WO2015083608A1 - 変性液状ジエン系ゴム及びその製造方法 - Google Patents
変性液状ジエン系ゴム及びその製造方法 Download PDFInfo
- Publication number
- WO2015083608A1 WO2015083608A1 PCT/JP2014/081367 JP2014081367W WO2015083608A1 WO 2015083608 A1 WO2015083608 A1 WO 2015083608A1 JP 2014081367 W JP2014081367 W JP 2014081367W WO 2015083608 A1 WO2015083608 A1 WO 2015083608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- meth
- modified
- diene rubber
- modified liquid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/28—Reaction with compounds containing carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/30—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
- C08C19/34—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/12—Polymers provided for in subclasses C08C or C08F
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/12—Polymers provided for in subclasses C08C or C08F
- C08F290/128—Polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J113/00—Adhesives based on rubbers containing carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
- C09J4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
Definitions
- the present invention relates to a modified liquid diene rubber having an acryloyl group or a methacryloyl group and a method for producing the same.
- Curable resin compositions containing acrylate or methacrylate are used in various applications such as adhesives, pressure-sensitive adhesives, coating agents, inks, sealing materials, potting materials, etc., from the standpoints of organic solvent emission regulations and reduction of energy consumption in the manufacturing process. Is an important technology. In particular, in the electrical / electronic field, with the development of digital technology, the miniaturization and weight reduction of electrical / electronic components are progressing. Adhesives, adhesives, coating agents, sealing materials, Ink, sealing materials, and potting materials are also required to be improved in performance due to downsizing and thinning.
- the manufacturing process of precision parts such as electric / electronic parts may include a process of heating to 200 ° C. or higher (for example, a process of mounting electronic parts on a substrate), and cracks and the like are generated in such processes. It is required not to.
- the use of electrical and electronic parts is accompanied by heat generation, and the stress generated by the thermal expansion of the base material is relieved by the sealing layer and adhesive layer. It is required to have sufficient strength.
- the optical material adhesive and coating agent are required to have high transparency.
- curable resin compositions are curable resin compositions that are excellent in that a cured product having excellent flexibility, moisture resistance, waterproofness, and transparency can be obtained.
- a relatively polar (meth) acrylate monomer for example, a relatively polar (meth) acrylate monomer, and (meth) acrylate monomer
- the cured product obtained from the composition also has excellent mechanical properties derived from the modified liquid diene rubber. There were cases where it was required to be.
- curing material obtained may be calculated
- the present invention has been made in view of the above circumstances, and is highly compatible with various monomers, for example, polar monomers such as acrylate or methacrylate having a relatively high polarity.
- the curable resin composition containing has a sufficient curing rate when cured, and the cured product obtained from the curable resin composition has a modified mechanical property derived from the modified liquid diene rubber.
- a liquid diene rubber and a curable resin composition containing the modified liquid diene rubber are provided.
- the present invention also relates to a modified liquid diene rubber in which a cured product obtained from the curable resin composition containing the modified liquid diene rubber has excellent adhesion to various materials, and a cured product containing the modified liquid diene rubber.
- a functional resin composition is provided.
- a specific modified liquid diene rubber exhibits high compatibility with various monomers, for example, a relatively highly polar (meth) acrylate monomer. As well as low viscosity, it has excellent workability when mixing modified liquid diene rubber and other components such as (meth) acrylate monomer, and has a sufficient curing speed when cured,
- the curable resin composition containing the modified liquid diene rubber can provide a cured product having excellent mechanical properties derived from the modified liquid diene rubber, and the cured product has excellent adhesion to various materials.
- the present invention has been found to be excellent, and the present invention has been completed.
- a modifying group (a) containing a (meth) acryloyl group as a part thereof and at least one modifying group (b) selected from dicarboxylic acid monoester and dicarboxylic acid monoamide provided that (meta And a modified liquid diene in which the functional group equivalents of the modifying group (a) and the modifying group (b) are both in the range of 700 to 40,000 g / eq. Rubber (A).
- the modifying group (b) is at least one selected from a dicarboxylic acid monoester represented by the following formula (b1) or (b1 ′) and a dicarboxylic acid monoamide represented by the following formula (b2) or (b2 ′)
- the modified liquid diene rubber (A) according to [1].
- R 1 is an optionally substituted alkyl group that does not contain a (meth) acryloyl group as a part thereof.
- R 2 and R 3 are an optionally substituted alkyl group that does not contain a hydrogen atom or a (meth) acryloyl group.
- the above-mentioned modifying group (b) is a dicarboxylic acid monoester having an ester moiety represented by the formula —COO—C n H 2n + 1 (wherein 1 ⁇ n ⁇ 20) or the formula —COO—C n H 2n + 1-m Xm (wherein 1 ⁇ n ⁇ 20, 1 ⁇ m ⁇ 2n + 1, X is a substituent), a dicarboxylic acid monoester having an ester moiety, [1] or [2] The modified liquid diene rubber (A) described.
- modified liquid diene rubber (A) according to any one of [1] to [3], wherein the modified group (a) is a dicarboxylic acid monoester containing a (meth) acryloyl group as a part thereof .
- a step of producing an unsaturated dicarboxylic acid anhydride-modified liquid diene rubber by adding an unsaturated dicarboxylic acid anhydride to an unmodified liquid diene rubber; (2)
- the process for producing the modified liquid diene rubber (A) according to any one of [1] to [7], wherein
- a modifying group (a) containing a (meth) acryloyl group as a part thereof and at least one modifying group (b) selected from dicarboxylic acid monoester and dicarboxylic acid monoamide provided that (meta And a modified liquid diene in which the functional group equivalents of the modifying group (a) and the modifying group (b) are both in the range of 700 to 40,000 g / eq.
- a curable resin composition containing a rubber-based rubber (A) and a radical polymerization initiator (B) A curable resin composition comprising 0.1 to 20 parts by mass of the radical polymerization initiator (B) with respect to 100 parts by mass of the total amount of the resin composition.
- the curable resin composition contains a monomer (C) having a radically polymerizable carbon-carbon double bond, and the mass ratio of the modified liquid diene rubber (A) to the monomer (C) [(A ) / (C)] is 0.01 to 100, the curable resin composition according to [9].
- the curable resin composition of the present invention is suitable for various technical fields including the electric / electronic field and the optical field.
- (meth) acrylate is a generic term for “acrylate” and “methacrylate”
- (meth) acryl is a generic term for “acryl” and “methacryl”
- (meth) ) is a general term for “acryloyl” and “methacryloyl”.
- the modified liquid diene rubber (A) of the present invention is a liquid polymer, and is at least one selected from a modified group (a) containing a (meth) acryloyl group in part, a dicarboxylic acid monoester and a dicarboxylic acid monoamide. And the functional group equivalents of these modifying groups (a) and (b) are both in the range of 700 to 40,000 g / eq.
- a modified liquid diene rubber (A) in the curable resin composition not only has a sufficient curing speed, low viscosity and excellent workability, but also adheres to glass or optical films.
- the cured product that can be produced from the curable resin composition is excellent in flexibility and exhibits a sufficiently low dielectric constant and low moisture permeability. Further, the strength becomes higher.
- the modifying group (a) includes a (meth) acryloyl group in a part thereof, and is represented by, for example, a (meth) acryloyloxy group represented by the following formula (1) and the following formula (2). And those containing a (meth) acrylamide group in part. —R b —O—CO—R a C ⁇ CH 2 (1) —R b —NH—CO—R a C ⁇ CH 2 (2)
- R a is a hydrogen atom or a methyl group
- R b is an alkylene group or a polyalkylene glycol group (the hydrogen atom or carbon atom of which another group may be substituted) ⁇ — (CH 2 ) n —O ⁇ m —:
- n represents the number of carbon atoms of the alkylene group, and
- m represents the number of repeating units of the polyalkylene glycol.
- the alkylene group preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
- n of the polyalkylene glycol group is preferably 1 to 10, and more preferably 1 to 5.
- m is preferably 1 to 5.
- R b is preferably an alkylene group having 1 to 5 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group, or a pentylene group.
- These alkylene groups or polyalkylene glycol groups may further have a substituent. Examples of the substituent include an alkoxy group, a carboxy group, a hydroxy group, an alkylthio group, a halogen atom, and a (meth) acryloyl group.
- a particularly preferred modifying group (a) is a dicarboxylic acid monoester containing a (meth) acryloyl group as a part thereof, among which hydroxyalkyl (meth) acrylate or hydroxyalkyl (meth) acrylamide is used.
- Dicarboxylic acid monoesters having derived ester groups are preferred.
- Examples of the dicarboxylic acid monoester containing a part of such a (meth) acryloyl group include a modified group having a structure represented by the following formulas (a1), (a1 ′), (a2) and (a2 ′) (a ).
- R a is the same as R a in the formula (1) and (2), the definition of R b, and specific examples and preferred The embodiment is the same as R b in the above formulas (1) and (2).
- the functional group equivalent range of the modified group (a) contained in the modified liquid diene rubber (A) of the present invention is 700 to 40,000 g / eq, and 1,000 to 30,000 g / eq. Is preferable, more preferably 1,500 to 20,000 g / eq, and still more preferably 1,500 to 15,000 g / eq.
- the functional group equivalent of the modified group (a) containing the (meth) acryloyl group as a part of the modified liquid diene rubber (A) is in the above range, the curability containing the modified liquid diene rubber (A) is included.
- the resin composition has a sufficient curing rate, and exhibits high flexibility and good adhesion to substrates such as glass and optical films after curing.
- the functional group equivalent of the modifying group (a) in the present specification means the molecular weight of the modified liquid diene rubber (A) per one modifying group (a).
- the functional group equivalent of the modifying group (a) can be determined based on the (meth) acryloyl group contained in the modifying group (a), and can be obtained using various analytical instruments such as infrared spectroscopy and nuclear magnetic resonance spectroscopy. Can be sought.
- the position at which the modifying group (a) is introduced may be the polymerization terminal of the modified liquid diene rubber or the side chain of the polymer chain.
- the said modification group (a) may be contained individually by 1 type, and may be contained 2 or more types.
- the modifying group (b) is at least one selected from dicarboxylic acid monoesters and dicarboxylic acid monoamides, and a part of the modifying group (b) does not contain a (meth) acryloyl group.
- the modifying group (b) is preferably at least one selected from a dicarboxylic acid monoester represented by the following formula (b1) or (b1 ′) and a dicarboxylic acid monoamide represented by the following formula (b2) or (b2 ′). It is one mode.
- R 1 is an optionally substituted alkyl group that does not contain a (meth) acryloyl group.
- R 1 is preferably an alkyl group having 1 to 20 carbon atoms, and a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
- alkyl groups having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group is still more preferable.
- R 2 and R 3 are an optionally substituted alkyl group that does not contain a hydrogen atom or a (meth) acryloyl group.
- R 2 and R 3 are preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group.
- R 1 , R 2 and R 3 may be substituted, and examples of the substituent include an alkoxy group, an alkoxysilyl group, a carboxy group, a hydroxy group, an alkylthio group, and a halogen atom.
- the number of substituents is preferably 1 to 5, more preferably 1 to 3.
- the modifying group (b) is more preferably a dicarboxylic acid monoester, and the dicarboxylic acid monoester represented by the formula —COO—C n H 2n + 1 (wherein 1 ⁇ n ⁇ 20). And a dicarboxylic acid monoester having an ester moiety represented by the formula: —COO—C n H 2n + 1-m X m (where 1 ⁇ n ⁇ 20, 1 ⁇ m ⁇ 2n + 1, X is a substituent) is particularly preferred.
- the substituent X include the above-described alkoxy group, alkoxysilyl group, carboxy group, hydroxy group, alkylthio group, and halogen atom.
- M is preferably an integer of 1 to 5, and more preferably an integer of 1 to 3.
- n is preferably an integer of 1 to 6, and more preferably an integer of 1 to 4.
- the functional group equivalent range of the modified group (b) contained in the modified liquid diene rubber (A) of the present invention is 700 to 40,000 g / eq, and 1,000 to 30,000 g / eq. It is preferably 1,000 to 20,000 g / eq, more preferably 1,200 to 10,000 g / eq, and even more preferably 1,200 to 5,500 g / eq. preferable.
- the functional group equivalent of at least one modified group (b) selected from the dicarboxylic acid monoester and dicarboxylic acid monoamide of the modified liquid diene rubber (A) is within the above range, the viscosity is excellent in workability and curing.
- the functional group equivalent of the modifying group (b) means the molecular weight of the modified liquid diene rubber (A) per modifying group (b).
- the functional group equivalent of the modifying group (b) can be determined using various analytical instruments such as infrared spectroscopy and nuclear magnetic resonance spectroscopy as in the modifying group (a).
- the position at which the modifying group (b) is introduced may be the polymerization terminal of the liquid diene rubber or the side chain of the polymer chain.
- the said modification group (b) may be contained individually by 1 type, and may be contained 2 or more types.
- the modified liquid diene rubber (A) of the present invention preferably has a melt viscosity measured at 38 ° C. of 0.1 to 3,000 Pa ⁇ s, more preferably 0.8 to 2,000 Pa ⁇ s. Preferably, it is 10 to 1,000 Pa ⁇ s.
- the melt viscosity of the modified liquid diene rubber (A) is within the above range, not only the workability in producing the curable resin composition is excellent, but also the monomer (C) described below, for example (meth) Compatibility with the acrylate monomer can be improved, and bleeding out after curing tends to be reduced.
- the melt viscosity of the modified liquid diene rubber (A) is a value determined by the method described in Examples described later.
- the number average molecular weight (Mn) of the modified liquid diene rubber (A) of the present invention is preferably 2,000 to 500,000, more preferably 3,000 to 200,000, and 4,000 to It is more preferably 100,000, and even more preferably 5,000 to 70,000.
- Mn of the modified liquid diene rubber (A) is within the above range, a curable resin composition having a low viscosity, excellent workability, a high curing speed by active energy rays, and high flexibility after curing is obtained. It is done.
- Mn of the modified liquid diene rubber (A) is a number average molecular weight in terms of standard polystyrene determined from measurement by gel permeation chromatography (GPC).
- the molecular weight distribution (Mw / Mn) of the modified liquid diene rubber (A) is preferably 1.0 to 8.0, more preferably 1.0 to 5.0, and still more preferably 1.0 to 3.0. It is more preferable that Mw / Mn is within the above range because the resulting modified liquid diene rubber (A) has less variation in viscosity.
- the glass transition temperature (Tg) of the modified liquid diene rubber (A) of the present invention is preferably ⁇ 100 to 10 ° C., more preferably ⁇ 100 to 0 ° C., and further preferably ⁇ 100 to ⁇ 5 ° C.
- Tg is in the above range, for example, the coating property of the curable resin composition and the mechanical strength and flexibility at low temperature after curing are good.
- the vinyl content of the modified liquid diene rubber (A) is preferably 99% by mass or less, and more preferably 90% by mass or less.
- the modified liquid diene rubber (A) of the present invention is obtained, for example, by adding an unsaturated dicarboxylic acid anhydride to an unmodified liquid diene rubber (A ′) to obtain an unsaturated dicarboxylic acid anhydride modified liquid diene rubber (A ”), And this unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′) is modified with a modified compound (a ′) (hereinafter referred to as“ modified compound (a ′) containing a (meth) acryloyl group as a part thereof ”.
- modified compound (b ′) selected from alcohols and amines not containing a (meth) acryloyl group as a part thereof (hereinafter referred to as“ modified compound (b ′) ”).
- modified compound (b ′) May be abbreviated as“) ”to produce a desired functional group equivalent.
- Examples of the unmodified liquid diene rubber (A ′) include a polymer obtained by polymerizing a monomer containing a conjugated diene by a method described later, and at least a part of unsaturated bonds contained in the polymer. Hydrogenated polymers are preferred.
- conjugated diene examples include butadiene, isoprene, 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadiene, Examples include 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene, and chloroprene. Of these, butadiene or isoprene is preferred. These conjugated dienes may be used alone or in combination of two or more.
- the monomer containing a conjugated diene may contain other copolymerizable monomers such as an aromatic vinyl compound in addition to the conjugated diene.
- aromatic vinyl compound examples include styrene, ⁇ -methyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 4-propyl styrene, 4-tert-butyl styrene, 4-cyclohexyl styrene, 4-dodecyl.
- Styrene 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2-vinyl Naphthalene, vinylanthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinylbenzene and the like can be mentioned. Of these, styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
- the ratio of the aromatic vinyl compound unit to the total of the conjugated diene unit and the aromatic vinyl compound unit is the monomer (C) described later, for example, a (meth) acrylate unit. From the viewpoints of compatibility with the monomer, viscosity reduction, good flexibility after curing, etc., 50% by mass or less is preferable, 40% by mass or less is more preferable, and 30% by mass or less is more preferable.
- the unmodified liquid diene rubber (A ′) can be produced, for example, by an emulsion polymerization method or a solution polymerization method.
- an emulsion polymerization method a known method or a method according to a known method can be applied.
- a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is performed using a radical polymerization initiator.
- Examples of the emulsifier include long chain fatty acid salts having 10 or more carbon atoms and rosin acid salts.
- Examples of the long chain fatty acid salts include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
- water is usually used, and it may contain a water-soluble organic solvent such as methanol and ethanol as long as the stability during polymerization is not hindered.
- a water-soluble organic solvent such as methanol and ethanol
- the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide, and the like.
- a chain transfer agent may be used.
- the chain transfer agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
- the temperature of emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator used and the like, but is usually in the range of 0 to 100 ° C., preferably in the range of 0 to 60 ° C.
- the polymerization mode may be either continuous polymerization or batch polymerization.
- the polymerization reaction can be stopped by adding a polymerization terminator.
- the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine, and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
- liquid diene rubber (A ′) is coagulated while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then the dispersion solvent is separated. Subsequently, it is washed with water, dehydrated and dried to obtain an unmodified liquid diene rubber (A ′).
- a latex and an extending oil previously made into an emulsified dispersion may be mixed, and an oil-extended one may be obtained as an unmodified liquid diene rubber (A ′).
- a known method or a method according to a known method can be applied.
- a Ziegler catalyst a metallocene catalyst, an anion-polymerizable active metal or an active metal compound in a solvent
- a monomer containing a conjugated diene is polymerized in the presence of a polar compound as necessary.
- the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, toluene And aromatic hydrocarbons such as xylene.
- anion-polymerizable active metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium.
- alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
- the active metal compound capable of anionic polymerization an organic alkali metal compound is preferable.
- organic alkali metal compound examples include organic monolithium compounds such as methyl lithium, ethyl lithium, n-butyl lithium, sec-butyl lithium, t-butyl lithium, hexyl lithium, phenyl lithium and stilbene lithium; dilithiomethane, dilithionaphthalene, Polyfunctional organolithium compounds such as 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like.
- organic alkali metal compounds organic lithium compounds are preferable, and organic monolithium compounds are more preferable.
- the amount of the organic alkali metal compound used can be appropriately set according to the melt viscosity, molecular weight, etc. of the unmodified liquid diene rubber (A ′) and the modified liquid diene rubber (A). It is usually used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of the body.
- the organic alkali metal compound can be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine and the like.
- Polar compounds are usually used in anionic polymerization to adjust the microstructure of the conjugated diene moiety without deactivating the reaction.
- the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.
- the polar compound is usually used in an amount of 0.01 to 1000 mol with respect to the organoalkali metal compound.
- the temperature of solution polymerization is usually in the range of ⁇ 80 to 150 ° C., preferably in the range of 0 to 100 ° C., more preferably in the range of 10 to 90 ° C.
- the polymerization mode may be either batch or continuous.
- the polymerization reaction can be stopped by adding a polymerization terminator.
- the polymerization terminator include alcohols such as methanol and isopropanol.
- the resulting polymerization reaction solution is poured into a poor solvent such as methanol to precipitate the unmodified liquid diene rubber (A ′), or the polymerization reaction solution is washed with water, separated, and then dried to leave it unmodified.
- the liquid diene rubber (A ′) can be isolated.
- the solution polymerization method is preferable among the above methods. Further, as described above, after the polymerization, a part of the unsaturated bonds contained in the liquid diene rubber may be hydrogenated to the extent that a desired amount of unsaturated dicarboxylic acid anhydride can be added. .
- An unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′) is produced by adding an unsaturated dicarboxylic acid anhydride to the unmodified liquid diene rubber (A ′) thus produced. .
- the unsaturated dicarboxylic acid anhydride examples include maleic anhydride, citraconic anhydride, itaconic anhydride and the like. Of these, maleic anhydride is preferred from the viewpoint of economy.
- the method for adding the unsaturated dicarboxylic acid anhydride to the unmodified liquid diene rubber (A ′) is not particularly limited.
- the unsaturated dicarboxylic acid anhydride is added to the liquid diene rubber, and further, a radical catalyst as required.
- a method of heating in the presence or absence of an organic solvent can be employed.
- organic solvent used in the above method examples include hydrocarbon solvents and halogenated hydrocarbon solvents.
- hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene and xylene are preferable.
- radical catalyst used in the above method examples include di-s-butylperoxydicarbonate, t-amylperoxypivalate, t-amylperoxy-2-ethylhexanoate, and azobisisobutyronitrile. Of these, azobisisobutyronitrile is preferred.
- the amount of unsaturated dicarboxylic acid anhydride used may be determined so that both the functional group equivalents of the aforementioned modifying group (a) and modifying group (b) are in the range of 700 to 40,000 g / eq.
- the amount of the unsaturated dicarboxylic acid anhydride added to the unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′) is 0 with respect to 100 parts by mass of the unmodified liquid diene rubber (A ′).
- the range of 0.5 to 40 parts by mass is preferable, the range of 0.7 to 30 parts by mass is more preferable, and the range of 1.0 to 20 parts by mass is still more preferable.
- the temperature at which the unsaturated dicarboxylic acid anhydride is added to the unmodified liquid diene rubber (A ′) by the above method is preferably from 100 to 250 ° C., more preferably from 140 to 200 ° C.
- the reaction time is preferably 4 to 50 hours.
- an unsaturated dicarboxylic acid anhydride is added to an unmodified liquid diene rubber (A ′) for the purpose of suppressing a decrease in molecular weight, discoloration, or gelation due to deterioration during the modification reaction or modification.
- An appropriate anti-aging agent may be added during storage of the polymer.
- antioxidants examples include 2,6-di-t-butyl-4-methylphenol (BHT), 2,2′-methylenebis (4-methyl-6-t-butylphenol), 4,4′-thiobis (3 -Methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) (AO-40), 3,9-bis [1,1-dimethyl-2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane (AO-80), 2,4-bis [(Octylthio) methyl] -6-methylphenol (Irganox 1520L), 2,4-bis [(dodecylthio) methyl] -6-methylphenol (Irganox 1726), 2- [1- (2-hydride) Xyl-3,5-di-t-penty
- the addition amount of the anti-aging agent is preferably 0.01 to 10 parts by mass, preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the unmodified liquid diene rubber (A ′) or the modified liquid diene rubber (A). Part is more preferred.
- the unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′) thus obtained is reacted with the modified compound (a ′) and the modified compound (b ′) so as to have a desired functional group equivalent.
- the modifying compound (a ′) and the modifying compound (b ′) react with the unsaturated dicarboxylic acid anhydride group of the unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′) to form the modifying group (a ) And a modified liquid diene rubber (A) of the present invention having a modified group (b).
- the modified compound (a ′) to be reacted with the unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′) is preferably a compound having a (meth) acryloyl group and a hydroxyl group, and hydroxyalkyl (meth) acrylate and hydroxyalkyl.
- (Meth) acrylamide is more preferred, particularly hydroxyalkyl methacrylate or hydroxyalkylmethacrylamide from the viewpoint of curing speed, and hydroxyalkyl acrylate or hydroxyalkylacrylamide from the viewpoint of flexibility after curing.
- hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, and glycerin.
- Examples include dimethacrylate and pentaerythritol triacrylate. Of these, 2-hydroxyethyl (meth) acrylate is preferred.
- hydroxyalkyl (meth) acrylamide examples include 2-hydroxyethyl (meth) acrylamide, 2-hydroxypropyl (meth) acrylamide, and 2-hydroxybutyl (meth) acrylamide. Of these, 2-hydroxyethyl (meth) acrylamide is preferred.
- the modified compound (b ′) to be reacted with the unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′) is not particularly limited as long as it does not contain a (meth) acryloyl group as a part thereof. From the viewpoint of ease, etc., alcohols having 1 to 20 carbon atoms and amines having 1 to 20 carbon atoms are preferable, saturated alcohols having 1 to 20 carbon atoms are more preferable, methanol, ethanol, propanol, butanol, 3-methylbutanol and 3-methyl-1,3-butanediol is more preferred.
- the reaction temperature for the above reaction is preferably in the range of 25 to 150 ° C, more preferably in the range of 50 to 100 ° C.
- the reaction time may be appropriately determined within a range in which the modifying group (a) and the modifying group (b) have a desired functional group equivalent, and is usually 1 to 24 hours.
- the functional group equivalents of the modifying group (a) and the modifying group (b) must both be in the range of 700 to 40,000 g / eq.
- Examples of a method for setting the functional group equivalents of the modifying group (a) and the modifying group (b) to a desired range include a modifying compound added to the unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′).
- a ') and the modified compound (b') are added in a controlled manner, and the modified compound (a ') and the modified compound (b') are added in molar ratio (a ').
- (B ′) 0.05: 0.95 to 0.95: 0.05 is preferable, 0.1: 0.9 to 0.9: 0.1 is more preferable, and The range of 1: 0.9 to 0.8: 0.2 is more preferable, and the range of 0.1: 0.9 to 0.7: 0.3 is particularly preferable.
- the total amount of the modifying compound (a ′) and the modifying compound (b ′) is selected from the viewpoints of economy and the like, and the unsaturated dicarboxylic acid that the unsaturated dicarboxylic acid anhydride-modified liquid diene rubber (A ′′) has. 0.5 to 1.5 molar equivalents are preferable with respect to the anhydride group, and 0.7 to 1.2 molar equivalents are more preferable.
- the modifying compound (a ′) and the modifying compound (b ′) may be added simultaneously, or one of them may be added first, but from the viewpoint of reactivity, the modifying compound (a ′) ) And the modifying compound (b ′) are preferably added simultaneously.
- the modified liquid diene rubber (A) of the present invention can be used as a curable resin composition by adding a radical polymerization initiator (B).
- a radical polymerization initiator (B) that can be used in the curable resin composition of the present invention include a radical photopolymerization initiator that decomposes by active energy rays such as ultraviolet rays to generate radicals, and decomposes by heating. And thermal decomposition type radical polymerization initiators that generate radicals.
- radical photopolymerization initiators examples include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino.
- ketones such as 2-hydroxy-2-methyl-1-phenylpropan-1-one and 1-hydroxycyclohexyl phenyl ketone, and 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6 Acylphosphine oxides such as -trimethylbenzoyl) phenylphosphine oxide are preferred.
- thermal decomposition type radical polymerization initiator examples include 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) cyclohexane, 1,1- Bis (t-butylperoxy) cyclododecane, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, dicumyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5- Examples thereof include peroxides such as di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne and cumene hydroperoxide.
- the content of the radical polymerization initiator (B) is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the total amount of the resin composition. 1.0 to 10 parts by mass is more preferable, and 1.5 to 6 parts by mass is even more preferable.
- the content of the radical polymerization initiator (B) is within the above range, the curing speed and the mechanical properties after curing tend to be further improved.
- the curable resin composition of the present invention may further contain a monomer (C) having a radically polymerizable carbon-carbon double bond.
- the monomer (C) having a radically polymerizable carbon-carbon double bond (hereinafter sometimes abbreviated as “monomer (C)”) is obtained by the radical polymerization initiator (B) described above.
- Examples of the monomer (C) include monosubstituted vinyl compounds such as styrene, acrylate, acrylamide, acrylonitrile, vinyl acetate and vinyl chloride; 1,1-disubstituted vinyl compounds such as ⁇ -methylstyrene, methacrylate and methacrylamide; Examples thereof include cyclic olefins such as acenaphthylene and N-substituted maleimide; conjugated diene compounds such as butadiene and isoprene.
- (meth) acrylate is preferable, and monofunctional (meth) acrylate, bifunctional (meth) acrylate, trifunctional or higher polyvalent (meth) acrylate, and the like can be used.
- Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, and isooctyl ( Alkyl mono (meth) acrylates such as meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate; cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) Alicyclic mono (meth) acrylates such as acrylate; dicyclopentenyl group-containing mono (dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and
- bifunctional (meth) acrylate examples include 1,4-butanediol di (meth) acrylate, neopentyl glycol diacrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth).
- Alkylene glycol di (meth) acrylates such as acrylates; Polyalkylene glycol di (meth) acrylates such as diethylene glycol di (meth) acrylates, triethylene glycol di (meth) acrylates and tripropylene glycol di (meth) acrylates; hydroxypivalic acid esters Di (meth) acrylate having an ester group-containing diol skeleton such as neopentyl glycol di (meth) acrylate; dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol di (me ) Acrylates, alicyclic di (meth) acrylates such as ethoxylated hydrogenated bisphenol A di (meth) acrylate; hydroxypropyl di (meth) acrylate, diethylene glycol bis (hydroxypropyl (meth) acrylate), propoxylated bisphenol A bis ( Hydroxyfluoropyr (meth) acrylate) and the like.
- trifunctional or higher polyfunctional (meth) acrylates examples include trimethylolpropane type poly (trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, hydroxypropylated trimethylolpropane tri (meth) acrylate, etc.
- Valent (meth) acrylates pentaerythritol type polyvalent (meth) acrylates such as pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, monohydroxypentaerythritol tri (meth) acrylate; tris ((meth) acrylic Roxyethyl) isocyanurate type polyvalent (meth) acrylates such as isocyanurate.
- pentaerythritol type polyvalent (meth) acrylates such as pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, monohydroxypentaerythritol tri (meth) acrylate
- tris ((meth) acrylic Roxyethyl) isocyanurate type polyvalent (meth) acrylates such as isocyanurate.
- alkyl mono (meth) acrylate alkyl mono (meth) acrylate, alicyclic mono (meth) acrylate, cyclopentenyl group-containing mono (meth) acrylate, aryl mono (meth) acrylate, phenoxy group-containing mono (meth) acrylate, Alkoxyalkyl mono (meth) acrylate, hydroxyl group-containing (meth) acrylate, amino group-containing (meth) acrylate, epoxy group-containing (meth) acrylate, alkoxy dialkylene glycol mono (meth) acrylate, fluorine group-containing (meth) acrylate, etc.
- Monofunctional (meth) acrylates and bifunctional (meth) acrylates such as alkylene glycol di (meth) acrylates and alicyclic di (meth) acrylates are preferred, and alkyl mono (meth) acrylates and alicyclic mono (meta) Acrylate, monofunctional (meth) acrylates such as cyclopentenyl group-containing mono (meth) acrylate is more preferable.
- the said monomer (C) may be used individually by 1 type, and may use 2 or more types together.
- the mass ratio [(A) / (C)] between the modified liquid diene rubber (A) and the monomer (C) is preferably 0.01 to 100, and 0 0.05 to 50 is more preferable, 0.1 to 25 is still more preferable, and 0.1 to 10 is still more preferable.
- the blending ratio of the modified liquid diene rubber (A) and the monomer (C) is in the above range, the viscosity is low, the workability is excellent, the volume change during curing is small, and the flexibility after curing is good. A curable resin composition is obtained.
- the curable resin composition of the present invention has a curing accelerator, a tackifier, a plasticizer, an anti-aging agent, an ultraviolet absorber, a hindered amine light stabilizer, a softener, an antifoaming agent, as long as the characteristics are not impaired.
- the curable resin composition of the present invention may contain unmodified liquid diene rubber for the purpose of improving properties such as handling properties and flexibility after curing.
- the unmodified liquid diene rubber the unmodified liquid diene rubber (A ′) used in the production of the modified liquid diene rubber (A) of the present invention described above can be preferably used.
- the unmodified liquid diene rubber (A ′) By including the unmodified liquid diene rubber (A ′) in the curable resin composition of the present invention, it is possible to obtain a curable resin composition capable of obtaining a cured product having excellent flexibility and high elongation. .
- the content of the unmodified liquid diene rubber (A ′) is 80% by mass or less based on the total amount of the curable resin composition from the viewpoint of maintaining handling properties, curing speed, and good elongation characteristics and flexibility of the cured film. Preferably, 50 mass% or less is more preferable.
- the method for producing the curable resin composition of the present invention includes, for example, a modified liquid diene rubber (A), a radical polymerization initiator (B), a monomer (C) added as necessary, an additive, and the like. It can manufacture by mixing using normal mixing means, such as a stirrer and a kneader, at room temperature.
- the curable resin composition of the present invention can be cured by irradiation with active energy rays and / or heating to obtain a cured product. Only one or both of irradiation with active energy rays and heating may be performed. When performing both, it is preferable to irradiate active energy rays and then to heat during or after curing.
- Examples of active energy rays used include particle rays, electromagnetic waves, and combinations thereof.
- Examples of the particle beam include an electron beam (EB) and an ⁇ ray
- examples of the electromagnetic wave include an ultraviolet ray (UV), a visible ray, an infrared ray, a ⁇ ray, and an X ray.
- electron beam (EB) or ultraviolet light (UV) is preferably used.
- the active energy ray can be irradiated using a known apparatus.
- the acceleration voltage is suitably 0.1 to 10 MeV, and the irradiation dose is suitably 1 to 500 kGy.
- UV light for example, a lamp having a radiation wavelength of 200 nm to 450 nm can be suitably used as the radiation source.
- a tungsten filament is used as the radiation source. Examples thereof include lamps, zirconium lamps, fluorescent lamps, and ultraviolet rays contained in natural light.
- the irradiation time of the active energy ray to the curable resin composition varies depending on the magnitude of energy, but is preferably in the range of 0.5 to 300 seconds.
- the curable resin composition of the present invention is excellent in workability, has a high curing rate by active energy rays, and is excellent in storage stability. Further, a cured product obtained from the composition is excellent in transparency and excellent in mechanical properties such as strength. Therefore, the curable resin composition of the present invention is preferably used for applications such as adhesives, pressure-sensitive adhesives (adhesives and pressure-sensitive adhesives are sometimes referred to as adhesives), coating agents, sealing materials, and inks. Can do. Especially, the curable resin composition of this invention can be used especially suitably for the adhesive agent for optics. Optical adhesives are used for optical discs such as digital versatile discs (DVDs), touch panel, flat panel displays such as liquid crystal displays and plasma displays.
- DVDs digital versatile discs
- touch panel such as liquid crystal displays and plasma displays.
- Examples of the application include bonding, application of an optical lens used in an optical head for reproducing a camera, a DVD, and a compact disk (CD), and application of an optical member such as an optical fiber.
- electrical and electronic applications such as adhesives between semiconductors and other precision parts and printed wiring boards, dicing tape for holding wafers in semiconductor manufacturing background processes and dicing processes, etc. It can also be used for member applications.
- Examples of the application of the coating agent include automotive headlamp coating applications and optical fiber coating applications.
- Examples of the use of the sealing material include the use of a sealing material for precision parts such as a liquid crystal display element, organic EL, LED, semiconductor, and hard disk.
- Examples of ink applications include resist ink used in the manufacture of semiconductors and printed wiring boards, aluminum foil paper, polyethylene coated paper, vinyl chloride sheets, polyester sheets, polypropylene sheets, food cans, beverage cans, etc. The use of the printing ink used for printing is mentioned.
- Production Example 1 Modified liquid polyisoprene (A-1) Isoprene was anionically polymerized in n-hexane using n-butyllithium as an initiator to obtain polyisoprene having a number average molecular weight of 19,300 (hereinafter also referred to as “polymer (A′-1)”). . To 100 parts by mass of this polymer (A′-1), 10 parts by mass of maleic anhydride and 1 part by mass of BHT (2,6-di-t-butyl-4-methylphenol, manufactured by Honshu Chemical Industry Co., Ltd.) were added. By reacting at 180 ° C.
- maleic anhydride-modified liquid polyisoprene (A ′′ -1) (hereinafter also referred to as “polymer (A ′′ -1)”) was obtained.
- the reaction rate of maleic anhydride is 99% or more, and the amount of maleic anhydride added to the polymer (A ′′ -1) is 10 parts by mass with respect to 100 parts by mass of the polymer (A′-1).
- 0.3 molar equivalent of 2-hydroxyethyl acrylate and 0.7 molar equivalent of methanol were added to the polymer (A ′′ -1) with respect to the added maleic anhydride group, and light-shielded.
- a modified liquid polyisoprene (A-1) having a modified group (a) partially containing an acryloyl group and a dicarboxylic acid monomethyl ester group (b) was synthesized by reacting at 120 ° C. for 10 hours.
- Table 1 shows the physical properties of the resulting modified liquid polyisoprene (A-1).
- Production Example 2 Modified liquid polyisoprene (A-2) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.5 molar equivalents of 2-hydroxyethyl acrylate and 0.5 molar equivalents of methanol were added to the added maleic anhydride group to block light. Thereafter, the reaction was carried out at 120 ° C. for 10 hours to synthesize a modified liquid polyisoprene (A-2) having a modifying group (a) partially containing an acryloyl group and a dicarboxylic acid monomethyl ester group (b). Table 1 shows the physical properties of the modified liquid polyisoprene (A-2).
- Production Example 3 Modified liquid polyisoprene (A-3) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.7 molar equivalents of 2-hydroxyethyl acrylate and 0.3 molar equivalents of methanol with respect to the added maleic anhydride group were added to shield from light. Thereafter, the reaction was carried out at 120 ° C. for 10 hours to synthesize a modified liquid polyisoprene (A-3) having a modifying group (a) partially containing an acryloyl group and a dicarboxylic acid monomethyl ester group (b). Table 1 shows the physical properties of the modified liquid polyisoprene (A-3).
- Production Example 4 Modified liquid polyisoprene (A-4) Isoprene was anionically polymerized in n-hexane using n-butyllithium as an initiator to obtain polyisoprene having a number average molecular weight of 8,900 (hereinafter also referred to as “polymer (A′-2)”). . To 100 parts by mass of this polymer (A'-2), 10 parts by mass of maleic anhydride and 1 part by mass of BHT (2,6-di-t-butyl-4-methylphenol, manufactured by Honshu Chemical Industry Co., Ltd.) were added. By reacting at 180 ° C.
- maleic anhydride-modified liquid polyisoprene (A ′′ -2) (hereinafter also referred to as “polymer (A ′′ -2)”) was obtained.
- the reaction rate of maleic anhydride is 99% or more, and the amount of maleic anhydride added to the polymer (A ′′ -2) is 10 parts by mass with respect to 100 parts by mass of the polymer (A′-2).
- 0.5 molar equivalents of 2-hydroxyethyl acrylate and 0.5 molar equivalents of methanol were added to the polymer (A ′′ -2) with respect to the added maleic anhydride group to shield it from light.
- a modified liquid polyisoprene (A-4) having a modified group (a) partially containing an acryloyl group and a dicarboxylic acid monomethyl ester group (b) was synthesized by reacting at 120 ° C. for 10 hours.
- Table 1 shows the physical properties of the resulting modified liquid polyisoprene (A-4).
- Production Example 5 Modified liquid polyisoprene (A-5) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.3 molar equivalents of 2-hydroxyethyl methacrylate and 0.7 molar equivalents of methanol were added to the added maleic anhydride group to block light. Thereafter, the reaction was carried out at 120 ° C. for 10 hours to synthesize a modified liquid polyisoprene (A-5) having a modifying group (a) partially containing a methacryloyl group and a dicarboxylic acid monomethyl ester group (b). Table 1 shows the physical properties of the modified liquid polyisoprene (A-5).
- Production Example 6 Modified liquid polyisoprene (A-6) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.5 molar equivalents of 2-hydroxyethyl methacrylate and 0.5 molar equivalents of methanol were added to the added maleic anhydride group to block light. Thereafter, the reaction was carried out at 120 ° C. for 10 hours to synthesize a modified liquid polyisoprene (A-6) having a modifying group (a) partially containing a methacryloyl group and a dicarboxylic acid monomethyl ester group (b). Table 1 shows the physical properties of the modified liquid polyisoprene (A-6).
- Production Example 7 Modified liquid polyisoprene (A-7) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.3 molar equivalents of 2-hydroxyethylacrylamide and 0.7 molar equivalents of methanol were added to the added maleic anhydride group to shield it from light. Thereafter, a modified liquid polyisoprene (A-7) having a modifying group (a) partially containing an acrylamide group and a dicarboxylic acid monomethyl ester group (b) was synthesized by reacting at 120 ° C. for 10 hours. Table 1 shows the physical properties of the modified liquid polyisoprene (A-7).
- Production Example 8 Modified liquid polyisoprene (A-8) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.5 molar equivalents of 2-hydroxyethylacrylamide and 0.5 molar equivalents of methanol were added to the added maleic anhydride group to block light. Thereafter, a modified liquid polyisoprene (A-8) having a modifying group (a) partially containing an acrylamide group and a dicarboxylic acid monomethyl ester group (b) was synthesized by reacting at 120 ° C. for 10 hours. Table 1 shows the physical properties of the modified liquid polyisoprene (A-8).
- Production Example 9 Modified liquid polyisoprene (A-9) 100 parts by mass of the polymer (A′-1) synthesized in Production Example 1 and 5 parts by mass of maleic anhydride and BHT (2,6-di-t-butyl-4-methylphenol, manufactured by Honshu Chemical Industry Co., Ltd.) 1 A part by mass was added and reacted at 180 ° C. for 15 hours to obtain maleic anhydride-modified liquid polyisoprene (A ′′ -3) (hereinafter also referred to as “polymer (A ′′ -3)”).
- the reaction rate of maleic anhydride is 99% or more, and the amount of maleic anhydride added to the polymer (A ′′ -3) is 5 parts by mass with respect to 100 parts by mass of the polymer (A′-1).
- 0.6 molar equivalents of 2-hydroxyethyl methacrylate and 0.4 molar equivalents of methanol were added to the polymer (A ′′ -3) with respect to the added maleic anhydride group to shield it from light.
- a modified liquid polyisoprene (A-9) having a modifying group (a) partially containing a methacryloyl group and a dicarboxylic acid monomethyl ester group (b) was synthesized by reacting at 120 ° C. for 10 hours. Table 1 shows the physical properties of the resulting modified liquid polyisoprene (A-9).
- Production Example 10 Modified liquid polyisoprene (A-10) Isoprene was anionically polymerized in n-hexane using n-butyllithium as an initiator to obtain polyisoprene having a number average molecular weight of 29,000 (hereinafter also referred to as “polymer (A′-3)”). . To 100 parts by mass of this polymer (A'-3), 5 parts by mass of maleic anhydride and 1 part by mass of BHT (2,6-di-t-butyl-4-methylphenol, manufactured by Honshu Chemical Industry Co., Ltd.) were added. By reacting at 180 ° C.
- maleic anhydride-modified liquid polyisoprene (A ′′ -4) (hereinafter also referred to as “polymer (A ′′ -4)”) was obtained.
- the reaction rate of maleic anhydride is 99% or more, and the amount of maleic anhydride added to the polymer (A ′′ -4) is 5 parts by mass with respect to 100 parts by mass of the polymer (A′-3).
- 0.6 molar equivalents of 2-hydroxyethyl methacrylate and 0.4 molar equivalents of methanol were added to the polymer (A ′′ -4) with respect to the added maleic anhydride group to shield it from light.
- a modified liquid polyisoprene (A-10) having a modifying group (a) partially containing a methacryloyl group and a dicarboxylic acid monomethyl ester group (b) was synthesized by reacting at 120 ° C. for 10 hours.
- Table 1 shows the physical properties of the resulting modified liquid polyisoprene (A-10).
- Production Example 11 Modified liquid polyisoprene (A-11) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.3 molar equivalent of 2-hydroxyethyl acrylate and 0.7 molar equivalent of dodecyl alcohol (Tokyo Kasei Co., Ltd.) with respect to the added maleic anhydride group.
- Table 11 shows the physical properties of the resulting modified liquid polyisoprene (A-11).
- Production Example 12 Modified liquid polyisoprene (A-12) 0.2 mol equivalent of 2-hydroxyethyl methacrylate and 0.2 mol equivalent of 2-hydroxyethyl acrylate with respect to the maleic anhydride group added to the polymer (A ′′ -3) synthesized in Production Example 9, Modified group partially containing methacryloyl group, acryloyl group, and acrylamide group by adding 0.2 molar equivalent of 2-hydroxyethylacrylamide and 0.4 molar equivalent of methanol and reacting at 120 ° C.
- a modified liquid polyisoprene (A-12) having (a) and a dicarboxylic acid monomethyl ester group (b) was synthesized, and the physical properties of the resulting modified liquid polyisoprene (A-12) are shown in Table 1.
- Production Example 13 Modified liquid polyisoprene (A-13) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.3 molar equivalent of 2-hydroxyethyl acrylate and 0.7 molar equivalent of 3-methyl-1,3 with respect to the added maleic anhydride group.
- Production Example 14 Modified liquid polyisoprene (A-14) In the polymer (A ′′ -1) synthesized in Production Example 1, 0.3 molar equivalent of 2-hydroxyethyl methacrylate and 0.7 molar equivalent of 3-methyl-1,3 with respect to the added maleic anhydride group.
- Production Example 15 Modified liquid polyisoprene (A-15) 0.15 molar equivalent of 2-hydroxy-3-acryloyloxypropyl methacrylate (Shin Nakamura Chemical Co., Ltd.) with respect to the maleic anhydride group added to the polymer (A ′′ -1) synthesized in Production Example 1. And a modified group (a) partially containing 2-acryloyl-1-methacryloylmethylethyl group and monomethyl dicarboxylate by reacting at 120 ° C. for 10 hours after light shielding. A modified liquid polyisoprene (A-15) having an ester group (b) was synthesized, and the physical properties of the resulting modified liquid polyisoprene (A-15) are shown in Table 1.
- Production Example 16 Modified liquid polyisoprene (A-16) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.1 molar equivalent of 2-hydroxyethyl acrylate and 0.9 molar equivalent of methanol were added with respect to the added maleic anhydride group, and light-shielded. Thereafter, the reaction was carried out at 120 ° C. for 10 hours to synthesize a modified liquid polyisoprene (A-16) having a modified group (a) partially containing an acryloyl group and a dicarboxylic acid monomethyl ester group (b). Table 1 shows the physical properties of the modified liquid polyisoprene (A-16).
- Production Example 17 Modified liquid polyisoprene (A-17) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.2 molar equivalents of 2-hydroxyethyl acrylate and 0.8 molar equivalents of methanol were added to the added maleic anhydride group, and light-shielded. Thereafter, the reaction was carried out at 120 ° C. for 10 hours to synthesize a modified liquid polyisoprene (A-17) having a modified group (a) partially containing an acryloyl group and a dicarboxylic acid monomethyl ester group (b). Table 1 shows the physical properties of the modified liquid polyisoprene (A-17).
- Production Example 18 Modified liquid polyisoprene (A-18) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.3 molar equivalent of 2-hydroxyethyl acrylate and 0.7 molar equivalent of 3-methylbutanol were added to the added maleic anhydride group. Then, by reacting at 120 ° C. for 10 hours after light shielding, a modified liquid polyisoprene (A-) having a modified group (a) partially containing an acryloyl group and a dicarboxylic acid mono (3-methylbutyl) ester group (b) Table 1 shows the physical properties of the resulting modified liquid polyisoprene (A-18).
- Production Example 19 Modified liquid polyisoprene (A-19) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.3 molar equivalents of 2-hydroxyethyl acrylate and 0.7 molar equivalents of 2,2,2, to the maleic anhydride group added. -By adding trifluoroethanol and making it react for 10 hours at 120 ° C.
- a modified liquid polyisoprene (A-19) having a trifluoroethyl) ester group (b) was synthesized, and the physical properties of the resulting modified liquid polyisoprene (A-19) are shown in Table 1.
- Production Example 20 Modified liquid polyisoprene (A-20) 1 part by weight of maleic anhydride and 0.1 part by weight of BHT are added to 100 parts by weight of the polymer (A′-1) synthesized in Production Example 1, and reacted at 180 ° C. for 15 hours, whereby maleic anhydride-modified liquid poly Isoprene (A ′′ -5) (hereinafter, also referred to as “polymer (A ′′ -5)”) was obtained.
- the reaction rate of maleic anhydride is 99% or more, and the amount of maleic anhydride added to the polymer (A ′′ -5) is 1 part by mass with respect to 100 parts by mass of the polymer (A′-1).
- Production Example 21 Modified liquid polyisoprene (A-21) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.98 molar equivalents of 2-hydroxyethyl methacrylate and 0.02 molar equivalents of methanol with respect to the added maleic anhydride group were added to shield from light. Thereafter, the reaction was carried out at 120 ° C. for 10 hours to synthesize a modified liquid polyisoprene (A-21) having a modifying group (a) partially containing a methacryloyl group and a dicarboxylic acid monomethyl ester group (b). Table 1 shows the physical properties of the modified liquid polyisoprene (A-21).
- Production Example 22 Modified liquid polyisoprene (A-22) To the polymer (A ′′ -1) synthesized in Production Example 1, 0.02 molar equivalent of 2-hydroxyethyl methacrylate and 0.98 molar equivalent of methanol with respect to the added maleic anhydride group were added to shield from light. Thereafter, the reaction was carried out at 120 ° C. for 10 hours to synthesize a modified liquid polyisoprene (A-22) having a modifying group (a) partially containing a methacryloyl group and a dicarboxylic acid monomethyl ester group (b). Table 1 shows the physical properties of the modified liquid polyisoprene (A-22). In addition, the measuring method of each physical property value of the modified liquid polyisoprene (A-1) to (A-22) obtained in each production example is as follows.
- Mn number average molecular weight
- reaction rate of maleic anhydride To 3 g of the sample after the denaturation reaction, 180 mL of toluene and 20 mL of ethanol were added and dissolved, and then neutralization titration with an ethanol solution of 0.1 N potassium hydroxide was performed to determine the acid value.
- Acid value (mgKOH / g) (AB) ⁇ F ⁇ 5.661 / S
- S: Weight of sample weighed (g) The sample after the denaturation reaction was washed 4 times with methanol (5 mL relative to 1 g of the sample) to remove unreacted maleic anhydride, and then the sample was dried under reduced pressure at 80 ° C. for 12 hours. The acid value was determined by the method. Based on the following formula, the reaction rate of maleic anhydride was calculated. [Reaction rate of maleic anhydride (%)] [Acid value after washing] / [Acid value before washing] ⁇ 100
- the peak derived from the methylene group adjacent to the oxygen atom of the modifying group (b) in the obtained spectrum, and the peak derived from the carbon-carbon double bond of the polymer main chain From the area ratio, the functional group equivalent to the polymer weight of the modifying group (b) was calculated.
- melt viscosity The melt viscosity at 38 ° C. of the modified liquid polyisoprene obtained in each production example was measured with a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LABS. INC.).
- HEMA 2-hydroxyethyl methacrylate
- modified liquid polyisoprene (A-20) having no modifying group (b) has a small amount of compatible HEMA and very low compatibility with polar monomers.
- modified liquid polyisoprenes (A-1) to (A-19) having a modifying group (a) and a modifying group (b) in a specific range are compatible with HEMA as compared with (A-20). It can be seen that both have good compatibility with polar monomers.
- Examples 1 to 15 The modified liquid polyisoprenes (A-1) to (A-15) and the radical polymerization initiator (B-1) are charged into a stainless steel 300 mL container at the ratio shown in Table 2, and are stirred at room temperature using a stirring blade. 200 g of a resin composition was prepared by minute mixing. The obtained resin composition was evaluated by the following method. The results are shown in Table 2.
- Example 16 to 36 Modified liquid polyisoprene (A-1) to (A-19), radical polymerization initiator (B-1), and monomer (C-1) having a radical polymerizable carbon-carbon double bond (C-)
- a resin composition was prepared and evaluated in the same manner as in Example 1 except that 2) was blended at the ratio shown in Table 3. The results are shown in Table 3.
- the resin compositions obtained in the examples and comparative examples were injected into a mold having a length of 70 mm, a width of 70 mm, and a thickness of 0.5 mm, and the composition surface was covered with a 50 ⁇ m-thick PET film, and then a UV irradiation apparatus. (GS Yuasa Corporation Ltd., a HAK125L-F used as mercury lamp) using a illuminance 45 mW / cm 2, and set the conveyor speed 0.25 m / min, the 1,000 mJ / cm 2 in one operation Irradiated with UV. This was repeated three times to obtain a cured product.
- the resin compositions obtained in the examples and comparative examples were injected into a mold having a length of 70 mm, a width of 35 mm, and a thickness of 2.0 mm, and the composition surface was covered with a PET film having a thickness of 50 ⁇ m, and then a UV irradiation apparatus. (GS Yuasa Corporation Ltd., a HAK125L-F used as mercury lamp) using a illuminance 45 mW / cm 2, and set the conveyor speed 0.25 m / min, the 1,000 mJ / cm 2 in one operation Irradiated with UV. This was repeated three times to obtain a cured product. Three obtained 2.0 mm films were stacked to form a 6.0 mm sample, and the hardness was measured according to JIS K 6253.
- UV irradiation device manufactured by GS Yuasa Corporation, using HAK125L-F as a mercury lamp
- an illuminance of 30 mW / cm 2 and a conveyor speed of 2 m / min were set (the UV irradiation amount in one operation).
- the obtained cured product was weighed first, and then the cured product was immersed in toluene at room temperature for 24 hours, and the insoluble portion was filtered off with a 200-mesh wire mesh and washed. After that, it was vacuum-dried at 80 ° C. for 12 hours, and the toluene insoluble part after this drying was weighed. From these results, the gel fraction of the sample at each UV irradiation dose was calculated according to the following formula.
- melt viscosity The melt viscosity at 38 ° C. of the resin compositions obtained in Examples 16 to 36 and Comparative Examples 4 to 6 was measured with a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LABS. INC.).
- the curable resin compositions of Examples 1 to 36 using the modified liquid polyisoprenes (A-1) to (A-19) which are within the scope of the present invention are UV-irradiated for curing. It can be seen that the amount is small and has a sufficient curing rate, and after curing, in addition to good transparency and strength, the film is rich in flexibility with low hardness and elastic modulus and high tensile elongation.
- the resin composition using the modified liquid polyisoprene (A-22) in which the functional group equivalent of the modifying group (a) is outside the scope of the present invention is Compatibility with modified liquid polyisoprene (A-1) to (A-19) within the scope of the present invention, but content of modified group (a) containing (meth) acryloyl group as a part thereof Therefore, it was found that the curing rate was very slow, and it was not completely cured even when 3,000 mJ / cm 2 UV was irradiated, or it took a very long time to cure.
- the modified liquid polyisoprene (A-21) in which the functional group equivalent of the modifying group (b) is outside the scope of the present invention is compatible with the polar monomer of the present invention.
- the modified liquid polyisoprene (A-1) to (A-19) within the range
- the curing rate of the resin composition is equivalent to that of Examples 1 to 36, dicarboxylic acid monoester and dicarboxylic acid monoamide
- the content of at least one modifying group (b) selected from is small, compared with that, only the content of the modifying group (a) is large, and the molecular weight between crosslinking points after the crosslinking reaction is small. It was found that the film had a high elastic modulus and a low tensile elongation and lacked flexibility.
- Table 4 shows modified liquid diene rubbers (A-1) to (A-19), a radical polymerization initiator (B-1), and a monomer (C-1) having a radically polymerizable carbon-carbon double bond.
- blended in the ratio shown to was produced.
- the obtained composition is uniformly applied to a glass plate with a thickness of 100 ⁇ m, and using a UV irradiation device (manufactured by GS Yuasa Corporation, using HAK125L-F as a mercury lamp), an illuminance of 45 mW / cm 2 , a conveyor The speed was set to 0.25 m / min, and 1,000 mJ / cm 2 of UV was irradiated in one operation.
- a UV irradiation device manufactured by GS Yuasa Corporation, using HAK125L-F as a mercury lamp
- Table 4 shows modified liquid polyisoprenes (A-20) to (A-22), a radical polymerization initiator (B-1), and a monomer (C-1) having a radical polymerizable carbon-carbon double bond.
- a resin composition was prepared and evaluated in the same manner as in Example 30 except that it was blended in the ratio shown in FIG. The results are shown in Table 4.
- the cured product obtained from the curable resin composition of Comparative Example 7 using the modified liquid polyisoprene (A-20) having no modifying group (b) has very low adhesion to glass.
- the curable resin compositions of Examples 37 to 55 using modified liquid polyisoprenes (A-1) to (A-19) having a modifying group (a) and a modifying group (b) in a specific range It can be seen that the cured product obtained from No. 1 has improved adhesion to glass compared to the cured product obtained in Comparative Example 7.
- the modified liquid diene rubber obtained in the present invention is highly compatible with various monomers, for example, relatively polar acrylates or methacrylates, and is used for working a curable resin composition containing the modified liquid diene rubber.
- the cured product obtained from the curable resin composition has excellent mechanical properties derived from the modified liquid diene rubber. ing.
- the cured product is excellent in adhesiveness with various materials. Therefore, it is suitable for various uses such as optical use and electric / electronic member use as an adhesive, a pressure-sensitive adhesive, a coating agent, a sealing material, ink, and the like, and is a useful material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
〔1〕分子内に、(メタ)アクリロイル基をその一部に含む変性基(a)と、ジカルボン酸モノエステル及びジカルボン酸モノアミドから選ばれる少なくとも1種の変性基(b)(ただし、(メタ)アクリロイル基をその一部には含まない。)とを有し、変性基(a)及び変性基(b)の官能基当量が、ともに700~40,000g/eqの範囲である変性液状ジエン系ゴム(A)。
〔5〕上記変性基(a)が、ヒドロキシアルキル(メタ)アクリレートまたはヒドロキシアルキル(メタ)アクリルアミドに由来するエステル基を有するジカルボン酸モノエステルである〔4〕に記載の変性液状ジエン系ゴム(A)。
〔7〕数平均分子量(Mn)が2,000~500,000である、〔1〕~〔6〕のいずれかに記載の変性液状ジエン系ゴム(A)。
(2)該不飽和ジカルボン酸無水物変性液状ジエン系ゴムに、(メタ)アクリロイル基をその一部に含む変性化合物(a’)と、(メタ)アクリロイル基をその一部には含まない、アルコール及びアミンから選ばれる少なくとも1種の変性化合物(b’)とをモル比で(a’):(b’)=0.05:0.95~0.95:0.05の範囲で添加して反応させる工程とを含むことを特徴とする、〔1〕~〔7〕のいずれかに記載の変性液状ジエン系ゴム(A)の製造方法。
樹脂組成物全量100質量部に対してラジカル重合開始剤(B)を0.1~20質量部含む硬化性樹脂組成物。
〔12〕〔9〕又は〔10〕に記載の硬化性樹脂組成物からなる光学用粘接着剤。
本発明の変性液状ジエン系ゴム(A)は液状の重合体であり、(メタ)アクリロイル基をその一部に含む変性基(a)と、ジカルボン酸モノエステル及びジカルボン酸モノアミドから選ばれる少なくとも1種の変性基(b)とを有し、これら変性基(a)および(b)の官能基当量がともに700~40,000g/eqの範囲にある。このような変性液状ジエン系ゴム(A)を硬化性樹脂組成物に含ませることにより、十分な硬化速度を有し、低粘度で作業性に優れるだけでなく、ガラスや光学フィルムなどとの接着性がよく、比較的極性の高い(メタ)アクリレート単量体とも相溶性が高く、該硬化性樹脂組成物から製造できる硬化物は柔軟性に優れ、十分な低誘電率と低透湿性を示し、さらに高強度となる。
-Rb-O-CO-RaC=CH2 ・・・(1)
-Rb-NH-CO-RaC=CH2 ・・・(2)
上記R1、R2及びR3は置換されていてもよく、置換基としては、例えばアルコキシ基、アルコキシシリル基、カルボキシ基、ヒドロキシ基、アルキルチオ基、ハロゲン原子等が挙げられる。置換基の数は1~5個が好ましく、1~3個がより好ましい。
本発明の変性液状ジエン系ゴム(A)は、例えば、未変性の液状ジエン系ゴム(A’)に不飽和ジカルボン酸無水物を付加して不飽和ジカルボン酸無水物変性液状ジエン系ゴム(A”)を製造し、この不飽和ジカルボン酸無水物変性液状ジエン系ゴム(A”)に、(メタ)アクリロイル基をその一部に含む変性化合物(a’)(以下、「変性化合物(a’)」と略称する場合がある)と、(メタ)アクリロイル基をその一部には含まない、アルコール及びアミンから選ばれる少なくとも1種の変性化合物(b’)(以下、「変性化合物(b’)」と略称する場合がある)とを所望の官能基当量となるように反応させることにより製造できる。
上記乳化重合法としては、公知又は公知に準ずる方法を適用できる。例えば、所定量の共役ジエンを含む単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する。
ラジカル重合開始剤としては、例えば過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
アニオン重合可能な活性金属化合物としては、有機アルカリ金属化合物が好ましい。有機アルカリ金属化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。これら有機アルカリ金属化合物の中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。
また、前述のように上記重合後に、所望量の不飽和ジカルボン酸無水物の付加が可能な程度に、その液状ジエン系ゴム中に含まれる不飽和結合の一部が水素添加されていてもよい。
不飽和ジカルボン酸無水物を未変性の液状ジエン系ゴム(A’)に付加させる方法は特に限定されず、例えば、液状ジエン系ゴム中に不飽和ジカルボン酸無水物、更に必要に応じてラジカル触媒を加えて、有機溶媒の存在下又は非存在下に、加熱する方法を採用することができる。
本発明の変性液状ジエン系ゴム(A)は、ラジカル重合開始剤(B)を添加することにより、硬化性樹脂組成物として用いることができる。本発明の硬化性樹脂組成物に用いることができるラジカル重合開始剤(B)としては、例えば、紫外線などの活性エネルギー線により分解してラジカルを発生するラジカル系光重合開始剤、加熱により分解してラジカルを発生する加熱分解型ラジカル重合開始剤などが挙げられる。
本発明の硬化性樹脂組成物は、さらにラジカル重合性の炭素-炭素二重結合を有する単量体(C)を含んでいてもよい。ラジカル重合性の炭素-炭素二重結合を有する単量体(C)(以下、「単量体(C)」と略称する場合がある)とは、前述のラジカル重合開始剤(B)により、活性エネルギー線や熱を加えることでラジカルを発生して重合できる単量体を意味する。単量体(C)としては、例えばスチレン、アクリレート、アクリルアミド、アクリロニトリル、酢酸ビニル、塩化ビニルなどの一置換ビニル化合物;α-メチルスチレン、メタクリレート、メタクリルアミドなどの1,1-二置換ビニル化合物;アセナフチレン、N置換マレイミドなどの環状オレフィン;ブタジエン、イソプレン等の共役ジエン化合物などが挙げられる。中でも(メタ)アクリレートが好ましく、単官能(メタ)アクリレート、2官能(メタ)アクリレート、3官能以上の多価(メタ)アクリレートなどを用いることができる。
本発明の硬化性樹脂組成物においては、上記変性液状ジエン系ゴム(A)及び単量体(C)との質量比[(A)/(C)]は0.01~100が好ましく、0.05~50がより好ましく、0.1~25が更に好ましく、0.1~10がより更に好ましい。変性液状ジエン系ゴム(A)と単量体(C)との配合割合が上記範囲にあると、低粘度で作業性に優れ、硬化時の体積変化が小さく、硬化後の柔軟性が良好な硬化性樹脂組成物が得られる。
本発明の硬化性樹脂組成物は、その特性を損なわない範囲で、硬化促進剤、粘着付与剤、可塑剤、老化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤、軟化剤、消泡剤、顔料、染料、有機充填剤、香料などの添加剤を添加してもよい。
本発明の硬化性樹脂組成物の製造方法は、例えば、変性液状ジエン系ゴム(A)、ラジカル重合開始剤(B)、必要に応じて添加される単量体(C)及び添加剤等を室温下、攪拌機やニーダーなどの通常の混合手段を用いて混合することで製造することができる。
本実施例及び比較例において使用した各成分は以下のとおりである。
後述の製造例1~15で得られた変性液状ポリイソプレン
<ラジカル重合開始剤(B)>
B-1: ラジカル系光重合開始剤 2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン (商品名「DAROCUR 1173」:BASF株式会社製)
<ラジカル重合性の炭素-炭素二重結合を有する単量体(C)>
C-1: 単官能メタクリレート ジシクロペンテニルオキシエチルメタクリレート(商品名 FA-512M:日立化成株式会社製)
イソプレンを、n-ブチルリチウムを開始剤としてn-ヘキサン中でアニオン重合させることにより、数平均分子量19,300のポリイソプレン(以下、「重合体(A’-1)」ともいう)を得た。この重合体(A’-1)100質量部に無水マレイン酸10質量部とBHT(2,6-ジ-t-ブチル-4-メチルフェノール、本州化学工業株式会社製)1質量部を添加し、180℃で15時間反応させることにより、無水マレイン酸変性液状ポリイソプレン(A”-1)(以下、「重合体(A”-1)」ともいう)を得た。なお、無水マレイン酸の反応率は99%以上であり、重合体(A”-1)中に付加された無水マレイン酸量は重合体(A’-1)100質量部に対し10質量部であった。次に、重合体(A”-1)に、付加された無水マレイン酸基に対して0.3モル当量の2-ヒドロキシエチルアクリレートと0.7モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-1)を合成した。得られた変性液状ポリイソプレン(A-1)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.5モル当量の2-ヒドロキシエチルアクリレートと0.5モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-2)を合成した。得られた変性液状ポリイソプレン(A-2)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.7モル当量の2-ヒドロキシエチルアクリレートと0.3モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-3)を合成した。得られた変性液状ポリイソプレン(A-3)の物性を表1に示す。
イソプレンを、n-ブチルリチウムを開始剤としてn-ヘキサン中でアニオン重合させることにより、数平均分子量8,900のポリイソプレン(以下、「重合体(A’-2)」ともいう)を得た。この重合体(A’-2)100質量部に無水マレイン酸10質量部とBHT(2,6-ジ-t-ブチル-4-メチルフェノール、本州化学工業株式会社製)1質量部を添加し、180℃で15時間反応させることにより、無水マレイン酸変性液状ポリイソプレン(A”-2)(以下、「重合体(A”-2)」ともいう)を得た。なお、無水マレイン酸の反応率は99%以上であり、重合体(A”-2)中に付加された無水マレイン酸量は重合体(A’-2)100質量部に対し10質量部であった。次に、重合体(A”-2)に、付加された無水マレイン酸基に対して0.5モル当量の2-ヒドロキシエチルアクリレートと0.5モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-4)を合成した。得られた変性液状ポリイソプレン(A-4)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.3モル当量の2-ヒドロキシエチルメタクリレートと0.7モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-5)を合成した。得られた変性液状ポリイソプレン(A-5)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.5モル当量の2-ヒドロキシエチルメタクリレートと0.5モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-6)を合成した。得られた変性液状ポリイソプレン(A-6)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.3モル当量の2-ヒドロキシエチルアクリルアミドと0.7モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリルアミド基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-7)を合成した。得られた変性液状ポリイソプレン(A-7)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.5モル当量の2-ヒドロキシエチルアクリルアミドと0.5モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリルアミド基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-8)を合成した。得られた変性液状ポリイソプレン(A-8)の物性を表1に示す。
製造例1で合成した重合体(A’-1)100質量部に無水マレイン酸5質量部とBHT(2,6-ジ-t-ブチル-4-メチルフェノール、本州化学工業株式会社製)1質量部を添加し、180℃で15時間反応させることにより、無水マレイン酸変性液状ポリイソプレン(A”-3)(以下、「重合体(A”-3)」ともいう)を得た。なお、無水マレイン酸の反応率は99%以上であり、重合体(A”-3)中に付加された無水マレイン酸量は重合体(A’-1)100質量部に対し5質量部であった。次に、重合体(A”-3)に、付加された無水マレイン酸基に対して0.6モル当量の2-ヒドロキシエチルメタクリレートと0.4モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-9)を合成した。得られた変性液状ポリイソプレン(A-9)の物性を表1に示す。
イソプレンを、n-ブチルリチウムを開始剤としてn-ヘキサン中でアニオン重合させることにより、数平均分子量29,000のポリイソプレン(以下、「重合体(A’-3)」ともいう)を得た。この重合体(A’-3)100質量部に無水マレイン酸5質量部とBHT(2,6-ジ-t-ブチル-4-メチルフェノール、本州化学工業株式会社製)1質量部を添加し、180℃で15時間反応させることにより、無水マレイン酸変性液状ポリイソプレン(A”-4)(以下、「重合体(A”-4)」ともいう)を得た。なお、無水マレイン酸の反応率は99%以上であり、重合体(A”-4)中に付加された無水マレイン酸量は重合体(A’-3)100質量部に対し5質量部であった。次に、重合体(A”-4)に、付加された無水マレイン酸基に対して0.6モル当量の2-ヒドロキシエチルメタクリレートと0.4モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-10)を合成した。得られた変性液状ポリイソプレン(A-10)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.3モル当量の2-ヒドロキシエチルアクリレートと0.7モル当量のドデシルアルコール(東京化成株式会社製)を加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノドデシルエステル基(b)とを有する変性液状ポリイソプレン(A-11)を合成した。得られた変性液状ポリイソプレン(A-11)の物性を表1に示す。
製造例9で合成した重合体(A”-3)に、付加された無水マレイン酸基に対して0.2モル当量の2-ヒドロキシエチルメタクリレートと0.2モル当量の2-ヒドロキシエチルアクリレート、0.2モル当量の2-ヒドロキシエチルアクリルアミド及び0.4モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基、アクリロイル基及びアクリルアミド基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-12)を合成した。得られた変性液状ポリイソプレン(A-12)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.3モル当量の2-ヒドロキシエチルアクリレートと0.7モル当量の3-メチルー1,3-ブタンジオール(株式会社クラレ製)を加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノ(3-メチル-3-ヒドロキシブチル)エステル基(b)とを有する変性液状ポリイソプレン(A-13)を合成した。得られた変性液状ポリイソプレン(A-13)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.3モル当量の2-ヒドロキシエチルメタクリレートと0.7モル当量の3-メチルー1,3-ブタンジオール(株式会社クラレ製)を加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基を一部に含む変性基(a)とジカルボン酸モノ(3-メチル-3-ヒドロキシブチル)エステル基(b)とを有する変性液状ポリイソプレン(A-14)を合成した。得られた変性液状ポリイソプレン(A-14)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.15モル当量の2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(新中村化学工業株式会社製)と0.85モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、2-アクリロイル-1-メタクリロイルメチルエチル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-15)を合成した。得られた変性液状ポリイソプレン(A-15)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.1モル当量の2-ヒドロキシエチルアクリレートと0.9モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-16)を合成した。得られた変性液状ポリイソプレン(A-16)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.2モル当量の2-ヒドロキシエチルアクリレートと0.8モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-17)を合成した。得られた変性液状ポリイソプレン(A-17)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.3モル当量の2-ヒドロキシエチルアクリレートと0.7モル当量の3-メチルブタノールを加え、遮光した後に120℃で10時間反応させることにより、アクリロイル基を一部に含む変性基(a)とジカルボン酸モノ(3-メチルブチル)エステル基(b)とを有する変性液状ポリイソプレン(A-18)を合成した。得られた変性液状ポリイソプレン(A-18)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.3モル当量の2-ヒドロキシエチルアクリレートと0.7モル当量の2,2,2,-トリフルオロエタノールを加え、遮光した後に120℃で10時間反応させることにより、2-アクリロイルー1-メタクリロイルメチルエチル基を一部に含む変性基(a)とジカルボン酸モノ(2,2,2-トリフルオロエチル)エステル基(b)とを有する変性液状ポリイソプレン(A-19)を合成した。得られた変性液状ポリイソプレン(A-19)の物性を表1に示す。
製造例1で合成した重合体(A’-1)100質量部に無水マレイン酸1質量部とBHT0.1質量部を添加し、180℃で15時間反応させることにより、無水マレイン酸変性液状ポリイソプレン(A”-5)(以下、「重合体(A”-5)」ともいう)を得た。なお、無水マレイン酸の反応率は99%以上であり、重合体(A”-5)中に付加された無水マレイン酸量は重合体(A’-1)100質量部に対し1質量部であった。次に、重合体(A”-5)に、付加された無水マレイン酸基に対して1.05モル当量の2-ヒドロキシエチルメタクリレートを加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基を一部に含む変性基(a)を有する変性液状ポリイソプレン(A-20)を合成した。得られた変性液状ポリイソプレン(A-20)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.98モル当量の2-ヒドロキシエチルメタクリレートと0.02モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-21)を合成した。得られた変性液状ポリイソプレン(A-21)の物性を表1に示す。
製造例1で合成した重合体(A”-1)に、付加された無水マレイン酸基に対して0.02モル当量の2-ヒドロキシエチルメタクリレートと0.98モル当量のメタノールを加え、遮光した後に120℃で10時間反応させることにより、メタクリロイル基を一部に含む変性基(a)とジカルボン酸モノメチルエステル基(b)とを有する変性液状ポリイソプレン(A-22)を合成した。得られた変性液状ポリイソプレン(A-22)の物性を表1に示す。
なお、各製造例で得られた変性液状ポリイソプレン(A-1)~(A-22)の各物性値の測定方法は以下のとおりである。
各製造例で得た変性液状ポリイソプレンのMnはGPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。測定装置及び条件は以下の通りである。
・装置 :東ソー株式会社製GPC装置「GPC8020」
・分離カラム :東ソー株式会社製「TSKgelG4000HXL」
・検出器 :東ソー株式会社製「RI-8020」
・溶離液 :テトラヒドロフラン
・溶離液流量 :1.0ml/分
・サンプル濃度:5mg/10ml
・カラム温度 :40℃
変性反応後の試料3gに、トルエン180mL、エタノール20mLを加え溶解した後、0.1N水酸化カリウムのエタノール溶液で中和滴定し酸価を求めた。
酸価(mgKOH/g)=(A-B)×F×5.611/S
A:中和に要した0.1N水酸化カリウムのエタノール溶液滴下量(mL)
B:試料を含まないブランクでの0.1N水酸化カリウムのエタノール溶液滴下量(mL)
F:0.1N水酸化カリウムのエタノール溶液の力価
S:秤量した試料の質量(g)
また、変性反応後の試料をメタノールで4回洗浄(試料1gに対して5mL)して未反応の無水マレイン酸を除去した後、試料を80℃で12時間、減圧乾燥し、上記と同様の方法にて酸価を求めた。下記式に基づき無水マレイン酸の反応率を算出した。
〔無水マレイン酸の反応率(%)〕=〔洗浄後の酸価〕/〔洗浄前の酸価〕×100
上記で求めた反応率から、下記式に従い、未変性の液状ポリイソプレンに対して付加された無水マレイン酸の量を算出した。
〔未変性の液状ポリイソプレン100質量部に対し付加された無水マレイン酸量〕=〔添加した無水マレイン酸の質量(g)〕×〔無水マレイン酸の反応率(%)〕/〔未変性の液状ポリイソプレンの質量(g)〕
日本電子株式会社製1H-NMR(500MHz)を使用し、サンプル/重クロロホルム=100mg/1mLの濃度、積算回数512回、測定温度50℃で測定した。
変性基(a)については、得られたスペクトルの変性基(a)の有する(メタ)アクリロイル基の二重結合に由来するピークと、重合体主鎖の炭素-炭素二重結合に由来するピークとの面積比から、変性基(a)の官能基当量を算出した。
各製造例で得た変性液状ポリイソプレン 10mgをアルミパンに採取し、示差走査熱量測定(DSC)により10℃/分の昇温速度条件においてサーモグラムを測定し、DDSCのピークトップの値をガラス転移温度とした。
各製造例で得た変性液状ポリイソプレンの38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS. INC.製)により測定した。
各製造例で得た変性液状ポリイソプレン5gに対し、極性モノマーとして2-ヒドロキシエチルメタクリレート(HEMA)を任意の量添加し、50℃でよく攪拌し均一にした後、室温で3時間放置し、外観の変化を観察した。分離や白濁を起こさず、透明であれば相溶したと判断し、変性液状ポリイソプレン100質量部に対して相溶するHEMAの最大量(質量部)を測定した。
変性液状ポリイソプレン(A-1)~(A-15)とラジカル重合開始剤(B-1)を、表2に示す割合でステンレス製300mL容器に投入し、室温下、攪拌翼を用いて20分混合することにより200gの樹脂組成物を調製した。得られた樹脂組成物を下記方法により評価した。結果を表2に示す。
変性液状ポリイソプレン(A-20)~(A-22)とラジカル重合開始剤(B-1)を、表2に示す割合で配合したこと以外は実施例1と同様にして樹脂組成物を調製し、評価を行った。結果を表2に示す。
変性液状ポリイソプレン(A-1)~(A-19)、ラジカル重合開始剤(B-1)及びラジカル重合性の炭素-炭素二重結合を有する単量体(C-1)及び(C-2)を、表3に示す割合で配合したこと以外は実施例1と同様にして樹脂組成物を調製し、評価を行った。結果を表3に示す。
変性液状ポリイソプレン(A-20)~(A-22)、ラジカル重合開始剤(B-1)及びラジカル重合性の炭素-炭素二重結合を有する単量体(C-1)及び(C-2)を、表3に示す割合で配合したこと以外は実施例1と同様にして樹脂組成物を調製し、評価を行った。結果を表3に示す。
なお、各物性の評価方法は以下の通りである。
実施例及び比較例で得られた樹脂組成物を、縦70mm、横70mm、厚さ0.5mmの型枠に注入し、組成物表面を厚さ50μmのPETフィルムで覆った後、UV照射装置(株式会社ジーエス・ユアサコーポレーション製、水銀ランプとしてHAK125L-Fを使用)を用い、照度45mW/cm2、コンベアー速度0.25m/minに設定し、1回の作業で1,000mJ/cm2のUVを照射した。これを3回繰り返して硬化物を得た。硬化物からPETフィルムを剥がした後、目視により観察し、下記基準にしたがって透明性を評価した。
<評価基準>
5:無色透明
4:極僅かな着色が認められるが透明
3:やや着色が認められるが透明
2:明らかな着色が認められるが透明
1:不透明
実施例及び比較例で得られた樹脂組成物を、縦70mm、横35mm、厚さ2.0mmの型枠に注入し、組成物表面を厚さ50μmのPETフィルムで覆った後、UV照射装置(株式会社ジーエス・ユアサコーポレーション製、水銀ランプとしてHAK125L-Fを使用)を用い、照度45mW/cm2、コンベアー速度0.25m/minに設定し、1回の作業で1,000mJ/cm2のUVを照射した。これを3回繰り返して硬化物を得た。得られた2.0mm膜を3枚重ねて6.0mmの試料とし、JIS K 6253に準拠して硬度を測定した。
上記外観観察において得られた硬化物から幅6mm、長さ70mmの短冊状のサンプルを打ち抜き、50mm/minの引っ張り速度で引っ張り試験を行った際の破断強度、引張伸度及び弾性率をインストロン社製引張試験機により測定した。
実施例及び比較例で得られた樹脂組成物を、縦70mm、横70mm、厚さ0.5mmの型枠に注入し、組成物表面を厚さ50μmのPETフィルムで覆った硬化用試料を6つ作製した。
ゲル分率(%)=(トルエン不溶部の質量)/(トルエン浸漬前の硬化物の質量)×100
当試験によって得られたゲル分率とUV照射量との関係から、ゲル分率が80%に到達したときのUV照射量を概算し、この値を硬化時に要したUV照射量とした。
実施例16~36及び比較例4~6で得た樹脂組成物の38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS. INC.製)により測定した。
変性液状ジエン系ゴム(A-1)~(A-19)、ラジカル重合開始剤(B-1)及びラジカル重合性の炭素-炭素二重結合を有する単量体(C-1)を表4に示す割合で配合した組成物を作製した。得られた組成物を、ガラス板に100μmの厚さで均一に塗り、UV照射装置(株式会社ジーエス・ユアサコーポレーション製、水銀ランプとしてHAK125L-Fを使用)を用い、照度45mW/cm2、コンベアー速度0.25m/minに設定し、1回の作業で1,000mJ/cm2のUVを照射した。これを3回繰り返して硬化塗膜がガラス板上に形成された評価サンプルを得た。ガラス板に対する硬化塗膜の密着性をJIS K5600-5-6(クロスカット法)に準拠して調べた。なお、密着性を調べる際のマス目は縦10マス×横10マスの合計100マスで行ない、100マスの中で剥がれまたは破損が生じずに残存しているマス目の数に基づいて、変性液状ジエン系ゴムを含む組成物から得られる硬化物のガラス板に対する密着性を五段階で評価した。
5:90個以上のマス目が残存
4:70個以上、89個以下の升目が残存
3:50個以上、69個以下の升目が残存
2:30個以上、49個以下の升目が残存
1:29個以下の升目が残存
変性液状ポリイソプレン(A-20)~(A-22)、ラジカル重合開始剤(B-1)及びラジカル重合性の炭素-炭素二重結合を有する単量体(C-1)を、表4に示す割合で配合したこと以外は実施例30と同様にして樹脂組成物を調製し、評価を行った。結果を表4に示す
Claims (12)
- 分子内に、(メタ)アクリロイル基をその一部に含む変性基(a)と、ジカルボン酸モノエステル及びジカルボン酸モノアミドから選ばれる少なくとも1種の変性基(b)(ただし、(メタ)アクリロイル基をその一部には含まない。)とを有し、変性基(a)及び変性基(b)の官能基当量が、ともに700~40,000g/eqの範囲である変性液状ジエン系ゴム(A)。
- 上記変性基(b)が、式-COO-CnH2n+1(但し1≦n≦20の整数)で示されるエステル部位を有するジカルボン酸モノエステル又は式-COO-CnH2n+1-mXm(但し1≦n≦20の整数、1≦m≦2n+1、Xは置換基)で示されるエステル部位を有するジカルボン酸モノエステルである、請求項1又は2に記載の変性液状ジエン系ゴム(A)。
- 上記変性基(a)が、(メタ)アクリロイル基をその一部に含むジカルボン酸モノエステルである、請求項1~3のいずれかに記載の変性液状ジエン系ゴム(A)。
- 上記変性基(a)が、ヒドロキシアルキル(メタ)アクリレートまたはヒドロキシアルキル(メタ)アクリルアミドに由来するエステル基を有するジカルボン酸モノエステルである請求項4に記載の変性液状ジエン系ゴム(A)。
- 38℃における溶融粘度が0.1~3,000Pa・sである、請求項1~5のいずれかに記載の変性液状ジエン系ゴム(A)。
- 数平均分子量(Mn)が2,000~500,000である、請求項1~6のいずれかに記載の変性液状ジエン系ゴム(A)。
- (1)未変性の液状ジエン系ゴムに不飽和ジカルボン酸無水物を付加して不飽和ジカルボン酸無水物変性液状ジエン系ゴムを製造する工程と、
(2)該不飽和ジカルボン酸無水物変性液状ジエン系ゴムに、(メタ)アクリロイル基をその一部に含む変性化合物(a’)と、(メタ)アクリロイル基をその一部には含まない、アルコール及びアミンから選ばれる少なくとも1種の変性化合物(b’)とをモル比で(a’):(b’)=0.05:0.95~0.95:0.05の範囲で添加して反応させる工程とを含むことを特徴とする、請求項1~7のいずれかに記載の変性液状ジエン系ゴム(A)の製造方法。 - 分子内に、(メタ)アクリロイル基をその一部に含む変性基(a)と、ジカルボン酸モノエステル及びジカルボン酸モノアミドから選ばれる少なくとも1種の変性基(b)(ただし、(メタ)アクリロイル基をその一部には含まない。)とを有し、変性基(a)及び変性基(b)の官能基当量が、ともに700~40,000g/eqの範囲である変性液状ジエン系ゴム(A)及びラジカル重合開始剤(B)を含む硬化性樹脂組成物であり、
樹脂組成物全量100質量部に対してラジカル重合開始剤(B)を0.1~20質量部含む硬化性樹脂組成物。 - さらに、ラジカル重合性の炭素-炭素二重結合を有する単量体(C)を含み、前記変性液状ジエン系ゴム(A)と前記単量体(C)との質量比[(A)/(C)]が0.01~100である、請求項9に記載の硬化性樹脂組成物。
- 請求項9又は10に記載の硬化性樹脂組成物から得られる硬化物。
- 請求項9又は10に記載の硬化性樹脂組成物からなる光学用粘接着剤。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/021,893 US9598507B2 (en) | 2013-12-04 | 2014-11-27 | Modified liquid diene-based rubber and production process for the same |
CN201480043115.7A CN105408362B (zh) | 2013-12-04 | 2014-11-27 | 改性液态二烯系橡胶及其制造方法 |
EP14867981.4A EP3026065B1 (en) | 2013-12-04 | 2014-11-27 | Modified liquid diene-based rubber and production process for the same |
CA2920993A CA2920993C (en) | 2013-12-04 | 2014-11-27 | Modified liquid diene-based rubber and production process for the same |
KR1020157033669A KR101664765B1 (ko) | 2013-12-04 | 2014-11-27 | 변성 액상 디엔계 고무 및 그 제조 방법 |
JP2015520027A JP5805916B1 (ja) | 2013-12-04 | 2014-11-27 | 変性液状ジエン系ゴム及びその製造方法 |
ES14867981.4T ES2647837T3 (es) | 2013-12-04 | 2014-11-27 | Caucho líquido modificado a base de dieno y procedimiento de producción para el mismo |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-251127 | 2013-12-04 | ||
JP2013251127 | 2013-12-04 | ||
JP2014141212 | 2014-07-09 | ||
JP2014-141212 | 2014-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015083608A1 true WO2015083608A1 (ja) | 2015-06-11 |
Family
ID=53273371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081367 WO2015083608A1 (ja) | 2013-12-04 | 2014-11-27 | 変性液状ジエン系ゴム及びその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9598507B2 (ja) |
EP (1) | EP3026065B1 (ja) |
JP (2) | JP5805916B1 (ja) |
KR (1) | KR101664765B1 (ja) |
CN (1) | CN105408362B (ja) |
CA (1) | CA2920993C (ja) |
ES (1) | ES2647837T3 (ja) |
TW (1) | TWI520976B (ja) |
WO (1) | WO2015083608A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016104473A1 (ja) * | 2014-12-25 | 2016-06-30 | 株式会社クラレ | 変性液状ジエン系ゴム及び該変性液状ジエン系ゴムを含む樹脂組成物 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180334521A1 (en) | 2017-05-17 | 2018-11-22 | Kuraray Co., Ltd. | Vulcanizable composition and moldable thermoplastic elastomer product therefrom |
CA3078383A1 (en) * | 2017-10-05 | 2019-04-11 | Kuraray Co., Ltd. | Modified liquid diene rubbers |
WO2019082828A1 (ja) * | 2017-10-27 | 2019-05-02 | 積水ポリマテック株式会社 | 封止材組成物、封止材及び電子基板 |
WO2020004242A1 (ja) * | 2018-06-29 | 2020-01-02 | 株式会社クラレ | ゴム組成物 |
JP7485897B2 (ja) * | 2019-05-13 | 2024-05-17 | 横浜ゴム株式会社 | ゴム組成物 |
EP3998290A4 (en) * | 2019-07-11 | 2023-08-02 | Kuraray Co., Ltd. | MODIFIED CONJUGATED DIENE POLYMER AND POLYMERIC COMPOSITION CONTAINING SUCH MODIFIED CONJUGATED DIENE POLYMER |
CN114763389A (zh) * | 2021-01-13 | 2022-07-19 | 中国石油化工股份有限公司 | 液体橡胶丙烯酸酯及其制备方法和应用 |
CN114827872B (zh) * | 2021-01-29 | 2023-07-14 | 歌尔股份有限公司 | 振膜及发声装置 |
CN113185639B (zh) * | 2021-04-29 | 2023-04-21 | 四川大学 | 一种高强度低松弛聚异戊二烯橡胶及其制备方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5496596A (en) * | 1978-01-17 | 1979-07-31 | Kuraray Co Ltd | Production of liquid polyisoprene rubber derivative with outstanding shelf stability |
JPS54129044A (en) * | 1978-03-31 | 1979-10-06 | Ube Ind Ltd | Photo-setting resin composition |
JPS54160491A (en) * | 1978-06-09 | 1979-12-19 | Ube Ind Ltd | Photo-setting composition |
JPS56112921A (en) * | 1980-02-08 | 1981-09-05 | Sekisui Chem Co Ltd | Adhesive composition |
JPS57111313A (en) * | 1980-12-29 | 1982-07-10 | Sumitomo Chem Co Ltd | Modified epoxy resin composition |
JPS62280204A (ja) * | 1986-05-23 | 1987-12-05 | ダブリュー・アール・グレイス・アンド・カンパニー ― コネチカット | 熱硬化又は放射線硬化可能な液状プレポリマ− |
WO1991011473A1 (en) * | 1990-01-30 | 1991-08-08 | Nippon Petrochemicals Co., Ltd. | Photocurable resin composition and process for producing photocurable resin |
JPH03223315A (ja) * | 1990-01-30 | 1991-10-02 | Nippon Petrochem Co Ltd | 光硬化性樹脂組成物 |
JPH03223316A (ja) * | 1990-01-30 | 1991-10-02 | Nippon Petrochem Co Ltd | 光硬化性樹脂組成物 |
JPH04330446A (ja) * | 1990-04-26 | 1992-11-18 | W R Grace & Co | ポリブタジエンまたはブタジエン共重合体の無水マレイン酸付加体を含む光硬化性組成物 |
JP2003192750A (ja) | 2001-12-26 | 2003-07-09 | Kuraray Co Ltd | 紫外線硬化性樹脂組成物 |
JP2009029976A (ja) | 2007-07-30 | 2009-02-12 | Kuraray Co Ltd | 耐熱安定性に優れた硬化性樹脂組成物 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974129A (en) * | 1975-07-24 | 1976-08-10 | Shell Oil Company | Polybutadiene resin |
JPS6046020B2 (ja) | 1978-12-22 | 1985-10-14 | 株式会社クラレ | ゴムと繊維との複合体 |
JPS56118434A (en) | 1980-02-22 | 1981-09-17 | Nippon Petrochem Co Ltd | Preparation of polyolefin resin composition |
JPS56118433A (en) | 1980-02-22 | 1981-09-17 | Nippon Petrochem Co Ltd | Production of polyolefin resin composition |
US5523383A (en) * | 1990-01-30 | 1996-06-04 | Nippon Petrochemicals Co., Ltd. | Photocurable resin composition for the preparation of a printed wiring board and process for the preparation of photocurable resin |
US5407784A (en) | 1990-04-26 | 1995-04-18 | W. R. Grace & Co.-Conn. | Photocurable composition comprising maleic anhydride adduct of polybutadiene or butadiene copolymers |
JP3356987B2 (ja) * | 1998-02-12 | 2002-12-16 | 日立化成工業株式会社 | 接着剤ペースト組成物及びこれを用いた半導体装置 |
CN101273086A (zh) * | 2005-09-22 | 2008-09-24 | 可乐丽股份有限公司 | 橡胶组合物以及交联物 |
JP5237565B2 (ja) * | 2007-02-09 | 2013-07-17 | 株式会社ブリヂストン | 光硬化性液状ゴム組成物 |
CN101200527B (zh) * | 2007-11-30 | 2011-04-13 | 江南大学 | 液体橡胶改性环氧丙烯酸酯预聚物及用于紫外光固化涂料的制备 |
CN101289591B (zh) * | 2008-06-12 | 2011-12-14 | 北京科技大学 | 一种环保型耐腐蚀涂料及其制备方法 |
JP6368476B2 (ja) | 2013-10-30 | 2018-08-01 | 株式会社クラレ | 硬化性樹脂組成物 |
-
2014
- 2014-11-27 CA CA2920993A patent/CA2920993C/en active Active
- 2014-11-27 KR KR1020157033669A patent/KR101664765B1/ko active IP Right Grant
- 2014-11-27 CN CN201480043115.7A patent/CN105408362B/zh active Active
- 2014-11-27 JP JP2015520027A patent/JP5805916B1/ja active Active
- 2014-11-27 WO PCT/JP2014/081367 patent/WO2015083608A1/ja active Application Filing
- 2014-11-27 EP EP14867981.4A patent/EP3026065B1/en active Active
- 2014-11-27 ES ES14867981.4T patent/ES2647837T3/es active Active
- 2014-11-27 US US15/021,893 patent/US9598507B2/en active Active
- 2014-12-02 TW TW103141710A patent/TWI520976B/zh active
-
2015
- 2015-09-02 JP JP2015172639A patent/JP2016027163A/ja active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5496596A (en) * | 1978-01-17 | 1979-07-31 | Kuraray Co Ltd | Production of liquid polyisoprene rubber derivative with outstanding shelf stability |
JPS54129044A (en) * | 1978-03-31 | 1979-10-06 | Ube Ind Ltd | Photo-setting resin composition |
JPS54160491A (en) * | 1978-06-09 | 1979-12-19 | Ube Ind Ltd | Photo-setting composition |
JPS56112921A (en) * | 1980-02-08 | 1981-09-05 | Sekisui Chem Co Ltd | Adhesive composition |
JPS57111313A (en) * | 1980-12-29 | 1982-07-10 | Sumitomo Chem Co Ltd | Modified epoxy resin composition |
JPS62280204A (ja) * | 1986-05-23 | 1987-12-05 | ダブリュー・アール・グレイス・アンド・カンパニー ― コネチカット | 熱硬化又は放射線硬化可能な液状プレポリマ− |
WO1991011473A1 (en) * | 1990-01-30 | 1991-08-08 | Nippon Petrochemicals Co., Ltd. | Photocurable resin composition and process for producing photocurable resin |
JPH03223315A (ja) * | 1990-01-30 | 1991-10-02 | Nippon Petrochem Co Ltd | 光硬化性樹脂組成物 |
JPH03223316A (ja) * | 1990-01-30 | 1991-10-02 | Nippon Petrochem Co Ltd | 光硬化性樹脂組成物 |
JPH04330446A (ja) * | 1990-04-26 | 1992-11-18 | W R Grace & Co | ポリブタジエンまたはブタジエン共重合体の無水マレイン酸付加体を含む光硬化性組成物 |
JP2003192750A (ja) | 2001-12-26 | 2003-07-09 | Kuraray Co Ltd | 紫外線硬化性樹脂組成物 |
JP2009029976A (ja) | 2007-07-30 | 2009-02-12 | Kuraray Co Ltd | 耐熱安定性に優れた硬化性樹脂組成物 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016104473A1 (ja) * | 2014-12-25 | 2016-06-30 | 株式会社クラレ | 変性液状ジエン系ゴム及び該変性液状ジエン系ゴムを含む樹脂組成物 |
US10414834B2 (en) | 2014-12-25 | 2019-09-17 | Kuraray Co., Ltd. | Modified liquid diene rubber and resin composition containing modified liquid diene rubber |
Also Published As
Publication number | Publication date |
---|---|
EP3026065B1 (en) | 2017-11-01 |
TWI520976B (zh) | 2016-02-11 |
CN105408362A (zh) | 2016-03-16 |
CA2920993C (en) | 2016-09-06 |
US20160229927A1 (en) | 2016-08-11 |
JPWO2015083608A1 (ja) | 2017-03-16 |
KR101664765B1 (ko) | 2016-10-12 |
CA2920993A1 (en) | 2015-06-11 |
KR20150140856A (ko) | 2015-12-16 |
US9598507B2 (en) | 2017-03-21 |
TW201538553A (zh) | 2015-10-16 |
JP2016027163A (ja) | 2016-02-18 |
ES2647837T3 (es) | 2017-12-26 |
EP3026065A1 (en) | 2016-06-01 |
EP3026065A4 (en) | 2016-08-03 |
CN105408362B (zh) | 2017-05-31 |
JP5805916B1 (ja) | 2015-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5805916B1 (ja) | 変性液状ジエン系ゴム及びその製造方法 | |
JP6672174B2 (ja) | 変性液状ジエン系ゴム及び該変性液状ジエン系ゴムを含む樹脂組成物 | |
JP5073400B2 (ja) | 耐熱安定性に優れた硬化性樹脂組成物 | |
JP5932598B2 (ja) | 光硬化性エラストマー組成物、シール材、及び装置 | |
JP6219058B2 (ja) | 光硬化樹脂組成物 | |
KR20150135305A (ko) | 중합체 및 그 제조 방법, 그리고 그 중합체를 함유하는 수지 조성물 | |
JPWO2015045450A1 (ja) | 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤 | |
JP6368476B2 (ja) | 硬化性樹脂組成物 | |
JP2011012196A (ja) | エマルション及びその製造法 | |
JP2015105279A (ja) | 硬化性樹脂組成物 | |
WO2014061265A1 (ja) | 光硬化性エラストマー組成物、シール材、及び装置 | |
JP5675861B2 (ja) | 光硬化性エラストマー組成物、シール材、及び装置 | |
JP2018115346A (ja) | 硬化性樹脂組成物 | |
JP2014148643A (ja) | 光硬化性エラストマー組成物、シール材、及び装置 | |
JP2015105955A (ja) | 感光性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480043115.7 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2015520027 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14867981 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157033669 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014867981 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014867981 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2920993 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15021893 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |