WO2015068708A1 - 液体材料吐出装置および方法 - Google Patents
液体材料吐出装置および方法 Download PDFInfo
- Publication number
- WO2015068708A1 WO2015068708A1 PCT/JP2014/079289 JP2014079289W WO2015068708A1 WO 2015068708 A1 WO2015068708 A1 WO 2015068708A1 JP 2014079289 W JP2014079289 W JP 2014079289W WO 2015068708 A1 WO2015068708 A1 WO 2015068708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- liquid material
- forming member
- liquid
- channel
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/10—Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
- B05C11/1039—Recovery of excess liquid or other fluent material; Controlling means therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
- B05C5/001—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work incorporating means for heating or cooling the liquid or other fluent material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
- B05C5/02—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
- B05C5/02—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
- B05C5/0225—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet
- B05C5/0237—Fluid actuated valves
Definitions
- the present invention relates to a liquid material ejection apparatus and method, and more particularly, to a liquid material ejection apparatus and method characterized by an internal flow path structure.
- a rod-shaped member that can open and close the communication hole with the discharge port by a reciprocating movement is referred to as a needle.
- Patent Document 1 in a viscous body discharge device that discharges a viscous body from a tip to a predetermined site by storing the viscous body and pressurizing the inside, an opening that houses the viscous body and discharges the viscous body to the outside A pressurizing means for pressurizing the inside of the containing body, an opening / closing means for opening / closing an opening of the containing body discharged by the viscous body, and an adjusting means for finely adjusting the opening / closing operation of the opening / closing means from the outside
- a discharge means having a pipe-like discharge path that reduces unnecessary filling space at the opening of the container from which the viscous material is discharged, a cap that covers the outer periphery of the discharge means, and supports the container and the cap.
- Patent Document 2 discloses a main tank containing paint, a coating means for discharging paint, a first circulation pipe arranged so that paint circulates between the main tank and the paint means, and a first circulation. And a heater that heats the paint passing through the pipe to a predetermined temperature, and is connected to the main tank, a sub-tank that contains the paint, a second circulation pipe that again contains the paint in the sub-tank in the sub-tank, and the main tank And a switching device that is provided in the second circulation pipe and that supplies the paint flowing in the second circulation pipe to the supply pipe side.
- Patent Document 3 discloses a method for stabilizing the temperature of a wide head or nozzle block in which a heated liquid or melt is spread widely downstream of the discharge port via the discharge port.
- a wide-width head or nozzle block characterized in that at least one liquid or melt passage is provided in the longitudinal direction, and the same liquid or melt as the liquid or melt discharged from the discharge port is passed through the passage.
- a temperature stabilization method is disclosed.
- the tip of the nozzle is easily dried during standby, so that the tip of the nozzle may be immersed in a solvent such as thinner to prevent drying.
- the solvent has high volatility and cannot be heated to a high temperature, but there is a problem that the nozzle tip and the liquid in the nozzle are cooled by immersing the nozzle tip in a low temperature solvent. Even in such applications, there has been a demand for a discharge device that can minimize the temperature drop of the liquid in the nozzle.
- an object of the present invention is to provide a discharge device and method that can statically reduce the influence of pump pulsation while minimizing the temperature drop of the liquid material.
- the present invention relating to a liquid material discharge apparatus includes a nozzle having a discharge port that opens downward, a valve seat having a communication hole communicating with the discharge port, a vertically extending liquid chamber communicating with the communication hole, and a reciprocation within the liquid chamber.
- a liquid material discharge device including a needle that moves to open and close the communication hole of the valve seat, and a circulation channel that supplies the liquid material to the liquid chamber, the upper opening provided at the upper end and the lower opening provided
- An outer flow path having a lower opening, a lower opening communicating with the outer flow path, and a rod-shaped flow path forming member formed with an inner flow path having an upper opening provided at the upper end, are provided in the liquid chamber, The flow path forming member is inserted, the lower opening of the outer flow path and the lower opening of the inner flow path are communicated with the communication hole of the valve seat, and the circulation flow path is a direction in which the needle extends.
- the first flow path communicating with the upper opening of the outer flow path of the flow path forming member, and extending in a direction different from the direction in which the needle extends, and communicating with the upper opening of the inner flow path of the flow path forming member And a second flow path, an outer flow path of the flow path forming member, and an inner flow path of the flow path forming member.
- the diameter of the outer flow path of the flow path forming member is smaller than the diameter of the first flow path, and more preferably, the outer flow of the flow path forming member.
- the cross-sectional area of the path is not more than 1 ⁇ 2 of the cross-sectional area of the first flow path.
- an outer flow path of the flow path forming member is configured by a groove recessed in an outer periphery of the flow path forming member, and an inner flow path of the flow path forming member is a flow path forming member. It is comprised by the through-hole penetrated, It is good also considering the outer diameter of the said flow-path formation member being slightly smaller than the internal diameter of the said liquid chamber.
- the outer flow path of the flow path forming member circulates the flow path forming member one or more times from the inlet to the outlet of the outer flow path. More preferably, the outer flow path of the flow path forming member is formed in a spiral shape.
- the liquid material discharge device includes a needle container having the liquid chamber and a liquid contact member having the first flow path and the second flow path, and the needle container and the liquid contact member are detachably fixed.
- the first flow path and the second flow path are configured by dividing a hole extending in a horizontal direction in the liquid contact member by the flow path forming member.
- a porous member or a water wheel member may be disposed in an outer flow path of the flow path forming member.
- the liquid material discharge device a tank for storing the liquid material, a heater for adjusting the temperature of the liquid material, a pump for sending the liquid material from the tank to the first channel or the second channel, the tank,
- the pump may include a circulation pipe communicating with the first flow path and the second flow path, and a control device, and the temperature-controlled liquid material may be circulated and supplied to the liquid chamber.
- the pump may send the liquid material to the first flow path, or the pump may send the liquid material to the second flow path.
- the present invention according to the liquid material discharge method is characterized in that the liquid material whose temperature is adjusted is discharged from the discharge port using the liquid material discharge apparatus including the pump.
- the circulation channel is provided in the vertically extending liquid chamber, it is possible to minimize the temperature drop of the liquid material immediately before being discharged. Further, the pulsation of the pump can be statically reduced by the outer flow path having a relatively high flow resistance.
- FIG. 6 is a side view and a cross-sectional view illustrating a variation of an outer channel of a channel forming member according to second to fifth embodiments.
- (a) is the second embodiment
- (b) is the third embodiment
- (c) is the fourth embodiment
- (d) is the fifth embodiment.
- FIG. 10 is a side view of a flow path forming member according to sixth to ninth embodiments.
- FIG. 12 is a cross-sectional view of a main part of a liquid material ejection device according to tenth to eleventh embodiments.
- (a) is the tenth embodiment
- (b) is the eleventh embodiment.
- FIG. 1 is a schematic cross-sectional view of a liquid material discharge apparatus 1 according to the first embodiment.
- the liquid material discharge device 1 used for the base in this embodiment drives the piston 5 by the force of compressed gas or the spring 7, and the tip of the needle 4 fixed to the piston 5 opens and closes the communication hole 30 of the valve seat 31.
- This is a needle valve type discharge device in which the liquid material L is discharged from the nozzle 19.
- the discharge device 1 shown in FIG. 1 discharges the liquid material L in the form of dots or lines, but can also be discharged in the form of a mist by replacing the nozzle 19.
- the drive part 2 and the liquid-contact part 3 which are the main elements which comprise the discharge apparatus 1 of this embodiment are demonstrated in detail.
- the drive unit 2 includes a piston 5 to which the needle 4 is fixed, a piston housing 6 that movably accommodates the piston 5 therein, and a spring that biases the piston 5 and the needle 4 toward the valve seat 31. 7 and a pipe joint (8, 9) for connecting a pipe for supplying compressed gas for driving the piston 5.
- the piston housing 6 is a member in which an airtight space partitioned by the piston 5 into an upper piston chamber 11 and a lower piston chamber 12 is formed.
- the upper piston chamber 11 is provided with a spring 7, and the lower piston chamber 12 is a chamber to which compressed gas for driving the piston 5 is supplied.
- each piston chamber 11, 12
- an upper pipe joint 8 and a lower pipe joint 9 for supplying and discharging compressed gas are respectively installed, and the piston chamber (8, 9) of each pipe joint (8, 9) ( 11 and 12) are connected to the gas pipe 10 on the opposite side.
- a seal member C15 is disposed on the side surface of the piston 5.
- a seal member B14 is disposed in a needle through hole B13 formed in the bottom surface of the lower piston chamber 12.
- a stroke adjusting member 16 for adjusting the moving amount of the piston 5 is fixed to the upper end of the piston housing 6, and the last retracted position of the piston 5 is adjusted by changing the amount of protrusion to the inside of the member. can do.
- the piston 5 is biased toward the valve seat 31 by the spring 7 (downward), and the tip of the needle 4 abuts the valve seat 31 in a state where no compressed gas is supplied to the piston chambers (11, 12). Stopped in position.
- the piston 5 is driven upward against the force of the spring 7.
- the gas in the upper piston chamber 11 is discharged from the upper pipe joint 8.
- the piston 5 is driven downward by the force of the spring 7.
- the gas in the lower piston chamber 12 is discharged from the lower pipe joint 9.
- the upper pipe joint 8 and the lower pipe joint 9 may be provided with a speed control valve (speed controller).
- the driving speed of the piston 5 is controlled by controlling the speed (flow rate) of the gas supplied into the piston chamber (11, 12) or the gas discharged from the piston chamber (11, 12) by the speed control valve. it can.
- the liquid contact part 3 provided continuously below the drive part 2 is mainly composed of a liquid contact member 17, a needle container 18, a nozzle 19, and a flow path forming member 34.
- the liquid contact member 17 is a block-shaped member in which a flow path and a needle through hole A23 are formed.
- the liquid contact member 17 communicates with the horizontal circulation channel 32 extending in a direction (for example, the horizontal direction) different from the direction in which the needle 4 extends, and the side of the horizontal circulation channel 32.
- an insertion hole 22 extending through the needle 4 in the same direction (vertically downward) as the direction in which the needle 4 extends is formed. In the configuration example of FIG.
- the horizontal circulation channel 32 and the insertion hole 22 form a T-shaped channel in a sectional view inside the liquid contact member 17.
- the circulation flow path communicating with the insertion hole 22 is not necessarily formed by a horizontal through hole, and may be, for example, a V-shaped circulation flow path.
- a needle through hole A 23 extending in the vertical direction is formed concentrically with the insertion hole 22.
- the needle 4 is inserted through the needle through-hole A23, and a seal member A24 is provided between the needle 4 and the inner wall of the needle through-hole A23 to prevent the liquid material L from leaking to the drive unit 2 side.
- the horizontal circulation flow path 32 of the present embodiment is partitioned by a flow path forming member 34 into a first flow path 20 on the right side in the figure and a second flow path 21 on the left side in the figure.
- a liquid pipe 27 is connected to the first flow path 20 via a first connection joint 25, and similarly, a liquid pipe 27 is connected to the second flow path 21 via a second connection joint 26.
- the liquid piping 27 connected to the joints 25 and 26 is connected to a circulation mechanism 50 (details will be described later with reference to FIG. 3) for circulating the temperature-controlled liquid material L.
- a circulation mechanism 50 for circulating the temperature-controlled liquid material L.
- a cylindrical needle container 18 having a collar at the upper end is detachably fixed to the lower part of the liquid contact member 17. If the liquid contact member 17 and the needle container 18 are disassembled, the flow path forming member 34 inserted into the needle container 18 can be easily taken out.
- a cylindrical liquid chamber 33 extending vertically is formed inside the needle container 18 and communicates with the insertion hole 22 and the communication hole 30. The liquid chamber 33 is concentric with the insertion hole 22 and the needle through hole A23. The diameter of the liquid chamber 33 is preferably substantially the same as the inner diameter of the insertion hole 22.
- the valve seat 31 and the nozzle 19 are fixed to the lower end of the needle container 18 by a cap-shaped fixing member 29 with a hole.
- the valve seat 31 is a disk-shaped member provided with a communication hole 30 in the center. Most of the upper surface of the valve seat 31 faces the inner flow path 35 and is constantly heated by the liquid material L in the inner flow path 35. Therefore, the valve seat 31 is preferably made of a metal having good thermal conductivity so that heat from the liquid material L is transmitted to the communication hole 30. More preferably, the flow path forming member 34 is made of metal, the tip surface of the flow path forming member 34 and the upper surface of the valve seat 31 are brought into contact with each other, and heat from the flow path forming member 34 is transmitted to the valve seat 31. Like that.
- the nozzle 19 is a cup-shaped member that accommodates the valve seat 31, and a discharge port 28 for discharging the liquid material L to the outside is provided at the center.
- One end of the liquid chamber 33 which is the lower end opening of the needle container 18, communicates with the discharge port 28 through the communication hole 30.
- FIG. 2 shows a side view, an AA sectional view, and a BB sectional view of the flow path forming member 34 according to the present embodiment.
- the flow path forming member 34 is a cylindrical member having a length extending from the seal member A24 (the upper end of the horizontal circulation flow path 32) to the valve seat 31.
- the outer diameter of the flow path forming member 34 is slightly smaller than the diameters of the insertion hole 22 and the liquid chamber 33 and is detachably inserted into the insertion hole 22.
- the difference between the outer diameter of the flow path forming member 34 and the diameter of the insertion hole 22 and the liquid chamber 33 is within a range that does not impair the detachability so that the liquid material can be transferred from the outer flow path 36 without leakage.
- the flow path forming member 34 is configured such that the insertion hole 22 and the inner wall of the liquid chamber 33 cooperate with the outer surface of the flow path forming member 34 so that the outer flow path 36 that is a concave groove is a closed flow path.
- the flow path forming member 34 is made of a heat resistant material, for example, a metal such as stainless steel or aluminum alloy, or a heat resistant resin material such as PEEK (polyetheretherketone).
- the discharge device 1 can be configured by mounting the flow path forming member 34 on an existing discharge device having a cylindrical liquid chamber.
- the size of the flow path forming member 34 is the same as that of the existing discharge device. It is produced according to the shape of the liquid chamber.
- the shape of the flow path forming member 34 is not limited to a cylindrical shape, for example, a tapered rod-like member provided with a through hole extending in the longitudinal direction, and a step is provided on the side surface (having a large diameter portion and a small diameter portion).
- a rod-shaped member or a rod-shaped member having a polygonal cross section may be used.
- the flow path forming member 34 is provided in the outer flow path 36 having the upper opening 40 provided in the upper end portion and the lower opening 41 provided in the lower end portion, and in the lower opening 41 and the upper end portion communicating with the outer flow path 36.
- the diameter of the inner flow path 35 is configured to be larger than the diameter of the needle 4. That is, the inner flow path 35 is configured to have a gap between the outer peripheral surface of the needle 4 and the inner peripheral surface of the inner flow path 35 so as not to prevent the needle 4 from reciprocating.
- the needle 4 is inserted and a needle through hole C37 communicating with the inner flow path 35 is provided.
- the inner diameter of the needle through hole C37 is substantially the same as the outer diameter of the needle 4.
- an inner flow path upper opening 38 that opens perpendicularly (horizontal direction) to the central axis is provided.
- the inner flow path 35 communicates with the outside of the flow path forming member 34 through the inner flow path upper opening 38.
- a communication hole 30 of the valve seat 31 and an outflow hole 39 communicating with the inner flow path 35 are provided at the lower end of the inner flow path 35.
- the outer flow path 36 is a single flow path that connects the upper and lower ends of the flow path forming member 34, and is a groove that is recessed in the outer surface of the flow path forming member 34.
- a spiral groove is illustrated as the simplest shape that surrounds the inner flow path 35 while moving from the upper end to the lower end of the flow path forming member 34.
- the shape of the outer channel 36 is not limited to a spiral shape, and may be a groove that is recessed on the outer surface so as to surround the inner channel 35.
- the outer flow path 36 only needs to function as a flow path, and can be realized by any shape.
- the outer flow path 36 is preferably configured by a groove having the same cross-sectional area opened to the outside.
- the outer flow path 36 may be configured by arranging an even number of identically shaped flow paths symmetrically. Moreover, pump pulsation can be reduced because the length of the outer side flow path 36 is made more than fixed.
- the outer flow path 36 can ensure the length of the outer flow path 36 by turning the outer periphery of the flow path forming member 34, for example, two, three, four, or five or more times. Furthermore, setting the length of the outer flow path 36 to a certain value or more contributes to reducing the material of the flow path forming member 34. This leads to a technical effect that the temperature drop of the liquid material L is reduced when the flow path forming member 34 is made of metal.
- the outer flow path 36 and the inner flow path 35 communicate with each other only at the outer flow path lower opening (or the inner flow path lower opening) 41, and do not communicate with other portions.
- the outer flow path 36 and the inner flow path 35 are separated by the outer peripheral wall of the flow path forming member 34.
- An outer channel upper opening 40 that communicates with the outside of the channel forming member 34 is provided at the upper end of the outer channel 36, and an outer channel lower opening 41 that communicates with the inner channel 35 is provided at the lower end.
- the outer flow path upper opening 40 and the inner flow path upper opening 38 are aligned in a straight line passing through the center, and the respective holes face each other. It is preferable to form.
- the axial position (height position) of the outer channel upper opening 40 and the inner channel upper opening 38 is made substantially the same position. This is because the outer channel upper opening 40 and the inner channel upper opening 38 need to communicate with the first channel 20 and the second channel 21, respectively, in order to circulate the liquid material L (see FIG. 1). ).
- the outer flow path lower opening 41 shown in the BB cross section of FIG. 2 may be provided in any direction.
- the outer flow path 36 of the flow path forming member 34 has a groove shape that is open to the outside as a single unit. However, as shown in FIG. 1, when incorporated in the discharge device 1, the inner peripheral surface of the needle container 18. This is because a closed (unopened) flow path is formed.
- the thickness of the inner channel 35 and the outer channel 36 will be described with specific examples.
- the outer channel 36 has a cross-sectional area of 1 to 6 [mm 2 ] and a length of 20 to 80 [mm]. It is preferable to form by.
- the diameter of the inner flow path 35 is preferably formed in the range of 1.5 to 2.5 times the diameter of the needle 4.
- at least the first flow path 20 has a diameter of 4 to 6 [mm] (cross-sectional area 12.6 to 28.3 [mm 2 ]), and is formed to have a larger (thickness) cross-sectional area than the outer flow path 36.
- the cross-sectional area is more than twice, more preferably more than three times.
- the outer channel 36 becomes a resistance and suppresses pulsation of the pump 53 used for circulation (that is, pulsation is caused to the discharge port 28 of the nozzle 19).
- the diameter of the first channel 20 and the diameter of the second channel 21 are the same.
- the said numerical value can be suitably adjusted according to the physical property of the liquid material L, the magnitude
- the liquid material L that has flowed into the outer flow path upper opening 40 travels along the outer flow path 36, flows from the upper part to the lower part around the outer periphery of the flow path forming member 34, and reaches the outer flow path lower opening 41.
- the liquid material L flowing out from the outer channel lower opening 41 reaches the valve seat 31 and flows into the inner channel 35. Since the communication hole 30 of the valve seat 31 is closed by the tip of the needle 4, the liquid material L does not flow out from the discharge port 28 of the nozzle 19.
- the liquid material L that has flowed into the inner flow path 35 from the vicinity of the valve seat 31 (ie, near the lower end of the inner flow path 35) flows from the bottom to the top through the gap between the inner flow path 35 and the needle 4. .
- the liquid material L When the liquid material L reaches the upper end portion of the inner flow path 35, the liquid material L flows from the inner flow path upper opening 38 to the outside of the flow path forming member 34 (reference numeral 44 in FIG. 1) and flows into the second flow path 21.
- the liquid material L that has reached the second flow path 21 flows into the liquid pipe 27 via the second connection joint 26 (reference numeral 45 in FIG. 1).
- the liquid material L that has flowed into the liquid pipe 27 returns to the tank 51 to be described later, is temperature-adjusted, and is then supplied again to the discharge device by the pump 53 (that is, circulates).
- the above is the outline of the filling process of the liquid material L in the flow path forming member 34.
- FIG. 3 shows a configuration example of the circulation mechanism 50.
- 3 includes a tank 51 that stores the liquid material L, a heater 52 that adjusts the temperature of the liquid material L stored in the tank 51, and a pump 53 that sucks and circulates the liquid material L from the tank 51.
- a controller 54 that controls the operation of the pump 53 and the heater 52 and the supply / discharge of compressed gas to / from the discharge device 1, and a regulator 61.
- the discharge port 28 is provided in the vicinity of the flow paths (35, 36) constituting the circulation flow path, and the temperature drop in the flow path (30) branched from the circulation flow path is reduced. Since the influence is small, it is easier to control the temperature of the liquid material L than a discharge device having a conventional circulation channel.
- the tank 51 has a sufficient capacity for performing the coating operation with the discharge device 1, and the liquid material in the tank is maintained at a set temperature by the heater 52.
- the tank 51 may be provided with a stirrer for stirring the liquid material in the tank.
- the tank 51 is connected to a liquid pipe 55 for delivering the liquid material and a liquid pipe 55 for collecting the liquid material that has passed through the discharge device 1.
- a pump 53 is disposed between the liquid pipe 55 for delivering the liquid material and the discharge device 1.
- the liquid material L pumped by the pump 53 flows and circulates in the order of the tank 51 ⁇ the pump 53 ⁇ the regulator 61 ⁇ the discharge device 1 ⁇ the tank 51 as indicated by reference numeral 58.
- the discharge amount can be adjusted.
- pulsation occurs when the liquid material L is circulated by the pump 53, but the pulsation is statically reduced by the flow path forming member 34, and therefore no accumulator is provided in the circulation path of the circulation mechanism 50 ( However, an accumulator may be provided when applying ultra-high precision.)
- the heater 52 and the pump 53 are connected to the control device 54 via the control wiring 57, and the operation is controlled by the control device 54.
- the control device 54 is further connected to the discharge device 1 by a gas pipe 56, and controls the discharge operation by controlling the supply / discharge of compressed gas.
- An electropneumatic regulator may be employed as the regulator 61, and the control device 54 may be connected to the regulator 61 so that the pressure (discharge pressure) of the liquid material L can be automatically adjusted.
- the set temperature is 35 to 40 ° C.
- the viscosity of the liquid material is 40 to 60 [mPa ⁇ s].
- the discharge device 1 connected to the circulation mechanism 50 is attached to an XYZ direction moving device (not shown), and performs a coating operation while moving relative to a work table on which a coating target is placed.
- the XYZ direction moving device can be configured to include, for example, a combination of an electric motor and a ball screw, a mechanism using a linear motor, and a mechanism for transmitting power by a belt or a chain.
- the circulation mechanism 50 since the discharge port 28 is provided in the vicinity of the circulation channel (20 ⁇ 36 ⁇ 35 ⁇ 21) in the discharge device 1, the circulation channel and the discharge port are communicated with each other. Temperature drop in the flow path is minimal.
- the flow path structure for turning the outer flow path 36 around the inner flow path 35 is provided up to the lower end of the long needle container 18, the temperature change of the liquid material L can be prevented with high energy efficiency. Is possible. Further, the pump pulsation can be statically reduced by the outer channel 36 having a smaller cross-sectional area than the first channel 20 and the second channel 21.
- the flow path forming member 34 can be easily taken out from the insertion hole 22 during maintenance, and the outer flow path 36 is a concave groove that opens to the outside, so that dirt can be easily cleaned. Therefore, it is also suitable for discharging a liquid material that includes a feeler or a liquid material that cures with time, such as an adhesive.
- Second to fifth embodiments differ from the first embodiment in the shape of the outer flow path 36 of the flow path forming member 34, and are otherwise the same as the first embodiment. What is disclosed below is that the outer flow path 36 formed in the flow path forming member 34 is a single continuous groove with the same cross-sectional area shape, and is optimal according to the physical properties, application conditions, etc. of the liquid material L. Is selected.
- FIG. 4 shows a flow path forming member 34 according to the second to fifth embodiments. Note that the flow path forming members 34 according to the second to fifth embodiments are all cylindrical, and the shape of the inner flow path 35 is the same as that of the first embodiment, and thus the description thereof is omitted.
- FIG. 4A shows a flow path forming member 34 according to the second embodiment.
- the second embodiment is the same as the first embodiment in that the outer flow path 36 is formed by a spiral groove, but the outer flow paths 36 adjacent to each other are swung more closely than in the first embodiment. It is different in that the number of times is increased.
- the second embodiment is suitable for a case where the flow path length of the outer flow path 36 needs to be increased, such as a liquid material L having a relatively low viscosity or a liquid material L having a relatively easy temperature change.
- FIG. 4B shows a flow path forming member 34 according to the third embodiment.
- the third embodiment is the same as the first embodiment in that the outer flow path 36 is formed by a spiral groove, but the distance between the adjacent outer flow paths 36 is wider than that of the first embodiment and swirls. It is different in that the number of times is reduced.
- the third embodiment is suitable for a case where the flow path length needs to be shortened, for example, a liquid material L having a relatively high viscosity or a liquid material L that is relatively difficult to change in temperature.
- FIG. 4C shows a flow path forming member 34 according to the fourth embodiment, and the upper drawing is a cross-sectional view taken along the line CC.
- a groove having a length of about 60 to 90% of the circumference is formed in the first direction which is the circumferential direction and the horizontal direction of the flow path forming member 34, and then the groove extending in the vertical direction is formed.
- One basic pattern is to form a groove having a length of about 60 to 90% of the circumference in a second direction that is 180 degrees opposite to the first direction.
- the outer flow path 36 is formed by a groove continuous from the vicinity of the upper end portion of the flow path forming member 34 to the vicinity of the lower end portion thereof.
- the flow path length can be made longer than in the second embodiment.
- the spiral channel is suitable when the channel length of the outer channel 36 is insufficient.
- FIG. 4D shows a flow path forming member 34 according to the fifth embodiment, and the upper figure is a DD cross-sectional view.
- One or a plurality of grooves extending in the axial direction from the upper end portion to the lower end portion of the flow path forming member 34 are continued to the grooves extending in the circumferential direction and the horizontal direction to form the outer flow path 36.
- the length of the outer flow path 36 can be minimized as compared with the second to fourth embodiments. This is suitable for the case where it is desired to shorten the overall length of the outer flow path 36 while the outer flow path 36 is running in parallel in the length direction of the inner flow path 35.
- three long outer flow paths 36 are provided (see the DD cross-sectional view).
- the circumferential interval between the flow paths is narrowed, for example, 4-10 long outer flow paths are provided. It is also possible to run in parallel. Further, by increasing or decreasing the cross-sectional area of the outer flow path 36, the parallel running number of the outer flow paths 36 may be set to an optimal number, and the total length of the flow path may be set to a desired length.
- the sixth to ninth embodiments differ from the first to fifth embodiments in the shape of the outer flow path 36 of the flow path forming member 34, and are otherwise the same as the first to fifth embodiments.
- the intervals in the axial direction of the adjacent outer flow paths 36 are all equal.
- the intervals in the axial direction of the adjacent outer flow paths 36 are equal. This is different from the first to fifth embodiments.
- the flow path forming members 34 according to the sixth to ninth embodiments are all cylindrical, and the shape of the inner flow path 35 is the same as that of the first to fifth embodiments, so that the description thereof is omitted.
- FIG. 5A shows a flow path forming member 34 according to the sixth embodiment.
- the interval between the adjacent outer flow paths 36 in the axial direction is wide in the upper portion, and the interval is narrow in the lower portion.
- FIG. 5B shows a flow path forming member 34 according to the seventh embodiment.
- the interval in the axial direction between the adjacent outer flow paths 36 is narrow at the top, and the interval is wide at the bottom.
- FIG. 5C shows a flow path forming member 34 according to the eighth embodiment.
- the distance between the adjacent outer flow paths 36 in the axial direction is wide at the upper part and the lower part, and the distance is narrow at the central part.
- FIG. 5D shows a flow path forming member 34 according to the ninth embodiment.
- the axial interval between the adjacent outer flow paths 36 is narrow in the upper and lower portions, and the interval is wide in the central portion.
- a temperature difference can be provided in the liquid material L in the inner flow path 35 such that the temperature is high at a narrow interval and the temperature is low at a wide interval.
- the example of the spiral flow path has been described.
- the non-spiral flow as in the fourth embodiment (FIG. 4C) and the fifth embodiment (FIG. 4D) is described.
- the axial interval between adjacent outer flow paths 36 may be optimally designed by increasing or decreasing the cross-sectional area of the outer flow paths 36.
- FIG. 6A is a side sectional view of the liquid contact part of the discharge device 1 according to the tenth embodiment.
- the channel forming member 34 of the tenth embodiment is formed with an outer channel 36 extending in the axial direction as in the fifth embodiment (FIG. 4D).
- a porous material 59 that enhances flow resistance is fixed at a location near the upper opening 40 of the outer flow path 36. Since the porous material 59 has a large number of holes, the flow of the liquid material L is not completely blocked.
- This porous material 59 includes not only members having randomly formed holes but also members having regularly formed holes.
- the number of the porous materials 59 disposed in the middle of the outer flow path 36 is not limited to one, and the flow resistance may be adjusted by providing a plurality of porous materials 59.
- the flow resistance may be adjusted by providing a plurality of porous materials 59.
- FIG. 6B is a side sectional view of the liquid contact part of the discharge device 1 according to the eleventh embodiment.
- the flow path forming member 34 of the eleventh embodiment is formed with an outer flow path 36 similar to that of the tenth embodiment, and a watermill member 60 that increases the flow resistance near the upper opening 40 of the outer flow path 36. Is fixed. It is possible to adjust the flow resistance by adjusting the rotational load of the water turbine member 60.
- the number of water wheel members 60 disposed in the middle of the outer flow path 36 is not limited to one, and the flow resistance may be adjusted by providing a plurality of water wheel members 60.
Landscapes
- Coating Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Devices For Dispensing Beverages (AREA)
Abstract
Description
特許文献1には、粘性体を収容して内部を加圧することで先端から粘性体を所定の部位に吐出する粘性体吐出装置において、粘性体を収容するとともに粘性体を外部に吐出する開口部を有した収容体と、収容体の内部を加圧する加圧手段と、粘性体が吐出する収容体の開口部を開閉する開閉手段と、開閉手段の開閉動作を外側から微調整する調節手段と、粘性体が吐出する収容体の開口部に不要充填スペースを低減するパイプ状の吐出経路を備えた吐出手段と、吐出手段の外周に覆設されるキャップと、収容体とキャップとを支持して温度を一定に保持する保持手段とを設けたことを特徴とする粘性体吐出装置、が開示される。
特許文献3には、加温した液体又は溶融体を、吐出口を経由して、吐出口の下流に広幅に展開させる広幅ヘッド又はノズルブロックの温度安定化方法であって、広幅ヘッド又はノズルブロックの長手方向に少なくとも1個の液体又は溶融体の通路を設け、該通路に吐出口から吐出する液体又は溶融体と同じ液体又は溶融体を、通過させることを特徴とする、広幅ヘッド又はノズルブロックの温度安定化方法、が開示される。
また、吐出口と循環配管とを連通する流路を液体が通過する際に、当該流路にはヒーターが設けられていないため、液体の温度が低下するという問題があった。
特許文献3のように、ノズルブロックに保温用の分岐流路を設ける構成とした場合、当該分岐流路においても液体の温度低下が生じるためエネルギー効率が悪く、また温度制御が難しいという問題がある。
上記液体材料吐出装置において、前記流路形成部材の外側流路が、流路形成部材の外周に凹設された溝により構成され、前記流路形成部材の内側流路が、流路形成部材を貫通する貫通孔により構成され、前記流路形成部材の外径が、前記液室の内径よりも僅かに小径であることを特徴としてもよい。これに加え、上記液体材料吐出装置において、前記流路形成部材の外側流路が、外側流路の入口から出口に至るまでに流路形成部材を1周以上周回することを特徴とすることが好ましく、さらに好ましくは、前記流路形成部材の外側流路が、螺旋状に形成されることを特徴とする。
上記液体材料吐出装置において、前記液室を有するニードル収容体と、前記第一流路および前記第二流路を有する接液部材とを備え、ニードル収容体と接液部材とが着脱自在に固設されることを特徴としてもよく、好ましくは、前記第一流路および前記第二流路が、接液部材内を水平方向に延びる孔を前記流路形成部材で分断することにより構成されることを特徴とする。
上記液体材料吐出装置において、前記流路形成部材の外側流路に、多孔質部材または水車部材が配設されることを特徴としてもよい。
液体材料の吐出方法に係る本発明は、上記ポンプを備える液体材料吐出装置を用いて、吐出口から温度調節された液体材料を吐出することを特徴とする。
《第1実施形態》
図1に、第1実施形態に係る液体材料吐出装置1の概略断面図を示す。本実施形態でベースに用いる液体材料吐出装置1は、圧縮気体やバネ7の力によりピストン5を駆動し、ピストン5に固設されたニードル4の先端がバルブシート31の連通孔30を開閉することで、液体材料Lがノズル19より吐出されるニードルバルブ式吐出装置である。図1に示す吐出装置1は、液体材料Lを点状や線状に吐出するものであるが、ノズル19を交換することで、霧状に吐出することもできる。
以下では、本実施形態の吐出装置1を構成する主要な要素である、駆動部2および接液部3について詳細に説明する。
駆動部2は、ニードル4が固設されるピストン5と、ピストン5をその内部に移動可能に収容するピストン収容体6と、ピストン5およびニードル4をバルブシート31の方向へと付勢するバネ7と、ピストン5を駆動するための圧縮気体を供給する配管を接続する配管継手(8、9)とから主に構成される。
ピストン収容体6は、ピストン5により上側ピストン室11と下側ピストン室12とに仕切られた気密空間が内部に形成された部材である。上側ピストン室11はバネ7が配設され、下側ピストン室12はピストン5駆動用圧縮気体が供給される室となっている。各ピストン室(11、12)には、圧縮気体の供給および排出を行うための上側配管継手8と下側配管継手9がそれぞれ設置されており、各配管継手(8、9)のピストン室(11、12)とは反対側には気体配管10がそれぞれ接続されている。
上側ピストン室11内を気密に保つため、ピストン5の側面にはシール部材C15が配設される。下側ピストン室12内を気密に保つため、下側ピストン室12の底面に形成されたニードル貫通孔B13の部分にはシール部材B14が配設される。
ピストン収容体6の上端には、ピストン5の移動量を調整するためのストローク調整部材16が固設されており、当該部材の内部への突き出し量を変えることでピストン5の最後退位置を調整することができる。
下側ピストン室12に圧縮気体を供給すると、バネ7の力に抗してピストン5が上方へ駆動する。このとき、上側配管継手8からは、上側ピストン室11内の気体が排出される。続いて、下側ピストン室12への圧縮気体の供給を停止し、上側ピストン室11内へ圧縮気体を供給すると、バネ7の力によりピストン5が下方へ駆動する。このとき、下側配管継手9からは、下側ピストン室12内の気体が排出される。
上側配管継手8および下側配管継手9には、速度制御弁(スピードコントローラ)を設けてもよい。速度制御弁により、ピストン室(11、12)内へ供給される気体またはピストン室(11、12)内から排出される気体の速度(流量)を制御することで、ピストン5の駆動速度を制御できる。
駆動部2の下方に連設された接液部3は、接液部材17と、ニードル収容体18と、ノズル19と、流路形成部材34とから主に構成される。
接液部材17は、内部に流路およびニードル貫通孔A23が形成されたブロック状部材である。接液部材17の内部には、ニードル4が延在する方向とは異なる方向(例えば水平方向)に貫通して延在する水平循環流路32と、水平循環流路32の側方に連通し、ニードル4が延在する方向と同じ方向(垂直方向下方)へ貫通して延在する挿入孔22とが形成されている。図1の構成例では、接液部材17の内部に、水平循環流路32と挿入孔22とが断面視T字状の流路を構成している。なお、挿入孔22と連通する循環流路は必ずしも水平の貫通孔により構成する必要はなく、例えばV字状の循環流路であってもよい。
本実施形態の水平循環流路32は、流路形成部材34により、図示右側にある第一流路20と図示左側にある第二流路21とに区画されている。第一流路20には第一接続継手25を介して液体配管27が接続され、同様に第二流路21にも第二接続継手26を介して液体配管27が接続されている。継手25,26に接続される液体配管27は、温度調節された液体材料Lを循環する循環機構50(詳細は図3参照しながら後述)と接続されている。第一接続継手25から液体材料Lが供給される場合には、第一流路20が上流で第二流路21が下流となり、第二接続継手26から液体材料Lが供給される場合には、第一流路20が下流で第二流路21が上流となる。以下では、説明の便宜上、第一流路20が上流で第二流路21が下流となる場合を説明する。
図2に、本実施形態に係る流路形成部材34の側面図ならびにA-A断面図およびB-B断面図を示す。
流路形成部材34は、シール部材A24(水平循環流路32の上端)からバルブシート31にわたる長さを有した円筒状部材である。流路形成部材34の外径は、挿入孔22および液室33の径よりも僅かに小径であり、挿入孔22内に着脱自在に挿入される。ここで、流路形成部材34の外径と挿入孔22および液室33の径との差は、外側流路36から液体材料が漏れ無く移送されるように、着脱自在性を損なわない範囲で最小限とする。すなわち、挿入孔22および液室33の内壁と流路形成部材34の外側面とが協働して凹溝である外側流路36を閉じた流路とするように、流路形成部材34の外径を設定する。流路形成部材34は耐熱性の材により構成されており、例えばステンレスやアルミ合金などの金属、或いは、PEEK(ポリエーテルエーテルケトン)などの耐熱性樹脂材料により構成される。なお、吐出装置1は、円柱状の液室を備える既存の吐出装置に流路形成部材34を装着して構成することができ、この場合、流路形成部材34の大きさは既存の吐出装置の液室の形状に合わせて作製される。流路形成部材34の形状は円筒状に限定されず、例えば長手方向に延在する貫通孔が設けられた先細りの棒状部材、側面に段が設けられた(大径部と小径部を有する)棒状部材、断面が多角形である棒状部材であってもよい。
内側流路35の上端には、ニードル4が挿通され、内側流路35と連通するニードル貫通孔C37が設けてある。ニードル貫通孔C37の内径は、ニードル4の外径と実質的に同径である。ニードル貫通孔C37の僅かに下方となる位置には、中心軸と垂直(水平方向)に開口する、内側流路上部開口38が設けられている。この内側流路上部開口38を介して、内側流路35と流路形成部材34の外部とが連通される。内側流路35の下端には、バルブシート31の連通孔30および内側流路35と連通する流出孔39が設けられている。
また、外側流路36の長さが一定以上とすることで、ポンプ脈動を低減することができる。外側流路36が流路形成部材34の外周を例えば2周、3周、4周または5周以上旋回させることで、外側流路36の長さを確保することが可能である。さらに、外側流路36の長さを一定以上とすることは、流路形成部材34の材料を減らすことにも寄与する。このことは、流路形成部材34を金属により構成した場合に、液体材料Lの温度低下が小さくなるという技術的効果につながるものである。
一方、図2のB-B断面に示す外側流路下部開口41は、いずれの向きに設けられていてもよい。流路形成部材34の外側流路36は、単体では外部に開放している溝状であるが、図1に示すように、吐出装置1に組み込まれた場合、ニードル収容体18の内周面に覆われて閉じた(開放していない)流路を形成するからである。
例えば、ニードル収容体18の大きさがφ12[mm]×40[mm]のとき、外側流路36は、断面積で1~6[mm2]、長さが20~80[mm]の範囲で形成することが好ましい。また、内側流路35の直径は、ニードル4の直径の1.5~2.5倍の範囲で形成することが好ましい。他方、少なくとも第一流路20は、直径4~6[mm](断面積12.6~28.3[mm2])とし、外側流路36よりも断面積が大きく(太く)なるように形成することが好まく、より好ましくは断面積を2倍以上、さらに好ましくは3倍以上とする。そうすることで、循環流路を液体材料Lが流動する際に外側流路36が抵抗となって、循環のために用いるポンプ53の脈動を抑える(すなわち、ノズル19の吐出口28へ脈動を伝えないようにする)ことができる。さらに好ましくは、第一流路20の直径と第二流路21の直径とを同一とする。なお、上記数値は、液体材料Lの物性や、吐出装置1の大きさなどに応じて適宜調整され得るものであり、本発明は上記数値例に限定されない。
流路形成部材34に設けられた各流路(35、36)への液体材料Lの充填工程を図1および図2を参照しながら説明する。なお、ニードル4の先端はバルブシート31に当接し、連通孔30を閉じている状態とする。
図1において符号42で示すように、液体材料Lは、液体配管27から第一接続継手25を通って第一流路20へと供給され、流路形成部材34に到達する。流路形成部材34によって第二流路21への連通が閉ざされているため、液体材料Lは流路形成部材34の外側流路上部開口40へと流れ込む(図1の符号43)。外側流路上部開口40へと流れ込んだ液体材料Lは外側流路36を伝い、流路形成部材34の外周を回りながら上部から下部へと流れ進み、外側流路下部開口41に到達する。外側流路下部開口41から流出した液体材料Lは、バルブシート31に到達し、内側流路35へと流れ込む。バルブシート31の連通孔30はニードル4の先端により閉じているので、液体材料Lがノズル19の吐出口28から外へ流れ出ることはない。バルブシート31近傍(すなわち、内側流路35の下端付近)から内側流路35へと流れ込んだ液体材料Lは、内側流路35とニードル4との隙間を通り、下から上へと流れていく。液体材料Lが内側流路35の上端部分に達すると、内側流路上部開口38から流路形成部材34の外部へと流れ出て(図1の符号44)、第二流路21に流れ込む。第二流路21に到達した液体材料Lは、第二接続継手26を介して液体配管27へと流入する(図1の符号45)。液体配管27へと流入した液体材料Lは、後述するタンク51へと戻り、温度調節された後、ポンプ53により再び吐出装置へと供給される(すなわち、循環する)。以上が流路形成部材34での液体材料Lの充填工程の概略である。
本実施形態の吐出装置1は、液体材料Lを循環させるための循環機構50に接続される。図3に循環機構50の構成例を示す。
図3に示す循環機構50は、液体材料Lを貯留するタンク51と、タンク51に貯留された液体材料Lの温度を調節するヒーター52と、タンク51から液体材料Lを吸引し循環させるポンプ53と、ポンプ53とヒーター52の動作並びに吐出装置1への圧縮気体の供給・排出を制御する制御装置54と、レギュレータ61とを備えている。本実施形態の吐出装置1は、循環流路を構成する流路(35、36)の近傍に吐出口28が設けられており、循環流路から分岐された流路(30)における温度低下の影響が小さいため、従来の循環流路を備える吐出装置と比べ、液体材料Lの温度制御が容易である。
例えば、吐出装置1を回路基板へ絶縁防湿剤をコーティングする用途に用いる場合、設定温度は35~40℃で、液体材料の粘度は40~60[mPa・s]となる。
第2~5実施形態は、流路形成部材34の外側流路36の形状において第1実施形態と相違し、その他の点は第1実施形態と同一である。以下に開示するのは、流路形成部材34に形成する外側流路36は、いずれも同じ断面積形状で連続する一本の溝であり、液体材料Lの物性や塗布条件等に応じて最適な形態が選択される。図4に、第2~5実施形態に係る流路形成部材34を示す。なお、第2~5実施形態に係る流路形成部材34はいずれも円筒状であり、内側流路35の形状はいずれも第1実施形態と同じであるので説明を省略する。
第6~9実施形態は、流路形成部材34の外側流路36の形状において第1~5実施形態と相違し、その他の点は第1~5実施形態と同一である。第1~5実施形態では、隣接する外側流路36の軸方向の間隔はいずれも等間隔であったが、第6~9実施形態は隣接する外側流路36の軸方向の間隔が等間隔でない点で第1~5実施形態と相違する。なお、第6~9実施形態に係る流路形成部材34はいずれも円筒状であり、内側流路35の形状はいずれも第1~5実施形態と同じであるので説明を省略する。
図5(b)は第7実施形態に係る流路形成部材34を示している。第7実施形態では、上部では隣接する外側流路36の軸方向の間隔が狭く、下部では間隔が広くなっている。
図5(c)は第8実施形態に係る流路形成部材34を示している。第8実施形態では、上部および下部では隣接する外側流路36の軸方向の間隔が広く、中央部では間隔が狭くなっている。
図5(d)は第9実施形態に係る流路形成部材34を示している。第9実施形態では、上部および下部では隣接する外側流路36の軸方向の間隔が狭く、中央部では間隔が広くなっている。
図6(a)は第10実施形態に係る吐出装置1の接液部の側方断面図を示している。第10実施形態の流路形成部材34には、第5実施形態(図4(d))の如く軸方向に延びる外側流路36が形成されている。この外側流路36の上部開口40に近い箇所に、流動抵抗を高める多孔質材59が固設されている。多孔質材59は多数の孔を有しているので、液体材料Lの流動を完全に遮断することはない。この多孔質材59には、ランダムに形成された孔を有する部材のみならず、規則的に孔が形成された部材も含まれる。外側流路36の途中に配設する多孔質材59の数は1個に限定されず、複数個設けることにより流動抵抗を調節してもよい。第10実施形態は、外側流路36の流路長を確保できない場合でも、高いポンプ脈動の抑制を実現可能とするものである。また、第10実施形態によれば、外側流路36の断面積を大きくすることができるので、外側流路36のメンテナンス性を向上させることが可能となる。
Claims (13)
- 下方に開口する吐出口を有するノズルと、吐出口に連通する連通孔を有するバルブシートと、連通孔と連通する上下に延びる液室と、液室内で往復移動してバルブシートの連通孔を開閉するニードルと、液室に液体材料を供給する循環流路と、を備える液体材料吐出装置において、
上端部に設けられた上部開口および下端部に設けられた下部開口を有する外側流路、並びに、外側流路と連通する下部開口および上端部に設けられた上部開口を有する内側流路が形成された棒状の流路形成部材を設け、
前記液室に、前記流路形成部材を挿着し、前記外側流路の下部開口および前記内側流路の下部開口を前記バルブシートの連通孔と連通させ、
前記循環流路を、ニードルが延在する方向とは異なる方向に延在し、前記流路形成部材の外側流路の上部開口と連通する第一流路と、ニードルが延在する方向とは異なる方向に延在し、前記流路形成部材の内側流路の上部開口と連通する第二流路と、前記流路形成部材の外側流路と、前記流路形成部材の内側流路とにより構成したことを特徴とする液体材料吐出装置。 - 前記流路形成部材の外側流路の径が、前記第一流路よりも小径であることを特徴とする請求項1に記載の液体材料吐出装置。
- 前記流路形成部材の外側流路の断面積が、前記第一流路の断面積の1/2以下であることを特徴とする請求項2に記載の液体材料吐出装置。
- 前記流路形成部材の外側流路が、流路形成部材の外周に凹設された溝により構成され、
前記流路形成部材の内側流路が、流路形成部材を貫通する貫通孔により構成され、
前記流路形成部材の外径が、前記液室の内径よりも僅かに小径であることを特徴とする請求項1または2に記載の液体材料吐出装置。 - 前記流路形成部材の外側流路が、外側流路の入口から出口に至るまでに流路形成部材を1周以上周回することを特徴とする請求項4に記載の液体材料吐出装置。
- 前記流路形成部材の外側流路が、螺旋状に形成されることを特徴とする請求項5に記載の液体材料吐出装置。
- 前記液室を有するニードル収容体と、前記第一流路および前記第二流路を有する接液部材とを備え、ニードル収容体と接液部材とが着脱自在に固設されることを特徴とする請求項1または2に記載の液体材料吐出装置。
- 前記第一流路および前記第二流路が、接液部材内を水平方向に延びる孔を前記流路形成部材で分断することにより構成されることを特徴とする請求項7に記載の液体材料吐出装置。
- 前記流路形成部材の外側流路に、多孔質部材または水車部材が配設されることを特徴とする請求項1または2に記載の液体材料吐出装置。
- 液体材料を貯留するタンクと、
液体材料の温度を調節するヒーターと、
液体材料を前記タンクから前記第一流路または前記第二流路へと送り出すポンプと、
前記タンク、前記ポンプ、前記第一流路および前記第二流路を連通する循環配管と、
制御装置とを備え、
温度調節された液体材料を前記液室に循環供給することを特徴とする請求項1に記載の液体材料吐出装置。 - 前記ポンプが、前記第一流路へ液体材料を送り出すことを特徴とする請求項10に記載の液体材料吐出装置。
- 前記ポンプが、前記第二流路へ液体材料を送り出すことを特徴とする請求項11に記載の液体材料吐出装置。
- 請求項10、11または12に記載の液体材料吐出装置を用いて、吐出口から温度調節された液体材料を吐出する液体材料の吐出方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480061047.7A CN105813766B (zh) | 2013-11-06 | 2014-11-05 | 液体材料吐出装置及方法 |
DE112014005071.7T DE112014005071T5 (de) | 2013-11-06 | 2014-11-05 | Vorrichtung und Verfahren zur Abgabe flüssigen Materials |
US15/034,013 US11400482B2 (en) | 2013-11-06 | 2014-11-05 | Device and method for discharging liquid material |
HK16110878.8A HK1222599A1 (zh) | 2013-11-06 | 2016-09-14 | 液體材料吐出裝置及方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-230464 | 2013-11-06 | ||
JP2013230464A JP6180283B2 (ja) | 2013-11-06 | 2013-11-06 | 液体材料吐出装置および方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015068708A1 true WO2015068708A1 (ja) | 2015-05-14 |
Family
ID=53041485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079289 WO2015068708A1 (ja) | 2013-11-06 | 2014-11-05 | 液体材料吐出装置および方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11400482B2 (ja) |
JP (1) | JP6180283B2 (ja) |
DE (1) | DE112014005071T5 (ja) |
HK (1) | HK1222599A1 (ja) |
TW (1) | TWI629110B (ja) |
WO (1) | WO2015068708A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018056072A1 (ja) * | 2016-09-20 | 2018-03-29 | 武蔵エンジニアリング株式会社 | 液体材料吐出装置 |
US20180229259A1 (en) * | 2016-01-22 | 2018-08-16 | Boe Technology Group Co., Ltd. | Material coating apparatus and its control method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105436028A (zh) * | 2015-12-29 | 2016-03-30 | 法罗威(苏州)电子科技有限公司 | 一种用于涂覆机的水帘式阀门 |
JP6587945B2 (ja) * | 2016-01-27 | 2019-10-09 | Ntn株式会社 | 塗布機構、塗布装置、被塗布対象物の製造方法、および基板の製造方法 |
JP6842152B2 (ja) * | 2016-05-31 | 2021-03-17 | 武蔵エンジニアリング株式会社 | 液体材料吐出装置、その塗布装置および塗布方法 |
CN113000294A (zh) * | 2021-03-04 | 2021-06-22 | 华霆(合肥)动力技术有限公司 | 电池模组灌胶工装 |
CN115155877B (zh) * | 2022-08-09 | 2023-12-15 | 杭州加淼科技有限公司 | 一种金属间隙内表面喷漆处理设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605251A (ja) * | 1983-06-23 | 1985-01-11 | Toyo Seikan Kaisha Ltd | 塗料の連続的供給方法と装置 |
JPH05111659A (ja) * | 1991-04-30 | 1993-05-07 | Kanebo Nsc Ltd | 間欠塗工装置 |
US5336320A (en) * | 1992-06-30 | 1994-08-09 | Nordson Corporation | Fast response film coater |
JP2004330119A (ja) * | 2003-05-09 | 2004-11-25 | Musashi Eng Co Ltd | 循環式液状体吐出装置 |
JP2013192972A (ja) * | 2012-03-15 | 2013-09-30 | Musashi Eng Co Ltd | 液体材料吐出機構および液体材料吐出装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3743187A (en) * | 1970-02-02 | 1973-07-03 | Spirolet Corp | Nozzle |
US4687137A (en) * | 1986-03-20 | 1987-08-18 | Nordson Corporation | Continuous/intermittent adhesive dispensing apparatus |
US5076236A (en) * | 1990-03-19 | 1991-12-31 | Cummins Engine Company, Inc. | Fuel cutoff for better transient control |
JP2000033306A (ja) * | 1998-07-16 | 2000-02-02 | Kenwood Corp | 粘性体吐出装置 |
US6182908B1 (en) * | 1999-11-22 | 2001-02-06 | Spraying Systems Co. | Solenoid operated heated liquid spray device |
JP2001276716A (ja) * | 2000-03-28 | 2001-10-09 | Seiko Epson Corp | 塗装装置及び塗装方法 |
US6510836B2 (en) * | 2000-07-03 | 2003-01-28 | Murad M. Ismailov | Swirl injector for internal combustion engine |
JP4512861B2 (ja) * | 2000-07-10 | 2010-07-28 | ノードソン株式会社 | 広幅ヘッド又はノズルブロックの温度安定化方法 |
JP5191052B2 (ja) * | 2006-11-15 | 2013-04-24 | 武蔵エンジニアリング株式会社 | 液体材料の吐出方法および装置 |
KR101499597B1 (ko) * | 2007-03-08 | 2015-03-06 | 무사시 엔지니어링 가부시키가이샤 | 액적 토출 장치 및 방법 |
JP5419556B2 (ja) * | 2009-06-15 | 2014-02-19 | 武蔵エンジニアリング株式会社 | 高粘性材料の定量吐出装置および方法 |
KR101400580B1 (ko) * | 2010-01-15 | 2014-07-01 | 현대중공업 주식회사 | 연료분사펌프의 분사장치 |
-
2013
- 2013-11-06 JP JP2013230464A patent/JP6180283B2/ja active Active
-
2014
- 2014-11-05 WO PCT/JP2014/079289 patent/WO2015068708A1/ja active Application Filing
- 2014-11-05 DE DE112014005071.7T patent/DE112014005071T5/de active Pending
- 2014-11-05 US US15/034,013 patent/US11400482B2/en active Active
- 2014-11-06 TW TW103138517A patent/TWI629110B/zh active
-
2016
- 2016-09-14 HK HK16110878.8A patent/HK1222599A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605251A (ja) * | 1983-06-23 | 1985-01-11 | Toyo Seikan Kaisha Ltd | 塗料の連続的供給方法と装置 |
JPH05111659A (ja) * | 1991-04-30 | 1993-05-07 | Kanebo Nsc Ltd | 間欠塗工装置 |
US5336320A (en) * | 1992-06-30 | 1994-08-09 | Nordson Corporation | Fast response film coater |
JP2004330119A (ja) * | 2003-05-09 | 2004-11-25 | Musashi Eng Co Ltd | 循環式液状体吐出装置 |
JP2013192972A (ja) * | 2012-03-15 | 2013-09-30 | Musashi Eng Co Ltd | 液体材料吐出機構および液体材料吐出装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180229259A1 (en) * | 2016-01-22 | 2018-08-16 | Boe Technology Group Co., Ltd. | Material coating apparatus and its control method |
WO2018056072A1 (ja) * | 2016-09-20 | 2018-03-29 | 武蔵エンジニアリング株式会社 | 液体材料吐出装置 |
JP2018047410A (ja) * | 2016-09-20 | 2018-03-29 | 武蔵エンジニアリング株式会社 | 液体材料吐出装置 |
EP3517220A4 (en) * | 2016-09-20 | 2020-06-10 | Musashi Engineering, Inc. | LIQUID MATERIAL Ejection DEVICE |
Also Published As
Publication number | Publication date |
---|---|
JP6180283B2 (ja) | 2017-08-16 |
CN105813766A (zh) | 2016-07-27 |
TW201524616A (zh) | 2015-07-01 |
DE112014005071T5 (de) | 2016-08-25 |
JP2015089541A (ja) | 2015-05-11 |
US20160279664A1 (en) | 2016-09-29 |
TWI629110B (zh) | 2018-07-11 |
US11400482B2 (en) | 2022-08-02 |
HK1222599A1 (zh) | 2017-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015068708A1 (ja) | 液体材料吐出装置および方法 | |
ES2557429T3 (es) | Aparato y método para dosificar una mezcla de un gas y un material fluido | |
US20160023232A1 (en) | Liquid material discharge device, coating device thereof, and coating method | |
JP6686144B2 (ja) | 圧縮機の液体噴射を調整する方法、液体噴射式圧縮機及び液体噴射式圧縮機要素 | |
KR20140074974A (ko) | 액체 재료의 토출 장치 및 토출 방법 | |
CN107430986B (zh) | 喷嘴和液体供应装置 | |
US11602763B2 (en) | Dosing system with dosing material cooling device | |
JP2010270769A (ja) | グリスの充填装置及びグリスの充填方法 | |
JP5856332B1 (ja) | 微量流体流出方法および微量流体ディスペンサ | |
CN102514373A (zh) | 一种喷射墨滴的方法及装置 | |
JP5225040B2 (ja) | シームレスカプセル製造装置 | |
KR101589284B1 (ko) | 초미세 무화 액적 형성 노즐 어셈블리의 증발 냉각 방식 분무 장치 | |
CN108855657B (zh) | 喷嘴和包括它的涂胶系统 | |
JP3390831B2 (ja) | 塗布装置 | |
WO2019188698A1 (ja) | 液材供給装置 | |
CN105813766B (zh) | 液体材料吐出装置及方法 | |
FI114854B (fi) | Menetelmä nesteen syöttämiseksi liekkiruiskutuslaitteistoon | |
KR101221791B1 (ko) | 공작기계용 볼 스크류의 냉매 공급장치 | |
JP7410136B2 (ja) | 布地接着のためのノズル及びアプリケータシステム | |
CN202357593U (zh) | 一种喷射墨滴的装置 | |
JP2011173061A (ja) | 噴霧装置 | |
BE1023673B1 (nl) | Werkwijze voor het regelen van de vloeistofinjectie van een compressorinrichting, een vloeistofgeïnjecteerde compressorinrichting en een vloeistofgeïnjecteerd compressorelement | |
CN116020677A (zh) | 液滴喷射装置 | |
JP5912842B2 (ja) | 横型ベローズポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14860606 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 15034013 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014005071 Country of ref document: DE Ref document number: 1120140050717 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14860606 Country of ref document: EP Kind code of ref document: A1 |