WO2013097801A1 - 电动汽车及其集成控制系统 - Google Patents
电动汽车及其集成控制系统 Download PDFInfo
- Publication number
- WO2013097801A1 WO2013097801A1 PCT/CN2012/088008 CN2012088008W WO2013097801A1 WO 2013097801 A1 WO2013097801 A1 WO 2013097801A1 CN 2012088008 W CN2012088008 W CN 2012088008W WO 2013097801 A1 WO2013097801 A1 WO 2013097801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- charging
- switch
- charge
- controller
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/006—Supplying electric power to auxiliary equipment of vehicles to power outlets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/003—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0069—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/52—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/16—Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/18—Cables specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/25—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J5/00—Circuit arrangements for transfer of electric power between ac networks and dc networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0036—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
- H04B3/542—Systems for transmission via power distribution lines the information being in digital form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/12—Buck converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
- B60L2210/42—Voltage source inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/527—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/529—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/12—Driver interactions by confirmation, e.g. of the input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/22—Standstill, e.g. zero speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/26—Transition between different drive modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/147—Emission reduction of noise electro magnetic [EMI]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/20—Inrush current reduction, i.e. avoiding high currents when connecting the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/40—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
- H02J7/007194—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/126—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- the invention relates to the technical field of electric vehicles, in particular to an electric vehicle and an integrated control system thereof. Background technique
- the vehicle charging and discharging device in this scheme mainly comprises a three-phase power transformer 1', six thyristor components forming a three-phase bridge circuit 2', a constant voltage control device AUR and The constant current control device AC, but this solution seriously wastes space and cost.
- Solution (2) As shown in Figure 3, the vehicle charging and discharging device in this solution installs two charging sockets 15', 16' for single/three-phase charging, which increases the cost; the motor drive circuit includes the inductance L1' and The filter module composed of capacitor C1', when the motor is driven, the three-phase current is generated by the filter module, which is a waste of battery power; when the program is charged and discharged, the inverter 13' rectifies/inverts the alternating current, rectification/ The voltage after inverter is not adjustable, and the applicable battery operating voltage range is narrow.
- the motor drive circuit includes the inductance L1' and The filter module composed of capacitor C1', when the motor is driven, the three-phase current is generated by the filter module, which is a waste of battery power; when the program is charged and discharged, the inverter 13' rectifies/inverts the alternating current, rectification/ The voltage after inverter is not adjustable, and the applicable battery operating voltage range is narrow.
- the motor drive system is an independent system with independent power conversion modules and control modules.
- the motor drive requirements and part of the vehicle requirements when the vehicle is running can be used.
- the power battery charging system is generally divided into a vehicle AC charging system and a fast DC charging system.
- the vehicle AC charging system has a power conversion module, a control module, etc., and can charge the power battery with a small power; a fast DC charging system Only the vehicle side has the corresponding distribution circuit and the power battery management system to assist the control, but the charging facility requires a huge power conversion module and other equipment.
- the object of the present invention is to at least solve one of the above technical drawbacks.
- a first object of the present invention is to provide an integrated control system for an electric vehicle that avoids interference and is more secure.
- a second object of the present invention is to provide an electric vehicle.
- an embodiment of the first aspect of the present invention provides an integrated control system for an electric vehicle, including: a power battery; a high voltage distribution box, the high voltage distribution box connected to the power battery; driving, charging and discharging An integrated controller, the driving and charging and discharging integrated controller is connected to the power battery through the high voltage distribution box, and the driving and charging and discharging integrated controller is respectively connected to a motor and a charging and discharging socket, and the driving and a charge and discharge integrated controller for driving the motor when the electric vehicle is in a driving mode, and charging and discharging the power battery through the charging and discharging socket when the electric vehicle is in a charging and discharging mode; assisting a high voltage device, The auxiliary high voltage device is connected to the power battery through the high voltage distribution box; the first DC/DC module, the first DC/DC module is connected to the power battery through the high voltage distribution box; The controller is connected to the high voltage distribution box for controlling the high voltage distribution box to be integrated with the driving and charging and discharging controller And
- the integrated control system of the electric vehicle according to the embodiment of the present invention, according to the different working modes, the unified switching of the working states of the various systems can be realized, the discrete systems of the vehicle are coordinated and controlled, the compatibility is strong, and the cooling system satisfies the high power.
- the heat dissipation requirements during work can meet the different functional requirements and expansion of electric vehicles and have good adaptability.
- the system is compatible with the requirements of electric vehicle drive, charging and external discharge functions, and can meet the requirements of high power output.
- An embodiment of the second aspect of the present invention provides an electric vehicle including the integration of the first aspect of the present invention Control System.
- the electric vehicle according to different working modes, unified switching of working states of each system can be realized, coordinated control of each discrete system of the vehicle, compatibility, and cooling system to meet heat dissipation during high-power operation Requirements, can meet the different functional needs and expansion of electric vehicles, with good adaptability.
- the system is compatible with the requirements of electric vehicle drive, charging and external discharge functions, and can meet the requirements of high power output.
- FIG. 1 is a circuit diagram of a conventional vehicle charging and discharging device
- FIG. 2 is a schematic diagram of control of a conventional vehicle charging and discharging device
- FIG. 3 is a circuit diagram of another conventional vehicle charging and discharging device
- FIG. 4 is a schematic diagram of an integrated control system for driving and charging and discharging according to an embodiment of the present invention
- Figure 5 is a schematic diagram of a high voltage power distribution system of an integrated control system
- Figure 6 is a schematic diagram of the working principle of the integrated control system
- FIG. 7 is a block schematic diagram of a power system for an electric vehicle according to an embodiment of the present invention
- FIG. 8 is a top view of a power system for an electric vehicle according to an embodiment of the present invention
- FIG. 9 is a block schematic diagram of a controller module in accordance with one embodiment of the present invention.
- FIG. 10 is a schematic diagram of a DSP and peripheral hardware circuit interface in a controller module according to an example of the present invention
- FIG. 11 is a functional judgment flowchart of a power system for an electric vehicle according to an embodiment of the present invention
- a block diagram of a motor drive control function for a power system of an electric vehicle according to an embodiment of the present invention
- Figure 13 is a flow chart showing the start-up determination of the charging and discharging function of the power system for an electric vehicle according to an embodiment of the present invention
- Figure 14 is a flow chart showing the control of the power system for an electric vehicle in a charging mode of operation in accordance with one embodiment of the present invention
- FIG. 15 is a control flow chart of a power system for an electric vehicle at the end of charging of the electric vehicle according to an embodiment of the present invention
- 16 is a circuit diagram showing a connection between an electric vehicle and a power supply apparatus according to an embodiment of the present invention
- FIG. 17 is a schematic diagram of charging an electric vehicle in parallel by using two power systems according to another embodiment of the present invention
- Figure 18 is a schematic view of a charging and discharging socket of an example of the present invention.
- Figure 19 is a schematic illustration of an off-grid loaded discharge plug in accordance with another example of the present invention.
- the following disclosure provides many different embodiments or examples for implementing different structures of the present invention.
- the components and arrangements of the specific examples are described below. Of course, they are merely examples and are not intended to limit the invention.
- the present invention may repeat reference numerals and/or letters in different examples. This repetition is for the purpose of clarity and clarity and does not in itself indicate the relationship between the various embodiments and/or arrangements discussed.
- the present invention provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials.
- the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. The embodiment, such that the first and second features may not be in direct contact.
- the integrated control system for an electric vehicle includes a power battery 10, a high voltage distribution box 90, an auxiliary high voltage device, a first DC/DC module 300, and a controller 80.
- High voltage distribution box 90 and power The battery 10 is connected; the driving and charging and discharging integrated controller 70, the driving and charging and discharging integrated controller 70 is connected to the power battery 10 through the high voltage distribution box 90, and the driving and charging and discharging integrated controller 70 is respectively connected to the motor and the charging and discharging socket.
- the driving and charging and discharging integrated controller 70 is configured to drive the motor when the electric vehicle is in the driving mode, and charge and discharge the power battery through the charging and discharging socket when the electric vehicle is in the charging and discharging mode.
- the auxiliary high voltage device is connected to the power battery 10 through the high voltage distribution box 90.
- the first DC/DC module 300 is connected to the power battery 10 through a high voltage distribution box 70.
- the controller 80 is connected to the high voltage distribution box 70 for controlling the high voltage distribution box 90 to be pre-processed through the high voltage distribution box before the drive and charge and discharge integrated controller 70, the auxiliary high voltage device and the first DC/DC module are powered on. Charging.
- the high voltage distribution box 70 includes: a first pre-charge control module and a first switch connected in parallel with the first pre-charge control module, the first pre-charge control module and one end of the first switch K1 are connected to one end of the power battery, the first pre- The other end of the charging control module and the first switch is connected to the first end of the driving and charging and discharging integrated controller; the second pre-charging control module and the second switch K2 connected in parallel with the second pre-charging control module, the second pre-charging control One end of the module and the second switch K2 is connected to one end of the power battery, and the other end of the second pre-charge control module and the second switch K2 is connected to the first end of the first DC/DC module 300; the third pre-charge control module and a third switch K3 connected in parallel with the third pre-charge control module; one end of the third pre-charge control module and the third switch K3 is connected to one end of the power battery, and the other end of the third pre-charge control module and the third switch K3 is auxiliary
- the controller pre-charges the driving and charging and discharging integrated controller through the first pre-charging control module while closing the fourth switch ⁇ 4, when driving and charging and discharging the bus voltage of the integrated controller
- the first pre-charge control module is controlled to turn off and close the first switch.
- the controller After the first switch K1 is closed, the controller further precharges the auxiliary high voltage device through the third precharge control module, and controls the third precharge control when the bus voltage of the auxiliary high voltage device and the voltage of the power battery are preset multiples.
- the module turns off and closes the third switch ⁇ 3.
- the controller When the electric vehicle is in the driving mode, after the third switch is closed, the controller also pre-charges the first DC/DC module 300 through the second pre-charging control module, when the bus voltage and power of the first DC/DC module 300 When the voltage of the battery 10 is at a preset multiple, the second pre-charge control module is controlled to turn off and close the second switch K2.
- the vehicle starting system sends a start command, and the power battery management system 10 controls the corresponding action of the high-voltage power distribution system after detecting that the power battery is in good condition, firstly sucking the negative contactor ⁇ 5 of the power battery, and then sucking the main pre-charge contactor K11,
- the driving and charging and discharging controller performs pre-charging, and the driving and charging and discharging controller detects and feeds back the power bus voltage to the power battery management system.
- the power battery management system determines that the driving and charging and discharging controller bus voltage reaches 90% of the power battery voltage ( The voltage difference can be replaced by 50V.
- the main contactor K1 When it is determined to be pre-filled, the main contactor K1 is controlled to be closed, then the main pre-charge contactor K11 is disconnected, and the corresponding contactor state and pre-charge completion enable drive command, drive and charge and discharge are transmitted.
- the controller After receiving the above status and command and detecting that the bus voltage is within the normal working voltage, the controller can drive the vehicle according to the signal such as the throttle depth; subsequently, the power battery management system controls the auxiliary pre-charge contactor ⁇ 31 to pull, to the EPS controller, Air compressor controller, etc. pre-charge, EPS controller, etc. The voltage of the feeder bus is given to the power battery management system.
- the power battery management system determines that the bus voltage reaches 90% of the power battery voltage (the voltage difference can be replaced by 50V)
- the auxiliary contactor K3 is controlled to be engaged, and then Disconnect the auxiliary pre-charge contactor K31, and send the corresponding contactor state and pre-charge completion permission command, the auxiliary power circuit pre-charge is completed; then the power battery management system controls the DC pre-charge contactor K21 to pull in, to the DC-DC converter
- the DC-DC converter detects and feeds back the bus voltage to the power battery management system.
- the power battery management system determines that the bus voltage of the DC-DC converter reaches 90% of the power battery voltage (the voltage difference can be replaced by 50V)
- the DC contactor K2 is controlled to pull, then the DC pre-charge contactor K21 is disconnected, and the corresponding contactor state and pre-charge completion permission command are transmitted; the entire high-voltage power distribution system is distributed.
- Charge and discharge mode First, the drive and charge/discharge controller triggers to enter the charge and discharge mode according to the corresponding vehicle setting or charging gun connection, and sends a discharge or charge ready state. After receiving the state, the power battery management system detects that the power battery status is in charge or The discharge requirement begins to pre-charge. First, the negative contactor K5 of the power battery is sucked, and then the main pre-charge contactor K1 1 is sucked, the drive and charge and discharge controllers are pre-charged, and the drive and charge and discharge controllers detect and feed back the power. The bus voltage is given to the power battery management system.
- the power battery management system determines that the bus voltage of the driving and charging and discharging controller reaches 90% of the power battery voltage (the voltage difference can be replaced by 50V), it is determined that the pre-charging is completed, and the main contactor K1 is controlled to be sucked.
- the integrated control system for an electric vehicle further includes: a cooling module for cooling the integrated control system.
- the BCM control When driving, the BCM control is responsible for the anti-theft of the vehicle and the starting system of the starting low-voltage system sends the relevant commands to the power battery management system, the driving and charging and discharging integrated controller 70 and other related modules.
- the power battery management system After the power battery management system receives the start command Enter the drive mode and check the power battery status is good, that is, the pre-charge contactor and the ⁇ 5 negative contactor of Kl l, ⁇ 21, K31, etc. in Figure 5, each high-voltage electrical appliance (drive and charge and discharge controller 70, DC-DC30, Air conditioning, EPS, etc.) Start pre-charging and send the corresponding high-voltage loop voltage value.
- the power battery management system determines that the voltage value of each high-voltage electrical appliance reaches the pre-filling completion condition, control the corresponding contactor to open and close the high-voltage power loop.
- the DC-DC30 converts the high-voltage DC power of the power battery into the low-voltage power supply of the whole vehicle to supply the low-voltage electrical appliances and the storage battery of the whole vehicle.
- the auxiliary controller collects the whole vehicle signal, controls the operation of the cooling system, and drives and charges the discharge controller according to the received auxiliary controller.
- the detected acceleration pedal, brake pedal, gear position and other vehicle signal comprehensive processing calculates the corresponding motor torque demand value, and drives the vehicle to drive by converting the DC power into AC power to control the motor running, and the display system such as the combination meter displays the whole vehicle running condition. .
- the driving and charging and discharging integrated controller 70 detects the connection of the charging gun, outputs a corresponding connection signal to the BCM, and the BCM controls the low-voltage charging system to start, and sends the corresponding state, the power battery management system according to The command status of the BCM enters the charging mode.
- the driving and charging and discharging controller After detecting the state of the power battery is good, according to the state of the driving and charging and discharging controller, detects whether the charging connection is completed by the interaction between the charging gun and the charging device, and sends the corresponding state after determining that the connection is completed. The signal is sent to the power battery management system.
- the power battery management system After receiving the corresponding status, the power battery management system starts to pick up the Kl l, K21 pre-charge contactor and the ⁇ 5 negative contactor in FIG. 5 for pre-charging, and the corresponding drive and charge and discharge integrated controller 70
- the DC-DC30 starts to send the power circuit voltage value.
- the corresponding contactor After the power battery management system determines that the voltage values of the high-voltage electrical appliances reach the pre-filling completion condition, the corresponding contactor is controlled to open and close the high-voltage power circuit, and the corresponding state information is sent.
- DC-DC30 converts the high-voltage DC power of the power battery into the low-voltage power supply of the whole vehicle to supply the low-voltage electrical appliances and the battery; the drive and charge-discharge controller starts the power module after detecting that the high-voltage power circuit connection is completed, and the auxiliary controller detects the charging port.
- the status and control of the cooling system work, while the combination meter of the display system displays various charging information for the entire vehicle.
- the external discharge command is started by the combination meter or other trigger signal setting.
- the power battery management system enters the external discharge mode according to the command state, and starts to pull in after detecting the state of the power battery. 5 Zhongyu 11, ⁇ 21 pre-charge contactor and ⁇ 5 negative contactor pre-charge, the corresponding drive and charge and discharge controller, DC-DC start to send the power circuit voltage value, until the power battery management system determines that the voltage value of each high-voltage electrical appliance reaches After the pre-filling is completed, the corresponding contactor is controlled to open and close the high-voltage power back. Road, and send the corresponding status information.
- DC-DC30 converts the high-voltage DC power of the power battery into the low-voltage power supply of the whole vehicle to supply the low-voltage electrical appliances and the battery of the whole vehicle; the driving and charging and discharging controller detects the connection status of the discharge port to the external discharge gun, and determines the setting of the power circuit and the discharge device after the connection is completed.
- the external discharge requirement starts to start external discharge, and the combination meter displays the corresponding external discharge information of the whole vehicle.
- a power system for an electric vehicle includes a power battery 10, a charging and discharging socket 20, a bidirectional DC/DC module 30, a drive control switch 40, a bidirectional DC/AC module 50, and a motor.
- the switch 60, the charge and discharge control module 70, and the controller module 80 are controlled.
- the first DC terminal a1 of the bidirectional DC/DC module 30 is connected to the other end of the power battery 10.
- the second DC terminal a2 of the bidirectional DC/DC module 30 is connected to one end of the power battery 10, and the first DC terminal is connected.
- Al is the common DC terminal for the input and output of the bidirectional DC/DC module 30.
- One end of the drive control switch 40 is connected to one end of the power battery 10, and the other end of the drive control switch 40 is connected to the third DC terminal a3 of the bidirectional DC/DC module 30.
- the drive control switch 40 is identical to the switch K4 of Figure 5 .
- the first DC terminal bl of the bidirectional DC/AC module 50 is connected to the other end of the drive control switch 40, and the second DC terminal b2 of the bidirectional DC/AC module 50 is connected to the other end of the power battery 10, and one end of the motor control switch 60 Connected to the AC terminal c of the bidirectional DC/AC module 50, the other end of the motor control switch 60 is connected to the motor M.
- One end of the charge and discharge control module 70 is connected to the AC terminal c of the bidirectional DC/AC module 50, and the other end of the charge and discharge control module 70 is connected to the charge and discharge socket 20.
- the controller module 80 is connected to the drive control switch 40, the motor control switch 60 and the charge and discharge control module 70.
- the controller module 80 is configured to drive and control the switch 40, the motor control switch 60, and the charge and discharge according to the current working mode of the power system. Control module 70 performs the control.
- the operating mode in which the power system is currently located may include a drive mode and a charge and discharge mode.
- the controller module 80 controls the driving control switch 40 to close to close the bidirectional DC/DC module 30, and controls the motor control switch 60 to close to drive the motor M normally, and to control the charging and discharging.
- Control module 70 is turned off.
- the motor control switch 60 of FIG. 5 includes three switches connected to the three-phase input of the motor, it may include two phases with the motor in other embodiments of the present invention. Enter the two connected switches, or even one. As long as the control of the motor can be realized.
- the controller module 80 controls the driving control switch 40 to open to activate the two-way DC/DC module 30, and controls the motor control switch 60 to open to remove the motor M, and
- the charge and discharge control module 70 is controlled to be closed so that the external power source can normally charge the power battery 10.
- the first DC terminal a and the third DC terminal a3 of the bidirectional DC/DC module 30 are connected to the positive and negative terminals of the DC bus.
- the power system for the electric vehicle further includes a first pre- The charging control module 101, one end of the first pre-charging control module 101 is connected to one end of the power battery 10, and the other end of the first pre-charging control module 101 is connected to the second DC end a2 of the bidirectional DC/DC module 30, the first pre- The charging control module 101 is configured to pre-charge the capacitor C1 and the bus capacitor CO in the bidirectional DC/DC module 30, wherein the bus capacitor CO is connected to the first DC terminal al and the bidirectional DC/ of the bidirectional DC/DC module 30. Between the third DC terminals a3 of the DC module 30.
- the first pre-charge control module 101 includes a first resistor R1, a first switch K1, and a second switch K2.
- the first switch K1 is the same as the switch K1 1 shown in FIG. 5, and the second switch ⁇ 2 is the same as the switch K1 shown in FIG.
- One end of the first resistor R1 is connected to one end of the first switch K1, the other end of the first resistor R1 is connected to one end of the power battery 10, and the other end of the first switch K1 is connected to the second DC end a2 of the bidirectional DC/DC module 30.
- the first resistor R1 and the first switch K1 are connected in series and then connected in parallel with the second switch K2, wherein the controller module 80 controls the first switch K1 to close to the capacitor C1 in the bidirectional DC/DC module 30 when the power system is started.
- the bus capacitor CO is pre-charged, and when the voltage of the bus capacitor CO and the voltage of the power battery 10 are at a preset multiple, the first switch K1 is controlled to be turned off while the second switch K2 is controlled to be closed.
- the bidirectional DC/DC module 30 further includes a first switching transistor Q1, a second switching transistor Q2, a first diode D1, a second diode D2, a first inductor L1, and a first capacitor Cl.
- the first switching transistor Q1 and the second switching transistor Q2 are connected in series with each other, and the first switching transistor Q1 and the second switching transistor Q2 connected in series are connected to the first DC terminal a1 and the third DC of the bidirectional DC/DC module 30.
- the first switch tube Q1 and the second switch tube Q2 are controlled by the controller module 80, and the first switch tube Q1 and the second switch tube Q2 have a first node A therebetween.
- the first diode D1 is connected in anti-parallel with the first switching transistor Q1, and the second diode D2 is connected in anti-parallel with the second switching transistor Q2.
- One end of the first inductor L1 is connected to the first node A, and the first inductor L1 is connected. The other end is connected to one end of the power battery 10.
- One end of the first capacitor C1 is connected to the other end of the first inductor L1, and the other end of the first capacitor C1 is connected to the other end of the power battery 10.
- the power system for the electric vehicle further includes a leakage current reduction module 102, and the leakage current reduction module 102 is connected to the first DC of the bidirectional DC/DC module 30.
- the terminal a is between the third DC terminal a3 of the bidirectional DC/DC module 30.
- the leakage current reduction module 102 includes a second capacitor C2 and a third capacitor C3.
- One end of the second capacitor C2 is connected to one end of the third capacitor C3, and the other end of the second capacitor C2 is connected to the bidirectional DC/DC module 30.
- the other end of the third capacitor C3 is connected to the third DC terminal a3 of the bidirectional DC/DC module 30.
- the second capacitor C2 and the third capacitor C3 have a second node B.
- the leakage current reduction module 102 includes two capacitors C2 and C3 of the same type, which are installed at the positive and negative ends of the DC bus and the three-phase AC midpoint. Between the bits, when the system works, the generated high-frequency current can be fed back to the DC side, which can effectively reduce the high-frequency leakage current of the system during operation.
- the power system for an electric vehicle further includes a filter module 103, a filter control module 104, an EMI module 105, and a second pre-charge control module 106.
- the filter module 103 is connected between the bidirectional DC/AC module 50 and the charge and discharge control module 70.
- the filtering module 103 includes inductors L A , L B , L c and capacitors C4, C5, C6, and the bidirectional DC/AC module 50 may include six IGBTs between the upper and lower IGBTs.
- the connection points are respectively connected to the filter module 103 and the motor control switch 60 via a power bus.
- the filter control module 104 is connected between the second node B and the filter module 103, and the filter control module 104 is controlled by the controller module 80.
- the controller module 80 is driven in the current mode of operation of the power system.
- the mode control filter control module 104 is turned off during mode.
- the filter control module 104 can be a capacitor switching relay and is composed of a contactor K10.
- the EMI module 105 is connected between the charge and discharge socket 20 and the charge and discharge control module 70. It should be noted that the position of the contactor k10 in Fig. 8 is only illustrative. In other embodiments of the present invention, the contactor K10 may be provided at other locations as long as the shutdown of the filtering module 103 can be achieved. For example, in another embodiment of the invention, the contactor K10 can also be coupled between the bidirectional DC/AC module 50 and the filtering module 103.
- the second pre-charge module 106 is connected in parallel with the charge and discharge control module 70.
- the second pre-charge control module 106 is configured to pre-charge the capacitors C4, C5, and C6 in the filter module 103.
- the second pre-charge control module 106 includes three resistors R A , R B , R c and a three-phase pre-charge switch K9 connected in series.
- the charge and discharge control module 70 further includes a three-phase switch.
- the controller module 80 controls the first switch K1 to be closed to pre-charge the first capacitor C1 and the bus capacitor CO in the bidirectional DC/DC module 30, And when the voltage of the bus capacitor CO and the voltage of the power battery 10 are at a preset multiple, the first switch K1 is controlled to be turned off while the second switch K2 is controlled to be closed.
- the main components of the battery low temperature activation technology are realized by the bidirectional DC/DC module 30 and the large-capacity bus capacitor CO directly connected between the power bus, that is, the DC bus, for passing the power of the power battery 10 through the bidirectional DC/DC module.
- the bidirectional DC/DC module 30 is charged into the large-capacity bus capacitor C0, and then the electric energy stored in the large-capacity bus capacitor C0 is charged back to the power battery 10 through the bidirectional DC/DC module 30 (that is, when the power battery is charged), and the power battery 10 is cyclically charged and discharged.
- the temperature of the power battery rises to the optimum operating temperature range.
- the controller module 80 controls the driving control switch.
- the controller module 80 controls the driving control switch 40 to open to activate the bidirectional DC/DC module 30, and controls the motor control switch 60 to open to remove the motor M, and
- the control charge and discharge control module 70 is closed, so that the external power source, such as three-phase power or single-phase power, can normally charge the power battery 10 through the charge and discharge socket 20. That is to say, by detecting the charging connection signal, the AC grid power system and the vehicle battery management related information, the bidirectional DC/AC module 50 is used for the controllable rectification function, and combined with the bidirectional DC/DC module 30, the single phase/three can be realized.
- the phase power charges the vehicle power battery 10.
- the power system for an electric vehicle can realize high-power AC charging of an electric vehicle using a civil or industrial AC grid, so that the user can efficiently and quickly charge at any time and place, saving charging time without constant pressure.
- the control unit and the constant current control unit save space and cost, and are suitable for a wide range of battery operating voltages.
- the controller module 80 includes a control board 201 and a drive board 202.
- the control module on the control board 201 is controlled by two high-speed digital signal processing chips (DSP1 and DSP2).
- the control module on the control board 201 is connected to the vehicle information interface 203 and exchanges information with each other.
- the control module on the control board 201 receives the bus voltage sampling signal, the IPM protection signal, and the IGBT temperature sampling signal output from the driving module on the driving board 202, and simultaneously outputs the pulse width modulation PWM signal to the driving module.
- DSP1 is mainly used for control
- DSP2 is used for information collection.
- Sampling unit output throttle signal, bus voltage sampling signal, brake signal, DC side voltage sampling signal, motor current Hall V phase signal, motor current Hall W phase signal, charge control current Hall U phase signal, charging control Current Hall V-phase signal, charge control current Hall W-phase signal, DC current Hall signal, inverter voltage U-phase signal, inverter voltage V-phase signal, inverter voltage W-phase signal, grid voltage U-phase signal, grid Sampling signals such as voltage V-phase signal, grid voltage W-phase signal, inverter U-phase capture signal, grid U-phase capture signal, switch control unit in DSP1 output motor A-phase switching signal, motor B-phase switching signal, grid A-phase switch Signal, grid B-phase switching signal, grid C-phase switching signal, three-phase pre-charge switching signal and capacitor switching relay signal, etc., the driving unit in DSP1 outputs phase PWM1 signal, A-phase PWM2 signal, B-phase PWM1
- the sampling unit in DSP2 outputs power supply monitoring signal, power supply monitoring signal, throttle 1 signal, brake 2 signal, throttle 2 signal, brake 1 signal, motor analog temperature signal, and leakage sensing.
- the charge and discharge control unit outputs a charge and discharge switch signal, a sleep signal, a discharge PWM signal, a battery manager BMS signal, a charge and discharge output control signal, a CP signal, and a CC signal, and the DSP 2 also has a CAN communication and serial communication function.
- the power system for the electric vehicle provided by the embodiment of the present invention integrates the motor driving function, the vehicle control function, the AC charging function, the grid-connected power supply function, the off-grid loading function, and the vehicle-to-vehicle charging function. . Moreover, the power system does not integrate the physical modules of various functional modules into one, but on the basis of the motor drive control system, by adding some peripheral devices, the functions of the system are diversified, and the space and cost are maximized. , increase power density.
- the DC power of the power battery 10 is inverted into AC power by the bidirectional DC/AC module 50 and sent to the motor M, which can be controlled by a rotary transformer decoder technology and a space vector pulse width modulation (SVPWM) control algorithm. The operation of the motor M.
- SVPWM space vector pulse width modulation
- the system function judgment process includes the following steps:
- step S902. Determine a charging connection signal. If there is a charging connection signal, the process goes to step S903, and if not, the process goes to step 904.
- S903 enter the charging and discharging control process.
- the throttle, gear and brake signals are also required to be judged.
- the gear position is N
- the hand brake, and the charging connection that is, the CC signal is valid (that is, the charging and discharging socket 20 is connected with the charging connection device)
- the charging and discharging control flow is entered.
- S904 enter the vehicle control process.
- the controller module 80 controls the motor control switch 60 to be closed, notifies the battery manager 108 via CAN communication, and the battery manager 108 controls the high voltage distribution box 90 to precharge C1 and CO, the controller module 80 detects the bus voltage 187, determines whether the pre-charge is successful, and successfully informs the battery manager 108 to close the drive control switch 40 after successful, the system enters the drive mode, and the controller module 80 collects the vehicle information, and processes the motor M through comprehensive judgment. Drive.
- controller module 80 sends a PWM signal to the two-way
- the DC/AC module 50 performs control to invert the DC power of the power battery 10 into AC power and deliver it to the motor ⁇ .
- the controller module 80 solves the rotor position through the resolver, and collects the bus voltage and the motor BC phase current to make the motor accurate. Running. That is to say, the controller module 80 adjusts the PWM signal according to the motor BC phase current signal sampled by the current sensor and the feedback information of the resolver, and finally enables the motor to operate accurately.
- the throttle, brake and gear position information of the vehicle are judged, the current operating conditions are judged, and the acceleration, deceleration and energy feedback functions of the vehicle are realized, so that the whole vehicle can safely and reliably operate under various working conditions, and the vehicle is guaranteed. Safety, power and peace.
- the charging and discharging connection device that is, the charging and discharging socket is physically connected, and the power supply is normal.
- the power supply device detects the charging signal.
- the CC connection is normal. If yes, go to step S1103; if no, go back to step S1102 to continue the detection.
- the power supply device detects whether the voltage at the CP detection point is 9V. If yes, go to step S1106; if no, return to step S1102 to continue the detection. Among them, 9V is a preset example value.
- the controller module detects the charging signal whether the CC connection is normal. If yes, go to step S1105; if no, go back to step S1104 to continue the detection.
- control flow of the power system in the charging mode includes the following steps:
- step S1202 Determine whether the system is fully started after the system is powered. If yes, go to step S1202; if no, go back to step S1201 to continue the determination.
- step S1203 Determine whether the CP detection point detects a PWM signal with a fixed duty ratio. If yes, go to step S1204; if no, go to step S1205.
- step S1206 sending a charging connection to the normal charging ready message, receiving the BMS charging permission, and charging the contactor to pick up the message, and proceeding to step S1206.
- the controller module pulls in the internal switch.
- step S1207 Determine whether the external charging device detects no PWM wave transmission within a preset time, for example, 1.5 seconds. If yes, go to step S1208; if no, go to step S1209. 51208, judged as an external national standard charging post, no PWM wave is sent during charging.
- 51210 Determine whether the AC input is normal within a preset time, for example, within 3 seconds. If yes, go to step S1213; if no, go to step S1211.
- the capacity of the charging connection device is determined according to the voltage value of the detected CC signal, and the CP signal is detected to determine whether it is completely connected, and the charging and discharging connection device After the connection is confirmed, the charging connection is normal and the charging ready message is sent.
- the battery manager 108 controls the high voltage distribution box 90 to close the first switch K1 for pre-charging. After the pre-charging is completed, the K1 is disconnected, and the second switch K2 is pulled.
- the controller module 80 receives the BMS charging permission, the second switch K2 picks up the message, and the charging and discharging are ready, and the instrument setting function can be performed as follows: AC charging function (G to V, grid-to-electric vehicle), off-network belt Load function (V to L, electric vehicle to load), grid connection function (V to G, electric vehicle to grid) and vehicle to vehicle charging function (V to V, electric vehicle to electric vehicle).
- AC charging function G to V, grid-to-electric vehicle
- V to L electric vehicle to load
- grid connection function V to G, electric vehicle to grid
- vehicle to vehicle charging function V to V, electric vehicle to electric vehicle.
- the power system receives the meter charging command, and the battery manager 108 allows the maximum charging current, the maximum supply current of the power supply device, and the rated current of the charging and discharging connection device, that is, the charging and discharging socket 20, and the control
- the module 80 determines the minimum charging current among the three and automatically selects the charging related parameters.
- the power system samples the alternating current power supplied by the power supply device through the grid voltage sampling 183, and the controller module 80 calculates the effective value of the alternating current voltage through the sampled value, determines the alternating current frequency by capturing, and determines the alternating current electric power system according to the voltage value and the frequency. According to the grid system, the control parameters are selected.
- the controller module 80 controls the K9 in the second pre-fill module 106 and the contactor K10 in the filter control module 104 to pick up, charge the PWM DC side bus capacitor C0, and the controller module 80 passes the 187 pair bus.
- the voltage of the capacitor is sampled, and when the capacitor voltage reaches a predetermined control parameter, for example, a predetermined multiple of the voltage of the power battery, the three-phase switch K8 is controlled to be pulled, and K9 is turned off.
- the power system sends a PWM signal according to the pre-selected parameters, and the bidirectional DC/AC module 50 controls the rectification of the alternating current, and then controls the bidirectional DC/DC module 30 to adjust the voltage according to the power battery voltage.
- the DC power is supplied to the power battery 10, and in the process, the controller module 80 performs a closed loop current loop adjustment on the entire power system according to the phase currents pre-selected by the target charging current and the current sampling 184, and finally realizes the on-board power battery. 10 to charge.
- the bidirectional DC/AC module 50 is used for the controllable rectification function, and the bidirectional DC/DC module 30 is combined to realize the single phase/three phase Charging the vehicle power battery 10 by electricity.
- V to L Off-grid load function
- the power system receives the V to L command from the instrument. First, it determines whether the SOC of the power battery is in the dischargeable range.
- the controller module 80 controls the pull-in three-phase switch K8 and the contactor K10, and sends a PWM signal according to the battery voltage and the given output voltage to control the bidirectional DC/DC module 30 to adjust the voltage, and after reaching the target value, the signal is sent to the bidirectional DC.
- the /AC module 50 inverts the direct current into alternating current, and can directly supply power to the powered device through a dedicated charging socket. During this process, the controller module 80 adjusts according to the feedback of the voltage sample 183 to ensure safe and reliable operation of the load.
- the system is powered on, when connected to the V to L control command of the instrument and the output electrical system requirements, the charging connection signal and the battery management information of the vehicle are detected, and the DC/DC voltage conversion is performed according to the voltage of the battery, and the bidirectional DC is borrowed.
- the /AC module 50 performs an AC inverter function to output a stable single-phase/three-phase AC voltage.
- V to G Grid-connected power supply function
- the power system receives the V to G command from the instrument. First, it is judged whether the power battery SOC is in the dischargeable range. If the discharge is allowed, the output power system is selected according to the command, according to the charge and discharge. The rated current of the connected device, intelligently selects the output maximum output power and gives the control parameters, and the power system enters the control flow.
- the controller module 80 controls the pull-in three-phase switch K8 and the contactor K10, and sends a PWM signal according to the battery voltage and the given output voltage to control the bidirectional DC/DC module 30 to adjust the voltage after passing through the bidirectional DC/AC module 50. Inverting the direct current into alternating current, according to the pre-selected discharge current target value and the phase current fed back by the current sampling 184, the closed loop current loop adjustment of the entire power system is realized, and the grid-connected power generation is realized.
- the power system is powered on, when connected to the V to G control command of the instrument, detecting the charging connection signal, the AC grid power system and the vehicle battery management information, DC/DC voltage conversion according to the battery voltage, borrowing
- the bidirectional DC/AC module 50 performs AC inverter to realize single-phase/three-phase vehicle-to-grid discharge function.
- V to V Vehicle-to-vehicle charging function
- the V to V function requires a dedicated connection plug.
- the power system detects that the charging connection signal CC is valid, and detects that its level is confirmed as a VTOV dedicated charging plug, wait Instrument command.
- the vehicle A charges the vehicle B
- the vehicle A is set to the discharge state, that is, set to the off-net load function
- the vehicle B is set to the AC charging state
- the controller module of the vehicle A transmits the charging connection normal charge ready message to
- the battery manager controls the charging and discharging circuit pre-charging, and after completion, the charging permission is allowed
- the charging contactor picks up the message to the controller module
- the power system performs a discharging function and transmits a PWM signal.
- the vehicle B detects the CP signal, and determines that the powered vehicle A is ready.
- the controller module 80 sends a connection normal message to the battery manager, and the battery manager completes the pre-filling process after receiving the command.
- the controller module is notified that the entire power system is ready for charging, the charging function (G to V) is activated, and the vehicle charging function is finally realized. That is to say, the system is powered on, when connected to the V to V control command of the instrument, detecting the charging connection signal and the relevant information of the vehicle battery management, setting the vehicle to the AC output power state, and simulating the charging box output CP signal function, Interact with vehicles that need to be recharged.
- the vehicle performs DC/DC voltage conversion according to the voltage of the battery, and performs AC inversion by using the bidirectional DC/AC module 50 to realize the charging function of the single-phase/three-phase vehicle to the vehicle.
- control flow of the power system at the end of charging of the electric vehicle includes the following steps:
- the power supply device disconnects the power supply switch, stops the AC output, and proceeds to step S1305.
- the controller module controls to stop charging, performs unloading, and proceeds to the next step S 1303.
- the power supply device 301 is connected to the vehicle plug 303 of the electric vehicle 1000 through the power supply plug 302, thereby realizing charging of the electric vehicle 1000.
- the power system of the electric vehicle detects the CP signal through the detection point 3 and detects the CC signal through the detection point 4, and the power supply device detects the CP signal through the detection point 1 and detects the CC signal through the detection point 2.
- the internal switch S2 in the power supply plug 302 and the vehicle plug 303 is controlled to be disconnected.
- the electric vehicle may also charge the power battery in parallel by using a plurality of power systems, for example, charging the power battery by connecting two power systems in parallel, wherein the two power systems share one controller module.
- the electric vehicle charging system includes a power battery 10, a first charging branch 401, a second charging branch 402, and a controller module 80.
- the first charging branch 401 and the second charging branch 402 each include a charging and discharging socket 20, a bidirectional DC/DC module 30, a bus capacitor C0, a bidirectional DC/AC module 50, a filtering module 103, a charging and discharging control module 70, and The second pre-fill module 106.
- the first charging branch 401 and the second charging branch 402 further include a fuse FU.
- the power battery 10 is connected to the first charging branch through the first pre-charging control module 101, and the power battery 10 is also connected to the second charging branch through the first pre-charging control module 101, and the controller module 80 and the first charging branch respectively
- the 401 is connected to the second charging branch 402.
- the controller module 80 is configured to receive the charging signal
- the control power grid charges the power battery 10 through the first charging branch 401 and the second charging branch 402, respectively.
- Still another embodiment of the present invention also provides a charging control method for an electric vehicle, the charging control method comprising the following steps:
- Step S1 the controller module detects that the first charging branch is connected to the power supply device through the charging and discharging socket, and When the charging branch is connected to the power supply device through the charging and discharging socket, the charging connection signal is sent to the battery manager.
- Step S2 After receiving the charging connection signal sent by the controller module, the battery manager detects and determines whether the power battery needs to be charged. When the power battery needs to be charged, the next step is performed.
- Step S3 The battery manager sends a charging signal to the controller module.
- Step S4 When the controller module receives the charging signal, the control power grid charges the power battery through the first charging branch and the second charging branch respectively.
- the controller module charges the power battery through the first charging branch and the second charging branch respectively by controlling the power grid, so that the charging power of the electric vehicle is increased, thereby The charging time is greatly shortened, the fast charging is realized, and the time cost is saved.
- the power system for the electric vehicle described above is compatible with a wide range, has a single-phase three-phase switching function, and is adapted to different national grid electrical standards.
- the charging and discharging socket 20 has a function of switching between two charging sockets (for example, American standard and European standard).
- the charging and discharging socket 20 includes a single-phase charging socket 501 such as an American standard, a three-phase charging socket 502 such as an European standard, two high voltage contactors K503, and 504.
- Single-phase charging socket 501 is shared with CC, CP and PE of three-phase charging socket 502, single-phase charging socket 501! ⁇ , the N phase line is connected to the three-phase charging socket 503 through the contactors K503 and 504.
- the control contactors ⁇ 503 and ⁇ 504 are closed, so that the ⁇ and ⁇ phases of the three-phase charging socket 502 and the L and N phase lines of the single-phase charging socket 501 are turned on, and the three-phase charging is performed.
- the socket 502 is not used.
- the A and B phases of the three-phase charging socket 502 are connected to the charging plugs of the single-phase charging socket 501, and the controller module 80 can normally realize the single-phase charging function.
- connection plug 80 receives the single-phase charge and discharge command, controls the single-phase switch K7 to pull, connects the B phase line and the N line, and uses the A and B phases as the L and N phase lines.
- the connection plug needs to use the special connection plug, or its B , C phase does not use the connection plug.
- the power system will detect the voltage of the power grid according to the controller module 80, determine the frequency of the power grid and the single phase/three phase through calculation, according to the calculation information and after obtaining the electrical system, the controller
- the module 80 selects different control parameters according to the type of the charging and discharging plug 20 and the grid system, and controls the bidirectional DC/AC module.
- the bidirectional DC/DC module 30 regulates the DC power according to the battery voltage and finally delivers it to the power battery 10.
- the off-grid discharge plug is a two-, three-, and four-core socket that is connected to the charging plug and can output single-phase, three-phase, four-phase electrical systems. Electricity.
- the integrated control system of the electric vehicle can realize each according to different working modes Unified switching of system working status, coordinated control of various discrete systems of vehicles, strong compatibility, and with cooling system to meet the heat dissipation requirements of high-power operation, can meet the different functional requirements and expansion of electric vehicles, and has good adaptability.
- the system is compatible with the requirements of electric vehicle drive, charging and external discharge functions, and can meet the requirements of high power output. Any process or method description in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code that includes one or more executable instructions for implementing the steps of a particular logical function or process.
- a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by the instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
- computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
- the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method proceeds to obtain the program electronically and then store it in computer memory.
- portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
- multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented with any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
- each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
- the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
- the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
一种电动汽车及其集成控制系统。该集成控制系统包括:动力电池(10);高压配电箱(90),其与动力电池相连;驱动及充放电集成控制器(70),其通过高压配电箱与动力电池相连,并且分别与电机和充放电插座相连,用于在电动汽车处于驱动模式时驱动电机;辅助高压器件,其通过高压配电箱与动力电池相连;第一DC/DC模块(300),其通过高压配电箱与动力电池相连;控制器,其与高压配电箱相连,用于控制高压配电箱以在驱动及充放电集成控制器、辅助高压器件和第一DC/DC模块上电之前通过高压配电箱进行预充电。该集成控制系统可以根据工作模式的不同实现各系统工作状态的统一切换,协调控制车辆的各分立系统,兼容性强。
Description
电动汽车及其集成控制系统 技术领域
本发明涉及电动汽车技术领域, 特别涉及一种电动汽车及其集成控制系统。 背景技术
随着科技的发展, 环保节能的电动汽车正在扮演着取代燃油车的角色, 然而电动 汽车的普及还面临着一些问题, 其中高的续航里程和快捷的充电技术, 已成为电动汽 车推广的一大难题。
目前, 电动汽车大多采用大容量的电池, 虽然可以提高电动汽车的续航能力, 但 同样大容量的电池又带来了充电时间过长的问题。 虽然专业的直流充电站可以快速的 为电池进行充电, 但高额的成本和较大占地面积等问题使得这种基础设施的普及还面 临着一定的难度, 同时又由于车辆的空间有限, 车载充电器受到体积的制约而无法满 足充电功率。
现在市场上所采取的充电方案有以下几种:
方案 ( 1 ) : 如图 1和图 2所示, 此方案中的车载充放电装置主要包括三相电源变 压器 1 '、 六个晶闸管元件组成三相桥式电路 2'、 恒压控制装置 AUR和恒流控制装置 AC , 但是该方案严重浪费空间和成本。
方案(2 ) : 如图 3所示, 此方案中的车载充放电装置为适应单 /三相充电而安装两 个充电插座 15 '、 16' , 增加了成本; 电机驱动回路包含电感 L1 '和电容 C1 '组成的滤波 模块, 在电机驱动时, 三相电流经过滤波模块产生损耗, 是对电池电量的浪费; 该方 案充放电工作时逆变器 13 '对交流电进行整流 /逆变, 整流 /逆变后电压不可调节, 适用 电池工作电压范围窄。
综上所述, 目前市场上所采取的交流充电技术大多采用单项充电技术, 该技术存 在充电功率小、 充电时间长、 硬件体积较大、 功能单一、 受限于不同地区电网的电压 等级限制等缺点。
作为电动汽车核心组成部分的电机驱动系统、 动力电池充电系统等方面技术进步 也日新月异, 传统的电动汽车中电机驱动系统作为一个独立的系统, 拥有独立的功率 变换模块、 控制模块等, 只需保证车辆行驶时的电机驱动要求及部分整车要求即可。 动力电池充电系统一般分为车载交流充电系统及快速直流充电系统, 车载交流充电系 统拥有功率变换模块、 控制模块等, 可以较小功率给动力电池充电; 快速直流充电系
统只需车辆侧有相应配电电路、 动力电池管理系统进行协助控制, 但是充电设施需要 庞大的功率变换模块等设备。 对于装载较大能量动力电池的电动汽车, 为了兼顾充电 的便利性、 快速性, 都需安装这两种充电系统。 目前随着技术的不断进步及降低成本 的迫切需求, 电动汽车的电机驱动系统、 充电系统、 甚至连对外放电的逆变系统等也 在逐步向集成化、 统一化发展, 从共用控制模块到包括功率变换模块的集成, 形成统 一的整体。
但是, 这种系统由于集成了大量的功能, 系统复杂性大幅增加, 与车辆其他系统 配合面临严峻挑战, 随之而来的互相干扰、 功能切换安全、 散热需求等问题也有很大 不同, 传统的各系统独立处理的模式已不能满足要求。
发明内容
本发明的目的旨在至少解决上述技术缺陷之一。
为此, 本发明的第一个目的在于提供一种电动汽车的集成控制系统, 该系统避免 了干扰, 且安全性更高。 本发明的第二个目的在于提供一种电动汽车。
为实现上述目的, 本发明第一方面的实施例提供一种电动汽车的集成控制系统, 包括: 动力电池; 高压配电箱, 所述高压配电箱与所述动力电池相连; 驱动及充放电 集成控制器, 所述驱动及充放电集成控制器通过所述高压配电箱与所述动力电池相连, 且所述驱动及充放电集成控制器分别与电机和充放电插座相连, 所述驱动及充放电集 成控制器用于在所述电动汽车处于驱动模式时驱动所述电机, 并在所述电动汽车处于 充放电模式时通过所述充放电插座对所述动力电池进行充放电; 辅助高压器件, 所述 辅助高压器件通过所述高压配电箱与所述动力电池相连; 第一 DC/DC模块, 所述第一 DC/DC模块通过所述高压配电箱与所述动力电池相连; 控制器, 所述控制器与所述高 压配电箱相连, 用于控制所述高压配电箱以在所述驱动及充放电集成控制器、 所述辅 助高压器件和所述第一 DC/DC模块上电之前通过所述高压配电箱进行预充电。
根据本发明实施例的电动汽车的集成控制系统, 根据工作模式的不同, 可以实现 各系统工作状态的统一切换, 协调控制车辆的各分立系统, 兼容性强, 并且由于具有 冷却系统, 满足大功率工作时的散热要求, 可以满足电动汽车不同功能需求及扩展, 具有良好的适应性。 该系统实现对电动汽车驱动、 充电、 对外放电功能要求的兼容, 并能满足大功率输出的要求。
本发明第二方面的实施例提供一种电动汽车, 包括本发明第一方面实施例的集成
控制系统。
根据本发明实施例的电动汽车, 根据工作模式的不同, 可以实现各系统工作状态 的统一切换, 协调控制车辆的各分立系统, 兼容性强, 并且由于具有冷却系统, 满足 大功率工作时的散热要求, 可以满足电动汽车不同功能需求及扩展, 具有良好的适应 性。 该系统实现对电动汽车驱动、 充电、 对外放电功能要求的兼容, 并能满足大功率 输出的要求。
本发明附加的方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变 得明显, 或通过本发明的实践了解到。 附图说明
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1为现有的一种车载充放电装置的电路图;
图 2为现有的一种车载充放电装置的控制示意图;
图 3为现有的另一种车载充放电装置的电路图;
图 4为根据本发明实施例的驱动及充放电集成控制系统示意图;
图 5是集成控制系统高压配电系统示意图;
图 6是集成控制系统工作原理示意图;
图 7为根据本发明一个实施例的用于电动汽车的动力系统的方框示意图; 图 8为根据本发明一个实施例的用于电动汽车的动力系统的拓朴图;
图 9为根据本发明一个实施例的控制器模块的方框示意图;
图 10为根据本发明一个示例的控制器模块中的 DSP与外围硬件电路接口示意图; 图 1 1为根据本发明一个实施例的用于电动汽车的动力系统的功能判断流程图; 图 12为根据本发明一个实施例的用于电动汽车的动力系统进行电机驱动控制功能 的方框示意图;
图 13为根据本发明一个实施例的用于电动汽车的动力系统充放电功能启动判断流 程图;
图 14为根据本发明一个实施例的用于电动汽车的动力系统在充电工作模式下的控 制流程图;
图 15为根据本发明一个实施例的用于电动汽车的动力系统在电动汽车充电结束时 的控制流程图;
图 16为根据本发明一个实施例的电动汽车与供电设备之间连接电路图; 图 17为根据本发明另一个实施例的采用两个动力系统并联对电动汽车进行充电的 示意图;
图 18为 #居本发明一个示例的充放电插座的示意图;
图 19为根据本发明另一个示例的离网带载放电插头的示意图;
具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终 相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参 考附图描述的实施例是示例性的, 仅用于解释本发明, 而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。 为了筒 化本发明的公开, 下文中对特定例子的部件和设置进行描述。 当然, 它们仅仅为示例, 并且目的不在于限制本发明。此外, 本发明可以在不同例子中重复参考数字和 /或字母。 这种重复是为了筒化和清楚的目的, 其本身不指示所讨论各种实施例和 /或设置之间的 关系。 此外, 本发明提供了的各种特定的工艺和材料的例子, 但是本领域普通技术人 员可以意识到其他工艺的可应用于性和 /或其他材料的使用。 另外, 以下描述的第一特 征在第二特征之 "上" 的结构可以包括第一和第二特征形成为直接接触的实施例, 也 可以包括另外的特征形成在第一和第二特征之间的实施例, 这样第一和第二特征可能 不是直接接触。
在本发明的描述中, 需要说明的是, 除非另有规定和限定, 术语 "安装" 、 "相 连" 、 "连接" 应做广义理解, 例如, 可以是机械连接或电连接, 也可以是两个元件 内部的连通, 可以是直接相连, 也可以通过中间媒介间接相连, 对于本领域的普通技 术人员而言, 可以根据具体情况理解上述术语的具体含义。
参照下面的描述和附图, 将清楚本发明的实施例的这些和其他方面。 在这些描述 和附图中, 具体公开了本发明的实施例中的一些特定实施方式, 来表示实施本发明的 实施例的原理的一些方式, 但是应当理解, 本发明的实施例的范围不受此限制。 相反, 本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、 修改和 等同物。
如图 4至图 6 , 本发明实施例的电动汽车的集成控制系统包括动力电池 10、 高压 配电箱 90、 辅助高压器件、 第一 DC/DC模块 300、 控制器 80。 高压配电箱 90与动力
电池 10相连; 驱动及充放电集成控制器 70 , 驱动及充放电集成控制器 70通过高压配 电箱 90与动力电池 10相连, 且驱动及充放电集成控制器 70分别与电机和充放电插座 相连。 驱动及充放电集成控制器 70用于在电动汽车处于驱动模式时驱动电机, 并在电 动汽车处于充放电模式时通过充放电插座对动力电池进行充放电。
辅助高压器件,辅助高压器件通过高压配电箱 90与动力电池 10相连。第一 DC/DC 模块 300通过高压配电箱 70与动力电池 10相连。 控制器 80与高压配电箱 70相连, 用于控制高压配电箱 90以在驱动及充放电集成控制器 70、辅助高压器件和第一 DC/DC 模块上电之前通过高压配电箱进行预充电。
高压配电箱 70包括: 第一预充控制模块和与第一预充控制模块并联的第一开关, 第一预充控制模块和第一开关 K1的一端与动力电池的一端相连,第一预充控制模块和 第一开关的另一端与驱动及充放电集成控制器的第一端相连; 第二预充控制模块和与 第二预充控制模块并联的第二开关 K2 , 第二预充控制模块和第二开关 K2的一端与动 力电池的一端相连,第二预充控制模块和第二开关 K2的另一端与第一 DC/DC模块 300 的第一端相连; 第三预充控制模块和与第三预充控制模块并联的第三开关 K3 ; 第三预 充控制模块和第三开关 K3的一端与动力电池的一端相连,第三预充控制模块和第三开 关 K3的另一端与辅助高压器件的第一端相连; 第四开关 K4, 第四开关 K4的一端与 动力电池的另一端相连,且第四开关 K4分别与驱动及充放电集成控制器、第一 DC/DC 模块和所示辅助高压器件的第二端相连。 第五开关 K5 , 第五开关 K5的一端与动力电 池的一端相连, 且第五开关与驱动及充放电集成控制器的第三端相连。
图 5中 Kl l、 K21、 K31预充回路中分别使用了三个预充电阻,可以根据实际情况, 若对预充时间要求较低, 而对成本及结构要求较高, 可以合并为一个预充电阻, 通过 动力电池管理系统软件设置不同的预充时间及死区时间来实现相同的功能。
当电动汽车处于驱动模式或充放电模式时, 控制器通过第一预充控制模块对驱动 及充放电集成控制器进行预充电同时闭合第四开关 Κ4 , 当驱动及充放电集成控制器的 母线电压与动力电池的电压成预设倍数时, 控制第一预充控制模块关断并闭合第一开 关。
在闭合第一开关 K1之后,控制器还通过第三预充控制模块对辅助高压器件进行预 充电, 当辅助高压器件的母线电压与动力电池的电压成预设倍数时, 控制第三预充控 制模块关断并闭合第三开关 Κ3。
当电动汽车处于驱动模式时, 在闭合第三开关之后, 控制器还通过第二预充控制 模块对第一 DC/DC模块 300进行预充电, 当第一 DC/DC模块 300的母线电压与动力
电池 10的电压成预设倍数时, 控制第二预充控制模块关断并闭合第二开关 K2。
下面结合图 5对高压配电箱的工作原理进行详细描述。
驱动模式: 车辆启动系统发送启动命令, 动力电池管理系统 10检测动力电池状态 良好后控制高压配电系统相应动作, 首先吸合动力电池负极接触器 Κ5 , 再吸合主预充 接触器 K11 , 对驱动及充放电控制器进行预充, 驱动及充放电控制器检测并反馈动力 母线电压给动力电池管理系统, 当动力电池管理系统判断驱动及充放电控制器母线电 压达到动力电池电压的 90% (可用电压差 50V代替) 以内时确定为预充完成, 控制主 接触器 K1吸合, 然后断开主预充接触器 K11 , 并发送相应接触器状态及预充完成允许 驱动命令, 驱动及充放电控制器收到上述状态及命令并检测母线电压在正常工作电压 内后即可根据油门深度等信号驱动车辆行驶; 随后, 动力电池管理系统控制辅助预充 接触器 Κ31吸合, 对 EPS控制器、 空压机控制器等进行预充, EPS控制器等检测并反 馈母线电压值给动力电池管理系统, 当当动力电池管理系统判断其母线电压达到动力 电池电压的 90% (可用电压差 50V代替)以内时确定为预充完成, 控制辅助接触器 K3 吸合, 然后断开辅助预充接触器 K31 , 并发送相应接触器状态及预充完成允许命令, 辅助动力回路预充完成; 随后动力电池管理系统控制 DC 预充接触器 K21 吸合, 对 DC-DC变换器进行预充, DC-DC变换器检测并反馈母线电压给动力电池管理系统, 当 动力电池管理系统判断 DC-DC变换器母线电压达到动力电池电压的 90% (可用电压差 50V代替) 以内时确定为预充完成, 控制 DC接触器 K2吸合, 然后断开 DC预充接触 器 K21 , 并发送相应接触器状态及预充完成允许命令; 整个高压配电系统配电完成。
充放电模式: 首先, 驱动及充放电控制器根据相应车辆设置或充电枪连接触发进 入充放电模式, 发送放电或充电准备就绪状态, 动力电池管理系统收到此状态后检测 动力电池状态符合充电或放电要求即开始进行预充,首先吸合动力电池负极接触器 K5 , 再吸合主预充接触器 K1 1 , 对驱动及充放电控制器进行预充, 驱动及充放电控制器检 测并反馈动力母线电压给动力电池管理系统, 当动力电池管理系统判断驱动及充放电 控制器母线电压达到动力电池电压的 90% (可用电压差 50V代替) 以内时确定为预充 完成, 控制主接触器 K1吸合, 然后断开主预充接触器 K11 , 并发送相应接触器状态及 预充完成允许充放电命令; 随后动力电池管理系统控制 DC预充接触器 K21吸合, 对 DC-DC变换器进行预充, DC-DC变换器检测并反馈母线电压给动力电池管理系统, 当 动力电池管理系统判断 DC-DC变换器母线电压达到动力电池电压的 90% (可用电压差 50V代替) 以内时确定为预充完成, 控制 DC接触器 K2吸合, 然后断开 DC预充接触 器 K21 , 并发送相应接触器状态及预充完成允许命令; 整个高压配电系统配电完成。
本发明实施例的电动汽车的集成控制系统, 还包括: 冷却模块, 冷却模块用于对 集成控制系统进行冷却。
下面对本发明实施例的电动汽车的集成控制系统进行描述。
驱动时,由 BCM控制负责整车的防盗及启动动低压系统的启动系统发送启动相关 命令给动力电池管理系统、 驱动及充放电集成控制器 70等相关模块, 动力电池管理系 统收到启动命令后进入驱动模式并在检测动力电池状态良好即吸合图 5中 Kl l、 Κ21、 K31 等预充接触器及 Κ5 负极接触器, 各高压用电器 (驱动及充放电控制器 70、 DC-DC30, 空调、 EPS 等) 开始预充并发送相应高压回路电压值, 待动力电池管理系 统判断各高压用电器电压值达到预充完成条件后控制相应接触器吸合接通高压动力回 路。 DC-DC30把动力电池高压直流电转换为整车低压电供给整车低压电器及蓄电池, 同时, 辅助控制器采集整车信号, 控制冷却系统工作, 驱动及充放电控制器根据接收 到的辅助控制器检测的加速踏板、 制动踏板、 档位等整车信号综合处理计算出相应的 电机扭矩需求值从而通过把直流电逆变为交流电控制电机运行驱动车辆行驶, 组合仪 表等显示系统显示整车运行状况。
充电时, 当充电枪连接到车辆充电口, 驱动及充放电集成控制器 70检测到充电枪 连接, 输出相应连接信号给 BCM, BCM 控制低压充电系统启动, 并发送相应状态, 动力电池管理系统根据 BCM的命令状态进入充电模式。在检测动力电池状态良好后根 据驱动及充放电控制器的状态进行相应动作, 驱动及充放电控制器检测通过充电枪与 充电设备的交互情况判断充电连接是否完成, 在判断连接完成后发送相应状态信号给 动力电池管理系统, 动力电池管理系统在收到相应状态后开始吸合图 5 中 Kl l、 K21 预充接触器及 Κ5负极接触器进行预充,相应的驱动及充放电集成控制器 70、 DC-DC30 开始发送动力回路电压值, 待动力电池管理系统判断各高压用电器电压值达到预充完 成条件后控制相应接触器吸合接通高压动力回路, 并发送相应状态信息。 DC-DC30将 动力电池高压直流电转换为整车低压电供给整车低压电器及蓄电池; 驱动及充放电控 制器在检测到高压动力回路连接完成电压正常后启动功率模块工作, 辅助控制器检测 充电口状态并控制冷却系统工作, 同时显示系统的组合仪表显示整车的各种充电信息。
对外放电时, 在 BCM控制整车低压系统启动后, 通过组合仪表或者其他触发信号 设置启动对外放电命令, 动力电池管理系统根据命令状态进入对外放电模式, 在检测 动力电池状态良好后开始吸合图 5中 Κ11、Κ21预充接触器及 Κ5负极接触器进行预充, 相应的驱动及充放电控制器、 DC-DC开始发送动力回路电压值, 待动力电池管理系统 判断各高压用电器电压值达到预充完成条件后控制相应接触器吸合接通高压动力回
路, 并发送相应状态信息。 DC-DC30将动力电池高压直流电转换为整车低压电供给整 车低压电器及蓄电池; 驱动及充放电控制器检测放电口对外放电枪连接状况, 在判断 动力回路及放电设备连接完成后根据设置的对外放电要求开始启动对外放电, 同时组 合仪表显示相应的整车对外放电信息。
如图 7所示,本发明一个实施例提出的用于电动汽车的动力系统包括动力电池 10、 充放电插座 20、 双向 DC/DC模块 30、 驱动控制开关 40、 双向 DC/AC模块 50、 电机 控制开关 60、 充放电控制模块 70和控制器模块 80。
其中, 双向 DC/DC模块 30的第一直流端 al与动力电池 10的另一端相连, 双向 DC/DC模块 30的第二直流端 a2与动力电池 10的一端相连, 并且第一直流端 al为双 向 DC/DC模块 30输入及输出的共用直流端。 驱动控制开关 40的一端与动力电池 10 的一端相连, 驱动控制开关 40的另一端与双向 DC/DC模块 30的第三直流端 a3相连。 在本发明的一个实施例中, 驱动控制开关 40与图 5中的开关 K4相同。 双向 DC/AC模 块 50的第一直流端 bl与驱动控制开关 40的另一端相连, 双向 DC/AC模块 50的第二 直流端 b2与动力电池 10的另一端相连, 电机控制开关 60的一端与双向 DC/AC模块 50的交流端 c相连, 电机控制开关 60的另一端与电机 M相连。 充放电控制模块 70的 一端与双向 DC/AC模块 50的交流端 c相连, 充放电控制模块 70的另一端与充放电插 座 20相连。 控制器模块 80与驱动控制开关 40、 电机控制开关 60和充放电控制模块 70相连, 控制器模块 80用于根据动力系统当前所处的工作模式对驱动控制开关 40、 电机控制开关 60和充放电控制模块 70进行控制。
进一步地, 在本发明的实施例中, 动力系统当前所处的工作模式可以包括驱动模 式和充放电模式。 当动力系统当前所处的工作模式为驱动模式时, 控制器模块 80控制 驱动控制开关 40闭合以关闭双向 DC/DC模块 30,并控制电机控制开关 60闭合以正常 驱动电机 M, 以及控制充放电控制模块 70断开。需要说明的是,在本发明的实施例中, 虽然图 5中电机控制开关 60包括了与电机三相输入相连的三个开关, 但是在本发明的 其他实施例中也可包括与电机两相输入相连的两个开关, 甚至一个开关。 在此只要能 实现对电机的控制即可。 因此, 其他实施例在此不再赘述。 当动力系统当前所处的工 作模式为充放电模式时, 控制器模块 80控制驱动控制开关 40断开以启动双向 DC/DC 模块 30, 并控制电机控制开关 60断开以将电机 M移出, 以及控制充放电控制模块 70 闭合, 使外部电源可以正常地为动力电池 10进行充电。 双向 DC/DC模块 30的第一直 流端 al和第三直流端 a3与直流母线的正负端相连。
在本发明的一个实施例中, 如图 8 所示, 用于电动汽车的动力系统还包括第一预
充控制模块 101 , 第一预充控制模块 101的一端与动力电池 10的一端相连, 第一预充 控制模块 101的另一端与双向 DC/DC模块 30的第二直流端 a2相连, 第一预充控制模 块 101用于在为双向 DC/DC模块 30中的电容 C1及母线电容 CO进行预充电, 其中, 母线电容 CO连接在双向 DC/DC模块 30的第一直流端 al和双向 DC/DC模块 30的第 三直流端 a3之间。 其中, 第一预充控制模块 101包括第一电阻 Rl、 第一开关 K1和第 二开关 K2。 在本发明的一个实施例中, 第一开关 K1与图 5所示的开关 K1 1相同, 第 二开关 Κ2与图 5所示的开关 K1相同。第一电阻 R1的一端与第一开关 K1的一端相连, 第一电阻 R1的另一端与动力电池 10的一端相连,第一开关 K1的另一端与双向 DC/DC 模块 30的第二直流端 a2相连, 第一电阻 R1和第一开关 K1 串联之后与第二开关 K2 并联, 其中, 控制器模块 80在动力系统启动时控制第一开关 K1闭合以对双向 DC/DC 模块 30中的电容 C 1及母线电容 CO进行预充电, 并在母线电容 CO的电压与动力电池 10的电压成预设倍数时, 控制第一开关 K1断开同时控制第二开关 K2闭合。
如图 8所示, 双向 DC/DC模块 30进一步包括第一开关管 Ql、 第二开关管 Q2、 第一二极管 Dl、 第二二极管 D2、 第一电感 L1和第一电容 Cl。 其中, 第一开关管 Q1 和第二开关管 Q2相互串联连接, 相互串联的第一开关管 Q1和第二开关管 Q2连接在 双向 DC/DC模块 30的第一直流端 al和第三直流端 a3之间,第一开关管 Q1和第二开 关管 Q2受控制器模块 80的控制,并且第一开关管 Q1和第二开关管 Q2之间具有第一 节点 A。 第一二极管 D1与第一开关管 Q1反向并联, 第二二极管 D2与第二开关管 Q2 反向并联, 第一电感 L1的一端与第一节点 A相连, 第一电感 L1的另一端与动力电池 10的一端相连。 第一电容 C1的一端与第一电感 L1的另一端相连, 第一电容 C1的另 一端与动力电池 10的另一端相连。
此外, 在本发明的实施例中, 如图 8 所示, 该用于电动汽车的动力系统还包括漏 电流削减模块 102, 漏电流削减模块 102连接在双向 DC/DC模块 30的第一直流端 al 和双向 DC/DC模块 30的第三直流端 a3之间。 具体而言, 漏电流削减模块 102包括第 二电容 C2和第三电容 C3 , 第二电容 C2的一端与第三电容 C3的一端相连, 第二电容 C2的另一端与双向 DC/DC模块 30的第一直流端 al相连, 第三电容 C3的另一端与双 向 DC/DC模块 30的第三直流端 a3相连,其中, 第二电容 C2和第三电容 C3之间具有 第二节点 B。
通常由于无变压器隔离的逆变和并网系统, 普遍存在漏电流大的难点。 因此, 该 动力系统在直流母线正负端增加漏电流削减模块 102 , 能有效减小漏电流。 漏电流削减 模块 102包含两个同类型电容 C2和 C3 , 其安装在直流母线正负端和三相交流中点电
位之间, 在本系统工作时能将产生的高频电流反馈到直流侧, 即能有效降低了系统在 工作时的高频漏电流。
在本发明的一个实施例中, 如图 8 所示, 该用于电动汽车的动力系统还包括滤波 模块 103、 滤波控制模块 104、 EMI模块 105和第二预充控制模块 106。
其中, 滤波模块 103连接在双向 DC/ AC模块 50和充放电控制模块 70之间。 具体 而言, 如图 5所示, 滤波模块 103包括电感 LA、 LB、 Lc和电容 C4、 C5、 C6, 而双向 DC/AC模块 50可以包括六个 IGBT, 上下两个 IGBT之间的连接点分别通过电力总线 与滤波模块 103和电机控制开关 60相连接。
如图 8所示, 滤波控制模块 104连接在第二节点 B和滤波模块 103之间, 并且滤 波控制模块 104受控制器模块 80控制, 控制器模块 80在动力系统当前所处的工作模 式为驱动模式时控制滤波控制模块 104断开。 其中, 滤波控制模块 104可以为电容切 换继电器, 由接触器 K10组成。 EMI模块 105连接在充放电插座 20和充放电控制模块 70之间。 需要说明的是, 在图 8中接触器 klO的位置仅是示意性的。 在本发明的其他 实施例中,接触器 K10还可设在其他位置, 只要能够实现对滤波模块 103的关断即可。 例如, 在本发明的另一个实施例中, 该接触器 K10也可以连接在双向 DC/AC模块 50 和滤波模块 103之间。
第二预充模块 106与充放电控制模块 70并联, 第二预充控制模块 106用于对滤波 模块 103中的电容 C4、 C5、 C6进行预充电。 其中, 第二预充控制模块 106包括相互 串联的三个电阻 RA、 RB、 Rc和三相预充开关 K9。
在本发明的一个实施例中, 如图 8所示, 充放电控制模块 70进一步包括三相开关
Κ8和 /或单相开关 Κ7, 用于实现三相充放电或单相充放电。
也就是说, 在本发明的实施例中, 当动力系统启动时, 控制器模块 80控制第一开 关 K1闭合以对双向 DC/DC模块 30中的第一电容 C1及母线电容 CO进行预充电, 并 在母线电容 CO的电压与动力电池 10的电压成预设倍数时, 控制第一开关 K1 断开同 时控制第二开关 K2闭合。 这样, 通过双向 DC/DC模块 30和直接连接在电力总线即直 流母线之间的大容量母线电容 CO组成实现电池低温激活技术的主要部件,用于将动力 电池 10的电能通过双向 DC/DC模块 30充到大容量母线电容 C0中, 再将大容量母线 电容 C0中储存的电能通过双向 DC/DC模块 30充回动力电池 10 (即对动力电池充电 时) , 对动力电池 10循环充放电使得动力电池的温度上升到最佳工作温度范围。
当动力系统当前所处的工作模式为驱动模式时, 控制器模块 80控制驱动控制开关
40闭合以关闭双向 DC/DC模块 30, 并控制电机控制开关 60闭合以正常驱动电机 M,
以及控制充放电控制模块 70断开。 这样, 通过双向 DC/AC模块 50把动力电池 10的 直流电逆变为交流电并输送给电机 M, 可以利用旋转变压解码器技术和空间矢量脉宽 调制 ( SVPWM )控制算法来控制电机 M的运行。
当动力系统当前所处的工作模式为充放电模式时, 控制器模块 80控制驱动控制开 关 40断开以启动双向 DC/DC模块 30,并控制电机控制开关 60断开以将电机 M移出, 以及控制充放电控制模块 70闭合, 使外部电源例如三相电或者单相电通过充放电插座 20可以正常地为动力电池 10进行充电。 即言, 通过检测充电连接信号、 交流电网电制 和整车电池管理的相关信息, 借用双向 DC/AC模块 50进行可控整流功能, 并结合双 向 DC/DC模块 30, 可实现单相 \三相电对车载动力电池 10的充电。
根据本发明实施例的用于电动汽车的动力系统, 能够实现使用民用或工业交流电 网对电动汽车进行大功率交流充电, 使用户可以随时随地高效、 快捷的充电, 节省充 电时间, 同时无需恒压控制装置和恒流控制装置, 节省空间和成本, 并且适用电池工 作电压范围宽。
在本发明的一个实施例中, 如图 9所示, 控制器模块 80包括控制板 201和驱动板 202。其中,控制板 201上的控制模块采用两个高速数字信号处理芯片(DSP1和 DSP2 ) 进行控制。 控制板 201上的控制模块与整车信息接口 203相连, 并相互进行信息交互。 控制板 201上的控制模块接收驱动板 202上的驱动模块输出的母线电压采样信号、 IPM 保护信号以及 IGBT温度采样信号等, 同时输出脉冲宽度调制 PWM信号至驱动模块。
其中, 如图 10所示, DSP1主要用于控制, DSP2用于信息采集。 DSP1 中的采样 单元输出油门信号、 母线电压采样信号、 刹车信号、 直流侧电压采样信号、 电机电流 霍尔 V相信号、 电机电流霍尔 W相信号、 充电控制电流霍尔 U相信号、 充电控制电 流霍尔 V相信号、 充电控制电流霍尔 W相信号、 直流电流霍尔信号、 逆变电压 U相 信号、 逆变电压 V相信号、 逆变电压 W相信号、 电网电压 U相信号、 电网电压 V相 信号、 电网电压 W相信号、逆变 U相捕获信号、 电网 U相捕获信号等采样信号, DSP1 中的开关控制单元输出电机 A相开关信号、 电机 B相开关信号、 电网 A相开关信号、 电网 B相开关信号、 电网 C相开关信号、三相预充开关信号和电容切换继电器信号等, DSP1中的驱动单元输出 相 PWM1信号、 A相 PWM2信号、 B相 PWM1信号、 B相 PWM2信号、 C相 PWM1信号、 C相 PWM2信号、 DC相 PWM1信号、 DC相 PWM2 信号和 IPM保护信号等, DSP1还具有旋变信号输出控制、 串行通信、 硬件保护、 CAN 通讯和档位控制等功能。 DSP2中的采样单元输出供电电源监测信号、 电源监测信号、 油门 1信号、 刹车 2信号、 油门 2信号、 刹车 1信号、 电机模拟温度信号、 漏电传感
器信号、 散热器温度信号、 直流侧电感温度采样信号、 V相电感温度采样信号、 U相 电感温度采样信号、 W相电感温度采样信号、 放电 PWM 电压采样信号、 倾角传感器 读信号、 倾角传感器片选信号、 IGBT温度采样 W相信号、 IGBT温度采样 U相信号、 IGBT温度采样升降压相信号、 IGBT温度采样 V相信号、 电机温度开关信号、 单 /三相 切换开关信号等, DSP2 中的充放电控制单元输出充放电开关信号、 休眠信号、 放电 PWM信号、 电池管理器 BMS信号、 充放电输出控制信号、 CP信号和 CC信号等, 并 且 DSP2还具有 CAN通讯、 串行通信功能。
综上所述, 在本发明实施例提出的用于电动汽车的动力系统集电机驱动功能、 车 辆控制功能、 交流充电功能、 并网供电功能、 离网带载功能、 车辆对车辆充电功能于 一体。 并且, 该动力系统不是通过把各种功能模块筒单的物理组合为一体, 而是在电 机驱动控制系统的基础上, 通过添加一些外围器件, 实现系统的功能多样化, 最大化 节省空间和成本, 提高功率密度。
具体而言, 用于电动汽车的动力系统的功能筒单介绍如下:
1、 电机驱动功能: 通过双向 DC/AC模块 50把动力电池 10的直流电逆变为交流 电并输送给电机 M, 可以利用旋转变压解码器技术和空间矢量脉宽调制( SVPWM )控 制算法来控制电机 M的运行。
也就是说, 当本动力系统得电工作时, 如图 1 1所示, 该系统功能判断流程包括以 下步骤:
S901 , 动力系统得电。
S902 , 判断充电连接信号。 如果有充电连接信号, 则转至步骤 S903 , 如果没有则 转至步骤 904。
S903 , 进入充放电控制流程。 在本发明的一个实施例中, 还需要对油门、 档位及 刹车信号进行判断。 当油门为 0、 档位为 N档、 手刹、 充电连接即 CC信号有效时(即 充放电插座 20连接有充电连接装置) , 则进入充放电控制流程。 S904, 进入车辆控制 流程。
在步骤 S904进入车辆控制流程后, 控制器模块 80控制电机控制开关 60闭合, 通 过 CAN通讯通知电池管理器 108 , 电池管理器 108控制高压配电箱 90对 C1和 CO进 行预充, 控制器模块 80检测母线电压 187, 判断预充是否成功, 成功后通知电池管理 器 108闭合驱动控制开关 40 , 该系统进入驱动模式, 同时控制器模块 80对整车信息进 行采集, 通过综合判断处理对电机 M进行驱动。
进行电机驱动控制功能: 如图 12所示, 控制器模块 80发送 PWM信号, 对双向
DC/AC模块 50进行控制, 把动力电池 10的直流电逆变为交流电并输送给电机 Μ , 控 制器模块 80通过旋转变压器解算转子位置, 并采集母线电压和电机 BC相电流使电机 Μ能精准的运行。 即言, 控制器模块 80根据电流传感器采样的电机 BC相电流信号和 旋转变压器的反馈信息对 PWM信号进行调节, 最终使电机 Μ能精准的运行。
这样, 通过通信模块对整车油门、 刹车以及档位信息, 判断当前运行工况, 实现 车辆的加速、 减速和能量回馈功能, 使得整车在各种工况下下安全可靠运行, 保证车 辆的安全性、 动力性和平顺性。
2、 充放电功能
( 1 ) 充放电功能连接确认和启动: 如图 13 所示, 该动力系统充放电功能启动判 断流程包括如下步骤:
51101, 充放电连接装置即充放电插座物理连接完成, 并且电源正常。
51102, 供电设备检测充电信号 CC连接是否正常。 如果是, 则进入步骤 S1103; 如果否, 则返回步骤 S1102, 继续检测。
51103, 供电设备检测 CP检测点的电压是否为 9V。 如果是, 则进入步骤 S1106; 如果否, 返回步骤 S1102, 继续检测。 其中, 9V是一个预设示例值。
51104, 控制器模块检测充电信号 CC连接是否正常。 如果是, 则进入步骤 S1105; 如果否, 则返回步骤 S1104, 继续检测。
51105, 拉低输出充电连接信号、 充电指示灯信号。
51106, 进入充放电功能。
如图 14所示, 该动力系统在充电工作模式下的控制流程包括如下步骤:
51201, 判断系统得电后是否完全启动工作。 如果是, 则进入步骤 S1202; 如果否, 则返回步骤 S1201, 继续判断。
51202, 检测 CC检测点电阻值, 确定充电连接装置容量。
51203, 判断 CP检测点是否检测到固定占空比的 PWM信号。 如果是, 则进入步 骤 S1204; 如果否, 则进入步骤 S1205。
51204, 发送充电连接正常充电准备就绪报文, 收到 BMS充电允许、 充电接触器 吸合报文, 进入步骤 S1206。
51205, 充电连接故障。
51206, 控制器模块吸合内部开关。
S1207, 判断预设时间例如 1.5秒内检测到外充设备是否无 PWM波发送。 如果是, 则进入步骤 S1208; 如果否, 则进入步骤 S1209。
51208 , 判断为外部国标充电桩, 充电过程中不发送 PWM波。
51209, 向供电设备发送 PWM波。
51210, 判断预设时间例如 3 秒内检测交流输入是否正常。 如果是, 则进入步骤 S1213; 如果否, 则进入步骤 S1211。
S121 1 , 交流外充设备故障。
51212, 进行异常处理。
51213 , 进入充电阶段。
也就是说, 如图 13和图 14所示, 供电设备和控制器模块 80 自检无故障后, 根据 检测 CC信号电压值确定充电连接装置容量, 检测 CP信号确定是否完全连接, 充放电 连接装置完全连接确认后, 发送充电连接正常和充电准备就绪报文, 电池管理器 108 控制高压配电箱 90 闭合第一开关 K1 进行预充, 预充完成后断开 K1 , 吸合第二开关 K2, 控制器模块 80收到 BMS充电允许、 第二开关 K2吸合报文, 充放电准备就绪, 即可通过仪表设置功能, 如下: 交流充电功能(G to V, 电网对电动汽车) 、 离网带载 功能 (V to L, 电动汽车对负载) 、 并网功能 (V to G, 电动汽车对电网) 和车辆对车 辆充电功能 (V to V, 电动汽车对电动汽车) 。
( 2 )交流充电功能(G to V ): 该动力系统接收到仪表充电指令, 电池管理器 108 允许最大充电电流、 供电设备最大供电电流和充放电连接装置即充放电插座 20的额定 电流, 控制器模块 80判断三者中最小的充电电流, 自动选择充电相关参数。 并且, 该 动力系统通过电网电压采样 183对供电设备输送的交流电进行采样, 控制器模块 80通 过采样值计算出交流电电压有效值, 通过捕获来确定交流电频率, 根据电压值和频率 判断出交流电电制, 根据电网电制选取控制参数。 确定控制参数后, 控制器模块 80控 制第二预充模块 106中的 K9和滤波控制模块 104中的接触器 K10吸合,对 PWM直流 侧母线电容 C0进行充电, 控制器模块 80通过 187对母线电容的电压进行采样, 当电 容电压达到选定控制参数例如与动力电池的电压成预设倍数后再控制吸合三相开关 K8 , 同时断开 K9。 此时该动力系统根据预先选定参数, 控制器模块 80发送 PWM信 号,控制双向 DC/AC模块 50对交流电进行整流,再根据动力电池电压,控制双向 DC/DC 模块 30对电压进行调节, 最后把直流电输送给动力电池 10, 在此过程中, 控制器模块 80根据预先选定目标充电电流和电流采样 184反馈的相电流, 对整个动力系统进行闭 环的电流环调节, 最终实现对车载动力电池 10进行充电。 由此, 通过检测充电连接信 号、 交流电网电制和整车电池管理的相关信息, 借用双向 DC/AC模块 50进行可控整 流功能, 结合双向 DC/DC模块 30, 可实现单相 \三相电对车载动力电池 10的充电。
( 3 ) 离网带载功能 (V to L ) : 该动力系统接收到仪表 V to L指令, 首先判断动 力电池荷电状态 SOC是否在可以放电范围,如果允许放电,再根据指令选择输出电制, 根据充放电连接装置的额定电流, 智能选择输出最大输出功率并给定控制参数, 系统 进入控制流程。 首先控制器模块 80控制吸合三相开关 K8、 接触器 K10 , 根据电池电 压和给定的输出电压, 发送 PWM信号控制双向 DC/DC模块 30对电压进行调节, 达 到目标值后输送给双向 DC/AC模块 50把直流电逆变为交流电, 通过专用的充电插座 即可直接为用电设备供电。 在此过程中, 控制器模块 80根据电压采样 183反馈进行调 节, 保证负载安全可靠的工作。
即言, 系统上电, 当接到仪表的 V to L控制指令以及输出电制要求, 检测充电连 接信号和整车电池管理的相关信息, 根据电池的电压进行 DC/DC电压转换, 借用双向 DC/AC模块 50进行交流逆变功能, 输出稳定单相 \三相交流电压。
( 4 ) 并网供电功能 (V to G ) : 该动力系统接收到仪表 V to G指令, 首先判断动 力电池 SOC是否在可以放电范围, 如果允许放电, 再根据指令选择输出电制, 根据充 放电连接装置的额定电流, 智能选择输出最大输出功率并给定控制参数, 动力系统进 入控制流程。 首先控制器模块 80控制吸合三相开关 K8、 接触器 K10, 根据电池电压 和给定的输出电压, 发送 PWM信号控制双向 DC/DC模块 30对电压进行调节, 在经 过双向 DC/AC模块 50把直流电逆变为交流电, 根据预先选定放电电流目标值和电流 采样 184反馈的相电流, 对整个动力系统进行闭环的电流环调节, 实现并网发电。
也就是说, 动力系统上电, 当接到仪表的 V to G控制指令, 检测充电连接信号、 交流电网电制和整车电池管理的相关信息, 根据电池的电压进行 DC/DC电压转换, 借 用双向 DC/AC模块 50进行交流逆变, 实现单相\三相车辆对电网放电功能。
( 5 ) 车辆对车辆充电功能 (V to V ) : V to V功能需要使用专用的连接插头, 当 动力系统检测到充电连接信号 CC有效, 并检测到其电平确认为 VTOV专用充电插头, 等待仪表命令。 例如, 假设车辆 A向车辆 B充电, 则车辆 A设置为放电状态即设置为 离网带载功能, 车辆 B设置为交流充电状态, 车辆 A的控制器模块发送充电连接正常 充电准备就绪报文至电池管理器, 电池管理器控制充放电回路预充, 完成后发送充电 允许、 充电接触器吸合报文至控制器模块, 该动力系统进行放电功能, 并发送 PWM信 号。 车辆 B接收到充电指令后, 其系统检测到 CP信号, 判断为供电车辆 A已准备就 绪, 控制器模块 80发送连接正常报文至电池管理器, 电池管理器接到指令后完成预充 流程, 通知控制器模块, 整个动力系统充电准备就绪, 启动充电功能( G to V ) , 最后 实现车辆对充功能。
也就是说, 系统上电, 当接到仪表的 V to V控制指令, 检测充电连接信号和整车 电池管理的相关信息, 设置车辆为交流输出电源状态, 同时模拟充电盒输出 CP信号功 能, 实现和需要充电的车辆进行交互。 该车辆根据电池的电压进行 DC/DC电压转换, 借用双向 DC/AC模块 50进行交流逆变, 实现单相\三相车辆对车辆的对充功能。
在本发明的一个实施例中, 如图 15所示, 该动力系统在电动汽车充电结束时的控 制流程包括如下步骤:
51301 , 供电设备断开供电开关, 停止交流输出, 进入步骤 S 1305。
51302 , 控制器模块控制停止充电, 进行卸载, 进入下一步骤 S 1303。
51303 , 卸载完成后断开内部开关, 发送充电结束 4艮文。
S 1304 , 发送断电请求。
S 1305 , 充电结束。
其中, 如图 16所示, 供电设备 301通过供电插头 302与电动汽车 1000的车辆插 头 303相连, 从而实现对电动汽车 1000进行充电。 其中, 电动汽车的动力系统通过检 测点 3检测 CP信号和通过检测点 4检测 CC信号, 而供电设备通过检测点 1检测 CP 信号和通过检测点 2检测 CC信号。 并且, 在充电完成后, 均控制断开供电插头 302 和车辆插头 303中的内部开关 S2。
在本发明的另一个实施例中, 电动汽车还可以采用多个动力系统并联对动力电池 进行充电, 例如采用两个动力系统并联后对动力电池充电, 其中两个动力系统共用一 个控制器模块。
在本实施例中, 如图 17所示, 该电动汽车充电系统包括动力电池 10、 第一充电支 路 401、 第二充电支路 402和控制器模块 80。 其中, 第一充电支路 401和第二充电支 路 402均包括充放电插座 20、 双向 DC/DC模块 30、 母线电容 C0、 双向 DC/AC模块 50、 滤波模块 103、 充放电控制模块 70和第二预充模块 106。 并且, 第一充电支路 401 和第二充电支路 402还包括熔断器 FU。 动力电池 10通过第一预充控制模块 101与第 一充电支路相连, 动力电池 10还通过第一预充控制模块 101与第二充电支路相连, 控 制器模块 80分别与第一充电支路 401和第二充电支路 402相连, 其中控制器模块 80 用于接收到充电信号时, 控制电网分别通过第一充电支路 401和第二充电支路 402对 动力电池 10进行充电。
此外, 本发明的又一个实施例还提出了一种电动车辆的充电控制方法, 该充电控 制方法包括以下步骤:
步骤 S 1 , 控制器模块检测到第一充电支路通过充放电插座与供电设备相连, 且第
二充电支路通过充放电插座与供电设备相连时, 向电池管理器发送充电连接信号。 步骤 S2, 电池管理器接收到控制器模块发送的充电连接信号后, 检测并判断动力 电池是否需要充电, 当动力电池需要充电时, 执行下一步骤。
步骤 S3 , 电池管理器向控制器模块发送充电信号。
步骤 S4, 控制器模块接收到充电信号时, 控制电网分别通过第一充电支路和第二 充电支路对动力电池进行充电。
采用上述技术方案的电动汽车充电系统及其充电控制方法, 控制器模块通过控制 电网分别通过第一充电支路和第二充电支路对动力电池进行充电, 使得电动车的充电 功率增大, 从而大大缩短充电时间, 实现快速充电, 节约了时间成本。
在本发明的实施例中, 上述用于电动汽车的动力系统兼容范围广泛, 具有单相三 相切换功能, 并且适应不同国家电网电制标准。
具体地, 如图 18所示, 充放电插座 20具有两个充电插座 (例如美标和欧标) 切 换的功能。 该充放电插座 20包括单相充电插座 501例如美标、 三相充电插座 502例如 欧标、 两个高压接触器 K503、 Κ504组成。 单相充电插座 501与三相充电插座 502的 CC、 CP和 PE共用, 单相充电插座 501的!^、 N相线通过接触器 K503、 Κ504与三相 充电插座 503的 、 Β相连接。 控制器模块 80接收到单相充放电指令时, 控制接触器 Κ503、 Κ504闭合, 使三相充电插座 502的 Α、 Β相与单相充电插座 501的 L、 N相线 导通, 三相充电插座 502不做使用, 由三相充电插座 502的 A、 B相代替单相充电插 座 501的 1^、 N相线与充电插头连接, 控制器模块 80即可正常实现单相充电功能。
或者, 利用标准 7芯插座, 在 N线与 B相线之间增加单相开关 K7 , 控制器模块
80接收到单相充放电指令, 控制单相开关 K7吸合, 使 B相线和 N线连接, 由 A、 B 相作为 L、 N相线使用, 连接插头需使用专用连接插头, 或其 B、 C相不做使用的连接 插头。
也就是说,在本发明的实施例中,动力系统将根据控制器模块 80检测电网的电压, 通过计算判断电网的频率及单相 /三相, 根据计算信息和得出电制后, 控制器模块 80 根据充放电插头 20的类型和电网电制, 选择不同的控制参数, 控制双向 DC/AC模块
50对交流电压进行可控整流, 双向 DC/DC模块 30根据电池电压对直流电进行调压, 最后输送给动力电池 10。
在本发明的另一个示例中, 如图 19所示, 离网带载放电插头为两芯、 三芯和四芯 的插座, 与充电插头相连, 可以输出单相、 三相、 四相电制的电。
根据本发明实施例的电动汽车的集成控制系统根据工作模式的不同, 可以实现各
系统工作状态的统一切换, 协调控制车辆的各分立系统, 兼容性强, 并且由于具有冷 却系统, 满足大功率工作时的散热要求, 可以满足电动汽车不同功能需求及扩展, 具 有良好的适应性。 该系统实现对电动汽车驱动、 充电、 对外放电功能要求的兼容, 并 能满足大功率输出的要求。 流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为, 表示包括 一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、 片段 或部分, 并且本发明的优选实施方式的范围包括另外的实现, 其中可以不按所示出或 讨论的顺序, 包括根据所涉及的功能按基本同时的方式或按相反的顺序, 来执行功能, 这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和 /或步骤, 例如, 可以被认为是用 于实现逻辑功能的可执行指令的定序列表, 可以具体实现在任何计算机可读介质中, 以供指令执行系统、 装置或设备(如基于计算机的系统、 包括处理器的系统或其他可 以从指令执行系统、 装置或设备取指令并执行指令的系统) 使用, 或结合这些指令执 行系统、装置或设备而使用。就本说明书而言, "计算机可读介质"可以是任何可以包含、 存储、 通信、 传播或传输程序以供指令执行系统、 装置或设备或结合这些指令执行系 统、 装置或设备而使用的装置。 计算机可读介质的更具体的示例 (非穷尽性列表) 包 括以下: 具有一个或多个布线的电连接部(电子装置), 便携式计算机盘盒(磁装置), 随机存取存储器(RAM ) , 只读存储器(ROM ) , 可擦除可编辑只读存储器(EPROM 或闪速存储器) , 光纤装置, 以及便携式光盘只读存储器 (CDROM ) 。 另外, 计算机 可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质, 因为可以例如通 过对纸或其他介质进行光学扫描, 接着进行编辑、 解译或必要时以其他合适方式进行 处理来以电子方式获得所述程序, 然后将其存储在计算机存储器中。
应当理解, 本发明的各部分可以用硬件、 软件、 固件或它们的组合来实现。 在上 述实施方式中, 多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行 的软件或固件来实现。 例如, 如果用硬件来实现, 和在另一实施方式中一样, 可用本 领域公知的下列技术中的任一项或他们的组合来实现: 具有用于对数据信号实现逻辑 功能的逻辑门电路的离散逻辑电路, 具有合适的组合逻辑门电路的专用集成电路, 可 编程门阵列 (PGA ) , 现场可编程门阵列 (FPGA ) 等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤 是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储
介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组合。
此外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块中, 也可以 是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个模块中。 上述集成 的模块既可以采用硬件的形式实现, 也可以采用软件功能模块的形式实现。 所述集成 的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时, 也可以存储 在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
在本说明书的描述中, 参考术语 "一个实施例" 、 "一些实施例" 、 "示例" 、 "具体示例" 、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特征、 结构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上 述术语的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结 构、 材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 对于本领域的普通技术人员而言, 可以 理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由所附权利要求及其等同限定。
Claims
1、 一种电动汽车的集成控制系统, 其特征在于, 包括:
动力电池;
高压配电箱, 所述高压配电箱与所述动力电池相连;
驱动及充放电集成控制器, 所述驱动及充放电集成控制器通过所述高压配电箱与 所述动力电池相连, 且所述驱动及充放电集成控制器分别与电机和充放电插座相连, 所述驱动及充放电集成控制器用于在所述电动汽车处于驱动模式时驱动所述电机, 并 在所述电动汽车处于充放电模式时通过所述充放电插座对所述动力电池进行充放电; 辅助高压器件, 所述辅助高压器件通过所述高压配电箱与所述动力电池相连; 第一 DC/DC模块, 所述第一 DC/DC模块通过所述高压配电箱与所述动力电池相 连; 以及
控制器, 所述控制器与所述高压配电箱相连, 用于控制所述高压配电箱以在所述 驱动及充放电集成控制器、 所述辅助高压器件和所述第一 DC/DC模块上电之前通过所 述高压配电箱进行预充电。
2、 如权利要求 1所述的电动汽车的集成控制系统, 其特征在于, 所述高压配电箱 包括:
第一预充控制模块和与所述第一预充控制模块并联的第一开关, 所述第一预充控 制模块和所述第一开关的一端与所述动力电池的一端相连, 所述第一预充控制模块和 所述第一开关的另一端与所述驱动及充放电集成控制器的第一端相连;
第二预充控制模块和与所述第二预充控制模块并联的第二开关, 所述第二预充控 制模块和所述第二开关的一端与所述动力电池的一端相连, 所述第二预充控制模块和 所述第二开关的另一端与所述第一 DC/DC模块的第一端相连;
第三预充控制模块和与所述第三预充控制模块并联的第三开关, 所述第三预充控 制模块和所述第三开关的一端与所述动力电池的一端相连, 所述第三预充控制模块和 所述第三开关的另一端与所述辅助高压器件的第一端相连;
第四开关, 所述第四开关的一端与所述动力电池的另一端相连, 且所述第四开关 分别与所述驱动及充放电集成控制器、 所述第一 DC/DC模块和所示辅助高压器件的第 二端相连; 以及 第五开关, 所述第五开关的一端与所述动力电池的一端相连, 且所述第五开关与 所述驱动及充放电集成控制器的第三端相连。
3、 如权利要求 2所述的电动汽车的集成控制系统, 其特征在于,
当所述电动汽车处于驱动模式或充放电模式时, 所述控制器通过所述第一预充控 制模块对所述驱动及充放电集成控制器进行预充电同时闭合所述第四开关, 当所述驱 动及充放电集成控制器的母线电压与所述动力电池的电压成预设倍数时, 控制所述第 一预充控制模块关断并闭合所述第一开关。
4、 如权利要求 3所述的电动汽车的集成控制系统, 其特征在于, 在闭合所述第一 开关之后, 所述控制器还通过所述第三预充控制模块对所述辅助高压器件进行预充电, 当所述辅助高压器件的母线电压与所述动力电池的电压成预设倍数时, 控制所述第三 预充控制模块关断并闭合所述第三开关。
5、 如权利要求 4所述的电动汽车的集成控制系统, 其特征在于, 当所述电动汽车 处于驱动模式时, 在闭合所述第三开关之后, 所述控制器还通过所述第二预充控制模 块对所述第一 DC/DC模块进行预充电, 当所述第一 DC/DC模块的母线电压与所述动 力电池的电压成预设倍数时, 控制所述第二预充控制模块关断并闭合所述第二开关。
6、 如权利要求 1所述的电动汽车的集成控制系统, 其特征在于, 还包括: 冷却模块, 所述冷却模块用于对所述集成控制系统进行冷却。
7、 如权利要求 2所述的电动汽车的集成控制系统, 其特征在于, 所述驱动及充放 电集成控制器进一步包括:
双向 DC/DC模块, 所述双向 DC/DC模块的第一直流端与所述第四开关的另一端 相连, 所述双向 DC/DC模块的第二直流端与所述第一预充控制模块和所述第一开关的 另一端相连,其中,所述第一直流端为所述双向 DC/DC模块输入及输出的共用直流端; 双向 DC/AC模块, 所述双向 DC/AC模块的第一直流端与所述驱动控制开关的另 一端相连, 所述双向 DC/AC模块的第二直流端与所述第四开关的另一端相连;
电机控制开关, 所述电机控制开关的一端与所述双向 DC/AC模块的交流端相连, 所述电机控制开关的另一端与电机相连;
充放电控制模块, 所述充放电控制模块的一端与所述双向 DC/AC模块的交流端相 连, 所述充放电控制模块的另一端与所述充放电插座相连; 以及
控制器模块, 所述控制器模块与所述驱动控制开关、 电机控制开关和充放电控制 模块相连, 所述控制器模块用于根据所述动力系统当前所处的工作模式对所述驱动控 制开关、 电机控制开关和充放电控制模块进行控制。
8、 如权利要求 7所述的电动汽车的集成控制系统, 其特征在于,
当所述动力系统当前所处的工作模式为驱动模式时, 所述控制器模块控制所述第 五开关闭合以关闭所述双向 DC/DC模块, 并控制所述电机控制开关闭合, 以及控制所 述充放电控制模块断开。
9、 如权利要求 8所述的电动汽车的集成控制系统, 其特征在于,
当所述动力系统当前所处的工作模式为充放电模式时, 所述控制器模块控制所述 第五开关断开以启动所述双向 DC/DC模块, 并控制所述电机控制开关断开, 以及控制 所述充放电控制模块闭合。
10、如权利要求 7所述的电动汽车的集成控制系统,其特征在于,所述双向 DC/DC 模块进一步包括:
相互串联的第一开关管和第二开关管, 所述相互串联的第一开关管和第二开关管 连接在所述双向 DC/DC模块的第一直流端和第三直流端之间, 所述第一开关管和第二 开关管受所述控制器模块的控制, 其中, 所述第一开关管和第二开关管之间具有第一 节点;
第一二极管, 所述第一二极管与所述第一开关管反向并联;
第二二极管, 所述第二二极管与所述第二开关管反向并联;
第一电感, 所述第一电感的一端与所述第一节点相连, 所述第一电感的另一端与 所述动力电池的一端相连; 以及
第一电容, 所述第一电容的一端与所述第一电感的另一端相连, 所述第一电容的 另一端与所述动力电池的另一端相连。
11、 如权利要求 7 所述的电动汽车的集成控制系统, 其特征在于, 所述驱动及充 放电集成控制器还包括:
漏电流削减模块, 所述漏电流削减模块连接在所述双向 DC/DC模块的第一直流端 和所述双向 DC/DC模块的第三直流端之间。
12、 如权利要求 1 1所述的电动汽车的集成控制系统, 其特征在于, 所述漏电流削 减模块进一步包括:
第二电容和第三电容, 所述第二电容的一端与所述第三电容的一端相连, 所述第 二电容的另一端与所述双向 DC/DC模块的第一直流端相连, 所述第三电容的另一端与 所述双向 DC/DC模块的第三直流端相连, 其中, 所述第二电容和第三电容之间具有第 二节点。
13、 如权利要求 12所述的电动汽车的集成控制系统, 其特征在于, 所述驱动及充 放电集成控制器还包括:
滤波模块,所述滤波模块连接在所述双向 DC/AC模块和所述充放电控制模块之间。
14、 如权利要求 13所述的电动汽车的集成控制系统, 其特征在于, 所述驱动及充 放电集成控制器还包括:
滤波控制模块, 所述滤波控制模块连接在所述第二节点和所述滤波模块之间, 所 述滤波控制模块受所述控制器模块控制, 所述控制器模块在所述动力系统当前所处的 工作模式为驱动模式时控制所述滤波控制模块断开。
15、 如权利要求 7所述的电动汽车的集成控制系统, 其特征在于, 还包括: 第二预充控制模块, 所述第二预充模块与所述充放电控制模块并联, 所述第二预 充控制模块用于对所述滤波模块中的电容进行预充电。
16、 如权利要求 7 所述的电动汽车的集成控制系统, 其特征在于, 所述充放电控 制模块进一步包括:
三相开关和 /或单相开关, 用于实现三相充放电或单相充放电。
17、 一种电动汽车, 其特征在于, 包括如权利要求 1-16任一项所述的集成控制系 统。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12861486.4A EP2802058A4 (en) | 2011-12-31 | 2012-12-31 | ELECTRIC AUTOMOTIVE AND INTEGRATED CONTROL SYSTEM THEREFOR |
US14/370,041 US9493088B2 (en) | 2011-12-31 | 2012-12-31 | Electric automobile and integrated control system thereof |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201120571932.3 | 2011-12-31 | ||
CN201110458395.6 | 2011-12-31 | ||
CN201110458395 | 2011-12-31 | ||
CN2011205719323U CN202455130U (zh) | 2011-12-31 | 2011-12-31 | 电动车辆的充放电控制系统及电动车 |
CN 201220266009 CN202679006U (zh) | 2012-06-07 | 2012-06-07 | 车辆供电系统、充电系统、对充充电系统及车辆 |
CN201220266009.3 | 2012-06-07 | ||
CN201210185660.2 | 2012-06-07 | ||
CN201210185660 | 2012-06-07 | ||
CN201220303636.X | 2012-06-27 | ||
CN201210214502.5 | 2012-06-27 | ||
CN201220303636XU CN202712941U (zh) | 2012-06-27 | 2012-06-27 | 车辆及其充电系统 |
CN201210214502 | 2012-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013097801A1 true WO2013097801A1 (zh) | 2013-07-04 |
Family
ID=48696349
Family Applications (21)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/088067 WO2013097818A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的充电方法及充电装置 |
PCT/CN2012/088114 WO2013097830A1 (zh) | 2011-12-31 | 2012-12-31 | 用于电动汽车的大功率充电系统及其控制方法 |
PCT/CN2012/088048 WO2013097811A1 (zh) | 2011-12-31 | 2012-12-31 | 用于电动汽车的放电系统 |
PCT/CN2012/088044 WO2013097810A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车与其交流充电通讯方法及充电桩 |
PCT/CN2012/088056 WO2013097814A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的控制系统及具有其的电动汽车 |
PCT/CN2012/088107 WO2013097828A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充电时的相序识别方法及相序识别装置 |
PCT/CN2012/088058 WO2013097815A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及在充放电和驱动功能之间切换的动力系统 |
PCT/CN2012/088094 WO2013097824A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的动力系统和电机控制器 |
PCT/CN2012/088074 WO2013097820A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其的充电控制系统 |
PCT/CN2012/088041 WO2013097808A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的主动泄放系统 |
PCT/CN2012/088010 WO2013097803A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的充电系统 |
PCT/CN2012/088061 WO2013097816A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的充电系统及具有其的电动汽车 |
PCT/CN2012/088113 WO2013097829A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充电时外部电源的电制识别方法及装置 |
PCT/CN2012/088035 WO2013097807A1 (zh) | 2011-12-31 | 2012-12-31 | 用于车辆充电与行驶的互锁方法 |
PCT/CN2012/088086 WO2013097823A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车之间相互充电的系统及充电连接器 |
PCT/CN2012/087992 WO2013097797A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/088069 WO2013097819A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充放电的载波装置及通讯方法与系统 |
PCT/CN2012/087997 WO2013097798A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/088084 WO2013097821A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及电动汽车向外供电的系统 |
PCT/CN2012/088098 WO2013097825A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/088008 WO2013097801A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其集成控制系统 |
Family Applications Before (20)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/088067 WO2013097818A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的充电方法及充电装置 |
PCT/CN2012/088114 WO2013097830A1 (zh) | 2011-12-31 | 2012-12-31 | 用于电动汽车的大功率充电系统及其控制方法 |
PCT/CN2012/088048 WO2013097811A1 (zh) | 2011-12-31 | 2012-12-31 | 用于电动汽车的放电系统 |
PCT/CN2012/088044 WO2013097810A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车与其交流充电通讯方法及充电桩 |
PCT/CN2012/088056 WO2013097814A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的控制系统及具有其的电动汽车 |
PCT/CN2012/088107 WO2013097828A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充电时的相序识别方法及相序识别装置 |
PCT/CN2012/088058 WO2013097815A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及在充放电和驱动功能之间切换的动力系统 |
PCT/CN2012/088094 WO2013097824A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的动力系统和电机控制器 |
PCT/CN2012/088074 WO2013097820A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其的充电控制系统 |
PCT/CN2012/088041 WO2013097808A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的主动泄放系统 |
PCT/CN2012/088010 WO2013097803A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的充电系统 |
PCT/CN2012/088061 WO2013097816A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的充电系统及具有其的电动汽车 |
PCT/CN2012/088113 WO2013097829A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充电时外部电源的电制识别方法及装置 |
PCT/CN2012/088035 WO2013097807A1 (zh) | 2011-12-31 | 2012-12-31 | 用于车辆充电与行驶的互锁方法 |
PCT/CN2012/088086 WO2013097823A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车之间相互充电的系统及充电连接器 |
PCT/CN2012/087992 WO2013097797A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/088069 WO2013097819A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充放电的载波装置及通讯方法与系统 |
PCT/CN2012/087997 WO2013097798A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/088084 WO2013097821A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及电动汽车向外供电的系统 |
PCT/CN2012/088098 WO2013097825A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
Country Status (3)
Country | Link |
---|---|
US (10) | US9718374B2 (zh) |
EP (10) | EP2800226B1 (zh) |
WO (21) | WO2013097818A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9493088B2 (en) | 2011-12-31 | 2016-11-15 | Shenzhen Byd Auto R&D Company Limited | Electric automobile and integrated control system thereof |
Families Citing this family (169)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8118447B2 (en) | 2007-12-20 | 2012-02-21 | Altair Engineering, Inc. | LED lighting apparatus with swivel connection |
US8360599B2 (en) | 2008-05-23 | 2013-01-29 | Ilumisys, Inc. | Electric shock resistant L.E.D. based light |
US8324817B2 (en) | 2008-10-24 | 2012-12-04 | Ilumisys, Inc. | Light and light sensor |
US7938562B2 (en) | 2008-10-24 | 2011-05-10 | Altair Engineering, Inc. | Lighting including integral communication apparatus |
US8901823B2 (en) | 2008-10-24 | 2014-12-02 | Ilumisys, Inc. | Light and light sensor |
US8214084B2 (en) | 2008-10-24 | 2012-07-03 | Ilumisys, Inc. | Integration of LED lighting with building controls |
US8653984B2 (en) | 2008-10-24 | 2014-02-18 | Ilumisys, Inc. | Integration of LED lighting control with emergency notification systems |
WO2010111433A2 (en) * | 2009-03-25 | 2010-09-30 | Powergetics, Inc. | Bidirectional energy converter |
CA2794541C (en) | 2010-03-26 | 2018-05-01 | David L. Simon | Inside-out led bulb |
CA2792940A1 (en) | 2010-03-26 | 2011-09-19 | Ilumisys, Inc. | Led light with thermoelectric generator |
WO2012058556A2 (en) | 2010-10-29 | 2012-05-03 | Altair Engineering, Inc. | Mechanisms for reducing risk of shock during installation of light tube |
WO2013001820A1 (ja) * | 2011-06-28 | 2013-01-03 | 京セラ株式会社 | 系統連系インバータ装置およびその制御方法 |
US9184518B2 (en) | 2012-03-02 | 2015-11-10 | Ilumisys, Inc. | Electrical connector header for an LED-based light |
CN103419653B (zh) * | 2012-05-22 | 2016-04-27 | 比亚迪股份有限公司 | 电动汽车、电动汽车的动力系统及电池加热方法 |
WO2014008463A1 (en) | 2012-07-06 | 2014-01-09 | Ilumisys, Inc. | Power supply assembly for led-based light tube |
US9271367B2 (en) | 2012-07-09 | 2016-02-23 | Ilumisys, Inc. | System and method for controlling operation of an LED-based light |
JP5968719B2 (ja) * | 2012-08-06 | 2016-08-10 | 京セラ株式会社 | 管理システム、管理方法、制御装置及び蓄電池装置 |
AU2012387794B2 (en) * | 2012-08-13 | 2016-05-19 | Mitsubishi Electric Corporation | Propulsion control device of engine hybrid railroad vehicle |
JP6311614B2 (ja) * | 2013-01-17 | 2018-04-18 | 株式会社村田製作所 | 蓄電装置 |
KR20140097628A (ko) * | 2013-01-28 | 2014-08-07 | 삼성에스디아이 주식회사 | 배터리 온도 제어 시스템 및 그 제어 방법 |
DE102013204256A1 (de) * | 2013-03-12 | 2014-09-18 | Bayerische Motoren Werke Aktiengesellschaft | Ladevorrichtung für ein Elektrofahrzeug |
US9285084B2 (en) | 2013-03-14 | 2016-03-15 | Ilumisys, Inc. | Diffusers for LED-based lights |
CN104167768B (zh) * | 2013-05-16 | 2018-05-15 | 中兴通讯股份有限公司 | 一种充电装置及充电方法 |
KR101480616B1 (ko) * | 2013-06-05 | 2015-01-09 | 현대자동차주식회사 | 전기자동차용 탑재형 배터리 충전장치 및 이의 제어방법 |
CN104253471B (zh) * | 2013-06-28 | 2017-02-22 | 比亚迪股份有限公司 | 电动汽车的充电系统及电动汽车的充电控制方法 |
CN104253465B (zh) * | 2013-06-28 | 2017-01-04 | 比亚迪股份有限公司 | 电动汽车的充电控制系统及具有其的电动汽车 |
CN104249630B (zh) * | 2013-06-28 | 2017-08-04 | 比亚迪股份有限公司 | 电动汽车及电动汽车向外供电的系统 |
FR3008246B1 (fr) * | 2013-07-03 | 2017-07-07 | Schneider Electric Ind Sas | Systeme de charge electrique d'une pluralite de vehicules electriques et procede de repartition de la puissance electrique delivree par une alimentation electrique d'un tel systeme |
US9267650B2 (en) | 2013-10-09 | 2016-02-23 | Ilumisys, Inc. | Lens for an LED-based light |
SI2866354T1 (sl) * | 2013-10-25 | 2019-11-29 | Vito Nv Vlaamse Instelling Voor Tech Onderzoek Nv | Postopek in sistem za zagotavljanje pulzirane moči in podatkov na vodilu |
JP2015096017A (ja) * | 2013-11-14 | 2015-05-18 | トヨタ自動車株式会社 | 車両およびそれを用いた充放電システム |
CN104753093B (zh) * | 2013-12-26 | 2018-01-19 | 南京德朔实业有限公司 | 充电器和充电控制方法 |
US9574717B2 (en) | 2014-01-22 | 2017-02-21 | Ilumisys, Inc. | LED-based light with addressed LEDs |
US10046641B2 (en) | 2014-03-19 | 2018-08-14 | Motivo Engineering LLC | Mobile power conversion and distribution system |
US20150295421A1 (en) * | 2014-04-10 | 2015-10-15 | Ford Global Technologies, Llc | Active isolated circuit for precharging and discharging a high voltage bus |
US20170050529A1 (en) * | 2014-04-29 | 2017-02-23 | Hydro Québec | Bidirectional charging system for electric vehicle |
US9475398B2 (en) * | 2014-05-08 | 2016-10-25 | Cummins, Inc. | Optimization-based predictive method for battery charging |
US9510400B2 (en) | 2014-05-13 | 2016-11-29 | Ilumisys, Inc. | User input systems for an LED-based light |
JP6414211B2 (ja) * | 2014-05-30 | 2018-10-31 | 富士電機株式会社 | 充電器 |
US20160079945A1 (en) * | 2014-09-16 | 2016-03-17 | Texas Instruments Incorporated | Programmable impedance network in an amplifier |
US10097078B2 (en) * | 2014-10-21 | 2018-10-09 | Toshiba International Corporation | Multi-mode energy router |
EP3023291A1 (de) * | 2014-11-20 | 2016-05-25 | ABB Technology AG | Umrichtersystem zum elektrischen antreiben eines fahrzeuges |
US9358892B1 (en) * | 2014-12-02 | 2016-06-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for pre-charging a hybrid vehicle for improving reverse driving performance |
CN105730258B (zh) * | 2014-12-10 | 2019-07-26 | 比亚迪股份有限公司 | 汽车的点火控制系统及汽车 |
DE102015101087A1 (de) * | 2015-01-26 | 2015-04-23 | Infineon Technologies Ag | Schaltungsanordnung |
KR102296132B1 (ko) * | 2015-02-16 | 2021-08-31 | 삼성에스디아이 주식회사 | 배터리 팩 및 그의 구동방법 |
DE102015004119A1 (de) * | 2015-03-31 | 2016-10-06 | Audi Ag | Kraftfahrzeug mit einem elektrischen Energiespeicher und zwei Ladeschnittstellen, Ladesystem sowie Verfahren |
US10161568B2 (en) | 2015-06-01 | 2018-12-25 | Ilumisys, Inc. | LED-based light with canted outer walls |
DE102015108789A1 (de) * | 2015-06-03 | 2016-12-08 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Energieversorgungssystem für ein Kraftfahrzeug |
US10560024B2 (en) | 2015-09-17 | 2020-02-11 | Conductive Holding, LLC | Bidirectional DC/DC converter for a charging system |
US9787117B2 (en) | 2015-09-17 | 2017-10-10 | Conductive Holding, LLC | Bidirectional battery charger integrated with renewable energy generation |
CN105182855B (zh) * | 2015-09-23 | 2018-04-06 | 上海大学 | Dsp芯片出现失效时保护的汽车控制器及其控制方法 |
CN105244948A (zh) * | 2015-10-10 | 2016-01-13 | 陶杰 | 一种电动汽车智能充电桩系统 |
CN105162210A (zh) * | 2015-10-10 | 2015-12-16 | 愈先梅 | 电动汽车直流充电桩系统 |
CN105186628A (zh) * | 2015-10-10 | 2015-12-23 | 陶杰 | 一种电动汽车智能充电桩系统 |
CN105846523A (zh) * | 2015-10-10 | 2016-08-10 | 陶杰 | 一种电动汽车智能充电桩系统的控制方法 |
FR3044177B1 (fr) * | 2015-11-23 | 2019-05-24 | Renault S.A.S | Chargeur de batterie embarque dans un vehicule automobile muni d'au moins un moteur electrique |
CN105375572B (zh) * | 2015-11-26 | 2018-04-24 | 上海循道新能源科技有限公司 | 一种电动汽车交流充电桩的智能检测装置 |
US10300791B2 (en) * | 2015-12-18 | 2019-05-28 | Ge Global Sourcing Llc | Trolley interfacing device having a pre-charging unit |
JP6439670B2 (ja) * | 2015-12-18 | 2018-12-19 | トヨタ自動車株式会社 | 車載システム |
CN106891743B (zh) * | 2015-12-18 | 2019-11-08 | 比亚迪股份有限公司 | 电动汽车及其车载充电器和车载充电器的控制方法 |
US20170187200A1 (en) * | 2015-12-28 | 2017-06-29 | Dialog Semiconductor (Uk) Limited | Charger Communication by Load Modulation |
US20170185899A1 (en) * | 2015-12-29 | 2017-06-29 | Cognitive Scale, Inc. | Anonymous Cognitive Profile |
CN105656120B (zh) * | 2016-01-29 | 2019-12-10 | 国网智能科技股份有限公司 | 一种双路充电机负荷智能分配的监控方法 |
CN105553046B (zh) * | 2016-02-22 | 2018-07-06 | 深圳市本特利科技有限公司 | 室内自动激光充电系统及方法 |
US9931949B2 (en) * | 2016-02-26 | 2018-04-03 | Ford Global Technologies, Llc | Fault detection in a multi-high voltage bus system |
US11088549B2 (en) * | 2016-03-22 | 2021-08-10 | Intersil Americas LLC | Multiple chargers configuration in one system |
US10594152B1 (en) | 2016-03-25 | 2020-03-17 | Intersil Americas LLC | Method and system for a battery charger |
TWI595722B (zh) * | 2016-05-18 | 2017-08-11 | 台達電子工業股份有限公司 | 充電槍與電動車充電設備 |
US10086709B2 (en) * | 2016-06-14 | 2018-10-02 | Ford Global Technologies, Llc | Variable wakeup of a high-voltage charger based on low-voltage system parameters |
CN106143182B (zh) * | 2016-06-27 | 2018-09-11 | 浙江吉利控股集团有限公司 | 一种增程式发电机控制器及其控制方法 |
CN106080448B (zh) * | 2016-07-29 | 2018-08-24 | 深圳市品川能源电气有限公司 | 一种封装有dc模块和充电模块的电动车高压配电控制箱 |
FR3056357B1 (fr) * | 2016-09-22 | 2018-10-12 | IFP Energies Nouvelles | Dispositif de conversion, procede de commande et vehicule associes |
JP6650854B2 (ja) * | 2016-09-26 | 2020-02-19 | 河村電器産業株式会社 | 電気自動車充放電装置 |
CN106374604B (zh) * | 2016-09-29 | 2020-01-10 | 深圳太研能源科技有限公司 | 智能启动电源系统的启动方法 |
CN106379188A (zh) * | 2016-09-30 | 2017-02-08 | 华南理工大学 | 一种电动汽车动力电池能量管理系统及安全防护方法 |
EP3878683B1 (en) * | 2016-10-05 | 2024-05-22 | Voltu Motor, Inc. | Fluid-cooled energy storage device having resin encapsulation |
CN106646076B (zh) * | 2016-10-14 | 2019-06-04 | 宁德时代新能源科技股份有限公司 | 高压互锁检测电路 |
DK3538396T3 (da) * | 2016-11-11 | 2020-08-10 | Innogy Se | Ladestation, elektrisk køretøj og system med en ladestation og et elektrisk køretøj |
CN106558902B (zh) * | 2017-01-23 | 2021-10-08 | 成都雅骏新能源科技有限公司 | 一种电动汽车充电电路及充电方法 |
CN108712974B (zh) * | 2017-02-07 | 2021-12-28 | 大众汽车有限公司 | 电动车、车辆侧传导充电装置及其操作方法 |
CN106828161B (zh) * | 2017-02-13 | 2019-03-26 | 清华大学 | 一种应用于多路充电插口电动汽车充电设备及其控制方法 |
US10479218B2 (en) * | 2017-02-14 | 2019-11-19 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electric vehicle power system with shared converter |
US10116249B2 (en) | 2017-02-17 | 2018-10-30 | Ford Global Technologies, Llc | Reduced ripple inverter for hybrid drive systems |
CN106828108A (zh) * | 2017-02-20 | 2017-06-13 | 江苏大学 | 一种基于电动汽车高压系统上电管理的控制方法 |
FR3065332B1 (fr) * | 2017-04-14 | 2019-07-05 | IFP Energies Nouvelles | Dispositif de conversion, procede de commande et vehicule associes |
US10711576B2 (en) | 2017-04-18 | 2020-07-14 | Mgb Oilfield Solutions, Llc | Power system and method |
CA3060589A1 (en) * | 2017-04-18 | 2018-10-25 | Mgb Oilfield Solutions, Llc | Power system and method |
KR20180133018A (ko) * | 2017-06-02 | 2018-12-13 | 현대자동차주식회사 | 차량용 배터리 시스템 및 제어방법 |
CN107284259B (zh) * | 2017-06-16 | 2020-05-08 | 武汉科华动力科技有限公司 | 用于低电压电池系统的直流充电系统及其充电方法 |
CN109130905A (zh) * | 2017-06-27 | 2019-01-04 | 蔚来汽车有限公司 | 电池充电系统和包含该系统的电动汽车充电站 |
US10661677B2 (en) * | 2017-07-25 | 2020-05-26 | Hamilton Sundstrand Corporation | Electrical power system for hybrid or electric vehicle |
CN107415742B (zh) * | 2017-08-04 | 2019-08-27 | 北京新能源汽车股份有限公司 | 一种车辆相互充电方法及装置、控制器、汽车 |
GB2551081B (en) | 2017-08-18 | 2018-12-19 | O2Micro Inc | Fault detection for battery management systems |
US10320220B2 (en) * | 2017-08-23 | 2019-06-11 | Ford Global Technologies, Llc | Configurable hybrid drive systems |
KR102433999B1 (ko) * | 2017-08-24 | 2022-08-19 | 현대자동차주식회사 | 모터 구동 및 배터리 충전 장치 및 차량 |
CA3036905C (en) | 2017-09-05 | 2020-01-21 | The Governing Council Of The University Of Toronto | Electric vehicle power-hub and operating modes thereof |
US11532946B2 (en) | 2017-11-30 | 2022-12-20 | The Board Of Trustees Of The University Of Alabama | Power electronics charge coupler for vehicle-to-vehicle fast energy sharing |
KR102441505B1 (ko) * | 2017-12-11 | 2022-09-07 | 현대자동차주식회사 | 전기 자동차의 배터리 충전 방법 |
CN111565962B (zh) | 2018-01-08 | 2023-12-22 | 康明斯有限公司 | 电池充电期间插电式电动车辆附件再充电的系统和方法 |
BR102018001661A2 (pt) * | 2018-01-26 | 2019-08-13 | Eletra Ind Ltda | sistema de gestão de potência de veículo elétrico |
EP4258539A3 (en) | 2018-03-12 | 2024-01-24 | Jabil Inc. | Multilevel motor drive with integrated battery charger |
KR102542948B1 (ko) * | 2018-04-13 | 2023-06-14 | 현대자동차주식회사 | 차량용 급속충전 시스템 및 방법 |
DE102018110621A1 (de) * | 2018-05-03 | 2019-11-07 | Innofas Gmbh | Hochgeschwindigkeitsentladesystem für einen Hochspannungsenergiespeicher |
US11527909B2 (en) | 2018-05-11 | 2022-12-13 | Assembled Products Corporation | Magnetic charging device |
JP6965830B2 (ja) * | 2018-05-24 | 2021-11-10 | トヨタ自動車株式会社 | 車両用電源装置 |
CN108819779B (zh) * | 2018-07-06 | 2020-07-28 | 北京新能源汽车股份有限公司 | 一种充电系统及电动汽车 |
DE102018121404A1 (de) * | 2018-09-03 | 2020-03-05 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Ladeablaufsteuerung einer Leistungselektronik |
CN109278559A (zh) * | 2018-09-05 | 2019-01-29 | 北京长城华冠汽车科技股份有限公司 | 电动汽车的过压保护方法、系统及电动汽车 |
CN109861357A (zh) * | 2018-09-07 | 2019-06-07 | 台达电子工业股份有限公司 | 充放电方法与装置 |
CN109159685A (zh) * | 2018-09-28 | 2019-01-08 | 北京新能源汽车股份有限公司 | 一种充电控制系统、控制方法及电动汽车 |
CN109353224B (zh) * | 2018-09-30 | 2020-10-30 | 潍柴动力股份有限公司 | 一种电动汽车控制方法及电动汽车整车控制器 |
DE102018124789A1 (de) * | 2018-10-08 | 2020-04-09 | Thyssenkrupp Ag | Schnellladevorrichtung und elektrisches Antriebssystem mit einer derartigen Schnellladevorrichtung |
KR102606836B1 (ko) * | 2018-10-22 | 2023-11-27 | 현대자동차주식회사 | 차량 및 그 제어방법 |
JP7200599B2 (ja) * | 2018-10-23 | 2023-01-10 | トヨタ自動車株式会社 | 車両 |
RU2696752C1 (ru) * | 2018-10-30 | 2019-08-05 | Олег Фёдорович Меньших | Тяговая система электромобиля |
CN111129891B (zh) * | 2018-11-01 | 2021-06-29 | 华为终端有限公司 | 一种供电连接装置 |
US11186191B2 (en) * | 2018-12-07 | 2021-11-30 | Delta Electronics, Inc. | Charging device for electric vehicle |
US12017546B2 (en) | 2018-12-14 | 2024-06-25 | Volvo Truck Corporation | Electric power transmission system for a vehicle |
FR3094150B1 (fr) * | 2019-03-18 | 2021-02-19 | Renault Sas | Procédé de commande des relais électromagnétiques d’un véhicule automobile électrique ou hybride |
CN110060462B (zh) * | 2019-03-19 | 2020-12-08 | 合肥学院 | 一种基于充电桩在线校准的数据采集系统及数据采集装置 |
TWI704744B (zh) * | 2019-03-29 | 2020-09-11 | 威達高科股份有限公司 | 使用移動機器人電池的電源橋接裝置 |
KR102603058B1 (ko) * | 2019-04-22 | 2023-11-16 | 현대자동차주식회사 | 친환경 차량용 충전 제어 시스템 및 방법 |
KR102663664B1 (ko) * | 2019-05-17 | 2024-05-03 | 현대자동차주식회사 | 모터 구동 시스템을 이용한 멀티 입력 충전 시스템 및 방법 |
EP3772151A1 (en) * | 2019-07-30 | 2021-02-03 | Delta Electronics (Thailand) Public Co., Ltd. | Charger protection circuit |
CN112311039A (zh) * | 2019-08-02 | 2021-02-02 | 迈恩移动研究有限公司 | 用于为电池充电的设备、系统和方法 |
CN112389348B (zh) * | 2019-08-15 | 2022-12-09 | 比亚迪股份有限公司 | 电动汽车及其集成控制器、集成控制系统 |
KR20210027662A (ko) * | 2019-08-30 | 2021-03-11 | 현대자동차주식회사 | 모터 구동 시스템을 이용한 충전 시스템 및 방법 |
DE102019124213A1 (de) * | 2019-09-10 | 2021-03-11 | Audi Ag | Galvanisch verbundenes AC-Ladegerät mit Überwachungs- und Diagnosesystem |
US11498442B2 (en) * | 2019-09-17 | 2022-11-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Systems and methods for noise cancellation in protective earth resistance check of vehicle onboard battery charger |
CN110614930B (zh) * | 2019-09-30 | 2022-11-18 | 重庆长安新能源汽车科技有限公司 | 一种充放电方法、系统、控制器及电动汽车 |
IT201900020334A1 (it) * | 2019-11-04 | 2021-05-04 | Free2Move Esolutions S P A | Dispositivo per ricarica di utenze elettriche |
IT201900020336A1 (it) * | 2019-11-04 | 2021-05-04 | Free2Move Esolutions S P A | Dispositivo per ricarica di utenze elettriche |
CN112776604A (zh) * | 2019-11-04 | 2021-05-11 | 广州汽车集团股份有限公司 | 汽车的主动放电装置及汽车 |
US11768247B2 (en) * | 2019-11-18 | 2023-09-26 | Dish Network Technologies India Private Limited | Method and apparatus for improper power supply detection |
CN110920392B (zh) * | 2019-11-19 | 2021-11-26 | 珠海格力电器股份有限公司 | 一种电源控制电路、电源控制方法及新能源汽车 |
DE102020104732A1 (de) | 2020-02-24 | 2021-08-26 | Bayerische Motoren Werke Aktiengesellschaft | EMV-Baugruppe für ein elektrisch angetriebenes Fahrzeug |
CN113315183A (zh) * | 2020-02-27 | 2021-08-27 | 台达电子企业管理(上海)有限公司 | 充电桩及其功率分配系统与功率分配方法 |
USD926826S1 (en) | 2020-03-09 | 2021-08-03 | Zimeno, Inc. | Illuminated tractor hood |
USD916935S1 (en) | 2020-03-09 | 2021-04-20 | Zimeno, Inc. | Tractor front cargo bed |
CN111146851A (zh) * | 2020-03-12 | 2020-05-12 | 深圳威迈斯新能源股份有限公司 | 一种单三相兼容的转换电路及车载充电机 |
KR20210133374A (ko) * | 2020-04-28 | 2021-11-08 | 현대자동차주식회사 | 모터 구동 시스템을 이용한 충전 시스템 및 방법 |
CN111654212A (zh) * | 2020-06-15 | 2020-09-11 | 湖北三江航天万峰科技发展有限公司 | 一种位置随动伺服控制装置及控制方法 |
IL277303B2 (en) * | 2020-09-13 | 2024-07-01 | Redler Tech Ltd | A versatile unit of power stack |
CN114256891B (zh) * | 2020-09-22 | 2023-08-11 | 上海汽车集团股份有限公司 | 一种电动汽车的充电电路及电动汽车 |
CN112158097A (zh) * | 2020-10-23 | 2021-01-01 | 深圳百跑科技有限公司 | 一种双充电桩联充系统及方法 |
US11958075B2 (en) * | 2020-11-09 | 2024-04-16 | Cirrus Logic Inc. | Driver circuitry |
CN112455271B (zh) * | 2020-11-27 | 2022-07-12 | 南方科技大学 | 0.4kV配电网的智能充电桩互联网系统 |
CN112744101B (zh) * | 2020-12-25 | 2023-02-17 | 中国第一汽车股份有限公司 | 充放电控制系统、方法及交通工具 |
CN114696434A (zh) * | 2020-12-29 | 2022-07-01 | 比亚迪股份有限公司 | 电动汽车的充电控制方法及装置和汽车 |
CN112816817B (zh) * | 2021-01-04 | 2023-12-19 | 阳光电源股份有限公司 | 一种切换单元状态检测方法及应用装置 |
CN112810469B (zh) * | 2021-01-08 | 2023-02-24 | 东风柳州汽车有限公司 | 充放电转换电路、控制方法及充放电合用枪头 |
CN113147442A (zh) * | 2021-02-24 | 2021-07-23 | 广西科技大学 | 一种双枪自调整直流充电装置 |
EP4304939A1 (en) * | 2021-03-10 | 2024-01-17 | Alakai Technologies Corporation | Mobile emergency power generation and vehicle propulsion power system |
CN113162185A (zh) * | 2021-04-30 | 2021-07-23 | 中国人民解放军海军潜艇学院 | 一种mw级蓄电池组双向充放电系统 |
USD971274S1 (en) * | 2021-07-05 | 2022-11-29 | Zimeno, Inc. | Illuminated tractor |
CN113442859A (zh) * | 2021-07-31 | 2021-09-28 | 重庆长安汽车股份有限公司 | 一种纯电动汽车能量优先级分配方法、系统及车辆 |
CN113525109B (zh) * | 2021-08-12 | 2023-02-03 | 长春捷翼汽车零部件有限公司 | 一种放电控制方法、装置、电子设备及存储介质 |
DE102021121396A1 (de) | 2021-08-18 | 2023-02-23 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und System zur Steuerung von Modulströmen einer Wechselstrombatterie |
JP7528912B2 (ja) * | 2021-12-08 | 2024-08-06 | トヨタ自動車株式会社 | 車両 |
WO2023121984A1 (en) * | 2021-12-21 | 2023-06-29 | Our Next Energy, Inc. | Power supply system for powering a home |
FR3133956A1 (fr) * | 2022-03-28 | 2023-09-29 | Psa Automobiles Sa | Module de chargeur embarque pour vehicule, securise vis-a-vis de surcourants, procede et vehicule sur la base d’un tel module |
JP2023158447A (ja) * | 2022-04-18 | 2023-10-30 | トヨタ自動車株式会社 | 電源システム |
NL2031706B1 (en) * | 2022-04-26 | 2023-11-10 | Total Safety Solutions B V | A high-voltage direct current circuit for an electric vehicle with a secondary relay |
US20240066991A1 (en) * | 2022-08-31 | 2024-02-29 | Cnh Industrial America Llc | Charging system for an electric work vehicle and associated method |
FR3145712A1 (fr) * | 2023-02-14 | 2024-08-16 | Schneider Electric Industries Sas | Méthode de diagnostic d’un système de station de recharge pour véhicule électrique et système de station de recharge pour véhicule électrique |
US20240270109A1 (en) * | 2023-02-14 | 2024-08-15 | Schneider Electric Industries Sas | Diagnostic method of a charging station system for an electrical vehicle and charging station system for an electric vehicle |
CN116995714B (zh) * | 2023-09-28 | 2023-12-19 | 中宏科创新能源科技(浙江)有限公司 | 储能变流器及其控制方法 |
CN118473064A (zh) * | 2024-07-12 | 2024-08-09 | 比亚迪股份有限公司 | 充电系统、储能系统和车辆 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200947552Y (zh) * | 2006-07-24 | 2007-09-12 | 北方工业大学 | 电动汽车动力电池智能充放电系统 |
CN201329816Y (zh) * | 2008-12-31 | 2009-10-21 | 众泰控股集团有限公司 | 一种电动汽车的整车电气系统 |
US20110084664A1 (en) * | 2009-10-09 | 2011-04-14 | White Christopher A | Method and apparatus of stored energy management in battery powered vehicles |
CN202435108U (zh) * | 2011-12-28 | 2012-09-12 | 比亚迪股份有限公司 | 一种充电柜 |
CN202455130U (zh) * | 2011-12-31 | 2012-09-26 | 比亚迪股份有限公司 | 电动车辆的充放电控制系统及电动车 |
Family Cites Families (141)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4920475A (en) | 1988-03-07 | 1990-04-24 | California Institute Of Technology | Integrated traction inverter and battery charger apparatus |
CN2067875U (zh) * | 1989-11-02 | 1990-12-19 | 中国人民解放军汽车管理学院 | 三相可控硅充电机自动控制装置 |
DE69220228T2 (de) | 1991-08-01 | 1997-09-25 | Wavedriver Ltd | Batteriegespeistes elektrisches Fahrzeug und elektrisches Versorgungssystem |
JPH06141488A (ja) | 1992-09-10 | 1994-05-20 | Tatsuno Co Ltd | 電気自動車 |
JP3327631B2 (ja) * | 1993-06-30 | 2002-09-24 | 株式会社日立製作所 | 電気自動車車載充電器 |
US5471655A (en) * | 1993-12-03 | 1995-11-28 | Nokia Mobile Phones Ltd. | Method and apparatus for operating a radiotelephone in an extended stand-by mode of operation for conserving battery power |
JP3629094B2 (ja) * | 1996-06-03 | 2005-03-16 | 本田技研工業株式会社 | 電気自動車 |
JP3017128B2 (ja) | 1997-05-13 | 2000-03-06 | 埼玉日本電気株式会社 | 充電制御装置 |
JP3379444B2 (ja) | 1998-09-07 | 2003-02-24 | トヨタ自動車株式会社 | ハイブリッド車の充放電状態制御装置 |
JP4006881B2 (ja) * | 1999-05-10 | 2007-11-14 | 株式会社デンソー | バッテリの放電容量検出方法及びその装置並びに車両用バッテリ制御装置 |
US6690719B1 (en) * | 2000-02-14 | 2004-02-10 | Itran Communications Ltd. | Host to modem interface |
US20030197425A1 (en) | 2001-12-05 | 2003-10-23 | Montante Charles J. | Dual input voltage adapter system and method |
ATE505845T1 (de) | 2001-12-26 | 2011-04-15 | Toyota Motor Co Ltd | Elektrische lastvorrichtung, steuerverfahren für eine elektrische last und computerlesbares aufzeichnungsmedium mit einem aufgezeichneten programm, durch das ein computer eine elektrische last steuern kann |
JP3567437B2 (ja) | 2002-03-28 | 2004-09-22 | 本田技研工業株式会社 | 車両駆動装置の給電装置 |
JP2004007950A (ja) | 2002-04-15 | 2004-01-08 | Fuji Electric Holdings Co Ltd | スイッチング電源装置 |
EP1523428A1 (en) | 2002-07-19 | 2005-04-20 | Ballard Power Systems Corporation | Apparatus and method employing bi-directional converter for charging and/or supplying power |
KR100461272B1 (ko) | 2002-07-23 | 2004-12-10 | 현대자동차주식회사 | 연료 전지 하이브리드 차량의 전원 단속장치 |
US7317300B2 (en) * | 2003-06-23 | 2008-01-08 | Denso Corporation | Automotive battery state monitor apparatus |
DE10331084A1 (de) | 2003-07-09 | 2005-03-24 | Aloys Wobben | Kraftfahrzeug |
JP4082336B2 (ja) | 2003-11-14 | 2008-04-30 | 日産自動車株式会社 | モータ駆動4wd車両の制御装置及び制御方法 |
CN100369347C (zh) | 2003-12-04 | 2008-02-13 | 比亚迪股份有限公司 | 电动汽车动力电源管理系统 |
US20050182535A1 (en) | 2004-02-17 | 2005-08-18 | David Huang | Device and method for identifying a specific communication protocol used in an on-board diagnostic tool |
JP2005287136A (ja) | 2004-03-29 | 2005-10-13 | Honda Motor Co Ltd | 平滑コンデンサのプリチャージ装置 |
US7471066B2 (en) | 2004-12-22 | 2008-12-30 | Odyne Corporation | Battery management and equalization system for batteries using power line carrier communications |
CN1634725A (zh) | 2004-12-31 | 2005-07-06 | 吉林大学 | 混合动力汽车车载复合电源装置 |
CN100432681C (zh) * | 2005-02-02 | 2008-11-12 | 艾默生网络能源系统有限公司 | 交流电频率监测方法 |
US20070075661A1 (en) | 2005-10-04 | 2007-04-05 | Ut-Battelle, Llc | Winding Control Improvement of Drive Motor for Hybrid Electric Vehicle |
US7489106B1 (en) | 2006-03-31 | 2009-02-10 | Victor Tikhonov | Battery optimization system and method of use |
JP2008005659A (ja) | 2006-06-23 | 2008-01-10 | Toyota Motor Corp | 電動車両 |
CN1877473A (zh) * | 2006-06-30 | 2006-12-13 | 中国南车集团株洲电力机车研究所 | 一种用于电动车辆的动力电池管理系统 |
US20080040296A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green Inc. | Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources |
JP4905300B2 (ja) | 2006-09-28 | 2012-03-28 | トヨタ自動車株式会社 | 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 |
GB0625121D0 (en) | 2006-12-18 | 2007-01-24 | Gendrive Ltd | Electrical energy converter |
JP4447001B2 (ja) | 2006-12-19 | 2010-04-07 | トヨタ自動車株式会社 | 電力制御装置およびそれを備えた車両 |
US20080180058A1 (en) | 2007-01-30 | 2008-07-31 | Bijal Patel | Plug-in battery charging booster for electric vehicle |
JP4699399B2 (ja) * | 2007-02-06 | 2011-06-08 | プライムアースEvエナジー株式会社 | 電源装置 |
JP4270309B2 (ja) | 2007-07-18 | 2009-05-27 | トヨタ自動車株式会社 | 電気自動車および電気自動車の二次電池充電方法 |
JP5118913B2 (ja) | 2007-07-24 | 2013-01-16 | トヨタ自動車株式会社 | 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法 |
FR2919768B1 (fr) | 2007-08-03 | 2016-02-12 | Alstom Transport Sa | Procede d'alimentation de charges auxiliaires de secours, convertisseur auxiliaire et vehicule ferroviaire pour ce procede. |
TW200913433A (en) | 2007-09-10 | 2009-03-16 | J Tek Inc | Scattered energy storage control system |
WO2009034877A1 (ja) * | 2007-09-10 | 2009-03-19 | Toyota Jidosha Kabushiki Kaisha | 車両用充電装置および車両の充電方法 |
JP4727636B2 (ja) * | 2007-09-13 | 2011-07-20 | トヨタ自動車株式会社 | 車両の充電制御装置および車両 |
JP5291909B2 (ja) | 2007-09-21 | 2013-09-18 | 富士重工業株式会社 | 電気自動車の充電装置 |
US8232786B2 (en) | 2007-09-28 | 2012-07-31 | Astec International Limited | Fast transient step load response in a power converter |
JP4305553B2 (ja) | 2007-10-23 | 2009-07-29 | トヨタ自動車株式会社 | 電動車両 |
JP2009118658A (ja) * | 2007-11-07 | 2009-05-28 | Toyota Motor Corp | 電動車両 |
JP4288333B1 (ja) | 2007-12-18 | 2009-07-01 | トヨタ自動車株式会社 | 車両の電源装置 |
JP4285578B1 (ja) | 2008-01-15 | 2009-06-24 | トヨタ自動車株式会社 | 車両の充電装置 |
DE102008007662A1 (de) | 2008-02-06 | 2009-08-13 | Robert Bosch Gmbh | Vorrichtung und Verfahren zur Behandlung von Formteilen mittels energiereicher Elektronenstrahlen |
JP2011513025A (ja) | 2008-03-14 | 2011-04-28 | キム,ジョンドュク | 調理容器の着脱型取手 |
JP4315232B1 (ja) | 2008-03-17 | 2009-08-19 | トヨタ自動車株式会社 | 電動車両 |
JP5259220B2 (ja) * | 2008-03-25 | 2013-08-07 | 富士重工業株式会社 | 電気自動車 |
US7936083B2 (en) * | 2008-05-08 | 2011-05-03 | GM Global Technology Operations LLC | Systems and methods for multiple source power conversion |
JP4969516B2 (ja) * | 2008-05-27 | 2012-07-04 | 株式会社ケーヒン | 電動車両用電源制御装置 |
CN101388560A (zh) | 2008-07-11 | 2009-03-18 | 中国科学院电工研究所 | 一种蓄电池充电系统 |
JP4719776B2 (ja) * | 2008-07-14 | 2011-07-06 | トヨタ自動車株式会社 | 充電ケーブル、充電制御装置、及び車両充電システム |
JP4380776B1 (ja) * | 2008-07-25 | 2009-12-09 | トヨタ自動車株式会社 | 充放電システムおよび電動車両 |
CN201257887Y (zh) * | 2008-09-10 | 2009-06-17 | 宁波拜特测控技术有限公司 | 一种电动汽车电池管理系统 |
JP2010081665A (ja) * | 2008-09-24 | 2010-04-08 | Panasonic Corp | コンバータ装置 |
US8019483B2 (en) | 2008-10-01 | 2011-09-13 | Current Communications Services, Llc | System and method for managing the distributed generation of power by a plurality of electric vehicles |
US20100085787A1 (en) * | 2008-10-03 | 2010-04-08 | Ajit Wasant Kane | System and method for powering a hybrid electric vehicle |
JP4969547B2 (ja) * | 2008-10-14 | 2012-07-04 | トヨタ自動車株式会社 | 制御装置及び充電制御方法 |
WO2010050038A1 (ja) | 2008-10-31 | 2010-05-06 | トヨタ自動車株式会社 | 電動車両の電源システムおよびその制御方法 |
WO2010064315A1 (ja) * | 2008-12-05 | 2010-06-10 | トヨタ自動車株式会社 | 車両の制御装置および制御方法 |
WO2010067417A1 (ja) | 2008-12-09 | 2010-06-17 | トヨタ自動車株式会社 | 車両の電源システム |
JP4781425B2 (ja) | 2008-12-25 | 2011-09-28 | 本田技研工業株式会社 | 車両と家屋間の電力供給システム |
DE102009000096A1 (de) | 2009-01-09 | 2010-07-15 | Robert Bosch Gmbh | Verfahren für die Steuerung einer Stromversorgungseinrichtung mit einem Wechselrichter |
JP2010178431A (ja) | 2009-01-27 | 2010-08-12 | Aisan Ind Co Ltd | 電動車両用電源の電源管理装置 |
JP5317188B2 (ja) | 2009-02-20 | 2013-10-16 | 株式会社安川電機 | 電動車両のインバータ装置及びその保護方法 |
US8004242B1 (en) * | 2009-03-13 | 2011-08-23 | PH Ingenuities, LLC | System and method for managing distribution of vehicle power in a multiple battery system |
US7928598B2 (en) | 2009-04-03 | 2011-04-19 | General Electric Company | Apparatus, method, and system for conveying electrical energy |
JP5493441B2 (ja) * | 2009-04-15 | 2014-05-14 | 日産自動車株式会社 | 車車間充電方法、車車間充電用ケーブルおよび電動車両 |
JP4993035B2 (ja) | 2009-05-14 | 2012-08-08 | トヨタ自動車株式会社 | 電気自動車およびその制御方法 |
JP5568898B2 (ja) * | 2009-06-12 | 2014-08-13 | 日産自動車株式会社 | リチウムイオンバッテリの充電制御方法 |
US20100320964A1 (en) * | 2009-06-18 | 2010-12-23 | Ford Global Technologies, Llc | Method And System To Charge Batteries Only While Vehicle Is Parked |
US8393423B2 (en) * | 2009-06-18 | 2013-03-12 | Ford Global Technologies, Llc | Method and system to prevent vehicle driveaway during battery charging |
CN201490688U (zh) * | 2009-07-31 | 2010-05-26 | 珠海格力电器股份有限公司 | 相序转换器 |
JP2012151914A (ja) * | 2009-07-31 | 2012-08-09 | Panasonic Corp | 車載電力線通信装置およびこれを用いた車両 |
CN101997336B (zh) | 2009-08-05 | 2014-09-24 | 中西金属工业株式会社 | 以双电荷层电容器及二次电池为电源的自行式搬送系统 |
US8478469B2 (en) | 2009-08-07 | 2013-07-02 | Toyota Jidosha Kabushiki Kaisha | Power source system for electric powered vehicle and control method therefor |
US8421271B2 (en) | 2009-08-31 | 2013-04-16 | General Electric Company | Apparatus for transferring energy using onboard power electronics and method of manufacturing same |
US8030884B2 (en) | 2009-08-31 | 2011-10-04 | General Electric Company | Apparatus for transferring energy using onboard power electronics and method of manufacturing same |
DE102009029091B4 (de) * | 2009-09-02 | 2024-09-12 | Robert Bosch Gmbh | Starthilfeverfahren und Einrichtung für die Durchführung des Verfahrens |
US8253424B2 (en) | 2009-09-11 | 2012-08-28 | Sma Solar Technology Ag | Topology surveying a series of capacitors |
JP5257318B2 (ja) | 2009-10-07 | 2013-08-07 | トヨタ自動車株式会社 | 電気自動車 |
CN102045086A (zh) * | 2009-10-10 | 2011-05-04 | 陕西银河电力仪表股份有限公司 | 一种基于arm7与st7538的电力线载波通信方法 |
CN102055226A (zh) * | 2009-10-29 | 2011-05-11 | 比亚迪股份有限公司 | 一种车载电池的充放电装置及其控制方法 |
CN102596632B (zh) * | 2009-10-30 | 2015-03-11 | 西门子公司 | 用于在第一站和第二站之间建立通信的方法和设备 |
US9365127B2 (en) * | 2009-11-13 | 2016-06-14 | Wayne Fueling Systems Llc | Recharging electric vehicles |
CN201594757U (zh) | 2009-11-30 | 2010-09-29 | 比亚迪股份有限公司 | 一种车载充电装置 |
US8698451B2 (en) | 2009-12-18 | 2014-04-15 | General Electric Company | Apparatus and method for rapid charging using shared power electronics |
WO2011080816A1 (ja) * | 2009-12-28 | 2011-07-07 | トヨタ自動車株式会社 | 車両および車両の通信装置 |
CN201656900U (zh) * | 2009-12-28 | 2010-11-24 | 南昌大学 | 交流异步电机通用矢量控制器 |
JP5482280B2 (ja) | 2010-02-18 | 2014-05-07 | ソニー株式会社 | 情報処理装置、電動移動体、及び放電管理方法 |
CN102118184A (zh) | 2009-12-30 | 2011-07-06 | 比亚迪股份有限公司 | 用于电力线载波通信的装置和方法 |
JP5447536B2 (ja) * | 2010-01-18 | 2014-03-19 | トヨタ自動車株式会社 | 車両の表示システムおよびそれを備える車両 |
JP2011151717A (ja) | 2010-01-25 | 2011-08-04 | Toyota Motor Corp | 車両の情報伝達装置およびそれを備える電動車両 |
JP5455705B2 (ja) | 2010-02-25 | 2014-03-26 | Asti株式会社 | 充電装置と充電方法 |
JP4962583B2 (ja) | 2010-03-11 | 2012-06-27 | 株式会社デンソー | 電力変換システムの放電制御装置 |
CN201752075U (zh) * | 2010-03-11 | 2011-02-23 | 深圳市盛弘电气有限公司 | 一种充放电及储能电路 |
JP5629885B2 (ja) * | 2010-03-16 | 2014-11-26 | ダイキン工業株式会社 | 単相/三相直接変換装置及びその制御方法 |
US8478452B2 (en) * | 2010-04-06 | 2013-07-02 | Battelle Memorial Institute | Grid regulation services for energy storage devices based on grid frequency |
IT1399313B1 (it) * | 2010-04-07 | 2013-04-16 | Ferrari Spa | Impianto elettrico di un veicolo stradale con propulsione elettrica e relativo metodo di controllo |
JP2011223790A (ja) * | 2010-04-13 | 2011-11-04 | Toyota Motor Corp | 電気駆動式車両 |
JP5402816B2 (ja) | 2010-04-27 | 2014-01-29 | 株式会社デンソー | 車両用電源装置 |
CN201781330U (zh) | 2010-05-07 | 2011-03-30 | 江苏常隆客车有限公司 | 基于dsp的电动汽车电机和超级电容控制系统 |
CN101834464A (zh) * | 2010-05-11 | 2010-09-15 | 梅勒电气(武汉)有限公司 | 电动车充电桩 |
US20110304298A1 (en) | 2010-05-13 | 2011-12-15 | Coda Automotive, Inc. | Battery charging using multiple chargers |
JP5484192B2 (ja) * | 2010-05-20 | 2014-05-07 | 本田技研工業株式会社 | 電動車両の始動制御装置 |
KR101174891B1 (ko) * | 2010-06-01 | 2012-08-17 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어방법 |
US8346423B2 (en) * | 2010-06-07 | 2013-01-01 | Ford Global Technologies, Llc | Plug-in electric vehicle interlock |
CN201839022U (zh) | 2010-07-22 | 2011-05-18 | 北京交通大学 | 一种交流充电集成系统 |
CN201813192U (zh) * | 2010-09-30 | 2011-04-27 | 西北工业大学 | 一种电动汽车非接触式移动智能充电装置 |
CN201877856U (zh) | 2010-11-19 | 2011-06-22 | 上海市电力公司 | 实现电动车辆与电网互动的系统 |
US9026813B2 (en) * | 2010-11-22 | 2015-05-05 | Qualcomm Incorporated | Establishing a power charging association on a powerline network |
CN102025182B (zh) | 2010-11-30 | 2012-10-31 | 梁一桥 | 多功能电动汽车动力电池组模块化充放电系统 |
CN102069715B (zh) * | 2010-12-14 | 2012-10-03 | 湖南南车时代电动汽车股份有限公司 | 一种电动汽车行车充电互锁装置 |
CN201876820U (zh) | 2010-12-14 | 2011-06-22 | 成都购得福科技有限公司 | 一种键盘的发光装置 |
US9278625B2 (en) | 2010-12-16 | 2016-03-08 | Denso Corporation | Power supply apparatus for vehicles that selects between conductive and non-conductive power transfer |
CN201898359U (zh) | 2010-12-17 | 2011-07-13 | 上海市电力公司 | 移动储能系统 |
CN102114788B (zh) * | 2010-12-28 | 2013-03-06 | 吴江合美新能源科技有限公司 | 电动车动力集成数字管理系统 |
CN202006766U (zh) * | 2011-02-25 | 2011-10-12 | 比亚迪股份有限公司 | 一种电动汽车高压控制电路 |
CN202068223U (zh) * | 2011-03-01 | 2011-12-07 | 东南大学 | 一种基于v2g技术的车载充放电装置 |
CN102185343A (zh) | 2011-03-23 | 2011-09-14 | 田鹰 | 一种利用电力线载波通信的电动汽车自动充电装置及方法 |
CN102185375A (zh) | 2011-03-24 | 2011-09-14 | 清华大学 | 智能电网下的电动汽车节能增效评价与监管系统及其方法 |
FR2973963B1 (fr) * | 2011-04-08 | 2013-04-12 | Valeo Sys Controle Moteur Sas | Dispositif de transfert de charge et procede de gestion associe |
CN102774284B (zh) * | 2011-05-12 | 2016-07-06 | 上海汽车集团股份有限公司 | 充电汽车及其制造方法以及利用该充电汽车的充电方法 |
CN102208824B (zh) * | 2011-06-03 | 2013-12-11 | 中国科学院电工研究所 | 一种电动汽车有序充电控制系统 |
CN102222928B (zh) | 2011-06-16 | 2014-01-15 | 北京许继电气有限公司 | 电动汽车动力电池大型集中储能智能型充放电系统 |
US9021278B2 (en) * | 2011-08-10 | 2015-04-28 | Qualcomm Incorporated | Network association of communication devices based on attenuation information |
JP2013046474A (ja) * | 2011-08-23 | 2013-03-04 | Panasonic Corp | 電動車両用充電装置 |
CN202276163U (zh) | 2011-09-30 | 2012-06-13 | 大连罗宾森电源设备有限公司 | 一种直流充电系统 |
CN102416882B (zh) | 2011-12-05 | 2014-08-13 | 郑州宇通客车股份有限公司 | 一种纯电动车高压配电箱 |
WO2013097818A1 (zh) * | 2011-12-31 | 2013-07-04 | 深圳市比亚迪汽车研发有限公司 | 电动汽车的充电方法及充电装置 |
CN104066614A (zh) * | 2012-01-26 | 2014-09-24 | 丰田自动车株式会社 | 车载充电通信装置以及车辆用充电通信系统 |
CN102709972B (zh) * | 2012-05-28 | 2015-09-30 | 重庆长安汽车股份有限公司 | 一种电动汽车充电系统及电动汽车 |
CN102673422B (zh) | 2012-05-30 | 2015-09-16 | 中国汽车技术研究中心 | 一种纯电动汽车能量系统构型及其车辆储能控制系统 |
CN102832663B (zh) * | 2012-08-15 | 2015-11-11 | 中国电力科学研究院 | 基于sdp和v2gtp-exi电动汽车自适应充电控制系统及其控制方法 |
CN102882249B (zh) | 2012-09-13 | 2015-04-29 | 中国电力科学研究院 | 一种非车载直流充电机与电动汽车通信的系统 |
CN102904300A (zh) * | 2012-09-26 | 2013-01-30 | 中国电力科学研究院 | 一种非车载直流充电机与电动汽车通信的系统 |
CN102916464B (zh) | 2012-09-26 | 2015-02-04 | 中国电力科学研究院 | 一种交流充电装置与电动汽车通信的系统 |
-
2012
- 2012-12-31 WO PCT/CN2012/088067 patent/WO2013097818A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088114 patent/WO2013097830A1/zh active Application Filing
- 2012-12-31 US US14/370,043 patent/US9718374B2/en active Active
- 2012-12-31 WO PCT/CN2012/088048 patent/WO2013097811A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088044 patent/WO2013097810A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088056 patent/WO2013097814A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088107 patent/WO2013097828A1/zh active Application Filing
- 2012-12-31 EP EP12861681.0A patent/EP2800226B1/en active Active
- 2012-12-31 WO PCT/CN2012/088058 patent/WO2013097815A1/zh active Application Filing
- 2012-12-31 US US14/370,044 patent/US10173545B2/en active Active
- 2012-12-31 US US14/369,923 patent/US9604545B2/en active Active
- 2012-12-31 WO PCT/CN2012/088094 patent/WO2013097824A1/zh active Application Filing
- 2012-12-31 US US14/369,946 patent/US9969290B2/en active Active
- 2012-12-31 WO PCT/CN2012/088074 patent/WO2013097820A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088041 patent/WO2013097808A1/zh active Application Filing
- 2012-12-31 EP EP12863723.8A patent/EP2800232B1/en active Active
- 2012-12-31 EP EP12862112.5A patent/EP2802055B1/en active Active
- 2012-12-31 US US14/370,038 patent/US9718373B2/en active Active
- 2012-12-31 US US14/369,934 patent/US9260022B2/en active Active
- 2012-12-31 WO PCT/CN2012/088010 patent/WO2013097803A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088061 patent/WO2013097816A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088113 patent/WO2013097829A1/zh active Application Filing
- 2012-12-31 EP EP12861486.4A patent/EP2802058A4/en not_active Ceased
- 2012-12-31 EP EP12861299.1A patent/EP2800284A4/en not_active Ceased
- 2012-12-31 WO PCT/CN2012/088035 patent/WO2013097807A1/zh active Application Filing
- 2012-12-31 US US14/370,039 patent/US9796287B2/en active Active
- 2012-12-31 WO PCT/CN2012/088086 patent/WO2013097823A1/zh active Application Filing
- 2012-12-31 US US14/370,041 patent/US9493088B2/en active Active
- 2012-12-31 WO PCT/CN2012/087992 patent/WO2013097797A1/zh active Application Filing
- 2012-12-31 EP EP12861810.5A patent/EP2800227B1/en active Active
- 2012-12-31 WO PCT/CN2012/088069 patent/WO2013097819A1/zh active Application Filing
- 2012-12-31 EP EP12863565.3A patent/EP2800231B1/en active Active
- 2012-12-31 WO PCT/CN2012/087997 patent/WO2013097798A1/zh active Application Filing
- 2012-12-31 US US14/369,966 patent/US9290105B2/en active Active
- 2012-12-31 WO PCT/CN2012/088084 patent/WO2013097821A1/zh active Application Filing
- 2012-12-31 EP EP12863133.0A patent/EP2802057B1/en active Active
- 2012-12-31 WO PCT/CN2012/088098 patent/WO2013097825A1/zh active Application Filing
- 2012-12-31 US US14/369,924 patent/US9272629B2/en active Active
- 2012-12-31 EP EP12862873.2A patent/EP2802056B1/en active Active
- 2012-12-31 WO PCT/CN2012/088008 patent/WO2013097801A1/zh active Application Filing
- 2012-12-31 EP EP12862847.6A patent/EP2800228B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200947552Y (zh) * | 2006-07-24 | 2007-09-12 | 北方工业大学 | 电动汽车动力电池智能充放电系统 |
CN201329816Y (zh) * | 2008-12-31 | 2009-10-21 | 众泰控股集团有限公司 | 一种电动汽车的整车电气系统 |
US20110084664A1 (en) * | 2009-10-09 | 2011-04-14 | White Christopher A | Method and apparatus of stored energy management in battery powered vehicles |
CN202435108U (zh) * | 2011-12-28 | 2012-09-12 | 比亚迪股份有限公司 | 一种充电柜 |
CN202455130U (zh) * | 2011-12-31 | 2012-09-26 | 比亚迪股份有限公司 | 电动车辆的充放电控制系统及电动车 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2802058A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9493088B2 (en) | 2011-12-31 | 2016-11-15 | Shenzhen Byd Auto R&D Company Limited | Electric automobile and integrated control system thereof |
US9718373B2 (en) | 2011-12-31 | 2017-08-01 | Shenzhen Byd R&D Company Limited | Electric vehicle and discharging apparatus thereof |
US9718374B2 (en) | 2011-12-31 | 2017-08-01 | Shenzhen Byd Auto R&D Company Limited | Electric vehicle and charging system for electric vehicle |
US9796287B2 (en) | 2011-12-31 | 2017-10-24 | Shenzhen Byd Auto R&D Company Limited | Electric vehicle and discharging apparatus thereof |
US10173545B2 (en) | 2011-12-31 | 2019-01-08 | Byd Company Limited | Electric vehicle and discharging apparatus thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013097801A1 (zh) | 电动汽车及其集成控制系统 | |
CN103182951B (zh) | 电动汽车及其集成控制系统 | |
KR101873125B1 (ko) | 전기 차량용 충전 시스템 및 전기 차량의 충전을 제어하는 방법 | |
US9216655B2 (en) | Vehicle and power supply system | |
EP2211439B1 (en) | Charge system failure judging device and failure judging method | |
US8666572B2 (en) | Charging control apparatus for power storage device and method for controlling charging of power storage device | |
JP6539264B2 (ja) | 電気自動車用の電力系統、電気自動車、及びモータコントローラ | |
EP2196350A1 (en) | Vehicle control device and control method | |
JP2012070623A (ja) | 車両の制御装置および制御方法ならびに車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12861486 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14370041 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012861486 Country of ref document: EP |