Nothing Special   »   [go: up one dir, main page]

WO2014065235A1 - アクティブ素子基板の製造方法、アクティブ素子基板、及び表示装置 - Google Patents

アクティブ素子基板の製造方法、アクティブ素子基板、及び表示装置 Download PDF

Info

Publication number
WO2014065235A1
WO2014065235A1 PCT/JP2013/078463 JP2013078463W WO2014065235A1 WO 2014065235 A1 WO2014065235 A1 WO 2014065235A1 JP 2013078463 W JP2013078463 W JP 2013078463W WO 2014065235 A1 WO2014065235 A1 WO 2014065235A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
active element
insulating film
interlayer insulating
element substrate
Prior art date
Application number
PCT/JP2013/078463
Other languages
English (en)
French (fr)
Inventor
大輔 布施
勝哉 山本
直希 高尾
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/438,141 priority Critical patent/US9318320B2/en
Publication of WO2014065235A1 publication Critical patent/WO2014065235A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters

Definitions

  • the present invention relates to a method for manufacturing an active element substrate, an active element substrate, and a display device.
  • Patent Literature 1 is made of a spin-on-glass (hereinafter referred to as SOG) material as a technique for reducing the capacitance formed at the intersection between the scanning wiring and the signal wiring.
  • SOG spin-on-glass
  • Patent Document 2 discloses a method for producing a printing relief plate used for producing an organic EL or the like.
  • a relief printing plate is manufactured by a photolithography method using a photosensitive resin as a resin material.
  • the manufacturing method of Patent Document 2 includes a step of forming a photocurable photosensitive resin layer 202 on a base material 200, a step of forming a light diffusion layer 201 on the photosensitive resin layer 202, and a light diffusion layer 201.
  • the exposure process which exposes the photosensitive resin layer 202 through, and the image development process which removes the exposure part 202a of the photosensitive resin layer 202 are included (refer FIG. 15).
  • a photomask 206 having a structure in which a light shielding portion 205 is patterned on a mask base material 204 is used.
  • the exposure light that has passed through the light transmitting portion of the photomask 206 where the light shielding portion 205 is not formed is scattered by the light diffusion layer 201 containing light diffusing fine particles.
  • the exposure light enters from the oblique direction as well as the vertical direction with respect to the surface of the photosensitive resin layer 202.
  • the photocured portion 202b in the photosensitive resin layer 202 becomes a convex pattern formed based on the pattern of the light shielding portion 205 of the photomask 206, and can be a forward tapered shape. Then, the photomask 206 is removed, and the exposed portion 202a that is an uncured portion of the photosensitive resin layer 202 that has not been irradiated with light by development is removed. As a result, a printing relief plate having a forward taper shape in which the convex portion pattern spreads toward the substrate 200 is manufactured.
  • tilt angle (theta) with respect to the surface of the base material 200 of a convex part pattern is controlled by adjusting the density
  • the present invention has been made in view of the present situation, and according to one aspect of the present invention, for example, an active element substrate manufacturing method, an active element substrate, and a display device that can reduce the manufacturing cost of an interlayer insulating film made of an SOG material Is to provide.
  • a method of manufacturing an active element substrate according to one embodiment of the present invention includes a plurality of scanning wirings formed on a substrate and a plurality of signal wirings intersecting the scanning wirings.
  • An active element substrate manufacturing method in which a light transmission portion is provided in a region surrounded by the scanning wiring and the signal wiring, wherein at least the scanning wiring and the signal wiring are formed by a printing method using a relief printing plate or an intaglio printing plate.
  • An interlayer insulating film forming step for forming an interlayer insulating film therebetween, wherein the relief plate or the intaglio plate has a main body pattern in a position overlapping with the signal wiring arranged around the light transmitting portion, and the width direction of the signal wiring And a relaxation pattern for relaxing the inclination of the edge portion of the print pattern corresponding to the main body pattern.
  • an active element substrate includes a plurality of scanning wirings formed over the substrate and a plurality of signal wirings intersecting the scanning wirings.
  • the film has a main body pattern in a position overlapping with the signal wiring arranged around the light transmitting portion, and a relaxation pattern for relaxing the inclination of the edge portion of the print pattern corresponding to the main body pattern in the width direction of the signal wiring Are formed by a printing method using a relief plate or an intaglio plate.
  • an interlayer insulating film made of, for example, an SOG material can be reduced.
  • FIG. 1 It is a top view which shows one pixel area
  • A is a top view which shows the structure of the cross
  • (b) is a liquid crystal display device provided with the active element board
  • SOG film conventional interlayer insulation film
  • (A) is a top view which shows the structure of an active element board
  • (b) is a liquid crystal display provided with the active element board
  • (A) is sectional drawing which shows a structure when the plate used for the interlayer insulation film (SOG film) formation process shown to (c) of FIG. 3 is a relief plate
  • (b) of FIG. 5 is FIG. It is sectional drawing which shows a structure in case the plate used for the interlayer insulation film (SOG film) formation process shown to (c) of FIG.
  • (a) is a plan view showing a picture element transmission display image
  • (b) is a panel lighting display image. It is a top view.
  • the image of the display area lighting state of the liquid crystal display device shown in (b) of FIG. 2 is shown, (a) is a plan view showing a picture element transmission display image, and (b) shows the panel lighting display image. It is a top view.
  • (A) is a figure for demonstrating the gravure offset printing technique
  • (b) is a top view which shows the example of the printing pattern printed by the gravure offset printing technique.
  • FIG. 1 It is a top view which shows the structure of the cross
  • A) is the top view which showed the whole structure of the plate used with the manufacturing method which concerns on Embodiment 2 of this invention, and also attached the top view which expanded and showed the microprotrusion in the plate
  • (b ) Is a plan view showing a state in which an interlayer insulating film is patterned by a printing method using a plate, and an enlarged plan view showing the interlayer insulating film patterned by a microprojection pattern is also appended. .
  • (A) is a top view showing the material of the interlayer insulating film existing in the region corresponding to the microprojection pattern immediately after printing with the plate shown in FIG. 10, and the three figures in (b) are respectively (a (I)-(I ′) cross-sectional view, (II)-(II ′) cross-sectional view, and (III)-(III ′) cross-sectional view of FIG.
  • the image of the display area lighting state of the liquid crystal display device shown in (b) of FIG. 9 is shown, (a) is a plan view showing a picture element transmission display image, and (b) shows the panel lighting display image. It is a top view.
  • (A) is a top view which shows the structure of the cross
  • (b) is implementation of this invention It is a top view which showed the state which patterned the interlayer insulation film with the plate used with the manufacturing method which concerns on form 3
  • (c) is sectional drawing which shows the structure of the liquid crystal display device provided with the active element substrate of (a) It is.
  • FIG. 1 is a top view which shows the structure of the cross
  • (b) is implementation of this invention It is a top view which showed the state which patterned the interlayer insulation film with the plate used with the manufacturing method which concerns on form 3
  • (c) is sectional drawing which shows the structure of the liquid crystal display device provided with the active element substrate of (a) It is. It is sectional drawing which showed typically the manufacturing method of the relief printing plate disclosed by patent document 2.
  • FIG. 1 is a top view which shows the structure of the cross
  • (b) is implementation of this invention It is a top view which showed the state which patterned the interlayer insulation film with the plate used with the manufacturing method which concerns on form 3
  • (c) is sectional drawing which shows the structure of the liquid crystal display device provided with the active element substrate
  • FIG. 1 is a plan view showing one pixel region in the active element substrate 20 of the present embodiment.
  • 2A is a plan view showing the configuration of the intersection of the scanning wiring and the signal wiring in the active element substrate 20 shown in FIG. 1, and FIG. 2B is provided with the active element substrate 20.
  • 2 is a cross-sectional view illustrating a configuration of a liquid crystal display device 1.
  • FIG. 2B is a cross-sectional view taken along the line (A)-(A ′) in FIG.
  • an active element substrate 20 having TFTs as active elements will be described as an example.
  • the liquid crystal display device 1 will be described as an example of a display device including the active element substrate 20.
  • the active element substrate of the present invention is not limited to this, and includes an active element substrate including various conventionally known active elements in addition to TFTs.
  • the display device is not limited to the liquid crystal display device 1 but includes a display device including a conventionally known display medium in addition to the liquid crystal.
  • the liquid crystal display device 1 includes an active element substrate 20, a counter substrate 4, and a liquid crystal layer 3 sandwiched between both the active element substrate 20 and the counter substrate 4. ing.
  • the liquid crystal layer 3 is sandwiched and held between the alignment film 20 a of the active element substrate 20 and the alignment film 4 a of the counter substrate 4.
  • the active element substrate 20 includes a transparent insulating substrate (for example, a glass substrate) 21, a plurality of scanning wirings 22 formed on the substrate 21, and an interlayer formed so as to cover a part of the scanning wirings 22.
  • An insulating film 23 and a plurality of signal wirings 24 intersecting with the scanning wirings 22 via the interlayer insulating film 23 are provided.
  • the active element substrate 20 further includes, for each pixel region, a thin film transistor (TFT) 25 as an active element that operates in response to a signal applied to the corresponding scanning wiring 22, and a TFT 25. And a pixel electrode 26 that can be electrically connected to the corresponding signal line 24.
  • the TFT 25 includes a gate electrode 25G electrically connected to the scanning wiring 22, a source electrode 25S electrically connected to the signal wiring 24, a drain electrode 25D electrically connected to the pixel electrode 26, It has.
  • the active element substrate 20 further includes a plurality of auxiliary capacitance lines 40 formed on the substrate 21 and a plurality of auxiliary capacitance electrodes 41 facing the plurality of auxiliary capacitance lines 40 via the interlayer insulating film 23. ing.
  • the auxiliary capacitance line 40 is formed by patterning the same conductive film as the scanning line 22 and the gate electrode 25G.
  • the auxiliary capacitance electrode 41 is formed by patterning the same conductive film as the signal wiring 24, the source electrode 25S, and the drain electrode 25D, and as shown in FIG. 1, a conductive member 42 extending from the drain electrode 25D. Is electrically connected to the drain electrode 25D of the TFT 25.
  • the liquid crystal layer 3 changes its alignment state according to the voltage applied between the pixel electrode 26 and the counter electrode (not shown) of the counter substrate 4. Then, display is performed by modulating light passing through the liquid crystal layer 3.
  • liquid crystal layers for various display modes can be widely used.
  • a TN (Twisted Nematic) mode liquid crystal layer using optical rotation or an ECB (Electrically Controlled Birefringence) mode liquid crystal layer using birefringence can be used.
  • the VA Very Aligned
  • the VA mode liquid crystal layer is typically obtained by providing vertical alignment layers on both sides of a liquid crystal layer containing a liquid crystal material having negative dielectric anisotropy.
  • a gate insulating film (GI) 27 is formed on the interlayer insulating film 23 of the active element substrate 20.
  • the signal wiring 24 is formed on the gate insulating film 27 so as to intersect the scanning wiring 22.
  • a passivation film 28 made of SiNx or SiOx, a transparent insulating film (JAS) 29, a transparent conductive film 30 made of ITO or ZnO, and an alignment film 20a are formed in this order so as to cover the laminated pattern so far. ing.
  • the thickness of the scanning wiring 22 is typically about 0.7 ⁇ m.
  • the thickness of the gate insulating film 27 is typically about 0.3 ⁇ m.
  • the thickness of the passivation film 28 is typically about 0.2 ⁇ m.
  • the thickness of the signal wiring 24 is typically about 0.6 ⁇ m.
  • the thickness of the transparent insulating film 29 is typically about 2.3 ⁇ m.
  • the thickness of the transparent conductive film 30 is typically about 0.1 ⁇ m.
  • the thickness of the alignment film 20a is typically about 0.1 ⁇ m.
  • the interlayer insulating film 23 is formed so as to cover a part of the scanning wiring 22.
  • the interlayer insulating film 23 is formed along the signal wiring 24 or is formed only at the intersection of the scanning wiring 22 and the signal wiring 24.
  • the thickness of the interlayer insulating film 23 is preferably in the range of 1.0 ⁇ m or more and 4.0 ⁇ m or less.
  • the interlayer insulating film 23 is made of an insulating material containing an organic component.
  • the capacitance (parasitic capacitance) formed at the intersection of the scanning wiring 22 and the signal wiring 24 can be reduced.
  • the delay of the source signal due to this capacitance (parasitic capacitance) can be suppressed.
  • a spin-on glass material containing an organic component can be preferably used, and in particular, an SOG material having a Si—O—C bond as a skeleton or a Si—C bond.
  • An SOG material having a skeleton can be preferably used.
  • the SOG material is a material that can form a glass film (silica-based film) by a coating method such as a spin coating method. Since the organic SOG material has a low relative dielectric constant and it is easy to form a thick film, by using the organic SOG material, the relative dielectric constant of the interlayer insulating film 23 can be lowered and the interlayer insulating film 23 can be formed thick.
  • SOG materials having a Si—O—C bond as a skeleton include materials disclosed in Japanese Patent Application Laid-Open No. 2001-98224 and Japanese Patent Application Laid-Open No. 6-240455, and disclosed in page 617 of IDW'03 Proceedings. DD1100 manufactured by Toray Dow Corning Silicone Co., Ltd. can be used. Further, as the SOG material having a Si—C bond as a skeleton, for example, a material disclosed in Japanese Patent Laid-Open No. 10-102003 can be used.
  • the active element substrate 20 is provided with a black matrix (light shielding film) so as to cover the surfaces of the scanning wiring 22, the signal wiring 24, and the active element 25. Yes.
  • a light shielding portion 5 that blocks light and an opening 6 that transmits light are formed.
  • FIG. 3 is a diagram showing an outline of a flow of a manufacturing method of the active element substrate 20, FIG. 3 (a) shows a flow of the entire manufacturing method, and FIG. 3 (b) shows a conventional interlayer insulating film.
  • the flow of the (SOG film) forming process is shown, and FIG. 3C shows the flow of the interlayer insulating film (SOG film) forming process in the present invention.
  • a gate pattern including the gate electrode 25G, the scanning wiring 22, and the auxiliary capacitance wiring 40 is formed on the substrate 10. As shown in FIG. Since this gate electrode formation step S1 can use a conventionally known technique, its description is omitted.
  • an interlayer insulating film 23 is formed on the scanning wiring 22.
  • the interlayer insulating film 23 is formed along the signal wiring 24 arranged around the opening 6, or only at the intersection of the scanning wiring 22 and the signal wiring 24. Form.
  • This interlayer insulating film (SOG film) forming step S2 will be described later.
  • the interlayer insulating film (JAS / PAS) forming step S5 the passivation film 28 made of SiNx or SiOx and the transparent insulating film (JAS) 29 are formed in this order.
  • the transparent electrode (ITO) forming step S6 a transparent conductive film 30 made of ITO or ZnO is formed.
  • the semiconductor layer forming step S3, the source electrode forming step S4, the interlayer insulating film (JAS / PAS) forming step S5, and the transparent electrode (ITO) forming step S6 can be performed using a conventionally known technique, and thus the description thereof is omitted. To do.
  • a conventional interlayer insulating film (SOG film) forming process will be described.
  • an insulating film material (SOG) is applied onto the scanning wiring 22, and a method of patterning the insulating film material (SOG) by photolithography and dry etching is employed. Yes.
  • an organic SOG material is applied onto the substrate 21 by using a spin coating method.
  • pre-baking and post-baking are performed to form the interlayer insulating film 23.
  • a predetermined portion of the interlayer insulating film 23 is removed by using a photolithography technique.
  • dry etching is performed using a mixed gas of carbon tetrafluoride (CF 4 ) and oxygen (O 2 ).
  • the conventional interlayer insulating film (SOG film) forming step shown in FIG. 3B has the advantage that the minimum line width of the pattern of the interlayer insulating film 23 is small and the positional accuracy is high. On the other hand, the cost of the apparatus which forms the interlayer insulation film 23, and material cost become high, and the subject that manufacturing cost becomes high remains.
  • the interlayer insulating film 23 is formed by a printing method using a relief plate or an intaglio in an interlayer insulating film (SOG film) forming step. It is premised on patterning.
  • the minimum line width and the pattern alignment accuracy are 10 times as compared with the conventional photolithography technique and the method using dry etching. It gets worse. Specifically, when the printing method is used, the minimum line width is 15 ⁇ m to 30 ⁇ m, and the alignment accuracy is ⁇ 10 ⁇ m.
  • the interlayer insulating film 23 is patterned by a printing method using a relief plate or an intaglio, a design condition is required that allows a sufficient margin for pattern displacement. That is, it is necessary to prevent the interlayer insulating film 23 from overlapping the TFT 25 and the auxiliary capacitance wiring 40 even if the pattern is displaced so that there is no problem even if the pattern is displaced.
  • the print pattern is a pattern along the signal wiring 24 or a pattern at the intersection of the scanning wiring 22 and the signal wiring 24.
  • FIG. 4A is a plan view showing a configuration of the active element substrate 20 when a printing pattern by the printing method is a pattern along the signal wiring 24, and FIG. 4B is a plan view of FIG. It is sectional drawing which shows the structure of liquid crystal display device 1 'provided with the active element substrate 20 of a). 4B is a cross-sectional view taken along line (A)-(A ′) of FIG. 4A.
  • the plate 50 ′ is used as a relief plate or an intaglio plate when forming the interlayer insulating film 23.
  • the plate 50 ′ has a pattern in which the interlayer insulating film 23 is formed along the signal wiring 24.
  • the interlayer insulating film 23 ′ patterned by the printing method using the plate 50 ′ has an edge portion in the width direction of the signal wiring 24 outside the light shielding portion 5, that is, an opening. It also extends to part 6.
  • the edge portion of the interlayer insulating film 23 ′ is not formed in the light shielding portion 5 and extends to the vicinity of the boundary portion with the light shielding portion 5 in the opening 6.
  • the edge portion of the interlayer insulating film 23 ' has a steep inclination angle and a taper of about 60 °.
  • the active element substrate 20 obtained by sequentially forming the gate insulating film 27 ′, the passivation film 28 ′, the signal wiring 24 ′, the transparent insulating film 29 ′, and the alignment film 20 a ′ has the light shielding portion 5 in the opening 6.
  • the contact surface with the liquid crystal layer 3 is inclined at the boundary portion between the two. Specifically, the contact surface with the liquid crystal layer 3 has a taper of about 30 ° at the boundary between the opening 6 and the light shielding portion 5. Therefore, in the liquid crystal display device 1 ′, there is a concern that the alignment of the liquid crystal in the liquid crystal layer 3 is disturbed at the boundary between the opening 6 and the light shielding portion 5 and the display quality is deteriorated.
  • the inclination angle (relative to the substrate surface) of the edge in the width direction of the signal wiring 24 in the pattern of the interlayer insulating film 23 ′ is reduced. It is possible. For this purpose, for example, it is conceivable to use a printing relief plate disclosed in Patent Document 2. Specifically, as shown in FIG. 15, the relief printing plate has a forward tapered shape.
  • this printing relief plate is used as an intaglio, the forward taper shape formed on the plate is reflected in the pattern of the interlayer insulating film 23 ', and therefore the width of the signal wiring 24 in the pattern of the interlayer insulating film 23' It is possible to control the slope of the edge.
  • the plate inclination angle ⁇ is controlled by a photolithography method by adjusting the concentration and particle size of the light diffusing fine particles contained in the light diffusion layer 201. For this reason, there exists a problem that the manufacturing cost of a plate is high.
  • the relief printing plate is used as the intaglio, the printing method is limited to intaglio printing.
  • the inventors of the present application have determined the inclination of the edge portion of the printed pattern printed with the pattern in addition to the pattern along the signal wiring 24 for the relief or intaglio pattern used in the printing method.
  • a relaxation pattern that relaxes, it has been found that patterning of the interlayer insulating film 23 ′ can be realized at low cost and without restrictions on the printing method, and the present invention has been achieved.
  • the printing plate used in the interlayer insulating film (SOG film) forming step S2 in the manufacturing method of the active element substrate of the present invention includes a main body pattern along the signal wiring 24 arranged around the opening 6, In the width direction of the signal wiring 24, a relaxation pattern that relaxes the inclination of the edge portion of the print pattern formed by the main body pattern is provided.
  • the plate 50A used in the interlayer insulating film (SOG film) forming step S2 includes the main body pattern 52 along the signal wiring 24 and the signal in the main body pattern 52. And a minute line width pattern 53 arranged on both sides of the wiring 24 in the width direction.
  • the main body pattern 52 is at a position overlapping the signal wiring 24 arranged around the opening 6.
  • the minute line width pattern 53 is arranged so as to be parallel to the main body pattern 52, and is not arranged at a position overlapping the signal wiring 24.
  • the interlayer insulating film 23 is patterned by a printing method with the plate 50A in contact with the substrate 21.
  • the signal wiring 24 formed thereafter is formed in the contact region of the main body pattern 52 of the plate 50A, but is not formed in the contact region of the minute line width pattern 53.
  • the main body pattern 52 has a width equal to or larger than the minimum printable line width in the width direction of the signal wiring 24.
  • the minute line width pattern 53 has a line width smaller than the minimum printable line width in the width direction of the signal wiring 24.
  • the printed pattern corresponding to the main body pattern 52 (the portion overlapping the signal wiring 24 in the interlayer insulating film 23) is in a state in which the line width is maintained.
  • the line width of the print pattern corresponding to the minute line width pattern 53 is smaller than the minimum printable line width, the line width cannot be maintained.
  • the print pattern corresponding to the minute line width pattern 53 collapses and is connected to the print pattern corresponding to the main body pattern 52. Therefore, the material in the main body pattern 52 also flows into the minute line width pattern 53.
  • the edge portion of the interlayer insulating film 23 extends to the boundary portion with the light shielding portion 5 in the opening 6, but is inclined with respect to the surface of the substrate 21. A small (gradual) taper is formed.
  • the active element substrate 20 obtained through the steps after the interlayer insulating film (SOG film) forming step S2 has an inclination of the contact surface with the liquid crystal layer 3 in the boundary portion with the light shielding portion 5 in the opening 6. Becomes loose. Specifically, the inclination angle of the contact surface with the liquid crystal layer 3 with respect to the surface of the substrate 20 can be reduced to about 5 ° at the boundary between the opening 6 and the light shielding portion 5. As a result, since the contact surface with the liquid crystal layer 3 can be flattened, the liquid crystal display device 1 is less likely to disturb the alignment of the liquid crystal in the liquid crystal layer 3 at the boundary between the opening 6 and the light shielding portion 5, and the display quality is improved. The decrease is less likely to occur.
  • the main body pattern 52 has only to be formed at the intersection of the scanning wiring 22 and the signal wiring 24 with a line width equal to or larger than the minimum printable line width.
  • the main body pattern 52 is a straight line pattern smaller than the minimum line width or a configuration in which a plurality of straight line patterns are gathered, the interlayer insulating film 23 formed at the intersection of the scanning wiring 22 and the signal wiring 24 The film thickness may be nonuniform or small. For this reason, there is a possibility that the capacitance (parasitic capacitance) formed at the intersection of the scanning wiring 22 and the signal wiring 24 cannot be sufficiently reduced.
  • the inclination angle of the edge portion of the interlayer insulating film 23 with respect to the surface of the substrate 21 can be adjusted by the distance between the main body pattern 52 and the minute line width pattern 53 in the plate 50A and the line width of the minute line width pattern 53.
  • the distance between the minute line width pattern 53 and the main body pattern 52 is set to 5 ⁇ m to 25 ⁇ m
  • the line width of the minute line width pattern 53 is set to 5 ⁇ m to 25 ⁇ m.
  • the active element substrate manufacturing method according to the present embodiment is applied to the inclination of the interlayer insulating film 23 by reflecting the forward tapered shape of the plate as in the method using the printing relief plate of Patent Document 2 described above as an intaglio. It is not a way to alleviate. That is, in the manufacturing method of the active element substrate of the present embodiment, the inclination of the interlayer insulating film 23 is controlled not by the shape of the plate 50A itself but by the dimensions of the main body pattern 52 and the minute line width pattern 53. Therefore, the plate 50 ⁇ / b> A does not have a tapered cross-sectional shape, and is configured by a surface parallel to the contact surface with the substrate 21 and a surface perpendicular to the contact surface.
  • the manufacturing method of the active element substrate according to the present embodiment can reduce the manufacturing cost of the plate.
  • the plate structure and the printing method are not limited, and the degree of freedom of the printing method for patterning the interlayer insulating film 23 is increased.
  • FIG. 5A is a cross-sectional view showing a configuration when the plate 50A used in the method for manufacturing an active element substrate of the present embodiment is a relief plate, and FIG. 5A shows the plate 50A having an intaglio plate. It is sectional drawing which shows the structure in a case.
  • the main body pattern 52 is provided as a projection protruding from the base material 51.
  • the fine line width pattern 53 is provided as a protruding portion that protrudes with respect to the base material 51, similarly to the main body pattern 52.
  • the main body pattern 52 ' is provided as a concave portion formed by a convex portion protruding from the base material 51.
  • the minute line width pattern 53 ′ is provided as a concave portion formed by a convex portion protruding with respect to the substrate 51, similarly to the main body pattern 52 ′.
  • the plate 50A used in the interlayer insulating film (SOG film) forming step S2 can be a relief or intaglio.
  • the printing method can be a letterpress printing method or an intaglio printing method.
  • FIG. 6 shows an image of the display area lighting state of the liquid crystal display device 1 ′ shown in FIG. 4B
  • FIG. 6A is a plan view showing a picture element transmissive display image
  • (B) is a top view which shows a panel lighting display image.
  • FIG. 6A shows that the liquid crystal orientation is disturbed near the edge of the pattern of the interlayer insulating film 23 (region surrounded by a dotted line) and the transmittance is reduced. Then, as shown in FIG. 6B, it can be seen that the transmittance fluctuates due to the shift of the print pattern and the shift of the line width of the pattern, resulting in uneven display.
  • FIG. 7 shows an image of the display area lighting state of the liquid crystal display device 1 shown in FIG. 2B
  • FIG. 7A is a plan view showing a picture element transmission display image
  • FIG. (B) is a top view which shows a panel lighting display image.
  • the inclination becomes gentle in the vicinity of the edge of the pattern of the interlayer insulating film 23 (area surrounded by the dotted line). It can be seen that the alignment of the liquid crystal is not disturbed and the transmittance is not lowered. Then, as shown in FIG. 7B, it can be seen that the transmittance does not fluctuate and the display is not uneven even when the print pattern is shifted and the line width of the pattern is shifted.
  • the pattern of the interlayer insulating film 23 is formed by a printing method using the plate 50A having the main body pattern 52 and the minute line width pattern 53, and the inclination of the edge portion of the interlayer insulating film 23 is made gentle.
  • a decrease in transmittance at the edge portion can be prevented. Since there is no decrease in transmittance due to such a pattern portion of the interlayer insulating film 23, the transmittance does not vary even when the printing pattern and the line width of the interlayer insulating film 23 are deviated, and display unevenness is unlikely. I understand that.
  • the inclination angle of the edge portion of the interlayer insulating film 23 is controlled by changing the pattern shape of the plate 50A used for patterning the interlayer insulating film 23. Can do. Therefore, it is possible to realize more detailed adjustment of the inclination angle of the edge portion of the interlayer insulating film 23 as compared with the case where the relief printing plate of Patent Document 2 is used.
  • the inclination angle ⁇ is controlled by utilizing light diffusion in the light diffusion layer 201 when a plate is formed by photolithography. For this reason, even if the relief printing plate of Patent Document 2 is used, detailed angle control cannot be performed for the inclination angle of the edge portion of the interlayer insulating film 23.
  • FIG. 8 is a figure for demonstrating the gravure offset printing technique.
  • FIG. 8B is a top view showing an example of a print pattern printed by the gravure offset printing technique.
  • the gravure offset printing technique is a technique for printing a desired pattern on a substrate by rolling (rotating) a roller-shaped plate on the substrate.
  • a pattern (vertical stripe) parallel to the printing direction (direction in which the plate is rolled) can be printed continuously. Therefore, the material is easily peeled off from the plate.
  • the pattern (horizontal stripe) extending in the direction perpendicular to the printing direction becomes intermittent, so that the material is difficult to peel off from the plate and easily breaks.
  • the printing direction of the interlayer insulating film 23 by the plate 50A is not particularly limited.
  • the printing direction of the interlayer insulating film 23 by the plate 50A is preferably the extending direction of the signal wiring 24. That is, in the interlayer insulating film (SOG film) forming step, it is preferable to pattern the interlayer insulating film 23 in the form of vertical stripes using the plate 50A. As a result, a highly accurate printing pattern can be realized for the printing of the interlayer insulating film 23.
  • FIG. 9A is a plan view showing the configuration of the intersection of the scanning wiring and the signal wiring in the active element substrate manufactured by the manufacturing method according to the present embodiment, and FIG. It is sectional drawing which shows the structure of the liquid crystal display device provided with the active element substrate of 9 (a).
  • the plate 50B used in the interlayer insulating film (SOG film) forming step S2 includes a main body pattern 52 along the signal wiring 24 and a width direction of the signal wiring 24 in the main body pattern 52. And a microprojection pattern (relaxation pattern) 54 projecting outward from both ends.
  • the main body pattern 52 is at a position overlapping the signal wiring 24 arranged around the opening 6.
  • the microprojection pattern 54 is not disposed at a position overlapping the signal wiring 24.
  • the interlayer insulating film 23 is patterned by a printing method with the plate 50B in contact with the substrate 21.
  • the signal wiring 24 formed thereafter is formed in the contact region of the main body pattern 52 of the plate 50B, but is not formed in the contact region of the minute projection pattern 54.
  • the main body pattern 52 has a width equal to or larger than the minimum printable line width in the width direction of the signal wiring 24.
  • the minute protrusion pattern 54 extending in the width direction of the signal wiring 24 the line width of the base portion opposite to the tip (the line width in the extending direction of the signal wiring 24) is smaller than the minimum printable line width. .
  • the line width of the root portion of the microprojection pattern 54 is 5 to 25 ⁇ m.
  • the printed pattern 23A corresponding to the main body pattern 52 (a portion overlapping the signal wiring 24 in the interlayer insulating film 23) is in a state in which the line width is maintained.
  • the print pattern 23B corresponding to the minute protrusion pattern 54 is collapsed.
  • FIG. 10 is a plan view showing the entire configuration of the plate 50B, and a plan view showing an enlarged microprojection pattern 54 on the plate 50B is also appended.
  • FIG. 10B is a plan view showing a state in which the interlayer insulating film 23 is patterned by a printing method using the plate 50B, and the interlayer insulating film 23 patterned by the microprojection pattern 54 is enlarged. The plan view shown here is also appended.
  • the print pattern 23B corresponding to the microprojection pattern 54 is the signal wiring 24. Since the line width is smaller than the minimum printable line width in the extending direction, the line width cannot be maintained and collapses.
  • the material of the interlayer insulating film 23 in each microprojection pattern 54 flows outside the edge of the microprojection pattern 54 in the extending direction of the signal wiring 24. As a result, as shown in the enlarged view of FIG. 10B, each print pattern 23 ⁇ / b> B collapses and becomes a pattern that spreads in the extending direction of the signal wiring 24.
  • the line width decreases toward the tip of the minute protrusion pattern 54. For this reason, the edge taper portions on both sides of the microprojection pattern 54 are offset, and the height of the interlayer insulating film 23 is lowered. More specific description will be given with reference to FIGS. 11A and 11B.
  • FIG. 11A is a top view showing the material of the interlayer insulating film 23 present in the region corresponding to the microprojection pattern 54 immediately after printing by the plate 50B, and the three views shown in FIG. 11B.
  • FIG. 11 is a sectional view taken along line (I)-(I ′), a sectional view taken along line (II)-(II ′), and a sectional view taken along line (III)-(III ′) in FIG.
  • the taper angle formed by the edge portion of the interlayer insulating film 23 existing in the region corresponding to the minute projection pattern 54 and the printing surface of the active element substrate is changed from the root portion to the tip portion.
  • the taper angle is set to 70 °.
  • the height of the interlayer insulating film 23 is expressed by an equation of (line width) ⁇ tan (70 °) / 2. That is, the height of the interlayer insulating film 23 and the line width are in a proportional relationship. The height of the interlayer insulating film 23 decreases as the line width decreases. Therefore, as shown in FIG.
  • the edge portion of the interlayer insulating film 2 extends to the boundary portion with the light shielding portion 5 in the opening 6, but the inclination angle with respect to the surface of the substrate 21.
  • a small (gradual) taper is formed.
  • the active element substrate 20 obtained through the steps after the interlayer insulating film (SOG film) forming step S2 has an inclination of the contact surface with the liquid crystal layer 3 in the boundary portion with the light shielding portion 5 in the opening 6. Becomes loose.
  • the contact surface with the liquid crystal layer 3 can be flattened, the liquid crystal display device 1 is less likely to disturb the alignment of the liquid crystal in the liquid crystal layer 3 at the boundary between the opening 6 and the light shielding portion 5, and the display quality is improved. The decrease is less likely to occur.
  • FIG. 12 shows an image of the display area lighting state of the liquid crystal display device 1 shown in FIG. 9B
  • FIG. 12A is a plan view showing a picture element transmissive display image
  • (B) is a top view which shows a panel lighting display image.
  • the slope becomes gentle in the vicinity of the edge of the pattern of the interlayer insulating film 23 (area surrounded by the dotted line). It can be seen that the alignment of the liquid crystal is not disturbed and the transmittance is not lowered. Then, as shown in FIG. 12B, it can be seen that the transmittance does not fluctuate and the display is not uneven even when the print pattern is shifted and the line width of the pattern is shifted.
  • the pattern of the interlayer insulating film 23 is formed by the printing method using the plate 50B having the main body pattern 52 and the microprojection pattern 54, and the edge of the interlayer insulating film 23 is gently inclined to form the edge. It can be seen that it is possible to prevent a decrease in transmittance in the portion. Since there is no decrease in transmittance due to such a pattern portion of the interlayer insulating film 23, the transmittance does not vary even when the printing pattern and the line width of the interlayer insulating film 23 are deviated, and display unevenness is unlikely. I understand that.
  • the printing direction of the interlayer insulating film 23 by the plate 50B is not particularly limited, and is in the extending direction of the signal wiring 24 or the extending direction of the signal wiring 24. It may be a vertical direction.
  • the printing direction of the interlayer insulating film 23 by the plate 50B is preferably the extending direction of the signal wiring 24.
  • the pattern (horizontal stripe) extending in the direction perpendicular to the printing direction, that is, the minute protrusion pattern 54 is intermittent, so that the material is difficult to peel off from the plate and easily breaks.
  • the material of the interlayer insulating film 23 is a material that can be peeled off satisfactorily from the plate 50B when contacting the printing surface of the active element substrate. It is preferable. Such a material can be appropriately set according to the material of the plate used for printing and the printing conditions (plate rotation speed, etc.).
  • FIG. 13A is a plan view showing the configuration of the intersection of the scanning wiring and the signal wiring in the active element substrate manufactured by the manufacturing method according to the present embodiment, and FIG. It is the top view which showed the state which patterned the interlayer insulation film with the printing method using the plate which concerns on embodiment.
  • FIG. 13C is a cross-sectional view illustrating a configuration of a liquid crystal display device including the active element substrate of FIG. In FIG. 13A, a plan view showing an enlarged micro dot pattern on the plate is also appended.
  • FIG. 13B also includes a plan view showing an enlarged interlayer insulating film patterned with a minute dot pattern.
  • the plate 50C used in the interlayer insulating film (SOG film) forming step S2 includes a main body pattern 52 along the signal wiring 24 and a width direction of the signal wiring 24 in the main body pattern 52.
  • minute dot patterns (relaxation patterns) 55a and 55b are provided on both sides of the image.
  • the main body pattern 52 is at a position overlapping the signal wiring 24 arranged around the opening 6.
  • the minute dot patterns 55 a and 55 b are not arranged at positions overlapping the signal wiring 24.
  • the interlayer insulating film 23 is patterned by a printing method with the plate 50C in contact with the substrate 21.
  • the signal wiring 24 formed thereafter is formed in the contact region of the main body pattern 52 of the plate 50C, but is not formed in the contact region of the minute projection pattern 54.
  • the main body pattern 52 has a width equal to or larger than the minimum printable line width in the width direction of the signal wiring 24.
  • the dot diameters of the minute dot patterns 55a and 55b are smaller than the minimum printable line width.
  • dot diameter means the diameter of a circle when the minute dot patterns 55a and 55b are circular, and means the length of a side of the square when the minute dot patterns 55a and 55b are square. To do.
  • a plurality of dots constituting the minute dot patterns 55a and 55b are arranged side by side along the extending direction of the signal wiring 24.
  • the interval between the minute dot patterns 55a and the interval between the minute dot patterns 55b are constant.
  • the minute dot pattern 55b is arranged on the outer side in the width direction of the signal wiring 24 than the minute dot pattern 55a.
  • the dot diameter of the minute dot pattern 55a is larger than the dot diameter of the minute dot pattern 55b. That is, the plurality of minute dot patterns as relaxation patterns in the plate 50 ⁇ / b> C are formed such that the dot diameter decreases as the distance from the main body pattern 52 increases in the width direction of the signal wiring 24.
  • the printed pattern 23A corresponding to the main body pattern 52 portion overlapping the signal wiring 24 in the interlayer insulating film 23
  • the print pattern 23B corresponding to the minute dot patterns 55a and 55b has the shape of the minute dot patterns 55a and 55b. It cannot be maintained and collapses.
  • the material of the interlayer insulating film 23 in the dots constituting the minute dot pattern 55a flows while diffusing outside the edge of the dots.
  • the material of the interlayer insulating film 23 in the dots constituting the minute dot pattern 55b flows while diffusing outside the edge of the dots.
  • the material of the interlayer insulating film 23 in the printed pattern 23B is connected between the dots constituting the minute dot pattern 55a.
  • the material of the interlayer insulating film 23 is connected between the dots constituting the minute dot pattern 55b.
  • the material of the interlayer insulating film 23 is connected between the dots constituting the minute dot pattern 55a and the dots constituting the minute dot pattern 55b. For this reason, in the printed pattern 23B, the height of the interlayer insulating film 23 decreases as the distance from the main body pattern 52 increases in the width direction of the signal wiring 24.
  • the edge portion of the interlayer insulating film 23 extends to the boundary portion with the light shielding portion 5 in the opening 6, but is inclined with respect to the surface of the substrate 21.
  • a small (gradual) taper is formed.
  • the active element substrate 20 obtained through the steps after the interlayer insulating film (SOG film) forming step S2 has an inclination of the contact surface with the liquid crystal layer 3 in the boundary portion with the light shielding portion 5 in the opening 6. Becomes loose.
  • the contact surface with the liquid crystal layer 3 can be flattened, the liquid crystal display device 1 is less likely to disturb the alignment of the liquid crystal in the liquid crystal layer 3 at the boundary between the opening 6 and the light shielding portion 5, and the display quality is improved. The decrease is less likely to occur.
  • the dot diameter of the dots constituting the minute dot patterns 55a and 55b in the plate 50C is not particularly limited as long as it is smaller than the minimum printable line width. .
  • any dot diameter may be used as long as dots are printed corresponding to each dot.
  • FIG. 14A is a plan view showing the configuration of the intersection of the scanning wiring and the signal wiring in the active element substrate manufactured by the manufacturing method according to the present embodiment, and FIG. It is the top view which showed the state which patterned the interlayer insulation film with the printing method using the plate which concerns on embodiment.
  • FIG. 14C is a cross-sectional view illustrating a configuration of a liquid crystal display device including the active element substrate of FIG. In FIG. 14 (a), a plan view showing an enlarged micro line width pattern in the plate is also appended.
  • FIG. 14B also includes an enlarged plan view showing an interlayer insulating film patterned with a fine line width pattern.
  • the plate 50D used in the interlayer insulating film (SOG film) forming step S2 includes a main body pattern 52 along the signal wiring 24 and a width direction of the signal wiring 24 in the main body pattern 52.
  • the main body pattern 52 is at a position overlapping the signal wiring 24 arranged around the opening 6.
  • the fine line width patterns 56 a and 56 b are arranged so as to be parallel to the main body pattern 52, and are not arranged at positions overlapping the signal wiring 24.
  • the interlayer insulating film 23 is patterned by a printing method with the plate 50D in contact with the substrate 21. Then, the signal wiring 24 formed thereafter is formed in the contact region of the main body pattern 52 of the plate 50D, but is not formed in the contact region of the minute line width pattern 53.
  • the main body pattern 52 has a width equal to or larger than the minimum printable line width in the width direction of the signal wiring 24.
  • the minute line width patterns 56a and 56b are smaller in the width direction of the signal wiring 24 than the minimum printable line width.
  • the minute line width patterns 56a and 56b are formed in parallel to each other.
  • the minute line width pattern 56b is formed on the outer side in the width direction of the signal wiring 24 than the minute line width pattern 56a.
  • the line width of the minute line width pattern 56a is larger than the line width of the minute line width pattern 56b. That is, the plurality of minute line width patterns as relaxation patterns in the plate 50 ⁇ / b> D are formed such that the line width decreases as the distance from the main body pattern 52 increases in the width direction of the signal wiring 24.
  • a printed pattern (a portion overlapping the signal wiring 24 in the interlayer insulating film 23) 23A corresponding to the main body pattern 52 is The line width is maintained.
  • the print pattern 23B corresponding to the minute line width patterns 56a and 56b cannot hold the line width. For this reason, the print pattern 23B collapses and is connected to the print pattern 23A corresponding to the main body pattern 52. Therefore, the material in the main body pattern 52 also flows into the minute line width pattern 53.
  • the material of the interlayer insulating film 23 is connected between the minute line width patterns 56a and 56b. For this reason, in the printed pattern 23B, the height of the interlayer insulating film 23 decreases as the distance from the main body pattern 52 increases in the width direction of the signal wiring 24.
  • the edge portion of the interlayer insulating film 23 extends to the boundary portion with the light shielding portion 5 in the opening 6, but is inclined with respect to the surface of the substrate 21.
  • a small (gradual) taper is formed.
  • the active element substrate 20 obtained through the steps after the interlayer insulating film (SOG film) forming step S2 has an inclination of the contact surface with the liquid crystal layer 3 in the boundary portion with the light shielding portion 5 in the opening 6. Becomes loose. Specifically, the inclination angle of the contact surface with the liquid crystal layer 3 with respect to the surface of the substrate 20 can be reduced to about 5 ° at the boundary between the opening 6 and the light shielding portion 5. As a result, since the contact surface with the liquid crystal layer 3 can be flattened, the liquid crystal display device 1 is less likely to disturb the alignment of the liquid crystal in the liquid crystal layer 3 at the boundary between the opening 6 and the light shielding portion 5, and the display quality is improved. The decrease is less likely to occur.
  • the inclination angle of the edge portion of the interlayer insulating film 23 can be reduced by increasing the number of micro line width patterns parallel to each other in the plate 50D. Is possible.
  • the number of minute line width patterns in the plate 50D can be appropriately set according to the space of the minute line width pattern, the line width that is the limit of printing in the printing apparatus to be used, and the like.
  • An active element substrate manufacturing method includes a plurality of scanning wirings formed on a substrate and a plurality of signal wirings intersecting the scanning wirings, and is surrounded by the scanning wirings and the signal wirings.
  • interlayer insulating film (SOG film) forming step S2) for forming an interlayer insulating film, wherein the relief plate or the intaglio plate is a signal wiring disposed around the light transmitting portion.
  • a relaxing pattern (a minute line width pattern 53, a minute line width pattern) that relaxes the inclination of the edge portion of the printed pattern corresponding to the body pattern in the width direction of the signal line and the body pattern at the overlapping position And causing pattern 54), and comprising the.
  • An active element substrate includes a plurality of scanning wirings formed over the substrate and a plurality of signal wirings intersecting the scanning wirings, and is surrounded by the scanning wirings and the signal wirings.
  • An active element substrate provided with a light transmitting portion in a region where an interlayer insulating film is formed at least between the scanning wiring and the signal wiring, and the interlayer insulating film is formed around the light transmitting portion.
  • a relief plate or intaglio comprising a main body pattern in a position overlapping with the signal wiring arranged on the board, and a relaxation pattern for relaxing the inclination of the edge portion of the printing pattern corresponding to the main body pattern in the width direction of the signal wiring. It is formed by the printing method used.
  • a display device includes the above active element substrate.
  • an insulating film material is applied on the scanning wiring, and a method of patterning the insulating film material by photolithography technique and dry etching is employed.
  • the cost of the apparatus for forming the interlayer insulating film and the material cost are increased, and there remains a problem that the manufacturing cost is increased.
  • an interlayer insulating film is formed at least between the scanning wiring and the signal wiring by a printing method using a relief plate or an intaglio in the interlayer insulating film forming step.
  • the manufacturing cost of the interlayer insulating film can be reduced as compared with the interlayer insulating film forming process using photolithography technology and dry etching.
  • an interlayer insulating film is formed between the scanning wiring and the signal wiring by using a relief plate or an intaglio made of a main body pattern located at a position overlapping with the signal wiring arranged around the light transmission portion.
  • the printed pattern of the interlayer insulating film extends to the light transmitting portion, and the inclination angle of the edge portion in the width direction of the signal wiring becomes steep.
  • the contact surface with the liquid crystal layer is inclined in the vicinity of the signal wiring in the light transmitting portion. Therefore, in the display device, there is a concern that the alignment of the liquid crystal in the liquid crystal layer is disturbed in the vicinity of the signal wiring in the light transmission portion, and the display quality is deteriorated.
  • the relief plate or the intaglio used in the interlayer insulating film forming step is formed in the body pattern in a position overlapping with the signal wiring arranged around the light transmission portion, and in the width direction of the signal wiring.
  • a relaxation pattern (a minute line width pattern 53, a minute protrusion pattern 54) that relaxes the inclination of the edge portion of the print pattern corresponding to the main body pattern. Therefore, the inclination angle of the edge in the width direction of the signal wiring in the printed pattern of the interlayer insulating film can be reduced, and the liquid crystal alignment disorder caused by the pattern edge of the interlayer insulating film can be prevented.
  • the relief plate or the intaglio plate does not have a tapered cross-sectional shape, and is a surface parallel to and perpendicular to the contact surface with the substrate. It is preferable that it is comprised by the surface.
  • the relief printing plate or the intaglio plate does not have a taper-shaped cross-sectional shape, and is composed of a surface parallel to and a surface perpendicular to the contact surface with the substrate. Can reduce the cost.
  • the printing pattern of the relief plate or the intaglio is preferably a pattern that does not overlap with the active element and the auxiliary capacitance wiring on the active element substrate.
  • the printing pattern of the relief plate or the intaglio is a pattern that does not overlap the active element and the auxiliary capacitance line on the active element substrate, the capacitance formed at the intersection of the scanning line and the signal line (Parasitic capacitance) can be sufficiently reduced. As a result, the delay of the source signal due to this capacitance (parasitic capacitance) can be suppressed.
  • the interlayer insulating film is formed along the signal wiring disposed around the light transmitting portion. It is preferable to form at the intersection of the scanning wiring and the signal wiring.
  • the printing method using a relief plate or an intaglio plate is about 10 times worse in the minimum line width and pattern alignment accuracy than the method using a photolithographic technique and dry etching.
  • the interlayer insulating film forming step the interlayer insulating film is formed along the signal wiring arranged around the light transmitting portion, or at the intersection of the scanning wiring and the signal wiring. Since it is formed, a sufficient margin can be provided for the positional deviation of the printing pattern by the printing method. In other words, the interlayer insulating film can be prevented from overlapping the active element and the auxiliary capacitance wiring even when the pattern is displaced so that no problem occurs even if the pattern is displaced.
  • the relaxation pattern is separated from the main body pattern, and the width of the signal wiring in the width direction is smaller than the minimum printable line width. It is preferable.
  • the printed pattern corresponding to the main body pattern maintains its line width.
  • the width of the relaxation pattern in the width direction of the signal wiring is smaller than the minimum printable line width, the line width cannot be maintained.
  • the print pattern corresponding to the relaxation pattern collapses and is linked to the print pattern corresponding to the main body pattern. Therefore, the material in the body pattern also flows in the relaxation pattern.
  • a taper with a small inclination angle is formed at the edge portion of the interlayer insulating film.
  • the inclination of the contact surface with the liquid crystal layer becomes gentle in the vicinity of the signal wiring in the light transmitting portion.
  • the contact surface with the liquid crystal layer can be flattened, in the liquid crystal display, the alignment of the liquid crystal is less likely to be disturbed in the vicinity of the signal wiring in the light transmission portion, and the display quality is less likely to deteriorate.
  • the main body pattern is a linear pattern along the signal wiring arranged around the light transmission portion, and the relaxation pattern is a linear shape parallel to the main body pattern. This pattern may be used.
  • the relaxation pattern is a plurality of linear patterns parallel to each other, and it is preferable that the line width of each linear pattern decreases as the distance from the main body pattern increases.
  • the relaxation pattern is a plurality of linear patterns parallel to each other, and the line width of each linear pattern becomes smaller as the distance from the main body pattern increases.
  • the relaxation pattern is a microprojection pattern that protrudes outward from both ends of the signal wiring in the width direction of the main body pattern, and is opposite to the tip. It is preferable that the line width of the base portion on the side (the width in the extending direction of the signal wiring 24) is smaller than the minimum printable line width.
  • the printed pattern corresponding to the main body pattern retains its line width.
  • the line width of the root portion on the opposite side to the tip is smaller than the minimum printable line width. Therefore, the printed pattern corresponding to the minute protrusion pattern cannot maintain the shape of the pattern.
  • the material of the interlayer insulating film in the microprojection pattern flows outside the edge of the microprojection pattern in the extending direction of the signal wiring. As a result, the print pattern corresponding to the microprojection pattern collapses and becomes a pattern spreading in the extending direction of the signal wiring.
  • the edge portions are offset between the adjacent microprojection patterns, and the height of the interlayer insulating film decreases toward the tip portion of the microprojection pattern.
  • a taper with a small inclination angle is formed at the edge portion of the interlayer insulating film.
  • the main body pattern is a linear pattern along the signal wiring arranged around the light transmission portion, and the microprojection pattern is the linear pattern in the linear pattern. You may protrude outward from the both ends of the width direction of a signal wiring.
  • the relaxation pattern is a minute dot pattern composed of a plurality of dots arranged along the extending direction of the signal wiring.
  • the diameter is preferably smaller than the minimum printable line width.
  • the printed pattern corresponding to the main body pattern retains its line width.
  • the minute dot pattern as the relaxation pattern is composed of a plurality of dots arranged along the extending direction of the signal wiring, and the dot diameter of each dot is the minimum printable line. It is smaller than the width. Therefore, the print pattern corresponding to the minute dot pattern cannot maintain the shape of the minute dot pattern and is destroyed.
  • the material of the interlayer insulating film in the dots constituting the minute dot pattern flows while diffusing outside the edge of the dots.
  • the material of the interlayer insulating film is connected between the dots constituting the minute dot pattern. For this reason, the height of the interlayer insulation decreases as the distance from the main body pattern increases in the width direction of the signal wiring. As a result, according to the above configuration, a taper with a small inclination angle (gradual) is formed at the edge portion of the interlayer insulating film.
  • an insulating material containing an organic component is preferably used as the material for the interlayer insulating film.
  • a spin-on glass (SOG) material may be used as the insulating material.
  • An active element substrate includes a plurality of scanning wirings formed over a substrate and a plurality of signal wirings intersecting the scanning wirings, and is an area surrounded by the scanning wirings and the signal wirings
  • the active element substrate is provided with a light transmitting portion, and an interlayer insulating film is formed at least between the scanning wiring and the signal wiring, and the interlayer insulating film is disposed around the light transmitting portion.
  • a relief plate or an intaglio plate provided with a main body pattern in a position overlapping with the signal wiring and a relaxation pattern for relaxing the inclination of the edge portion of the print pattern corresponding to the main body pattern in the width direction of the signal wiring is used. It is characterized by being formed by a printing method.
  • the display device substrate of the present invention is suitable for a display device such as a liquid crystal display device, and can be widely used for various electronic devices such as OA equipment such as a personal computer, AV equipment such as a television, and mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 例えばSOG材料からなる層間絶縁膜の製造コストを低減することを目的として、アクティブ素子基板(20)の製造方法では、版(50A)を用いた印刷法によって層間絶縁膜(23)を形成し、版(50A)は、開口部(6)の周囲に配される信号配線(24)と重なる位置にある本体パターン(52)と、信号配線(24)の幅方向において、本体パターン(52)に対応する印刷パターンのエッジ部の傾斜を緩和する微小線幅パターン(53)と、を備えている。

Description

アクティブ素子基板の製造方法、アクティブ素子基板、及び表示装置
 本発明は、アクティブ素子基板の製造方法、アクティブ素子基板、及び表示装置に関する。
 近年、液晶表示装置について、動画性能の向上や高精細化のために高周波駆動が検討されている。しかしながら、従来の液晶表示装置では、液晶表示パネルに寄生容量が存在し、信号のなまりが発生する。このため、高周波駆動を充分に達成することができないという問題があった。このような問題に対して、例えば、走査配線と信号配線との交差部に形成される容量を低減する技術として、例えば、特許文献1には、スピンオングラス(以下、SOGと記す)材料からなる膜を走査配線と信号配線との間に設ける技術が開示されている。
 また、特許文献2には、有機ELなどの製造に用いられる印刷用凸版の製造方法が開示されている。特許文献2の技術では、樹脂材料として感光性樹脂を用いたフォトリソグラフィー法によって、印刷用凸版を製造している。特許文献2の製造方法は、基材200上に光硬化性の感光性樹脂層202を形成する工程と、感光性樹脂層202上に光拡散層201を形成する工程と、光拡散層201を介して感光性樹脂層202を露光する露光工程と、感光性樹脂層202の露光部202aを除去する現像工程と、を含む(図15参照)。上記露光工程では、マスク基材204上に遮光部205がパターンニングされた構造になったフォトマスク206が用いられる。このフォトマスク206を用いてプロキシミティ露光したとき、フォトマスク206の遮光部205が形成されていない透光部を通過した露光光は、光拡散性微粒子を含む光拡散層201によって散乱される。これによって、露光光は、感光性樹脂層202表面に対して垂直方向だけでなく、斜め方向から入射することになる。それゆえ、感光性樹脂層202における光硬化部202bは、フォトマスク206の遮光部205のパターンに基づき形成された凸部パターンとなり、順テーパー形状とすることができる。そして、フォトマスク206を取り外し、現像によって露光によって光が照射されなかった、感光性樹脂層202の未硬化部分である露光部202aを除去する。これによって、凸部パターンが基材200に向かって末広がりとなるような順テーパー形状となった印刷用凸版が製造される。なお、凸部パターンの基材200の表面に対する傾斜角度θは、光拡散層201に含まれる光拡散性微粒子の濃度及び粒径を調整することによって制御される。
国際公開特許公報「国際公開第2006/022259号パンフレット(2006年 3月 2日公開)」 日本国公開特許公報「特開2008-46441号公報(2008年 2月28日公開)」
 しかしながら、特許文献1の技術では、フォトリソグラフィー技術及びドライエッチングによって、SOG材料からなる層間絶縁膜をパターンニングしている。それゆえ、SOG材料からなる層間絶縁膜を形成する装置のコスト、及び材料コストが高くなる。その結果、製造コストが高くなるという課題が残されている。
 本発明はかかる現状に鑑みなされたものであり、本発明の一態様によれば、例えばSOG材料からなる層間絶縁膜の製造コストを低減できるアクティブ素子基板の製造方法、アクティブ素子基板、及び表示装置を提供することにある。
 上記の課題を解決するために、本発明の一態様に係るアクティブ素子基板の製造方法は、基板上に形成された複数の走査配線と、該走査配線と交差する複数の信号配線とを備え、上記走査配線及び上記信号配線によって囲まれた領域に光透過部が設けられたアクティブ素子基板の製造方法であって、凸版または凹版を用いた印刷法によって、少なくとも上記走査配線と上記信号配線との間に、層間絶縁膜を形成する層間絶縁膜形成工程を含み、上記凸版または凹版は、上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンと、上記信号配線の幅方向において、上記本体パターンに対応する印刷パターンのエッジ部の傾斜を緩和する緩和パターンと、を備えたことを特徴としている。
 また、上記の課題を解決するために、本発明の一態様に係るアクティブ素子基板は、基板上に形成された複数の走査配線と、該走査配線と交差する複数の信号配線とを備え、上記走査配線及び上記信号配線によって囲まれた領域に光透過部が設けられたアクティブ素子基板であって、少なくとも上記走査配線と上記信号配線との間に層間絶縁膜が形成されており、上記層間絶縁膜は、上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンと、上記信号配線の幅方向において、上記本体パターンに対応する印刷パターンのエッジ部の傾斜を緩和する緩和パターンと、を備えた凸版または凹版を用いた印刷法によって、形成されていることを特徴としている。
 本発明の一態様によれば、例えばSOG材料からなる層間絶縁膜の製造コストを低減できるという効果を奏する。
本発明の実施形態1に係る製造方法によって製造されるアクティブ素子基板における一画素領域を示す平面図である。 (a)は、図1に示すアクティブ素子基板における走査配線と信号配線との交差部の構成を示す平面図であり、(b)は、(a)のアクティブ素子基板を備えた液晶表示装置の構成を示す断面図である。 アクティブ素子基板の製造方法のフローの概略を示す図であり、(a)は、製造方法全体のフローを示し、(b)は、従来の層間絶縁膜(SOG膜)形成工程のフローを示し、(c)は、本発明における層間絶縁膜(SOG膜)形成工程のフローを示す。 (a)は、印刷法による印刷パターンを信号配線に沿ったパターンとした場合のアクティブ素子基板の構成を示す平面図であり、(b)は、(a)のアクティブ素子基板を備えた液晶表示装置の構成を示す断面図である。 (a)は、図3の(c)に示す層間絶縁膜(SOG膜)形成工程に使用する版が凸版である場合の構成を示す断面図であり、図5の(b)は、図3の(c)に示す層間絶縁膜(SOG膜)形成工程に使用する版が凹版である場合の構成を示す断面図である。 図4の(b)に示される液晶表示装置の表示エリア点灯状態のイメージを示し、(a)は、絵素透過表示イメージを示す平面図であり、(b)は、パネル点灯表示イメージを示す平面図である。 図2の(b)に示される液晶表示装置の表示エリア点灯状態のイメージを示し、(a)は、絵素透過表示イメージを示す平面図であり、(b)は、パネル点灯表示イメージを示す平面図である。 (a)は、グラビアオフセット印刷技術を説明するための図であり、(b)は、グラビアオフセット印刷技術によって印刷される印刷パターンの例を示す上面図である。 本発明の実施形態2に係る製造方法によって製造されるアクティブ素子基板における走査配線と信号配線との交差部の構成を示す平面図であり、(b)は、(a)のアクティブ素子基板を備えた液晶表示装置の構成を示す断面図である。 (a)は、本発明の実施形態2に係る製造方法で使用する版の全体構成を示した平面図であり、版における微小突起を拡大して示した平面図も付記しており、(b)は、版を用いた印刷法によって層間絶縁膜をパターンニングした状態を示した平面図であり、微小突起パターンによってパターンニングされた層間絶縁膜を拡大して示した平面図も付記している。 (a)は、図10に示す版によって印刷した直後に微小突起パターンに対応する領域に存在する層間絶縁膜の材料を示す上面図であり、(b)にある3つの図はそれぞれ、(a)における(I)-(I’)線断面図、(II)-(II’)線断面図、及び(III)-(III’)線断面図である。 図9の(b)に示される液晶表示装置の表示エリア点灯状態のイメージを示し、(a)は、絵素透過表示イメージを示す平面図であり、(b)は、パネル点灯表示イメージを示す平面図である。 (a)は、本発明の実施形態3に係る製造方法によって製造されるアクティブ素子基板における走査配線と信号配線との交差部の構成を示す平面図であり、(b)は、本発明の実施形態3に係る製造方法で用いる版によって層間絶縁膜をパターンニングした状態を示した平面図であり、(c)は、(a)のアクティブ素子基板を備えた液晶表示装置の構成を示す断面図である。 (a)は、本発明の実施形態4に係る製造方法によって製造されるアクティブ素子基板における走査配線と信号配線との交差部の構成を示す平面図であり、(b)は、本発明の実施形態3に係る製造方法で用いる版によって層間絶縁膜をパターンニングした状態を示した平面図であり、(c)は、(a)のアクティブ素子基板を備えた液晶表示装置の構成を示す断面図である。 特許文献2に開示された印刷用凸版の製造方法を模式的に示した断面図である。
 以下、図面に基づいて本発明の実施形態について詳しく説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置等はあくまで一実施形態に過ぎず、これらによって本発明の範囲が限定解釈されない。
 〔実施形態1〕
 以下、本発明の実施の一形態について、詳細に説明する。図1は、本実施形態のアクティブ素子基板20における一画素領域を示す平面図である。図2の(a)は、図1に示すアクティブ素子基板20における走査配線と信号配線との交差部の構成を示す平面図であり、図2の(b)は、アクティブ素子基板20を備えた液晶表示装置1の構成を示す断面図である。なお、図2の(b)は、図2の(a)の(A)-(A’)線断面図である。
 本実施形態においては、アクティブ素子としてTFTを備えたアクティブ素子基板20を例に挙げて説明する。また、上記アクティブ素子基板20を備えた表示装置の一例として、液晶表示装置1を説明する。しかしながら、本発明のアクティブ素子基板は、これに限定されるものではなく、TFTの他に、従来公知の各種アクティブ素子を備えたアクティブ素子基板を包含する。また、表示装置は、上記液晶表示装置1に限定されず、液晶の他に、従来公知の表示媒体を備えた表示装置を包含する。
 図2の(b)に示されるように、液晶表示装置1は、アクティブ素子基板20と対向基板4と、アクティブ素子基板20及び対向基板4の両基板によって狭持された液晶層3とを備えている。液晶層3は、アクティブ素子基板20の配向膜20aと、対向基板4の配向膜4aとの間に挟まれて保持されている。
 また、アクティブ素子基板20は、透明絶縁性の基板(例えばガラス基板)21と、基板21上に形成された複数の走査配線22と、これら走査配線22の一部を覆うように形成された層間絶縁膜23と、層間絶縁膜23を介して走査配線22と交差する複数の信号配線24と、を備えている。
 アクティブ素子基板20は、さらに、図1に示されるように、画素領域毎に、対応する走査配線22に印加される信号に応答して動作するアクティブ素子としての薄膜トランジスタ(TFT)25と、TFT25を介して対応する信号配線24と電気的に接続され得る画素電極26と、を備えている。また、TFT25は、走査配線22に電気的に接続されたゲート電極25Gと、信号配線24に電気的に接続されたソース電極25Sと、画素電極26に電気的に接続されたドレイン電極25Dと、を備えている。
 また、アクティブ素子基板20は、基板21上に形成された複数の補助容量配線40と、複数の補助容量配線40に層間絶縁膜23を介して対向する複数の補助容量電極41と、をさらに備えている。補助容量配線40は、走査配線22やゲート電極25Gと同一の導電膜をパターニングすることによって形成されている。補助容量電極41は、信号配線24、ソース電極25Sおよびドレイン電極25Dと同一の導電膜をパターニングすることによって形成されており、図1に示されるようにドレイン電極25Dから延設された導電部材42を介してTFT25のドレイン電極25Dに電気的に接続されている。
 液晶層3は、画素電極26と対向基板4の対向電極(不図示)との間に印加された電圧に応じてその配向状態を変化させる。そして、液晶層3を通過する光を変調することによって表示が行われる。液晶層3としては、種々の表示モード用の液晶層を広く用いることができる。例えば、旋光性を利用するTN(Twisted Nematic)モードの液晶層や、複屈折性を利用するECB(Electrically Controlled Birefringence)モードの液晶層を用いることができる。ECBモードのなかでも、VA(Vertically Aligned)モードは高コントラスト比を実現することができる。VAモードの液晶層は、典型的には、負の誘電異方性を有する液晶材料を含む液晶層の両側に垂直配向層を設けることによって得られる。
 また、図2の(b)に示されるように、アクティブ素子基板20の層間絶縁膜23上にはゲート絶縁膜(GI)27が形成されている。そして、信号配線24は、ゲート絶縁膜27上に、走査配線22と交差するように形成されている。そして、ここまでの積層パターンを覆って、SiNxまたはSiOxからなるパッシベーション膜28と、透明絶縁膜(JAS)29と、ITOまたはZnOからなる透明導電膜30と、配向膜20aとがこの順に形成されている。なお、走査配線22の厚さは、典型的には、約0.7μmである。また、ゲート絶縁膜27の厚さは、典型的には、約0.3μmである。また、パッシベーション膜28の厚さは、典型的には、約0.2μmである。また、信号配線24の厚さは、典型的には、約0.6μmである。また、透明絶縁膜29の厚さは、典型的には、約2.3μmである。また、透明導電膜30の厚さは、典型的には、約0.1μmである。また、配向膜20aの厚さは、典型的には、約0.1μmである。
 ここで、アクティブ素子基板20では、上述したように、走査配線22の一部を覆うように層間絶縁膜23が形成されている。層間絶縁膜23は、信号配線24に沿って形成されるか、あるいは走査配線22及び信号配線24の交差部にのみ形成されている。この層間絶縁膜23の厚さは、典型的には、1.0μm以上4.0μm以下の範囲であることが好ましい。また、層間絶縁膜23は、有機成分を含む絶縁材料から形成されている。
 これによって、走査配線22と信号配線24との交差部に形成される容量(寄生容量)を低減できる。その結果、この容量(寄生容量)に起因するソース信号の遅延を抑制することができる。
 層間絶縁膜23の材料としては、有機成分を含むスピンオンガラス材料(いわゆる有機SOG材料)を好適に用いることができ、特に、Si-O-C結合を骨格とするSOG材料や、Si-C結合を骨格とするSOG材料を好適に用いることができる。SOG材料とは、スピンコート法などの塗布法によってガラス膜(シリカ系皮膜)を形成し得る材料である。有機SOG材料は、比誘電率が低く、厚膜の形成が容易であるので、有機SOG材料を用いることによって、層間絶縁膜23の比誘電率を低くし、層間絶縁膜23を厚く形成することが容易となる。Si-O-C結合を骨格とするSOG材料としては、例えば、特開2001-98224号公報、特開平6-240455号公報に開示されている材料や、IDW’03予稿集第617頁に開示されている東レ・ダウコーニング・シリコーン株式会社製DD1100を用いることができる。また、Si-C結合を骨格とするSOG材料としては、例えば、特開平10-102003号公報に開示されている材料を用いることができる。
 なお、図1及び図2に示されていないが、アクティブ素子基板20においては、走査配線22、信号配線24、及びアクティブ素子25の表面を覆うように、ブラックマトリックス(遮光膜)が設けられている。これによって、液晶表示装置1においては、光を遮る遮光部5と、光を透過する開口部6とが形成される。
 次に、アクティブ素子基板20の製造方法の一例について、説明する。図3は、アクティブ素子基板20の製造方法のフローの概略を示す図であり、図3の(a)は、製造方法全体のフローを示し、図3の(b)は、従来の層間絶縁膜(SOG膜)形成工程のフローを示し、図3の(c)は、本発明における層間絶縁膜(SOG膜)形成工程のフローを示す。
 図3の(a)に示されるように、まず、ゲート電極形成工程S1において、基板10に、ゲート電極25G、走査配線22、及び補助容量配線40を含むゲートパターンを形成する。このゲート電極形成工程S1は、従来公知の技術を用いることができるので、その説明を省略する。
 次いで、層間絶縁膜(SOG膜)形成工程S2(有機絶縁膜形成工程)では、走査配線22の上に層間絶縁膜23を形成する。層間絶縁膜(SOG膜)形成工程S2では、層間絶縁膜23を、開口部6の周囲に配された信号配線24に沿って形成するか、あるいは走査配線22及び信号配線24の交差部にのみ形成する。この層間絶縁膜(SOG膜)形成工程S2については、後述する。
 次いで、半導体層形成工程S3、及びソース電極形成工程S4を経て、層間絶縁膜(JAS/PAS)形成工程S5において、SiNxまたはSiOxからなるパッシベーション膜28、及び透明絶縁膜(JAS)29をこの順に形成する。そして、最後に、透明電極(ITO)形成工程S6にて、ITOまたはZnOからなる透明導電膜30を形成する。半導体層形成工程S3、ソース電極形成工程S4、層間絶縁膜(JAS/PAS)形成工程S5、及び透明電極(ITO)形成工程S6は、従来公知の技術を用いることができるので、その説明を省略する。
 ここで、従来の層間絶縁膜(SOG膜)形成工程について、説明する。従来の層間絶縁膜(SOG膜)形成工程は、走査配線22上に絶縁膜材料(SOG)を塗布し、フォトリソグラフィー技術及びドライエッチングによって絶縁膜材料(SOG)をパターンニングする方法が採用されている。
 具体的には、図3の(b)に示されるように、まず、SOG塗布工程S21にて、スピンコート法を用いて、基板21上に有機SOG材料を塗布する。そして、SOGベーク工程S22にて、プリベーク、ポストベークを行って層間絶縁膜23を形成する。そして、SOGフォト工程S23にて、フォトリソグラフィー技術を用いて層間絶縁膜23の所定の部分を除去する。そして、最後に、SOGドライエッチング工程S24にて、四フッ化炭素(CF)と酸素(O)との混合ガスを用いてドライエッチングする。
 図3の(b)に示される従来の層間絶縁膜(SOG膜)形成工程は、層間絶縁膜23のパターンの最小線幅が小さく、位置精度が高いという利点がある。その一方で、層間絶縁膜23を形成する装置のコスト、及び材料コストが高くなり、製造コストが高くなるという課題が残されている。
 本発明は、上記の課題に対し鑑みてなされたものであり、コスト削減を目的として、層間絶縁膜(SOG膜)形成工程にて、凸版または凹版を用いた印刷法によって、層間絶縁膜23をパターニングすることを前提としている。
 凸版または凹版を用いた印刷法によって層間絶縁膜23をパターニングする場合、上述した従来のフォトリソグラフィー技術及びドライエッチングを用いた方法と比較して、最小線幅、及びパターンの位置合わせ精度が10倍程度悪化する。具体的には、印刷法を用いた場合、最小線幅は15μm~30μmであり、位置合わせ精度は±10μmである。
 このような事情から、凸版または凹版を用いた印刷法によって層間絶縁膜23をパターニングする場合、パターンの位置ずれに対し、十分な余裕を持たせる設計条件が必要である。すなわち、パターンの位置ずれが発生しても問題がないように、ずれた場合でも層間絶縁膜23がTFT25及び補助容量配線40に重ならないようにする必要がある。このような設計条件をクリアするため、印刷パターンを、信号配線24に沿ったパターン、または走査配線22及び信号配線24の交差部のパターンとすることが考えられる。
 図4の(a)は、印刷法による印刷パターンを信号配線24に沿ったパターンとした場合のアクティブ素子基板20の構成を示す平面図であり、図4の(b)は、図4の(a)のアクティブ素子基板20を備えた液晶表示装置1’の構成を示す断面図である。なお、図4の(b)は、図4の(a)の(A)-(A’)線断面図である。
 図4の(a)に示されるアクティブ素子基板20においては、層間絶縁膜23を形成するに際し、凸版または凹版として版50’を用いている。この版50’は、層間絶縁膜23が信号配線24に沿って形成されるパターンからなっている。
 版50’を用いた印刷法によってパターンニングされた層間絶縁膜23’は、図4の(b)に示されるように、信号配線24の幅方向のエッジ部が遮光部5の外部、すなわち開口部6にも延びている。換言すれば、層間絶縁膜23’のエッジ部は、遮光部5内に形成されておらず、開口部6における遮光部5との境界部分近傍にまで延びている。また、この層間絶縁膜23’のエッジ部は、傾斜角が急峻であり、約60°のテーパーが形成される。
 その結果、ゲート絶縁膜27’、パッシベーション膜28’、信号配線24’、透明絶縁膜29’、配向膜20a’を順次形成して得られたアクティブ素子基板20は、開口部6における遮光部5との境界部分において、液晶層3との接触面が傾斜してしまう。具体的には、開口部6における遮光部5との境界部分において、液晶層3との接触面に約30°のテーパーがつく。それゆえ、液晶表示装置1’は、開口部6における遮光部5との境界部分で、液晶層3の液晶の配向が乱れてしまい、表示品位が低下することが懸念される。
 このような層間絶縁膜23’のパターンエッジに起因する液晶の配向乱れを防ぐためには、層間絶縁膜23’のパターンにおける信号配線24の幅方向のエッジの(基板表面に対する)傾斜角度を小さくすることが考えられる。そして、このために、例えば特許文献2に開示された印刷用凸版を使用することが考えられる。具体的には、図15に示されるように、印刷用凸版は、順テーパー形状となっている。
 それゆえ、この印刷用凸版を凹版として用いれば、版に形成された順テーパー形状が層間絶縁膜23’のパターンに反映されるので、層間絶縁膜23’のパターンにおける信号配線24の幅方向のエッジの傾斜を制御することは可能である。しかし、特許文献2の技術では、光拡散層201に含まれる光拡散性微粒子の濃度及び粒径を調整することによって、フォトリソグラフィー法によって版の傾斜角度θを制御している。このため、版の製造コストが高いという問題がある。また、印刷用凸版を凹版として用いているので、印刷法は、凹版印刷に限定される。
 本願発明者ら、上記の課題に対し鋭意検討した結果、印刷法に用いる凸版または凹版のパターンについて、信号配線24に沿ったパターンに加え、該パターンで印刷された印刷パターンのエッジ部の傾斜を緩和する緩和パターンを設けることで、安価で、かつ印刷法の制約がない層間絶縁膜23’のパターンニングを実現できること見出し、本発明に至った。
 すなわち、本発明のアクティブ素子基板の製造方法における層間絶縁膜(SOG膜)形成工程S2に用いられる印刷用の版は、開口部6の周囲に配された信号配線24に沿った本体パターンと、信号配線24の幅方向において、本体パターンによって形成された印刷パターンのエッジ部の傾斜を緩和する緩和パターンと、を備えた構成となっている。
 本実施形態では、図2の(a)に示されるように、層間絶縁膜(SOG膜)形成工程S2で用いられる版50Aは、信号配線24に沿った本体パターン52と、本体パターン52における信号配線24の幅方向の両側に離間して配された微小線幅パターン53とを備えている。本体パターン52は、開口部6の周囲に配された信号配線24と重なる位置にある。一方、微小線幅パターン53は、本体パターン52と平行になるように配されており、信号配線24と重なる位置に配置されてない。本発明のアクティブ素子基板の製造方法においては、層間絶縁膜23は、版50Aを基板21に接触させて印刷法によってパターンニングされる。そして、その後に形成される信号配線24は、版50Aの本体パターン52の接触領域内に形成される一方、微小線幅パターン53の接触領域内には形成されない。
 また、本体パターン52は、信号配線24の幅方向において、印刷可能な最小線幅以上の幅を有する。一方、微小線幅パターン53は、信号配線24の幅方向において、その線幅が印刷可能な最小線幅よりも小さくなっている。
 それゆえ、版50Aを用いて層間絶縁膜23をパターンニングしたとき、本体パターン52に対応する印刷パターン(層間絶縁膜23における信号配線24と重なる部分)は、その線幅を保持した状態になる。一方、微小線幅パターン53に対応する印刷パターンは、その線幅が印刷可能な最小線幅よりも小さいので、線幅を保持することができない。このため、微小線幅パターン53に対応する印刷パターンは、崩れ、本体パターン52に対応する印刷パターンに連結する。それゆえ、本体パターン52にある材料は、微小線幅パターン53にも流れる。その結果、図2の(b)に示されるように、層間絶縁膜23のエッジ部は、開口部6における遮光部5との境界部分にまで延びているものの、その基板21の表面に対する傾斜角が小さい(緩やかな)テーパーが形成される。
 これに伴い、層間絶縁膜(SOG膜)形成工程S2後の工程を経て得られたアクティブ素子基板20は、開口部6における遮光部5との境界部分において、液晶層3との接触面の傾斜が緩くなる。具体的には、開口部6における遮光部5との境界部分において、基板20の表面に対する液晶層3との接触面の傾斜角度を5°程度にまで小さくすることができる。その結果、液晶層3との接触面を平坦化できるので、液晶表示装置1は、開口部6における遮光部5との境界部分で、液晶層3の液晶の配向が乱れにくくなり、表示品位の低下が起こりにくくなる。
 走査配線22と信号配線24との交差部に形成される容量(寄生容量)を低減できるためには、層間絶縁膜23の膜厚をある程度確保しかつ均一にする必要がある。このような観点で、本体パターン52は、線幅が印刷可能な最小線幅以上であり、かつ走査配線22と信号配線24との交差部に形成されていればよい。本体パターン52が、最小線幅よりも小さい直線パターンである、あるいは該直線パターンが複数寄り集まった構成である場合、走査配線22と信号配線24との交差部に形成される層間絶縁膜23の膜厚が不均一になる、あるいは小さくなるおそれがある。このため、走査配線22と信号配線24との交差部に形成される容量(寄生容量)を十分に低減することができないおそれがある。
 また、層間絶縁膜23のエッジ部の基板21の表面に対する傾斜角は、版50Aにおける本体パターン52と微小線幅パターン53との距離や微小線幅パターン53の線幅によって調整可能である。例えば、版50Aにおいて、微小線幅パターン53と本体パターン52との距離は、5μm~25μmに設定され、微小線幅パターン53の線幅は、5μm~25μmに設定される。
 このように、本実施形態のアクティブ素子基板の製造方法は、上述の特許文献2の印刷用凸版を凹版として用いた方法のような、版の順テーパー形状に反映させて層間絶縁膜23の傾斜を緩和させる方法ではない。すなわち、本実施形態のアクティブ素子基板の製造方法では、版50Aそのものの形状ではなく、本体パターン52及び微小線幅パターン53の寸法によって層間絶縁膜23の傾斜を制御している。それゆえ、版50Aは、テーパー状の断面形状を有しておらず、基板21との接触面に対して平行な面及び垂直な面で構成されている。よって、本実施形態のアクティブ素子基板の製造方法は、版の製造コストを低減することができる。また、本実施形態のアクティブ素子基板の製造方法では、版の構造、及び印刷方式に制限がなく、層間絶縁膜23のパターニングのための印刷方式の自由度が増す。
 図5の(a)は、本実施形態のアクティブ素子基板の製造方法に使用する版50Aが凸版である場合の構成を示す断面図であり、図5の(a)は、版50Aが凹版である場合の構成を示す断面図である。
 図5の(a)に示されるように、版50Aが凸版である場合、本体パターン52は、基材51に対して突出した凸部として設けられている。また、微小線幅パターン53は、本体パターン52と同様に、基材51に対して突出した凸部として設けられている。
 また、図5の(b)に示されるように、版50Aが凹版である場合、本体パターン52’は、基材51に対して突出した凸部によって形成された凹部として設けられている。また、微小線幅パターン53’は、本体パターン52’と同様に、基材51に対して突出した凸部によって形成された凹部として設けられている。
 このように、本実施形態のアクティブ素子基板の製造方法によれば、層間絶縁膜(SOG膜)形成工程S2に使用する版50Aを凸版または凹版にすることができる。そして、この版50Aの構造に合わせて、印刷方式を凸版印刷方式または凹版印刷方式にすることができる。
 図6は、図4の(b)に示される液晶表示装置1’の表示エリア点灯状態のイメージを示し、図6の(a)は、絵素透過表示イメージを示す平面図であり、図6の(b)は、パネル点灯表示イメージを示す平面図である。
 図6の(a)に示す絵素透過表示イメージから、層間絶縁膜23のパターンのエッジ近傍(点線で囲んだ領域)で液晶の配向が乱れ透過率が低下していることがわかる。そして、図6の(b)に示されるように、印刷パターンのずれ、パターンの線幅のずれによって、透過率が変動し、表示のむらが生じることがわかる。
 図7は、図2の(b)に示される液晶表示装置1の表示エリア点灯状態のイメージを示し、図7の(a)は、絵素透過表示イメージを示す平面図であり、図7の(b)は、パネル点灯表示イメージを示す平面図である。
 図7の(a)に示す絵素透過表示イメージから、本実施形態の液晶表示装置1では、層間絶縁膜23のパターンのエッジ近傍(点線で囲んだ領域)で傾斜が緩やかになったことによって、液晶の配向が乱れず、透過率が低下していないことがわかる。そして、図7の(b)に示されるように、印刷パターンのずれ、及びパターンの線幅のずれが生じても、透過率が変動せず、表示のむらが生じないことがわかる。
 図6及び図7から、本体パターン52及び微小線幅パターン53を有する版50Aを用いた印刷法によって層間絶縁膜23のパターンを形成し、層間絶縁膜23のエッジ部の傾斜を緩やかにすることによって、該エッジ部における透過率低下を防止することができることかわかる。そして、このような層間絶縁膜23のパターン部に起因する透過率低下がないため、層間絶縁膜23の印刷パターン及び線幅がずれた場合でも、透過率は変動せず、表示むらになりにくいことがわかる。
 また、本実施形態のアクティブ素子基板の製造方法によれば、層間絶縁膜23のパターンニングに用いる版50Aのパターン形状を変更することによって、層間絶縁膜23のエッジ部の傾斜角度をコントロールすることができる。それゆえ、特許文献2の印刷用凸版を用いた場合と比較して、より詳細な層間絶縁膜23のエッジ部の傾斜角度の調整を実現することができる。一方、特許文献2の技術では、フォトリソグラフィー法によって版を形成する際の光拡散層201での光拡散を利用して傾斜角度θを制御している。このため、特許文献2の印刷用凸版を用いても、層間絶縁膜23のエッジ部の傾斜角度について、詳細な角度コントロールをすることができない。
 また、版50Aによる層間絶縁膜23の印刷技術としては、例えばグラビアオフセット印刷技術が挙げられる。図8の(a)は、グラビアオフセット印刷技術を説明するための図である。また、図8の(b)は、グラビアオフセット印刷技術によって印刷される印刷パターンの例を示す上面図である。
 図8の(a)に示されるように、グラビアオフセット印刷技術は、基板に対しローラー形状の版を転がす(回転させる)ことによって、基板上に所望のパターンを印刷する技術である。このような印刷技術を用いて、例えば図8の(b)に示されるパターンを印刷する場合、印刷方向(版を転がす方向)と平行なパターン(縦ストライプ)は、連続して印刷可能であるため、材料が版からはがれやすくなる。一方、印刷方向に対し垂直な方向に延びるパターン(横ストライプ)は、パターンが断続的になるため、材料が版からはがれにくくなり途切れやすくなる。
 また、本実施形態に係る層間絶縁膜(SOG膜)形成工程において、版50Aによる層間絶縁膜23の印刷方向は、特に限定されない。例えば、印刷技術として図8の(a)に示されたグラビアオフセット印刷技術を採用する場合、版50Aによる層間絶縁膜23の印刷方向は、信号配線24の伸長方向であることが好ましい。すなわち、層間絶縁膜(SOG膜)形成工程では、版50Aを用いて、縦ストライプの形態で層間絶縁膜23をパターンニングすることが好ましい。これによって、層間絶縁膜23の印刷について、高精度の印刷パターンを実現することができる。
 〔実施形態2〕
 本発明の他の実施形態について、図9~図12に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図9の(a)は、本実施形態に係る製造方法によって製造されるアクティブ素子基板における走査配線と信号配線との交差部の構成を示す平面図であり、図9の(b)は、図9の(a)のアクティブ素子基板を備えた液晶表示装置の構成を示す断面図である。
 図9の(a)に示されるように、層間絶縁膜(SOG膜)形成工程S2で用いられる版50Bは、信号配線24に沿った本体パターン52と、本体パターン52における信号配線24の幅方向の両端部から外側へ突出した微小突起パターン(緩和パターン)54とを備えている。本体パターン52は、開口部6の周囲に配された信号配線24と重なる位置にある。一方、微小突起パターン54は、信号配線24と重なる位置に配置されてない。本実施形態のアクティブ素子基板の製造方法においては、層間絶縁膜23は、版50Bを基板21に接触させて印刷法によってパターンニングされる。そして、その後に形成される信号配線24は、版50Bの本体パターン52の接触領域内に形成される一方、微小突起パターン54の接触領域内には形成されない。また、本体パターン52は、信号配線24の幅方向において、印刷可能な最小線幅以上の幅を有する。一方、信号配線24の幅方向に延びる微小突起パターン54は、先端と反対側の根元部分の線幅(信号配線24の伸長方向の線幅)が印刷可能な最小線幅よりも小さくなっている。微小突起パターン54の根元部分の線幅は、具体的には、5~25μmである。
 版50Bを用いて層間絶縁膜23をパターンニングしたとき、本体パターン52に対応する印刷パターン(層間絶縁膜23における信号配線24と重なる部分)23Aは、その線幅を保持した状態になる。一方、微小突起パターン54に対応する印刷パターン23Bは、崩れる。
 図10の(a)は、版50Bの全体構成を示した平面図であり、版50Bにおける微小突起パターン54を拡大して示した平面図も付記している。また、図10の(b)は、版50Bを用いた印刷法によって層間絶縁膜23をパターンニングした状態を示した平面図であり、微小突起パターン54によってパターンニングされた層間絶縁膜23を拡大して示した平面図も付記している。
 ここで、図10の(a)に示される各微小突起パターン54を有する版50Bを用いて層間絶縁膜23をパターンニングしたとき、微小突起パターン54に対応する印刷パターン23Bは、信号配線24の伸長方向において、その線幅が印刷可能な最小線幅よりも小さいので、線幅を保持することができず崩れる。そして、各微小突起パターン54にある層間絶縁膜23の材料は、微小突起パターン54のエッジよりも信号配線24の伸長方向外側に流れる。その結果、図10の(b)の拡大図に示されるように、各印刷パターン23Bは、崩れ、信号配線24の伸長方向に広がったパターンになる。
 また、印刷パターン23Bでは、微小突起パターン54の先端部分へ向かうに従い線幅が小さくなる。このため、微小突起パターン54の両側のエッジテーパー部が相殺されて、層間絶縁膜23の高さが低くなる。図11の(a)及び(b)を参照して、より具体的に説明する。
 図11の(a)は、版50Bによって印刷した直後に微小突起パターン54に対応する領域に存在する層間絶縁膜23の材料を示す上面図であり、図11の(b)にある3つの図はそれぞれ、図11の(a)における(I)-(I’)線断面図、(II)-(II’)線断面図、及び(III)-(III’)線断面図である。
 ここで、版50Bによって印刷した直後、微小突起パターン54に対応する領域に存在する層間絶縁膜23のエッジ部分とアクティブ素子基板の印刷面とによって形成されるテーパー角が、根元部分から先端部分に渡って一定となる場合について考える。図11の(b)に示す例では、上記テーパー角を70°としている。このような場合、層間絶縁膜23の高さは、(線幅)×tan(70°)/2という式で表される。つまり、層間絶縁膜23の高さと線幅とは比例関係にある。層間絶縁膜23の高さは、線幅が小さくなるに従い小さくなる。それゆえ、図11の(b)に示されるように、(I)-(I’)線断面図における層間絶縁膜23の高さと比較して、(II)-(II’)線断面図、及び(III)-(III’)における層間絶縁膜23の高さは、X部に相当する高さが相殺されることになる。よって、微小突起パターン54に対応する領域に配された層間絶縁膜23の高さは、先端部分に向かうに従い小さくなる。
 その結果、図9の(b)に示されるように、層間絶縁膜2のエッジ部は、開口部6における遮光部5との境界部分にまで延びているものの、その基板21の表面に対する傾斜角が小さい(緩やかな)テーパーが形成される。
 これに伴い、層間絶縁膜(SOG膜)形成工程S2後の工程を経て得られたアクティブ素子基板20は、開口部6における遮光部5との境界部分において、液晶層3との接触面の傾斜が緩くなる。その結果、液晶層3との接触面を平坦化できるので、液晶表示装置1は、開口部6における遮光部5との境界部分で、液晶層3の液晶の配向が乱れにくくなり、表示品位の低下が起こりにくくなる。
 図12は、図9の(b)に示される液晶表示装置1の表示エリア点灯状態のイメージを示し、図12の(a)は、絵素透過表示イメージを示す平面図であり、図12の(b)は、パネル点灯表示イメージを示す平面図である。
 図12の(a)に示す絵素透過表示イメージから、本実施形態の液晶表示装置1では、層間絶縁膜23のパターンのエッジ近傍(点線で囲んだ領域)で傾斜が緩やかになったことによって、液晶の配向が乱れず、透過率が低下していないことがわかる。そして、図12の(b)に示されるように、印刷パターンのずれ、及びパターンの線幅のずれが生じても、透過率が変動せず、表示のむらが生じないことがわかる。
 図12から、本体パターン52及び微小突起パターン54を有する版50Bを用いた印刷法によって層間絶縁膜23のパターンを形成し、層間絶縁膜23のエッジ部の傾斜を緩やかにすることによって、該エッジ部における透過率低下を防止することができることかわかる。そして、このような層間絶縁膜23のパターン部に起因する透過率低下がないため、層間絶縁膜23の印刷パターン及び線幅がずれた場合でも、透過率は変動せず、表示むらになりにくいことがわかる。
 また、本実施形態に係る層間絶縁膜(SOG膜)形成工程において、版50Bによる層間絶縁膜23の印刷方向は、特に限定されず、信号配線24の伸長方向、または信号配線24の伸長方向に垂直な方向であってもよい。例えば、印刷技術として図8の(a)に示されたグラビアオフセット印刷技術を採用する場合、版50Bによる層間絶縁膜23の印刷方向は、信号配線24の伸長方向であることが好ましい。この場合、上述したように、印刷方向に対し垂直な方向に延びるパターン(横ストライプ)、すなわち微小突起パターン54は、パターンが断続的になるため、材料が版からはがれにくくなり途切れやすくなる。このため、微小突起パターン54に対応する印刷パターンの印刷精度を高めるという観点では、層間絶縁膜23の材料は、アクティブ素子基板の印刷面に接触したときに、版50Bから良好にはがれる材料であることが好ましい。このような材料は、印刷に用いる版の材料、印刷条件(版の回転速度等)に応じて適宜設定可能である。
 〔実施形態3〕
 本発明のさらに他の実施形態について、図13に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図13の(a)は、本実施形態に係る製造方法によって製造されるアクティブ素子基板における走査配線と信号配線との交差部の構成を示す平面図であり、図13の(b)は、本実施形態に係る版を用いた印刷法によって層間絶縁膜をパターンニングした状態を示した平面図である。図13の(c)は、図13の(a)のアクティブ素子基板を備えた液晶表示装置の構成を示す断面図である。図13の(a)では、版における微小ドットパターンを拡大して示した平面図も付記している。また、図13の(b)では、微小ドットパターンによってパターンニングされた層間絶縁膜を拡大して示した平面図も付記している。
 図13の(a)に示されるように、層間絶縁膜(SOG膜)形成工程S2で用いられる版50Cは、信号配線24に沿った本体パターン52と、本体パターン52における信号配線24の幅方向の両側に配された微小ドットパターン(緩和パターン)55a・55bとを備えている。本体パターン52は、開口部6の周囲に配された信号配線24と重なる位置にある。一方、微小ドットパターン55a・55bは、信号配線24と重なる位置に配置されてない。本実施形態のアクティブ素子基板の製造方法においては、層間絶縁膜23は、版50Cを基板21に接触させて印刷法によってパターンニングされる。そして、その後に形成される信号配線24は、版50Cの本体パターン52の接触領域内に形成される一方、微小突起パターン54の接触領域内には形成されない。また、本体パターン52は、信号配線24の幅方向において、印刷可能な最小線幅以上の幅を有する。一方、微小ドットパターン55a・55bのドット径は、印刷可能な最小線幅よりも小さくなっている。ここでいう「ドット径」は、微小ドットパターン55a・55bが円形状である場合、円の直径を意味し、微小ドットパターン55a・55bが正方形形状である場合、正方形の辺の長さを意味する。
 また、微小ドットパターン55a・55bを構成するドットは、信号配線24の伸長方向に沿って複数並んで配されている。微小ドットパターン55a同士の間隔、微小ドットパターン55b同士の間隔は、一定になっている。また、微小ドットパターン55bは、微小ドットパターン55aよりも信号配線24の幅方向外側に配されている。そして、微小ドットパターン55aのドット径は、微小ドットパターン55bのドット径よりも大きくなっている。すなわち、版50Cにおける緩和パターンとしての複数の微小ドットパターンは、信号配線24の幅方向において、本体パターン52から離れるに従って、ドット径が小さくなるように形成されている。
 版50Cを用いて層間絶縁膜23をパターンニングしたとき、本体パターン52に対応する印刷パターン(層間絶縁膜23における信号配線24と重なる部分)23Aは、その線幅を保持した状態になる。一方、微小ドットパターン55a・55bのドット径は、印刷可能な最小線幅よりも小さくなっているので、微小ドットパターン55a・55bに対応する印刷パターン23Bは、微小ドットパターン55a・55bの形状を維持することができず崩れる。
 図13の(b)に示されるように、微小ドットパターン55aを構成するドットにある層間絶縁膜23の材料は、ドットのエッジよりも外側に拡散して流れる。また、これと同様に、微小ドットパターン55bを構成するドットにある層間絶縁膜23の材料は、ドットのエッジよりも外側に拡散して流れる。その結果、図13の(b)の拡大図に示されるように、印刷パターン23Bにおいては、微小ドットパターン55aを構成するドット同士で層間絶縁膜23の材料が連結した状態になる。また、同様に、微小ドットパターン55bを構成するドット同士で層間絶縁膜23の材料が連結した状態になる。さらには、微小ドットパターン55aを構成するドット及び微小ドットパターン55bを構成するドット間において、層間絶縁膜23の材料が連結した状態になる。このため、印刷パターン23Bでは、信号配線24の幅方向において本体パターン52から離れるに従って、層間絶縁膜23の高さが低くなる。
 その結果、図13の(c)に示されるように、層間絶縁膜23のエッジ部は、開口部6における遮光部5との境界部分にまで延びているものの、その基板21の表面に対する傾斜角が小さい(緩やかな)テーパーが形成される。
 これに伴い、層間絶縁膜(SOG膜)形成工程S2後の工程を経て得られたアクティブ素子基板20は、開口部6における遮光部5との境界部分において、液晶層3との接触面の傾斜が緩くなる。その結果、液晶層3との接触面を平坦化できるので、液晶表示装置1は、開口部6における遮光部5との境界部分で、液晶層3の液晶の配向が乱れにくくなり、表示品位の低下が起こりにくくなる。
 また、本実施形態に係る層間絶縁膜(SOG膜)形成工程において、版50Cにおける微小ドットパターン55a・55bを構成するドットのドット径は、印刷可能な最小線幅よりも小さければ、特に限定されない。微小ドットパターン55a・55bに対応する印刷パターン23Bにおいて、各ドットに対応してドットが印刷されるドット径であればよい。
 〔実施形態4〕
 本発明のさらに他の実施形態について、図14に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図14の(a)は、本実施形態に係る製造方法によって製造されるアクティブ素子基板における走査配線と信号配線との交差部の構成を示す平面図であり、図14の(b)は、本実施形態に係る版を用いた印刷法によって層間絶縁膜をパターンニングした状態を示した平面図である。図14の(c)は、図14の(a)のアクティブ素子基板を備えた液晶表示装置の構成を示す断面図である。図14の(a)では、版における微小線幅パターンを拡大して示した平面図も付記している。また、図14の(b)では、微小線幅パターンによってパターンニングされた層間絶縁膜を拡大して示した平面図も付記している。
 図14の(a)に示されるように、層間絶縁膜(SOG膜)形成工程S2で用いられる版50Dは、信号配線24に沿った本体パターン52と、本体パターン52における信号配線24の幅方向の両側に離間して配された微小線幅パターン56a・56bとを備えている。本体パターン52は、開口部6の周囲に配された信号配線24と重なる位置にある。一方、微小線幅パターン56a・56bはそれぞれ、本体パターン52と平行になるように配されており、信号配線24と重なる位置に配置されてない。本発明のアクティブ素子基板の製造方法においては、層間絶縁膜23は、版50Dを基板21に接触させて印刷法によってパターンニングされる。そして、その後に形成される信号配線24は、版50Dの本体パターン52の接触領域内に形成される一方、微小線幅パターン53の接触領域内には形成されない。
 また、本体パターン52は、信号配線24の幅方向において、印刷可能な最小線幅以上の幅を有する。一方、微小線幅パターン56a・56bは、信号配線24の幅方向において、その線幅が印刷可能な最小線幅よりも小さくなっている。
 また、微小線幅パターン56a・56bは、互いに平行に形成されている。また、微小線幅パターン56bは、微小線幅パターン56aよりも信号配線24の幅方向外側に形成されている。そして、信号配線24の幅方向において、微小線幅パターン56aの線幅は、微小線幅パターン56bの線幅よりも大きくなっている。すなわち、版50Dにおける緩和パターンとしての複数の微小線幅パターンは、信号配線24の幅方向において、本体パターン52から離れるに従って、その線幅が小さくなるように形成されている。
 版50Dを用いて層間絶縁膜23をパターンニングしたとき、図14の(b)に示されるように、本体パターン52に対応する印刷パターン(層間絶縁膜23における信号配線24と重なる部分)23Aは、その線幅を保持した状態になる。一方、微小線幅パターン56a・56bに対応する印刷パターン23Bは、線幅を保持することができない。このため、印刷パターン23Bは、崩れ、本体パターン52に対応する印刷パターン23Aに連結する。それゆえ、本体パターン52にある材料は、微小線幅パターン53にも流れる。また、図14の(b)の拡大図に示されるように、印刷パターン23Bにおいては、微小線幅パターン56a・56b間で層間絶縁膜23の材料が連結した状態になる。このため、印刷パターン23Bでは、信号配線24の幅方向において本体パターン52から離れるに従って、層間絶縁膜23の高さが低くなる。
 その結果、図14の(c)に示されるように、層間絶縁膜23のエッジ部は、開口部6における遮光部5との境界部分にまで延びているものの、その基板21の表面に対する傾斜角が小さい(緩やかな)テーパーが形成される。
 これに伴い、層間絶縁膜(SOG膜)形成工程S2後の工程を経て得られたアクティブ素子基板20は、開口部6における遮光部5との境界部分において、液晶層3との接触面の傾斜が緩くなる。具体的には、開口部6における遮光部5との境界部分において、基板20の表面に対する液晶層3との接触面の傾斜角度を5°程度にまで小さくすることができる。その結果、液晶層3との接触面を平坦化できるので、液晶表示装置1は、開口部6における遮光部5との境界部分で、液晶層3の液晶の配向が乱れにくくなり、表示品位の低下が起こりにくくなる。
 また、本実施形態に係る層間絶縁膜(SOG膜)形成工程において、版50Dの互いに平行な微小線幅パターンの数を多くすれば、層間絶縁膜23のエッジ部の傾斜角を小さくすることが可能である。版50Dにおける微小線幅パターンの数は、微小線幅パターンのスペース、使用する印刷装置における印刷の限界となる線幅等に応じて、適宜設定することができる。
 〔まとめ〕
 本発明の一態様に係るアクティブ素子基板の製造方法は、基板上に形成された複数の走査配線と、該走査配線と交差する複数の信号配線とを備え、上記走査配線及び上記信号配線によって囲まれた領域に光透過部(開口部6)が設けられたアクティブ素子基板の製造方法であって、凸版または凹版(版50A、50B)を用いた印刷法によって、少なくとも上記走査配線と上記信号配線との間に、層間絶縁膜を形成する層間絶縁膜形成工程(層間絶縁膜(SOG膜)形成工程S2)を含み、上記凸版または凹版は、上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンと、上記信号配線の幅方向において、上記本体パターンに対応する印刷パターンのエッジ部の傾斜を緩和する緩和パターン(微小線幅パターン53、微小突起パターン54)と、を備えたことを特徴としている。
 また、本発明の一態様に係るアクティブ素子基板は、基板上に形成された複数の走査配線と、該走査配線と交差する複数の信号配線とを備え、上記走査配線及び上記信号配線によって囲まれた領域に光透過部が設けられたアクティブ素子基板であって、少なくとも上記走査配線と上記信号配線との間に層間絶縁膜が形成されており、上記層間絶縁膜は、上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンと、上記信号配線の幅方向において、上記本体パターンに対応する印刷パターンのエッジ部の傾斜を緩和する緩和パターンと、を備えた凸版または凹版を用いた印刷法によって、形成されていることを特徴としている。
 また、本発明の一態様に係る表示装置は、上記アクティブ素子基板を備えたことを特徴としている。
 従来の層間絶縁膜形成工程は、走査配線上に絶縁膜材料を塗布し、フォトリソグラフィー技術及びドライエッチングによって絶縁膜材料をパターンニングする方法が採用されている。従来の層間絶縁膜形成工程は、層間絶縁膜を形成する装置のコスト、及び材料コストが高くなり、製造コストが高くなるという課題が残されている。
 そこで、上記の構成によれば、層間絶縁膜形成工程にて、凸版または凹版を用いた印刷法によって、少なくとも上記走査配線と上記信号配線との間に、層間絶縁膜を形成するので、従来のフォトリソグラフィー技術及びドライエッチングを用いた層間絶縁膜形成工程よりも、層間絶縁膜の製造コストを低減できる。
 ここで、凸版または凹版を用いた印刷法は、上述した従来のフォトリソグラフィー技術及びドライエッチングを用いた方法と比較して、最小線幅、及びパターンの位置合わせ精度が10倍程度悪化する。このような事情から、上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンで構成された凸版または凹版を用いて、上記走査配線と上記信号配線との間に層間絶縁膜の印刷バターンを形成すると、層間絶縁膜の印刷パターンは、上記光透過部にまで延び、信号配線の幅方向のエッジ部の傾斜角が急峻になる。そして、上記層間絶縁膜の上に順次積層して得られたアクティブ素子基板は、光透過部における信号配線近傍部分において、液晶層との接触面が傾斜してしまう。それゆえ、表示装置は、光透過部における信号配線近傍部分で、液晶層の液晶の配向が乱れてしまい、表示品位が低下することが懸念される。
 上記の構成によれば、上記層間絶縁膜形成工程で用いる凸版または凹版は、上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンと、上記信号配線の幅方向において、上記本体パターンに対応する印刷パターンのエッジ部の傾斜を緩和する緩和パターン(微小線幅パターン53、微小突起パターン54)と、を備えている。それゆえ、層間絶縁膜の印刷パターンにおける信号配線の幅方向のエッジの傾斜角度を小さくでき、上述の層間絶縁膜のパターンエッジに起因する液晶の配向乱れを防ぐことが可能になる。
 また、本発明の一態様に係るアクティブ素子基板の製造方法では、上記凸版または凹版は、テーパー状の断面形状を有しておらず、上記基板との接触面に対して平行な面及び垂直な面で構成されていることが好ましい。
 上記の構成によれば、上記凸版または凹版は、テーパー状の断面形状を有しておらず、上記基板との接触面に対して平行な面及び垂直な面で構成されているので、版製造にかかるコストを低減することができる。
 また、本発明の一態様に係るアクティブ素子基板の製造方法では、上記凸版または凹版の印刷パターンは、アクティブ素子基板におけるアクティブ素子及び補助容量配線に重ならないようなパターンであることが好ましい。
 上記の構成によれば、上記凸版または凹版の印刷パターンは、アクティブ素子基板におけるアクティブ素子及び補助容量配線に重ならないようなパターンであるので、走査配線と信号配線との交差部に形成される容量(寄生容量)を十分に低減できる。その結果、この容量(寄生容量)に起因するソース信号の遅延を抑制することができる。
 また、本発明の一態様に係るアクティブ素子基板の製造方法は、上記層間絶縁膜形成工程では、上記層間絶縁膜を、上記光透過部の周囲に配された信号配線に沿って形成する、あるいは走査配線と信号配線との交差部に形成することが好ましい。
 上述のように、凸版または凹版を用いた印刷法は、フォトリソグラフィー技術及びドライエッチングを用いた方法と比較して、最小線幅、及びパターンの位置合わせ精度が10倍程度悪化する。上記の構成によれば、上記層間絶縁膜形成工程では、上記層間絶縁膜を、上記光透過部の周囲に配された信号配線に沿って形成する、あるいは走査配線と信号配線との交差部に形成するので、印刷法による印刷パターンの位置ずれに対し、十分な余裕を持たせることができる。すなわち、パターンの位置ずれが発生しても問題がないように、ずれた場合でも層間絶縁膜がアクティブ素子及び補助容量配線に重ならないようにすることができる。
 また、本発明の一態様に係るアクティブ素子基板の製造方法では、上記緩和パターンは、上記本体パターンと離間し、かつ、上記信号配線の幅方向における幅が、印刷可能な最小線幅よりも小さいことが好ましい。
 上記の構成によれば、凸版または凹版を用いて層間絶縁膜をパターンニングしたとき、本体パターンに対応する印刷パターンは、その線幅を保持した状態になる。一方、緩和パターンは、信号配線の幅方向における幅が、印刷可能な最小線幅よりも小さいので、線幅を保持することができない。このため、緩和パターンに対応する印刷パターンは、崩れ、本体パターンに対応する印刷パターンに連結する。それゆえ、本体パターンにある材料は、緩和パターンにも流れる。その結果、上記の構成によれば、層間絶縁膜のエッジ部には、傾斜角が小さい(緩やかな)テーパーが形成される。
 そして、得られたアクティブ素子基板は、光透過部における信号配線近傍部分において、液晶層との接触面の傾斜が緩くなる。その結果、液晶層との接触面を平坦化できるので、液晶表示は、光透過部における信号配線近傍部分において、液晶の配向が乱れにくくなり、表示品位の低下が起こりにくくなる。
 さらに、上記の構成の好ましい形態として、上記本体パターンは、上記光透過部の周囲に配される信号配線に沿った直線状のパターンであり、上記緩和パターンは、上記本体パターンに平行な直線状のパターンであってもよい。
 さらに、上記の構成の好ましい形態として、上記緩和パターンは、互いに平行な複数の直線状のパターンであり、各直線状のパターンの線幅は、上記本体パターンに離れるに従い小さくなることが好ましい。上記の構成によれば、上記緩和パターンは、互いに平行な複数の直線状のパターンであり、各直線状のパターンの線幅は、上記本体パターンに離れるに従い小さくなっているので、各直線状のパターンの線幅を適宜調整することによって層間絶縁膜のエッジ部の傾斜角をコントロールすることが可能になる。
 また、本発明の一態様に係るアクティブ素子基板の製造方法では、上記緩和パターンは、上記本体パターンにおける上記信号配線の幅方向の両端部から外側へ突出した微小突起パターンであり、その先端と反対側の根元部分の線幅(信号配線24の伸長方向の幅)が印刷可能な最小線幅よりも小さいことが好ましい。
 凸版または凹版を用いて層間絶縁膜をパターンニングしたとき、本体パターンに対応する印刷パターンは、その線幅を保持した状態になる。一方、上記の構成によれば、緩和パターンとしての微小突起パターンは、先端と反対側の根元部分の線幅が印刷可能な最小線幅よりも小さくなっている。それゆえ、微小突起パターンに対応する印刷パターンは、そのパターンの形状を維持することができない。そして、微小突起パターンにある層間絶縁膜の材料は、微小突起パターンのエッジよりも信号配線の伸長方向外側に流れる。その結果、微小突起パターンに対応する印刷パターンは、崩れ、信号配線の伸長方向に広がったパターンになる。このため、微小突起パターンに対応する印刷パターンでは、隣接する微小突起パターン間でエッジ部分が相殺され、微小突起パターンの先端部分へ向かうに従い、層間絶縁膜の高さが低くなる。その結果、上記の構成によれば、層間絶縁膜のエッジ部には、傾斜角が小さい(緩やかな)テーパーが形成される。
 さらに、上記の構成の好ましい形態として、上記本体パターンは、上記光透過部の周囲に配される信号配線に沿った直線状のパターンであり、上記微小突起パターンは、上記直線状のパターンにおける上記信号配線の幅方向の両端部から外側へ突出していてもよい。
 また、本発明の一態様に係るアクティブ素子基板の製造方法では、上記緩和パターンは、上記信号配線の伸長方向に沿って並んだ複数のドットで構成された微小ドットパターンであり、各ドットのドット径は、印刷可能な最小線幅よりも小さいことが好ましい。
 凸版または凹版を用いて層間絶縁膜をパターンニングしたとき、本体パターンに対応する印刷パターンは、その線幅を保持した状態になる。一方、上記の構成によれば、緩和パターンとしての微小ドットパターンは、上記信号配線の伸長方向に沿って並んだ複数のドットで構成されており、各ドットのドット径は、印刷可能な最小線幅よりも小さい。それゆえ、微小ドットパターンに対応する印刷パターンは、微小ドットパターンの形状を維持することができず崩れる。そして、微小ドットパターンを構成するドットにある層間絶縁膜の材料は、ドットのエッジよりも外側に拡散して流れる。微小ドットパターンに対応する印刷パターンにおいては、微小ドットパターンを構成するドット同士で層間絶縁膜の材料が連結した状態になる。このため、信号配線の幅方向において本体パターンから離れるに従って、層間絶縁の高さが低くなる。その結果、上記の構成によれば、層間絶縁膜のエッジ部には、傾斜角が小さい(緩やかな)テーパーが形成される。
 また、本発明の一態様に係るアクティブ素子基板の製造方法では、上記層間絶縁膜の材料として、有機成分を含む絶縁材料を使用することが好ましい。これによって、走査配線と信号配線との交差部に形成される容量(寄生容量)をさらに十分に低減できる。
 上記の構成の好ましい形態では、上記絶縁材料として、スピンオンガラス(SOG)材料を使用してもよい。
 本発明の一態様に係るアクティブ素子基板は、基板上に形成された複数の走査配線と、該走査配線と交差する複数の信号配線とを備え、上記走査配線及び上記信号配線によって囲まれた領域に光透過部が設けられたアクティブ素子基板であって、少なくとも上記走査配線と上記信号配線との間に層間絶縁膜が形成されており、上記層間絶縁膜は、上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンと、上記信号配線の幅方向において、上記本体パターンに対応する印刷パターンのエッジ部の傾斜を緩和する緩和パターンと、を備えた凸版または凹版を用いた印刷法によって、形成されていることを特徴としている。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明の表示装置用基板は、液晶表示装置等の表示装置に好適であり、例えば、パソコン等のOA機器、テレビ等のAV機器、携帯電話などの各種電子機器に広く利用することができる。
 1      液晶表示装置
20      アクティブ素子基板
20a     配向膜
21      基板
22      走査配線
23      層間絶縁膜
23A     印刷パターン(本体パターンに対応する印刷パターン)
23B     印刷パターン(緩和パターンに対応する印刷パターン)
24      信号配線
25      TFT(アクティブ素子)
26      画素電極
27      ゲート絶縁膜
28      パッシベーション膜
29      透明絶縁膜
30      透明導電膜
 3      液晶層
 4      対向基板
 5      遮光部
 6      開口部(光透過部)
41      配向膜
50A     版(凸版または凹版)
50B     版(凸版または凹版)
50C     版(凸版または凹版)
50D     版(凸版または凹版)
52      本体パターン
53      微小線幅パターン(緩和パターン)
54      微小突起パターン(緩和パターン)
55a・55b 微小ドットパターン(緩和パターン)
56a・56b 微小線幅パターン(緩和パターン)
S2      層間絶縁膜(SOG膜)形成工程(層間絶縁膜形成工程)
 

Claims (14)

  1.  基板上に形成された複数の走査配線と、該走査配線と交差する複数の信号配線とを備え、上記走査配線及び上記信号配線によって囲まれた領域に光透過部が設けられたアクティブ素子基板の製造方法であって、
     凸版または凹版を用いた印刷法によって、少なくとも上記走査配線と上記信号配線との間に、層間絶縁膜を形成する層間絶縁膜形成工程を含み、
     上記凸版または凹版は、
     上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンと、
     上記信号配線の幅方向において、上記本体パターンに対応する印刷パターンのエッジ部の傾斜を緩和する緩和パターンと、を備えたことを特徴とするアクティブ素子基板の製造方法。
  2.  上記凸版または凹版は、テーパー状の断面形状を有しておらず、上記基板との接触面に対して平行な面及び垂直な面で構成されていることを特徴とする請求項1に記載のアクティブ素子基板の製造方法。
  3.  上記凸版または凹版の印刷パターンは、アクティブ素子基板におけるアクティブ素子及び補助容量配線に重ならないようなパターンであることを特徴とする請求項1または2に記載のアクティブ素子基板の製造方法。
  4.  上記層間絶縁膜形成工程では、上記層間絶縁膜を、上記光透過部の周囲に配された信号配線に沿って形成する、あるいは走査配線と信号配線との交差部に形成することを特徴とする請求項1~3の何れか1項に記載のアクティブ素子基板の製造方法。
  5.  上記緩和パターンは、上記本体パターンと離間し、かつ、上記信号配線の幅方向における幅が、印刷可能な最小線幅よりも小さいことを特徴とする請求項1~4の何れか1項に記載のアクティブ素子基板の製造方法。
  6.  上記本体パターンは、上記光透過部の周囲に配される信号配線に沿った直線状のパターンであり、上記緩和パターンは、上記本体パターンに平行な直線状のパターンであることを特徴とする請求項5に記載のアクティブ素子基板の製造方法。
  7.  上記緩和パターンは、互いに平行な複数の直線状のパターンであり、各直線状のパターンの線幅は、上記本体パターンに離れるに従い小さくなることを特徴とする請求項5または6に記載のアクティブ素子基板の製造方法。
  8.  上記緩和パターンは、上記本体パターンにおける上記信号配線の幅方向の両端部から外側へ突出した微小突起パターンであり、その先端と反対側の根元部分の線幅が印刷可能な最小線幅よりも小さいことを特徴とする請求項1~4の何れか1項に記載のアクティブ素子基板の製造方法。
  9.  上記本体パターンは、上記光透過部の周囲に配される信号配線に沿った直線状のパターンであり、上記微小突起パターンは、上記直線状のパターンにおける上記信号配線の幅方向の両端部から外側へ突出していることを特徴とする請求項8に記載のアクティブ素子基板の製造方法。
  10.  上記緩和パターンは、上記信号配線の伸長方向に沿って並んだ複数のドットで構成された微小ドットパターンであり、各ドットのドット径は、印刷可能な最小線幅よりも小さいことを特徴とする請求項1~4の何れか1項に記載のアクティブ素子基板の製造方法。
  11.  上記層間絶縁膜の材料として、有機成分を含む絶縁材料を使用することを特徴とする請求項1~10の何れか1項に記載のアクティブ素子基板の製造方法。
  12.  上記絶縁材料として、スピンオンガラス(SOG)材料を使用することを特徴とする請求項11に記載のアクティブ素子基板の製造方法。
  13.  基板上に形成された複数の走査配線と、該走査配線と交差する複数の信号配線とを備え、上記走査配線及び上記信号配線によって囲まれた領域に光透過部が設けられたアクティブ素子基板であって、
     少なくとも上記走査配線と上記信号配線との間に層間絶縁膜が形成されており、
     上記層間絶縁膜は、
     上記光透過部の周囲に配される信号配線と重なる位置にある本体パターンと、
     上記信号配線の幅方向において、上記本体パターンに対応する印刷パターンのエッジ部の傾斜を緩和する緩和パターンと、を備えた凸版または凹版を用いた印刷法によって、形成されていることを特徴とするアクティブ素子基板。
  14.  請求項13に記載のアクティブ素子基板を備えたことを特徴とする表示装置。
PCT/JP2013/078463 2012-10-26 2013-10-21 アクティブ素子基板の製造方法、アクティブ素子基板、及び表示装置 WO2014065235A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/438,141 US9318320B2 (en) 2012-10-26 2013-10-21 Production method for active element substrate, active element substrate, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012237194 2012-10-26
JP2012-237194 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065235A1 true WO2014065235A1 (ja) 2014-05-01

Family

ID=50544615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078463 WO2014065235A1 (ja) 2012-10-26 2013-10-21 アクティブ素子基板の製造方法、アクティブ素子基板、及び表示装置

Country Status (2)

Country Link
US (1) US9318320B2 (ja)
WO (1) WO2014065235A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218929A (ja) * 1994-01-13 1995-08-18 Lg Electron Inc 薄膜トランジスターのアレイ構造
JP2002117756A (ja) * 2000-10-05 2002-04-19 Fujitsu Ltd 隔壁転写用元型の作製方法及び隔壁形成方法
WO2004086487A1 (ja) * 2003-03-26 2004-10-07 Semiconductor Energy Laboratory Co. Ltd. 半導体装置およびその作製方法
JP2007036032A (ja) * 2005-07-28 2007-02-08 Seiko Epson Corp 配線基板、電気光学装置、電子機器、配線基板の製造方法、電気光学装置の製造方法、および電子機器の製造方法
JP2007171314A (ja) * 2005-12-20 2007-07-05 Future Vision:Kk 液晶表示装置とその製造方法
JP2007184552A (ja) * 2005-12-07 2007-07-19 Kovio Inc プロセス変動に耐性を有するダイオード、同ダイオードを有するスタンダードセル、同ダイオードを含むタグ及びセンサ、並びに同ダイオードを製造する方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229419B2 (ja) 1993-02-10 2001-11-19 ダウ・コ−ニング・コ−ポレ−ション 酸化ケイ素膜の形成方法
US5380555A (en) 1993-02-09 1995-01-10 Dow Corning Toray Silicone Co., Ltd. Methods for the formation of a silicon oxide film
JPH10102003A (ja) 1996-10-03 1998-04-21 Nippon Steel Corp 絶縁膜および絶縁膜形成用塗布液
JP2001098224A (ja) 1999-09-28 2001-04-10 Hitachi Chem Co Ltd シリカ系被膜、シリカ系被膜の形成方法及びシリカ系被膜を有する電子部品
JP4450834B2 (ja) 2004-08-24 2010-04-14 シャープ株式会社 アクティブマトリクス基板およびそれを備えた表示装置
JP2008046441A (ja) 2006-08-18 2008-02-28 Toppan Printing Co Ltd 凸版製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218929A (ja) * 1994-01-13 1995-08-18 Lg Electron Inc 薄膜トランジスターのアレイ構造
JP2002117756A (ja) * 2000-10-05 2002-04-19 Fujitsu Ltd 隔壁転写用元型の作製方法及び隔壁形成方法
WO2004086487A1 (ja) * 2003-03-26 2004-10-07 Semiconductor Energy Laboratory Co. Ltd. 半導体装置およびその作製方法
JP2007036032A (ja) * 2005-07-28 2007-02-08 Seiko Epson Corp 配線基板、電気光学装置、電子機器、配線基板の製造方法、電気光学装置の製造方法、および電子機器の製造方法
JP2007184552A (ja) * 2005-12-07 2007-07-19 Kovio Inc プロセス変動に耐性を有するダイオード、同ダイオードを有するスタンダードセル、同ダイオードを含むタグ及びセンサ、並びに同ダイオードを製造する方法
JP2007171314A (ja) * 2005-12-20 2007-07-05 Future Vision:Kk 液晶表示装置とその製造方法

Also Published As

Publication number Publication date
US20150294861A1 (en) 2015-10-15
US9318320B2 (en) 2016-04-19

Similar Documents

Publication Publication Date Title
JP4712060B2 (ja) カラーフィルタ基板およびその製造方法ならびにそれを備えた表示装置
US6262783B1 (en) Liquid crystal display device with reflective electrodes and method for fabricating the same
JP5184517B2 (ja) 液晶表示装置
JP5284106B2 (ja) 液晶表示装置および液晶表示装置の製造方法
US10162214B2 (en) Liquid crystal display device, optical control member, and base material for manufacturing optical control member
WO2017133097A1 (zh) 阵列基板及其制造方法以及显示面板
WO2009128123A1 (ja) 液晶表示パネル
TW201430464A (zh) 顯示元件及顯示裝置
US20080297704A1 (en) Liquid crystal display panel and manufacturing method thereof
JP2007292930A (ja) 液晶表示装置およびその製造方法
WO2020238887A1 (zh) 对置基板及其制备方法、液晶面板以及3d打印装置
JP4134106B2 (ja) カラーフィルタ基板およびその製造方法ならびにそれを備えた表示装置
JP4235921B2 (ja) 液晶表示パネルの製造方法および液晶表示パネル
JP5926608B2 (ja) 液晶表示装置及びその製造方法
WO2010061555A1 (ja) 液晶表示装置、及び液晶表示装置のtft基板の製造方法
WO2014065235A1 (ja) アクティブ素子基板の製造方法、アクティブ素子基板、及び表示装置
KR102067964B1 (ko) 액정표시장치 및 이의 제조방법
JP5891952B2 (ja) 表示装置の製造方法
JP4460275B2 (ja) 液晶表示装置用基板の製造方法及びそれを用いた液晶表示装置の製造方法
WO2008044364A1 (fr) Affichage à cristaux liquides
JP4824289B2 (ja) 液晶表示装置用基板及びそれを備えた液晶表示装置
JP2008076431A (ja) 表示装置およびその製造方法
WO2011148557A1 (ja) 液晶表示装置の製造方法
US20110216264A1 (en) Liquid crystal display apparatus and method of manufacturing the same
WO2008032481A1 (fr) Appareil d'affichage à cristaux liquides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438141

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP