Nothing Special   »   [go: up one dir, main page]

WO2015025802A1 - 拡大内視鏡光学系 - Google Patents

拡大内視鏡光学系 Download PDF

Info

Publication number
WO2015025802A1
WO2015025802A1 PCT/JP2014/071485 JP2014071485W WO2015025802A1 WO 2015025802 A1 WO2015025802 A1 WO 2015025802A1 JP 2014071485 W JP2014071485 W JP 2014071485W WO 2015025802 A1 WO2015025802 A1 WO 2015025802A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
group
optical system
conditional expression
negative
Prior art date
Application number
PCT/JP2014/071485
Other languages
English (en)
French (fr)
Inventor
伸也 佐藤
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN201480016424.5A priority Critical patent/CN105074531B/zh
Priority to EP14838057.9A priority patent/EP3037859A4/en
Priority to JP2015506016A priority patent/JP5767423B1/ja
Publication of WO2015025802A1 publication Critical patent/WO2015025802A1/ja
Priority to US14/848,664 priority patent/US10251537B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • G02B23/2438Zoom objectives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/044Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for absorption imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/36Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged + -- +

Definitions

  • the present invention relates to an objective optical system, and more particularly to a magnifying endoscope optical system that is applied to a medical endoscope and enables magnifying observation.
  • Patent Document 1 to Patent Document 4 can be switched between a normal observation state and a magnified observation state by moving the moving lens group along the optical axis.
  • An objective optical system is disclosed.
  • the off-axis ray on the image side is higher than the stop in the optical system, particularly in the normal observation state (wide-angle end), and it is difficult to correct off-axis aberrations. It becomes.
  • the stroke of the moving lens group in the objective optical system is relatively longer than that of a normal size image sensor.
  • the off-axis aberration correction becomes more difficult.
  • the objective optical systems of Patent Documents 1 to 4 do not include a lens having negative refractive power in the vicinity of the image plane, the incident angle of the off-axis chief ray is increased while increasing the stroke of the moving lens group. If maintained appropriately, off-axis aberration correction becomes difficult and cannot be combined with a small image pickup device, which violates the demand for smaller endoscopes.
  • the present invention has been made in view of the above-described circumstances, and maintains a long stroke of the moving lens group, ensures a large off-axis chief ray incident angle, and facilitates a focusing operation during zooming.
  • An object of the present invention is to provide a magnifying endoscope optical system.
  • One aspect of the present invention includes a plurality of lens groups and a negative lens that is joined to an imaging device, and at least switching between a normal observation state and a close-up magnification state by moving some of the lens groups.
  • the magnifying endoscope optical system that satisfies the following conditional expression (1) is provided. ⁇ 65 ⁇ fr / fw ⁇ 2 (1)
  • fr is the focal length of the negative lens cemented to the image sensor
  • fw is the focal length of the entire system in the normal observation state (wide-angle end).
  • the first negative lens is provided closest to the object side and the following conditional expression (2) is satisfied. ⁇ 60 ⁇ Rr / R01 ⁇ 2 (2)
  • Rr is the radius of curvature of the object side surface of the negative lens cemented to the image sensor
  • R01 is the radius of curvature of the image side surface of the negative first lens.
  • Conditional expression (2) defines the refractive power of the negative first lens and the negative lens joined to the image sensor. By satisfying conditional expression (2), the radius of curvature of the object side surface of the negative lens and the image side surface of the negative first lens to be joined to the imaging device are appropriately maintained, and the exit pupil position is set. Aberration correction can be performed satisfactorily while ensuring the incident angle of a large off-axis chief ray appropriately.
  • Tr is the thickness of the negative lens joined to the image sensor.
  • Conditional expression (3) defines the thickness of the negative lens cemented to the image sensor and the focal length in the normal observation state (wide-angle end). By satisfying the conditional expression (3), it is possible to appropriately adjust the exit pupil position while keeping the thickness of the negative lens cemented to the imaging element to be an appropriate thickness, and to maintain the lens strength appropriately. it can. Further, the overall length of the objective optical system is not too long, which is advantageous for downsizing.
  • the first negative lens is provided closest to the object side and the following conditional expression (4) is satisfied. 5 ⁇ fr / f01 ⁇ 68 (4)
  • f01 is the focal length of the negative first lens.
  • Conditional expression (4) defines the refractive power of the negative lens joined to the first lens and the imaging device.
  • the positive first group, the negative second group, the positive third group, and the negative fourth group are provided in this order from the object side, and the fourth group includes a negative lens that is joined to the image sensor.
  • the negative lens is a negative lens having a concave surface directed toward the object side, and the image position is adjusted by a group interval between the third group and the fourth group, and only the second group moves on the optical axis. It is preferable to perform focusing and zooming by moving.
  • the refractive power of the moving lens group can be set to an appropriate value, a long stroke can be secured, and the change in the observation magnification with respect to the moving amount of the moving lens group (hereinafter referred to as zooming sensitivity) can be reduced.
  • zooming sensitivity the change in the observation magnification with respect to the moving amount of the moving lens group
  • Conditional expression (5) defines the stroke of the moving lens group.
  • the stroke of the moving group is set to an appropriate length, and a large off-axis chief ray incident angle is secured, and the zooming sensitivity is also set to an appropriate value to improve operability. it can.
  • Conditional expression (6) defines the refractive powers of the second group and the fourth group. By satisfying conditional expression (6), it is possible to ensure a large incident angle of the off-axis principal ray while ensuring a long stroke of the second group, which is the moving group.
  • Conditional expression (7) defines the exit pupil arrangement.
  • f1 is the focal length of the first group.
  • Conditional expression (8) defines the refractive powers of the fourth group and the first group.
  • the present invention while maintaining a long stroke of the moving lens group, it is possible to ensure a large off-axis chief ray incident angle and to reduce the size while facilitating the focusing operation at the time of zooming. Play.
  • FIG. 6 is an aberration diagram in a normal observation state (wide-angle end) in the magnification endoscope optical system according to Example 1 of the present invention.
  • FIG. 6 is an aberration diagram in an intermediate state in the magnification endoscope optical system according to Example 1 of the present invention.
  • FIG. 6 is an aberration diagram in a close-up / enlarged state (telephoto end) in the magnification endoscope optical system according to Example 1 of the present invention. It is sectional drawing which shows the whole structure of the expansion endoscope optical system which concerns on Example 2 of this invention, (A) is a normal observation state, (B) is an interruption (intermediate state), (C) is a close-up enlarged state. Show.
  • FIG. 10 is an aberration diagram in a normal observation state (wide-angle end) in the magnification endoscope optical system according to Example 2 of the present invention.
  • FIG. 10 is an aberration diagram in an intermediate state in the magnification endoscope optical system according to Example 2 of the present invention.
  • FIG. 10 is an aberration diagram in a close-up state (telephoto end) in the magnification endoscope optical system according to Example 2 of the present invention. It is sectional drawing which shows the whole structure of the expansion endoscope optical system which concerns on Example 3 of this invention, (A) is a normal observation state, (B) is an interruption (intermediate state), (C) is a close-up enlarged state. Show.
  • FIG. 10 is an aberration diagram in a normal observation state (wide-angle end) in the magnification endoscope optical system according to Example 3 of the present invention.
  • FIG. 10 is an aberration diagram in an intermediate state in the magnification endoscope optical system according to Example 3 of the present invention.
  • FIG. 10 is an aberration diagram in a close-up enlarged state (telephoto end) in the magnification endoscope optical system according to Example 3 of the present invention. It is sectional drawing which shows the whole structure of the expansion endoscope optical system which concerns on Example 4 of this invention, (A) is a normal observation state, (B) is a discontinuation (intermediate state), (C) is a close-up enlarged state. Show.
  • FIG. 10 is an aberration diagram in a normal observation state (wide-angle end) in the magnification endoscope optical system according to Example 4 of the present invention.
  • FIG. 10 is an aberration diagram in an intermediate state in the magnification endoscope optical system according to Example 4 of the present invention.
  • FIG. 10 is an aberration diagram in a close-up enlarged state (telephoto end) in the magnification endoscope optical system according to Example 4 of the present invention. It is sectional drawing which shows the whole structure of the expansion endoscope optical system which concerns on Example 5 of this invention, (A) is a normal observation state, (B) is a discontinuation (intermediate state), (C) is a close-up magnification state. Show.
  • FIG. 10 is an aberration diagram in a normal observation state (wide-angle end) in the magnification endoscope optical system according to Example 5 of the present invention.
  • FIG. 10 is an aberration diagram in an intermediate state in the magnification endoscope optical system according to Example 5 of the present invention.
  • FIG. 10 is an aberration diagram in a close-up enlarged state (telephoto end) in the magnification endoscope optical system according to Example 5 of the present invention. It is sectional drawing which shows the whole structure of the expansion endoscope optical system which concerns on Example 6 of this invention, (A) is a normal observation state, (B) is a discontinuation (intermediate state), (C) is a close-up enlarged state. Show.
  • FIG. 10 is an aberration diagram in a normal observation state (wide-angle end) in the magnification endoscope optical system according to Example 6 of the present invention.
  • FIG. 10 is an aberration diagram in an intermediate state in the magnification endoscope optical system according to Example 6 of the present invention.
  • FIG. 10 is an aberration diagram in a close-up enlarged state (telephoto end) in the magnification endoscope optical system according to Example 6 of the present invention.
  • FIG. 1 is a cross-sectional view showing the overall configuration of the magnifying endoscope optical system.
  • the magnifying endoscope optical system includes a plurality of lens groups, that is, a first lens group G1, an aperture stop S, a second lens group G2, a third lens group G3, in order from the object side.
  • a fourth lens group G4 is provided.
  • the first lens group G1 is a positive cemented lens in which a first lens L1 that is a plano-concave lens, a plane parallel plate F, a second lens L2 that is a negative meniscus lens, and a third lens L3 that is a biconvex lens are cemented. CL1 and has a positive refractive power.
  • the second lens group G2 includes a fourth lens L4 that is a plano-concave lens, and has a negative refractive power.
  • the second lens group G2 is movable on the optical axis, and the magnification can be changed from the normal observation state to the close-up magnification state by moving the second lens group G2.
  • the third lens group G3 includes a positive cemented lens CL2 formed by cementing a fifth lens L5 that is a biconvex lens, a sixth lens L6 that is a biconvex lens, and a seventh lens L7 that is a biconcave lens, and has a positive refractive power. have.
  • the fourth lens group G4 is an eighth lens L8 that has a negative refractive power and is joined to the image sensor. That is, the eighth lens L8 is a concave flat lens, and is joined to the imaging element sealing glass bonded integrally with the imaging surface. Then, image position adjustment is performed at the group interval between the third lens group G3 and the fourth lens group G4.
  • Conditional expression (1) is a condition for correcting various aberrations satisfactorily while securing a long moving group stroke and a large off-axis principal ray incident angle simultaneously by joining a negative lens to the image sensor.
  • fr is the focal length of the negative lens, that is, the eighth lens L8 cemented to the image sensor
  • fw the focal length of the entire system in the normal observation state (wide-angle end).
  • variable magnification optical system Along with the downsizing of the image sensor, it is difficult for the variable magnification optical system to secure the incident angle of the off-axis chief ray, which tends to deteriorate the image quality.
  • the magnifying endoscope optical system satisfies the conditional expression (1), a large off-axis principal ray can be obtained due to the effect of adjusting the exit pupil position of the negative lens joined to the image sensor even if the stroke of the moving group is long. Can be ensured, and off-axis aberrations such as field curvature and astigmatism, which are problems in the variable magnification optical system, can be corrected well.
  • conditional expression (1) If the upper limit ⁇ 2 of conditional expression (1) is exceeded, the refractive power of the negative lens cemented to the image sensor increases, making it difficult to correct various aberrations and increasing the sensitivity of decentering manufacturing errors, resulting in high accuracy. Connection is required. On the other hand, if the lower limit ⁇ 65 of conditional expression (1) is exceeded, the refractive power of the negative lens cemented to the image sensor becomes small, and a sufficient exit pupil position adjustment effect cannot be obtained. It becomes difficult to ensure.
  • the magnifying endoscope optical system is configured to satisfy conditional expressions (2) to (4). ⁇ 60 ⁇ Rr / R01 ⁇ 2 (2)
  • Rr is the radius of curvature of the object side surface of the negative eighth lens L8 cemented to the image sensor
  • R01 is the radius of curvature of the image side surface of the most negative first lens L1 on the object side.
  • Conditional expression (2) defines the refractive power of the first lens L1 and the negative eighth lens L8 joined to the imaging device. If the upper limit ⁇ 2 of conditional expression (2) is exceeded, the radius of curvature of the eighth lens L8 becomes small, which is advantageous for setting the exit pupil position, but disadvantageous for aberration correction. On the other hand, if the lower limit ⁇ 60 of the conditional expression (2) is exceeded, the radius of curvature of the eighth lens L8 becomes large, which is disadvantageous for disposing the exit pupil near the image plane, and ensures a large incident angle of the off-axis principal ray. It is not preferable.
  • Tr is the thickness of the negative lens joined to the image sensor.
  • Conditional expression (3) defines the inner thickness of the negative eighth lens L8 joined to the image sensor and the focal length in the normal observation state (wide-angle end). If the upper limit of 1.7 in conditional expression (3) is exceeded, the inner thickness of the negative eighth lens L8 becomes large, which is disadvantageous for adjusting the exit pupil position, and further, the total length becomes large, which is not preferable for downsizing. On the other hand, if the lower limit of 0.15 of conditional expression (3) is exceeded, the inner thickness of the eighth lens L8 becomes small, and defects such as cracks are likely to occur in the lens, which is not preferable.
  • f01 is the focal length of the negative first lens L1.
  • Conditional expression (4) defines the refractive power of the first lens L1 and the negative eighth lens L8 cemented to the imaging device.
  • the refractive power of the eighth lens L8 becomes small, which is disadvantageous for adjusting the exit pupil position.
  • the refractive power of the eighth lens L8 becomes large, which is advantageous for adjusting the exit pupil position, but disadvantageous for aberration correction.
  • the magnifying endoscope optical system is configured to satisfy the following conditional expressions (5) to (7).
  • dm is the amount of movement of the second group
  • f4 is the focal length of the fourth group
  • f2 is the focal length of the second group
  • expi (w) is the maximum in the normal observation state (wide-angle end). It is the exit pupil position of the image height real ray
  • ⁇ d is the total length of the optical system.
  • zooming In the magnifying endoscope optical system, in order to facilitate the focusing operation at the time of zooming and to provide the operator with excellent operability, the change in observation magnification with respect to the moving amount of the moving lens group (hereinafter referred to as zooming) (Referred to as sensitivity) must be made small and scaled slowly. That is, it is important to set the refractive power of the moving lens group to an appropriate value and ensure a long stroke.
  • Conditional expression (5) defines the stroke of the moving lens group. If the upper limit of 2.4 of the conditional expression (5) is exceeded, the stroke of the moving group becomes too long, so that the light height of the third group becomes large and it becomes difficult to secure a large incident angle of the off-axis principal ray. If the lower limit 1.2 of conditional expression (5) is exceeded, the stroke of the moving group becomes small, so that the zooming sensitivity becomes large, which is not preferable in terms of operability.
  • Conditional expression (6) defines the refractive power of the second lens group G2 and the fourth lens group G4. Outside this range, it is difficult to achieve both a long stroke of the second lens group G2, which is the moving group, and an incident angle of a large off-axis principal ray. That is, if the upper limit of 9.5 in conditional expression (6) is exceeded, the refractive power of the second group becomes large, which is disadvantageous for ensuring a long stroke of the moving group.
  • conditional expression (6) when the lower limit of 0.9 in conditional expression (6) is exceeded, the refractive power of the second group becomes small, and the stroke of the moving group becomes too long, which is disadvantageous for miniaturization, and also the incidence of a large off-axis principal ray It is disadvantageous to secure the corner.
  • conditional expression (6) ′ or conditional expression (6) ′′ instead of conditional expression (6). 0.95 ⁇ f4 / f2 ⁇ 6.8 (6) ′ 1.05 ⁇ f4 / f2 ⁇ 2.4 (6) ''
  • Conditional expression (7) defines the exit pupil arrangement. Exceeding the upper limit of -0.3 of conditional expression (7) is advantageous for obtaining a large off-axis chief ray incident angle, but the refractive power of the fourth lens group G4 tends to be large, which is disadvantageous for aberration correction. Become. On the other hand, if the lower limit ⁇ 0.6 of the conditional expression (7) is exceeded, the exit pupil position is far from the image plane, which is disadvantageous for obtaining a large incident angle of the off-axis principal ray.
  • the magnifying endoscope optical system is configured to satisfy the following conditional expression (8). -25 ⁇ f4 / f1 ⁇ -2 (8)
  • f1 is the focal length of the first group.
  • Conditional expression (8) defines the refractive power of the fourth lens group G4 and the first lens group G1. If the upper limit ⁇ 2 of conditional expression (8) is exceeded, the refractive power of the fourth group becomes large, which is disadvantageous for aberration correction. On the other hand, if the lower limit ⁇ 25 of the conditional expression (8) is exceeded, the refractive power of the fourth group becomes small, and a sufficient exit pupil position adjustment effect cannot be obtained, and a large incident angle of the off-axis principal ray is ensured. It becomes difficult.
  • conditional expression (8) ′ or conditional expression (8) ′′ instead of conditional expression (8).
  • the magnifying endoscope according to this embodiment is preferably configured to satisfy the following conditional expression (9). 13.5 ⁇ d / IH ⁇ 19 (9)
  • IH is the maximum image height.
  • conditional expression (9) can ensure the workability of the lens.
  • conditional expression (9) is a condition for ensuring the workability of the lens. If the upper limit 19 of conditional expression (9) is exceeded, the total length becomes large with respect to the image height, which is disadvantageous for miniaturization. On the other hand, if the lower limit of 13.5 of the conditional expression (9) is exceeded, the total length becomes small with respect to the image height, the rim and the middle of each lens become small, and defects such as cracks and chipping are likely to occur. It is not preferable.
  • the magnifying endoscope according to this embodiment is preferably configured to satisfy the conditional expression (10). 6.7 ⁇ d_R / fw ⁇ 7.8 (10) However, ⁇ d_R is the length from the moving group image side end to the image plane in the close-up magnification state (telephoto end).
  • a mechanism for moving the lens for example, there is an actuator that is connected to a lens frame that holds the moving lens group and applies a driving force to the lens frame.
  • conditional expression (10) secures a space for arranging a component for moving the lens in a high-performance magnifying endoscope optical system having a full field angle of 120 ° or more in a normal observation state (wide-angle end). It is a condition to make it easier. If the upper limit of 7.8 of conditional expression (10) is exceeded, it is advantageous to dispose a component that moves the lens, but the total length becomes long, which is disadvantageous for miniaturization. On the other hand, if the lower limit 6.7 of the conditional expression (10) is exceeded, it is difficult to dispose a part for moving the lens, which is not preferable.
  • the magnifying endoscope according to the present embodiment is preferably configured to satisfy the following conditional expression (11). ⁇ 8 ⁇ f2 / fw ⁇ 5 (11)
  • f2 is the focal length of the second group.
  • Conditional expression (11) defines the refractive power of the second lens group G2. If the upper limit ⁇ 5 of conditional expression (11) is exceeded, the refractive power of the second lens group G2 becomes large, which is disadvantageous for securing a long stroke. On the other hand, if the lower limit ⁇ 8 of conditional expression (12) is exceeded, the stroke becomes too long and the light ray height of the third lens group G3 becomes large, which is disadvantageous for aberration correction.
  • the magnifying endoscope according to the present embodiment is preferably configured to satisfy the following conditional expression (12). 2.7 ⁇ f3 / fw ⁇ 4.2 (12)
  • Conditional expression (12) defines the refractive power of the third lens group G3. If the upper limit of 4.2 of the conditional expression (12) is exceeded, the refractive power of the third lens group G3 becomes small, which is disadvantageous for ensuring a large incident angle of the off-axis principal ray. On the other hand, if the lower limit 2.7 of conditional expression (12) is exceeded, the refractive power of the third lens group G3 becomes large, which is disadvantageous for aberration correction.
  • the magnifying endoscope according to the present embodiment is preferably configured to satisfy the following conditional expression (13). -1.1 ⁇ f01 / fw ⁇ -0.87 (13)
  • Conditional expression (13) defines the refractive power of the first lens L1.
  • the refractive power of the first lens L1 becomes large, and it becomes difficult to correct various aberrations.
  • the lower limit ⁇ 1.1 of conditional expression (13) is exceeded, the diameter of the first lens L1 tends to be large, which is disadvantageous for downsizing.
  • the magnifying endoscope according to the present embodiment is preferably configured to satisfy the following conditional expression (14). -90 ⁇ f4 / Bf ⁇ -2 (14)
  • Bf is a group interval between the third lens group G3 and the fourth lens group G4.
  • Conditional expression (14) defines the refractive power of the fourth lens group G4 and the distance between the third lens group G3 and the fourth lens group G4. If the upper limit ⁇ 2 of conditional expression (14) is exceeded, the group distance between the third lens group G3 and the fourth lens group G4 becomes large, which is disadvantageous for downsizing. On the other hand, if the lower limit ⁇ 90 of conditional expression (14) is exceeded, the group interval between the third lens group G3 and the fourth lens group G4 becomes small, and it is not preferable because the interval necessary for image position adjustment cannot be secured.
  • the magnifying endoscope according to the present embodiment is preferably configured to satisfy the following conditional expression (15). ⁇ 20 ⁇ f4 / f3 ⁇ 1.6 (15)
  • Conditional expression (15) defines the refractive power of the fourth lens group G4 and the third lens group G3.
  • the refractive power of the fourth lens group G4 becomes large, which is disadvantageous for aberration correction.
  • the lower limit ⁇ 20 of conditional expression (15) is exceeded, the refractive power of the fourth lens group G4 will be small, and a sufficient exit pupil position adjustment effect will not be obtained, and a large incident angle of off-axis principal rays will be ensured. It becomes difficult.
  • the magnifying endoscope according to the present embodiment is preferably configured to satisfy the following conditional expression (16). ⁇ 0.67 ⁇ f3 / f2 ⁇ 0.42 (16)
  • f3 is the focal length of the third lens group G3.
  • Conditional expression (16) defines the refractive power of the third lens group G3 and the second lens group G2.
  • the refractive power of the second lens group G2 becomes small and the stroke becomes long. That is, the total length becomes long, and the light ray height of the third lens group G3 becomes large, which is disadvantageous for aberration correction.
  • the lower limit ⁇ 0.67 of conditional expression (16) is exceeded, the refractive power of the third lens group G3 becomes small and the back focus of the optical system becomes long, which is disadvantageous for miniaturization.
  • the magnifying endoscope according to the present embodiment is preferably configured to satisfy the following conditional expression (17). 1.2 ⁇ f3 / f1 ⁇ 1.65 (17)
  • Conditional expression (17) defines the refractive power of the third lens group G3 and the first lens group G1. If the upper limit of 1.65 of conditional expression (17) is exceeded, the refractive power of the third lens group G3 will be small and the Petzval sum will be large, making it difficult to correct field curvature. On the other hand, if the lower limit 1.2 of conditional expression (17) is exceeded, the refractive power of the first lens group G1 becomes small, and the spherical aberration becomes insufficiently corrected.
  • the magnifying endoscope according to the present embodiment is preferably configured to satisfy the following conditional expression (18). -3.7 ⁇ f2 / f1 ⁇ -2 (18)
  • Conditional expression (18) defines the refractive power of the second lens group G2 and the first lens group G1.
  • the refractive power of the second group becomes larger than the refractive power of the first group, and the variation of chromatic aberration due to the movement of the second lens group G2 becomes large.
  • the lower limit ⁇ 3.7 of conditional expression (18) is exceeded, the refractive power of the first lens group G1 becomes large and the amount of spherical aberration generated becomes large.
  • the second lens group G2 moves on the optical axis, and zooming and focusing are performed, so that a simple configuration of 8 elements in 4 groups can be taken in the entire system. it can.
  • the first lens may be a negative meniscus lens having a concave surface on the image plane side.
  • the magnifying endoscope optical system can be configured as follows. As shown in FIG. 2, the magnifying endoscope optical system according to the modification includes a first lens group G1, an aperture stop S, a second lens group G2, a third lens group G3, and a fourth lens in order from the object side. A group G4 is provided, and each lens group is configured as follows.
  • the first lens group G1 includes a first lens L1 that is a plano-concave lens having a concave surface facing the image surface, a second lens L2 that is a positive meniscus lens having a convex surface facing the image surface, and a third lens that is a positive lens.
  • a positive cemented lens CL1 is provided in which a lens L3 and a fourth lens L4 that is a negative lens are cemented in the order of positive and negative.
  • the second lens group G2 includes a negative cemented lens CL2 in which a fifth lens L5, which is a plano-concave lens with a concave surface facing the image surface side, and a sixth lens L6, which is a positive lens, are cemented.
  • the third lens group G3 includes a seventh lens L7 that is a positive lens, and a positive cemented lens CL3 in which an eighth lens L8 that is a positive lens and a ninth lens L9 that is a negative lens are cemented in order of positive and negative. Yes.
  • the fourth lens group G4 includes a tenth lens L10 that is a concave flat lens having a concave surface directed toward the object side. Note that the tenth lens L10 is bonded to the imaging element sealing glass bonded integrally with the imaging surface.
  • the first lens may be a negative meniscus lens having a concave surface on the image plane side.
  • the magnifying endoscope optical system according to this modification is also configured to satisfy the conditional expressions (1) to (8), and further satisfy the conditional expressions (9) to (18). More preferably, it is configured.
  • the aperture stop S can be arranged on the image side of the second lens group G2.
  • the second lens group and the aperture stop S are integrally moved on the optical axis, and the light beam height of the third lens group G3 is reduced by focusing and zooming. There is. That is, it is possible to reduce the lens diameter of the third lens group G3, and there is a great merit when it is desired to reduce the lens diameter of the third lens group G3 due to the configuration of the lens frame components and the actuator.
  • Examples 1 to 6 of the objective optical system according to any one of the above-described embodiments will be described with reference to FIGS. 3 to 26.
  • r is a radius of curvature (unit: mm)
  • d is a surface separation (mm)
  • Ne is a refractive index with respect to e-line
  • ⁇ d is an Abbe number with respect to d-line.
  • FIG. 3 is a cross-sectional view showing the overall configuration of the magnifying endoscope optical system according to the first embodiment of the present invention.
  • the magnifying endoscope optical system according to Example 1 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens group. It is composed of a fourth lens unit having a refractive power.
  • the aperture stop is fixed on the object side of the second lens group.
  • the second lens group moves on the optical axis to the image side, and performs zooming and focusing from the normal observation state (wide-angle end) to the close-up magnification state (telephoto end). That is, zooming and focusing are performed by moving the second lens group along the optical axis.
  • the first lens group is composed of a plano-concave lens, a plane parallel plate, a positive cemented lens in which a negative meniscus lens and a biconvex lens are cemented
  • the second lens group is composed of a plano-concave lens
  • the third lens group is composed of a biconvex lens, a positive cemented lens in which a biconvex lens and a biconcave lens are cemented
  • the fourth lens group is composed of a concave flat lens. Note that the concave lens of the fourth lens group, the imaging element sealing glass, and the imaging surface are bonded together.
  • the first embodiment satisfies the conditional expressions (1) to (8), thereby ensuring a long stroke of the moving group and a large off-axis principal ray incident angle.
  • a filter for cutting light in a specific wavelength for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or near-infrared region can be applied to the plane parallel plate.
  • FIGS. 4 to 6 Aberration diagrams of the magnifying endoscope optical system according to Example 1 are shown in FIGS. 4 to 6, and lens data thereof are shown below.
  • FIG. 7 is a cross-sectional view showing the overall configuration of the magnifying endoscope optical system according to the second embodiment of the present invention.
  • the magnifying endoscope optical system according to the present embodiment includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens group.
  • the fourth lens unit has a refractive power.
  • the aperture stop is disposed on the object side of the second lens group.
  • the second lens group is integrated with the aperture stop and moves to the image side on the optical axis, and close-up magnification is performed from the normal observation state (wide-angle end). Magnification and focusing to the state (telephoto end). That is, zooming and focusing are performed by moving the second lens group along the optical axis.
  • the first lens group includes a plano-concave lens, a plane parallel plate, a positive meniscus lens having a convex surface facing the image side, a positive meniscus lens having a convex surface facing the image side, and a negative meniscus having a convex surface facing the image side.
  • the second lens group is composed of a negative cemented lens in which a plano-concave lens and a positive meniscus lens having a convex surface facing the object side are cemented
  • the third lens group includes both The lens is composed of a convex lens, a positive cemented lens in which a biconvex lens and a biconcave lens are cemented
  • the fourth lens group is composed of a concave flat lens.
  • conditional expressions (1) to (8) are satisfied, thereby ensuring a long stroke of the moving group and a large off-axis principal ray incident angle.
  • a filter for cutting light in a specific wavelength for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or near-infrared region can be applied to the plane parallel plate.
  • FIGS. 8 to 10 Aberration diagrams of the magnifying endoscope optical system according to Example 2 are shown in FIGS. 8 to 10, and lens data thereof are shown below.
  • FIG. 11 is a cross-sectional view showing the overall configuration of the magnifying endoscope optical system according to the third embodiment of the present invention.
  • the magnifying endoscope optical system according to the present embodiment includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens group.
  • the fourth lens unit has a refractive power.
  • the aperture stop is disposed on the object side of the second lens group.
  • the second lens group moves on the optical axis to the image side to change from the normal observation state (wide-angle end) to the close-up magnification state (telephoto end). Double and focus. That is, zooming and focusing are performed by moving the second lens group along the optical axis.
  • the first lens group includes a plano-concave lens, a plane parallel plate, a positive meniscus lens having a convex surface facing the image side, and a positive cemented lens obtained by cementing a biconvex lens and a negative meniscus lens having a convex surface facing the image side.
  • the second lens group is composed of a negative cemented lens in which a plano-concave lens and a biconvex lens are cemented
  • the third lens group is a biconvex lens, a positive cemented lens in which a biconvex lens and a biconcave lens are cemented, and a plane-parallel plate
  • the fourth lens group is composed of a concave flat lens.
  • conditional expressions (1) to (8) are satisfied, thereby ensuring a long stroke of the moving group and a large off-axis principal ray incident angle.
  • a filter for cutting light in a specific wavelength for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or near-infrared light can be applied to the plane parallel plate.
  • Aberration diagrams of the magnifying endoscope optical system according to Example 3 are shown in FIGS. 12 to 14, and lens data thereof are shown below.
  • FIG. 15 is a sectional view showing the overall configuration of the magnifying endoscope optical system according to the fourth embodiment of the present invention.
  • the magnifying endoscope optical system according to the present embodiment includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens group.
  • the fourth lens unit has a refractive power.
  • the brightness stop is disposed on the image side of the second lens group.
  • the second lens unit is integrated with the aperture stop and moves on the optical axis to the image side to change the magnification and focus from the normal observation state (wide-angle end) to the close-up magnification state (telephoto end). I do. That is, zooming and focusing are performed by moving the second lens group along the optical axis.
  • the first lens group includes a plano-concave lens, a plane parallel plate, a positive meniscus lens having a convex surface facing the image side, and a positive cemented lens in which a biconvex lens and a negative meniscus lens are cemented.
  • the third lens group is composed of a biconvex lens and a positive cemented lens in which a biconvex lens and a biconcave lens are cemented.
  • the fourth lens group is composed of a concave flat lens.
  • the brightness stop is disposed on the image side of the second lens group.
  • the fourth lens group, the imaging element sealing glass L1, and the imaging surface are bonded together.
  • a filter for cutting light in a specific wavelength for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or near-infrared region can be applied to the plane parallel plate.
  • FIGS. 16 to 18 Aberration diagrams of the magnifying endoscope optical system according to Example 4 are shown in FIGS. 16 to 18 and lens data thereof are shown below.
  • FIG. 19 is a sectional view showing the overall configuration of the magnifying endoscope optical system according to the fifth embodiment of the present invention.
  • the magnifying endoscope optical system according to the present embodiment includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens group.
  • the fourth lens unit has a refractive power.
  • the aperture stop is disposed on the object side of the second lens group.
  • the second lens group moves on the optical axis to the image side to change from the normal observation state (wide-angle end) to the close-up magnification state (telephoto end). Double and focus. That is, zooming and focusing are performed by moving the second lens group along the optical axis.
  • the first lens group is composed of a plano-concave lens, a plane parallel plate, a negative meniscus lens having a convex surface facing the object side, and a positive cemented lens in which a biconvex lens is cemented
  • the second lens group is composed of a plano-concave lens.
  • the third lens group includes a biconvex lens, a positive cemented lens in which the biconvex lens and the biconcave lens are cemented
  • the fourth lens group includes a concave flat lens.
  • the concave flat lens and the imaging surface of the fourth lens group are bonded together.
  • a filter for cutting light in a specific wavelength for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or near-infrared light can be applied to the plane parallel plate.
  • Aberration diagrams of the magnifying endoscope optical system according to Example 5 are shown in FIGS. 20 to 22, and lens data thereof are shown below.
  • FIG. 23 is a sectional view showing the overall configuration of the magnifying endoscope optical system according to the sixth embodiment of the present invention.
  • the magnifying endoscope optical system according to the present embodiment includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens group.
  • the fourth lens unit has a refractive power.
  • the aperture stop is disposed on the object side of the second lens group.
  • the second lens group moves on the optical axis to the image side to change from the normal observation state (wide-angle end) to the close-up magnification state (telephoto end). Double and focus. That is, zooming and focusing are performed by moving the second lens group along the optical axis.
  • the first lens group includes a plano-concave lens, a plane parallel plate, a positive meniscus lens having a convex surface facing the image side, and a positive cemented lens in which a negative meniscus lens having a convex surface facing the object side and a biconvex lens are cemented.
  • the second lens group is composed of a plano-concave lens
  • the third lens group is composed of a biconvex lens, a positive cemented lens in which the biconvex lens and the biconcave lens are cemented
  • the fourth lens group is composed of a concave flat lens.
  • the concave flat lens of the fourth lens group, the imaging element sealing glass, and the imaging surface are bonded together.
  • conditional expressions (1) to (8) are satisfied, thereby ensuring a long stroke of the moving group and a large off-axis principal ray incident angle.
  • a filter for cutting light in a specific wavelength for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or near-infrared light can be applied to the plane parallel plate.
  • Aberration diagrams of the magnifying endoscope optical system according to Example 6 are shown in FIGS. 24 to 26, and lens data thereof are shown below.
  • Example 1 the values according to the above formulas (1) to (8) are shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

 移動レンズ群のストロークを長く保ちつつ、大きい軸外主光線の入射角を確保して、変倍時の合焦操作が容易でありながら小型化する。 複数のレンズ群と、撮像素子に接合する負レンズとを備え、前記レンズ群うちの一部のレンズ群を移動させることにより少なくとも通常観察状態と近接拡大状態との切替えが可能であり、以下の条件式(1)を満足する拡大内視鏡光学系を提供する。 -65<fr/fw<―2 ・・・(1) 但し、frは撮像素子に接合する負レンズの焦点距離であり、fwは通常観察状態(広角端)での全系の焦点距離である。

Description

拡大内視鏡光学系
 本発明は、対物光学系に関し、特に、医療用の内視鏡に適用され、拡大観察が可能な拡大内視鏡光学系に関するものである。
 医療用の内視鏡において、病変の精密な診断を行うために、拡大観察が可能な対物光学系の要求が強まっている。
 このような変倍機能を有する対物光学系の例として、例えば、特許文献1乃至特許文献4に、移動レンズ群を光軸に沿って移動させることで通常観察状態と拡大観察状態とを切替え可能な対物光学系が開示されている。
 ところで、拡大観察可能な対物光学系において変倍を行うためには、少なくとも1つのレンズ群を移動させる必要がある。そして、このような対物光学系において、変倍に伴う合焦操作を容易とするためには、移動レンズ群のストロークを長く確保して、緩やかに変倍させることが望ましい。
 また、内視鏡の小型化の要請に伴って撮像素子の小型化が進み、軸外主光線の入射角に応じてシェーディング特性を最適化した小型の撮像素子が提供されており、小型でありながら拡大観察が可能な内視鏡が望まれている。
特開2011-48086号公報 特開2009-103874号公報 特開平6-102453号公報 特開2007-233036号公報
 しかしながら、対物光学系において、移動レンズ群のストロークを長く確保すると、特に通常観察状態(広角端)において光学系の中で絞りより像側の軸外光線が高くなり、軸外の収差補正が困難となる。小型の撮像素子を適用する場合には、通常サイズの撮像素子に比して、対物光学系における移動レンズ群のストロークが相対的に長くなるため、絞りより像側の軸外光線も相対的に高くなり、軸外の収差補正がより困難となる。
 特に、特許文献1乃至特許文献4の対物光学系は、像面近傍に負の屈折力を有するレンズを備えていないことから、移動レンズ群のストロークを長くしつつ軸外主光線の入射角を適切に保つと、軸外の収差補正が困難となり、小型の撮像素子と組み合わせることができず、内視鏡の小型化の要請に反することとなる。
 本発明は、上述した事情に鑑みてなされたものであって、移動レンズ群のストロークを長く保ちつつ、大きい軸外主光線の入射角を確保し、変倍時の合焦操作が容易な小型化の拡大内視鏡光学系を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、複数のレンズ群と、撮像素子に接合する負レンズとを備え、前記レンズ群うちの一部のレンズ群を移動させることにより少なくとも通常観察状態と近接拡大状態との切替えが可能であり、以下の条件式(1)を満足する拡大内視鏡光学系を提供する。
 -65<fr/fw<―2   ・・・(1)
 但し、frは撮像素子に接合する負レンズの焦点距離であり、fwは通常観察状態(広角端)での全系の焦点距離である。
 本態様によれば、長い移動群のストロークと大きい軸外主光線の入射角を同時に確保しながらも、良好に諸収差を補正し、優れた操作性と高画質な画像での内視鏡観察が可能となる。つまり、条件式(1)を満たすことにより、移動群のストロークを長く確保しても、撮像素子に接合した負レンズの射出瞳位置調整の効果で、大きい軸外主光線の入射角を確保することが可能であり、変倍光学系で課題となる像面湾曲や非点収差といった軸外の収差も良好に補正することできる。
 上記態様において、最も物体側に負の第1レンズを有し、以下の条件式(2)を満足することが好ましい。
 -60<Rr/R01<-2   ・・・(2)
 但し、Rrは前記撮像素子に接合する負レンズの物体側の面の曲率半径であり、R01は前記負の第1レンズの像側の面の曲率半径である。
 条件式(2)は、負の第1レンズと撮像素子に接合する負レンズの屈折力を規定したものである。条件式(2)を満たすことで、撮像素子に接合する負レンズの物体側の面の曲率半径及び負の第1レンズの像側の面の曲率半径を適切に保ち、射出瞳位置の設定を適切に行って大きい軸外主光線の入射角を確保しながら、良好に収差補正を行うことができる。
 上記態様において、以下の条件式(3)を満足することが好ましい。
 0.15<Tr/fw<1.7   ・・・(3)
 但し、Trは撮像素子に接合した負レンズの中肉厚である。
 条件式(3)は、撮像素子に接合した負レンズの中肉厚と通常観察状態(広角端)の焦点距離を規定したものである。条件式(3)を満たすことで、撮像素子に接合した負レンズの中肉厚を適切な厚さとして、射出瞳位置調整を適切に行うことができるとともに、レンズの強度を適切に保つことができる。また、対物光学系の全長も長すぎることがなく、小型化に有利となる。
 上記態様において、最も物体側に負の第1レンズを有し、以下の条件式(4)を満足することが好ましい。
 5<fr/f01<68   ・・・(4)
 但し、f01は負の第1レンズの焦点距離である。
 条件式(4)は、第1レンズと撮像素子に接合した負レンズの屈折力を規定したものである。条件式(4)を満たすことで、負レンズの屈折力を適切な値として、射出瞳位置調整及び収差補正を共に良好に行うことができる。
 上記態様において、物体側から順に、正の第1群、負の第2群、正の第3群及び負の第4群を備え、該第4群が、撮像素子に接合する負レンズを有し、該負レンズが、物体側に凹面を向けた負レンズであり、前記第3群と前記第4群との群間隔で像位置の調整を行い、前記第2群のみが光軸上を移動することにより合焦及び変倍を行うことが好ましい。
 このようにすることで、移動レンズ群の屈折力を適正な値にし、ストロークを長く確保することができ、移動レンズ群の移動量に対する観察倍率の変化(以下、変倍感度と呼ぶ)を小さくして緩やかに変倍させることができる。つまり、変倍時の合焦操作を容易にし、術者に優れた操作性を提供することができる。
 上記態様において、以下の条件式(5)乃至(7)を満足することが好ましい。
 1.2<dm/fw<2.4   ・・・(5)
 0.9<f4/f2<9.5   ・・・(6)
 -0.6<expi(w)/Σd<-0.3   ・・・(7)
 但し、dmは第2群の移動量であり、f4は第4群の焦点距離であり、f2は第2群の焦点距離であり、expi(w)は通常観察状態(広角端)での最大像高実光線の射出瞳位置であり、Σdは光学系の全長である。
 条件式(5)は、移動レンズ群のストロークを規定するものである。条件式(5)を満足することで、移動群のストロークがを適切な長さとし、大きい軸外主光線の入射角を確保しながら、変倍感度も適切な値として操作性を向上させることができる。
 条件式(6)は、第2群と第4群の屈折力を規定するものである。条件式(6)を満たすことで、移動群である第2群の長いストロークを確保しながら、大きい軸外主光線の入射角を確保することができる。
 条件式(7)は、射出瞳配置を規定したものである。条件式(7)を満たすことで、大きい軸外主光線の入射角の確保しながら収差補正を良好に行うことができる。
 上記態様において、以下の条件式(8)を満足することが好ましい。
 -25<f4/f1<-2   ・・・(8)
 但し、f1は第1群の焦点距離である。
 条件式(8)は第4群と第1群の屈折力を規定するものである。条件式(8)を満たすことで、良好に収差補正を行いながら、大きい軸外主光線の入射角を確保することができる。
 本発明によれば、移動レンズ群のストロークを長く保ちつつ、大きい軸外主光線の入射角を確保して、変倍時の合焦操作が容易でありながら小型化することができるという効果を奏する。
本発明の一実施形態に係る拡大内視鏡光学系の全体構成を示す断面図である。 本発明の一実施形態の変形例に係る拡大内視鏡光学系の全体構成を示す断面図である。 本発明の実施例1に係る拡大内視鏡光学系の全体構成を示す断面図である。 本発明の実施例1に係る拡大内視鏡光学系において、通常観察状態(広角端)の収差図である。 本発明の実施例1に係る拡大内視鏡光学系において、中間状態の収差図である。 本発明の実施例1に係る拡大内視鏡光学系において、近接拡大状態(望遠端)の収差図である。 本発明の実施例2に係る拡大内視鏡光学系の全体構成を示す断面図であり、(A)は通常観察状態、(B)は中断(中間状態)、(C)は近接拡大状態を示す。 本発明の実施例2に係る拡大内視鏡光学系において、通常観察状態(広角端)の収差図である。 本発明の実施例2に係る拡大内視鏡光学系において、中間状態の収差図である。 本発明の実施例2に係る拡大内視鏡光学系において、近接拡大状態(望遠端)の収差図である。 本発明の実施例3に係る拡大内視鏡光学系の全体構成を示す断面図であり、(A)は通常観察状態、(B)は中断(中間状態)、(C)は近接拡大状態を示す。 本発明の実施例3に係る拡大内視鏡光学系において、通常観察状態(広角端)の収差図である。 本発明の実施例3に係る拡大内視鏡光学系において、中間状態の収差図である。 本発明の実施例3に係る拡大内視鏡光学系において、近接拡大状態(望遠端)の収差図である。 本発明の実施例4に係る拡大内視鏡光学系の全体構成を示す断面図であり、(A)は通常観察状態、(B)は中断(中間状態)、(C)は近接拡大状態を示す。 本発明の実施例4に係る拡大内視鏡光学系において、通常観察状態(広角端)の収差図である。 本発明の実施例4に係る拡大内視鏡光学系において、中間状態の収差図である。 本発明の実施例4に係る拡大内視鏡光学系において、近接拡大状態(望遠端)の収差図である。 本発明の実施例5に係る拡大内視鏡光学系の全体構成を示す断面図であり、(A)は通常観察状態、(B)は中断(中間状態)、(C)は近接拡大状態を示す。 本発明の実施例5に係る拡大内視鏡光学系において、通常観察状態(広角端)の収差図である。 本発明の実施例5に係る拡大内視鏡光学系において、中間状態の収差図である。 本発明の実施例5に係る拡大内視鏡光学系において、近接拡大状態(望遠端)の収差図である。 本発明の実施例6に係る拡大内視鏡光学系の全体構成を示す断面図であり、(A)は通常観察状態、(B)は中断(中間状態)、(C)は近接拡大状態を示す。 本発明の実施例6に係る拡大内視鏡光学系において、通常観察状態(広角端)の収差図である。 本発明の実施例6に係る拡大内視鏡光学系において、中間状態の収差図である。 本発明の実施例6に係る拡大内視鏡光学系において、近接拡大状態(望遠端)の収差図である。
 以下に、本発明の一実施形態に係る拡大内視鏡光学系について図面を参照して説明する。
 図1は、拡大内視鏡光学系の全体構成を示す断面図を示している。図1に示すように、拡大内視鏡光学系は、複数のレンズ群、すなわち、物体側から順に、第1レンズ群G1、明るさ絞りS、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4を備えている。
 第1レンズ群G1は、平凹レンズである第1レンズL1と、平行平面板Fと、負のメニスカスレンズである第2レンズL2と両凸レンズである第3レンズL3とを接合した正の接合レンズCL1とを備え、正の屈折力を有している。
 第2レンズ群G2は、平凹レンズである第4レンズL4からなり、負の屈折力を有している。第2レンズ群G2は光軸上を移動可能になっており、第2レンズ群G2が移動することにより通常観察状態から近接拡大状態などへの変倍が可能となっている。
 第3レンズ群G3は、両凸レンズである第5レンズL5と、両凸レンズである第6レンズL6と両凹レンズである第7レンズL7とを接合した正の接合レンズCL2からなり、正の屈折力を有している。
 第4レンズ群G4は、負の屈折力を有し、撮像素子に接合する第8レンズL8である。つまり、第8レンズL8は凹平レンズであり、撮像面と一体的に接着された撮像素子封止ガラスに接合している。
 そして、第3レンズ群G3と第4レンズ群G4との群間隔で像位置調整を行うようになっている。
 また、本実施形態に係る拡大内視鏡光学系は、以下の条件式(1)を満たすように構成されている。
 条件式(1)は、負レンズを撮像素子に接合することによって、長い移動群のストロークと大きい軸外主光線の入射角を同時に確保しながらも、良好に諸収差を補正する条件である。
 -65<fr/fw<―2   ・・・(1)
 但し、frは撮像素子に接合する負レンズ、つまり第8レンズL8の焦点距離であり、fwは通常観察状態(広角端)での全系の焦点距離である。
 撮像素子の小型化に伴い、変倍光学系においては、より軸外主光線の入射角を確保することが困難となり、画質の劣化を招きやすい。
 拡大内視鏡光学系が、条件式(1)を満たすことにより、移動群のストロークを長く確保しても、撮像素子に接合した負レンズの射出瞳位置調整の効果で、大きい軸外主光線の入射角を確保することが可能となり、変倍光学系で課題となる像面湾曲や非点収差といった軸外の収差も良好に補正することができる。
 条件式(1)の上限-2を超えると、撮像素子に接合した負レンズの屈折力が大となり、諸収差の補正が困難となる上、偏芯の製造誤差感度が大となるため高精度な接合が必要となる。また、条件式(1)の下限-65を超えると、撮像素子に接合した負レンズの屈折力が小となり十分な射出瞳位置調整の効果が得られず、大きい軸外主光線の入射角を確保することが困難となる。
 また、拡大内視鏡光学系は、条件式(2)乃至(4)を満足するように構成されている。
 -60<Rr/R01<-2   ・・・(2)
 但し、Rrは前記撮像素子に接合する負の第8レンズL8の物体側の面の曲率半径であり、R01は最も物体側の負の第1レンズL1の像側の面の曲率半径である。
 条件式(2)は、第1レンズL1と撮像素子に接合した負の第8レンズL8の屈折力を規定したものである。条件式(2)の上限-2を超えると第8レンズL8の曲率半径が小となり、射出瞳位置の設定には有利であるが、収差補正に不利となる。一方、条件式(2)の下限-60を超えると第8レンズL8の曲率半径が大となり、射出瞳を像面近傍に配置することに不利となり、大きい軸外主光線の入射角を確保するのに好ましくない。
 0.15<Tr/fw<1.7   ・・・(3)
 但し、Trは撮像素子に接合した負レンズの中肉厚である。
 条件式(3)は、撮像素子に接合した負の第8レンズL8の中肉厚と通常観察状態(広角端)の焦点距離を規定したものである。条件式(3)の上限1.7を超えると、負の第8レンズL8の中肉厚が大となり、射出瞳位置調整に不利となり、さらには全長が大となり小型化する上で好ましくない。一方、条件式(3)の下限0.15を超えると、第8レンズL8の中肉厚が小となり、レンズに割れ等の欠陥が発生しやすくなり好ましくない。
 5<fr/f01<68   ・・・(4)
 但し、f01は負の第1レンズL1の焦点距離である。
 条件式(4)は、第1レンズL1と撮像素子に接合した負の第8レンズL8の屈折力を規定したものである。条件式(4)の上限68を超えると、第8レンズL8の屈折力が小となり射出瞳位置調整に不利となる。一方、条件式(4)の下限5を超えると、第8レンズL8の屈折力が大となり射出瞳位置調整には有利であるが、収差補正に不利となる。
 なお、上記条件式(4)に代えて、(4)’又は(4)’’を適用すると更に好ましい。
 6.5<fr/f01<35   ・・・(4)’
 7.5<fr/f01<15   ・・・(4)’’
 さらに、本実施形態に係る拡大内視鏡光学系は、以下の条件式(5)乃至条件式(7)を満足するように構成されている。
 1.2<dm/fw<2.4   ・・・(5)
 0.9<f4/f2<9.5   ・・・(6)
 -0.6<expi(w)/Σd<-0.3   ・・・(7)
 但し、dmは第2群の移動量であり、f4は第4群の焦点距離であり、f2は第2群の焦点距離であり、expi(w)は通常観察状態(広角端)での最大像高実光線の射出瞳位置であり、Σdは光学系の全長である。
 このようにすることで、負の第2レンズ群のみが光軸上を移動して変倍と合焦を行う簡素な変倍光学系とすることが可能となる。
 拡大内視鏡光学系において、変倍時の合焦操作を容易にし、術者に優れた操作性を提供するためには、移動レンズ群の移動量に対する観察倍率の変化、(以下、変倍感度と呼ぶ)を小さくして緩やかに変倍させる必要がある。つまり、移動レンズ群の屈折力を適正な値にし、ストロークを長く確保することが重要である。
 条件式(5)は、移動レンズ群のストロークを規定するものである。条件式(5)の上限2.4を超えると移動群のストロークが長くなりすぎるため、第3群の光線高が大となり、大きい軸外主光線の入射角を確保することが困難となる。条件式(5)の下限1.2を超えると移動群のストロークが小となるため、変倍感度が大となり操作性の面で好ましくない。
 条件式(6)は、第2レンズ群G2と第4レンズ群G4の屈折力を規定するものである。この範囲を外れると、移動群である第2レンズ群G2の長いストロークと大きい軸外主光線の入射角の両立が困難となる。
 即ち、条件式(6)の上限9.5を超えると第2群の屈折力が大となり、長い移動群のストロークを確保するのに不利となる。一方、条件式(6)の下限0.9を超えると第2群の屈折力が小となり、移動群のストロークが長くなりすぎるため小型化に不利であり、さらには大きい軸外主光線の入射角を確保するのに不利となる。
 なお、条件式(6)に代えて、条件式(6)’又は条件式(6)’’を適用することがさらに好ましい。
 0.95<f4/f2<6.8   ・・・(6)’
 1.05<f4/f2<2.4   ・・・(6)’’
 条件式(7)は、射出瞳配置を規定したものである。条件式(7)の上限-0.3を超えると、大きい軸外主光線の入射角を得るのに有利であるが、第4レンズ群G4の屈折力が大きくなりやすく、収差補正に不利となる。一方、条件式(7)の下限-0.6を超えると、射出瞳位置が像面から遠ざかり、大きい軸外主光線の入射角を得るのに不利となる。
 拡大内視鏡光学系は、以下の条件式(8)を満足するように構成されている。
 -25<f4/f1<-2   ・・・(8)
 但し、f1は第1群の焦点距離である。
 条件式(8)は第4レンズ群G4と第1レンズ群G1の屈折力を規定するものである。条件式(8)の上限-2を超えると第4群の屈折力が大となり収差補正に不利である。一方、条件式(8)の下限-25を超えると、第4群の屈折力が小となり十分な射出瞳位置調整の効果が得られず、大きい軸外主光線の入射角を確保するのが困難となる。
 なお、条件式(8)に代えて、条件式(8)’又は条件式(8)’’を適用することがさらに好ましい。
 ―16<f4/f1<-2.3   ・・・(8)’
 ―5.5<f4/f1<-2.5   ・・・(8)’’
 さらに、本実施形態に係る拡大内視鏡は、以下の条件式(9)を満足するように構成されていることが好ましい。
 13.5<Σd/IH<19   ・・・(9)
 但し、IHは最大像高である。
 拡大内視鏡光学系の小型化が一層進み、その全長が小さくなると、レンズの縁肉や中肉の確保が難しくなり、ワレや欠け等の欠陥が発生しやすくなる。そこで、条件式(9)を満足することで、レンズの加工性を確保することができる。
 即ち、条件式(9)はレンズの加工性を確保する条件である。条件式(9)の上限19を超えると、像高に対して全長が大となり小型化に不利である。一方、条件式(9)の下限13.5を超えると、像高に対して全長が小となり、各レンズの縁肉、及び中肉が小となり、ワレや欠け等の不良が発生しやすくなり好ましくない。
 本実施形態に係る拡大内視鏡は、条件式(10)を満足するように構成されていることが好ましい。
 6.7<Σd_R/fw<7.8   ・・・(10)
 但し、Σd_Rは、近接拡大状態(望遠端)での移動群像側端から像面までの長さである。
 変倍可能な光学系では、少なくとも1つのレンズを移動させる必要があり、レンズを移動させるための機構が必要である。そして、レンズを移動させるための機構としては、例えば、移動レンズ群を保持するレンズ枠に接続されていて、このレンズ枠に駆動力を与えるアクチュエーター等がある。
 レンズ系を小型化した場合、レンズを移動させるための機構も同じ係数倍で小型化することは困難であり、大型のレンズ系に比べて、レンズを移動させるための構成部品は相対的に大きくなりがちである。
 すなわち、条件式(10)は、通常観察状態(広角端)で全画角120°以上を有する高性能な拡大内視鏡光学系において、レンズを移動させる部品を配置するためのスペースを確保しやすくするための条件である。条件式(10)の上限7.8を超えるとレンズを移動させる部品を配置するのに有利であるが、全長が長くなり小型化に不利である。一方、条件式(10)の下限6.7を超えると、レンズを移動させるための部品を配置することが困難となり好ましくない。
 本実施形態に係る拡大内視鏡は、以下の条件式(11)を満足するように構成されていることが好ましい。
 -8<f2/fw<-5   ・・・(11)
 但し、f2は第2群の焦点距離である。
 条件式(11)は、第2レンズ群G2の屈折力を規定したものである。条件式(11)の上限-5を超えると第2レンズ群G2の屈折力が大となり長いストロークを確保するのに不利である。一方、条件式(12)の下限-8を超えると、ストロークが長くなりすぎて第3レンズ群G3の光線高が大となり、収差補正に不利である。
 本実施形態に係る拡大内視鏡は、以下の条件式(12)を満足するように構成されていることが好ましい。
 2.7<f3/fw<4.2   ・・・(12)
 条件式(12)は第3レンズ群G3の屈折力を規定したものである。条件式(12)の上限4.2を超えると第3レンズ群G3の屈折力が小となり、大きい軸外主光線の入射角を確保するのに不利となる。一方、条件式(12)の下限2.7を超えると第3レンズ群G3の屈折力が大となるため、収差補正に不利である。
 本実施形態に係る拡大内視鏡は、以下の条件式(13)を満足するように構成されていることが好ましい。
 -1.1<f01/fw<-0.87   ・・・(13)
 条件式(13)は第1レンズL1の屈折力を規定したものである。条件式(13)の上限-0.87を超えると第1レンズL1の屈折力が大となり、諸収差の補正が困難となる。一方、条件式(13)の下限-1.1を超えると、第1レンズL1の径が大となりやすく、小型化に不利である。
 本実施形態に係る拡大内視鏡は、以下の条件式(14)を満足するように構成されていることが好ましい。
 -90<f4/Bf<-2   ・・・(14)
 但し、Bfは第3レンズ群G3と第4レンズ群G4の群間隔である。
 条件式(14)は第4レンズ群G4の屈折力と、第3レンズ群G3と第4レンズ群G4の群間隔を規定するものである。条件式(14)の上限-2を超えると、第3レンズ群G3と第4レンズ群G4の群間隔が大となり小型化に不利である。一方、条件式(14)の下限-90を超えると、第3レンズ群G3と第4レンズ群G4の郡間隔が小となり、像位置調整に必要な間隔が確保できなくなり好ましくない。
 本実施形態に係る拡大内視鏡は、以下の条件式(15)を満足するように構成されていることが好ましい。
 -20<f4/f3<-1.6   ・・・(15)
 条件式(15)は第4レンズ群G4と第3レンズ群G3の屈折力を規定したものである。条件式(15)の上限-1.8を超えると、第4レンズ群G4の屈折力が大となり、収差補正に不利となる。一方、条件式(15)の下限-20を超えると第4レンズ群G4の屈折力が小となり十分な射出瞳位置調整の効果が得られず、大きい軸外主光線の入射角を確保することが困難となる。
 本実施形態に係る拡大内視鏡は、以下の条件式(16)を満足するように構成されていることが好ましい。
 -0.67<f3/f2<-0.42   ・・・(16)
 但し、f3は第3レンズ群G3の焦点距離である。
 条件式(16)は第3レンズ群G3と第2レンズ群G2の屈折力を規定したものである。条件式(16)の上限-0.42を超えると、第2レンズ群G2の屈折力が小となりストロークが長くなる。つまり、全長が長くなり、さらには第3レンズ群G3の光線高も大となって、収差補正にも不利となる。一方、条件式(16)の下限-0.67を超えると、第3レンズ群G3の屈折力が小となり、光学系のバックフォーカスが長くなるため、小型化に不利となる。
 本実施形態に係る拡大内視鏡は、以下の条件式(17)を満足するように構成されていることが好ましい。
 1.2<f3/f1<1.65   ・・・(17)
 条件式(17)は第3レンズ群G3と第1レンズ群G1の屈折力を規定したものである。条件式(17)の上限1.65を超えると第3レンズ群G3の屈折力が小となり、ペッツバール和が大となるため、像面湾曲を補正することが困難となる。一方、条件式(17)の下限1.2を超えると第1レンズ群G1の屈折力が小となり、球面収差が補正不足となるため好ましくない。
 本実施形態に係る拡大内視鏡は、以下の条件式(18)を満足するように構成されていることが好ましい。
 -3.7<f2/f1<-2   ・・・(18)
 条件式(18)は第2レンズ群G2と第1レンズ群G1の屈折力を規定したものである。条件式(18)の上限-2を超えると、第1群の屈折力に対して第2群の屈折力が大となり、第2レンズ群G2の移動による色収差の変動が大となる。一方、条件式(18)の下限-3.7を超えると第1レンズ群G1の屈折力が大となり球面収差の発生量が大となる。
 このように、本実施形態によれば、第2レンズ群G2のみが光軸上を移動し、変倍と合焦を行うことにより、全系で4群8枚の簡素な構成を取ることができる。つまり、移動レンズ群である第2レンズ群G2のストロークを長く保ちつつ、大きい軸外主光線の入射角を確保して、変倍時の合焦操作が容易でありながら拡大内視鏡光学系を小型化することができる。なお、第1レンズは像面側に凹面を向けた負のメニスカスレンズでも良い。
(変形例)
 また、変形例として、拡大内視鏡光学系を以下のように構成することもできる。
 変形例に係る拡大内視鏡光学系は、図2に示すように、物体側から順に、第1レンズ群G1、明るさ絞りS、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4を備えており、各レンズ群が以下のように構成されている。
 第1レンズ群G1は、像面側に凹面を向けた平凹レンズである第1レンズL1、像面側に凸面を向けた正のメニスカスレンズである第2レンズL2、及び正レンズである第3レンズL3と負レンズである第4レンズL4とを正負の順に接合した正の接合レンズCL1を備えている。
 第2レンズ群G2は、像面側に凹面を向けた平凹レンズである第5レンズL5と正レンズである第6レンズL6とを接合した負の接合レンズCL2を備えている。
 第3レンズ群G3は、正レンズである第7レンズL7、及び、正レンズである第8レンズL8と負レンズである第9レンズL9とを正負の順に接合した正の接合レンズCL3を備えている。
 第4レンズ群G4は、物体側に凹面を向けた凹平レンズである第10レンズL10を備えている。なお、第10レンズL10は撮像面と一体的に接着された撮像素子封止ガラスに接合している。
 そして、第3レンズ群G3と負の第4レンズ群G4との群間隔で像位置調整を行い、第2レンズ群G2と第2レンズ群G2の物体側に配置した明るさ絞りSとが一体となって光軸上を移動し、変倍と合焦を行うことにより、全系で4群10枚の偏芯の製造誤差に強い構成を取ることができる。なお、第1レンズは像面側に凹面を向けた負のメニスカスレンズでも良い。
 本変形例に係る拡大内視鏡光学系も、上記条件式(1)乃至条件式(8)を満たすように構成されており、更に条件式(9)乃至条件式(18)を満たすように構成されることが更に好ましい。
 なお、明るさ絞りSを第2レンズ群G2の像側に配置することもできる。この場合には、第2レンズ群と明るさ絞りSとが一体となって光軸上を移動し、合焦および変倍を行うことによって、第3レンズ群G3の光線高を小とする効果がある。つまり、第3レンズ群G3のレンズ径を小とすることが可能であり、レンズ枠部品やアクチュエーターの構成上、第3レンズ群G3のレンズ径を小としたい場合に大きなメリットがある。
 続いて、上述した何れかの実施形態に係る対物光学系の実施例1乃至実施例6について、図3乃至図26を参照して説明する。各実施例に記載のレンズデータにおいて、rは曲率半径(単位mm)、dは面間隔(mm)、Neはe線に対する屈折率、νdはd線に対するアッベ数を示している。
(実施例1)
 本発明の実施例1に係る拡大内視鏡光学系の全体構成を示す断面図を図3に示す。
 実施例1に係る拡大内視鏡光学系は、物体側より順に、正の屈折力の第1レンズ群と負の屈折力の第2レンズ群と正の屈折力の第3レンズ群と負の屈折力の第4レンズ群から構成されている。また、明るさ絞りは第2レンズ群の物体側に固定されている。
 そして、第2レンズ群が光軸上を像側に移動して通常観察状態(広角端)から近接拡大状態(望遠端)への変倍と合焦を行う。つまり、第2レンズ群を光軸に沿って移動させることにより変倍と合焦を行う。
 また、図3に示す通り、第1レンズ群が平凹レンズと、平行平面板、負のメニスカスレンズと両凸レンズを接合した正の接合レンズから構成され、第2レンズ群が平凹レンズから構成され、第3レンズ群が両凸レンズと、両凸レンズと両凹レンズとを接合した正の接合レンズから構成され、第4レンズ群が凹平レンズから構成されている。なお、第4レンズ群の凹平レンズと撮像素子封止ガラスと撮像面は一体に接着されている。
 本実施例1は、条件式(1)乃至条件式(8)を満足し、これにより、長い移動群のストロークと大きい軸外主光線の入射角を確保している。
 なお、平行平面板には、特定波長、例えばYAGレーザーの1060nm、半導体レーザーの810nmあるいは近赤外線領域の光をカットするためのフィルタを適用することができる。
 本実施例1に係る拡大内視鏡光学系の収差図を図4乃至図6に夫々示すと共に、そのレンズデータを以下に示す。
 レンズデータ
面番号    r      d       Ne      νd
 0(物体面)∞     D0
 1     ∞     0.1938  1.88814  40.78
 2   0.4970  0.7845
 3     ∞     0.2907  1.52300  65.13
 4     ∞     0.1248
 5  12.2699  0.2422  1.88815  40.76
 6   0.6584  0.7503  1.72341  50.23
 7  -0.9927  0.0484
 8(絞り) ∞     D1
 9     ∞     0.2422  1.82017  46.62
10   2.8875  D2
11   1.7244  1.1890  1.48915  70.23
12  -8.4378  0.0480
13   1.6342  1.1030  1.59143  61.14
14  -1.4281  0.3817  1.93429  18.90
15  36.6777  0.5082
16  -2.6189  0.3198  1.51825  64.14
17     ∞     0.0097  1.51500  64.00
18     ∞     0.3876  1.50700  63.26
19     ∞
 各種データ
      通常観察状態   中間状態     近接拡大状態
      (広角端)             (望遠端)
 D0   9.6899   4.3605   2.3256
 D1   0.1163   0.5597   1.1531
 D2   1.2984   0.8550   0.2616
 fl   0.568    0.632    0.711
 Fno  4.92     5.56     6.51
(実施例2)
 本発明の実施例2に係る拡大内視鏡光学系の全体構成を示す断面図を図7に示す。
 本実施例に係る拡大内視鏡光学系は、物体側より順に、正の屈折力の第1レンズ群と負の屈折力の第2レンズ群と正の屈折力の第3レンズ群と負の屈折力の第4レンズ群にて構成されている。また、明るさ絞りは第2レンズ群の物体側に配置されている。
 そして、本実施例に係る拡大内視鏡用光学系においては、第2レンズ群が明るさ絞りと一体となって光軸上を像側に移動して通常観察状態(広角端)から近接拡大状態(望遠端)への変倍と合焦を行う。つまり、第2レンズ群を光軸に沿って移動させることにより変倍と合焦を行う。
 第1レンズ群は、平凹レンズと、平行平面板と、像側に凸面を向けた正のメニスカスレンズと、像側に凸面を向けた正のメニスカスレンズと像側に凸面を向けた負のメニスカスレンズを接合した正の接合レンズから構成され、第2レンズ群は、平凹レンズと物体側に凸面を向けた正のメニスカスレンズを接合した負の接合レンズから構成され、第3レンズ群は、両凸レンズと、両凸レンズと両凹レンズを接合した正の接合レンズから構成され、第4レンズ群が凹平レンズから構成されている。第4レンズ群の凹平レンズと撮像素子封止ガラスと撮像面は一体に接着されている。
 本実施例は、条件式(1)乃至条件式(8)を満足し、これにより、長い移動群のストロークと大きい軸外主光線の入射角を確保している。
 なお、平行平面板には、特定波長、例えばYAGレーザーの1060nm、半導体レーザーの810nmあるいは近赤外線領域の光をカットするためのフィルタを適用することができる。
 本実施例2に係る拡大内視鏡光学系の収差図を図8乃至図10に夫々示すと共に、そのレンズデータを以下に示す。
 レンズデータ
面番号    r      d       Ne      νd
 0     ∞     D0 
 1     ∞     0.2000  1.88815  40.76
 2   0.5337  0.5350
 3     ∞     0.2900  1.52300  65.13
 4     ∞     0.3000  
 5  -1.7969  0.8058  1.59143  61.14
 6  -1.2747  0.0523
 7 -32.5151  0.6488  1.65425  58.55
 8  -1.4567  0.2728  1.93429  18.90
 9  -1.9015  D1
STO    ∞     0.0314
11     ∞     0.2616  1.88815  40.76
12   1.1847  0.4291  1.65222  33.79
13  15.3335  D2
14   2.1443  1.2872  1.59143  61.14
15  -8.4506  0.0523
16   1.6838  1.0779  1.48915  70.23
17  -1.9790  0.5756  1.93429  18.90
18   7.2481  0.6309
19  -4.2687  0.3453  1.51825  64.14
20     ∞     0.0090  1.51500  64.00
21     ∞     0.4100  1.50700  63.26
22     ∞
 各種データ
      通常観察状態   中間状態     近接拡大状態
      (広角端)             (望遠端)
 D0  10.45     4.2000   2.45
 D1   0.1570   0.8020   1.3605
 D2   1.4128   0.7678   0.2093
 Fl   0.621    0.709    0.779
 Fno  5.36     5.72     6.04
(実施例3)
 本発明の実施例3に係る拡大内視鏡光学系の全体構成を示す断面図を図11に示す。
 本実施例に係る拡大内視鏡光学系は、物体側より順に、正の屈折力の第1レンズ群と負の屈折力の第2レンズ群と正の屈折力の第3レンズ群と負の屈折力の第4レンズ群にて構成されている。また、明るさ絞りは第2レンズ群の物体側に配置されている。
 そして、本実施例に係る拡大内視鏡用光学系においては、第2レンズ群が光軸上を像側に移動して通常観察状態(広角端)から近接拡大状態(望遠端)への変倍と合焦を行う。つまり、第2レンズ群を光軸に沿って移動させることにより変倍と合焦を行う。
 第1レンズ群は、平凹レンズと、平行平面板と、像側に凸面を向けた正のメニスカスレンズと、両凸レンズと像側に凸面を向けた負のメニスカスレンズを接合した正の接合レンズから構成され、第2レンズ群が平凹レンズと両凸レンズを接合した負の接合レンズから構成され、第3レンズ群が両凸レンズと、両凸レンズと両凹レンズを接合した正の接合レンズと、平行平面板から構成され、第4レンズ群が凹平レンズから構成される。第4レンズ群の凹平レンズと撮像素子封止ガラスと撮像面は一体に接着されている。
 本実施例は、条件式(1)乃至条件式(8)を満足し、これにより、長い移動群のストロークと大きい軸外主光線の入射角を確保している。
 なお、平行平面板には、特定波長、例えばYAGレーザーの1060nm、半導体レーザーの810nmあるいは近赤外線領域の光をカットするためのフィルタを適用することができる。
 本実施例3に係る拡大内視鏡光学系の収差図を図12乃至図14に夫々示すと共に、そのレンズデータを以下に示す。
 レンズデータ
面番号    r      d       Ne      νd
 0(物体面)∞     D0
 1     ∞     0.3454  1.88815  40.76
 2   0.8054  0.6671  
 3     ∞     0.5900  1.52300  65.13
 4     ∞     0.2568
 5  -3.7649  1.0563  1.59143  61.14
 6  -1.7320  0.0787
 7  49.4159  1.0484  1.57392  52.95
 8  -1.8333  0.3156  1.93429  18.90
 9  -2.4621  D1
10(絞り) ∞     0.0300
11     ∞     0.3071  1.88815  40.76
12   1.3418  0.5620  1.65222  33.79
13 -14.6543  D2
14   2.6500  0.8806  1.51825  64.14
15  -4.7268  0.0786  
16   4.2401  1.1769  1.53430  48.84
17  -2.3186  0.4436  1.93429  18.90
18  23.1374  0.1283
19     ∞     0.4000  1.52510  58.50
20     ∞     0.6196
21  -8.7307  0.6908  1.51825  64.14
22     ∞     0.0099  1.51500  64.00
23     ∞     0.6908  1.61350  50.49
24     ∞
 各種データ
      通常観察状態   中間状態     近接拡大状態
      (広角端)             (望遠端)
 D0  10.3618   4.3000   2.0724
 D1   0.1974   0.8095   1.7763
 D2   1.8750   1.2629   0.2961
 fl   1.004    1.057    1.1214
 Fno  7.68     7.73     7.84
(実施例4)
 本発明の実施例4に係る拡大内視鏡光学系の全体構成を示す断面図を図15に示す。
 本実施例に係る拡大内視鏡光学系は、物体側より順に、正の屈折力の第1レンズ群と負の屈折力の第2レンズ群と正の屈折力の第3レンズ群と負の屈折力の第4レンズ群にて構成されている。また、明るさ絞りは第2レンズ群の像側に配置されている。
 本実施例は、第2レンズ群が明るさ絞りと一体となって光軸上を像側に移動して通常観察状態(広角端)から近接拡大状態(望遠端)への変倍と合焦を行う。つまり、第2レンズ群を光軸に沿って移動させて変倍と合焦を行う。
 第1レンズ群は、平凹レンズと、平行平面板と、像側に凸面を向けた正のメニスカスレンズと、両凸レンズと負のメニスカスレンズを接合した正の接合レンズから構成され、第2レンズ群が平凹レンズと物体側に凸面を向けた正のメニスカスレンズを接合した負の接合レンズから構成され、第3レンズ群が両凸レンズと、両凸レンズと両凹レンズを接合した正の接合レンズから構成され、第4レンズ群が凹平レンズから構成される。また、明るさ絞りは、第2レンズ群の像側に配置されている。第4レンズ群と撮像素子封止ガラスL1と撮像面は一体に接着されている。
 本実施例においては、明るさ絞りを移動群の像側端に配置することで第3レンズ群の光線高を小とする効果があり、アクチュエーター等のレンズ駆動部品を構成する上で、第3レンズ群のレンズ径を小としたい場合に有利である。
 本実施例は、条件式(1)乃至条件式(8)を満足し、これにより、長い移動群のストロークと大きい軸外主光線の入射角を確保している。
 なお、平行平面板には、特定波長、例えばYAGレーザーの1060nm、半導体レーザーの810nmあるいは近赤外線領域の光をカットするためのフィルタを適用することができる。
 本実施例4に係る拡大内視鏡光学系の収差図を図16乃至図18に夫々示すと共に、そのレンズデータを以下に示す。
 レンズデータ
面番号    r      d       Ne      νd
 0(物体面)∞     D0
 1     ∞     0.2200  1.88815  40.76
 2   0.5910  0.3588
 3     ∞     0.3200  1.52300  65.13
 4     ∞     0.1300  
 5  -1.8127  1.0384  1.88815  40.76
 6  -2.1662  0.0552  
 7  32.3983  0.7733  1.88815  40.76
 8  -1.2991  0.3093  1.93429  18.90
 9  -2.0889  D1
10     ∞     0.2209  1.88815  40.76
11   1.0792  0.4308  1.65222  33.79
12   7.6906  0.0331
13(絞り) ∞     D2
14   2.3275  1.4360  1.48915  70.23
15  -3.1538  0.0552
16   1.7299  1.2703  1.58482  40.75
17  -1.6592  0.2983  1.93429  18.90
18   3.5945  0.6019
19 -11.0929  0.3645  1.51825  64.14
20     ∞     0.0110  1.51500  64.00
21     ∞     0.4419  1.50700  63.26
22     ∞     0
 各種データ
      通常観察状態   中間状態     近接拡大状態
      (広角端)             (望遠端)
 D0  11.0500   4.4186   2.5500
 D1   0.2209    0.7995   1.3256
 D2   1.4471    0.8686   0.3424
 fl   0.6344    0.7426   0.8357
 Fno  5.15      5.53     5.87
(実施例5)
 本発明の実施例5に係る拡大内視鏡光学系の全体構成を示す断面図を図19に示す。
 本実施例に係る拡大内視鏡光学系は、物体側より順に、正の屈折力の第1レンズ群と負の屈折力の第2レンズ群と正の屈折力の第3レンズ群と負の屈折力の第4レンズ群にて構成されている。また、明るさ絞りは第2レンズ群の物体側に配置されている。
 そして、本実施例に係る拡大内視鏡用光学系においては、第2レンズ群が光軸上を像側に移動して通常観察状態(広角端)から近接拡大状態(望遠端)への変倍と合焦を行う。つまり、第2レンズ群を光軸に沿って移動させることにより変倍と合焦を行う。
 第1レンズ群は、平凹レンズと、平行平面板と、物体側に凸面を向けた負のメニスカスレンズと両凸レンズを接合した正の接合レンズから構成され、第2レンズ群が平凹レンズから構成され、第3レンズ群が両凸レンズと、両凸レンズと両凹レンズを接合した正の接合レンズから構成され、第4レンズ群が凹平レンズから構成される。第4レンズ群の凹平レンズと撮像面は一体に接着されている。
 本実施例は、条件式(1)乃至条件式(8)を満足し、これにより、長い移動群のストロークと大きい軸外主光線の入射角を確保している。
 なお、平行平面板には、特定波長、例えばYAGレーザーの1060nm、半導体レーザーの810nmあるいは近赤外線領域の光をカットするためのフィルタを適用することができる。
 本実施例5に係る拡大内視鏡光学系の収差図を図20乃至図22に夫々示すと共に、そのレンズデータを以下に示す。
 レンズデータ
面番号    r      d       Ne      νd
 0(物体面)∞     D0
 1     ∞     0.1900  1.88814  40.78
 2   0.4843  0.7174
 3     ∞     0.2700  1.52300  65.13
 4     ∞     0.1234
 5  13.0714  0.2374  1.88815  40.76
 6   0.6923  0.7787  1.73234  54.68
 7  -1.0180  0.0475  1.
 8(絞り) ∞     D1
 9     ∞     0.2350  1.73234  54.68
10   2.9163  D2
11   1.8992  1.0731  1.48915  70.23
12  -4.2752  0.0475
13   1.4102  1.2155  1.48915  70.23
14  -1.5583  0.5413  1.93429  18.90
15   3.6123  0.4629
16 -18.2212  0.3324  1.51825  64.14
17     ∞     0.
 各種データ
      通常観察状態   中間状態     近接拡大状態
      (広角端)             (望遠端)
 D0   9.4961   4.50     2.28
 D1   0.0950   0.5378   1.3295
 D2   1.4719   1.0290   0.2374
 fl   0.566    0.622    0.7109
 Fno  4.92     5.49     6.58
(実施例6)
 本発明の実施例6に係る拡大内視鏡光学系の全体構成を示す断面図を図23に示す。
 本実施例に係る拡大内視鏡光学系は、物体側より順に、正の屈折力の第1レンズ群と負の屈折力の第2レンズ群と正の屈折力の第3レンズ群と負の屈折力の第4レンズ群にて構成されている。また、明るさ絞りは第2レンズ群の物体側に配置されている。
 そして、本実施例に係る拡大内視鏡用光学系においては、第2レンズ群が光軸上を像側に移動して通常観察状態(広角端)から近接拡大状態(望遠端)への変倍と合焦を行う。つまり、第2レンズ群を光軸に沿って移動させることにより変倍と合焦を行う。
 第1レンズ群は、平凹レンズと、平行平面板と、像側に凸面を向けた正のメニスカスレンズと、物体側に凸面を向けた負のメニスカスレンズと両凸レンズを接合した正の接合レンズから構成され、第2レンズ群が平凹レンズから構成され、第3レンズ群が両凸レンズと、両凸レンズと両凹レンズを接合した正の接合レンズから構成され、第4レンズ群が凹平レンズから構成される。第4レンズ群の凹平レンズと撮像素子封止ガラスと撮像面は一体に接着されている。
 本実施例は、条件式(1)乃至条件式(8)を満足し、これにより、長い移動群のストロークと大きい軸外主光線の入射角を確保している。
 なお、平行平面板には、特定波長、例えばYAGレーザーの1060nm、半導体レーザーの810nmあるいは近赤外線領域の光をカットするためのフィルタを適用することができる。
 本実施例6に係る拡大内視鏡光学系の収差図を図24乃至図26に夫々示すと共に、そのレンズデータを以下に示す。
 レンズデータ 
面番号    r      d       Ne      νd
 0(物体面)∞     D0
 1     ∞     0.2000  1.88814  40.78
 2   0.4969  0.4584*
 3     ∞     0.3500  1.52300  65.13
 4     ∞     0.2016
 5  -1.5468  0.3015  1.51977  52.43
 6  -1.2434  0.0532
 7  13.1293  0.2443  1.88815  40.76
 8   0.7355  0.7496  1.72341  50.23
 9  -1.1468  0.0504
10(絞り) ∞     D1
11     ∞     0.2519  1.82017  46.62
12   2.5488  D2
13   1.8930  1.2981  1.48915  70.23
14  -6.4504  0.0502
15   1.6370  1.0600  1.59143  61.14
16  -1.8353  0.3195  1.93429  18.90
17     ∞     0.5887
18  -1.7300  0.4535  1.51825  64.14
19     ∞     0.0150  1.51500  64.00
20     ∞     0.3900  1.50700  63.26
21     ∞
 各種データ
      通常観察状態   中間状態     近接拡大状態
      (広角端)             (望遠端)
 D0  10.0775   4.5000   2.3500
 D1   0.1209   0.5826   1.1992
 D2   1.3000   0.8384   0.2217
 fl   0.589    0.669    0.764
 Fno  4.86     5.62     6.76
 なお、上記した実施例1乃至実施例6において、上記(1)乃至(8)式に係る値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 G4 第4レンズ群
 L1 第1レンズ
 L2 第2レンズ
 L3 第3レンズ
 L4 第4レンズ
 L5 第5レンズ
 L6 第6レンズ
 L7 第7レンズ
 L8 第8レンズ
 L9 第9レンズ
 L10 第10レンズ
 CL1 接合レンズ
 CL2 接合レンズ

Claims (7)

  1.  複数のレンズ群と、撮像素子に接合する負レンズとを備え、
     前記レンズ群うちの一部のレンズ群を移動させることにより少なくとも通常観察状態と近接拡大状態との切替えが可能であり、以下の条件式(1)を満足する拡大内視鏡光学系。
     -65<fr/fw<―2   ・・・(1)
     但し、frは撮像素子に接合する負レンズの焦点距離であり、fwは通常観察状態(広角端)での全系の焦点距離である。
  2.  最も物体側に負の第1レンズを有し、以下の条件式(2)を満足する請求項1記載の拡大内視鏡光学系。
     -60<Rr/R01<-2   ・・・(2)
     但し、Rrは前記撮像素子に接合する負レンズの物体側の面の曲率半径であり、R01は前記負の第1レンズの像側の面の曲率半径である。
  3.  以下の条件式(3)を満足する請求項1記載の拡大内視鏡光学系。
     0.15<Tr/fw<1.7   ・・・(3)
     但し、Trは撮像素子に接合した負レンズの中肉厚である。
  4.  最も物体側に負の第1レンズを有し、以下の条件式(4)を満足する請求項1記載の拡大内視鏡光学系。
     5<fr/f01<68   ・・・(4)
     但し、f01は負の第1レンズの焦点距離である。
  5.  物体側から順に、正の第1群、負の第2群、正の第3群及び負の第4群を備え、
     該第4群が、撮像素子に接合する負レンズを有し、
     該負レンズが、物体側に凹面を向けた負レンズであり、
     前記第3群と前記第4群との群間隔で像位置の調整を行い、前記第2群のみが光軸上を移動することにより合焦及び変倍を行う、請求項1記載の拡大内視鏡光学系。
  6.  以下の条件式(5)乃至(7)を満足する請求項5記載の拡大内視鏡光学系。
     1.2<dm/fw<2.4   ・・・(5)
     0.9<f4/f2<9.5   ・・・(6)
     -0.6<expi(w)/Σd<-0.3   ・・・(7)
     但し、dmは第2群の移動量であり、f4は第4群の焦点距離であり、f2は第2群の焦点距離であり、expi(w)は通常観察状態(広角端)での最大像高実光線の射出瞳位置であり、Σdは光学系の全長である。
  7.  以下の条件式(8)を満足する、請求項6記載の拡大内視鏡光学系。
     -25<f4/f1<-2   ・・・(8)
     但し、f1は第1群の焦点距離である。
     
PCT/JP2014/071485 2013-08-22 2014-08-15 拡大内視鏡光学系 WO2015025802A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480016424.5A CN105074531B (zh) 2013-08-22 2014-08-15 放大内窥镜光学系统
EP14838057.9A EP3037859A4 (en) 2013-08-22 2014-08-15 Enlarging endoscope optical system
JP2015506016A JP5767423B1 (ja) 2013-08-22 2014-08-15 拡大内視鏡光学系
US14/848,664 US10251537B2 (en) 2013-08-22 2015-09-09 Magnifying endoscope optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013172240 2013-08-22
JP2013-172240 2013-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/848,664 Continuation US10251537B2 (en) 2013-08-22 2015-09-09 Magnifying endoscope optical system

Publications (1)

Publication Number Publication Date
WO2015025802A1 true WO2015025802A1 (ja) 2015-02-26

Family

ID=52483578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071485 WO2015025802A1 (ja) 2013-08-22 2014-08-15 拡大内視鏡光学系

Country Status (5)

Country Link
US (1) US10251537B2 (ja)
EP (1) EP3037859A4 (ja)
JP (1) JP5767423B1 (ja)
CN (1) CN105074531B (ja)
WO (1) WO2015025802A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041012A (ja) * 2013-08-22 2015-03-02 株式会社タムロン インナーフォーカス式レンズおよび撮像装置
JP2017097185A (ja) * 2015-11-25 2017-06-01 奇景光電股▲分▼有限公司 アレイレンズシステム
US9753255B2 (en) 2015-11-03 2017-09-05 Himax Technologies Limited Array lens system
WO2018131264A1 (ja) * 2017-01-12 2018-07-19 ソニーセミコンダクタソリューションズ株式会社 撮像ユニットおよび電子機器
JP2019032407A (ja) * 2017-08-07 2019-02-28 オリンパス株式会社 内視鏡用対物光学系
JP2020012896A (ja) * 2018-07-13 2020-01-23 オリンパス株式会社 撮像光学系及び内視鏡

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134276A (ja) * 2016-01-28 2017-08-03 オリンパス株式会社 撮像装置及びカプセル内視鏡
CN107329241B (zh) * 2016-04-29 2020-02-28 信泰光学(深圳)有限公司 广角镜头
DE102017108593B4 (de) * 2017-04-21 2019-03-14 Leica Microsystems Cms Gmbh Korrektionsobjektiv für ein Mikroskop, Immersionsobjektiv und Mikroskop
WO2019146147A1 (ja) * 2018-01-26 2019-08-01 オリンパス株式会社 内視鏡対物光学系
CN111929877A (zh) * 2020-09-09 2020-11-13 杭州有人光电技术有限公司 一种医用内窥镜光学变焦4k适配器
CN117192755B (zh) * 2023-11-08 2024-01-05 国药新光医疗科技有限公司 一种内窥镜用变焦镜头组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290118A (ja) * 1988-09-28 1990-03-29 Fuji Photo Optical Co Ltd 内視鏡用対物レンズ
JPH06102453A (ja) 1991-01-29 1994-04-15 Konica Corp 小型の実像式変倍ファインダー
JPH11125770A (ja) * 1997-10-21 1999-05-11 Olympus Optical Co Ltd 内視鏡用ズーム撮像光学系
JP2007233036A (ja) 2006-03-01 2007-09-13 Olympus Medical Systems Corp 拡大内視鏡光学系
JP2009103874A (ja) 2007-10-23 2009-05-14 Olympus Medical Systems Corp 撮影光学系
JP2009294496A (ja) * 2008-06-06 2009-12-17 Olympus Medical Systems Corp 対物光学系
JP2011048086A (ja) 2009-08-26 2011-03-10 Olympus Corp 光学系

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134494A (ja) * 2006-11-29 2008-06-12 Topcon Corp 超広角光学系、撮像レンズ装置
WO2009066532A1 (ja) * 2007-11-22 2009-05-28 Konica Minolta Opto, Inc. 広角光学系、撮像レンズ装置、モニタカメラおよびデジタル機器
US8289632B2 (en) * 2009-10-27 2012-10-16 Sony Corporation Zoom lens and image pickup device
US8717686B2 (en) * 2010-11-22 2014-05-06 Nikon Corporation Optical system, optical apparatus and optical system manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290118A (ja) * 1988-09-28 1990-03-29 Fuji Photo Optical Co Ltd 内視鏡用対物レンズ
JPH06102453A (ja) 1991-01-29 1994-04-15 Konica Corp 小型の実像式変倍ファインダー
JPH11125770A (ja) * 1997-10-21 1999-05-11 Olympus Optical Co Ltd 内視鏡用ズーム撮像光学系
JP2007233036A (ja) 2006-03-01 2007-09-13 Olympus Medical Systems Corp 拡大内視鏡光学系
JP2009103874A (ja) 2007-10-23 2009-05-14 Olympus Medical Systems Corp 撮影光学系
JP2009294496A (ja) * 2008-06-06 2009-12-17 Olympus Medical Systems Corp 対物光学系
JP2011048086A (ja) 2009-08-26 2011-03-10 Olympus Corp 光学系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3037859A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041012A (ja) * 2013-08-22 2015-03-02 株式会社タムロン インナーフォーカス式レンズおよび撮像装置
US9753255B2 (en) 2015-11-03 2017-09-05 Himax Technologies Limited Array lens system
JP2017097185A (ja) * 2015-11-25 2017-06-01 奇景光電股▲分▼有限公司 アレイレンズシステム
WO2018131264A1 (ja) * 2017-01-12 2018-07-19 ソニーセミコンダクタソリューションズ株式会社 撮像ユニットおよび電子機器
JP2019032407A (ja) * 2017-08-07 2019-02-28 オリンパス株式会社 内視鏡用対物光学系
JP2020012896A (ja) * 2018-07-13 2020-01-23 オリンパス株式会社 撮像光学系及び内視鏡

Also Published As

Publication number Publication date
JP5767423B1 (ja) 2015-08-19
EP3037859A4 (en) 2017-03-29
EP3037859A1 (en) 2016-06-29
JPWO2015025802A1 (ja) 2017-03-02
US20170347867A1 (en) 2017-12-07
CN105074531B (zh) 2017-06-30
CN105074531A (zh) 2015-11-18
US10251537B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
JP5767423B1 (ja) 拡大内視鏡光学系
JP5855793B2 (ja) 内視鏡用対物光学系
JP5567224B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP5455572B2 (ja) ズームレンズ及びそれを有する撮像装置
JP6197147B1 (ja) 対物光学系
WO2017145265A1 (ja) 内視鏡用変倍光学系及び内視鏡
JP5414205B2 (ja) ズームレンズおよびそれを有する撮像装置
JP6266189B1 (ja) 対物光学系
JP5567225B2 (ja) 内視鏡用対物レンズおよび内視鏡
CN104024908B (zh) 物镜光学系统和使用了它的内窥镜装置
JP2009169414A (ja) ズームレンズ及びそれを有する撮像装置
CN109154714B (zh) 内窥镜光学系统
WO2014155821A1 (ja) 内視鏡用光学系
JP6411679B2 (ja) ズームレンズおよび撮像装置
JP2008233499A (ja) 3群ズームレンズおよび撮像装置
JP2010211056A (ja) インナーズームタイプ且つインナーフォーカスタイプのズームレンズ
JP2009251433A (ja) ズームレンズ及びそれを有する撮像装置
JP4965234B2 (ja) ズームレンズ
JP2008170577A (ja) ズームレンズ
JP2014126652A (ja) 結像光学系
JP2008065257A (ja) ズームレンズ
JP6836466B2 (ja) 内視鏡対物光学系
JPWO2016047421A1 (ja) 内視鏡対物光学系
JP2011028144A (ja) ズームレンズ
JP6484759B2 (ja) 対物光学系

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016424.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015506016

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014838057

Country of ref document: EP