Nothing Special   »   [go: up one dir, main page]

WO2014185442A1 - 熱収縮性ポリエステル系フィルムおよび包装体 - Google Patents

熱収縮性ポリエステル系フィルムおよび包装体 Download PDF

Info

Publication number
WO2014185442A1
WO2014185442A1 PCT/JP2014/062793 JP2014062793W WO2014185442A1 WO 2014185442 A1 WO2014185442 A1 WO 2014185442A1 JP 2014062793 W JP2014062793 W JP 2014062793W WO 2014185442 A1 WO2014185442 A1 WO 2014185442A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
shrinkage
seconds
less
Prior art date
Application number
PCT/JP2014/062793
Other languages
English (en)
French (fr)
Inventor
慎太郎 石丸
雅幸 春田
向山 幸伸
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US14/891,579 priority Critical patent/US10336871B2/en
Priority to CA2912355A priority patent/CA2912355C/en
Priority to CN201480028241.5A priority patent/CN105229065B/zh
Priority to KR1020157034589A priority patent/KR102090360B1/ko
Priority to EP14798436.3A priority patent/EP2998341B1/en
Priority to ES14798436.3T priority patent/ES2615306T3/es
Priority to JP2014530043A priority patent/JP6337774B2/ja
Publication of WO2014185442A1 publication Critical patent/WO2014185442A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a heat-shrinkable polyester film suitable for heat-shrinkable label applications, and a package using the label.
  • stretched films made of polyvinyl chloride resin, polystyrene resin, polyester resin, etc., for label packaging, cap seals, integrated packaging, etc. that serve as protection for glass bottles or plastic bottles and display of products has been widely used.
  • the polyvinyl chloride film has problems such as low heat resistance and generation of hydrogen chloride gas during incineration and causing dioxins.
  • polystyrene film has poor solvent resistance and must use ink with a special composition during printing, and must be incinerated at a high temperature, and a large amount of black smoke is generated with an unpleasant odor during incineration. There is a problem of doing.
  • polyester-based heat-shrinkable films with high heat resistance, easy incineration, and excellent solvent resistance have been widely used as shrink labels, and PET (polyethylene terephthalate) bottles
  • PET polyethylene terephthalate
  • the conventional heat-shrinkable polyester film has been required to further improve its shrinkage characteristics.
  • shrinkage spots and wrinkles may occur when coating and shrinking containers such as PET bottles, polyethylene bottles, and glass bottles, and characters and designs printed on the film may be distorted. The user's request to reduce this distortion as much as possible was met.
  • the steam tunnel has a higher heat transfer efficiency than the hot air tunnel, can be more uniformly heated and shrunk, and can obtain a good finished appearance.
  • the polyester film has a problem that even if a steam tunnel is used, the finish is slightly inferior to a polyvinyl chloride film or a polystyrene film.
  • a polyester film is shrunk using a hot air tunnel that is more susceptible to temperature spots than a steam tunnel, shrinkage whitening, shrinkage unevenness, wrinkles, distortion, etc. are likely to occur. There was also a problem that the finish was inferior.
  • Patent Document 1 a method of incorporating a polyester elastomer in the polyester resin as a film raw material has been proposed.
  • Patent Document 3 discloses a technique that improves the shrinkage finish by focusing on the endothermic peak amount (enthalpy relaxation amount) in the vicinity of the glass transition point of the film. Yes, the level of shrink finish described in Patent Document 3 cannot meet the demands of current users.
  • the present invention eliminates the above-mentioned problems, suppresses the deterioration of shrink finish due to performance degradation during aging, and a heat-shrinkable polyester film that does not sag even after being used as a label.
  • the issue is to provide.
  • the present invention which has solved the above problems, has an ethylene terephthalate unit.
  • the total polyester resin component 1 to 25 mol% of a structural unit derived from butanediol and 1 to 25 mol of a structural unit derived from ⁇ -caprolactone.
  • the ratio A1 / A2 (absorbance ratio) between the absorbance A1 at 1340 cm ⁇ 1 and the absorbance A2 at 1410 cm ⁇ 1 of the above film measured by the polarized ATR-FTIR method is either in the film width direction or in the longitudinal direction. Is 0.45 or more and 0.75 or less, (2) Ratio of shrinkage stress after 30 seconds (shrinkage stress after 30 seconds) and maximum shrinkage stress when the film is thermally shrunk in hot air of 90 ° C. for 30 seconds (shrinkage stress after 30 seconds / maximum shrinkage stress) ) Is 75% or more and 100% or less, (3) After aging the above film for 672 hours in an atmosphere of 30 ° C. and 85% RH, the hot-water heat shrinkage in the width direction is 30% or more when the film after aging is immersed in 70 ° C. hot water for 10 seconds. 55% or less.
  • the present invention has an ethylene terephthalate unit, and in 100 mol% of all polyester resin components, 1 to 25 mol% of a structural unit derived from butanediol, 1 to 25 mol% of a structural unit derived from ⁇ -caprolactone, butanediol And a heat-shrinkable polyester film containing at least 18 mol% of a structural unit derived from one or more monomers that can be an amorphous component other than the structural unit derived from ⁇ -caprolactone, the following requirement (1 ′) Also included are heat-shrinkable polyester films characterized by satisfying (2) and (3).
  • the ratio A1 / A2 (absorbance ratio) between the absorbance A1 at 1340 cm ⁇ 1 and the absorbance A2 at 1410 cm ⁇ 1 of the film measured by the polarized ATR-FTIR method is either in the film width direction or in the longitudinal direction. Is 0.40 or more and less than 0.45, (2) Ratio of shrinkage stress after 30 seconds (shrinkage stress after 30 seconds) and maximum shrinkage stress when the film is thermally shrunk in hot air of 90 ° C. for 30 seconds (shrinkage stress after 30 seconds / maximum shrinkage stress) ) Is 75% or more and 100% or less, (3) After aging the above film for 672 hours in an atmosphere of 30 ° C. and 85% RH, the hot-water heat shrinkage in the width direction is 30% or more when the film after aging is immersed in 70 ° C. hot water for 10 seconds. 55% or less.
  • the natural shrinkage in the width direction when the film is aged for 672 hours in an atmosphere of 40 ° C. and 65% RH is preferably 0.3% or more and 2% or less.
  • the absolute value of the difference between the absorbance ratio in the film width direction and the absorbance ratio in the film longitudinal direction is less than 0.15, and the width direction when the film is immersed in warm water at 70 ° C. for 10 seconds.
  • the hot water heat shrinkage rate is 30% or more and 55% or less, and the hot water heat shrinkage rate in the width direction when the film is immersed in warm water of 98 ° C. for 10 seconds is 40% or more and 75% or less.
  • the thermal shrinkage rate is 0% or more and 15% or less, the tensile fracture strength in the longitudinal direction of the film is 80 MPa or more and 200 MPa or less, and the film is shrunk 10% in the width direction in 80 ° C. warm water. It is a preferred embodiment of the present invention that the right-angled tear strength per unit thickness in the film longitudinal direction is 180 N / mm or more and 330 N / mm or less.
  • a label obtained from the heat-shrinkable polyester film of the present invention and having a perforation or a notch is applied to at least a part of the outer periphery of the packaging object and is heat-shrinked.
  • a package is also included.
  • the heat-shrinkable polyester film of the present invention is a polyester molecular chain constituting a film, particularly an amorphous molecular chain (hereinafter simply referred to as “shrinking”), which is considered to be involved in shrinkage, by forming a polyester having a specific composition by a specific manufacturing method.
  • the stress applied to the molecular chain) is not alleviated before heat shrinkage or during aging, but after the stress applied to the molecular chain is alleviated (shrinks) It shows the characteristic that the relaxation of the heat shrinkage stress generated at the time becomes moderate. For this reason, the performance degradation during aging is small, and even if the film after aging is used, the package which was excellent in shrink finish property is obtained.
  • the heat shrinkable polyester film of the present invention has a large shrinkage stress even after 30 seconds from the start of shrinkage. This means that even if the container is about to expand during heating in the label mounting process, it means that the label is firmly attached to the container so that this thermal expansion can be suppressed, and as a result, even when the container is cooled Since the container is less shrunk, the label is not loosened and a good appearance can be obtained. Furthermore, since the heat-shrinkable polyester film of the present invention is produced by being stretched biaxially in the vertical and horizontal directions, it can be produced very efficiently, such as a bottle that easily expands thermally such as polyethylene. It can be used suitably for applications such as various coated labels, cap seals, shrink wrapping and the like.
  • Raw material polyester of heat-shrinkable polyester film The polyester used for the heat-shrinkable polyester film of the present invention has an ethylene terephthalate unit.
  • the ethylene terephthalate unit is preferably 40 mol% or more, more preferably 50 mol% or more, and even more preferably 55 mol% or more in 100 mol% of the structural unit of polyester.
  • the constituent unit derived from butanediol (1,4-butanediol) is 1 to 25 mol% and the constituent unit derived from ⁇ -caprolactone is 100 mol% of all polyester resin components. It is important that 1 to 25 mol% is contained.
  • the film during aging has spontaneously shrunk, but the heat-shrinkable film of the present invention Since the stress applied to the amorphous molecular chain before shrinkage hardly causes relaxation, it was possible to suppress natural shrinkage while securing a low-temperature shrinkage rate. Furthermore, this film can exhibit a heat shrinkage force for a certain period of time even after heat shrinkage. That is, as will be described later, the present inventors have succeeded in providing an unprecedented heat shrinkable film in which the amount of attenuation of shrinkage stress after heat shrinkage is small.
  • the molecular main chains of different lengths are oriented in the biaxial direction in the film plane by biaxial stretching, and the energy required for stress relaxation for each polyester molecular chain It is thought that distribution occurs in Even if the same amount of energy is applied to the heat-shrinkable polyester film of the present invention, the stress applied to a large number of molecular chains is not alleviated uniformly throughout the film. It is presumed that the stress attenuation during relaxation or contraction is moderate. By these mechanisms, even when heat-shrinking after aging, it is considered that the effect of excellent shrinkage finish is exhibited.
  • butanediol and ⁇ -caprolactone are each preferably 5 mol% or more.
  • ⁇ -caprolactone is preferably 20 mol% or less.
  • the total of both shall be 45 mol% or less. This is because it is possible to prevent the ethylene terephthalate unit from becoming too small and the heat resistance and strength from being lowered.
  • the unit (total amount) derived from one or more monomers that can be an amorphous component other than the unit derived from butanediol and ⁇ -caprolactone is 18 mol% or more out of 100 mol% of all polyester resin components. It is also necessary to be. When the amorphous component is less than 18 mol%, the heat shrinkage property is inferior.
  • the monomer that can be an amorphous component is 100 mol% of the polyhydric alcohol component or 100 mol% of the polyvalent carboxylic acid component in all polyester resins, preferably 20 mol% or more and 25 mol% or less.
  • the monomer that can be an amorphous component examples include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,3-propanediol. 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di- Examples thereof include n-butyl-1,3-propanediol and hexanediol. Among these, neopentyl glycol, 1,4-cyclohexanedimethanol and isophthalic acid are preferable.
  • the constituent unit composed of isophthalic acid and butanediol is a constituent unit derived from butanediol and also a constituent unit derived from one or more monomers that can be an amorphous component. Therefore, in this invention, the content rate of the structural unit which consists of isophthalic acid and a butanediol is counted also as a structural unit derived from butanediol, and is counted also as a structural unit derived from 1 or more types of monomers which can become an amorphous component.
  • the content of the structural unit derived from butanediol is the total content of the content of the structural unit composed of isophthalic acid and butanediol and the content of the structural unit composed of terephthalic acid and butanediol.
  • the content rate of the structural unit derived from the 1 or more types of monomer which can become an amorphous component is the content rate of the structural unit which consists of isophthalic acid and butanediol, and the content rate of the structural unit which consists of isophthalic acid and ethylene glycol. It is the total content of the content of constituent units derived from one or more monomers that can be all amorphous components. The same applies to the relationship between the content of constituent units derived from ⁇ -caprolactone and the content of constituent units derived from one or more monomers that can be an amorphous component.
  • dicarboxylic acid components constituting the polyester of the present invention include aromatic dicarboxylic acids such as orthophthalic acid; aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid; and alicyclic dicarboxylic acids. Etc.
  • the aliphatic dicarboxylic acid for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.
  • the content is preferably less than 3 mol% (in 100 mol% of the dicarboxylic acid component).
  • a heat-shrinkable polyester film obtained by using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids has insufficient film stiffness at high-speed mounting.
  • the polyester does not contain a trivalent or higher polyvalent carboxylic acid (for example, trimellitic acid, pyromellitic acid, and anhydrides thereof).
  • a trivalent or higher polyvalent carboxylic acid for example, trimellitic acid, pyromellitic acid, and anhydrides thereof.
  • polyester examples include aromatic diols such as bisphenol A.
  • the polyester used in the present invention is preferably a polyester having a glass transition point (Tg) adjusted to 50 to 80 ° C. by appropriately selecting the amount of butanediol and ⁇ -caprolactone and the amount of monomer that can be an amorphous component.
  • Tg glass transition point
  • the polyester preferably does not contain a diol having 8 or more carbon atoms (for example, octanediol) or a trihydric or higher polyhydric alcohol (for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.).
  • a diol having 8 or more carbon atoms for example, octanediol
  • a trihydric or higher polyhydric alcohol for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.
  • the most preferred polyester is 1 to 25 mol% of butylene terephthalate units, 1 to 25 mol% of units composed of ⁇ -caprolactone and terephthalic acid, and 2 to 50 mol% of these in total, in 100 mol% of all polyester constituting units.
  • This is a polyester in which a unit comprising a monomer that can be an amorphous component and terephthalic acid is 18 to 25 mol%, and the balance is an ethylene terephthalate unit.
  • an amorphous unit in which a part of terephthalic acid is replaced with isophthalic acid may be included.
  • various additives as required, for example, waxes, antioxidants, antistatic agents, crystal nucleating agents, viscosity reducing agents, heat stability
  • An agent, a coloring pigment, an anti-coloring agent, an ultraviolet absorber and the like can be added.
  • fine particles as a lubricant for improving the workability (slidability) of the film.
  • the fine particles any one can be selected.
  • inorganic fine particles silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate, etc.
  • organic fine particles for example, acrylic resin Examples thereof include particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles.
  • the average particle size of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter) and can be appropriately selected as necessary.
  • the above particles into the resin forming the heat-shrinkable polyester film for example, it can be added at any stage for producing the polyester resin, but it can be added at the esterification stage or transesterification reaction. After completion, it is preferable to add as a slurry dispersed in ethylene glycol or the like at a stage before the start of the polycondensation reaction, and proceed with the polycondensation reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water using a vented kneading extruder and a polyester resin material, or a dried particle and a polyester resin material using a kneading extruder It is also preferable to carry out by a method of blending and the like.
  • the heat-shrinkable polyester film of the present invention can be subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the adhesion of the film surface.
  • the heat-shrinkable polyester film of the present invention (not placed under an aging atmosphere) has a main shrinkage direction measured in hot air at 90 ° C. Even after 30 seconds have elapsed from the start of measurement, the shrinkage stress in the width direction (hereinafter referred to as the width direction) is preferably 75% or more and 100% or less with respect to the maximum shrinkage stress. That is, the heat-shrinkable polyester film of the present invention exhibits a unique heat-shrinkage characteristic that shows a shrinkage stress comparable to the maximum heat-shrinkage stress even after 30 seconds from the start of heat shrinkage (Example 1 in FIG. 2). .
  • the maximum heat shrinkage stress is usually observed within 10 seconds after the start of measurement.
  • the shrinkage stress begins to attenuate immediately after the maximum heat-shrinkage stress is observed (Comparative Example 1 in FIG. 2).
  • the label's followability when the bottle expands due to heating deteriorates, and if the bottle temperature drops after shrinking and the thermal expansion disappears, the label will loosen
  • the shrinkage stress / maximum shrinkage stress (hereinafter referred to as stress ratio) after 30 seconds of the heat-shrinkable polyester film is preferably 75% or more.
  • the stress ratio is more preferably 77% or more, further preferably 80% or more, and particularly preferably 85% or more. A larger stress ratio is preferable because the followability becomes better.
  • the upper limit is 100%.
  • as an absolute value of the said maximum shrinkage stress 5.5 MPa or more and 15 MPa or less are preferable, and 7 MPa or more and 12 MPa or less are more preferable.
  • the maximum shrinkage stress at 90 ° C. is more preferably 7 MPa or more, and further preferably 8 MPa or more. On the other hand, if the maximum shrinkage stress at 90 ° C. exceeds 15 MPa, it is not preferable because the film cannot be gently shrunk and the label after heat shrinkage tends to be distorted.
  • the maximum shrinkage stress at 90 ° C. is more preferably 12 MPa or less.
  • absorbance ratio polarization ATR-FTIR method in absorbance at 1340 cm -1 of the heat-shrinkable polyester film was measured A1 and the ratio between the absorbance A2 at 1410 cm -1 A1 / A2 (hereinafter, absorbance ratio) must be 0.45 or more and 0.75 or less in each of the film main shrinkage direction (width direction) and the direction (longitudinal direction) perpendicular to the main shrinkage direction.
  • the above absorbance ratio represents a trans conformation ratio of molecular orientation.
  • the amorphous orientation related to the shrinkage rate was considered as the Gauche conformation ratio.
  • the film-forming conditions were changed to shrink. Even if the rate was changed, there was almost no change in the Gauche conformation ratio, and it was the trans conformation ratio that was changed by changing the film forming conditions.
  • the heat-shrinkable film in this paper is a uniaxially stretched film stretched only in the width direction, which is the main shrinkage direction, and does not satisfy various properties required for a heat-shrinkable polyester film.
  • the present inventors pay attention to the molecular orientation (trans conformation ratio) in the film stretched biaxially in the longitudinal direction (MD direction) and the width direction (TD direction), and exhibit suitable heat shrinkage characteristics.
  • the molecular orientation is, the trans-conformation ratio in the longitudinal direction and the width direction was examined, and the present invention was achieved.
  • the present inventors have obtained an experimental result that the change in the trans conformation ratio and the shrinkage rate are related by changing the stretching temperature or the like. Therefore, it is considered that the trans conformation ratio represents the molecular orientation related to the heat shrinkage.
  • the trans conformation is considered to represent the orientation state of the molecular chain, and the orientation state of the molecular chain is high when the trans conformation ratio is high.
  • the ease of shrinkage changes depending on the structure of the molecular chain (length of the rotational isomer) when the polyester using an amorphous monomer is used as a raw material.
  • the absorbance ratio of the trans conformation is obtained at a ratio of 795 cm ⁇ 1 and 975 cm ⁇ 1 .
  • the absorbance ratio is preferably 0.45 to 0.75 in both the film width direction and the longitudinal direction.
  • the absorbance ratio in the film width direction is less than 0.45, the molecular orientation is low, so the hot water heat shrinkage at 70 ° C. before aging is small, and the hot water heat shrinkage at 70 ° C. is smaller after aging than before aging. Therefore, the hot water heat shrinkage at 70 ° C. after aging is too small.
  • the absorbance ratio in the film width direction is preferably 0.48 or more, and more preferably 0.5 or more.
  • the absorbance ratio in the film width direction exceeds 0.75, the orientation of the film proceeds too much (orientation crystallization), and the film is whitened and the shrinkage rate is lowered.
  • the absorbance ratio in the width direction is preferably 0.72 or less, and more preferably 0.7 or less.
  • the absorbance ratio in the longitudinal direction of the film is less than 0.45, the molecular orientation is low, so that the tensile fracture strength in the longitudinal direction becomes small, and the strength in the longitudinal direction may be insufficient. Further, if the absorbance ratio in the longitudinal direction is less than 0.45, it is not preferable because the right-angle tear strength increases and the perforation opening rate decreases. Furthermore, the above-described shrinkage stress ratio is also small, which is not preferable. By orienting the molecules in the longitudinal direction, the shrinkage of the molecules in the width direction becomes gentle during the heat shrinkage, so the decrease in the shrinkage stress is reduced and the shrinkage stress ratio is kept high (75% or more). It is considered possible.
  • the absorbance ratio in the longitudinal direction of the film is preferably 0.48 or more, and more preferably 0.5 or more. Further, when the absorbance ratio in the longitudinal direction of the film is higher than 0.75, the molecular orientation is high, so that the tensile fracture strength in the longitudinal direction is also increased, which is preferable in this respect. However, if the absorbance ratio is too high, the film tends to be whitened. Therefore, it is not preferable.
  • the absorbance ratio in the longitudinal direction is preferably 0.73 or less, and more preferably 0.71 or less.
  • the present invention also includes a film having an absorbance ratio in the width direction and the longitudinal direction of 0.40 or more and less than 0.45.
  • the heat-shrinkable polyester film of the present invention refers to a film having an absorbance ratio of 0.40 or more and 0.75.
  • the film is stretched in the film width direction after being stretched in the film longitudinal direction.
  • a conventional heat-shrinkable film is generally a uniaxially stretched film in the width direction, and in such a uniaxially stretched film, only the orientation in the stretch direction, that is, the trans-conformation ratio (absorbance ratio) in the width direction is high.
  • the direction strength was insufficient.
  • the trans conformation ratio of both directions becomes a close value, and it becomes a film excellent in the balance of intensity
  • the difference between the absorbance ratio in the film width direction and the absorbance ratio in the film longitudinal direction is preferably less than 0.15.
  • a biaxially stretched film generally has a higher orientation in the width direction, which is the final stretch direction, if the draw ratios of the first and second axes are close to each other. This is characterized by a small orientation difference.
  • the reason why the orientation in the final stretching direction of a general biaxially stretched film is high is that the stretching stress in the direction of stretching in the second axis is higher than the stretching stress in the first axis.
  • butanediol having a molecular chain longer than that of ethylene glycol and ⁇ -caprolactone are used as essential components, and units derived from these components are mixed. It is estimated that the stretching stress decreases and the difference in the degree of orientation (absorbance ratio) between the width direction and the longitudinal direction decreases to less than 0.15.
  • the small difference in the degree of orientation (absorbance ratio) between the width direction and the longitudinal direction means that the molecular chain of the polyester of the present invention is stretched, that is, both in the width direction and the longitudinal direction. This is considered to be an index indicating that the film is stretched.
  • the difference in absorbance ratio between the width direction and the longitudinal direction is more preferably 0.1 or less, and further preferably 0.07 or less.
  • the hot water heat shrinkage at 70 ° C. is preferably 30% or more.
  • the hot water heat shrinkage rate at 70 ° C. in the film width direction is preferably 55% or less.
  • the thermal shrinkage rate is more preferably 32% or more, further preferably 34% or more, more preferably 53% or less, and further preferably 50% or less.
  • the hot-shrinkage rate of 70 ° C. hot water in the width direction of the heat-shrinkable polyester film of the present invention (not in an aging atmosphere) is 30% or more and 55% or less for the same reason as described above. preferable.
  • the heat-shrinkable polyester film of the present invention has an enthalpy relaxation amount of 4.0 J / g or less after aging for 672 hours in an atmosphere of 30 ° C. and 85% RH. It is preferable.
  • Patent Document 3 and Satoshi Toki's paper (“DSC (3)-Glass Transition Behavior of Polymers”, Textile and Industry, Vol. 65, No. 10, 2009, p385-393)
  • DSC (3)-Glass Transition Behavior of Polymers Textile and Industry, Vol. 65, No. 10, 2009, p385-393
  • Enthalpy relaxation is a result of a decrease in the free volume of the amorphous part, and the molecular chain is less likely to move by that amount, and thus appears as an endothermic peak in the DSC temperature rising process.
  • the enthalpy relaxation amount after aging is 4.0 J / g or less.
  • the amount of enthalpy relaxation after aging is more preferably 3.8 J / g or less, and further preferably 3.5 J / g or less.
  • the enthalpy relaxation amount of the film not subjected to aging under the above conditions is 0.1 J / g or less.
  • the heat shrinkable polyester film of the present invention has a natural shrinkage of 0.3% in the film width direction after aging for 672 hours in an atmosphere of 40 ° C. and 65% RH. It is preferable that it is 2.0% or less.
  • polyesters having different molecular chain lengths are oriented in the biaxial direction, so that enthalpy relaxation during aging hardly occurs. For this reason, the performance degradation during aging is small, and the shrinkage amount of the film during aging is small. Therefore, in the present invention, the preferable range of the natural shrinkage rate is defined as 0.3% or more and 2% or less.
  • the natural shrinkage ratio is obtained by the following formula 2 from the width direction length of the sample before aging and the length of the sample after being left in an atmosphere of 40 ° C. and 65% RH for 672 hours.
  • Natural shrinkage rate ⁇ (length before aging ⁇ length after aging) / length before aging ⁇ ⁇ 100 (%)
  • the natural shrinkage rate exceeds 2%, when the heat-shrinkable polyester film wound up in a roll shape is stored, winding tightening occurs and wrinkles are likely to enter the film roll.
  • the natural shrinkage is more preferably 1.8% or less, and still more preferably 1.6% or less. The smaller the natural shrinkage rate, the better. However, in practice, the limit is about 0.3%.
  • Hot-shrinkage rate of hot water at 98 ° C. in the longitudinal direction of the film The heat-shrinkable polyester film of the present invention is immersed in 98 ° C. hot water for 10 seconds under no load, and the film is immediately cooled to 25 ° C. ⁇ 0.5 After being immersed in water at 10 ° C. for 10 seconds, the heat shrinkage rate in the film longitudinal direction (direction perpendicular to the main shrinkage direction) calculated from the length before and after shrinkage is 0% or more and 15% or less. It is preferable.
  • thermal shrinkage rate in the longitudinal direction is smaller than 0% (minus), it means that the film extends along the circumferential direction of the container, and it is not preferable because wrinkles are generated and appearance defects are likely to occur. On the other hand, if it exceeds 15%, distortion tends to occur during shrinkage, which is not preferable.
  • a more preferable range of hot water heat shrinkage at 98 ° C. in the longitudinal direction of the film is 2% or more and 14% or less, and more preferably 3% or more and 13% or less.
  • the heat-shrinkable polyester film of the present invention preferably has a tensile fracture strength in the longitudinal direction of the film of 80 MPa or more and 200 MPa or less.
  • the measuring method of tensile fracture strength is demonstrated in an Example.
  • the tensile fracture strength is less than 80 MPa, the “waist” (stiffness) when attached to a bottle or the like as a label becomes weak, which is not preferable.
  • the tensile fracture strength is more preferably 90 MPa or more, and further preferably 100 MPa or more. The higher the tensile fracture strength, the stronger the “waist” of the label, but this is preferable.
  • the upper limit is set to 200 MPa.
  • the heat-shrinkable polyester film of the present invention is subjected to 10% shrinkage in the width direction in warm water at 80 ° C., and then perpendicular tear per unit thickness in the longitudinal direction of the film.
  • the right-angled tear strength in the longitudinal direction is preferably 180 N / mm or more and 330 N / mm or less.
  • the measuring method of the perpendicular tear strength of a longitudinal direction is demonstrated in an Example.
  • the right-angled tear strength is less than 180 N / mm, it may be easily broken by an impact such as dropping during transportation when used as a label.
  • the right-angle tear strength is 330 N / mm or less.
  • the right angle tear strength is more preferably 185 N / mm or more, and further preferably 190 N / mm or more. Further, the right-angle tear strength is more preferably 325 N / mm or less, and further preferably 320 N / mm or less.
  • the heat shrinkable polyester film of the present invention is immersed in 98 ° C. hot water for 10 seconds under no load, and the film is immediately cooled to 25 ° C. ⁇ 0.00%.
  • the heat shrinkage rate in the width direction of the film calculated from the length before and after shrinkage (that is, 98 ° C. hot water heat shrinkage rate) is 40% or more and 75. % Or less is preferable.
  • the hot-water heat shrinkage in the width direction at 98 ° C. is less than 40%, the amount of shrinkage is small, and when used as a label, the label after heat shrinkage may be wrinkled or loosened.
  • the hot water heat shrinkage at 98 ° C. is preferably 44% or more, more preferably 45% or more.
  • the hot water heat shrinkage in the width direction at 98 ° C. exceeds 75%, the label after shrinkage may be distorted.
  • the hot water heat shrinkage at 98 ° C. is preferably 73% or less, and more preferably 71% or less.
  • the heat-shrinkable polyester film of the present invention is not particularly limited, but the thickness is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m.
  • the haze value is preferably 2% or more and 13% or less. If the haze value exceeds 13%, the transparency is poor, and the appearance may be deteriorated during label production.
  • the haze value is more preferably 11% or less, and particularly preferably 9% or less. Further, the smaller the haze value is, the more preferable, but in consideration of the necessity of adding a predetermined amount of lubricant to the film for the purpose of imparting practically necessary slipperiness, the lower limit is about 2%.
  • the heat-shrinkable polyester film of the present invention is a predetermined method for forming the unstretched film by melting and extruding the above-described polyester raw material with an extruder, and showing the unstretched film below. Can be obtained by biaxial stretching and heat treatment.
  • the polyester can be obtained by polycondensing the above-described preferred dicarboxylic acid component and diol component by a known method. Usually, two or more kinds of chip-like polyester are mixed and used as a raw material for the film.
  • the intrinsic viscosity of the polyester constituting the chip is not particularly limited, but is usually 0.50 to 1.30 dl / g.
  • the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder. In extruding, any existing method such as a T-die method or a tubular method can be employed.
  • an unstretched film can be obtained by quenching the extruded sheet-like molten resin.
  • a method of rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and rapidly solidifying it can be suitably employed.
  • the obtained unstretched film is stretched in the longitudinal direction under a predetermined condition and then annealed, then subjected to an intermediate heat treatment, and after cooling the film after the intermediate heat treatment, the width is determined under a predetermined condition.
  • the heat-shrinkable polyester film of the present invention can be obtained by stretching in the direction and performing the final heat treatment again.
  • a preferable film forming method for obtaining the heat-shrinkable polyester film of the present invention will be described in detail in consideration of a difference from a conventional heat-shrinkable polyester film forming method.
  • the heat-shrinkable polyester film is usually produced by stretching only in the direction in which the unstretched film is desired to be shrunk (that is, the main shrinkage direction, usually the width direction).
  • the main shrinkage direction usually the width direction.
  • the contraction force in the longitudinal direction is expressed at the same time, and the finish after the shrinkage attachment is deteriorated when the label is used.
  • the contraction force in the width direction can be expressed, but the contraction force in the length direction is expressed at the same time.
  • the finish becomes worse.
  • the present inventors have developed a heat-shrinkable polyester film that has good aging resistance and does not cause slack in the label after shrinkage.
  • the following findings were obtained.
  • In order to improve the aging resistance it is considered necessary to orient molecular chains of different lengths to some extent in the width direction and the longitudinal direction.
  • orienting molecular chains of different lengths in the width and longitudinal directions reduces the shrinkage stress that occurs when shrinking in the width direction over time. If it can be suppressed, it is considered that the followability of the label can be improved.
  • the present inventors have good aging resistance, and in order to achieve both shrink finish and followability, molecular chains having different lengths are aligned in the width direction and the longitudinal direction, and in the longitudinal direction. It came to be thought that it is necessary to have a molecular chain that does not contribute to the shrinkage force while being oriented. Then, a trial and error was carried out by paying attention to what kind of stretching could be used to allow “molecules that are oriented in the longitudinal direction but do not contribute to the shrinkage force” to be present in the film and to control them.
  • the upper limit of the longitudinal draw ratio is more preferably 4.5 times, and even more preferably 4.4 times.
  • the longitudinal draw ratio is too small, the contraction rate in the longitudinal direction is reduced, but the degree of molecular orientation in the longitudinal direction is also reduced, the perpendicular tear strength in the longitudinal direction is increased, and the tensile fracture strength is decreased. Absent.
  • the lower limit of the longitudinal draw ratio is more preferably 3.3 times, and even more preferably 3.4 times.
  • Patent Document 1 as a heat-shrinkable polyester film that hardly causes shrinkage whitening, ⁇ -caprolactone is 1 to 30 mol%, neopentyl glycol is 1 mol% or more, and butanediol is contained.
  • the importance of molecular orientation in the longitudinal direction is not considered at all, and the draw ratio in the longitudinal direction is at most 1.05 to 1.2 times. ([0060]).
  • longitudinal stretching is performed under certain conditions
  • intermediate heat treatment is performed under predetermined conditions according to the state of the film after the longitudinal stretching
  • transverse stretching is performed under predetermined conditions according to the state of the film after the intermediate heat treatment
  • the temperature of the intermediate heat treatment is more preferably Tg + 45 ° C. or more, further preferably Tg + 50 ° C. or more, more preferably Tg + 85 ° C. or less, and further preferably Tg + 80 ° C. or less. Further, it is preferable to appropriately adjust the temperature of the intermediate heat treatment depending on the raw material composition and the stretching ratio in the longitudinal direction.
  • the degree of molecular orientation in the longitudinal direction can be kept large to some extent, so that the tensile fracture strength in the longitudinal direction can be kept large while keeping the right-angled tear strength small.
  • Tg + 40 ° C. or higher By setting the temperature of the intermediate heat treatment to Tg + 40 ° C. or higher, the degree of molecular orientation in the longitudinal direction can be kept large to some extent, so that the tensile fracture strength in the longitudinal direction can be kept large while keeping the right-angled tear strength small.
  • Tg + 90 ° C. or less it becomes possible to suppress crystallization of the film, maintain the stretchability in the longitudinal direction, and suppress troubles due to breakage. Further, the crystallization of the film surface layer can be suppressed and the solvent adhesive strength can be kept large, and the thickness unevenness in the longitudinal direction can be reduced.
  • the time of intermediate heat processing in the range of 3.0 second or more and 12.0 second or less according to a raw material composition.
  • the amount of heat given to the film is important. If the temperature of the intermediate heat treatment is low, a long-term intermediate heat treatment is required. However, if the intermediate heat treatment time is too long, the equipment becomes too large, so it is preferable to adjust the temperature and time appropriately.
  • “molecules that are oriented in the longitudinal direction but do not contribute to the shrinkage force” can be present in the film.
  • the film longitudinal direction which is the orientation direction
  • the oriented molecular chains are restrained by heating and crystallization proceeds, and as a result, the absorbance ratio in the film longitudinal direction increases.
  • the increase in the absorbance ratio in the film longitudinal direction after the intermediate heat treatment also increases.
  • the higher the temperature of the intermediate heat treatment the easier the crystallization proceeds, and thus the increase in the absorbance ratio in the film longitudinal direction also increases.
  • the absorbance ratio in the longitudinal direction of the film after the intermediate heat treatment can be adjusted.
  • the absorbance ratio in the longitudinal direction of the film after the intermediate heat treatment is 0.45 or more and 0.80 or less.
  • the film width direction the film is unstretched at the stage of the intermediate heat treatment and is not molecularly oriented.
  • the change in the absorbance ratio in the film width direction is small and the absorbance ratio is as small as 0.3 or less. Yes.
  • the molecules are oriented in the width direction while retaining the “molecules that do not contribute to the shrinkage force while being oriented in the longitudinal direction” formed in the film. It is possible to develop a contraction force in the width direction.
  • the intermediate zone when the strip-shaped paper piece is hung in a state where the film is not passed through, the accompanying flow and the cooling zone accompanying the running of the film so that the paper piece hangs down almost completely in the vertical direction. It is preferable to block the hot air from. If the time for passing through the intermediate zone is less than 0.5 seconds, the transverse stretching becomes high-temperature stretching, and the shrinkage rate in the transverse direction cannot be sufficiently increased. On the contrary, the time for passing through the intermediate zone is sufficient if it is 3.0 seconds, and setting it longer than that is not preferable because it wastes equipment.
  • the time for passing through the intermediate zone is more preferably 0.7 seconds or more, further preferably 0.9 seconds or more, more preferably 2.8 seconds or less, and further preferably 2.6 seconds or less.
  • the naturally cooled film is not stretched as it is, but the film temperature is Tg + 5 ° C. or more and Tg + 40 ° C. or less. It is necessary to rapidly cool so that By performing such a rapid cooling treatment, it is possible to obtain a film having a high hot water heat shrinkage at 70 ° C. even after aging.
  • the temperature of the rapidly cooled film is more preferably Tg + 10 ° C. or higher, more preferably Tg + 15 ° C. or higher, more preferably Tg + 35 ° C. or lower, and further preferably Tg + 30 ° C. or lower.
  • the shrinkage rate in the width direction of the film becomes low, and the shrinkability when used as a label becomes insufficient.
  • the shrinkage rate in the width direction of the film can be kept high by controlling the temperature of the rapidly cooled film so as to be Tg + 40 ° C. or less.
  • the temperature of the film after quenching is lower than Tg + 5 ° C., the stretching stress at the time of transverse stretching becomes large and the film tends to break, which is not preferable.
  • the transverse stretching temperature is more preferably Tg + 12 ° C. or more, further preferably Tg + 14 ° C. or more, more preferably Tg + 28 ° C. or less, and further preferably Tg + 26 ° C. or less.
  • the transverse stretching ratio is more preferably 3.5 times or more, further preferably 3.7 times or more, more preferably 5.5 times or less, and still more preferably 5 times or less.
  • the stretching temperature exceeds Tg + 30 ° C
  • the shrinkage rate in the longitudinal direction increases and the shrinkage rate in the width direction tends to decrease, but by controlling the stretching temperature to Tg + 30 ° C or less, It is preferable that the shrinkage rate in the longitudinal direction is kept low and that the shrinkage rate in the width direction is easily kept high.
  • the stretching temperature exceeds Tg + 30 ° C.
  • the thickness variation in the width direction tends to increase, but by controlling the stretching temperature to Tg + 30 ° C. or less, the thickness variation in the width direction can be reduced.
  • the stretching temperature is lower than Tg + 10 ° C.
  • the orientation in the width direction becomes too large and it is easy to break during transverse stretching, but by controlling the stretching temperature to Tg + 10 ° C. or more, the film breaks during transverse stretching. Can be reduced.
  • the absorbance ratio in the film width direction becomes 0.40 or more and 0.75 or less.
  • a part of the orientation in the film longitudinal direction is oriented in the width direction, so the orientation in the film longitudinal direction is slightly lowered, and the absorbance ratio in the film longitudinal direction is 0.40 or more and 0. .75 or less.
  • the longer the heat treatment time the better.
  • the equipment becomes large.
  • crystallization occurs slightly at a temperature of Tg + 50 ° C. or less in both the longitudinal direction and the width direction of the film, and the molecular orientation is restrained, but the absorbance ratio is hardly changed, and the longitudinal direction and the width direction of the film are not changed.
  • the absorbance ratio remains 0.40 or more and 0.75 or less, respectively.
  • the present inventors lowered the molecular orientation in the longitudinal direction of the film to a level that satisfies the right-angle tear strength and tensile fracture strength, and reduced the difference in shrinkage in the width direction and the shrinkage stress, and the right-angled tear strength and tensile fracture strength in the longitudinal direction.
  • the film after longitudinal stretching is heated at a temperature of not less than Tg and not more than Tg + 90 ° C., and using a roll having a speed difference, not less than 10% and not more than 60% in the longitudinal direction in a time of 0.05 to 5 seconds.
  • the process of performing relaxation any of temperature control rolls, near infrared rays, far infrared rays, hot air heaters and the like can be used.
  • (i) Relax after longitudinal stretching Heat the film after longitudinal stretching at a temperature of Tg or more and Tg + 90 ° C or less, and use a roll with a speed difference in the longitudinal direction in a time of 0.05 seconds or more and 5.0 seconds or less. It is desirable to perform a relaxation of 10% or more and 60% or less. When the temperature is lower than Tg, the film after longitudinal stretching does not shrink and cannot be relaxed, which is not preferable. On the other hand, when it is higher than Tg + 90 ° C., the film is crystallized, and the transparency and the like are deteriorated.
  • the film temperature during relaxation after longitudinal stretching is preferably Tg + 10 ° C. or higher and Tg + 80 ° C. or lower, and more preferably Tg + 20 ° C. or higher and Tg + 70 ° C. or lower.
  • the time for relaxing in the longitudinal direction of the film after longitudinal stretching is preferably from 0.05 seconds to 5 seconds. If it is less than 0.05 seconds, relaxation will be short, and if the temperature is not raised above Tg + 90 ° C., uneven relaxation will occur, which is not preferable. If the relaxation time is longer than 5 seconds, the film can be relaxed at a low temperature and there is no problem as a film. However, since the equipment becomes large, it is preferable to appropriately adjust the temperature and time.
  • the relaxation time is more preferably 0.1 seconds to 4.5 seconds, and still more preferably 0.5 seconds to 4 seconds.
  • the relaxation rate in the longitudinal direction of the film after longitudinal stretching is less than 10%, the molecular orientation in the longitudinal direction cannot be sufficiently relaxed, the shrinkage rate in the longitudinal direction increases, and the thermal shrinkage rate at 98 ° C. is 15%. It is not preferable because it exceeds the range. Further, if the relaxation rate in the longitudinal direction of the film after longitudinal stretching is more than 60%, the perpendicular tear strength in the longitudinal direction increases and the tensile fracture strength decreases, which is not preferable.
  • the relaxation rate of the film after longitudinal stretching is more preferably 15% or more and 55% or less, and further preferably 20% or more and 50% or less.
  • a heating device heating furnace
  • any of temperature control rolls, near infrared heaters, far infrared heaters, hot air heaters and the like can be used.
  • the distance between the gripping clips in the tenter is reduced to 5% or more and 20% or less in the longitudinal direction in a time of 0.1 second to 12 seconds. It is desirable to perform relaxation. When the relaxation rate is less than 5%, the molecular orientation in the longitudinal direction cannot be sufficiently relaxed, the longitudinal shrinkage rate increases, and the thermal shrinkage rate at 98 ° C. exceeds 15%, which is not preferable. If the relaxation rate is greater than 20%, the film physical properties can be adjusted. However, since 20% is the limit in terms of equipment, 20% was made the upper limit.
  • the relaxation rate is more preferably 8% or more, and further preferably 11% or more.
  • the time for relaxing in the longitudinal direction in the intermediate heat treatment step is preferably 0.1 second or more and 12 seconds or less. If the time is less than 0.1 seconds, the relaxation time becomes short, and if the temperature is not higher than Tg + 90 ° C., relaxation unevenness occurs, which is not preferable. If the relaxation time is longer than 12 seconds, there is no problem as a film, but the equipment becomes large. Therefore, it is preferable to adjust the temperature and time appropriately.
  • the relaxation time is more preferably 0.3 seconds or more and 11 seconds or less, and further preferably 0.5 seconds or more and 10 seconds or less.
  • (iii) Relaxation in the final heat treatment step In the final heat treatment step, by reducing the distance between the gripping clips in the tenter, 5% or more and 20% or less in the longitudinal direction in a time of 0.1 second or more and 9 seconds or less. It is desirable to perform relaxation. When the relaxation rate is less than 5%, the molecular orientation in the longitudinal direction cannot be sufficiently relaxed, the longitudinal shrinkage rate increases, and the thermal shrinkage rate at 98 ° C. exceeds 15%, which is not preferable. If the relaxation rate is greater than 20%, the film physical properties can be adjusted. However, since 20% is the limit in terms of equipment, 20% was made the upper limit.
  • the relaxation rate is more preferably 8% or more, and further preferably 11% or more.
  • the time for relaxing in the longitudinal direction in the final heat treatment step is preferably 0.1 seconds or more and 9 seconds or less. If the time is less than 0.1 seconds, relaxation becomes short, and if the temperature is not higher than Tg + 50 ° C., relaxation unevenness occurs, which is not preferable. If the relaxation time is longer than 9 seconds, there is no problem as a film. However, since the equipment becomes large, it is preferable to appropriately adjust the temperature and time.
  • the relaxation time is more preferably 0.3 seconds or more and 8 seconds or less, and further preferably 0.5 seconds or more and 7 seconds or less.
  • the relaxation in any one of the above (i) to (iii) relaxes the molecular orientation in the longitudinal direction, so that the absorbance ratio decreases.
  • the absorbance ratio in the longitudinal direction of the film after relaxation and before intermediate heat treatment is 0.30 or more and 0.60 or less.
  • Packaging is formed by heat-shrinking a label having a perforation or a notch obtained from the heat-shrinkable polyester film of the present invention on at least a part of the outer periphery of the packaging object.
  • packaging objects include PET bottles for beverages, polyethylene containers used for shampoos and conditioners, various bottles, cans, plastic containers such as confectionery and lunch boxes, and paper boxes. it can.
  • the labels are heat-shrinked by about 2 to 15% and adhered to the packaging object.
  • printing may be given to the label coat
  • an organic solvent is applied slightly inside from one end of a rectangular film, and the film is immediately rolled and the ends are overlapped and bonded to form a label, or a roll Apply the organic solvent slightly inside from the edge of one side of the film wound up in the shape of a film, immediately roll up the film, overlap the edges and adhere, cut the tube to make a label .
  • the organic solvent for adhesion cyclic ethers such as 1,3-dioxolane or tetrahydrofuran are preferable.
  • aromatic hydrocarbons such as benzene, toluene, xylene and trimethylbenzene
  • halogenated hydrocarbons such as methylene chloride and chloroform
  • phenols such as phenol, and mixtures thereof
  • Tg Using a differential scanning calorimeter (“DSC220”, manufactured by Seiko Denshi Kogyo Co., Ltd.), 10 mg of an unstretched film was heated from ⁇ 40 ° C. to 120 ° C. at a heating rate of 10 ° C./min, and an endothermic curve was measured. . A tangent line was drawn before and after the inflection point of the obtained endothermic curve, and the intersection was defined as the glass transition point (Tg; ° C).
  • DSC220 differential scanning calorimeter
  • Heat-shrinkable film Main shrinkage direction from heat-shrinkable film not in an aging environment (hereinafter, unless otherwise specified, simply referred to as a heat-shrinkable film refers to a heat-shrinkable film not in an aging environment)
  • a sample having a length of 200 mm and a width of 20 mm was cut out and measured using a strong elongation measuring machine with a heating furnace (Tensilon (registered trademark of Orientec)).
  • the heating furnace was previously heated to 90 ° C., and the distance between chucks was 100 mm. Blowing of the heating furnace was temporarily stopped, the heating furnace door was opened, the sample was attached to the chuck, and then the heating furnace door was immediately closed to resume the blowing.
  • the contraction stress was measured for 30 seconds or more, the contraction stress (MPa) after 30 seconds was determined, and the maximum value during measurement was defined as the maximum contraction stress (MPa). Moreover, the ratio (percentage) of the shrinkage stress after 30 seconds to the maximum shrinkage stress was defined as the stress ratio (%).
  • Heat shrinkage hot water heat shrinkage
  • Natural shrinkage A film sample cut into a square shape of 200 mm ⁇ 200 mm was aged by leaving it in an atmosphere of 40 ° C. and 65% RH for 672 hours.
  • the film is attached to a rectangular frame having a predetermined length in a state of being loosened in advance (that is, both ends of the film are gripped by the frame). Then, the film was contracted by 10% in the width direction by immersing in warm water at 80 ° C. for about 5 seconds until the slack film became a tension state in the frame (until the slack disappeared).
  • a test piece having the shape shown in FIG. 1 was cut out from the film after 10% shrinkage in accordance with JIS K7128-3. In addition, when cutting out the test piece, the longitudinal direction of the film was set to be the tearing direction.
  • Perforation opening A label having perforations in advance in a direction perpendicular to the main shrinkage direction was placed on the aforementioned polyethylene container and heat-shrinked under the same conditions as the shrinkage finish described above.
  • the perforations were formed by inserting 1 mm long holes at 1 mm intervals, and two perforations were provided in the longitudinal direction (height direction) of the label over a width of 22 mm and a length of 120 mm.
  • the bottle is then filled with 500 ml of water, refrigerated to 5 ° C., tearing the perforation of the bottle label immediately after removal from the refrigerator with the fingertips, tearing it cleanly along the perforation in the vertical direction, and removing the label from the bottle
  • the number that could be removed was counted, and this number was subtracted from all 50 samples to calculate the perforation failure rate (%).
  • polyesters B to G shown in Table 1 were obtained.
  • SiO 2 Siliconicia 266 manufactured by Fuji Silysia Co., Ltd .; average particle size 1.5 ⁇ m
  • IPA is isophthalic acid
  • NPG is neopentyl glycol
  • CHDM is 1,4-cyclohexanedimethanol
  • BD is 1,4-butanediol
  • ⁇ -CL is ⁇ -caprolactone
  • DEG is a by-product diethylene glycol. It is.
  • Intrinsic viscosities of the respective polyesters are as follows: B: 0.72 dl / g, C: 0.80 dl / g, D: 1.20 dl / g, E: 0.77 dl / g, F: 0.75 dl / g, G : 0.78 dl / g.
  • Each polyester was appropriately formed into a chip shape.
  • Example 1 The above-mentioned polyester A, polyester B, polyester E and polyester F were mixed at a mass ratio of 5: 75: 15: 5 and charged into an extruder.
  • the mixed resin was melted at 280 ° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 400 ⁇ m.
  • the Tg of the unstretched film was 60 ° C.
  • the obtained unstretched film is guided to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, preheated until the film temperature reaches 80 ° C. with a preheating roll, and then rotated at a low speed set at a surface temperature of 86 ° C. Between the roll and a high-speed rotating roll set at a surface temperature of 86 ° C., the film was stretched 4.1 times in the machine direction by utilizing the difference in rotational speed.
  • the film immediately after longitudinal stretching was passed through a heating furnace.
  • the inside of the heating furnace was heated with a hot air heater, and the set temperature was 95 ° C.
  • 45% relaxation treatment was performed in the longitudinal direction using the difference in speed between the heating furnace inlet and outlet rolls.
  • the relaxation time was 0.6 seconds.
  • the film after the relaxation treatment was guided to a transverse stretcher (tenter) and subjected to an intermediate heat treatment at 123 ° C.
  • the film after the intermediate heat treatment was guided to the first intermediate zone and allowed to pass through in 1.0 second for natural cooling.
  • the first intermediate zone of the tenter when the strip-shaped paper piece is hung in a state where no film is passed, the hot air from the intermediate heat treatment zone is cooled so that the paper piece hangs almost completely in the vertical direction. Cooling air from the zone was shut off.
  • the distance between the film and the shielding plate is adjusted so that most of the accompanying flow accompanying the film running is blocked by the shielding plate provided between the intermediate heat treatment zone and the first intermediate zone when the film is running. did.
  • the distance between the film and the shielding plate was adjusted so that most of the accompanying flow accompanying the traveling of the film was blocked by the shielding plate at the boundary between the first intermediate zone and the cooling zone.
  • the film after natural cooling was guided to the cooling zone and rapidly cooled by blowing low-temperature air until the film surface temperature reached 87 ° C.
  • the film was naturally cooled again by passing through the second intermediate zone in 1.0 second.
  • the film was stretched 4.0 times in the width direction (lateral direction) at 86 ° C.
  • the laterally stretched film is guided to the final heat treatment zone, and after heat treatment at 86 ° C. in the final heat treatment zone, the film is cooled, both edges are cut and removed, and wound into a roll with a width of 500 mm, thereby obtaining a thickness of 40 ⁇ m.
  • a biaxially stretched film was continuously produced over a predetermined length. In this example, the relaxation rate during the intermediate heat treatment and the final heat treatment was set to 0%.
  • the properties of the obtained film were evaluated by the method described above.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • the shrinkage stress curve is shown in FIG. 2, and the temperature modulation DSC measurement result is shown in FIG. In FIG.
  • Example 2 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinally stretched in the same manner as in Example 1. Thereafter, a relaxation treatment of 15% in the longitudinal direction of the film was performed in a heating furnace at 95 ° C. Subsequently, natural cooling, forced cooling, transverse stretching, and final heat treatment were performed in the same manner as in Example 1 except that intermediate heat treatment was performed at 140 ° C., and 5% relaxation treatment was performed at 86 ° C. in the longitudinal direction of the film in the final heat treatment step. I went there. Therefore, the relaxation rate in the longitudinal direction of the film is 20% in total. A biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m was obtained. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 3 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinally stretched in the same manner as in Example 1. Thereafter, natural cooling, forced cooling, transverse stretching, and final heat treatment were carried out except that 50% relaxation treatment was performed in a heating furnace at 95 ° C. in the longitudinal direction of the film and 20% relaxation treatment was performed during the subsequent intermediate heat treatment. 1 was performed. Therefore, the relaxation rate in the longitudinal direction of the film is 60% in total. A biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m was obtained. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 4 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinally stretched in the same manner as in Example 1. Thereafter, an intermediate heat treatment was performed at 140 ° C., and a biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m was continuously produced in the same manner as in Example 1 except that the temperature in the final heat treatment was 90 ° C.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 5 Polyester B, polyester E, and polyester F were mixed at a mass ratio of 65: 30: 5 and charged into an extruder.
  • the mixed resin was melt extruded under the same conditions as in Example 1 to form an unstretched film.
  • the unstretched film had a Tg of 55 ° C.
  • This unstretched film had a width of 500 mm and a thickness of the same as in Example 1, except that the film temperature during longitudinal stretching was 80 ° C., the temperature for intermediate heat treatment was 140 ° C., and the film temperature for zone transverse stretching was 83 ° C.
  • a 40 ⁇ m thick biaxially stretched film was continuously produced.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 6 Polyester B, polyester C, polyester E, and polyester F were mixed at a mass ratio of 18: 62: 15: 5 and charged into an extruder.
  • the mixed resin was melt extruded under the same conditions as in Example 1 to form an unstretched film having a thickness of 400 ⁇ m.
  • the unstretched film had a Tg of 61 ° C.
  • a biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m was continuously produced in the same manner as in Example 1 except that the temperature of the intermediate heat treatment was set to 140 ° C.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 7 Polyester A, Polyester C, Polyester E and Polyester F were changed to a mass ratio of 5: 80: 10: 5, and the temperature of the intermediate heat treatment was changed to 140 ° C. in the same manner as in Example 1 except that the width was 500 mm, A biaxially stretched film having a thickness of 40 ⁇ m was continuously produced. In addition, Tg of the unstretched film was 61 degreeC.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 8 A biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m is continuously produced in the same manner as in Example 1 except that polyester A, polyester E, polyester F, and polyester G are changed to a mass ratio of 5: 15: 5: 75. Manufactured.
  • the Tg of the unstretched film was 59 ° C.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 9 The same polyester raw material as in Example 1 was melt-extruded in the same manner as in Example 1, and longitudinal stretching and relaxation treatment were performed in the same manner as in Example 1. Subsequently, the film after the relaxation treatment after the longitudinal stretching was performed in the same manner as in Example 1, except that the transverse stretching ratio was 3.0 times, the transverse stretching temperature was 90 ° C., and the final heat treatment temperature was 90 ° C. Transverse stretching was performed to continuously produce a biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 10 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinal stretching and relaxation treatment were performed in the same manner as in Example 1 except that the longitudinal stretching ratio was 3.5 times. Subsequently, the film after relaxation treatment after longitudinal stretching was subjected to transverse stretching in the same manner as in Example 9 except that the transverse stretching temperature and the final heat treatment temperature were 83 ° C., and biaxial stretching with a width of 500 mm and a thickness of 40 ⁇ m. Films were produced continuously. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 1 When the same polyester raw material as in Example 6 was melt-extruded in the same manner as in Example 6, the discharge rate of the extruder was adjusted so that the thickness of the unstretched film was 180 ⁇ m. Otherwise, an unstretched film was obtained in the same manner as in Example 6. Thereafter, without pre-stretching, it was preheated to 76 ° C. in a tenter, then stretched 4.0 times at 67 ° C., subjected to final heat treatment at 76 ° C., cooled, and both edges were cut and removed to obtain a width of 500 mm. The uniaxially stretched film having a thickness of 40 ⁇ m was continuously manufactured over a predetermined length by winding in a roll. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3. The shrinkage stress curve is shown in FIG.
  • Example 2 An unstretched film was obtained in the same manner as in Example 1 except that polyester A, polyester B, polyester D, and polyester F were changed to a mass ratio of 10: 75: 10: 5. This unstretched film was subjected to a relaxation treatment temperature of 105 ° C. after longitudinal stretching, a relaxation rate of 40%, an intermediate heat treatment temperature of 130 ° C., a film surface temperature after cooling of 103 ° C., a transverse stretching temperature of 100 ° C., and a final heat treatment temperature of 95 ° C. Except for the above, a biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m was continuously produced in the same manner as in Example 1. In addition, Tg of the unstretched film was 70 degreeC. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Comparative Example 3 The same polyester raw material as in Comparative Example 2 was obtained in the same manner as in Comparative Example 2 to obtain an unstretched film, which was the same as Comparative Example 2 except that the film surface temperature after cooling was 95 ° C, the transverse stretching temperature was 90 ° C, and the final heat treatment temperature was 101 ° C. In this way, a biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m was produced. Manufacturing conditions are shown in Table 2, evaluation results are shown in Table 3, and temperature modulation DSC measurement results are shown in FIG. In FIG. 3, ⁇ is the result of the non-reverse heat flow of Example 1, and ⁇ is the result of the reverse heat flow.
  • Comparative Example 4 An unstretched film was obtained using the same polyester raw material as in Comparative Example 2 in the same manner as in Comparative Example 2, and longitudinal stretching was performed in the same manner as in Comparative Example 2. Thereafter, a biaxially stretched film having a width of 500 mm and a thickness of 40 ⁇ m was produced in the same manner as in Comparative Example 2 except that the relaxation treatment in the film longitudinal direction was changed to 0%.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • the heat-shrinkable film of the examples of the present invention is a biaxially stretched film that has undergone a predetermined relaxation process using a predetermined amount of butanediol and ⁇ -caprolactone, has no label slack, and deteriorates heat-shrinkage characteristics during aging. And the shrinkage finish of the label after aging was excellent.
  • Comparative Example 1 since no longitudinal stretching was performed, the shrinkage stress at 90 ° C. decreased to 61.5% after 30 seconds, and a slack in the label was observed. In addition, since the molecular chain is not oriented in the longitudinal direction, the absorbance ratio and the tensile fracture strength in the longitudinal direction do not satisfy the specified range of the present invention. In Comparative Examples 2 and 3, ⁇ -caprolactone is not used, and relaxation in the longitudinal direction after longitudinal stretching is not performed. Therefore, the absorbance ratio in the width direction is too high. In particular, in Comparative Example 3, since the transverse stretching temperature is low (Tg + 20 ° C.), the transverse orientation becomes extremely high, and it is assumed that the stress applied to the molecular chain is high. While the film was aged, the tendency to relieve the stress applied to the molecular chain became stronger, leading to an increase in the amount of enthalpy relaxation and an increase in the natural shrinkage rate.
  • Tg + 20 ° C. the transverse stretching temperature
  • Comparative Example 4 is a system that does not use ⁇ -caprolactone, but is an example in which longitudinal and transverse biaxial stretching was performed. However, since relaxation in the longitudinal direction was not performed, performance degradation occurred during aging, and the hot shrinkage rate at 70 ° C. after aging was low, or the finish was inferior.
  • the heat-shrinkable polyester film of the present invention has excellent properties as described above, it can be suitably used for labeling applications such as bottles.
  • a packaging body such as a bottle obtained by using the heat-shrinkable polyester film of the present invention as a label has a beautiful appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 エージング中の性能低下に伴う収縮仕上がり性の悪化を抑制し、かつ、ラベルとして用いた後も、弛みを起こさないような熱収縮性ポリエステル系フィルムを提供する。所定の組成のポリエステルからなり、(1)偏光ATR-FTIR法で測定した上記フィルムの1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2が、フィルム幅方向、長手方向のいずれにおいても、0.45以上0.75以下かまたは0.40以上0.45未満である、(2)上記フィルムを90℃の熱風中で30秒間熱収縮させたときの30秒後の収縮応力(30秒後収縮応力)と最大収縮応力との比率(30秒後収縮応力/最大収縮応力)が75%以上100%以下である、(3)30℃、85%RH雰囲気下で上記フィルムを672時間エージングした後、70℃の温水中にこのエージング後のフィルムを10秒間浸漬したときの幅方向の温湯熱収縮率が30%以上55%以下である、を全て満足する熱収縮性ポリエステル系フィルムである。

Description

熱収縮性ポリエステル系フィルムおよび包装体
 本発明は、熱収縮性ラベル用途に好適な熱収縮性ポリエステル系フィルム、およびラベルを用いた包装体に関する。
 近年、ガラス瓶またはプラスチックボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(いわゆる、熱収縮性フィルム)が広範に使用されるようになってきている。このような熱収縮性フィルムのうち、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。このため、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広範に利用されるようになってきており、PET(ポリエチレンテレフタレート)ボトル等の流通量の増大に伴って、使用量が増加している傾向にある。
 しかし、従来の熱収縮性ポリエステル系フィルムは、その収縮特性においてさらなる改良が求められていた。特に、熱収縮性ポリスチレン系フィルムと比較すると、PETボトルやポリエチレンボトル、あるいはガラス瓶等の容器へ被覆収縮させる際、収縮斑やシワが発生して、フィルムに印刷した文字や図柄が歪むことがあり、この歪みを可及的に小さくしたいというユーザーサイドの要望が合った。
 ところで、容器の被覆加工に熱収縮性フィルムを用いる際、必要に応じて図柄等をフィルムへ印刷した後、ラベルや袋等の形態に加工して容器に装着し、収縮トンネルと呼ばれる加熱装置でラベル等を熱収縮させて容器に密着させている。この収縮トンネルには、スチームを吹き付けて熱収縮させるスチームトンネルと、熱風を吹き付けて熱収縮させる熱風トンネルがある。
 スチームトンネルは熱風トンネルよりも伝熱効率がよく、より均一に加熱収縮させることが可能であり、良好な仕上がり外観を得ることができる。ただし、ポリエステル系フィルムは、スチームトンネルを使用しても、ポリ塩化ビニル系フィルムやポリスチレン系フィルムと比べると、仕上がり性が若干劣るという問題があった。
 さらに、スチームトンネルよりも温度斑が生じやすい熱風トンネルを使用してポリエステル系フィルムを収縮させると、収縮白化、収縮ムラ、シワ、歪み等が発生し易く、ポリ塩化ビニル系フィルムやポリスチレン系フィルムよりも仕上がり性に劣るという問題もあった。
 こういったことから、熱収縮性ポリエステル系フィルムの収縮仕上がり性を改善するために、フィルム原料であるポリエステル樹脂の中に、ポリエステル系エラストマーを含有させる方法等が提案されている(特許文献1)。
 しかしながら、特許文献1に記載の熱収縮性ポリエステル系フィルムは、ポリエチレン製等の熱膨張し易いボトルのラベルとして用いると、加熱収縮時にラベルがボトルに密着していても、ボトルが室温程度に冷却されて、加熱時に膨張していたボトルが通常の大きさに戻るため、ラベルに弛みが生じて、性能上も外観上も好ましくないという問題があった。また、特許文献1の熱収縮性ポリエステル系フィルムは、主収縮方向である幅方向に対し直交する方向である長手方向については、ほとんど延伸されないため、長手方向の機械的強度が低く、またミシン目開封性が悪いという問題もある。
 ミシン目開封性については、特許文献1の出願後、本願出願人らによって引き続き検討が行われ、特許文献2に示すようなミシン目開封性に優れる熱収縮性ポリエステル系フィルムの提供に成功している。
 しかしながら、さらなる問題が発生している。すなわち、熱収縮性フィルムは一般に製造後直ちに使用されることは少なく、保管や運搬工程等でエージング(長期保管)された後に使用されることが多いが、熱収縮性フィルムは熱により収縮するフィルムであるために、常温よりも少し高い温度でもエージング中に自然収縮を起こしたり、性能低下が起こって収縮仕上がり性が悪化してしまう。
 例えば、特許文献3には、フィルムのガラス転移点付近の吸熱ピーク量(エンタルピー緩和量)に着目して、収縮仕上がり性を向上した技術が開示されているが、10年以上も前の技術であり、特許文献3に記載されたレベルの収縮仕上がり性では、現在のユーザーの要求に応えることはできない。
特開2005-335111号公報 国際公開第2010/137240号 特開2001-192474号公報
 本発明は、上記問題点を解消して、エージング中の性能低下に伴う収縮仕上がり性の悪化を抑制し、かつ、ラベルとして用いた後も、弛みを起こさないような熱収縮性ポリエステル系フィルムを提供することを課題としている。
 上記課題を解決した本発明は、エチレンテレフタレートユニットを有し、全ポリエステル樹脂成分100モル%中、ブタンジオール由来の構成ユニットが1~25モル%、ε-カプロラクトン由来の構成ユニットが1~25モル%、ブタンジオールとε-カプロラクトン由来の構成ユニット以外の非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上含まれている熱収縮性ポリエステル系フィルムであって、下記要件(1)~(3)を満たすことを特徴とする熱収縮性ポリエステル系フィルムである。
(1)偏光ATR-FTIR法で測定した上記フィルムの1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2(吸光度比)が、フィルム幅方向、長手方向のいずれにおいても、0.45以上0.75以下である、
(2)上記フィルムを90℃の熱風中で30秒間熱収縮させたときの30秒後の収縮応力(30秒後収縮応力)と最大収縮応力との比率(30秒後収縮応力/最大収縮応力)が75%以上100%以下である、
(3)30℃、85%RH雰囲気下で上記フィルムを672時間エージングした後、70℃の温水中にこのエージング後のフィルムを10秒間浸漬したときの幅方向の温湯熱収縮率が30%以上55%以下である。
 本発明には、エチレンテレフタレートユニットを有し、全ポリエステル樹脂成分100モル%中、ブタンジオール由来の構成ユニットが1~25モル%、ε-カプロラクトン由来の構成ユニットが1~25モル%、ブタンジオールとε-カプロラクトン由来の構成ユニット以外の非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上含まれている熱収縮性ポリエステル系フィルムであって、下記要件(1’)、(2)および(3)を満たすことを特徴とする熱収縮性ポリエステル系フィルムも含まれる。
(1’)偏光ATR-FTIR法で測定した上記フィルムの1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2(吸光度比)が、フィルム幅方向、長手方向のいずれにおいても、0.40以上0.45未満である、
(2)上記フィルムを90℃の熱風中で30秒間熱収縮させたときの30秒後の収縮応力(30秒後収縮応力)と最大収縮応力との比率(30秒後収縮応力/最大収縮応力)が75%以上100%以下である、
(3)30℃、85%RH雰囲気下で上記フィルムを672時間エージングした後、70℃の温水中にこのエージング後のフィルムを10秒間浸漬したときの幅方向の温湯熱収縮率が30%以上55%以下である。
 40℃、65%RH雰囲気下で上記フィルムを672時間エージングしたときの幅方向の自然収縮率が0.3%以上2%以下であることが好ましい。
 また、フィルム幅方向の上記吸光度比と、フィルム長手方向の上記吸光度比との差の絶対値が0.15未満であること、フィルムを70℃の温水中に10秒間浸漬したときの幅方向の温湯熱収縮率が30%以上55%以下であること、フィルムを98℃の温水中に10秒間浸漬したときの幅方向の温湯熱収縮率が40%以上75%以下であり、長手方向の温湯熱収縮率が0%以上15%以下であること、フィルムの長手方向の引張破壊強さが80MPa以上200MPa以下であること、フィルムを80℃の温水中で幅方向に10%収縮させた後のフィルム長手方向の単位厚み当たりの直角引裂強度が180N/mm以上330N/mm以下であることは、いずれも本発明の好適な実施態様である。
 また、本発明には、本発明の熱収縮性ポリエステル系フィルムから得られ、ミシン目またはノッチを有するラベルを、包装対象物の外周の少なくとも一部に被覆して熱収縮させることにより形成される包装体も含まれる。
 本発明の熱収縮性ポリエステル系フィルムは、特定組成のポリエステルを特定の製造方法でフィルム化したことで、フィルムを構成するポリエステル分子鎖、特に収縮に関与すると考えられる非晶分子鎖(以下、単に分子鎖ということがある)にかかっている応力が、熱収縮前やエージング中にはほとんど緩和せず、熱収縮時に一気に分子鎖にかかっている応力が緩和された(収縮した)後は、その際に生じた熱収縮応力の緩和が緩やかになるという特性を示すものである。このため、エージング中の性能低下が小さく、エージング後のフィルムを用いても、収縮仕上がり性が優れた包装体が得られる。
 また、本発明の熱収縮性ポリエステル系フィルムは、収縮開始から30秒後であっても収縮応力が大きいので、熱膨張しやすい容器に装着することでラベル収縮応力の減衰率が小さくなるが、このことは、ラベル装着工程の加熱時に容器が熱膨張しようとしても、この熱膨張を抑制できるぐらいにラベルが容器に強固に密着していることを意味し、その結果、容器が冷えたときでも容器の縮みが少ないので、ラベルの弛みが生じずに良好な外観が得られる。さらに、本発明の熱収縮性ポリエステル系フィルムは、縦横の二軸に延伸されて製造されるものであるので、非常に効率よく生産することができ、ポリエチレン製のような熱膨張し易いボトル等のラベルを始めとする各種被覆ラベル、キャップシール、収縮包装等の用途に好適に用いることができる。
直角引裂強度の測定における試験片の形状を示す説明図である(なお、図中における試験片の各部分の長さの単位はmmであり、Rは半径を意味する)。 実施例1と比較例1のフィルムの収縮応力曲線である。 実施例1と比較例3のフィルムの温度変調DSC測定から得られたリバースヒートフローチャートとノンリバースフローチャートである。
 1.熱収縮性ポリエステル系フィルムの原料ポリエステル
 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、エチレンテレフタレートユニットを有するものである。エチレンテレフタレートユニットは、ポリエステルの構成ユニット100モル%中、40モル%以上が好ましく、50モル%以上がより好ましく、55モル%以上がさらに好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、全ポリエステル樹脂成分100モル%中、ブタンジオール(1,4-ブタンジオール)由来の構成ユニットが1~25モル%、ε-カプロラクトン由来の構成ユニットが1~25モル%含まれていることが重要である。ブタンジオールとε-カプロラクトンの併用と後述する延伸方法の採用によって、熱収縮前の延伸によってある程度引き伸ばされたポリエステル分子鎖にかかっている応力が、エージング中でも緩和しにくくなったため、低温領域での熱収縮率が低下しにくく、かつ自然収縮が小さいフィルムを提供することができた。
 従来、低温収縮性を確保するためにポリエステル中の非晶質成分の量を多くすると、エージング中のフィルムが自然収縮してしまうという問題があったが、本発明の熱収縮性フィルムは、熱収縮前の非晶分子鎖にかかっている応力がほとんど緩和を起こさないという特徴を有しているため、低温収縮率を確保しつつ、自然収縮を抑制することができた。さらに、このフィルムは、熱収縮後にも一定時間にわたって熱収縮力を発揮することができる。すなわち、後述するように、熱収縮後の収縮応力の減衰量が小さいという、これまでにない熱収縮性フィルムを提供することに成功している。
 上記の諸効果は、多価アルコール成分として、エチレングリコール以外に、ブタンジオールやε-カプロラクトンといった分子主鎖の炭素数が異なる成分を混在させたことと、製膜後、二軸延伸を行うことにより、発現したものと考えられる。熱収縮性ポリエステル系フィルムでは、ポリエステルの2個のエステル結合の間の分子主鎖が多数存在して、この分子主鎖が、延伸によって引き伸ばされたり、応力がかかった状態となったり、その応力が緩和したりするのであるが、ブタンジオールやε-カプロラクトンはエチレングリコールよりも分子主鎖が長くなっているため、これらの長さの異なる分子主鎖が延伸や応力緩和に際しそれぞれ異なる挙動を取ると考えられ、また二軸延伸することによって、フィルム面内で長さの異なる分子主鎖が二軸方向へ配向しており、ポリエステル分子鎖1本1本について応力が緩和するのに必要なエネルギーに分布が生じると考えられる。こういった本発明の熱収縮性ポリエステル系フィルムに対し、同じ量のエネルギーを与えても、フィルム全体では、多数の分子鎖にかかる応力が一様に緩和するわけではないため、エージング中のエンタルピー緩和や収縮時の応力減衰が緩やかになると推測される。これらのメカニズムによって、エージング後に熱収縮させたときでも、収縮仕上がり性に優れているという効果を発揮するものと考えられる。
 ブタンジオールとε-カプロラクトンが、それぞれ多価アルコール成分100モル%中1モル%より少ないと、上記の緩和抑制効果が発現せず、収縮不足や収縮仕上がり性不良が起こる。また、それぞれが25モル%を超えると、物理的強度を担うエチレンテレフタレートユニットが相対的に少なくなるため、耐破れ性、フィルム強度、耐熱性等が不充分となって好ましくない。ブタンジオールとε-カプロラクトンは、それぞれ5モル%以上とすることが好ましい。ε-カプロラクトンは20モル%以下とすることが好ましい。また、両者の合計は、45モル%以下とすることが好ましい。エチレンテレフタレートユニットが少なくなり過ぎて、耐熱性や強度が低下するのを防止できるからである。
 本発明のポリエステルは、さらに、ブタンジオールとε-カプロラクトン由来のユニット以外の非晶質成分となり得る1種以上のモノマー由来のユニット(合計量)が全ポリエステル樹脂成分100モル%中18モル%以上であることも必要である。非晶質成分が18モル%より少ないと、熱収縮特性が劣ったものとなる。非晶質成分となり得るモノマーは、全ポリエステル樹脂中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中、好ましくは20モル%以上、25モル%以下である。
 非晶質成分となり得るモノマーの具体例としては、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオールを挙げることができる。これらの中でも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸が好ましい。
 非晶質成分となり得るモノマーがイソフタル酸であって、ジカルボン酸成分としてテレフタル酸とイソフタル酸を併用し、ジオール成分としてエチレングリコール、ブタンジオールおよびε-カプロラクトンを併用する場合、フィルムを構成するポリエステル樹脂中には、テレフタル酸とブタンジオールからなる構成ユニット、イソフタル酸とブタンジオールからなる構成ユニット、イソフタル酸とエチレングリコールからなる構成ユニット等が混在することになる。
 ここで、イソフタル酸とブタンジオールからなる構成ユニットは、ブタンジオール由来の構成ユニットであり、かつ、非晶質成分となり得る1種以上のモノマー由来の構成ユニットでもある。よって、本発明では、イソフタル酸とブタンジオールからなる構成ユニットの含有率は、ブタンジオール由来の構成ユニットとしてもカウントし、非晶質成分となり得る1種以上のモノマー由来の構成ユニットとしてもカウントするものとする。したがって、ブタンジオール由来の構成ユニットの含有率とは、イソフタル酸とブタンジオールからなる構成ユニットの含有率と、テレフタル酸とブタンジオールからなる構成ユニットの含有率の合計含有率のこととなる。そして、非晶質成分となり得る1種以上のモノマー由来の構成ユニットの含有率は、イソフタル酸とブタンジオールからなる構成ユニットの含有率と、イソフタル酸とエチレングリコールからなる構成ユニットの含有率とを含む全ての非晶質成分となり得る1種以上のモノマー由来の構成ユニットの含有率の合計含有率のこととなる。同様のことが、ε-カプロラクトン由来の構成ユニットの含有率と、非晶質成分となり得る1種以上のモノマー由来の構成ユニットの含有率の関係にも当てはまる。
 本発明のポリエステルを構成する上記以外のジカルボン酸成分としては、オルトフタル酸等の芳香族ジカルボン酸;アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸;および脂環式ジカルボン酸等を挙げることができる。
 脂肪族ジカルボン酸(例えば、アジピン酸、セバシン酸、デカンジカルボン酸等)をポリエステルに含有させる場合、含有率は3モル%未満(ジカルボン酸成分100モル%中)であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、高速装着時のフィルム腰が不充分である。
 また、3価以上の多価カルボン酸(例えば、トリメリット酸、ピロメリット酸およびこれらの無水物等)をポリエステルに含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
 ポリエステルを構成する上記以外の多価アルコール成分としては、ビスフェノールA等の芳香族系ジオール等を挙げることができる。
 本発明で用いるポリエステルは、ブタンジオールとε-カプロラクトン量や、非晶質成分となり得るモノマー量を適宜選択して、ガラス転移点(Tg)を50~80℃に調整したポリエステルが好ましい。
 ポリエステルには、炭素数8個以上のジオール(例えば、オクタンジオール等)、または3価以上の多価アルコール(例えば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)を含有させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。また、ポリエステルには、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールをできるだけ含有させないことも好ましい。
 最も好ましいポリエステルは、全ポリエステル構成ユニット100モル%中、ブチレンテレフタレートユニットが1~25モル%、ε-カプロラクトンとテレフタル酸からなるユニットが1~25モル%、これらの合計が2~50モル%、非晶質成分となり得るモノマーとテレフタル酸からなるユニットが18~25モル%、残部がエチレンテレフタレートユニットであるポリエステルである。なお、テレフタル酸の一部がイソフタル酸に置き換わった非晶ユニットが含まれていてもよい。
 本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。
 本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、フィルムの作業性(滑り性)を良好にする滑剤としての微粒子を添加することが好ましい。微粒子としては、任意のものを選択することができるが、例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等、有機系微粒子としては、例えば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。
 熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、例えば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
 本発明の熱収縮性ポリエステル系フィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
 2.本発明の熱収縮性ポリエステル系フィルムの特性
 2.1 収縮応力比
 本発明の熱収縮性ポリエステル系フィルム(エージング雰囲気下に置かれていないもの)は、90℃の熱風中で測定した主収縮方向(以下、幅方向)における収縮応力が、測定開始から30秒経過した後でも、最大収縮応力に対して75%以上100%以下であることが好ましい。すなわち、本発明の熱収縮性ポリエステル系フィルムは、熱収縮し始めてから30秒後も最大熱収縮応力と同程度の収縮応力を示すという特異な熱収縮特性を示す(図2の実施例1)。なお、最大熱収縮応力は、通常、測定開始後10秒以内に観察される。従来の熱収縮性フィルムでは、最大熱収縮応力が観察された後、すぐ、収縮応力が減衰し始める(図2の比較例1)。ボトルへラベルを被せて加熱収縮させる際に、ボトルが加熱により膨張した時のラベルの追従性が悪くなり、収縮後にボトルの温度が下がって熱膨張が無くなると、ラベルが弛んでしまうという状況の発生を防ぐためには、熱収縮性ポリエステル系フィルムの30秒後の収縮応力/最大収縮応力(以下、応力比)が75%以上であることが好ましい。上記応力比は、77%以上がより好ましく、80%以上がさらに好ましく、85%以上が特に好ましい。応力比は大きい方が、追従性が良好となるため好ましいが、30秒後の収縮応力が最大収縮応力を上回ることはあり得ないので、上限は100%である。
 なお、上記最大収縮応力の絶対値としては、5.5MPa以上15MPa以下が好ましく、7MPa以上12MPa以下がより好ましい。熱収縮の際、ラベルがボトルに強固に巻き付いてボトルの熱膨張を抑え込むことで、ボトル冷却後にラベルが弛むのを抑制することができるが、フィルム幅方向の90℃での最大収縮応力が5.5MPaを下回ると、上記効果が不充分となることがある。90℃の最大収縮応力は、7MPa以上がより好ましく、8MPa以上がさらに好ましい。反対に、90℃の最大収縮応力が15MPaを上回ると、緩やかに収縮できなくなって、熱収縮後のラベルに歪みが生じ易くなるため好ましくない。90℃の最大収縮応力は、12MPa以下がより好ましい。
 2.2 吸光度比
 本発明の熱収縮性ポリエステル系フィルムは、偏光ATR-FTIR法で測定した熱収縮性ポリエステル系フィルムの1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2(以下、吸光度比)が、フィルム主収縮方向(幅方向)と、主収縮方向に直交する方向(長手方向)のそれぞれで、0.45以上0.75以下でなければならない。
 上記吸光度比は、分子配向のトランスコンフォメーション比率を表す。これまで、収縮率に関係する非晶配向は、ゴーシュコンフォメーション比率と考えられていた。しかし、上ノ町 清巳氏の論文(「熱収縮性ポリエステルフィルムの収縮特性制御」、成形加工、第6巻、第10号、1994年、p679-682)では、製膜条件を変更して収縮率を変化させても、ゴーシュコンフォメーション比率の変化はほとんどなく、製膜条件変更により変化したのはトランスコンフォメーション比率であった。この論文の熱収縮性フィルムは、主収縮方向である幅方向のみに延伸された一軸延伸フィルムであり、熱収縮性ポリエステル系フィルムに要求される種々の特性を満足するものではない。そこで、本発明者等は、長手方向(MD方向)と幅方向(TD方向)の二軸に延伸されたフィルムにおける分子配向(トランスコンフォメーション比率)に着目して、好適な熱収縮特性を示す分子配向とはどのようなものかについて、長手方向と幅方向のトランスコンフォメーション比率を検討し、本発明に到達した。
 すなわち、本発明者等は、延伸温度等を変更することにより、トランスコンフォメーション比率の変化と収縮率が関係しているという実験結果を得ている。従って、熱収縮に関係する分子配向を表すのは、トランスコンフォメーション比率の方であると考えられる。
 トランスコンフォメーションは分子鎖の配向状態を表すものと考えられ、トランスコンフォメーション比率が高いと分子鎖の配向状態も高い。非晶モノマーを用いたポリエステルを原料とする場合は、分子鎖の構造(回転異性体の長さ)の違いで収縮の容易さが変化すると、上記論文では考えられている。このため、フィルム製造段階で、収縮が容易な分子鎖の配向が高いと、分子鎖にかかっている応力を緩和(=収縮)することのできるのに充分な熱を加えることによって、分子鎖の応力が緩和されて小さくなり(分子鎖の変化が大きくなり)、収縮率も高くなると考えられる。
 また上記論文ではトランスコンフォメーションの吸光度比を795cm-1と975cm-1の比率で求めている。しかし、トランスコンフォメーション比率を測定する吸光度(波数)は他にも複数ある。本発明では、文献{Atlas of polymer and plastic analysis:Vch verlagsgesellschaft mbh, 370(1991)}を参考にして、複数の吸光度比からトランスコンフォメーション指数を求めた結果、1340cm-1と1410cm-1の吸光度比が最も値の差が大きかったので、トランスコンフォメーション比率をこの吸光度比で求めた。
 本発明では、フィルム幅方向、長手方向のいずれにおいても、吸光度比が0.45~0.75であることが好ましい。フィルム幅方向の吸光度比が0.45未満では分子配向が低いため、エージング前の70℃での温湯熱収縮率が小さくなり、エージング後にはエージング前より70℃での温湯熱収縮率がさらに小さくなるため、エージング後の70℃での温湯熱収縮率が小さすぎることになる。フィルム幅方向の吸光度比は0.48以上が好ましく、0.5以上がより好ましい。一方、フィルム幅方向の吸光度比が0.75を超える場合、フィルムの配向が進行しすぎてしまい(配向結晶化)、フィルムの白化や収縮率の低下が起こるため、好ましくない。幅方向の吸光度比は、0.72以下が好ましく、0.7以下がより好ましい。
 一方、フィルム長手方向の吸光度比が0.45未満では分子配向が低いため、長手方向の引張破壊強さが小さくなり、長手方向の強度が不充分となることがある。さらに、長手方向の吸光度比が0.45未満では直角引裂強度が大きくなり、ミシン目開封率が低下するため好ましくない。さらに、前記した収縮応力比も小さくなるので、好ましくない。長手方向にも分子を配向させることで、加熱収縮の際に、幅方向の分子の収縮が緩やかになるため、収縮応力の低下が小さくなって、収縮応力比を高く(75%以上)保持することができると考えられる。フィルム長手方向の吸光度比は0.48以上が好ましく、0.5以上がより好ましい。またフィルム長手方向の吸光度比が0.75より高くなると分子配向が高いため、長手方向の引張破壊強さも大きくなってこの点では好ましいが、吸光度比が高すぎると、フィルムの白化が生じやすくなるため、好ましくない。長手方向の吸光度比は、0.73以下が好ましく、0.71以下がより好ましい。
 しかしながら、その後の検討の結果、吸光度比が幅方向、長手方向のいずれにおいても、0.40以上、0.45未満のフィルムであっても、それなりに分子配向があって、エージング前およびエージング後の70℃の温湯熱収縮率が、実用的に充分な程度発現することがわかった。よって、本発明には、幅方向、長手方向の吸光度比が0.40以上0.45未満のフィルムも含まれる。以下の説明では、本発明の熱収縮性ポリエステル系フィルムというときは、吸光度比が0.40以上0.75のフィルムを指すものとする。
 本発明では後述するように、フィルム長手方向に延伸した後に、フィルム幅方向に延伸する。従来の熱収縮性フィルムは、一般に幅方向の一軸延伸フィルムであり、このような一軸延伸フィルムでは、延伸方向の配向、すなわち幅方向のトランスコンフォメーション比率(吸光度比)しか高くならないため、未延伸方向の強度が不充分であった。本発明では、長手方向と幅方向に延伸しているため、両方向のトランスコンフォメーション比率が近い値となり、強度のバランスに優れたフィルムとなる。
 フィルム幅方向の吸光度比と、フィルム長手方向の吸光度比の差は、0.15未満であることが好ましい。通常、二軸に延伸したフィルムは、一軸目と二軸目の延伸倍率が近ければ、最終延伸方向である幅方向の配向が高くなるのが一般的だが、本発明では、幅方向と長手方向の配向差が小さいことが特徴である。一般的な二軸延伸フィルムの最終延伸方向の配向が高くなる理由は、二軸目に延伸する方向の延伸応力が一軸目の延伸応力よりも高くなるためである。
 これに対して、本発明では前述したように、エチレングリコールよりも分子鎖の長いブタンジオールとε-カプロラクトンを必須として用い、これらの成分に由来するユニットが混在しているため、二軸目の延伸応力が小さくなって、幅方向と長手方向の配向度合い(吸光度比)の差が0.15未満と小さくなるものと推測される。そして、この幅方向と長手方向の配向度合い(吸光度比)の差が小さいということは、本発明のポリエステルの分子鎖が、どのように引き伸ばされているか、すなわち、幅方向と長手方向の両方に延伸されていることを示す指標となっていると考えられる。この幅方向と長手方向の吸光度比の差は、0.1以下であることがより好ましく、0.07以下であることがさらに好ましい。
 2.3 エージング後のフィルム幅方向の70℃の温湯熱収縮率
 本発明の熱収縮性ポリエステル系フィルムは、エージング中の性能低下が小さいため、30℃、85%RH雰囲気下で672時間エージングした後、このエージング後のフィルムを70℃の温湯中に無荷重状態で10秒間浸漬し、フィルムを直ちに25℃±0.5℃の水中に10秒間浸漬させた後、収縮前後の長さから、下記式1により算出したフィルム幅方向(主収縮方向)の熱収縮率(すなわち、70℃の温湯熱収縮率)が、30%以上55%以下であることが好ましい。
 温湯熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) 式1
 上記フィルム幅方向の70℃での温湯熱収縮率が小さいと、容器等に被覆収縮させる際に、フィルムの収縮力が不足して容器にきれいに密着せず、外観不良が起こるおそれがあるため、70℃の温湯熱収縮率は30%以上であることが好ましい。一方、フィルム幅方向の70℃での温湯熱収縮率が大きすぎると、収縮初期にラベルの飛び上がりが起こるため、70℃での温湯熱収縮率は55%以下であることが好ましい。上記熱収縮率は、32%以上がより好ましく、34%以上がさらに好ましく、53%以下がより好ましく、50%以下がさらに好ましい。
 本発明の熱収縮性ポリエステル系フィルム(エージング雰囲気下におかれていないもの)の幅方向の70℃の温湯熱収縮率は、上記と同様の理由で、30%以上55%以下であることが好ましい。
 2.4 エージング後のエンタルピー緩和量の差
 本発明の熱収縮性ポリエステル系フィルムは、30℃、85%RH雰囲気下で672時間エージングした後のエンタルピー緩和量が、4.0J/g以下であることが好ましい。特許文献3や、十時 稔氏の論文(「DSC(3)-高分子のガラス転移挙動編-」、繊維と工業、第65巻、第10号、2009年、p385-393)によれば、図3に示した温度変調DSC測定から得られたノンリバースヒートフローにおいて、ガラス転移点付近に見られる吸熱ピークがエンタルピー緩和を示していることがわかる。エンタルピー緩和量は、ピーク面積を積分することによって求めることができる。詳細な測定方法は後述する。エンタルピー緩和は、非晶部の自由体積が減少した結果であり、その分だけ分子鎖が動きにくくなるため、DSC昇温過程において吸熱ピークとして現れる。熱収縮性ポリエステル系フィルムにおいては、エンタルピー緩和量が大きいほど、収縮に寄与する非晶分子鎖が動きにくくなると考えられ、収縮特性は劣化する傾向にある。このため、本発明では、エージング後のエンタルピー緩和量が4.0J/g以下であることが好ましい。エージング後のエンタルピー緩和量は3.8J/g以下がより好ましく、3.5J/g以下がさらに好ましい。なお、上記条件のエージングを行っていないフィルムのエンタルピー緩和量は0.1J/g以下となる。
 2.5 エージング後のフィルムの自然収縮率
 本発明の熱収縮性ポリエステル系フィルムは、40℃、65%RHの雰囲気下で672時間エージングした後のフィルム幅方向の自然収縮率が0.3%以上2.0%以下であることが好ましい。これまで説明したように、本発明の熱収縮性ポリエステル系フィルムでは、分子鎖の長さの異なるポリエステルが二軸方向に配向しているため、エージング中のエンタルピー緩和を起こしにくい。このため、エージング中の性能低下が小さく、エージング中のフィルムの収縮量は小さくなる。よって、本発明では、自然収縮率の好ましい範囲を0.3%以上2%以下と定めている。なお自然収縮率は、後述するように、エージング前のサンプルの幅方向長さと、40℃、65%RHの雰囲気下に672時間放置された後のサンプルの長さから、下記式2で求められる。
 自然収縮率={(エージング前の長さ-エージング後の長さ)/エージング前の長さ}×100(%) 式2
 上記自然収縮率が2%を超える場合、ロール状に巻き取られた熱収縮性ポリエステル系フィルムを保管しておく場合に、巻き締まりが起こり、フィルムロールにシワが入りやすくなり好ましくない。自然収縮率は1.8%以下がより好ましく、1.6%以下が更に好ましい。自然収縮率は小さいほど好ましいが、実際上は0.3%程度が限界である。
 2.6 フィルム長手方向の98℃での温湯熱収縮率
 本発明の熱収縮性ポリエステル系フィルムは、98℃の温湯中に無荷重状態で10秒間浸漬し、フィルムを直ちに25℃±0.5℃の水中に10秒間浸漬させた後、収縮前後の長さから、前記式1により算出したフィルム長手方向(主収縮方向に直交する方向)の熱収縮率が、0%以上15%以下であることが好ましい。この長手方向の熱収縮率が0%より小さい(マイナス)とは、容器の周方向に沿ってフィルムが伸びることを意味し、シワが発生して外観不良が起こりやすくなるため好ましくない。また、15%を超えると、収縮時に歪みが発生し易くなるため好ましくない。フィルム長手方向の98℃での温湯熱収縮率のより好ましい範囲は2%以上14%以下であり、3%以上13%以下がさらに好ましい。
 2.7 フィルム長手方向の引張破壊強さ
 本発明の熱収縮性ポリエステル系フィルムは、フィルム長手方向の引張破壊強さが80MPa以上200MPa以下であることが好ましい。なお、引張破壊強さの測定方法は実施例で説明する。上記引張破壊強さが80MPaを下回ると、ラベルとしてボトル等に装着する際の“腰”(スティフネス)が弱くなるので好ましくない。引張破壊強さは、90MPa以上がより好ましく、100MPa以上がさらに好ましい。引張破壊強さは高いほどラベルの“腰”が強くなるため好ましいが、本発明の分子設計のフィルムでは200MPaを超えることは難しいため、200MPaを上限としている。
 2.8 エージング前のフィルム長手方向の直角引裂強度
 本発明の熱収縮性ポリエステル系フィルムは、80℃の温水中で幅方向に10%収縮させた後に、フィルム長手方向の単位厚み当たりの直角引裂強度を求めたときに、その長手方向の直角引裂強度が180N/mm以上330N/mm以下であることが好ましい。なお、長手方向の直角引裂強度の測定方法は実施例で説明する。
 上記直角引裂強度が180N/mmより小さいと、ラベルとして使用した場合に、運搬中の落下等の衝撃によって簡単に破れてしまう事態が生ずる可能性があるので好ましくない。また、ラベルを引き裂く際の初期段階におけるカット性(引き裂き易さ)が不良とならないようにするには、直角引裂強度が330N/mm以下であることが好ましい。直角引裂強度は、185N/mm以上であるとより好ましく、190N/mm以上であるとさらに好ましい。また、直角引裂強度は、325N/mm以下であるとより好ましく、320N/mm以下であるとさらに好ましい。
 2.9 フィルム幅方向の98℃での温湯熱収縮率
 本発明の熱収縮性ポリエステル系フィルムは、98℃の温湯中に、無荷重状態で10秒間浸漬し、フィルムを直ちに25℃±0.5℃の水中に10秒間浸漬させた後、収縮前後の長さから、前記式1により算出したフィルムの幅方向の熱収縮率(すなわち、98℃の温湯熱収縮率)が、40%以上75%以下であることが好ましい。
 98℃における幅方向の温湯熱収縮率が40%未満であると、収縮量が小さいため、ラベルとして用いた場合に、熱収縮後のラベルにシワや弛みが生じてしまうおそれがある。98℃の温湯熱収縮率は44%以上が好ましく、45%以上がより好ましい。反対に、98℃における幅方向の温湯熱収縮率が75%を超えると、収縮後のラベルに歪みが生じることがある。98℃の温湯熱収縮率は、73%以下が好ましく、71%以下がより好ましい。
 2.10 その他の特性
 本発明の熱収縮性ポリエステル系フィルムは、特に限定されないが、厚みが10μm以上200μm以下が好ましく、20μm以上100μmがより好ましい。また、ヘイズ値が2%以上13%以下であることが好ましい。ヘイズ値が13%を超えると、透明性が不良となり、ラベル作成の際に見栄えが悪くなる可能性があるので好ましくない。なお、ヘイズ値は、11%以下であるとより好ましく、9%以下であると特に好ましい。また、ヘイズ値は小さいほど好ましいが、実用上必要な滑り性を付与する目的でフィルムに所定量の滑剤を添加せざるを得ないこと等を考慮すると、2%程度が下限になる。
 3.熱収縮性ポリエステル系フィルムの製造方法
 本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により、二軸延伸して熱処理することによって得ることができる。なお、ポリエステルは、前記した好適なジカルボン酸成分とジオール成分とを公知の方法で重縮合させることで得ることができる。また、通常は、チップ状のポリエステルを2種以上混合してフィルムの原料として使用する。チップを構成するポリエステルの固有粘度は特に限定されないが、通常、0.50~1.30dl/gである。
 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200~300℃の温度で溶融しフィルム状に押し出す。押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
 そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 さらに、得られた未延伸フィルムを、後述するように、所定の条件で長手方向に延伸した後アニール処理し、次いで中間熱処理し、その中間熱処理後のフィルムを冷却した後に、所定の条件で幅方向に延伸し、再度、最終熱処理することによって、本発明の熱収縮性ポリエステル系フィルムが得ることが可能となる。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好ましい製膜方法について、従来の熱収縮性ポリエステル系フィルムの製膜方法との差異を考慮しつつ詳細に説明する。
 上述したように、熱収縮性ポリエステル系フィルムは、通常、未延伸フィルムを収縮させたい方向(すなわち主収縮方向、通常は幅方向)のみに延伸することによって製造される。本発明者らが従来の製造方法について検討した結果、従来の熱収縮性ポリエステル系フィルムの製造においては、以下のような問題点があることが判明した。
・原料ポリエステルを構成するアルコール成分の炭素数が3つまでと比較的短く、非晶分子鎖の長さの揃ったポリエステルを用いた場合、延伸後の分子配向が比較的単純な構造となるため、エージングによって分子鎖にかかる応力が緩和しやすくなる。
・また、このような分子鎖の長さがある程度揃ったポリエステルを用いると、分子鎖1本1本の収縮に必要なエネルギーがほぼ同等となる。このため、フィルムの収縮初期に幅方向の収縮力が一気に発現してしまうことになり、収縮終了直前にはほとんど収縮応力が残っておらず、結果として容器の加熱膨張を抑制することができなくなり、収縮させた後のラベルに弛みが生じてしまう。
・幅方向に延伸した後に長手方向に延伸する方法を採用すると、どのような延伸条件を採用しても、幅方向の収縮力を充分に発現させることができない。さらに、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上りが悪くなる。
・長手方向に延伸した後に幅方向に延伸する方法を採用すると、幅方向の収縮力は発現させることができるものの、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上りが悪くなる。
・しかし、長手方向に延伸した後に、熱処理を行い、次いで、幅方向に延伸する方法を採用すると、延伸によって配向した分子鎖は、その周辺の分子鎖を固定しているため、エージングによって起こる分子鎖の緩和が阻害されると考えられる。単純に幅方向に延伸しただけであると、分子鎖の配向は幅方向のみにしか生まれないため、上記の固定効果が不充分となり、エージングによる分子鎖の緩和が大きくなる。
 さらに、上記従来の熱収縮性ポリエステル系フィルムの製造における問題点に基づいて、本発明者らが、耐エージング性が良好であり、収縮後のラベルの弛みが生じない熱収縮性ポリエステル系フィルムを得ることについてさらなる考察を進めた結果、次のような知見を得るに至った。
・耐エージング性を良好なものとするためには、長さの異なる分子鎖を幅方向と長手方向へある程度配向させておく必要があると考えられる。
・収縮との容器とラベルの弛みを少なくするためには、長さの異なる分子鎖を幅方向と長手方向に配向させることにより、幅方向に収縮する際に発生する収縮応力が時間による減少を抑制できれば、ラベルの追従性を改善できると考えられる。
・ラベルとした際の収縮装着後の仕上りを良好なものとするためには、長手方向への収縮力を発現させないことが不可欠であり、そのためには長手方向へ配向した分子の収縮能を低減する必要があると考えられる。
 本発明者らは上記知見から、耐エージング性が良好であり、収縮仕上り性と追従性を両立するためには、長さの異なる分子鎖を幅方向と長手方向に配向させると共に、長手方向に配向しつつ収縮力に寄与しない分子鎖を存在させる必要がある、と考えるに至った。そして、どのような延伸を施せば“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させることができるか、また、それをコントロールできるかに注目して試行錯誤した。その結果、長手方向に延伸した後に幅方向に延伸する、いわゆる縦-横延伸法によるフィルム製造の際に、以下の手段を講じることにより、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させてコントロールすることを実現し、耐エージング性、良好な収縮仕上り性、追従性、ミシン目開封性等を同時に満たす熱収縮性ポリエステル系フィルムを得ることが可能となり、本発明を完成するに至った。
(1)縦延伸条件の制御
(2)縦延伸後における中間熱処理
(3)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
(4)自然冷却後のフィルムの強制冷却
(5)横延伸条件の制御
(6)横延伸後の熱処理
(7)上記の製造工程中、長手方向にリラックスする工程を設ける
 以下、上記した各手段について順次説明する。
 (1)縦延伸条件の制御
 本発明の縦-横延伸法によるフィルムの製造においては、実質的に未配向のフィルムを、Tg以上Tg+30℃以下とし、3.0倍以上4.5倍以下となるように縦延伸するのが必要である。縦延伸は一段延伸でも二段以上の多段延伸でも、どちらも用いることができる。
 縦方向に延伸する際に、トータルの縦延伸倍率が大きくなると、長手方向の収縮率が大きくなってしまう傾向にあるが、縦延伸後の中間熱処理や長手方向へのリラックスにより長手方向の分子配向のコントロールは可能である。しかし、縦延伸倍率が大きすぎると、縦延伸後フィルムの配向結晶化が進み、横延伸工程で破断が生じ易くなり好ましくない。縦延伸倍率の上限は4.5倍がより好ましく、4.4倍がさらに好ましい。一方、縦延伸倍率が小さすぎると、長手方向の収縮率は小さくなるが、長手方向の分子配向度合いも小さくなって、長手方向の直角引裂き強度が大きくなり、引張破壊強さが小さくなるため好ましくない。縦延伸倍率の下限は3.3倍がより好ましく、3.4倍がさらに好ましい。上記範囲の倍率で長手方向に延伸することにより、縦延伸後のフィルム長手方向の吸光度比が0.40以上0.80以下となる。
 なお、例えば、特許文献1には、収縮白化を起こしにくい熱収縮性ポリエステル系フィルムとして、ε-カプロラクトンが1~30モル%で、ネオペンチルグリコールが1モル%以上であり、ブタンジオールを含んでいてもよいフィルムが開示されているが、この技術では、長手方向への分子配向の重要性が全く考慮されておらず、縦方向への延伸倍率はせいぜい1.05~1.2倍にとどまっている([0060])。この技術では、本発明で重要視する長手方向へ適度に分子が配向したエージング中の性能低下が小さい熱収縮性ポリエステル系フィルムを得ることはできない。
 (2)縦延伸後における中間熱処理 
 “長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましいが、従来、フィルムの二軸延伸において、一軸目の延伸と二軸目の延伸との間において、高温の熱処理をフィルムに施すと、熱処理後のフィルムが結晶化してしまうため、それ以上延伸することができない、というのが業界での技術常識であった。しかしながら、本発明者らが試行錯誤した結果、縦-横延伸法において、ある一定の条件で縦延伸を行い、その縦延伸後のフィルムの状態に合わせて中間熱処理を所定の条件で行い、さらに、その中間熱処理後のフィルムの状態に合わせて所定の条件で横延伸を施すことによって、横延伸時に破断を起こさせることなく、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させ得る、という驚くべき事実が判明した。
 本発明の縦-横延伸法によるフィルムの製造においては、未延伸フィルムを縦延伸した後に、テンター内で幅方向の両端際をクリップによって把持した状態で、Tg+40℃以上Tg+90℃以下の温度で熱処理(以下、中間熱処理という)することが必要である。中間熱処理温度がTg+40℃より低いと、フィルムの長手方向の収縮力が残り、横延伸後、フィルムの長手方向収縮率が高くなって好ましくない。また、中間熱処理温度がTg+90℃より高いと、フィルム表層が荒れ、透明性が損なわれるため好ましくない。中間熱処理の温度は、Tg+45℃以上がより好ましく、Tg+50℃以上がさらに好ましく、Tg+85℃以下がより好ましく、Tg+80℃以下がさらに好ましい。また、原料組成や縦方向の延伸倍率によっても中間熱処理の温度を適宜調整することが好ましい。
 中間熱処理の温度をTg+40℃以上にすることにより、長手方向の分子配向度合いをある程度大きく維持できるので、直角引き裂き強度を小さく保ちつつ、長手方向の引張破壊強さを大きく保つことが可能となる。一方、中間熱処理の温度をTg+90℃以下にコントロールすることによって、フィルムの結晶化を抑えて長手方向への延伸性を維持し、破断によるトラブルを抑制することが可能となる。またフィルム表層の結晶化を抑えて溶剤接着強度を大きく保つことができ、さらに長手方向の厚み斑を小さくすることも可能となる。なお、中間熱処理の時間は3.0秒以上12.0秒以下の範囲内で原料組成に応じて適宜調整すればよい。中間熱処理はフィルムへ与える熱量が重要であり、中間熱処理の温度が低いと長時間の中間熱処理が必要となる。しかし、中間熱処理時間が余りに長いと設備も巨大化するので、温度と時間で適宜調整するのが好ましい。
 かかる中間熱処理を行うことによって、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となり、この長手方向に配向した分子鎖が幅方向の分子鎖を固定する作用を有するため、エージング中に、特に幅方向に延伸された分子鎖にかかる応力が緩和することがなく、耐エージング性に優れた、収縮仕上がり性も良好なフィルムを得ることが可能となる。なお、どのような縦延伸を行った場合でも、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となるわけではなく、前述した所定の縦延伸を実施することによって、中間熱処理後に、初めて“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となる。
 さらに、中間熱処理により、配向方向であるフィルム長手方向では、配向した分子鎖が加熱によって拘束されて結晶化が進み、その結果フィルム長手方向の吸光度比が増加する。中間熱処理する前のフィルム長手方向の配向が高いと、中間熱処理後のフィルム長手方向の吸光度比の増加も大きくなる。また、中間熱処理の温度が高い方が、結晶化が進み易くなるので、フィルム長手方向の吸光度比の増加も大きくなる。一方、後述する長手方向へのリラックスを実施すると長手方向の配向が低下するので、吸光度比は低下する。このように、中間熱処理温度や、長手方向へのリラックス率(後述する)を調整することで、中間熱処理後のフィルムの長手方向の吸光度比の調整が可能となる。好ましい実施態様では、長手方向への延伸後にリラックスを実施し、その後に所定温度で中間熱処理を実施すると、中間熱処理後のフィルムの長手方向の吸光度比が0.45以上0.80以下となる。なお、フィルム幅方向については、中間熱処理の段階では未延伸であり、分子配向していないので、中間熱処理ではフィルム幅方向の吸光度比は変化が小さく、吸光度比も0.3以下と小さくなっている。
 そして、後述する所定の自然冷却、強制冷却、横延伸を施すことによって、フィルム内に形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向への収縮力を発現させることが可能となる。
 (3)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
 本発明の縦-横延伸法によるフィルムの製造においては、縦延伸後に中間熱処理を施す必要があるが、その縦延伸と中間熱処理の後において、0.5秒以上3.0秒以下の時間にわたって、フィルムを積極的な加熱操作を実行しない中間ゾーンを通過させる必要がある。すなわち、横延伸用のテンターの横延伸ゾーンの前方に中間ゾーンを設けておき、縦延伸後の中間熱処理後のフィルムをテンターに導き、所定時間をかけてこの中間ゾーンを通過させた後に、横延伸を実施するのが好ましい。加えて、その中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの走行に伴う随伴流および冷却ゾーンからの熱風を遮断するのが好ましい。なお、中間ゾーンを通過させる時間が0.5秒を下回ると、横延伸が高温延伸となり、横方向の収縮率を充分に高くすることができなくなるので好ましくない。反対に中間ゾーンを通過させる時間は3.0秒もあれば充分であり、それ以上の長さに設定しても、設備の無駄となるので好ましくない。なお、中間ゾーンを通過させる時間は、0.7秒以上がより好ましく、0.9秒以上がさらに好ましく、2.8秒以下がより好ましく、2.6秒以下がさらに好ましい。
 (4)自然冷却後のフィルムの強制冷却
 本発明の縦-横延伸法によるフィルムの製造においては、自然冷却したフィルムをそのまま横延伸するのではなく、フィルムの温度がTg+5℃以上Tg+40℃以下となるように急冷することが必要である。かかる急冷処理を施すことによって、エージングした後でも70℃での温湯熱収縮率が高いフィルムを得ることが可能となる。なお、急冷後のフィルムの温度は、Tg+10℃以上がより好ましく、Tg+15℃以上がさらに好ましく、Tg+35℃以下がより好ましく、Tg+30℃以下がさらに好ましい。
 フィルムを急冷する際に、急冷後のフィルムの温度がTg+40℃を上回ったままであると、フィルムの幅方向の収縮率が低くなってしまい、ラベルとした際の収縮性が不充分となってしまうが、急冷後のフィルムの温度をTg+40℃以下となるようにコントロールすることによって、フィルムの幅方向の収縮率を高く保持することが可能となる。また、急冷後のフィルムの温度がTg+5℃を下回ると、横延伸時の延伸応力が大きくなり、フィルムが破断し易くなるので好ましくない。
 (5)横延伸条件の制御
 本発明の縦-横延伸法によるフィルムの製造においては、縦延伸、中間熱処理、自然冷却、急冷後のフィルムを所定の条件で横延伸することが必要である。横延伸は、テンター内で幅方向の両端際をクリップによって把持した状態で、Tg+10℃以上Tg+30℃以下の温度で3倍以上6倍以下の倍率となるように行う。かかる所定条件での横延伸を施すことによって、縦延伸および中間熱処理によって形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向の収縮力を発現させることが可能となり、長手方向の強度も良好なフィルムを得ることが可能となる。なお、横延伸の温度は、Tg+12℃以上がより好ましく、Tg+14℃以上がさらに好ましく、Tg+28℃以下がより好ましく、Tg+26℃以下がさらに好ましい。一方、横延伸の倍率は、3.5倍以上がより好ましく、3.7倍以上がさらに好ましく、5.5倍以下がより好ましく、5倍以下がさらに好ましい。
 横方向に延伸する際に、延伸温度がTg+30℃を上回ると、長手方向の収縮率が高くなると共に、幅方向の収縮率が低くなりやすいが、延伸温度をTg+30℃以下にコントロールすることによって、長手方向の収縮率を低く抑えると共に、幅方向の収縮率を高く保持することが容易となり好ましい。また、延伸温度がTg+30℃を上回ると、幅方向の厚み斑が大きくなり易い傾向にあるが、延伸温度をTg+30℃以下にコントロールすることによって、幅方向の厚み斑を小さくすることができる。
 一方、延伸温度がTg+10℃を下回ると、幅方向への配向が大きくなりすぎて、横延伸時に破断し易くなるが、延伸温度をTg+10℃以上にコントロールすることによって、横延伸時におけるフィルムの破断の低減が可能となる。
 上記の温度や倍率で幅方向に延伸することにより、フィルム幅方向の吸光度比が0.40以上0.75以下となる。一方、フィルムを幅方向に延伸することで、フィルム長手方向の配向の一部が幅方向に配向するため、フィルム長手方向の配向が若干低下し、フィルム長手方向の吸光度比は0.40以上0.75以下となる。
 (6)横延伸後の熱処理
 横延伸後のフィルムは、テンター内で幅方向の両端際をクリップで把持した状態で、Tg℃以上Tg+50℃以下の温度で1秒以上9秒以下の時間にわたって最終的に熱処理されることが必要である。熱処理温度がTg+50℃より高いと、幅方向の収縮率が低下し、70℃の熱収縮率が30%より小さくなって好ましくない。また、熱処理温度がTg℃より低いと、幅方向へ充分に弛緩できず、最終的な製品を常温下で保管した時に、経時で幅方向の収縮(いわゆる自然収縮率)が大きくなり好ましくない。また、熱処理時間は長いほど好ましいが、あまりに長いと設備が巨大化するので、9秒以下とすることが好ましい。この熱処理工程では、フィルムの長手方向、幅方向ともに、Tg+50℃以下の温度で僅かに結晶化が起こり分子配向が拘束されるが、吸光度比はほとんど変化せず、フィルムの長手方向、幅方向の吸光度比はそれぞれ0.40以上0.75以下のままである。
 (7)長手方向への弛緩(リラックス)工程
 上述の如く、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましい。縦延伸後のフィルムの長手方向の残留収縮応力が大きいと、横延伸後のフィルム長手方向の温湯熱収縮率が大きくなり、収縮仕上り性が悪くなる欠点がある。横延伸工程で熱処理を加えることが、フィルム長手方向の温湯熱収縮率を下げるのに有効であるが、熱による緩和だけでは充分にフィルム長手方向の温湯熱収縮率を下げることができるとはいえず、大きい熱量が必要となる。しかし、熱による緩和の際に大きい熱量にすると、フィルムが結晶化し、フィルムを幅方向に延伸する際の延伸応力が大きくなり、横延伸時にフィルムが破断するおそれがある。
 そこで本発明者らは、フィルム長手方向の分子配向を直角引裂強度や引張破壊強さを満足する程度まで下げ、幅方向の収縮率の差と収縮応力、長手方向の直角引裂強度と引張破壊強さをコントロールする手段を検討した。そして、以下に示す工程を1つ以上行うことでフィルムを長手方向に弛緩(リラックス)させて、上記コントロールが行えることを見出した。
 (i)縦延伸後のフィルムをTg以上Tg+90℃以下の温度で加熱し、速度差のあるロールを用いて、0.05秒以上5秒以下の時間で長手方向に10%以上60%以下のリラックスを実施する工程。加熱手段は、温調ロール、近赤外線、遠赤外線、熱風ヒータ等のいずれも用いることができる。
 (ii)中間熱処理工程において、テンター内の把持用クリップ間の距離を縮めることにより、0.1秒以上12秒以下の時間で長手方向に5%以上20%以下リラックスを実施する工程。
 (iii)最終熱処理工程において、テンター内の把持用クリップ間の距離を縮めることにより、0.1秒以上9秒以下の時間で長手方向に5%以上20%以下リラックスを実施する工程。
 上記(i)~(iii)の中でも、(i)の縦延伸後のリラックスを行うことが最も好ましく、(i)に(ii)または(iii)を組み合わせてもよい。以下、各工程を説明する。
 (i)縦延伸後のリラックス
 縦延伸後のフィルムをTg以上Tg+90℃以下の温度で加熱し、速度差のあるロールを用いて、0.05秒以上5.0秒以下の時間で長手方向に10%以上60%以下のリラックスを実施することが望ましい。温度がTgより低いと縦延伸後のフィルムが収縮せずリラックスを実施できないため、好ましくない。一方、Tg+90℃より高いと、フィルムが結晶化し、透明性等が悪くなるため、好ましくない。縦延伸後のリラックス時のフィルム温度は、Tg+10℃以上Tg+80℃以下が好ましく、Tg+20℃以上Tg+70℃以下がより好ましい。
 また縦延伸後のフィルムの長手方向のリラックスを行う時間は0.05秒以上5秒以下が好ましい。0.05秒未満であるとリラックスが短時間になってしまい、温度をTg+90℃より高くしないとリラックスムラが生じるので好ましくない。またリラックスの時間が5秒より長くなると低い温度でリラックスができフィルムとしては問題無いが、設備が巨大化するので、温度と時間を適宜調整するのが好ましい。リラックス時間は、より好ましくは0.1秒以上4.5秒以下であり、さらに好ましくは0.5秒以上4秒以下である。
 また縦延伸後フィルムの長手方向のリラックス率が10%未満であると、長手方向の分子配向の緩和が充分に行えず、長手方向の収縮率が増加し、98℃における熱収縮率が15%を超えてしまうため好ましくない。また縦延伸後フィルムの長手方向のリラックス率が60%より大きいと、長手方向の直角引裂強度が大きくなり、引張破壊強さが小さくなるので好ましくない。縦延伸後フィルムのリラックス率は15%以上55%以下がより好ましく、20%以上50%以下がさらに好ましい。
 縦延伸後のフィルムをリラックスさせる手段としては、縦延伸後のフィルムをロール間に配設した加熱装置(加熱炉)で加熱し、ロール間の速度差で実施する方法や、縦延伸後のフィルムをロールと横延伸機間に配設した加熱装置(加熱炉)で加熱し、横延伸機の速度をロールより遅くする方法等で、実施できる。加熱装置(加熱炉)としては、温調ロール、近赤外線ヒータ、遠赤外線ヒータ、熱風ヒータ等のいずれも用いることができる。
 (ii)中間熱処理工程でのリラックス
 中間熱処理工程においては、テンター内の把持用クリップ間の距離を縮めることにより、0.1秒以上12秒以下の時間で長手方向に5%以上20%以下のリラックスを実施することが望ましい。リラックス率が5%未満であると、長手方向の分子配向の緩和が充分に行えず、長手方向の収縮率が増加し、98℃における熱収縮率が15%を超えてしまうため好ましくない。またリラックス率が20%より大きいと、フィルム物性調整は可能であるが、設備上20%が限界であるため、20%を上限とした。リラックス率は8%以上がより好ましく、11%以上がさらに好ましい。
 また中間熱処理工程で長手方向のリラックスを行う時間は0.1秒以上12秒以下が好ましい。0.1秒未満であるとリラックスが短時間になってしまい、温度をTg+90℃より高くしないとリラックスムラが生じるので好ましくない。またリラックス時間が12秒より長くなるとフィルムとしては問題無いが、設備が巨大化するので、温度と時間で適宜調整するのが好ましい。リラックス時間は、より好ましくは0.3秒以上11秒以下であり、さらに好ましくは0.5秒以上10秒以下である。
 (iii)最終熱処理工程でのリラックス
 最終熱処理工程においては、テンター内の把持用クリップ間の距離を縮めることにより、0.1秒以上9秒以下の時間で長手方向に5%以上20%以下のリラックスを実施することが望ましい。リラックス率が5%未満であると、長手方向の分子配向の緩和が充分に行えず、長手方向の収縮率が増加し、98℃における熱収縮率が15%を超えてしまうため好ましくない。またリラックス率が20%より大きいと、フィルム物性調整は可能であるが、設備上20%が限界であるため、20%を上限とした。リラックス率は8%以上がより好ましく、11%以上がさらに好ましい。
 また最終熱処理工程で長手方向のリラックスを行う時間は0.1秒以上9秒以下が好ましい。0.1秒未満であるとリラックスが短時間になってしまい、温度をTg+50℃より高くしないとリラックスムラが生じるので好ましくない。またリラックス時間が9秒より長くなるとフィルムとしては問題無いが、設備が巨大化するので、温度と時間で適宜調整するのが好ましい。リラックス時間は、より好ましくは0.3秒以上8秒以下であり、さらに好ましくは0.5秒以上7秒以下である。
 上記(i)~(iii)のいずれかのリラックスにより、長手方向の分子配向は緩和されるため、吸光度比は減少する。最も好ましい実施形態である長手方向への延伸後にリラックスを実施する場合、リラックス後で中間熱処理前のフィルム長手方向の吸光度比は0.30以上0.60以下となる。
 4.包装体
 本発明の包装体は、本発明の熱収縮性ポリエステル系フィルムから得られたミシン目またはノッチを有するラベルが、包装対象物の少なくとも外周の一部に被覆して熱収縮させて形成されるものである。包装対象物としては、飲料用のPETボトルを始め、シャンプーやコンデイショナー等に用いられるポリエチレン製容器、各種の瓶、缶、菓子や弁当等のプラスチック容器、紙製の箱等を挙げることができる。なお、通常、それらの包装対象物に、熱収縮性ポリエステル系フィルムから得られるラベルを熱収縮させて被覆させる場合には、当該ラベルを約2~15%程度熱収縮させて包装対象物に密着させる。なお、包装対象物に被覆されるラベルには、印刷が施されていても良いし、印刷が施されていなくても良い。
 ラベルを作製する方法としては、長方形状のフィルムの片面の端部から少し内側に有機溶剤を塗布し、直ちにフィルムを丸めて端部を重ね合わせて接着してラベル状にするか、あるいは、ロール状に巻き取ったフィルムの片面の端部から少し内側に有機溶剤を塗布し、直ちにフィルムを丸めて端部を重ね合わせて接着して、チューブ状体としたものをカットしてラベル状とする。接着用の有機溶剤としては、1,3-ジオキソランあるいはテトラヒドロフラン等の環状エーテル類が好ましい。この他、ベンゼン、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素、塩化メチレン、クロロホルム等のハロゲン化炭化水素やフェノール等のフェノール類あるいはこれらの混合物が使用できる。
 本願は、2013年5月16日に出願された日本国特許出願第2013-104466号と2014年2月14日に出願された日本国特許出願第2014-026788号とに基づく優先権の利益を主張するものである。2013年5月16日に出願された日本国特許出願第2013-104466号と2014年2月14日に出願された日本国特許出願第2014-026788号の明細書の全内容が、本願に参考のため援用される。
 次に、実施例および比較例を用いて本発明を具体的に説明するが、本発明は、これらの実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。なお、ポリエステルや、フィルムの評価方法を以下に示す。
 [Tg]
 示差走査熱量計(「DSC220」、セイコー電子工業社製)を用いて、未延伸フィルム10mgを、-40℃から120℃まで、昇温速度10℃/分で昇温し、吸熱曲線を測定した。得られた吸熱曲線の変曲点の前後に接線を引き、その交点をガラス転移点(Tg;℃)とした。
 [収縮応力]
 エージング環境下におかれていない熱収縮性フィルム(以下、特に断らない限り、単に熱収縮性フィルムというときはエージング環境下におかれていない熱収縮性フィルムを指すものとする)から主収縮方向の長さが200mm、幅20mmのサンプルを切り出し、加熱炉付き強伸度測定機(テンシロン(オリエンテック社の登録商標))を用いて測定した。加熱炉は予め90℃に加熱しておき、チャック間距離は100mmとした。加熱炉の送風を一旦止めて加熱炉の扉を開け、サンプルをチャックに取付け、その後速やかに加熱炉の扉を閉めて、送風を再開した。収縮応力を30秒以上測定し、30秒後の収縮応力(MPa)を求め、測定中の最大値を最大収縮応力(MPa)とした。また、最大収縮応力に対する30秒後の収縮応力の比率(百分率)を応力比(%)とした。
 [吸光度比]
 FT-IR装置「FTS 60A/896」(バリアン社製)を用いて、測定波数領域650~4000cm-1、積算回数128回で、ATR法で偏光をかけて、熱収縮性フィルムの赤外吸収スペクトルを測定した。1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2を吸光度比とした。
 [熱収縮率(温湯熱収縮率)]
 熱収縮性フィルム、または、30℃、85%RHで672時間エージングしたフィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中に無荷重状態で10秒間浸漬して熱収縮させた後、25℃±0.5℃の水中に10秒間浸漬し、水中から引き出してフィルムの縦および横方向の寸法を測定し、下記式1にしたがって、それぞれ熱収縮率を求めた。熱収縮率の大きい方向を主収縮方向(幅方向)とした。 
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) 式1
 [エンタルピー緩和量]
 温度変調示差走査熱量計(DSC)「Q100」(TA Instruments 社製)を用いて、30℃、85%RH雰囲気下で672時間エージングした後のフィルムサンプルをハーメチックアルミニウムパン内に4.0mg秤量し、MDSC(登録商標)ヒートオンリーモードで、平均昇温速度2.0℃/min、変調周期50秒で測定して得られるノンリバースヒートフローのガラス転移点付近のエンタルピー緩和部分のピーク面積をエンタルピー緩和量(J/g)とした。
 また、上記ノンリバースヒートフローと同様に測定して得られたリバースヒートフローにおいて、Tg付近のベースラインシフトが乱れなく生じたことから、ノンリバースヒートフローの測定も正常に行えたことを確認した。
 [自然収縮率]
 200mm×200mmの正方形状に切り出したフィルムサンプルを、40℃、65%RHの雰囲気下に672時間放置してエージングを行った。自然収縮率(主収縮方向)は、下記式2で求めた。
 自然収縮率={(エージング前の長さ-エージング後の長さ)/エージング前の長さ}×100(%) 式2
 [引張破壊強さ]
 JIS K7113に準拠し、測定方向(フィルム長手方向)が140mm、測定方向と直交する方向(フィルム幅方向)が20mmの短冊状のフィルムサンプルを作製した。万能引張試験機「DSS-100」(島津製作所製)を用いて、試験片の両端をチャックで片側20mmずつ把持(チャック間距離100mm)して、雰囲気温度23℃、引張速度200mm/minの条件にて引張試験を行い、引張破壊時の強度(応力)を引張破壊強さ(MPa)とした。
 [直角引裂強度]
 所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させた。この10%収縮後のフィルムから、JIS K7128-3に準じて、図1に示す形状の試験片を切り出した。なお、試験片を切り出す際は、フィルム長手方向が引き裂き方向になるようにした。次に、万能引張試験機(島津製作所製「オートグラフ」)で試験片の両端(幅方向)を掴み、引張速度200mm/分の条件にて引張試験を行い、フィルムが長手方向に完全に引き裂かれたときの最大荷重を測定した。この最大荷重をフィルムの厚みで除して、単位厚み当たりの直角引裂強度(N/mm)を算出した。
 [収縮後のラベルの弛み(エージング前)]
 熱収縮性フィルムの両端部をジオキソランで接着することにより、円筒状のラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を作製し、このラベルをポリエチレン製容器(胴直径160mm、ネック部の最小直径70mm)に被せ、120℃(風速12m/秒)の熱風を60秒当てて熱収縮させ容器に装着した。ラベル装着後の容器を室温に冷却した後の、容器とラベルとの間の弛みについて手でねじったときの感覚を、以下の基準に従って評価した。
3:装着したラベルと容器の間に弛みが無く、容器のキャップ部を手で固定してラベルを回そうとしたときに、ラベルが動かない。
2:容器のキャップ部を手で固定してラベルを回そうとしたときにはラベルが動かないが、ラベルと容器の間に少し弛みがある。
1:容器のキャップ部を手で固定してラベルを回したとき、ラベルが回る。
 [エージング後の収縮仕上がり性]
 熱収縮性フィルムに、金色で印刷を行った後、ジオキソランで端部を溶着し、円筒状ラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を得た。このラベルを、30℃、85%RH雰囲気下で672時間エージングした。その後、温度60℃に調整した前述のポリエチレン製容器に被せて、120℃(風速12m/秒)の熱風を60秒当てて熱収縮させた。ラベルの収縮仕上がり性を、以下の基準に従って、目視で5段階評価した。
5:仕上がり性最良(欠点なし)
4:仕上がり性良(欠点1箇所あり)
3:欠点2箇所あり
2:欠点3~5箇所あり
1:欠点多数あり(6箇所以上)
 なお、欠点とは、飛び上がり、シワ、収縮不足、ラベル端部折れ込み、収縮白化等である。
 [ミシン目開封性]
 予め主収縮方向と直交する方向にミシン目を入れておいたラベルを、前述のポリエチレン製容器に被せ、上記した収縮仕上がり性と同一条件で、加熱収縮させた。ミシン目は、長さ1mmの孔を1mm間隔で入れることによって形成し、ラベルの縦方向(高さ方向)に幅22mm、長さ120mmにわたって2本設けた。その後、このボトルに水を500ml充填し、5℃に冷蔵し、冷蔵庫から取り出した直後のボトルのラベルのミシン目を指先で引裂き、縦方向にミシン目に沿って綺麗に裂け、ラベルをボトルから外すことができた本数を数え、全サンプル50本からこの本数を差し引いて、ミシン目開封不良率(%)を算出した。
 [ヘイズ]
 フィルムのヘイズを、JIS K7136に準拠し、ヘイズメータ「500A」(日本電色工業社製)を用いて測定した。なお、測定は2回行い、平均値をヘイズとした。
 <ポリエステル原料の調製>
 合成例1
 撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)100モル%とを、エチレングリコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、280℃で26.7Paの減圧条件のもとで重縮合反応を行い、固有粘度0.75dl/gのポリエステルAを得た。組成を表1に示す。
 合成例2~7
 合成例1と同様の方法により、表1に示すポリエステルB~Gを得た。ポリエステルFの製造の際には、滑剤としてSiO2(富士シリシア社製サイリシア266;平均粒径1.5μm)をポリエステルに対して7,000ppmの割合で添加した。なお、表中、IPAはイソフタル酸、NPGはネオペンチルグリコール、CHDMは1,4-シクロヘキサンジメタノール、BDは1,4-ブタンジオール、ε-CLはε-カプロラクトン、DEGは副生成物のジエチレングリコールである。各ポリエステルの固有粘度は、それぞれ、B:0.72dl/g,C:0.80dl/g,D:1.20dl/g,E:0.77dl/g,F:0.75dl/g、G:0.78dl/gであった。なお、各ポリエステルは、適宜チップ状にした。
Figure JPOXMLDOC01-appb-T000001
 実施例1
 上記したポリエステルA、ポリエステルB、ポリエステルEおよびポリエステルFを質量比5:75:15:5で混合して押出機に投入した。この混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さ400μmの未延伸フィルムを得た。未延伸フィルムのTgは60℃であった。
 得られた未延伸フィルムを、複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロールでフィルム温度が80℃になるまで予備加熱した後、表面温度86℃に設定された低速回転ロールと、表面温度86℃に設定された高速回転ロールとの間で、回転速度差を利用して、縦方向に4.1倍延伸した。
 縦延伸直後のフィルムを、加熱炉へ通した。加熱炉内は熱風ヒータで加熱されており、設定温度は95℃であった。加熱炉の入口と出口のロール間の速度差を利用して、長手方向に45%リラックス処理を行った。リラックスの時間は0.6秒であった。
 リラックス処理後のフィルムを横延伸機(テンター)に導き、123℃で中間熱処理を行った。中間熱処理後のフィルムを第1中間ゾーンに導き、1.0秒で通過させて自然冷却を行った。なお、テンターの第1中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、中間熱処理ゾーンからの熱風、冷却ゾーンからの冷却風を遮断した。フィルムの走行時には、フィルムの走行に伴う随伴流の大部分が、中間熱処理ゾーンと第1中間ゾーンとの間に設けられた遮蔽板によって遮断されるように、フィルムと遮蔽板との距離を調整した。加えて、フィルムの走行時には、第1中間ゾーンと冷却ゾーンとの境界において、フィルムの走行に伴う随伴流の大部分が遮蔽板によって遮断されるようにフィルムと遮蔽板との距離を調整した。
 続いて、自然冷却後のフィルムを冷却ゾーンに導き、フィルムの表面温度が87℃になるまで、低温の風を吹き付けることによって積極的に急冷した。このフィルムを第2中間ゾーンを1.0秒で通過させて再度自然冷却した。その後、横延伸ゾーンで、フィルムの表面温度が86℃になるまで予備加熱した後、86℃で幅方向(横方向)に4.0倍延伸した。
 その横延伸後のフィルムを最終熱処理ゾーンに導き、最終熱処理ゾーンにおいて、86℃で熱処理した後、冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ40μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。なお、この例では、中間熱処理時および最終熱処理時のリラックス率は0%とした。得られたフィルムの特性を上記した方法によって評価した。製造条件を表2に、評価結果を表3に示す。また、収縮応力曲線を図2に、温度変調DSC測定結果を図3に示した。図3中、無印が実施例1のノンリバースヒートフローの結果であり、□がリバースヒートフローの結果である。ノンリバースヒートフローにおいて、きれいな吸熱ピークが観察されており、エンタルピー緩和が行われていることがわかる。なお、リバースヒートフローにおいてはTg付近でベースラインがシフトしているので、DSCの測定が正常に行えたことが確認できた。
 実施例2
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸した。その後、フィルム長手方向に15%のリラックス処理を95℃の加熱炉で行った。続いて、140℃で中間熱処理を行った以外は、自然冷却、強制冷却、横延伸、最終熱処理を実施例1と同様に行い、最終熱処理工程でフィルム長手方向に5%のリラックス処理を86℃で行った。よって、フィルム長手方向へのリラックス率は計20%である。幅500mm、厚さ40μmの二軸延伸フィルムが得られた。製造条件を表2に、評価結果を表3に示す。
 実施例3
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸した。その後、フィルム長手方向に50%のリラックス処理を95℃の加熱炉で行い、続く中間熱処理時にも20%のリラックス処理を行った以外は、自然冷却、強制冷却、横延伸、最終熱処理を実施例1と同様にして行った。よって、フィルム長手方向へのリラックス率は計60%である。幅500mm、厚さ40μmの二軸延伸フィルムが得られた。製造条件を表2に、評価結果を表3に示す。
 実施例4
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸した。その後、140℃で中間熱処理を行い、最終熱処理での温度を90℃とした以外は実施例1と同様にして、幅500mm、厚さ40μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 実施例5
 ポリエステルBとポリエステルEとポリエステルFとを質量比で65:30:5となるように混合して押出機に投入した。その混合樹脂を、実施例1と同様の条件で溶融押し出しし、未延伸フィルムを形成した。この未延伸フィルムのTgは55℃であった。この未延伸フィルムを、縦延伸時のフィルム温度を80℃、中間熱処理の温度を140℃、ゾーン横延伸のフィルム温度を83℃とした以外は、実施例1と同様にして、幅500mm、厚さ40μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 実施例6
 ポリエステルBとポリエステルCとポリエステルEとポリエステルFとを質量比で18:62:15:5となるように混合して押出機に投入した。その混合樹脂を、実施例1と同様の条件で溶融押し出しし、厚さ400μmの未延伸フィルムを形成した。この未延伸フィルムのTgは61℃であった。この未延伸フィルムを、中間熱処理の温度を140℃とした以外は、実施例1と同様にして、幅500mm、厚さ40μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 実施例7
 ポリエステルAとポリエステルCとポリエステルEとポリエステルFとを質量比5:80:10:5に変更し、中間熱処理の温度を140℃に変更した以外は実施例1と同様の方法で、幅500mm、厚さ40μmの二軸延伸フィルムを連続的に製造した。なお、未延伸フィルムのTgは61℃であった。製造条件を表2に、評価結果を表3に示す。
 実施例8
 ポリエステルAとポリエステルEとポリエステルFとポリエステルGとを質量比5:15:5:75に変更した以外は実施例1と同様の方法で、幅500mm、厚さ40μmの二軸延伸フィルムを連続的に製造した。なお、未延伸フィルムのTgは59℃であった。製造条件を表2に、評価結果を表3に示す。
 実施例9
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸およびリラックス処理を行った。続いて、縦延伸後のリラックス処理後のフィルムを、横延伸倍率を3.0倍、横延伸温度を90℃、最終熱処理温度を90℃とした以外は、実施例1と同様の方法で、横延伸を行い、幅500mm、厚さ40μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 実施例10
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、縦延伸倍率を3.5倍とした以外は、実施例1と同じ方法で縦延伸およびリラックス処理を行った。続いて、縦延伸後のリラックス処理後のフィルムを、横延伸温度と最終熱処理温度を83℃にした以外は実施例9と同様にして横延伸を行い、幅500mm、厚さ40μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 比較例1
 実施例6と同じポリエステル原料を実施例6と同様に溶融押し出しする際に、未延伸フィルムの厚みが180μmとなるように、押出機の吐出量を調整した。それ以外は、実施例6と同様にして未延伸フィルムを得た。その後、縦延伸を行わず、テンター内で76℃に予熱した後、67℃で4.0倍延伸し、76℃で最終熱処理を施した後に冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ40μmの一軸延伸フィルムを所定の長さにわたって連続的に製造した。製造条件を表2に、評価結果を表3に示す。また、収縮応力曲線を図2に示した。
 比較例2
 ポリエステルAとポリエステルBとポリエステルDとポリエステルFとを質量比10:75:10:5に変更した以外は実施例1と同様の方法で未延伸フィルムを得た。この未延伸フィルムを、縦延伸後のリラックス処理温度105℃、リラックス率40%、中間熱処理温度130℃、冷却後のフィルム表面温度103℃、横延伸温度100℃、最終熱処理温度を95℃とした以外は、実施例1と同様にして、幅500mm、厚さ40μmの二軸延伸フィルムを連続的に製造した。なお、未延伸フィルムのTgは70℃であった。製造条件を表2に、評価結果を表3に示す。
 比較例3
 比較例2と同じポリエステル原料を比較例2と同様にして未延伸フィルムを得、冷却後のフィルム表面温度95℃、横延伸温度90℃、最終熱処理温度101℃とした以外は比較例2と同様の方法で、幅500mm、厚さ40μmの二軸延伸フィルムを製造した。製造条件を表2に、評価結果を表3に、温度変調DSC測定結果を図3に示した。図3中、○が実施例1のノンリバースヒートフローの結果であり、△がリバースヒートフローの結果である。ノンリバースヒートフローにおいて、きれいな吸熱ピークが観察されており、エンタルピー緩和が行われていること、実施例1の吸熱ピークに比べて大面積(エンタルピー緩和量が大きい)ことがわかる。比較例3の測定においても、リバースヒートフローのベースラインがTg付近でシフトしているので、DSCの測定が正常に行えたことが確認できた。
 比較例4
 比較例2と同じポリエステル原料を比較例2と同様にして未延伸フィルムを得、比較例2と同じ方法で縦延伸を行った。その後フィルム長手方向へのリラックス処理を0%とした以外は、比較例2と同様の方法で、幅500mm、厚さ40μmの二軸延伸フィルムを製造した。製造条件を表2に、評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の実施例の熱収縮性フィルムは、ブタンジオールとε-カプロラクトンを所定量用い、所定のリラックス工程を経た二軸延伸フィルムであり、ラベルの弛みがなく、エージング中の熱収縮特性の劣化も少なく、エージング後のラベルの収縮仕上がり性にも優れたものであった。
 比較例1では、縦延伸を施さなかったため、90℃での収縮応力が、30秒後には61.5%にまで減少し、ラベルの弛みが認められた。また、長手方向に分子鎖が配向していないため、長手方向の吸光度比や引張破壊強度が本発明の規定範囲を満足しないものであった。比較例2と3は、ε-カプロラクトンを用いておらず、縦延伸後の長手方向のリラックスを行っていないため、幅方向の吸光度比が高くなりすぎている。特に、比較例3は横方向の延伸温度が低い(Tg+20℃)ために横方向の配向が極端に高くなり、分子鎖にかかっている応力が高いと推測される。フィルムをエージングしている間は、分子鎖にかかっている応力を緩和しようとする傾向が強くなり、エンタルピー緩和量の増加や自然収縮率の増加につながったといえる。
 一方、比較例4もε-カプロラクトンを用いていない系であるが、縦横二軸延伸を行った例である。しかし、長手方向のリラックスを行っていないため、エージング中に性能低下が起こり、エージング後の70℃の温湯熱収縮率が低かったり、仕上がり性に劣る結果となった。
 本発明の熱収縮性ポリエステル系フィルムは、上記の如く優れた特性を有しているので、ボトル等のラベル用途に好適に用いることができる。本発明の熱収縮性ポリエステル系フィルムがラベルとして用いられて得られたボトル等の包装体は美麗な外観を有するものである。
 F:フィルム

Claims (9)

  1.  エチレンテレフタレートユニットを有し、全ポリエステル樹脂成分100モル%中、ブタンジオール由来の構成ユニットが1~25モル%、ε-カプロラクトン由来の構成ユニットが1~25モル%、ブタンジオールとε-カプロラクトン由来の構成ユニット以外の非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上含まれている熱収縮性ポリエステル系フィルムであって、下記要件(1)~(3)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
    (1)偏光ATR-FTIR法で測定した上記フィルムの1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2(吸光度比)が、フィルム幅方向、長手方向のいずれにおいても、0.45以上0.75以下である、
    (2)上記フィルムを90℃の熱風中で30秒間熱収縮させたときの30秒後の収縮応力(30秒後収縮応力)と最大収縮応力との比率(30秒後収縮応力/最大収縮応力)が75%以上100%以下である、
    (3)30℃、85%RH雰囲気下で上記フィルムを672時間エージングした後、70℃の温水中にこのエージング後のフィルムを10秒間浸漬したときの幅方向の温湯熱収縮率が30%以上55%以下である。
  2.  エチレンテレフタレートユニットを有し、全ポリエステル樹脂成分100モル%中、ブタンジオール由来の構成ユニットが1~25モル%、ε-カプロラクトン由来の構成ユニットが1~25モル%、ブタンジオールとε-カプロラクトン由来の構成ユニット以外の非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上含まれている熱収縮性ポリエステル系フィルムであって、下記要件(1’)、(2)および(3)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
    (1’)偏光ATR-FTIR法で測定した上記フィルムの1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2(吸光度比)が、フィルム幅方向、長手方向のいずれにおいても、0.40以上0.45未満である、
    (2)上記フィルムを90℃の熱風中で30秒間熱収縮させたときの30秒後の収縮応力(30秒後収縮応力)と最大収縮応力との比率(30秒後収縮応力/最大収縮応力)が75%以上100%以下である、
    (3)30℃、85%RH雰囲気下で上記フィルムを672時間エージングした後、70℃の温水中にこのエージング後のフィルムを10秒間浸漬したときの幅方向の温湯熱収縮率が30%以上55%以下である。
  3.  40℃、65%RH雰囲気下で上記フィルムを672時間エージングしたときの幅方向の自然収縮率が0.3%以上2%以下である請求項1または2に記載の熱収縮性ポリエステル系フィルム。
  4.  フィルム幅方向の上記吸光度比と、フィルム長手方向の上記吸光度比との差が0.15未満である請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
  5.  上記フィルムを70℃の温水中に10秒間浸漬したときの幅方向の温湯熱収縮率が30%以上55%以下である請求項1~4のいずれかに記載の熱収縮性ポリエステル系フィルム。
  6.  上記フィルムを98℃の温水中に10秒間浸漬したときの幅方向の温湯熱収縮率が40%以上75%以下であり、長手方向の温湯熱収縮率が0%以上15%以下である請求項1~5のいずれかに記載の熱収縮性ポリエステル系フィルム。
  7.  上記フィルムの長手方向の引張破壊強さが80MPa以上200MPa以下である請求項1~6のいずれかに記載の熱収縮性ポリエステル系フィルム。
  8.  上記フィルムを80℃の温水中で幅方向に10%収縮させた後のフィルム長手方向の単位厚み当たりの直角引裂強度が180N/mm以上330N/mm以下である請求項1~7のいずれかに記載の熱収縮性ポリエステル系フィルム。
  9.  請求項1~8のいずれかに記載の熱収縮性ポリエステル系フィルムから得られ、ミシン目またはノッチを有するラベルを、包装対象物の外周の少なくとも一部に被覆して熱収縮させることにより形成されることを特徴とする包装体。
PCT/JP2014/062793 2013-05-16 2014-05-14 熱収縮性ポリエステル系フィルムおよび包装体 WO2014185442A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/891,579 US10336871B2 (en) 2013-05-16 2014-05-14 Heat-shrinkable polyester film and package
CA2912355A CA2912355C (en) 2013-05-16 2014-05-14 Heat-shrinkable polyester film and package
CN201480028241.5A CN105229065B (zh) 2013-05-16 2014-05-14 热收缩性聚酯系薄膜及包装体
KR1020157034589A KR102090360B1 (ko) 2013-05-16 2014-05-14 열수축성 폴리에스테르계 필름 및 포장체
EP14798436.3A EP2998341B1 (en) 2013-05-16 2014-05-14 Heat-shrinkable polyester film and package
ES14798436.3T ES2615306T3 (es) 2013-05-16 2014-05-14 Película de poliéster termorretráctil y embalaje
JP2014530043A JP6337774B2 (ja) 2013-05-16 2014-05-14 熱収縮性ポリエステル系フィルムおよび包装体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-104466 2013-05-16
JP2013104466 2013-05-16
JP2014-026788 2014-02-14
JP2014026788 2014-02-14

Publications (1)

Publication Number Publication Date
WO2014185442A1 true WO2014185442A1 (ja) 2014-11-20

Family

ID=51898418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062793 WO2014185442A1 (ja) 2013-05-16 2014-05-14 熱収縮性ポリエステル系フィルムおよび包装体

Country Status (10)

Country Link
US (1) US10336871B2 (ja)
EP (1) EP2998341B1 (ja)
JP (1) JP6337774B2 (ja)
KR (1) KR102090360B1 (ja)
CN (1) CN105229065B (ja)
CA (1) CA2912355C (ja)
ES (1) ES2615306T3 (ja)
PL (1) PL2998341T3 (ja)
TW (1) TWI616471B (ja)
WO (1) WO2014185442A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152517A1 (ja) * 2015-03-20 2016-09-29 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
CN108140339A (zh) * 2015-09-30 2018-06-08 东洋纺株式会社 聚酯系标签和包装容器
JP2019177702A (ja) * 2015-08-19 2019-10-17 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
US11097461B2 (en) * 2016-05-31 2021-08-24 Dai Nippon Printing Co., Ltd. Battery packaging material, production method therefor, battery, and polyester film
US11167887B2 (en) * 2017-02-13 2021-11-09 Toyobo Co., Ltd. Amorphous copolymerized polyester raw material for film, heat-shrinkable polyester-based film, heat-shrinkable label, and packaged product
JP2023540401A (ja) * 2020-10-07 2023-09-22 ボンセット アメリカ コーポレーション ポリエステル系熱収縮フィルム
WO2024075460A1 (ja) * 2022-10-05 2024-04-11 東洋紡株式会社 ポリエステル樹脂組成物及びその製造方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8864707B1 (en) 2010-12-03 2014-10-21 Medical Device Engineering, LLC. Tamper indicating closure assembly
WO2014199787A1 (ja) * 2013-06-11 2014-12-18 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US10912898B1 (en) 2014-02-03 2021-02-09 Medical Device Engineering Llc Tamper evident cap for medical fitting
US10207099B1 (en) 2014-02-21 2019-02-19 Patrick Vitello Closure assembly for medical fitting
JP6459533B2 (ja) * 2014-04-01 2019-01-30 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US10300263B1 (en) 2015-02-27 2019-05-28 Timothy Brandon Hunt Closure assembly for a medical connector
US10166343B1 (en) 2015-03-13 2019-01-01 Timothy Brandon Hunt Noise evident tamper cap
US10315024B1 (en) 2015-03-19 2019-06-11 Patick Vitello Torque limiting closure assembly
JP6519331B2 (ja) * 2015-06-11 2019-05-29 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US10307548B1 (en) * 2016-12-14 2019-06-04 Timothy Brandon Hunt Tracking system and method for medical devices
US11097071B1 (en) 2016-12-14 2021-08-24 International Medical Industries Inc. Tamper evident assembly
US10953162B1 (en) 2016-12-28 2021-03-23 Timothy Brandon Hunt Tamper evident closure assembly
US10758684B1 (en) 2017-03-03 2020-09-01 Jonathan J. Vitello Tamper evident assembly
US11040149B1 (en) 2017-03-30 2021-06-22 International Medical Industries Tamper evident closure assembly for a medical device
US10888672B1 (en) 2017-04-06 2021-01-12 International Medical Industries, Inc. Tamper evident closure assembly for a medical device
US10898659B1 (en) 2017-05-19 2021-01-26 International Medical Industries Inc. System for handling and dispensing a plurality of products
US10933202B1 (en) 2017-05-19 2021-03-02 International Medical Industries Inc. Indicator member of low strength resistance for a tamper evident closure
WO2019065108A1 (ja) * 2017-09-27 2019-04-04 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
US11541180B1 (en) 2017-12-21 2023-01-03 Patrick Vitello Closure assembly having a snap-fit construction
US11278681B1 (en) 2018-02-20 2022-03-22 Robert Banik Tamper evident adaptor closure
US11413406B1 (en) 2018-03-05 2022-08-16 Jonathan J. Vitello Tamper evident assembly
JP6927124B2 (ja) * 2018-03-30 2021-08-25 東洋紡株式会社 熱収縮性ポリエステル系フィルム
US10800898B2 (en) 2018-04-30 2020-10-13 Skc Inc. Method for reproducing polyester container and reproduced polyester chip prepared therefrom
KR102153670B1 (ko) 2018-05-21 2020-09-08 에스케이씨 주식회사 열수축성 필름 및 이의 제조방법
JP7101542B2 (ja) * 2018-05-29 2022-07-15 タキロンシーアイ株式会社 熱収縮性フィルムおよび熱収縮性ラベル
US11793987B1 (en) 2018-07-02 2023-10-24 Patrick Vitello Flex tec closure assembly for a medical dispenser
US11779520B1 (en) 2018-07-02 2023-10-10 Patrick Vitello Closure for a medical dispenser including a one-piece tip cap
US11857751B1 (en) 2018-07-02 2024-01-02 International Medical Industries Inc. Assembly for a medical connector
US11690994B1 (en) 2018-07-13 2023-07-04 Robert Banik Modular medical connector
KR20210036306A (ko) 2018-07-25 2021-04-02 군제 가부시키가이샤 열 수축성 다층 필름 및 열 수축성 라벨
US11426328B1 (en) 2018-08-31 2022-08-30 Alexander Ollmann Closure for a medical container
WO2020076749A1 (en) 2018-10-08 2020-04-16 Eastman Chemical Company Crystallizable shrinkable films and thermoformable sheets made from resin blends
US11471610B1 (en) 2018-10-18 2022-10-18 Robert Banik Asymmetrical closure for a medical device
USD948713S1 (en) 2019-09-03 2022-04-12 International Medical Industries, Inc. Asymmetrical self righting tip cap
USD903865S1 (en) 2018-11-19 2020-12-01 International Medical Industries, Inc. Self-righting tip cap
TWI720461B (zh) * 2019-04-19 2021-03-01 遠東新世紀股份有限公司 熱收縮聚酯膜及其製法
US20220274731A1 (en) * 2019-07-26 2022-09-01 Toyobo Co., Ltd. Heat-shrinkable polyester film
US11911339B1 (en) 2019-08-15 2024-02-27 Peter Lehel Universal additive port cap
US11697527B1 (en) 2019-09-11 2023-07-11 Logan Hendren Tamper evident closure assembly
US11357588B1 (en) 2019-11-25 2022-06-14 Patrick Vitello Needle packaging and disposal assembly
KR102361461B1 (ko) * 2019-12-10 2022-02-09 에스케이씨 주식회사 폴리에스테르 필름 및 폴리에스테르 필름의 제조방법
US11904149B1 (en) 2020-02-18 2024-02-20 Jonathan Vitello Oral tamper evident closure with retained indicator
US11523970B1 (en) 2020-08-28 2022-12-13 Jonathan Vitello Tamper evident shield
JP7092173B2 (ja) * 2020-10-23 2022-06-28 三菱ケミカル株式会社 熱収縮性フィルム、箱状包装資材及び電池セル、熱収縮性フィルムの製造方法
US12070591B1 (en) 2020-12-14 2024-08-27 Patrick Vitello Snap action tamper evident closure assembly
US11872187B1 (en) 2020-12-28 2024-01-16 Jonathan Vitello Tamper evident seal for a vial cover
TWI794902B (zh) 2021-07-22 2023-03-01 遠東新世紀股份有限公司 熱收縮聚酯膜及其製備方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192474A (ja) 2000-01-11 2001-07-17 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP2003145619A (ja) * 2001-07-23 2003-05-20 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムロールおよびその製造方法
JP2005047959A (ja) * 2003-07-29 2005-02-24 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP2005335111A (ja) 2004-05-25 2005-12-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP2008291200A (ja) * 2006-08-30 2008-12-04 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
WO2010137240A1 (ja) 2009-05-26 2010-12-02 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692976B2 (ja) 2001-07-11 2005-09-07 東洋紡績株式会社 熱収縮性ポリエステル系フィルム
EP1439201B1 (en) * 2001-09-26 2009-12-02 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film
US7225598B2 (en) * 2003-07-30 2007-06-05 Paoletti Richard D Alert medication safety seal system and method
WO2006051884A1 (ja) * 2004-11-10 2006-05-18 Mitsubishi Plastics, Inc. 熱収縮性積層フィルム、並びに該フィルムを用いた成形品、熱収縮性ラベル及び容器
JP2006274257A (ja) * 2005-03-02 2006-10-12 Daicel Chem Ind Ltd 低分岐度脂肪族ポリエステル共重合体組成物、成形品及びフィルム
MY173061A (en) * 2012-08-03 2019-12-23 Toyo Boseki Heat-shrinkable polyester-based film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192474A (ja) 2000-01-11 2001-07-17 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP2003145619A (ja) * 2001-07-23 2003-05-20 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムロールおよびその製造方法
JP2005047959A (ja) * 2003-07-29 2005-02-24 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP2005335111A (ja) 2004-05-25 2005-12-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP2008291200A (ja) * 2006-08-30 2008-12-04 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
WO2010137240A1 (ja) 2009-05-26 2010-12-02 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIYOMI UENOMACHI: "Shrinkage property control of heat-shrinkable polyester film", SEIKEIKAKOU, vol. 6, no. 10, 1994, pages 679 - 682
MINORU TODOKI: "DSC (3) -Glass transition behavior of polymer", JOURNAL OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, vol. 65, no. 10, 2009, pages 385 - 393
See also references of EP2998341A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102459356B1 (ko) 2015-03-20 2022-10-25 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름 및 포장체
CN107428965A (zh) * 2015-03-20 2017-12-01 东洋纺株式会社 热收缩性聚酯系薄膜及包装体
CN107428965B (zh) * 2015-03-20 2020-12-08 东洋纺株式会社 热收缩性聚酯系薄膜及包装体
JPWO2016152517A1 (ja) * 2015-03-20 2018-01-11 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2016152517A1 (ja) * 2015-03-20 2016-09-29 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US10392485B2 (en) 2015-03-20 2019-08-27 Toyobo Co., Ltd. Heat-shrinkable polyester-based film and package
KR20170128363A (ko) 2015-03-20 2017-11-22 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름 및 포장체
JP2019177702A (ja) * 2015-08-19 2019-10-17 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
CN108140339A (zh) * 2015-09-30 2018-06-08 东洋纺株式会社 聚酯系标签和包装容器
EP3358557A4 (en) * 2015-09-30 2019-06-12 Toyobo Co., Ltd. POLYESTER LABEL AND PACKAGING CONTAINER
US10919668B2 (en) 2015-09-30 2021-02-16 Toyobo Co., Ltd. Polyester label and packaging container
US11097461B2 (en) * 2016-05-31 2021-08-24 Dai Nippon Printing Co., Ltd. Battery packaging material, production method therefor, battery, and polyester film
US11840009B2 (en) 2016-05-31 2023-12-12 Dai Nippon Printing Co., Ltd. Battery packaging material, production method therefor, battery, and polyester film
US11167887B2 (en) * 2017-02-13 2021-11-09 Toyobo Co., Ltd. Amorphous copolymerized polyester raw material for film, heat-shrinkable polyester-based film, heat-shrinkable label, and packaged product
JP2023540401A (ja) * 2020-10-07 2023-09-22 ボンセット アメリカ コーポレーション ポリエステル系熱収縮フィルム
JP7392202B2 (ja) 2020-10-07 2023-12-05 ボンセット アメリカ コーポレーション ポリエステル系熱収縮フィルム
WO2024075460A1 (ja) * 2022-10-05 2024-04-11 東洋紡株式会社 ポリエステル樹脂組成物及びその製造方法

Also Published As

Publication number Publication date
EP2998341A1 (en) 2016-03-23
JP6337774B2 (ja) 2018-06-06
KR102090360B1 (ko) 2020-03-17
TW201502158A (zh) 2015-01-16
CN105229065B (zh) 2018-02-16
CA2912355C (en) 2021-02-16
US10336871B2 (en) 2019-07-02
US20160090456A1 (en) 2016-03-31
ES2615306T3 (es) 2017-06-06
CN105229065A (zh) 2016-01-06
EP2998341A4 (en) 2016-05-18
TWI616471B (zh) 2018-03-01
EP2998341B1 (en) 2016-12-28
JPWO2014185442A1 (ja) 2017-02-23
PL2998341T3 (pl) 2017-07-31
KR20160010490A (ko) 2016-01-27
CA2912355A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP6337774B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
WO2016152517A1 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP5240387B1 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP6036832B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
KR102508095B1 (ko) 열 수축성 폴리에스테르계 필름 및 그의 제조 방법, 포장체
KR101639101B1 (ko) 열수축성 폴리에스테르계 필름, 그의 제조방법 및 포장체
JP6485054B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
TWI693997B (zh) 熱收縮性聚酯系膜及包裝體
JP2019147954A (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP6673453B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028241.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014530043

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2912355

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014798436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014798436

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14891579

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157034589

Country of ref document: KR

Kind code of ref document: A