNOを効率良く還元浄化することができる。また、NO還元層は、Rhとの親和性が高いジルコニア及びアルミナを含むため、Rhを効率良くNO還元層に含有させるのに有利である。
 本発明に係る排気ガス浄化用触媒において、酸化触媒層は、アルミナ及びセリアを含む第1酸化触媒層と、該第1酸化触媒層の上に形成されたゼオライトを含む第2酸化触媒層とを含むことが好ましい。
 このようにすると、ゼオライトが酸化触媒層のうちの上側に配置されているから、排気ガス中のHCの吸着に有利になり、さらに、ゼオライトから脱離するHCが該ゼオライトに担持された触媒金属によって効率良く浄化される。また、第1酸化触媒層のセリアによるNOの吸着によって全体のNO吸蔵、吸着量が増大するとともに、セリアを介する水性ガスシフト反応によってNO還元剤としての水素が生成し、NOの還元が促進される。さらに、空燃比をリッチ側にしたときに、セリアに吸蔵された酸素と還元剤(HC及びCO)との反応熱による触媒の活性促進が図れ、NO浄化率が向上する。
 本発明に係る排気ガス浄化用触媒において、LNT層は、アルミナ及びセリアをさらに含むことが好ましい。
 このようにすると、アルミナを含有することで耐熱性が向上し、上記と同様に、セリアによるNOの吸着によって全体のNO吸蔵、吸着量が増大するとともに、セリアを介する水性ガスシフト反応によってNO還元剤としての水素が生成し、NOの還元が促進される。さらに、空燃比をリッチ側にしたときに、セリアに吸蔵された酸素と還元剤(HC及びCO)との反応熱による触媒の活性促進が図れ、NO浄化率が向上する。
 本発明に係る排気ガス浄化用触媒において、酸化触媒層におけるゼオライトは、平均粒径が0.5μm以上4.8μm以下であることが好ましい。
 本発明に係る排気ガス浄化用触媒の製造方法は、担体上に、ゼオライト及び少なくとも1種の触媒金属を含む酸化触媒層を形成する工程と、酸化触媒層の上に、アルミナ及びセリアを含むLNTサポート材層を形成する工程と、LNTサポート材層の上に、アルミナ及びジルコニアのうちの少なくとも1つを含むRh用サポート材層を形成する工程と、これらの触媒層を形成した担体に、NO吸蔵材及び触媒金属としてのRhを含む溶液を含浸することにより、LNTサポート材層をNO吸蔵材が含有されたLNT層にすると共に、Rh用サポート材層を酸化触媒層及びLNT層よりもRh含有量が大きいNO還元層にする工程とを備えていることを特徴とする。
 本発明に係る排気ガス浄化用触媒の製造方法によると、Rhとの親和性が高いアルミナ及びジルコニアの少なくとも1つを含むRh用サポート材層を最上層に設けた後に、触媒層にRh及びNO吸蔵材を含む溶液を含浸するため、Rhが選択的にRh用サポート材層に多く含まれるようになる。このようにして、上述した効果を発揮できる最上層にRhを多く含む触媒を簡便に製造することができる。
 また、NO吸蔵材が溶液中に溶出してLNT層から酸化触媒層に浸透すると、酸化触媒層に含まれるゼオライトのHC吸着性能が低下する、或いは酸化触媒性能が低下することが知られているが、上記製造方法では、酸化触媒層の上に、アルミナ及びセリアを含むLNTサポート材層及びRh用サポート材層を形成する。このため、酸化触媒層よりも上層に、NO吸蔵材との親和性が高いセリア及びアルミナを含む層に多くNO吸蔵材が含まれるので、酸化触媒層のNO吸蔵材の含有量を低減できる。その結果、HC吸着性能及びHC浄化性能の低減を防止できる。
 本発明に係る排気ガス浄化用触媒の他の製造方法は、担体上に、ゼオライト及び少なくとも1種の触媒金属を含む酸化触媒層を形成する工程と、酸化触媒層の上に、アルミナ及びセリアを含むLNTサポート材層を形成する工程と、LNTサポート材層の上に、触媒金属としてのRhが予め担持されたアルミナ及び触媒金属としてのRhが予め担持されたジルコニアのうちの少なくとも1つを含むNO還元層を形成する工程と、これらの触媒層を形成した担体を、NO吸蔵材及び触媒金属としてのRhを含む溶液を含浸することにより、LNTサポート材層をNO吸蔵材及び触媒金属としてのRhが含有されたLNT層にする工程とを備え、NO還元層が酸化触媒層及びLNT層よりもRh含有量が大きくなるように各層を形成することを特徴とする。
 この排気ガス浄化用触媒の製造方法を用いても、予めRhが担持されたアルミナ及びジルコニアの少なくとも1つを含むNO還元層を最上層に形成するため、上述した効果を発揮できる最上層にRhを多く含む触媒を簡便に製造することができる。また、本製造方法においても、酸化触媒層よりも上層のNO吸蔵材との親和性が高いセリア及びアルミナを含む層に多くNO吸蔵材が含まれるので、酸化触媒層のNO吸蔵材の含有量を低減できる。その結果、HC吸着性能及びHC浄化性能の低減を防止できる。
 また、本発明に係る排気ガスの浄化方法では、エンジンの排気ガス通路に設けられたパティキュレートフィルタの排気ガス流れ方向上流側に上記の排気ガス浄化用触媒を配設し、排気ガスの空燃比をリーンにして、排気ガス中のNOをNO吸蔵材に吸蔵させた後、NO吸蔵材のNO吸蔵量が所定値以上になったとき、エンジンの燃焼室に圧縮行程上死点付近で燃料を噴射供給する主噴射後に、膨張行程又は排気行程において燃料を噴射供給する後噴射させて排気ガス中へHCやCOを含ませて、排気ガスの空燃比がリッチ状態になるように制御して前記NO吸蔵材からNOを放出させる。放出されたNOを、前記NO還元層を通過する際に前記Rhにより還元浄化させる。また、下流に配置したパティキュレートフィルタへのパティキュレートマターの堆積量が所定値以上になったときには、排気ガスがリーン状態のままでエンジンの燃焼室に圧縮行程上死点付近で燃料を噴射供給する主噴射後に、膨張行程は又は排気行程において燃料を噴射供給する後噴射させて、排気ガス中のHCを前記Pt及びPdにより酸化燃焼させて、パティキュレートフィルタに流入する排気ガス温度を昇温することにより、パティキュレートマターを燃焼する。
 本発明に係る排気ガスの浄化方法によると、単一の排気ガス用触媒が酸化性能とLNT性能を併せ持っており、リーン状態のときに吸蔵したNOを、リッチ状態に制御してNOを放出して還元浄化でき、パティキュレートフィルタの再生持には、燃料の後噴射により発生するHCやCOを酸化燃焼させることで排気ガス温度を昇温できるため、それぞれの機能を有する触媒を個別に配置する必要がなくなり、触媒の容量を小さくすることができる。
 本発明に係る排気ガス浄化用触媒によると、高効率でHC、CO及びNOを浄化することができ、また、本発明に係る排気ガス浄化用触媒の製造方法によると、上記触媒を簡便に得ることができる。また、本発明に係る排気ガス浄化用触媒を用いた排気ガスの浄化方法によると、リーンでのNO吸蔵、リッチでのNO還元、及びパティキュレートフィルタの再生時に酸化熱を利用した排気ガス温度の上昇が一つの触媒で賄えるため、触媒容量を小さくすることができる。
本発明の一実施形態に係る排気ガス浄化用触媒の一部を示す断面図である。 本発明の一実施形態に係る排気ガス浄化用触媒の触媒層構成を示す断面図である。 本発明の一実施形態に係る排気ガス浄化用触媒の触媒層構成の一変形例を示す断面図である。 HC浄化性能の評価試験における触媒から流出するガスのトータルHC濃度及び触媒入口温度の変化を示すグラフ図である。 本発明の実施例及び比較例のHC浄化率を示すグラフ図である。 NO浄化性能の評価試験における触媒から流出するガスのNO濃度の変化を示すグラフ図である。 本発明の実施例及び比較例のNO吸蔵量を示すグラフ図である。
 以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法或いはその用途を制限することを意図するものでない。
 (触媒の構成について)
 まず、本発明の一実施形態に係る排気ガス浄化用触媒の構成について図1及び図2を参照しながら説明する。図1は本実施形態に係る排気ガス浄化用触媒の一部を示す断面図であり、図2は該排気ガス浄化用触媒の触媒層構成を示す断面図である。
 図1及び図2に示すように、本実施形態に係る排気ガス浄化用触媒は、不図示のディーゼルエンジンから排出される排気ガス浄化用触媒であり、ハニカム担体のセル壁1の上に、酸化触媒層であるDOC層2、リーンNOトラップ触媒層であるLNT層3、及びNO還元層4が順次形成されてなり、その内側の空間が排気ガス通路5となっている。ハニカム担体は、そのセル断面形状が六角形である六角セルハニカム構造となっている。図1では、図の簡略化のため、1つのセルにのみ上記触媒層を描いているが、全てのセルに上記触媒層が形成されている。
 本実施形態において、DOC層2は、担体のセル壁1の上に形成されており、それはゼオライトにそれぞれPt及びPd等の触媒金属が担持されてなる。なお、DOC層2は、上記触媒金属が担持された活性アルミナ及びセリアの混合物をさらに含んでいてもよい。DOC層2の上に形成されたLNT層3は、NO吸蔵材並びにPt及びRh等の触媒金属が担持されてなる。なお、LNT層3において、上記NO吸蔵材及び触媒金属は、活性アルミナ及びセリアに担持されていることが好ましい。活性アルミナは、ZrやLa等で安定化された複合酸化物でもよく、セリア、Zr、NdやPr等との複合酸化物でもよい。また、LNT層3の上に形成されたNO還元層4は、アルミナ及びジルコニアのうちの少なくとも1つに触媒金属としてのRhが担持されてなる。なお、NO還元層4は、DOC層2及びLNT層3よりもRh含有量が大きくなるように構成されている。これにより、排気ガスの空燃比がリーンのときにLNT層3のNO吸蔵材に吸蔵されたNOが、リッチ状態となったときにLNT層3からNO還元層4を通って排気ガス通路5に放出されるため、NO還元層4に多く含まれたRhの働きにより効率良くNOを還元浄化することができる。
 ここでは、DOC層2が1層構造の触媒について説明したが、図3に示すように、DOC層2が下層の第1DOC層2aと上層の第2DOC層2bとの2層構造であってもよい。このとき、第1DOC層2aは、活性アルミナ及びセリアの混合物にPt及びPd等の触媒金属が担持されてなり、第2DOC層2bは、ゼオライトにPt及びPd等の触媒金属が担持されてなる。このようにすると、ゼオライトがDOC層2のうち上側に配置されているから、排気ガス中のHCの吸着に有利になり、さらに、ゼオライトから脱離するHCが該ゼオライトに担持された触媒金属によって効率良く浄化される。
 また、上記DOC層2の構成成分であるゼオライトの平均粒径(D50)は0.5μm以上4.8μm以下であることが好ましい。ゼオライトの平均粒径が大きすぎると粒子の露出表面積が小さくなって、HCの吸着量が低減するため、上記のような粒径の範囲であることが好ましい。
 (触媒の製造方法について)
 次に、本実施形態に係る排気ガス浄化用触媒の製造方法について説明する。
 まず、触媒成分としてゼオライト、活性アルミナ、セリア並びに触媒金属であるPt及びPdを含むDOC層2を形成するための材料となるDOC粉末の調製について説明する。DOC粉末の調製としては、まず、ゼオライト、活性アルミナ及びセリアを混合し、その混合物にPt及びPd等の触媒金属を蒸発乾固法により担持する。具体的に、ゼオライト、活性アルミナ及びセリアの混合物に水を加え、撹拌してスラリー状にする。このスラリーを撹拌しながら、これに触媒金属の硝酸塩水溶液を滴下する。その後、加熱しながらさらに撹拌を続けて、水分を完全に蒸発させる。得られた乾固物を大気中で焼成し、粉砕することにより、DOC粉末が得られる。ここで、DOC粉末の粉砕は、ゼオライトの平均粒径(D50)が0.5μm以上4.8μm以下になるまで行うことが好ましい。
 上記のように調製したDOC粉末を用いて、ハニカム担体のセル壁1の上にDOC層2を形成する。そのために、まず、得られたDOC粉末をバインダー及び水と混合し、さらにスラリー粘度調整用の硝酸水溶液を添加して撹拌することにより、スラリー状にする。このスラリーをハニカム担体のセル壁1の上にコーティングし、乾燥し、その後に焼成する。これにより、担体のセル壁の上にDOC層2が形成される。
 なお、図3に示す2層構造のDOC層2を形成する場合は、ゼオライトと、活性アルミナ及びセリアの混合物とを、別々に蒸発乾固法により触媒金属を担持し、それぞれの粉末を得る。その後、それらをスラリー状にし、まず、活性アルミナ及びセリアの混合物を含むスラリーを担体のセル壁1上にコーティングし、乾燥した後に、ゼオライトを含むスラリーをその上にコーティングし、乾燥、焼成することにより担体のセル壁1上に第1DOC層2aが形成され、該第1DOC層2aの上に第2DOC層2bが形成される。その結果、2層構造のDOC層2が形成される。
 次に、DOC層2の上に、後にLNT層3となるLNTサポート材層を形成する。LNT用サポート材層の形成のために、まず、活性アルミナとセリアとを混合する。この混合物にバインダーと水とを加え、撹拌してスラリー状にする。このスラリーをDOC層2の上にコーティングし、乾燥し、その後に焼成する。これにより、DOC層2の上にLNTサポート材層が形成される。
 次に、LNTサポート材層の上に、後にNO還元層4となるRh用サポート材層を形成する。Rh用サポート材層の形成のために、まず、塩基性の活性アルミナ又はジルコニアにバインダーと水とを加え、撹拌してスラリー状にする。このスラリーをLNTサポート材層の上にコーティングし、乾燥し、その後に焼成する。これにより、LNTサポート材層の上にRh用サポート材層が形成される。なお、Rh用サポート材層の材料として活性アルミナ又はジルコニアを用いたが、活性アルミナとジルコニアとの混合物を用いても構わない。
 次に、Pt及びRhの触媒金属とアルカリ土類金属からなるNO吸蔵材との混合溶液を調製し、この溶液を上記各層が形成された担体に含浸させる。その後、上記混合溶液が含浸されたハニカム担体を乾燥し、焼成する。これにより、LNTサポート材層に触媒金属及びNO吸蔵材が含浸担持されたLNT層3と、Rh用サポート材層に触媒金属として特にRhが含浸担持されたNO還元層4が形成される。なお、このとき、NO吸蔵材には、アルカリ土類金属の酢酸塩又は硝酸塩の水溶液を用いる。上記製造方法において、乾燥は、例えば大気雰囲気において100℃~250℃程度の温度に所定時間保持することによって行うことができる。また、焼成は、例えば大気雰囲気において400℃~600℃程度の温度に数時間保持することによって行うことができる。
 本実施形態に係る排気ガス浄化用触媒の製造方法では、LNTサポート材層とRh用サポート材層とを形成した後に、Pt及びRhの触媒金属とNO吸蔵材とを含浸担持させており、Rh用サポート材層の材料である塩基性のジルコニア及び活性アルミナはRhとの親和性が高いため、Rhが選択的にRh用サポート材層に多く担持され、その結果、簡便に触媒の最上層であるNO還元層に他層よりもRhを多く含有させることができる。このため、排気ガスがリーン状態のときにLNT層のNO吸蔵材に吸蔵されたNOが、リッチ状態のときに放出される際にRhを多く含むNO還元層を通るため、放出されたNOを効率良く還元浄化することができる。
 本実施形態では、LNTサポート材層及びRh用サポート材層を形成した後に、Rh及びNO吸蔵材を含む溶液を含浸することにより、LNT層及びNO還元層を形成したが、この方法に限らず、上記のようにDOC層及びLNTサポート材層を形成した後に、LNTサポート材層の上に直接にRhを含有するNO還元層を形成してもよい。
 具体的には、予め上記蒸発乾固法により、アルミナ、ジルコニア又はそれらの混合物にRhを担持することにより得られた粉末をスラリーにして、LNTサポート材層の上にコーティングする。その後、それを乾燥及び焼成することにより、Rhを含むNO還元層を形成することができる。なお、このとき、NO還元層のRhの量を他層よりも大きくなるように調製する。NO還元層を形成した後に、LNTサポート材層に、NO吸蔵材及び触媒金属としてのRhを含む溶液を含浸、乾燥及び焼成することにより、LNT層を得ることができ、その結果、本実施形態に係る排気ガス浄化用触媒を得ることができる。
 このような方法を用いても、触媒の最上層であるNO還元層に他層よりもRhが多く含有された触媒を簡便に得ることができる。
 本実施形態に係る排気ガス浄化用触媒は、上記のような効果を示すが、それらの他に、排気ガス通路におけるパティキュレートフィルタの上流に配置され、排気ガスの空燃比を制御することにより、パティキュレートフィルタに堆積したパティキュレートマター(PM)の燃焼効率を向上することもできる。このような本実施形態の触媒を用いた排気ガス浄化方法について以下に説明する。
 (触媒の使用態様の一例)
 エンジンの排気ガス通路に設けられたパティキュレートフィルタの排気ガス流れ方向上流側に本実施形態に係る排気ガス浄化用触媒を配設し、その下流側にNO濃度を検出するNOセンサを設け、フィルタの入口側と出口側とに圧力センサを設ける。これにより、触媒を通過した排気ガスのNO濃度に基づいて、触媒中のNO吸蔵材に吸蔵されたNO吸蔵量を測定でき、また、フィルタの入口側と出口側とに設けられた圧力センサにより検出された差圧に基づいて、フィルタにおけるPM堆積量を測定できる。また、予め、NO吸蔵材におけるNO吸蔵量及びパティキュレートフィルタへのPM堆積量を決定しておき、そのNO吸蔵量又はPM堆積量以上になったときに、エンジンの燃焼室に圧縮行程上死点付近で燃料を噴射供給する主噴射後に、膨張行程又は排気行程おいて燃料を噴射供給する後噴射を行うように制御する。これにより、NOを還元浄化させる際には、排気ガス中へHCやCOを含ませて排気ガスの空燃比をリッチ状態にする。PMの酸化燃焼をさせる際には、排気ガス中へHCやCOを含ませながら、空燃比はリーンのままで、酸化熱を利用して触媒温度を上昇させる。なお、上記NOセンサ及び圧力センサと接続された、燃料噴射制御をするためのコントローラを設けることが好ましい。
 まず、排気ガスの空燃比がリーン状態のとき、上記の通り排気ガス中のNOがNO吸蔵材に吸蔵され、排気ガス中のHCがゼオライトに吸着される。その後、NO吸蔵量が上記設定した所定値以上となったときに、上記のように後噴射させて排気ガスの空燃比をリッチ状態にすることで、NO吸蔵材からNOを放出し、放出されたNOがNO還元層を通過する際にNO還元層におけるRhにより還元浄化される。また、下流に配置したパティキュレートフィルタへのPMの堆積量が所定値以上になったときには、排気ガスがリーン状態のままで後噴射を行うことによって、排気ガス中のHCをPt及びPd等の触媒金属により酸化燃焼され、ゼオライトに吸着していたHCを脱離及び酸化燃焼される。そうすると、パティキュレートフィルタに流入する排気ガス温度が昇温し、これによりパティキュレートマターを高効率で燃焼できる。
 このように、リーンでのNOx吸蔵、リッチでのNOx還元、及びパティキュレートフィルタの再生時に酸化熱を利用した排気ガス温度の上昇が一つの触媒で賄えるため、触媒容量を小さくすることができる。
 以下に、本発明に係る排気ガス浄化用触媒を詳細に説明するための実施例を示す。本実施例では、セル壁の厚さが4.5mil(1.143×10-1mm)であり、1平方インチ(645.16mm)当たりのセル数が400のコージェライト製六角セルハニカム担体(直径25.4mm、長さ50mm)を用いて、上記排気ガス浄化用触媒の製造方法により排気ガス浄化用触媒を調製した。その触媒に対して、HC浄化性能及びNO吸蔵性能を評価した。
 以下に、実施例1~3及び比較例1~5に係る排気ガス浄化用触媒の構成について説明する。実施例1~3では、DOC層を図3に示すような2層構造とし、上述した製造方法によりそれぞれの触媒を作製した。DOC層の下層である第1DOC層の触媒成分の担持量(担体1L当たりの担持量のこと。以下、同じ。)は、60g/Lの活性アルミナ、40g/Lのセリア、1.2g/LのPt、0.6g/LのPdである。一方、上層である第2DOC層の触媒成分の担持量は、100g/Lのゼオライト、0.4g/LのPt、0.2g/LのPdである。また、LNTサポート材層の触媒成分の担持量は、40g/Lの活性アルミナ、40g/Lのセリアであり、Rh用サポート材層の触媒成分の担持量は、実施例1では20g/Lの活性アルミナ、実施例2では20g/Lのジルコニア、実施例3では20g/Lの活性アルミナとジルコニアとの複合酸化物である。なお、それぞれの重量比は、アルミナ:ジルコニア=60:40(重量%)である。この複合酸化物は、アルミニウムイオンとジルコニウムイオンとを含む酸性溶液中にアンモニア水等の塩基性溶液を添加してアルミナの前駆体とジルコニアの前駆体とを共沈させ、乾燥、焼成を行って得ることができ、アルミナの一次粒子とジルコニアの一次粒子とが略均一に混合された複合酸化物粒子である。これらの層を形成した後に、担体に4.3g/LのPt、0.5g/LのRh、NO吸蔵材として30g/LのBa及び10g/LのSrを含浸担持して、LNTサポート材層及びRh用サポート材層をそれぞれLNT層及びNO還元層とした。
 また、比較例1の触媒は、担体上に1層構造のDOC層のみを設けた構成とした。1層構造のDOC層の触媒成分の担持量は、100g/Lのゼオライト、60g/Lの活性アルミナ、40g/Lのセリア、1.6g/LのPt、0.8g/LのPdである。比較例2の触媒は、上記1層構造のDOC層の上に20g/Lの活性アルミナを構成成分とするRh用サポート材層を形成し、担体に4.3g/LのPt、0.5g/LのRh、NO吸蔵材として30g/LのBa及び10g/LのSrを含浸担持したものである。比較例3の触媒は、比較例2と比較して、DOC層を上記2層構造にしたことのみ異なり、他は同一の構成である。比較例4は、比較例2と比較して、Rh用サポート材層の構成成分として20g/Lのジルコニアを用いたことのみ異なり、他は同一の構成である。比較例5は、比較例3と比較して、Rh用サポート材層の構成成分として20g/Lのジルコニアを用いたことのみ異なり、他は同一の構成である。
 なお、実施例1~3及び比較例1~5において、ゼオライトとしてはβ-ゼオライトを用いた。また、各触媒粉末の調製における焼成、及び触媒粉末のコーティング後の焼成は、いずれも大気中で行い、いずれも焼成温度を500℃、焼成時間を2時間とした。
 これらの実施例1~3及び比較例1~5の触媒に対して行ったHC浄化性能の測定試験及びNO吸蔵量の測定試験とそれらの結果とについて、以下に説明する。
 HC浄化性能の測定試験において、まず、実施例1~3及び比較例1~5の各ハニカム触媒に対して、Oが2%、HOが10%、残部がNのガス雰囲気において750℃の温度に24時間保持するエージング処理を行った。そのハニカム触媒をモデルガス流通反応装置に取り付け、ハニカム触媒にNガスを流通させた状態で触媒入口ガス温度を100℃に保持し、次いでHC浄化性能評価用のモデルガスを導入した。
 モデルガス組成は、n-オクタンが600ppmC、エチレンが150ppmC、プロピレンが50ppmC、COが1500ppm、NOが30ppm、Oが10%、HOが10%、残部がNであり、空間速度は72000/hである。
 モデルガス導入開始後、2分を経過した時点から触媒入口ガス温度を上昇させていき、ハニカム触媒から流出するガスのトータルのHC濃度(THC)を測定した。その結果の一例を図4に示す。
 モデルガスの導入開始から暫くは触媒温度が低いため、モデルガス中のHCがゼオライトに吸着される。そのため、流出ガスのTHCは、モデルガスのTHCである800ppmCよりも低い。そうして、触媒温度の上昇に伴ってゼオライトによるHCの吸着量が漸減する。触媒入口ガス温度が200℃近くになると、ゼオライトへのHCの吸着量よりHCの脱離量が多くなり、THCが急増して800ppmCよりも高くなる。触媒温度が上昇していくと、触媒が活性を呈するようになり、脱離するHCのDOC層による浄化が始まる。このため、THCが急減して800ppmCよりも低くなる。
 そうして、上記実施例1~3及び比較例1~5の各ハニカム触媒の、モデルガス導入開始から当該ガス温度が300℃になるまでのHC浄化率を求めた。HC浄化率は、図4に示すHCの吸着に伴うTHC低減量(A)とHCの浄化に伴うTHC低減量(B)との和から、HC脱離量(C)を差し引いて計算した。その結果を図5に示す。
 図5に示すように、実施例1~3と比較例1~5とを比較すると、DOC層、LNT層及びNO還元層により構成された実施例1~3の触媒の方が、比較例1~5の触媒よりもHC浄化率が高いことがわかる。なお、実施例1~3を互いに比較すると、それらの間で大きな差は見られなかった。
 一方、NO吸蔵性能の測定試験においては、実施例1~3及び比較例1~5の各ハニカム触媒に対して、上記HC浄化率測定の場合と同じエージング処理を行った後、ハニカム触媒をモデルガス流通反応装置に取り付けた。ハニカム触媒に空燃比リッチのモデルガスを流通させた状態で触媒入口ガス温度を200℃に保持し、該温度を保った状態で空燃比リーンのモデルガスに切り替え、このモデルガスの切替えから180秒を経過した時点で空燃比リッチのモデルガスに切り替えた。
 ハニカム触媒から流出するガスのNO濃度を測定した結果の一例を図6に示す。モデルガスがリッチからリーンに切り替わった直後からNO濃度が時間の経過と共に上昇していき、NO吸蔵量が飽和に近づくにつれてモデルガスのNO濃度が220ppmに漸近している。モデルガスがリーンからリッチに切り替わると、NO吸蔵材からNOが放出されるが、リッチへの切り替わりによる還元剤(HC及びCO)の供給により、Pt及びRhによるNOの還元が急激に進むため、上記流出ガスのNO濃度が急減する。
 図6に示すリーン180秒間のNO吸蔵によるNO低減量(A)とリッチ10秒間のNO還元によるNO低減量(B)とに基づいて、190秒間トータルでのNO浄化率を求めた。また、触媒入口温度を250℃として、同様に190秒間トータルでの平均NO浄化率を求めた。
 リッチモデルガスの組成は、NOが220ppm、HCが3400ppmC、COが1.0%、Oが0.5%、COが6%、HOが10%、残部がNである。リーンモデルガスの組成は、NOが220ppm、HCが400ppmC、COが0.15%、Oが10%、COが6%、HOが10%、残部がNである。NO吸蔵性能の測定試験の結果を図7に示す。
 図7に示すように、実施例1~3と比較例1~5とを比較すると、DOC層、LNT層及びNO還元層により構成された実施例1~3の触媒の方が、比較例1~5の触媒よりもNO浄化率が高いことがわかる。なお、実施例1~3を互いに比較すると、それらの間で大きな差は見られなかった。
 上記HC浄化性能試験及びNO浄化性能試験の結果から、DOC層、LNT層及びNO還元層により構成された触媒は、DOC層のみ又はDOC層とNO還元層とのみからなる触媒よりもHC浄化性能及びNO浄化性能が高いことがわかる。HC浄化性能が高い理由としては、ゼオライトを含むDOC層の上に、NO吸蔵材との親和性が高いセリア及びアルミナを含む層を形成した後に、NO吸蔵材を含む溶液を含浸させたため、DOC層に含まれるNO吸蔵材の量を低減でき、NO吸蔵材によるゼオライトのHC吸着性能の低減を抑制できるためであると考えられる。これにより多くのHCを吸着でき、高温で触媒が活性となったときに、その多くが酸化反応を起こすため、HC浄化性能が高いと考えられる。一方、NO浄化性能が高い理由としては、リーン状態のときにLNT層中のNO吸蔵材がモデルガス中のNOを吸蔵し、リッチ状態にしたときにNOが放出され、Rhを多く含むNO還元層により高効率で還元されるためであると考えられる。
 以上の通り、本発明に係る排気ガス浄化用触媒を用いると、HCの酸化浄化及びNOの還元浄化に有利である。
1 担体(セル壁)
2 DOC(酸化触媒)層
2a 第1DOC(酸化触媒)層
2b 第2DOC(酸化触媒)層
3 LNT(リーンNOトラップ)層
4 NO還元層
5 排気ガス通路

Claims (10)

  1.  担体上に形成され、ゼオライト及び少なくとも1種の触媒金属を含む酸化触媒層と、
     前記酸化触媒層の上に形成され、NO吸蔵材及び少なくとも1種の触媒金属を含むLNT層と、
     前記LNT層の上に形成され、アルミナ及びジルコニアのうちの少なくとも1つ並びに触媒金属としてのRhを含むNO還元層とを備え、
     前記NO還元層は、前記酸化触媒層及びLNT層よりも前記Rhの含有量が大きいことを特徴とする排気ガス浄化用触媒。
  2.  前記酸化触媒層は、アルミナ及びセリアを含む第1酸化触媒層と、該第1酸化触媒層の上に形成されたゼオライトを含む第2酸化触媒層とを含むことを特徴とする請求項1に記載の排気ガス浄化用触媒。
  3.  前記LNT層は、アルミナ及びセリアをさらに含むことを特徴とする請求項1に記載の排気ガス浄化用触媒。
  4.  前記LNT層は、アルミナ及びセリアをさらに含むことを特徴とする請求項2に記載の排気ガス浄化用触媒。
  5.  前記酸化触媒層におけるゼオライトの平均粒径は、0.5μm以上4.8μm以下であることを特徴とする請求項1に記載の排気ガス浄化用触媒。
  6.  前記酸化触媒層におけるゼオライトの平均粒径は、0.5μm以上4.8μm以下であることを特徴とする請求項2に記載の排気ガス浄化用触媒。
  7.  前記酸化触媒層におけるゼオライトの平均粒径は、0.5μm以上4.8μm以下であることを特徴とする請求項2に記載の排気ガス浄化用触媒。
  8.  前記酸化触媒層におけるゼオライトの平均粒径は、0.5μm以上4.8μm以下であることを特徴とする請求項2に記載の排気ガス浄化用触媒。
  9.  担体上に、ゼオライト及び少なくとも1種の触媒金属を含む酸化触媒層を形成する工程と、
     前記酸化触媒層の上に、アルミナ及びセリアを含むLNTサポート材層を形成する工程と、
     前記LNTサポート材層の上に、アルミナ及びジルコニアのうちの少なくとも1つを含むRh用サポート材層を形成する工程と、
     前記LNTサポート材層及びRh用サポート材層に、NO吸蔵材及び触媒金属としてのRhを含む溶液を含浸することにより、前記LNTサポート材層をNO吸蔵材が含有されたLNT層にすると共に、前記Rh用サポート材層を前記酸化触媒層及びLNT層よりもRh含有量が大きいNO還元層にする工程とを備えていることを特徴とする排気ガス浄化用触媒の製造方法。
  10.  エンジンの排気ガス通路に設けられたパティキュレートフィルタの排気ガス流れ方向上流側に請求項1に記載の排気ガス浄化用触媒を配設し、
     排気ガスの空燃比をリーンにして、排気ガス中のNOを前記NO吸蔵材に吸蔵させ、
     前記NO吸蔵材のNO吸蔵量が所定値以上になったときに、前記エンジンの燃焼室に圧縮行程上死点付近で燃料を噴射供給する主噴射後に、膨張行程又は排気行程において燃料を噴射供給する後噴射させて排気ガス中へHCを含ませて、排気ガスの空燃比がリッチ状態になるように制御して前記NO吸蔵材からNOを放出させて、放出されたNOを、前記NO還元層を通過する際に前記Rhにより還元浄化させ、
     前記パティキュレートフィルタへのパティキュレートマターの堆積量が所定値以上になったときに、排気ガスがリーン状態のままで前記主噴射後に前記後噴射させて、排気ガス中のHCを前記Pt及びPdにより酸化燃焼させて、前記パティキュレートフィルタに流入する排気ガス温度を昇温することにより、パティキュレートマターを燃焼することを特徴とする排気ガスの浄化方法。
PCT/JP2014/004260 2013-08-28 2014-08-20 排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法 WO2015029382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/430,769 US9566573B2 (en) 2013-08-28 2014-08-20 Exhaust gas purifying catalyst, method for producing same, and exhaust gas purification method using same
CN201480002523.8A CN105263620B (zh) 2013-08-28 2014-08-20 尾气净化用催化剂、其制备方法及使用该尾气净化用催化剂的尾气净化方法
DE112014000482.0T DE112014000482T8 (de) 2013-08-28 2014-08-20 Abgasreinigungskatalysator und Verfahren zum Herstellen desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-176649 2013-08-28
JP2013176649A JP6236995B2 (ja) 2013-08-28 2013-08-28 排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法

Publications (1)

Publication Number Publication Date
WO2015029382A1 true WO2015029382A1 (ja) 2015-03-05

Family

ID=52585974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004260 WO2015029382A1 (ja) 2013-08-28 2014-08-20 排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法

Country Status (5)

Country Link
US (1) US9566573B2 (ja)
JP (1) JP6236995B2 (ja)
CN (1) CN105263620B (ja)
DE (1) DE112014000482T8 (ja)
WO (1) WO2015029382A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222017A1 (ja) * 2016-06-23 2017-12-28 エヌ・イーケムキャット株式会社 リーンバーン用触媒
US11185854B2 (en) * 2013-12-06 2021-11-30 Johnson Matthey Public Limited Company Cold start catalyst and its use in exhaust systems

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772302A1 (en) * 2013-02-27 2014-09-03 Umicore AG & Co. KG Hexagonal oxidation catalyst
GB2531401B (en) * 2014-08-12 2017-01-25 Johnson Matthey Plc Exhaust system with a modified lean NOx trap
CN108367241A (zh) * 2015-10-30 2018-08-03 优美科股份公司及两合公司 用于被动nox吸附(pna)体系的组合物及其制备和使用方法
US11248505B2 (en) 2016-06-17 2022-02-15 Basf Corporation Palladium diesel oxidation catalyst
GB2560942A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc NOx Adsorber catalyst
EP3912719A4 (en) * 2019-01-15 2022-10-12 Hitachi Zosen Corporation CATALYST FOR USE IN EXHAUST GAS TREATMENT
JP7344815B2 (ja) * 2020-02-28 2023-09-14 株式会社Subaru ガソリンリーンバーンエンジン用lnt積層触媒、及びこれを用いた排ガス浄化装置
CN114575968A (zh) * 2021-02-24 2022-06-03 长城汽车股份有限公司 NOx捕集器脱硫系统以及NOx捕集器脱硫方法
CN116997402A (zh) * 2021-03-18 2023-11-03 巴斯夫公司 用于处理柴油内燃机废气的系统
CN113713605A (zh) * 2021-09-03 2021-11-30 常州翡尔达环保科技有限公司 一种空气净化生物过滤滤料颗粒及其制备方法和用途

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810566A (ja) * 1994-07-05 1996-01-16 Ngk Insulators Ltd 排ガス浄化用触媒−吸着体及び排ガス浄化方法
JPH11104462A (ja) * 1997-09-30 1999-04-20 Ngk Insulators Ltd 排ガス浄化用触媒−吸着体及び排ガス浄化方法
JP2000271443A (ja) * 1999-03-26 2000-10-03 Mazda Motor Corp 排気ガス浄化用触媒の製造方法
JP2001310131A (ja) * 2000-02-22 2001-11-06 Mazda Motor Corp 排気ガス浄化用触媒及び該触媒による排気ガス浄化方法
JP2003093887A (ja) * 2001-09-26 2003-04-02 Mazda Motor Corp 排気ガス浄化用触媒、及び排気ガス浄化装置
JP2005169203A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2006068665A (ja) * 2004-09-03 2006-03-16 Toyota Motor Corp 排ガス浄化触媒の製造方法及び排ガス浄化触媒
JP2006226190A (ja) * 2005-02-17 2006-08-31 Mazda Motor Corp リーンバーンエンジンの制御装置
JP2008100152A (ja) * 2006-10-18 2008-05-01 Cataler Corp 排ガス浄化用触媒
JP2009208045A (ja) * 2008-03-06 2009-09-17 Mazda Motor Corp 排気ガス浄化用触媒
WO2012085572A2 (en) * 2010-12-21 2012-06-28 Johnson Matthey Public Limited Company Oxidation catalyst for a lean burn internal combustion engine
JP2012515087A (ja) * 2009-01-16 2012-07-05 ビー・エイ・エス・エフ、コーポレーション 積層ディーゼル酸化触媒複合材料
JP2013528119A (ja) * 2010-06-10 2013-07-08 ビーエーエスエフ ソシエタス・ヨーロピア 改善された炭化水素変換活性をもつNOx貯蔵触媒

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667018B2 (en) 1994-07-05 2003-12-23 Ngk Insulators, Ltd. Catalyst-adsorbent for purification of exhaust gases and method for purification of exhaust gases
JP3859940B2 (ja) 1999-08-06 2006-12-20 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
WO2001062383A1 (fr) 2000-02-22 2001-08-30 Mazda Motor Corporation Dispositif et procede d'epuration des gaz d'echappement, catalyseur d'epuration des gaz d'echappement et procede de production d'un catalyseur d'epuration des gaz d'echappement
JP3951111B2 (ja) * 2002-01-29 2007-08-01 三菱自動車工業株式会社 内燃機関の排気ガス浄化用触媒
US7754171B2 (en) * 2007-02-02 2010-07-13 Basf Corporation Multilayered catalyst compositions
CN103028429B (zh) * 2011-09-29 2015-08-19 中国科学院宁波材料技术与工程研究所 一种三元催化剂及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810566A (ja) * 1994-07-05 1996-01-16 Ngk Insulators Ltd 排ガス浄化用触媒−吸着体及び排ガス浄化方法
JPH11104462A (ja) * 1997-09-30 1999-04-20 Ngk Insulators Ltd 排ガス浄化用触媒−吸着体及び排ガス浄化方法
JP2000271443A (ja) * 1999-03-26 2000-10-03 Mazda Motor Corp 排気ガス浄化用触媒の製造方法
JP2001310131A (ja) * 2000-02-22 2001-11-06 Mazda Motor Corp 排気ガス浄化用触媒及び該触媒による排気ガス浄化方法
JP2003093887A (ja) * 2001-09-26 2003-04-02 Mazda Motor Corp 排気ガス浄化用触媒、及び排気ガス浄化装置
JP2005169203A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2006068665A (ja) * 2004-09-03 2006-03-16 Toyota Motor Corp 排ガス浄化触媒の製造方法及び排ガス浄化触媒
JP2006226190A (ja) * 2005-02-17 2006-08-31 Mazda Motor Corp リーンバーンエンジンの制御装置
JP2008100152A (ja) * 2006-10-18 2008-05-01 Cataler Corp 排ガス浄化用触媒
JP2009208045A (ja) * 2008-03-06 2009-09-17 Mazda Motor Corp 排気ガス浄化用触媒
JP2012515087A (ja) * 2009-01-16 2012-07-05 ビー・エイ・エス・エフ、コーポレーション 積層ディーゼル酸化触媒複合材料
JP2013528119A (ja) * 2010-06-10 2013-07-08 ビーエーエスエフ ソシエタス・ヨーロピア 改善された炭化水素変換活性をもつNOx貯蔵触媒
WO2012085572A2 (en) * 2010-12-21 2012-06-28 Johnson Matthey Public Limited Company Oxidation catalyst for a lean burn internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185854B2 (en) * 2013-12-06 2021-11-30 Johnson Matthey Public Limited Company Cold start catalyst and its use in exhaust systems
WO2017222017A1 (ja) * 2016-06-23 2017-12-28 エヌ・イーケムキャット株式会社 リーンバーン用触媒

Also Published As

Publication number Publication date
US9566573B2 (en) 2017-02-14
DE112014000482T5 (de) 2015-11-05
JP6236995B2 (ja) 2017-11-29
JP2015044157A (ja) 2015-03-12
US20150251169A1 (en) 2015-09-10
DE112014000482T8 (de) 2016-01-07
CN105263620A (zh) 2016-01-20
CN105263620B (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
JP6236995B2 (ja) 排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法
JP6206327B2 (ja) 排気ガス浄化用触媒及びその製造方法
US11865497B2 (en) Monometallic rhodium-containing four-way conversion catalysts for gasoline engine emissions treatment systems
KR101868176B1 (ko) 개선된 no 산화 활성을 갖는 가솔린 린번 엔진용 촉매
US9486791B2 (en) NOx trap
US8815189B2 (en) Gasoline engine emissions treatment systems having particulate filters
US8173087B2 (en) Gasoline engine emissions treatment systems having particulate traps
US7306771B2 (en) Filter catalyst for purifying exhaust gases and its manufacturing method thereof
JP5917516B2 (ja) Nh3−形成活性が改良された、ガソリンリーンバーンエンジンのための触媒
EP3277406B1 (en) Lean nox trap with enhanced high and low temperature performance
WO2010041741A1 (ja) 排ガス浄化装置
KR20090086517A (ko) 감소된 탈황 온도를 특징으로 하는 질소 산화물 저장 촉매
JP2004523686A (ja) 気体流れからNOxとSOxを除去するための触媒および方法
KR101855537B1 (ko) Rh 로딩량이 감소된 NOx 저장 촉매
JP5391664B2 (ja) 排気ガス浄化用触媒
JP5481931B2 (ja) 排気浄化装置及び排気浄化方法
JP5954259B2 (ja) 排気ガス浄化用触媒の製造方法
JP3633396B2 (ja) ディーゼル機関の排気浄化装置
JP5994730B2 (ja) 排気ガス浄化用触媒の製造方法
JP5949662B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP2014226653A (ja) 排気ガス浄化用触媒及びその製造方法
JP6102699B2 (ja) 排気ガス浄化用触媒の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480002523.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14430769

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014000482

Country of ref document: DE

Ref document number: 1120140004820

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839400

Country of ref document: EP

Kind code of ref document: A1