WO2014115253A1 - 炭化珪素半導体装置及びその製造方法 - Google Patents
炭化珪素半導体装置及びその製造方法 Download PDFInfo
- Publication number
- WO2014115253A1 WO2014115253A1 PCT/JP2013/051233 JP2013051233W WO2014115253A1 WO 2014115253 A1 WO2014115253 A1 WO 2014115253A1 JP 2013051233 W JP2013051233 W JP 2013051233W WO 2014115253 A1 WO2014115253 A1 WO 2014115253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- silicon carbide
- type
- trench
- conductivity type
- Prior art date
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 153
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 148
- 239000004065 semiconductor Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 239000000758 substrate Substances 0.000 claims description 67
- 239000012535 impurity Substances 0.000 claims description 66
- 230000005684 electric field Effects 0.000 claims description 57
- 230000002093 peripheral effect Effects 0.000 claims description 20
- 238000002513 implantation Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 242
- 229910052751 metal Inorganic materials 0.000 description 42
- 239000002184 metal Substances 0.000 description 42
- 230000015572 biosynthetic process Effects 0.000 description 25
- 229910021332 silicide Inorganic materials 0.000 description 21
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 21
- 238000001312 dry etching Methods 0.000 description 18
- 239000011229 interlayer Substances 0.000 description 17
- 108091006146 Channels Proteins 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 229910052814 silicon oxide Inorganic materials 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 12
- 238000005468 ion implantation Methods 0.000 description 12
- 238000002161 passivation Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000002040 relaxant effect Effects 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 150000001721 carbon Chemical class 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005224 laser annealing Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 125000004437 phosphorous atom Chemical group 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 2
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PEUPIGGLJVUNEU-UHFFFAOYSA-N nickel silicon Chemical compound [Si].[Ni] PEUPIGGLJVUNEU-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H01L29/7813—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0455—Making n or p doped regions or layers, e.g. using diffusion
- H01L21/046—Making n or p doped regions or layers, e.g. using diffusion using ion implantation
- H01L21/047—Making n or p doped regions or layers, e.g. using diffusion using ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H01L29/0623—
-
- H01L29/0878—
-
- H01L29/66068—
-
- H01L29/66734—
-
- H01L29/0619—
-
- H01L29/0661—
-
- H01L29/1095—
-
- H01L29/1608—
-
- H01L29/7811—
Definitions
- the present invention relates to a silicon carbide semiconductor device and a manufacturing technique thereof, and more particularly to a trench type metal insulating semiconductor field effect transistor (Metal Insulator Semiconductor Field Effect Transistor: MISFET).
- MISFET Metal Insulator Semiconductor Field Effect Transistor
- a trench type MISFET using silicon carbide (SiC) has a high electric field strength of SiC, so that a high electric field is generated in the gate insulating film at the bottom of the trench at the time of off, and the gate insulating film is easily broken.
- Patent Document 1 proposes a technique for relaxing an electric field by placing a p-type layer directly under a gate insulating film below a trench. By placing the p-type layer directly below the gate insulating film below the trench in this way, the breakdown voltage is maintained at the junction between the p-type layer and the n-type layer of the drift layer below the gate insulating film. Sex is maintained.
- the trench-type MISFET has a gate-drain capacitance (feedback capacitance) that is larger than that of a DMIS (Double-diffused Metal-insulator-Semiconductor) FET.
- This increase in feedback capacity is undesirable because it causes a decrease in switching speed and a failure called false firing.
- this feedback capacitance can be reduced by forming a p-type layer below the trench.
- the formation of the p-type layer under the trench has the effect of relaxing the electric field applied to the gate insulating film and reducing the feedback capacitance.
- Patent Document 2 Japanese Patent No. 4577355 (Patent Document 2), in order to suppress this increase in on-resistance, the shape of the p-type layer is formed in a bow shape, the center of the p-type layer is brought closer to the lower part of the trench, and the periphery is separated from the trench.
- Patent Document 3 a p-type layer is disposed below the trench so as to intersect with a part of the lower portion of the trench. In this way, by arranging the p-type layer so as to intersect with a part of the lower part of the trench, the electric field applied to the gate insulating film at the time of OFF is alleviated.
- Patent Document 2 Japanese Patent No. 4577355
- Patent Document 3 Japanese Patent Application Laid-Open No. 2009-260064
- the positional relationship with the p-type layer is important.
- the influence of the n layer causes channel punch-through and lowers breakdown voltage.
- An object of the present invention is to provide a trench type MISFET that can both achieve a sufficient withstand voltage by relaxing an electric field applied to a gate insulating film in an off state and sufficiently reduce an on resistance in an on state.
- a first conductivity type substrate having a first main surface and a second main surface opposite to the first main surface and made of silicon carbide; and a first made of silicon carbide disposed on the first main surface.
- a silicon carbide semiconductor device A silicon carbide semiconductor device.
- a trench type MISFET structure capable of both ensuring a sufficient breakdown voltage while relaxing an electric field applied to the gate insulating film at the time of off and sufficiently reducing the on-resistance at the time of on. Can do.
- FIG. 1 is a top view of a main part of a silicon carbide semiconductor device configured by a plurality of SiC power MISFETs according to Example 1.
- 1 is a main part cross-sectional view of a silicon carbide semiconductor device of Example 1.
- FIG. FIG. 6 is a main-portion cross-sectional view of the silicon carbide semiconductor device for describing a manufacturing process of the silicon carbide semiconductor device of Example 1;
- FIG. 4 is a main-portion cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 3;
- FIG. 5 is a main part cross-sectional view of the silicon carbide semiconductor device showing the manufacturing process following FIG. 4.
- FIG. 6 is a main-portion cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 5.
- FIG. 5 is a main part cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 5.
- FIG. 7 is a main-portion cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 6.
- FIG. 8 is a main part cross-sectional view of the silicon carbide semiconductor device showing the manufacturing process following FIG. 7.
- FIG. 9 is a main part cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 8.
- FIG. 10 is a main part cross-sectional view of the silicon carbide semiconductor device, showing a manufacturing step following FIG. 9;
- FIG. 11 is a main-portion cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 10;
- FIG. 12 is a main-portion cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 11.
- FIG. 11 is a main-portion cross-sectional view of the silicon carbide semiconductor device, showing a manufacturing step following FIG. 9;
- FIG. 11 is a main-portion cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG.
- FIG. 13 is a main part cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 12.
- FIG. 14 is a main part cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 13;
- FIG. 15 is a main part cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 14;
- FIG. 16 is a main part cross-sectional view of the silicon carbide semiconductor device, showing a manufacturing step following FIG. 15;
- FIG. 17 is a main part cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 16;
- 6 is a cross-sectional view of a main part for explaining a modification of the SiC power MISFET according to Embodiment 1.
- FIG. 10 is a main-portion cross-sectional view of the silicon carbide semiconductor device, illustrating a manufacturing process of the silicon carbide semiconductor device according to Example 2.
- FIG. 20 is a main part cross-sectional view of the silicon carbide semiconductor device, showing a manufacturing step following FIG. 19;
- FIG. 10 is a main-portion cross-sectional view of a silicon carbide semiconductor device illustrating a manufacturing process of the silicon carbide semiconductor device according to Example 3.
- FIG. 22 is a main-portion cross-sectional view of the silicon carbide semiconductor device, showing the manufacturing process following FIG. 21.
- FIG. 1 is a main part top view of a semiconductor chip on which a silicon carbide semiconductor device composed of a plurality of SiC power MISFETs is mounted
- FIG. 2 is a main part sectional view of the SiC power MISFETs.
- the SiC power MISFET constituting the silicon carbide semiconductor device is a MISFET having a trench type structure.
- a semiconductor chip 1 on which a silicon carbide semiconductor device is mounted includes an active region (element forming region) 2 in which a plurality of n-channel SiC power MISFETs are connected in parallel, and the above active in a plan view. And a peripheral formation region surrounding the region 2.
- the peripheral formation region includes a plurality of p-type floating field limiting rings (FLR) 3 formed so as to surround the active region 2 in plan view, and the plurality of floating type field limiting rings (FLR) in plan view.
- An n-type channel stopper (vacant layer suppression layer) 4 is formed so as to surround the p-type FLR 3.
- SiC power MISFET gate electrode, an n + -type source region, a channel region, and the like are formed on the surface side of an active region of an n-type silicon carbide (SiC) epitaxial substrate (hereinafter referred to as an SiC epitaxial substrate), and an SiC epitaxial layer is formed.
- SiC epitaxial substrate n-type silicon carbide (SiC) epitaxial substrate
- SiC epitaxial substrate n-type silicon carbide (SiC) epitaxial substrate
- An n + type drain region of the SiC power MISFET is formed on the back side of the substrate.
- the maximum electric field portion sequentially moves to the outer FLR 3 and yields at the outermost FLR 3.
- High breakdown voltage can be achieved.
- FIG. 1 illustrates an example in which three FLRs 3 are formed, the number of rings is not limited to this.
- the n-type channel stopper 4 has a function of protecting the SiC power MISFET formed in the active region 2 from leakage current.
- the respective gate electrodes of the plurality of SiC power MISFETs formed in the active region 2 are connected in a plan view to form a stripe pattern, and all the lead wires (gate bus lines) connected to the respective stripe patterns are used.
- the gate electrode of the SiC power MISFET is electrically connected to the gate wiring electrode 5.
- the gate electrode is formed in a stripe pattern.
- the present invention is not limited to this, and it may be a box pattern or a polygon pattern.
- Each source region of the plurality of SiC power MISFETs is electrically connected to the source wiring electrode 7 through the opening 6 formed in the interlayer insulating film 112 covering the plurality of SiC power MISFETs.
- the gate wiring electrode 5 and the source wiring electrode 7 are formed to be separated from each other, and the source wiring electrode 7 is formed on almost the entire surface of the active region 2 except for the region where the gate wiring electrode 5 is formed. Is formed.
- the n + -type drain region 116 formed on the back surface side of the n-type SiC epitaxial substrate is electrically connected to the drain wiring electrode 117 formed on the entire back surface of the n-type SiC epitaxial substrate. .
- an n-type SiC substrate (substrate) 101 made of silicon carbide (SiC) made of silicon carbide (SiC) having an impurity concentration lower than that of the n-type SiC substrate 101 is formed on the surface of an n-type SiC substrate (substrate) 101.
- a p + -type drain layer 103 made of silicon carbide (SiC) having a higher impurity concentration than that of the n-type SiC substrate 101 is formed on the back surface of the SiC substrate (substrate) 101.
- the thickness of the n ⁇ -type drift layer 102 is 5 to 50 ⁇ m.
- a p-type body layer 105 is formed in the n ⁇ -type drift layer 102 with a predetermined depth from the surface of the n ⁇ -type drift layer 102. Further, an n + type source region 106 is formed in the p type body layer 105 with a predetermined depth from the surface of the n ⁇ type drift layer 102.
- the depth of the p-type body layer 105 from the surface of the drift layer 102 is 0.5 to 2.0 ⁇ m.
- the depth of the n + -type source region 106 from the surface of the drift layer 102 is 0.1 to 0.4 ⁇ m.
- a trench is formed from the surface of the n ⁇ type drift layer 102 through the n + type source region 106 and the p type body layer 105.
- the depth of the trench is deeper than the p-type body layer 105 and is 0.55 to 3.0 ⁇ m.
- An n-type resistance relaxation layer 109 is formed so as to cover the lower part of the trench penetrating the p-type body layer 105.
- the depth of the resistance relaxation layer 109 covering the trench from the trench is 0.05 to 0.5 ⁇ m.
- a p-type electric field relaxation layer 108 wider than the resistance relaxation layer 109 is formed below the resistance relaxation layer 109.
- the electric field relaxation layer 108 is wider by 0.05 to 1 ⁇ m than the resistance relaxation layer 109.
- the depth of the electric field relaxation layer 108 from the resistance relaxation layer 109 is 0.2 to 0.5 ⁇ m.
- a p + -type potential fixing layer 107 having a predetermined depth from the surface of the n ⁇ -type drift layer 102 and fixing the potential of the p-type body layer 105 is provided in the p-type body layer 105. Is formed.
- the depth of the p + -type potential fixing layer 107 from the surface of the drift layer 102 is 0.05 to 0.2 ⁇ m.
- ⁇ ” and + ” are signs representing the relative impurity concentration of n-type or p-type conductivity, and n-type impurities in the order of “n ⁇ ”, “n”, and “n + ”. The impurity concentration of becomes higher.
- the preferable range of the impurity concentration of the n + -type SiC substrate 101 is 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
- the preferable range of the impurity concentration of the n ⁇ -type drift layer 102 is 1 ⁇ 10 14 to 1 ⁇
- a preferable range of the impurity concentration of the 10 17 cm ⁇ 3 and the p-type body layer 105 is 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3
- a preferable range of the impurity concentration of the n + -type source region 106 is 1 ⁇ 10 17 to 1 ⁇ 10 21 cm ⁇ 3 .
- the preferable range of the impurity concentration of the n-type resistance relaxation layer 109 is 1 ⁇ 10 15 to 1 ⁇ 10 18 cm ⁇ 3
- the preferable range of the impurity concentration of the p-type field relaxation layer 108 is 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3
- a preferable range of the impurity concentration of the p + -type potential fixing layer 107 is a range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
- a gate insulating film 110 is formed on the side and lower surfaces of the trench, a gate electrode 111 is formed on the gate insulating film 116, and the trench is buried with the gate electrode 111.
- An interlayer insulating film 112 is formed so as to cover the gate electrode 111, and a part of the n + type source region 106 and the p + type potential fixing layer 107 are formed on the bottom surface of the opening formed in the interlayer insulating film 112.
- a metal silicide layer 113 is formed on the exposed surface. Further, part of the n + -type source region 106 and the p + -type potential fixing layer 107 are electrically connected to the source wiring electricity 114 through the metal silicide layer 113, and the n + -type drain region 103 is connected to the n + -type drain region 103. Is electrically connected to the drain wiring electrode 117 through the metal silicide layer 116.
- the gate electrode 111 is electrically connected to the gate wiring electrode.
- a source potential is applied to the source wiring electrode 114 from the outside
- a drain potential is applied to the drain wiring electrode 117 from the outside
- a gate potential is applied to the gate wiring electrode from the outside.
- An n-type resistance relaxation layer 109 is formed so as to cover a part of the trench that penetrates the p-type body layer 105 and the n + -type source region 106 of the trench MISFET, and is wider than the p-type resistance relaxation layer.
- An electric field relaxation layer 108 is formed. By forming the electric field relaxation layer 108, an electric field applied to the gate insulating film 110 at the time of off can be reduced, so that reliability of the gate insulating film is not impaired. Further, insertion of the resistance relaxation layer 109 facilitates channel punch-through. However, since the electric field relaxation layer 108 is formed wider than the resistance relaxation layer 109, the occurrence of channel punch-through is suppressed. ing.
- the electric field relaxation layer 108 when the electric field relaxation layer 108 is directly under the trench, a parasitic resistance is generated, which may increase the on-resistance.
- the resistance relaxation layer 109 is formed between the electric field relaxation layer 108 and the trench bottom so as to cover a part of the bottom and the side wall of the trench. Resisting the generation of resistance.
- the electric field relaxation layer 108 and the resistance relaxation layer 109 optimized to each other can achieve both low on-resistance, high breakdown voltage, and high reliability.
- FIGS. 3 to 18 are cross-sectional views of main parts showing in enlargement a part of the active region (element forming region) and a part of the peripheral forming region of the SiC power MISFET of the silicon carbide semiconductor device.
- an n-type 4H—SiC substrate 101 is prepared.
- An n-type impurity is introduced into the n-type SiC substrate 101.
- the n-type impurity is nitrogen (N).
- the n-type SiC substrate 101 has both a Si surface and a C surface, but in Example 1, the surface of the n-type SiC substrate 101 is an Si surface.
- an n ⁇ type drift layer 102 of silicon carbide (SiC) is formed on the surface of the n type SiC substrate 101 by an epitaxial growth method.
- An n-type impurity having an impurity concentration lower than that of the n-type SiC substrate 101 is introduced into the n ⁇ -type drift layer 102.
- SiC epitaxial substrate 104 composed of n-type SiC substrate 101 and n ⁇ -type drift layer 102 is formed.
- an n + -type drain region 103 is formed on the back surface of the n-type SiC substrate 101 with a predetermined depth from the back surface of the n-type SiC substrate 101.
- a first mask (a mask for recessing the peripheral region) is formed on the surface of the n ⁇ -type drift layer 102.
- the thickness of the first mask is 1.0 to 5.0 ⁇ m.
- the peripheral portion is processed by the dry etching method using the first mask to partially recess.
- the depth of the recess depends on the depth of the electric field relaxation layer 108 formed in the element forming portion, and the depth of the p-type body layer 105 in the recess is deeper than the depth of the bottom of the electric field relaxation layer 108.
- the depth to be recessed is set to 0.6 to 5.0 ⁇ m.
- a second mask (body layer 105 and FLR3 formation mask) is formed.
- the thickness of the second mask is set to 1.0 to 2.0 ⁇ m.
- a p-type impurity and aluminum atoms (Al) are ion-implanted into the n ⁇ -type drift layer 102 through the second mask.
- the p-type body layer 105 is formed in the element formation region of the n ⁇ -type drift layer 102
- the p-type FLR (hereinafter referred to as a ring) 3 is formed in the peripheral formation region.
- the depths of the p-type body layer 105 and the p-type FLR 3 from the surface of the drift layer 102 are 0.5 to 2.0 ⁇ m.
- the impurity concentration of the p-type body layer 105 and the p-type ring 105 is, for example, in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
- FLR3 is adopted in the peripheral formation region, but the structure of the peripheral formation region is not limited to this, and is a junction termination extension (JTE) structure. Also good.
- JTE junction termination extension
- a third mask (source region 106 and channel stopper 4 formation mask) is formed.
- the thickness of the third mask is 0.5 to 2.0 ⁇ m.
- n-type impurities, nitrogen atoms (N) or phosphorus atoms (P) are ion-implanted into the n ⁇ -type drift layer 102 to form an n + -type source region 106 in the element formation region,
- An n + type channel stopper 4 is formed in the peripheral formation region.
- the depths of the n + -type source region 106 and the n + -type channel stopper 4 from the surface of the drift layer 102 are 0.1 to 0.4 ⁇ m.
- the thickness of the fourth mask (mask for forming the potential fixing layer 107) is 0.5 to 2.0 ⁇ m.
- the p + -type potential fixing layer 107 is formed by ion-implanting p-type impurities and aluminum atoms (Al) into the n ⁇ -type drift layer 102 through the fourth mask.
- a hard mask (trench processing mask) is formed.
- a silicon oxide film is deposited by 1 to 4.0 ⁇ m using plasma (vapor phase epitaxy) CVD.
- a hard mask is formed by processing the silicon oxide film by a dry etching method using the resist pattern as a mask. This hard mask is opened only in a portion to be subjected to a desired trench process. The opening width is 0.5 to 2 ⁇ m.
- a trench is formed by dry etching so as to penetrate the n + -type source region 106 and the p-type body layer 105 using a hard mask.
- the trench depth is 0.55 to 3.0 ⁇ m.
- the electric field relaxation layer 108 is formed at a position away from the center of the lower portion of the trench.
- the impurity distribution is also expanded when the ions are implanted, resulting in a wider width than the resistance relaxation layer 109 formed after the electric field relaxation layer 108.
- the width of the electric field relaxation layer 108 is 0.05 to 1 ⁇ m wider than that of the resistance relaxation layer 109.
- n-type impurities, N (nitrogen), and P (phosphorus) are obliquely ion implanted into the lower portion of the trench to cover the lower portion of the n-type resistance relaxation layer 109.
- the tilt angle of the oblique ion implantation is 0 to 20 degrees
- the resistance relaxation layer 109 is formed so as to cover the lower portion of the trench by performing ion implantation four times with the twist angle being 45 degrees, 135 degrees, 225 degrees, and 315 degrees. can do.
- the ion implantation energy is in the range of 5 keV to 300 keV.
- the resistance relaxation layer 109 By injecting with low energy, the resistance relaxation layer 109 can be formed between the lower portion of the trench and the electric field relaxation layer 108. Further, the spread can be narrower than that of the electric field relaxation layer 108.
- the impurity concentration of the resistance relaxation layer 109 is lower than that of the electric field relaxation layer 108, which is 1/5 in this embodiment.
- a carbon (C) film is deposited on the front and back surfaces of the SiC epitaxial substrate 104 by plasma CVD.
- the thickness of the carbon (C) film is 0.03 ⁇ m.
- a gate insulating film 110 is formed on the surface of the n ⁇ -type drift layer 102.
- the gate insulating film 110 is made of a silicon oxide (SiO 2 ) film formed by a thermal CVD method.
- the thickness of the gate insulating film 110 is 0.05 to 0.15 ⁇ m.
- a high dielectric film having a relative dielectric constant higher than that of silicon oxide is used for the gate insulating film 110, an electric field applied to the gate insulating film 110 at the time of off can be reduced.
- a high dielectric film made of one or a plurality from the group consisting of silicon nitride, silicon oxynitride, hafnium oxide, aluminum oxide, and zirconium oxide can be used.
- an n-type polycrystalline silicon (Si) film 111 is deposited so as to fill the trench on the gate insulating film.
- the thickness of the n-type polycrystalline silicon film 111 is 0.25 to 1.5 ⁇ m although it depends on the opening width of the trench.
- the polycrystalline silicon film 111 is processed by a dry etching method using a fifth mask (gate electrode processing mask) to form the gate electrode 111.
- a fifth mask gate electrode processing mask
- the interlayer insulating film 112 is formed by plasma CVD so as to cover the gate electrode 111 and the gate insulating film 110 on the surface of the n ⁇ type drift layer 102. Form.
- the interlayer insulating film 112 and the gate insulating film 110 are processed by a dry etching method using a sixth mask (contact processing mask) to form one n + -type source region 106. And an opening reaching the p + -type potential fixing layer 107 is formed.
- a metal silicide layer 113 is formed.
- the first metal film nickel (Ni)
- Ni nickel
- the thickness of the first metal film is 0.05 ⁇ m.
- the first metal film and the n ⁇ -type drift layer 102 are reacted at the bottom surface of the opening, so that the metal silicide layer 113, the nickel silicide (NiSi) layer Are formed on a part of the n + -type source region 106 exposed on the bottom surface of the opening and on the respective surfaces of the p + -type potential fixing layer 107.
- the unreacted first metal film is removed by a wet etching method. In the wet etching method, sulfuric acid / hydrogen peroxide is used.
- the interlayer insulating film 112 is processed by a dry etching method through a mask to form an opening (not shown) reaching the gate electrode 111.
- a laminated film composed of a third metal film, a titanium (Ti) film, a titanium nitride (TiN) film, and an aluminum (Al) film is deposited on the interlayer insulating film 112 including the inside of the opening (not shown) that reaches .
- the thickness of the aluminum (Al) film is preferably 2.0 ⁇ m or more.
- a gate wiring electrode (not shown) that is electrically connected to the gate electrode 111 is formed.
- a passivation film 115 for protecting the element is formed.
- the thickness of the passivation film is 2 to 10 ⁇ m, and the passivation film 115 made of silicon oxide or polyimide is used as the material.
- a second metal film is deposited on the back surface of the n + -type SiC substrate 101 by sputtering.
- the thickness of this second metal film is 0.1 ⁇ m.
- the second metal film and the n + type SiC substrate 101 are caused to react with each other, so that the n + type SiC substrate 101 has a back surface side.
- a metal silicide layer 116 is formed so as to cover the formed n + -type drain region 103.
- a drain wiring electrode 117 is formed so as to cover the metal silicide layer 116.
- the drain wiring electrode 117 has a thickness of 0.4 ⁇ m.
- the n-type resistance relaxation layer 109 is formed so as to cover a part of the trench that penetrates the p-type body layer 105 and the n + -type source region 106 of the trench MISFET.
- the electric field relaxation layer 108 wider than the p-type resistance relaxation layer is formed, the electric field applied to the gate insulating film 110 at the time of OFF can be relaxed, so that the reliability of the gate insulating film is not impaired. Channel punch-through can be suppressed, and parasitic resistance can also be suppressed.
- the feedback capacitance can be reduced by forming the electric field relaxation layer 108, the switching speed can be increased, and the reliability in circuit operation such as false firing can be improved. .
- the SiC power trench type MISFET having both high breakdown voltage, high reliability, and high performance can be realized by the electric field relaxation layer 108 and the resistance relaxation layer 109 that are optimized to each other.
- FIGS. 19 to 20 are cross-sectional views of main parts of the silicon carbide semiconductor device for explaining a manufacturing process of the silicon carbide semiconductor device according to the second embodiment.
- n ⁇ type drift layer 119 is formed on the surface of n type SiC substrate 118.
- the impurity concentration of the n + -type SiC substrate 119 is in the range of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
- the impurity concentration of the n ⁇ -type drift layer 119 is 1 ⁇ 10 14 to 1 ⁇ 10 17. It is in the range of cm ⁇ 3 .
- an n + type drain region 120 is formed on the back surface side of the n + type SiC substrate 118.
- the impurity concentration of the n + -type drain region 120 is in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
- the difference from the first embodiment is that the polarities of the front and back surfaces of the epitaxial substrate 104 and the epitaxial substrate 121 are opposite. That is, the surface of the epitaxial substrate 121 of Example 2 is the C plane, and the back surface is the Si plane.
- the peripheral part is processed by a dry etching method to partially recess (not shown).
- the depth of the recess depends on the depth of the electric field relaxation layer 108 formed in the element forming portion, and the depth of the p-type body layer 105 in the recess is deeper than the depth of the bottom of the electric field relaxation layer 108. It is formed.
- the depth to be recessed is 0.6 to 5.0 ⁇ m.
- the p-type body layer 105 is formed in the element formation region of the n ⁇ -type drift layer 119, and the p-type ring 105 is formed in the peripheral formation region (not shown).
- the depths of the p-type body layer 105 and the p-type ring 105 from the surface of the drift layer 119 are 0.5 to 2.0 ⁇ m.
- the impurity concentration of the p-type body layer 105 and the p-type ring 105 is in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
- a p-type ring 105 is formed in the peripheral formation region.
- the structure of the termination portion is not limited to this, and a junction termination extension (JTE) structure is used. There may be.
- n-type impurities, nitrogen atoms (N) or phosphorus atoms (P) are ion-implanted into the n ⁇ -type drift layer 119 to form the n + -type source region 106 in the element formation region, and the peripheral formation region
- An n + -type channel stopper 4 is formed on (not shown).
- the depths of the n + -type source region 106 and the n + -type channel stopper 4 from the surface of the drift layer 102 are 0.1 to 0.4 ⁇ m.
- p + -type impurity and aluminum atoms (Al) are ion-implanted into the n ⁇ -type drift layer 119 to form the p + -type potential fixing layer 107.
- a hard mask is formed (not shown).
- a silicon oxide film is deposited by 1 to 4.0 ⁇ m using plasma (vapor phase epitaxy) CVD.
- a hard mask is formed by processing the silicon oxide film by a dry etching method using the resist pattern as a mask. This silicon oxide mask is opened only in a portion to be subjected to a desired trench process. The opening width is 0.5 to 2 ⁇ m.
- a trench is formed by dry etching so as to penetrate the n + type source region 106 and the p type body layer 105 using a hard mask (not shown).
- p-type impurities, Al and B are ion-implanted under the trench to form a p-type field relaxation layer 108 (not shown).
- the impurity ion implantation energy of the electric field relaxation layer 108 is in the range of 100 keV to 1000 keV. By injecting with high energy, the electric field relaxation layer 108 can be formed at a position away from the trench lower center. The distance is 0.05 to 0.5 ⁇ m.
- the impurity distribution is also expanded when the ions are implanted, resulting in a wider width than the resistance relaxation layer 109 formed after the electric field relaxation layer 108.
- the width of the electric field relaxation layer 108 is 0.05 to 1 ⁇ m wider than that of the resistance relaxation layer 109.
- n-type impurities, nitrogen N, and phosphorus P are obliquely ion-implanted into the lower portion of the trench to form an n-type resistance relaxation layer 109 so as to cover the lower portion of the trench (not shown).
- the impurity concentration of the n-type resistance relaxation layer 109 is 1 ⁇ 10 15 to 1 ⁇ 10 18 cm ⁇ 3 .
- the tilt angle of the oblique ion implantation is 0 to 20 degrees, and the resistance relaxation layer 109 is formed so as to cover the lower portion of the trench by performing ion implantation four times with the twist angle being 45 degrees, 135 degrees, 225 degrees, and 315 degrees. can do.
- the ion implantation energy is in the range of 5 keV to 300 keV.
- the resistance relaxation layer 109 can be formed between the lower portion of the trench and the electric field relaxation layer 108. Further, the spread can be narrower than that of the electric field relaxation layer 108.
- the impurity concentration of the resistance relaxation layer 109 is lower than that of the electric field relaxation layer 108 and is 1/5.
- a carbon (C) film is deposited on the front and back surfaces of the SiC epitaxial substrate 121 by plasma CVD.
- the thickness of the carbon (C) film is 0.03 ⁇ m.
- a gate insulating film 110 and a gate insulating film 122 at the bottom of the trench are formed on the surface of the n ⁇ type drift layer 119.
- the bottom of the trench is a C plane, and the oxidation rate when the C plane is thermally oxidized is faster than other plane orientations. That is, the gate insulating film 122 at the bottom of the trench can be formed thicker than the gate insulating film 111 on the side surface of the trench.
- the gate insulating film 122 can be formed to be 2 to 10 times thicker than the gate insulating film 110.
- the thickness of the gate insulating film 110 and the gate insulating film 122 can be adjusted by a thermal CVD method.
- the thickness of the gate insulating film 110 is 0.05 to 0.15 ⁇ m.
- the thickness of the gate insulating film 122 is 0.1 to 0.5 ⁇ m.
- an n-type polycrystalline silicon (Si) film 111 is deposited so as to fill the trench on the gate insulating film (not shown).
- the thickness of the n-type polycrystalline silicon film 111 is 0.25 to 1.5 ⁇ m although it depends on the opening width of the trench.
- the polycrystalline silicon film 111 is processed by dry etching to form the gate electrode 111. Further, after removing the fifth mask, the gate electrode 111 and the gate insulating film 110 are formed on the surface of the n ⁇ -type drift layer 102.
- An interlayer insulating film 112 is formed by plasma CVD so as to cover (not shown).
- the interlayer insulating film 112 and the gate insulating film 110 are processed by a dry etching method to form an opening reaching a part of the n + -type source region 106 and the p + + -type potential fixing layer 107 (not shown). )
- a metal silicide layer 113 is formed on a part of the n + -type source region 106 exposed on the bottom surface of the opening and the surface of the p + -type potential fixing layer 107 (not shown).
- the interlayer insulating film 112 is processed by a dry etching method to form an opening (not shown) reaching the gate electrode 111.
- a laminated film made of a third metal film, a titanium (Ti) film, a titanium nitride (TiN) film, and an aluminum (Al) film is deposited on the interlayer insulating film 112 including the inside of the (omitted).
- the thickness of the aluminum (Al) film is preferably 2.0 ⁇ m or more.
- a gate wiring electrode (not shown) that is electrically connected to the gate electrode 111 is formed.
- a passivation film 115 for protecting the element is formed.
- the thickness of the passivation film is 2 to 10 ⁇ m, and the passivation film 115 made of silicon oxide or polyimide is used as the material.
- a second metal film is deposited on the back surface of the n + -type SiC substrate 118 by a sputtering method.
- the thickness of this second metal film is 0.1 ⁇ m.
- n + -type SiC substrate 118 A metal silicide layer 116 is formed so as to cover the n + -type drain region 120 formed. Subsequently, a drain wiring electrode 117 is formed so as to cover the metal silicide layer 116.
- the drain wiring electrode 117 has a thickness of 0.4 ⁇ m.
- the gate insulating film 122 at the bottom of the trench of the trench type MISFET can be made thicker than the gate insulating film 110 on the side wall of the trench. Therefore, since the electric field applied to the gate insulating film 122 can be further relaxed at the time of OFF, a SiC power trench type MISFET with improved gate insulating film reliability can be realized.
- FIGS. 21 to 22 are enlarged cross-sectional views showing a part of the SiC power MISFET formation region (element formation region) and a part of the peripheral formation region of the silicon carbide semiconductor device.
- An n ⁇ type drift layer 102 is formed on the surface of an n + type SiC substrate (substrate) 101 to form an SiC epitaxial substrate 104 composed of the n + type SiC substrate 101 and the n ⁇ type drift layer 102.
- the impurity concentration of the n + -type SiC substrate 101 is in the range of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
- the impurity concentration of the n ⁇ -type drift layer 102 is 1 ⁇ 10 14 to 1 ⁇ 10 17. It is in the range of cm ⁇ 3 .
- an n + type drain region 103 is formed on the back side of the n + type SiC substrate 101.
- the impurity concentration of the n + -type drain region 103 is in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
- the polarity of the surface may be the Si plane or the C plane, but this embodiment assumes the Si plane.
- the peripheral portion is processed by dry etching (not shown).
- the depth of the recess depends on the depth of the electric field relaxation layer 108 formed in the element forming portion, and the depth of the p-type body layer 105 in the recess is deeper than the depth of the bottom of the electric field relaxation layer 108. It is formed.
- the depth to be recessed is 0.6 to 5.0 ⁇ m.
- a p-type body layer 105 is formed in the element formation region of the n ⁇ -type drift layer 102, and a p-type ring 105 is formed in the peripheral formation region (not shown).
- the depths of the p-type body layer 105 and the p-type ring 105 from the surface of the drift layer 102 are 0.5 to 2.0 ⁇ m.
- the impurity concentration of the p-type body layer 105 and the p-type ring 105 is in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
- a p-type ring 105 is formed in the peripheral formation region.
- the structure of the termination is not limited to this, and a p-type junction termination extension (JTE) is used. ) Structure.
- a seventh mask (high energy implantation mask) is formed, and a p-type body layer 123 is formed.
- the depth of the p-type body layer 123 is 0.55 to 3.0 ⁇ m depending on the position of the bottom of the trench.
- the impurity concentration is in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
- There are various methods for forming the p-type body layer 123 such as a method of implanting impurities after the trench is formed once, but the third embodiment is a method using high energy implantation.
- the energy is in the range of 400 keV to 1500 keV.
- the distance between the p-type body layer 123 and the side surface of the trench is 0.1 to 0.5 ⁇ m.
- n-type impurities, nitrogen atoms (N) or phosphorus atoms (P) are ion-implanted into the n ⁇ -type drift layer 102 to form an n + -type source region 106 in the element formation region, and the peripheral formation region
- An n + -type channel stopper 106 is formed on (not shown).
- the depths of the n + -type source region 106 and the n + -type channel stopper 106 from the surface of the drift layer 102 are 0.1 to 0.4 ⁇ m.
- p-type impurities and aluminum atoms (Al) are ion-implanted into the n ⁇ -type drift layer 102 to form a p + -type potential fixing layer 107 (not shown).
- the depth of the p + -type potential fixing layer 107 from the surface of the drift layer 102 is 0.1 to 0.4 ⁇ m.
- the impurity concentration of the p + -type potential fixing layer 107 is in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
- a hard mask is formed (not shown).
- a silicon oxide film is deposited by 1 to 4.0 ⁇ m using plasma (vapor phase epitaxy) CVD.
- a hard mask is formed by processing the silicon oxide film by a dry etching method using the resist pattern as a mask.
- This silicon oxide mask has an opening in a portion where a desired trench process is to be performed. The opening width is 0.5 to 2 ⁇ m.
- a trench is formed by dry etching so as to penetrate the n + type source region 106 and the p type body layer 105 using a hard mask (not shown).
- the trench depth is 0.55 to 3.0 ⁇ m.
- p-type impurities, Al and B are ion-implanted under the trench to form a p-type field relaxation layer 108 (not shown).
- the impurity concentration of the electric field relaxation layer 108 is 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 , and the ion implantation energy is in the range of 100 keV to 1000 keV.
- the electric field relaxation layer 108 can be formed at a position away from the trench lower center. The distance is 0.05 to 0.5 ⁇ m.
- the impurity distribution is also expanded when the ions are implanted, resulting in a wider width than the resistance relaxation layer 109 formed after the electric field relaxation layer 108.
- the width of the electric field relaxation layer 108 is 0.05 to 1 ⁇ m wider than that of the resistance relaxation layer 109.
- n-type impurities, N and P are obliquely ion implanted into the lower portion of the trench to form an n-type resistance relaxation layer 109 so as to cover the lower portion of the trench (not shown).
- the impurity concentration of the n-type resistance relaxation layer 109 is 1 ⁇ 10 15 to 1 ⁇ 10 18 cm ⁇ 3 .
- the tilt angle of the oblique ion implantation is 0 to 20 degrees, and the resistance relaxation layer 109 is formed so as to cover the lower portion of the trench by performing ion implantation four times with the twist angle being 45 degrees, 135 degrees, 225 degrees, and 315 degrees. can do.
- the ion implantation energy is in the range of 5 keV to 300 keV.
- the resistance relaxation layer 109 can be formed between the lower portion of the trench and the electric field relaxation layer 108. Further, the spread can be narrower than that of the electric field relaxation layer 108.
- the impurity concentration of the resistance relaxation layer 109 is lower than that of the electric field relaxation layer 108 and is 1/5.
- a carbon (C) film is deposited on the front and back surfaces of the SiC epitaxial substrate 104 by plasma CVD.
- the thickness of the carbon (C) film is 0.03 ⁇ m.
- a gate insulating film 110 is formed on the surface of the n ⁇ type drift layer 102 (not shown).
- the gate insulating film 110 is made of a silicon oxide (SiO 2 ) film formed by a thermal CVD method.
- the thickness of the gate insulating film 110 is 0.05 to 0.15 ⁇ m.
- an n-type polycrystalline silicon (Si) film 111 is deposited so as to fill the trench on the gate insulating film (not shown).
- the thickness of the n-type polycrystalline silicon film 111 is 0.25 to 1.5 ⁇ m although it depends on the opening width of the trench.
- the polycrystalline silicon film 111 is processed by a dry etching method to form the gate electrode 111 (not shown).
- an interlayer insulating film 112 is formed by plasma CVD so as to cover the gate electrode 111 and the gate insulating film 110 on the surface of the n ⁇ type drift layer 102 (not shown). ).
- the interlayer insulating film 112 and the gate insulating film 110 are processed by a dry etching method to form an opening reaching a part of the n + -type source region 106 and the p + + -type potential fixing layer 107 (not shown). )
- a metal silicide layer 113 is formed on a part of the n + -type source region 106 exposed on the bottom surface of the opening and the surface of the p + -type potential fixing layer 107 (not shown).
- the interlayer insulating film 112 is processed by a dry etching method to form an opening (not shown) reaching the gate electrode 111.
- a laminated film made of a third metal film, a titanium (Ti) film, a titanium nitride (TiN) film, and an aluminum (Al) film is deposited on the interlayer insulating film 112 including the inside of the (omitted).
- the thickness of the aluminum (Al) film is preferably 2.0 ⁇ m or more.
- a gate wiring electrode (not shown) that is electrically connected to the gate electrode 111 is formed.
- a passivation film 115 for protecting the element is formed.
- the thickness of the passivation film is 2 to 10 ⁇ m, and the passivation film 115 made of silicon oxide or polyimide is used as the material.
- a second metal film is deposited on the back surface of the n + -type SiC substrate 101 by sputtering.
- the thickness of this second metal film is 0.1 ⁇ m.
- a silicidation process is performed by laser annealing to cause the second metal film to react with the n + -type SiC substrate 101 and to form on the back surface side of the n + -type SiC substrate 101.
- a metal silicide layer 116 is formed so as to cover the n + -type drain region 103 formed.
- a drain wiring electrode 117 is formed so as to cover the metal silicide layer 116.
- the drain wiring electrode 117 has a thickness of 0.4 ⁇ m.
- the electric field applied to the gate insulating film 122 at the time of OFF is further relaxed. be able to. Therefore, an SiC power trench type MISFET with improved gate insulating film reliability can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
実施例1による炭化珪素半導体装置の構造について図1および図2を用いて説明する。図1は複数のSiCパワーMISFETにより構成される炭化珪素半導体装置が搭載された半導体チップの要部上面図、図2はSiCパワーMISFETの要部断面図である。炭化珪素半導体装置を構成するSiCパワーMISFETは、トレンチ型構造のMISFETである。
≪炭化珪素半導体装置の製造方法≫
実施例1による炭化珪素半導体装置の製造方法について図3~図18を用いて工程順に説明する。図3~図18は炭化珪素半導体装置のSiCパワーMISFETのアクティブ領域(素子形成領域)の一部および周辺形成領域の一部をそれぞれ拡大して示す要部断面図である。
≪炭化珪素半導体装置の製造方法≫
本実施例2による炭化珪素半導体装置の製造方法について図19~図20を用いて工程順に説明する。図19~図20は実施例2による炭化珪素半導体装置の製造工程を説明する炭化珪素半導体装置の要部断面図である。
≪炭化珪素半導体装置の製造方法≫
次に、本実施例3による炭化珪素半導体装置の製造方法について、図21~図22を用いて工程順に説明する。図21~図22は炭化珪素半導体装置のSiCパワーMISFET形成領域(素子形成領域)の一部および周辺形成領域の一部をそれぞれ拡大して示す要部断面図である。
2…アクティブ領域(素子形成領域)、3…FLR、
4…チャネルストッパ、
5…ゲート配線用電極、
6…開口部、
7…ソース配線用電極、
101…SiC基板(基板)、
102…ドリフト層、
103…ドレイン領域、
105…p型のボディ層(ウェル領域)
106…ソース領域、
107…電位固定層、
108…電界緩和層、
109…抵抗緩和層、
110…ゲート絶縁膜、
111…ゲート電極、
112…層間絶縁膜、
113…金属シリサイド、
114…ソース電極、
115…パッシベーション膜、
116…金属シリサイド、
117…ドレイン電極、
118…SiC基板、
119…ドリフト層、
120…nドレイン領域、
122…トレンチ底部のゲート絶縁膜、
123…深い位置に形成されたp型のボディ層
Claims (11)
- 第1主面および前記第1主面と反対面の第2主面を有し、炭化珪素からなる第1導電型の基板と、
前記第1主面上に配置された炭化珪素からなる第1導電型ドリフト層と、
前記ドリフト層上に配置された前記第1導電型とは異なる第2導電型のボディ層と、
前記ボディ層に接する第1導電型のソース領域と、
前記ボディ層内を貫通して前記ドリフト層まで至るトレンチと、
前記トレンチの内壁に配置されたゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ボディ層に接するゲート電極と、
前記基板の第2主面に配置された第1導電型のドレイン領域と、
前記ドリフト層内のトレンチに接する抵抗緩和層と、
前記抵抗緩和層の底部の一部に接し、前記抵抗緩和層より幅が広い電界緩和層を有することを特徴とする炭化珪素半導体装置。 - 請求項1において、前記電界緩和層の不純物濃度が前記抵抗緩和層より高濃度であることを特徴とする炭化珪素半導体装置。
- 第1主面および前記第1主面と反対面の第2主面を有し、炭化珪素からなる第1導電型の基板と、
前記基板の前記第1主面上配置された炭化珪素からなる第1導電型ドリフト層と、
前記ドリフト層上に配置された前記第1導電型とは異なる第2導電型のボディ層と、
前記ボディ層に接する第1導電型のソース領域と、
前記ボディ層内を貫通して、前記ドリフト層まで至るトレンチと、
前記トレンチの内壁を覆っているゲート絶縁膜と、
前記ゲート絶縁膜を介してボディ層に接するゲート電極と、
前記基板の第2主面に配置された第1導電型のドレイン領域と、
前記ドリフト層内のトレンチに接し、かつ前記ドリフト層よりも高濃度に不純物が注入された第1導電型の第1半導体領域と、
前記第1半導体領域に接し、かつ前記第1半導体領域より幅が広い第2導電型の第2半導体領域とを有することを特徴とする炭化珪素半導体装置。 - 請求項3において、
前記第2半導体領域の不純物濃度が前記第1半導体領域の不純物濃度より高濃度であることを特徴とする炭化珪素半導体装置。 - 請求項3において、
前記第2半導体領域の幅が前記第1半導体領域より0.05~1μmだけ広いことを特徴とする炭化珪素半導体装置。 - 請求項3において、
前記トレンチの下部中心から前記第2半導体領域の距離が0.05~0.5μmであることを特徴とする炭化珪素半導体装置。 - 請求項3において、
前記第1半導体領域の不純物濃度が前記第2半導体領域の不純物濃度の1/5以下であることを特徴とする炭化珪素半導体装置。 - 請求項3において、
前記周辺部がリセスされ、リセス部分にターミネーション構造があり、
前記第2半導体領域は、前記周辺部のターミネーションに設けず、アクティブ領域に設けることを特徴とする炭化珪素半導体装置。 - (a)第1導電型である第1炭化珪素層の第1主面上に、第1炭化珪素層よりも低濃度な第1導電型の第2炭化珪素層を備えたエピタキシャル基板の第1主面側から前記第1導電型とは異なる第2導電型の不純物を前記第2炭化珪素層よりより浅く注入して第3炭化珪素層を形成する工程、
(b)前記第3炭化珪素層の第1主面側から、前記工程(a)の不純物注入深さより浅く第1導電型の不純物を注入して第4炭化珪素層を形成する工程、
(c)前記第4炭化珪素層の第1主面側から、前記第3炭化珪素層を貫通して前記第4炭化珪素層にまで至るトレンチを形成する工程、
(d)前記第3炭化珪素層の第1主面側から、第2導電型の不純物を注入して前記トレンチの下方に第5炭化珪素層を形成する工程と、
(e)前記第4炭化珪素層内のトレンチ表面から、前記第5炭化珪素層と前記トレンチの間に第1導電型の不純物を斜め注入して第6炭化珪素層を形成する工程と、
を有することを特徴とする炭化珪素半導体装置の製造方法。 - 請求項9において、
前記工程(a)の前に、前記炭化珪素半導体装置の周辺をリセスする工程を備え、
前記リセスする深さは、工程(a)により、前記第5炭化珪素層の下部よりも下方に第2導電型不純物が注入されることを特徴とする炭化珪素半導体装置の製造方法。 - 請求項10において、
前記工程(e)の後に、前記トレンチ下部の膜厚が前記トレンチ側壁部の膜厚より厚いゲート絶縁膜を形成することを特徴とする炭化珪素半導体装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/760,166 US9825166B2 (en) | 2013-01-23 | 2013-01-23 | Silicon carbide semiconductor device and method for producing same |
JP2014558322A JP5985662B2 (ja) | 2013-01-23 | 2013-01-23 | 炭化珪素半導体装置及びその製造方法 |
PCT/JP2013/051233 WO2014115253A1 (ja) | 2013-01-23 | 2013-01-23 | 炭化珪素半導体装置及びその製造方法 |
DE112013006308.5T DE112013006308B4 (de) | 2013-01-23 | 2013-01-23 | Siliziumcarbid - halbleitervorrichtung und verfahren zu ihrer herstellung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/051233 WO2014115253A1 (ja) | 2013-01-23 | 2013-01-23 | 炭化珪素半導体装置及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014115253A1 true WO2014115253A1 (ja) | 2014-07-31 |
Family
ID=51227070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/051233 WO2014115253A1 (ja) | 2013-01-23 | 2013-01-23 | 炭化珪素半導体装置及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9825166B2 (ja) |
JP (1) | JP5985662B2 (ja) |
DE (1) | DE112013006308B4 (ja) |
WO (1) | WO2014115253A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016092257A (ja) * | 2014-11-06 | 2016-05-23 | 株式会社デンソー | 炭化珪素半導体装置およびその製造方法 |
JP2016162918A (ja) * | 2015-03-03 | 2016-09-05 | トヨタ自動車株式会社 | 半導体装置の製造方法 |
JP2017092355A (ja) * | 2015-11-13 | 2017-05-25 | 富士電機株式会社 | 半導体装置および半導体装置の製造方法 |
JP2018049908A (ja) * | 2016-09-21 | 2018-03-29 | 株式会社東芝 | 半導体装置及びその製造方法 |
JP6377309B1 (ja) * | 2017-03-06 | 2018-08-22 | 三菱電機株式会社 | 炭化珪素半導体装置、電力変換装置、炭化珪素半導体装置の製造方法、および電力変換装置の製造方法 |
WO2018163593A1 (ja) * | 2017-03-06 | 2018-09-13 | 三菱電機株式会社 | 炭化珪素半導体装置、電力変換装置、炭化珪素半導体装置の製造方法、および電力変換装置の製造方法 |
JP2018207101A (ja) * | 2017-06-07 | 2018-12-27 | 富士電機株式会社 | 半導体装置及び半導体装置の製造方法 |
JP2019151543A (ja) * | 2018-03-02 | 2019-09-12 | 国立研究開発法人産業技術総合研究所 | 炭化珪素エピタキシャルウェハ及びその製造方法 |
WO2020031446A1 (ja) * | 2018-08-09 | 2020-02-13 | 住友電気工業株式会社 | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 |
JP2021044289A (ja) * | 2019-09-06 | 2021-03-18 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
JP2022548223A (ja) * | 2019-09-10 | 2022-11-17 | コリア エレクトロテクノロジー リサーチ インスティテュート | トレンチゲート型SiCMOSFETデバイス及びその製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112014001741T8 (de) * | 2013-03-29 | 2016-02-18 | Fuji Electric Co., Ltd. | Halbleitervorrichtung und Verfahren zum Herstellen der Halbleitervorrichtung |
JP6488204B2 (ja) * | 2015-07-07 | 2019-03-20 | 株式会社豊田中央研究所 | 半導体装置の製造方法 |
JP6681238B2 (ja) * | 2016-03-28 | 2020-04-15 | ローム株式会社 | 半導体装置および半導体装置の製造方法 |
CN110212020A (zh) * | 2019-05-29 | 2019-09-06 | 西安电子科技大学 | 一种碳化硅单侧深l形基区结构的mosfet器件及其制备方法 |
US11836612B2 (en) * | 2019-06-18 | 2023-12-05 | Sap Se | Maintaining master data using hierarchical classification |
TWI696288B (zh) * | 2019-07-16 | 2020-06-11 | 力晶積成電子製造股份有限公司 | 遮蔽閘金氧半場效電晶體及其製造方法 |
CN116072712A (zh) * | 2021-10-29 | 2023-05-05 | 华为数字能源技术有限公司 | 沟槽栅半导体器件及其制造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009260253A (ja) * | 2008-03-26 | 2009-11-05 | Rohm Co Ltd | 半導体装置およびその製造方法 |
JP4564362B2 (ja) * | 2004-01-23 | 2010-10-20 | 株式会社東芝 | 半導体装置 |
JP2012019188A (ja) * | 2010-06-11 | 2012-01-26 | Toyota Motor Corp | 半導体装置および半導体装置の製造方法 |
JP2012169385A (ja) * | 2011-02-11 | 2012-09-06 | Denso Corp | 炭化珪素半導体装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6180958B1 (en) | 1997-02-07 | 2001-01-30 | James Albert Cooper, Jr. | Structure for increasing the maximum voltage of silicon carbide power transistors |
JP4899405B2 (ja) | 2004-11-08 | 2012-03-21 | 株式会社デンソー | 炭化珪素半導体装置およびその製造方法 |
JP4735224B2 (ja) | 2005-12-08 | 2011-07-27 | トヨタ自動車株式会社 | 絶縁ゲート型半導体装置およびその製造方法 |
JP4577355B2 (ja) | 2007-12-26 | 2010-11-10 | 株式会社デンソー | 炭化珪素半導体装置およびその製造方法 |
EP2091083A3 (en) | 2008-02-13 | 2009-10-14 | Denso Corporation | Silicon carbide semiconductor device including a deep layer |
JP4640439B2 (ja) | 2008-04-17 | 2011-03-02 | 株式会社デンソー | 炭化珪素半導体装置 |
JP5531787B2 (ja) * | 2010-05-31 | 2014-06-25 | 株式会社デンソー | 炭化珪素半導体装置およびその製造方法 |
JP5533677B2 (ja) | 2011-01-07 | 2014-06-25 | 株式会社デンソー | 炭化珪素半導体装置およびその製造方法 |
-
2013
- 2013-01-23 JP JP2014558322A patent/JP5985662B2/ja active Active
- 2013-01-23 DE DE112013006308.5T patent/DE112013006308B4/de active Active
- 2013-01-23 WO PCT/JP2013/051233 patent/WO2014115253A1/ja active Application Filing
- 2013-01-23 US US14/760,166 patent/US9825166B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4564362B2 (ja) * | 2004-01-23 | 2010-10-20 | 株式会社東芝 | 半導体装置 |
JP2009260253A (ja) * | 2008-03-26 | 2009-11-05 | Rohm Co Ltd | 半導体装置およびその製造方法 |
JP2012019188A (ja) * | 2010-06-11 | 2012-01-26 | Toyota Motor Corp | 半導体装置および半導体装置の製造方法 |
JP2012169385A (ja) * | 2011-02-11 | 2012-09-06 | Denso Corp | 炭化珪素半導体装置 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016092257A (ja) * | 2014-11-06 | 2016-05-23 | 株式会社デンソー | 炭化珪素半導体装置およびその製造方法 |
JP2016162918A (ja) * | 2015-03-03 | 2016-09-05 | トヨタ自動車株式会社 | 半導体装置の製造方法 |
JP2017092355A (ja) * | 2015-11-13 | 2017-05-25 | 富士電機株式会社 | 半導体装置および半導体装置の製造方法 |
JP2018049908A (ja) * | 2016-09-21 | 2018-03-29 | 株式会社東芝 | 半導体装置及びその製造方法 |
JP6377309B1 (ja) * | 2017-03-06 | 2018-08-22 | 三菱電機株式会社 | 炭化珪素半導体装置、電力変換装置、炭化珪素半導体装置の製造方法、および電力変換装置の製造方法 |
WO2018163593A1 (ja) * | 2017-03-06 | 2018-09-13 | 三菱電機株式会社 | 炭化珪素半導体装置、電力変換装置、炭化珪素半導体装置の製造方法、および電力変換装置の製造方法 |
US11637184B2 (en) | 2017-03-06 | 2023-04-25 | Mitsubishi Electric Corporation | Silicon carbide semiconductor device, power converter, method of manufacturing silicon carbide semiconductor device, and method of manufacturing power converter |
JP7139679B2 (ja) | 2017-06-07 | 2022-09-21 | 富士電機株式会社 | 半導体装置及び半導体装置の製造方法 |
JP2018207101A (ja) * | 2017-06-07 | 2018-12-27 | 富士電機株式会社 | 半導体装置及び半導体装置の製造方法 |
JP2019151543A (ja) * | 2018-03-02 | 2019-09-12 | 国立研究開発法人産業技術総合研究所 | 炭化珪素エピタキシャルウェハ及びその製造方法 |
JP7426642B2 (ja) | 2018-03-02 | 2024-02-02 | 国立研究開発法人産業技術総合研究所 | 炭化珪素エピタキシャルウェハの製造方法 |
WO2020031446A1 (ja) * | 2018-08-09 | 2020-02-13 | 住友電気工業株式会社 | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 |
JPWO2020031446A1 (ja) * | 2018-08-09 | 2021-08-02 | 住友電気工業株式会社 | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 |
US11233125B2 (en) | 2018-08-09 | 2022-01-25 | Sumitomo Electric Industries, Ltd. | Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device |
JP2021044289A (ja) * | 2019-09-06 | 2021-03-18 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
JP7288827B2 (ja) | 2019-09-06 | 2023-06-08 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP2022548223A (ja) * | 2019-09-10 | 2022-11-17 | コリア エレクトロテクノロジー リサーチ インスティテュート | トレンチゲート型SiCMOSFETデバイス及びその製造方法 |
JP7389239B2 (ja) | 2019-09-10 | 2023-11-29 | コリア エレクトロテクノロジー リサーチ インスティテュート | トレンチゲート型SiCMOSFETデバイス及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112013006308T5 (de) | 2015-09-10 |
JPWO2014115253A1 (ja) | 2017-01-19 |
DE112013006308B4 (de) | 2024-04-18 |
US9825166B2 (en) | 2017-11-21 |
JP5985662B2 (ja) | 2016-09-06 |
US20150349115A1 (en) | 2015-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5985662B2 (ja) | 炭化珪素半導体装置及びその製造方法 | |
JP6168732B2 (ja) | 炭化珪素半導体装置およびその製造方法 | |
JP6140823B2 (ja) | 炭化珪素半導体装置 | |
US10002952B2 (en) | Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device | |
US8658503B2 (en) | Semiconductor device and method of fabricating the same | |
JP6099749B2 (ja) | 炭化珪素半導体装置およびその製造方法 | |
WO2009101668A1 (ja) | 炭化珪素半導体装置 | |
WO2013118203A1 (ja) | 半導体装置及びその製造方法 | |
JP5996671B2 (ja) | 炭化珪素半導体装置及びその製造方法 | |
US20140210008A1 (en) | Semiconductor device and method of manufacturing the same | |
CN108604552B (zh) | 半导体装置以及用于制造这种半导体装置的方法 | |
JPWO2012165329A1 (ja) | トレンチゲートパワー半導体装置及びその製造方法 | |
JP2015032614A (ja) | 炭化珪素半導体装置およびその製造方法 | |
JP2013042054A (ja) | 半導体装置 | |
WO2015166754A1 (ja) | 半導体装置 | |
WO2017051616A1 (ja) | 炭化珪素半導体装置およびその製造方法 | |
US9184056B2 (en) | Semiconductor device and method for manufacturing semiconductor device | |
JP5037103B2 (ja) | 炭化珪素半導体装置 | |
JPWO2018042835A1 (ja) | 炭化珪素半導体装置およびその製造方法 | |
JP2018206872A (ja) | 半導体装置 | |
JP7543950B2 (ja) | 超接合炭化珪素半導体装置の製造方法 | |
KR20190052971A (ko) | 전력 반도체 소자의 제조 방법 및 그에 따른 전력 반도체 소자 | |
JP2017098371A (ja) | 半導体装置およびその製造方法 | |
JP5223041B1 (ja) | 半導体装置及びその製造方法 | |
JP5223040B1 (ja) | 半導体装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13872400 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014558322 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14760166 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112013006308 Country of ref document: DE Ref document number: 1120130063085 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13872400 Country of ref document: EP Kind code of ref document: A1 |