Nothing Special   »   [go: up one dir, main page]

WO2013080528A1 - 穿孔圧延用工具 - Google Patents

穿孔圧延用工具 Download PDF

Info

Publication number
WO2013080528A1
WO2013080528A1 PCT/JP2012/007617 JP2012007617W WO2013080528A1 WO 2013080528 A1 WO2013080528 A1 WO 2013080528A1 JP 2012007617 W JP2012007617 W JP 2012007617W WO 2013080528 A1 WO2013080528 A1 WO 2013080528A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale layer
net
scale
piercing
ferrite
Prior art date
Application number
PCT/JP2012/007617
Other languages
English (en)
French (fr)
Inventor
市野 健司
誠二 尾▲崎▼
哲男 持田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP12853205.8A priority Critical patent/EP2786813B1/en
Priority to CN201280059297.8A priority patent/CN103974787B/zh
Priority to US14/361,679 priority patent/US9194031B2/en
Priority to BR112014013153-8A priority patent/BR112014013153B1/pt
Priority to IN820MUN2014 priority patent/IN2014MN00820A/en
Priority to MX2014006120A priority patent/MX2014006120A/es
Publication of WO2013080528A1 publication Critical patent/WO2013080528A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
    • B21B25/04Cooling or lubricating mandrels during operation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the present invention relates to the manufacture of seamless steel pipes (especially, piercing mills), in particular, the durability of wear tools (tool for piercing mills) such as plugs used in piercing mills. Regarding improvement.
  • the Mannesmann type piercing method has been widely known as a method for producing seamless steel pipes.
  • a rolled material round steel billet
  • a piercing and rolling machine to form a hollow material (hollow shell).
  • the wall thickness is reduced by an elongating mill such as an elongator, a plug mill, or a mandrel mill.
  • a seamless steel pipe having a predetermined size is obtained mainly by reducing the outer diameter by a drawing mill (stretching reducing mill) or other forming machine (sizing mill).
  • a piercing and rolling mill there are three inclined rolls (Mannesmann piercer), two inclined rolls (a pair of inclined rolls) combined with a piercing plug and two guide shoes (guide shoe), A three-roll piercer combined with a piercing plug, or a press-roll piercer combined with two perforated rolls and a piercing plug are known.
  • a piercing and rolling tool plug plug
  • wear and melt deformation at elevated temperature and erosion
  • Patent Document 1 Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 conventionally, the tool has been subjected to scale treatment at high temperature (oxide scale-forming heat treatment).
  • An oxide scale with a thickness of several tens to several hundreds of ⁇ m was formed on the surface to prevent wear of the tool for piercing and rolling.
  • Patent Document 6 a piercing and rolling tool having excellent durability.
  • C 0.05 to 0.5%
  • Si 0.1 to 1.5%
  • Mn 0.1 to 0.5%
  • Cr 0.1 to 1.0%
  • Mo 0.5 to 3.0%
  • W 0.5 to 3.0%
  • Nb 0.1 to 1.5%
  • Co 0.1 to 3.0%
  • Ni 0.5 to 2.5%
  • the surface layer has a scale layer, and the scale layer has a net-like scale layer intricately entangled with the base metal on the substrate-steel side.
  • a piercing-rolling tool in which a structure containing a ferrite phase with an area ratio of 50% or more is formed from the interface of the scale layer to the substrate side.
  • An object of the present invention is to solve the problems of the prior art and to provide a tool for piercing and rolling excellent in durability.
  • the present inventors diligently studied the influence of various factors on the tool life. As a result, it has been found that there are rarely tools for piercing and rolling that significantly increase the tool life.
  • a detailed investigation of the microstructure of such a long-lived tool reveals that a net structure scale layer formed on the surface layer of the base material, in which the metal and scale are intertwined in a complex manner. It was found that the substrate side structure immediately below the interface between the substrate and the substrate (substrate steel) is a ferrite dominant layer composed of a ferrite phase containing a large number of fine ferrite grains. And in the piercing and rolling tool having such a microstructure, the net-like scale has been refined. The present inventors considered that the refinement of the net-like scale improved the peeling resistance of the scale layer and resulted in a significant increase in tool life.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. (1) A piercing and rolling tool having a scale layer on a surface layer of a base material, wherein the base material is in mass%, C: 0.05 to 0.5%, Si: 0.1 to 1.5%, Mn: 0.1 to 1.5% , Cr: 0.1-1.5%, Mo: 0.6-3.5%, W: 0.5-3.5%, Nb: 0.1-1.0%, Co: 0.5-3.5%, Ni: 0.5-4.0% Formula 1.0 ⁇ Ni + Co ⁇ 4.0 (1) (Where Ni, Co: content of each element (mass%)) And has a composition composed of the remaining Fe and inevitable impurities.
  • the scale layer formed on the substrate side is a net-like scale layer intricately intertwined with the ground iron having a thickness of 10 to 200 ⁇ m in the depth direction.
  • the base material side structure in the range of at least 300 ⁇ m in the depth direction from the interface between the net scale layer and the base material includes a ferrite phase having an area ratio of 50% or more, and the ferrite phase has a maximum length of 1 to piercing tool having excellent durability, characterized in that a 60 ⁇ m ferrite grains is a phase containing 400 / mm 2 or more tissue.
  • the tool life for piercing and rolling can be significantly prolonged, and the tool cost can be reduced.
  • the productivity of the production of high alloy steel seamless steel pipes can be improved, and the production cost of the high alloy steel seamless steel pipes can be reduced, resulting in a remarkable industrial effect.
  • the piercing and rolling tool according to the present invention is a piercing and rolling tool having a scale layer on the surface layer of a base material having a specific composition.
  • C 0.05-0.5%
  • C is an element that is solid-solved to increase the strength of the base material, and further forms a carbide to suppress a decrease in the high temperature strength of the base material. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 0.5%, it becomes difficult to make the base material structure a structure in which a ferrite phase is precipitated, the melting point is lowered, the high temperature strength is lowered, and the plug life is shortened. Therefore, C is limited to a range of 0.05 to 0.5%.
  • the content is preferably 0.1 to 0.4%.
  • Si 0.1-1.5% Si increases the strength of the base material by solid solution strengthening, increases the carbon activity of the base material, makes it easier to form a decarburized layer, and makes the base material structure easier to form a structure in which a ferrite phase is precipitated. Has an effect. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, if the content exceeds 1.5%, a dense oxide is formed on the surface of the substrate, and the formation of the net-like scale layer is inhibited. Therefore, Si is limited to the range of 0.1 to 1.5%. The content is preferably 0.2 to 1.0%.
  • Mn 0.1-1.5% Mn is dissolved to increase the strength of the base material, and as a result of being mixed as an impurity and combined with S that adversely affects the material, MnS is formed, and the adverse effect of S is suppressed. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, the content exceeding 1.5% inhibits the growth of net scale. For these reasons, Mn was limited to the range of 0.1 to 1.5%. The content is preferably 0.2 to 1.0%.
  • Cr 0.1-1.5% Cr dissolves to increase the strength of the base material, and forms carbides to increase the high-temperature strength and has the effect of increasing the heat resistance of the plug.
  • Cr is an element that is easier to oxidize than Fe, and promotes selective oxidation. In order to obtain such an effect, the content of 0.1% or more is required.
  • a content exceeding 1.5% forms a dense Cr oxide, inhibits the growth of the net-like scale layer, and lowers the carbon activity of the base material, thereby decarburized layer. The growth of the base structure in which the ferrite phase is precipitated is suppressed. Therefore, Cr is limited to the range of 0.1 to 1.5%. The content is preferably 0.2 to 1.0%.
  • Mo 0.6-3.5%
  • Mo is an important element that microsegregates in the ferrite phase, induces selective oxidation, and promotes the formation of a net scale layer.
  • the Mo-based oxide starts sublimation at a temperature of 650 ° C. or more, forms a path of H 2 , H 2 O, CO, and CO 2 related to the oxidation reaction, and promotes selective oxidation and formation of a decarburized layer. . Such an effect is recognized when the content is 0.6% or more.
  • Mo is limited to the range of 0.6 to 3.5%.
  • the content is preferably 0.8 to 2.0%.
  • W 0.5-3.5% W, like Mo, microsegregates in the ferrite phase, promotes selective oxidation, facilitates the formation of Ni and Co negative segregation, and promotes the growth of the net-like scale layer.
  • W increases the strength of the base material by solid solution strengthening, forms carbides, and increases the high-temperature strength of the plug. Such an effect is recognized when the content is 0.5% or more. However, if the content exceeds 3.5%, the microsegregation becomes coarse, which inhibits the growth of the net-like scale layer and lowers the melting point of the scale, thereby promoting the melting of the plug. For this reason, W is limited to the range of 0.5 to 3.5%. It is preferably 1.0 to 3.0%.
  • Nb 0.1-1.0%
  • Nb is a carbide-forming element that forms a carbide by combining with C, reduces free C in the base material, promotes the formation of a ferrite phase, and contributes to the formation of a base structure mainly composed of a ferrite phase.
  • Nb carbide is easily generated at the crystal grain boundary and at the same time, very easily oxidized, and therefore has an action of promoting the growth of the scale layer as an oxygen penetration path.
  • Nb since Nb has a large affinity with Mo, it has an effect of promoting the microsegregation of Mo. In order to obtain such an effect, Nb needs to be contained by 0.1% or more.
  • the content exceeds 1.0%, the carbide is coarsened and the plug is easily damaged. For this reason, Nb was limited to the range of 0.1 to 1.0%. It is preferably 0.1 to 0.8%.
  • Co 0.5-3.5%
  • Co dissolves to increase the high-temperature strength of the base material and is less susceptible to oxidation than Fe and Mo. Therefore, it promotes selective oxidation of Fe and Mo and promotes the formation of a net-like scale. Then, Co is concentrated in the ground iron near the selective oxidation part during the growth process of the net-like scale. Since the iron oxide region enriched with Co is suppressed from oxidation, it makes it easy to form a complex intertwined form of the iron and scale. In addition, because the Co-concentrated steel region is rich in ductility, the familiarity between the steel and the net-like scale is improved, and scale peeling can be prevented. In order to obtain such an effect, it is necessary to contain 0.5% or more of Co.
  • Co is limited to the range of 0.5 to 3.5%.
  • the content is 0.5 to 3.0%.
  • Ni 0.5-4.0% Ni dissolves and improves the strength and toughness of the base material, and is more difficult to oxidize than Fe and Mo. Therefore, it promotes selective oxidation of Fe and Mo and promotes the formation of a net-like scale. Ni is concentrated in the ground iron near the selective oxidation part during the growth process of the net-like scale. Since the Ni-enriched steel region is suppressed from oxidation, it makes it easier to form a complex entanglement between the steel and the scale. In addition, since the Ni-enriched steel region is rich in ductility, the familiarity between the steel and the net-like scale is improved, and scale peeling can be prevented. In order to acquire such an effect, 0.5% or more of content is required.
  • Ni when the content exceeds 4.0%, Ni concentrates linearly at the interface between the base material and the scale layer, so that selective oxidation of Mo and Fe is suppressed, and the growth of the net scale layer becomes difficult. Therefore, Ni is limited to the range of 0.5 to 4.0%. It is preferably 1.0 to 3.0%.
  • Ni and Co are within the above-described content range, and the following formula (1) 1.0 ⁇ Ni + Co ⁇ 4.0 (1) (Where Ni, Co: content of each element (mass%)) Adjust to satisfy.
  • the total content of Ni and Co (Ni + Co) is 1.0 or less, the net-like scale layer is not sufficiently formed.
  • Ni and Co are excessively concentrated at the interface between the base material and the scale layer, suppressing selective oxidation of Fe and Mo, making it difficult to form a net-like scale layer. For this reason, (Ni + Co) was limited to more than 1.0 and less than 4.0.
  • Al 0.05% or less can be contained as necessary as a selection element.
  • the content exceeds 0.05%, the castability decreases, and defects such as pinholes and shrinkage cavities tend to occur.
  • the content exceeds 0.05% a dense Al 2 O 3 film is formed on the surface during the heat treatment, and the formation of the net scale layer is inhibited. For this reason, when it contains Al, it is preferable to limit to 0.05% or less.
  • the balance other than the components described above consists of Fe and inevitable impurities.
  • Inevitable impurities include P: 0.05% or less, S: 0.03% or less, N: 0.06% or less, Ti: 0.015% or less, Zr: 0.03% or less, V: 0.6% or less, Pb: 0.05% or less, Sn: 0.05% or less, Zn: 0.05% or less, Cu: 0.2% or less are acceptable.
  • the piercing and rolling tool according to the present invention has a scale layer on the surface layer of the base material having the above composition.
  • the scale layer formed in the base material side among scale layers is a net-like scale layer intricately entangled with the ground iron.
  • the net-like scale layer is a scale layer intricately intertwined with the base metal of the base material. Since the ground iron and the scale layer are mixed in a complicated manner, the abrasion of the scale layer is significantly suppressed compared to the scale layer alone. In addition, when such a net-like scale layer is present, seizure of the material to be rolled onto the plug can be prevented by the lubrication ability of the scale layer.
  • such a net-like scale layer has a thickness of 10 to 200 ⁇ m in the depth direction.
  • the thickness of the net scale layer is less than 10 ⁇ m, the net scale layer disappears early due to friction with the material to be rolled. For this reason, the plug is damaged and the plug life is shortened.
  • the thickness exceeds 200 ⁇ m the adhesiveness is reduced and peeling is promoted, so that the plug is damaged and the plug life is shortened.
  • the thickness of the net scale layer is limited to a range of 10 to 200 ⁇ m in the depth direction.
  • the base material side structure in the range of at least 300 ⁇ m in the depth direction from the interface between the net scale layer and the base material is 50% or more in area ratio.
  • the ferrite phase maximum length the ferrite grains of 1 ⁇ 60 [mu] m and the tissue is a phase containing 400 / mm 2 or more.
  • the base material side structure in the depth direction from the interface at least 300 ⁇ m into a structure mainly composed of a ferrite phase
  • Ni, Co is applied to the base iron in the vicinity of the selectively oxidized region by the subsequent oxidation heat treatment. Etc. are further concentrated, and the adhesion of the net scale layer is further improved.
  • the structure on the substrate side at least 300 ⁇ m in the depth direction from the interface with the net scale layer into a structure mainly composed of a ferrite phase containing a ferrite phase with an area ratio of 50% or more, Improved peel resistance and abrasion resistance. If the structure mainly composed of the ferrite phase is less than 300 ⁇ m in the depth direction from the interface with the net-like scale layer, desired scale peeling resistance and abrasion resistance cannot be ensured.
  • the base metal on the substrate side in the depth direction of at least 300 ⁇ m from the interface with the net-like scale layer is made a structure mainly composed of the ferrite phase as described above.
  • the ferrite phase is a phase containing 400 / mm 2 or more of fine ferrite grains having a maximum length of 1 to 60 ⁇ m.
  • the base-side structure of at least 300 ⁇ m in the depth direction from the interface between the net-like scale layer and the ground iron was made a structure mainly composed of the ferrite phase. Further, the ferrite phase was limited to a structure having a maximum length of 1 to less than 60 ⁇ m of fine ferrite grains of 400 / mm 2 or more.
  • the “maximum length” of the ferrite grain is observed in a cross section perpendicular to the average interface of the net-like scale layer, the length of each ferrite grain is measured, and the maximum value of the ferrite grain is the maximum length of the grain. did.
  • Molten steel having the above composition is melted by a normal method such as an electric furnace, a high frequency furnace, etc., and after casting by a known method such as a vacuum casting method, a green casting method, a shell mold method, etc., It is preferable to form a base material (tool) having a predetermined shape by cutting or the like. In addition, it is good also as a base material (tool) of a predetermined shape by cutting from a steel piece.
  • the obtained substrate (tool) is then subjected to heat treatment (scaling heat treatment) to form a scale layer on the substrate surface layer.
  • the heat treatment may be performed using a normal gas combustion furnace, electric furnace or the like, and the atmosphere of the heat treatment may be an air atmosphere, and it is not necessary to adjust the atmosphere.
  • a two-stage heat treatment of a first stage and a second stage is applied as the heat treatment.
  • the first stage heat treatment should be a process of heating (holding) at a temperature of at least 850 to 650 ° C at an average temperature of 40 ° C / h or lower after heating and holding at a temperature in the range of 900 to 1000 ° C. preferable.
  • the first-stage thermal cycle pattern is schematically shown in FIG.
  • a scale layer is formed on the surface layer, and a structure in which ferrite is precipitated is formed on the base material structure.
  • alloy elements such as Mo and W dissolved in the matrix diffuse according to the temperature and cooling rate, precipitate as carbides, or concentrate near the grain boundaries, and the alloy elements microscopically enter the matrix. Segregation occurs. Due to the presence of this micro-segregation, non-uniform oxidation (selective oxidation) of Fe, Mo, etc. occurs in the subsequent heat treatment, and a net-like scale layer having an interface intertwined with the ground iron is developed.
  • the heating temperature is less than 900 ° C.
  • the solid solution of the alloy element is not promoted, and the desired microsegregation distribution of the alloy element cannot be achieved.
  • the heating exceeds 1000 ° C.
  • the formation of the outer scale layer becomes remarkable, and the formation of the scale layer having excellent adhesion is inhibited.
  • the holding at the heating temperature is preferably 2 to 8 hours.
  • the holding time is less than 2 h
  • the alloy element is not sufficiently dissolved.
  • the holding time becomes too long, the productivity is lowered, the scale amount to be formed is thick, and the plug dimensional accuracy is lowered.
  • the average cooling rate in the temperature range of at least 850 to 650 ° C. exceeds 40 ° C./h, the cooling becomes too fast and the segregation of the alloy essential for the growth of the net scale layer is suppressed.
  • the temperature is once cooled to a temperature in the range of 600 to 700 ° C at an average cooling rate of 30 ° C / h or more, and then 750 It is preferable to use a heat treatment in which reheating is performed to a temperature of from °C .degree. C. to 800.degree. C., cooling (gradual cooling) to a temperature of 700.degree.
  • the second-stage thermal cycle pattern is schematically shown in FIG.
  • the heating temperature in the second stage heat treatment is less than 900 ° C.
  • diffusion and aggregation of the alloy elements are not promoted, and formation of a desired net scale layer and formation of a desired base iron structure (fine ferrite phase) cannot be achieved.
  • the heating exceeds 1000 ° C.
  • the formation of the outer scale layer becomes remarkable, and the formation of the scale layer having excellent adhesion is inhibited.
  • the holding at the heating temperature is preferably 1 to 8 hours.
  • the holding time is less than 1 h, the growth of scale is suppressed and the solid solution of the alloy elements becomes insufficient.
  • it exceeds 8 h the holding time becomes too long, the productivity is lowered, the amount of scale formed is too much, and the plug dimensional accuracy is lowered.
  • the cooling rate to a temperature in the range of 600 to 700 ° C after heating and holding is less than 30 ° C / h, the formation and growth of ferrite is promoted, and the base-side structure immediately below the net scale layer is mainly composed of the ferrite phase. Therefore, it is impossible to obtain a structure in which a fine ferrite phase is precipitated.
  • the cooling described above is stopped at a temperature in the range of 600 to 700 ° C., and reheated to a temperature of 750 ° C. to 800 ° C. After reheating, it is gradually cooled to a temperature of 700 ° C. or less at an average cooling rate in the range of 3 to 20 ° C./h.
  • the base material side structure directly under the net-like scale layer can be a structure mainly composed of a ferrite phase and a structure in which a fine ferrite phase is precipitated.
  • the heat treatment in the second stage is a cycle of heat treatment in which the material is once cooled to a predetermined temperature range, then reheated and then gradually cooled, so that it is below the interface between the net scale layer and the substrate side.
  • the base metal structure can be a structure in which a large number of fine ferrite grains are precipitated.
  • the second stage heat treatment is heated and maintained at a temperature in the range of 900 to 1000 ° C., and then at a cooling rate of 20 to 200 ° C./h and a temperature of 850 to 800 ° C. Subsequent cooling to 700 ° C at a cooling rate in the range of 3 to 20 ° C / h so that the difference between the pre-cooling cooling to the temperature range and the cooling rate of the pre-cooling is 10 ° C / h or more
  • the heat treatment may be a heat treatment including a secondary cooling in which a primary cooling including cooling is performed, and then cooling is performed to a temperature of 400 ° C. or lower at a cooling rate of 100 ° C./h or higher.
  • the second-stage thermal cycle pattern is schematically shown in FIG.
  • This second-stage heat treatment is characterized in that the primary cooling is a heat treatment that combines rapid cooling before cooling and slow cooling after cooling. If the cooling in the high temperature region (preceding stage cooling) is slow cooling of less than 20 ° C / h, the precipitation of ferrite becomes remarkable on the base material side, and it grows during the cooling to become coarse grains. Cannot be secured. Only when the cooling in the high temperature region (preceding stage cooling) is rapid cooling and the cooling in the low temperature region (following stage cooling) is gradually cooled to 20 ° C / h or less, the ferrite grains are finely precipitated and the desired substrate side An organization can be secured.
  • the scale layer formed at the boundary with the base material becomes a net-like scale layer having a thickness in the depth direction of 10 to 200 ⁇ m.
  • the base-side structure up to at least 300 ⁇ m in the depth direction from the interface is a structure mainly composed of ferrite phase, and the ferrite phase has more than 400 fine ferrite grains with a maximum grain length of 1 to 60 ⁇ m / mm 2 or more. Phase.
  • the piercing and rolling tool subjected to such heat treatment is subjected to piercing and rolling a plurality of times, and contributes to the production of seamless steel pipes.
  • the scale layer formed on the surface is worn away and can be reused by performing rescaling before melting, seizure, or erosion occurs.
  • the rescaling heat treatment is advantageously the same as the second-stage heat treatment described above, which advantageously contributes to extending the life of the piercing and rolling tool.
  • it is preferable that the temperature of 500 ° C. or less is cooled as quickly as possible from the viewpoint of preventing deterioration of the lubricating action accompanying hematiteization of the scale layer, and if possible, air cooling outside the furnace or blast air cooling outside the furnace. Is preferred.
  • Molten steel having the composition shown in Table 1 was melted in a high-frequency furnace in the atmosphere and cast by the V process method (vacuum-sealed-molding-process) to obtain a piercer plug having a maximum outer diameter: 174 mm ⁇ .
  • the obtained piercer plug is used as a base material, and the base material is subjected to any of the heat treatments (A), (B), and (C) shown in FIG.
  • a tool for piercing and rolling having a structure was used for piercing and rolling.
  • the heating temperature is held at 920 ° C. for 4 hours and then cooled to 700 ° C. at 40 ° C./h, and the heating temperature is held at 920 ° C. for 4 hours, and then the furnace lid is opened.
  • the furnace was rapidly cooled (30 ° C./h) until the furnace center temperature (atmosphere temperature) reached 680 ° C.
  • the lid of the furnace is closed and reheated to 790 ° C at the furnace center temperature (atmosphere temperature), and then gradually cooled to 650 ° C at an average cooling rate of 14 ° C / h.
  • the treatment was performed.
  • heat treatment (B) is carried out at the heating temperature: 920 ° C. for 4 hours and then cooled to 700 ° C. at 40 ° C./h, and at the heating temperature: 920 ° C. for 4 hours, then in the furnace center Primary cooling consisting of pre-stage cooling with an average cooling rate of 30 ° C / h until the part temperature (atmosphere temperature) reaches 840 ° C and post-stage cooling with an average cooling rate of 10 ° C / h to 650 ° C Was given.
  • a second stage heat treatment was applied to perform secondary cooling to cool to 400 ° C. or lower at an average cooling rate of 100 ° C./h.
  • the heat treatment (C) is a conventional heat treatment, which is held at a heating temperature: 970 ° C. for 4 hours, and then cooled to 700 ° C. at an average cooling rate of 40 ° C./h, and a heating temperature: After holding at 970 ° C. for 4 hours, the second stage heat treatment was performed to cool to 500 ° C. at an average cooling rate of 40 ° C./h. After the heat treatment, the cross-sectional structure of the plug was subjected to nital corrosion, and the cross-sectional structure was observed with an optical microscope (magnification: 200 times), and the thickness of the net scale layer was measured in the depth direction.
  • the net-like scale layer was a scale layer in which the content of ground iron in the scale was in the range of 10 to 80% in area ratio.
  • the base material side structure under the interface between the net scale layer and the base material is observed in the same manner, the area ratio of the ferrite phase is measured, and the ferrite phase in which a ferrite phase of 50% or more in area ratio exists is mainly used.
  • the thickness of the tissue was measured.
  • the thickness of the structure mainly composed of the ferrite phase was measured at 10 points for max and min because the ferrite phase interface was uneven, and the average value was collectively expressed in units of 50 ⁇ m.
  • the ferrite grains in the ferrite phase were observed, the maximum length was measured, and the number of ferrite grains having a maximum length of 10 ⁇ m to 60 ⁇ m was measured.
  • the measurement range was a range of 300 ⁇ m square below the interface.
  • a scale layer having a thickness of about 700 to 800 ⁇ m was formed on the substrate surface layer.
  • the piercer plug provided with a scale layer on the surface layer was first subjected to piercing and rolling of a 13Cr steel billet (outer diameter 207 mm ⁇ length 1800 mm: billet temperature 1050 to 1150 ° C.). Each time the two billets were rolled, the plug surface was visually observed. When the plug was not melted, seized, or eroded when it was rolled in total, the heat treatment shown in FIGS. 3 (A) to (C) was performed and used repeatedly for further reuse of the plug. . The cumulative number of rolls rolled until the plug surface was melted, seized, burred, etc. was defined as the life of the plug. Three plugs with the same conditions were prepared, and the average value of the cumulative number of rolled plugs was defined as the life of the plug. In addition, the average value was rounded off to the integer value.
  • a net-like scale layer having a desired thickness is formed on the base material side of the scale layer formed on the surface, and the fine base material is formed on the base material side immediately below the interface with the net-like scale layer.
  • a ferrite layer containing a large number of ferrite grains is formed, and the plug life is significantly extended compared to the conventional example.
  • the thickness of the net-like scale layer is small or the number of fine ferrite grains is small, and the plug life Has not been able to achieve long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

耐久性に優れた穿孔圧延用工具およびその製造方法を提供する。 質量%で、C:0.05~0.5%、Si:0.1~1.5%、Mn:0.1~1.5%、Cr:0.1~1.5%、Mo:0.6~3.5%、W:0.5~3.5%、Nb:0.1~1.0%を含み、さらにCo:0.5~3.5%、Ni:0.5~4.0%を、1.0<Ni+Co<4.0 を満足するように含む組成を有する基材の表面層にスケール層を形成する。そしてそのスケール層のうち基材側に形成されるスケール層を、深さ方向に10~200μmの厚さを有する地鉄と複雑に絡み合ったネット状スケール層とし、該ネット状スケール層と基材との界面から深さ方向で少なくとも300μmの範囲の基材側組織を、面積率で50%以上のフェライト相を含み、かつ該フェライト相が最大長さ:1~60μmのフェライト粒を400個/mm以上含む相である組織とする。このような組織は、スケール付け熱処理を、加熱後、少なくとも700℃までの冷却を、前段急冷、後段徐冷とする熱処理を施すことにより達成できる。これにより、スケール層の密着性が向上し、穿孔圧延用工具の寿命が長寿命化する。

Description

穿孔圧延用工具
 本発明は、継目無鋼管(seamless pipe)の製造に係り、とくに穿孔圧延(piercing mill)に使用されるプラグ(plug)等の穿孔圧延用工具(tool for piercing mill)の耐久性(wear resistance)向上に関する。
 従来から、継目無鋼管の製造方法として、マンネスマン式製管法(Mannesmann piercing method)が広く知られている。この方法は、まず、所定の温度に加熱された圧延素材(丸鋼材round billet)を穿孔圧延機による穿孔圧延工程を経て中空素材(hollow shell)とする。そののち、エロンゲータ(elongator)、プラグミル(plug mill)、またはマンドレルミル(mandrel mill)等の延伸圧延機(elongating mill)により肉厚を減少する。さらに、必要に応じて再加熱したのち、絞り圧延機(stretch reducing mill)あるいはその他の成形機(sizing mill)により、主として外径を減じ所定の寸法の継目無鋼管を得る方法である。
 穿孔圧延機としては、2本の傾斜ロール(a pair of inclined rolls)と穿孔用プラグおよび2個のガイドシュー(guide shoe)を組合せた、マンネスマンピアサ(Mannesmann piercer)、3本の傾斜ロールと穿孔用プラグとを組み合わせた、3ロールピアサ(three rolls piercer)、或いは2本の孔型ロール(grooved roll)と穿孔用プラグを組み合わせた、プレスロールピアサ(press roll piercer)が知られている。このような穿孔圧延機による穿孔圧延工程では、穿孔圧延用工具(プラグplug)は、高温、高負荷の環境下に長時間晒され、摩耗(wear)、溶損(deformation at elevated temperature and erosion)等を生じやすい。このため、例えば特許文献1、特許文献2、特許文献3、特許文献4、特許文献5に示されるように、従来から、高温でのスケール処理(oxide scale-forming heat treatment)を施して、工具表面に数十~数百μm厚の酸化スケールを形成して、穿孔圧延用工具の損耗を防止していた。
 しかし、最近では、熱間変形抵抗(hot deformation resistance)が高く、しかも表面に酸化スケール(oxide scale)が形成されにくい、13Cr鋼、ステンレス鋼等の高合金鋼製継目無鋼管の需要が増加している。特許文献1、特許文献2、特許文献3、特許文献4、特許文献5に記載された各技術では、このような高合金鋼を穿孔圧延すると、早期に工具が損耗するという問題があった。
 このような問題に対し、本発明者らは、特許文献6に、耐久性に優れた穿孔圧延用工具について提案した。特許文献6に記載された技術では、質量%で、C:0.05~0.5%、Si:0.1~1.5%、Mn:0.1~0.5%、Cr:0.1~1.0%、Mo:0.5~3.0%、W:0.5~3.0%、Nb:0.1~1.5%を含み、さらにCo:0.1~3.0%、Ni:0.5~2.5%を、(Ni+Co)が4%未満1%超となる条件で含有する組成を有する。表層にスケール層を有し、スケール層のうち基材(substrate steel)側に地鉄(metal)と複雑に絡み合ったネット状スケール層を有する。さらにスケール層の界面から基材側に面積率で50%以上のフェライト相を含む組織を形成した穿孔圧延用工具である。これにより、工具の寿命を長寿命化させることができ、高合金鋼製継目無鋼管の穿孔圧延の生産性が向上するとしている。
特開昭59-9154号公報 特開昭63-69948号公報 特開平08-193241号公報 特開平10-5821号公報 特開平11-179407号公報 特開2003-129184号公報
最近では、継目無鋼管の使用環境はますます苛酷なものとなっている。そのような苛酷化する使用環境に耐えるために、使用される継目無鋼管も高品質化が要求され、高合金化する傾向となっている。そのため、圧延用素材の熱間変形抵抗が高くなり、穿孔圧延用工具への圧延負荷はますます増大する傾向となっている。また、一方では、製造コスト削減の要求が強く、穿孔圧延用工具の更なる寿命延長が要望されている。そのため、特許文献6に記載された技術によっても、最近の穿孔圧延用工具への要求を充分に満足することができなくなり、穿孔圧延用工具に対する更なる長寿命化の要望がさらに高くなっている。とくに、穿孔圧延用工具の長寿命化のために、過剰にスケール付けを施す場合が多くなるため、スケールの部分的剥離(partial peeling of an oxide scale)や、脱落(drop off)等が頻繁に発生する。そのため、プラグ表面の肌荒れ、工具径の減少を誘起し、管内面の欠陥発生、管寸法精度の低下等を招き、結果として工具寿命が低下するなどの問題があり、工具寿命の更なる延長等の耐久性向上に対する強い要望があった。
本発明は、かかる従来技術の問題を解決し、耐久性に優れた穿孔圧延用工具を提供することを目的とする。
本発明者らは、上記した目的を達成するため、工具寿命に対する各種要因の影響について鋭意検討した。その結果、工具寿命が著しく長くなる穿孔圧延用工具がまれに存在することを見出した。そのような長寿命となった工具のミクロ組織を詳細に調査すると、基材の表面層に形成された、地鉄(metal)とスケールが複雑に絡み合ったネット状スケール層(net structure scale layer)と基材(substrate steel)との界面直下の基材側組織が、微細なフェライト粒を多数含むフェライト相からなる組織(ferrite dominant layer)となっていることを知見した。
そして、このようなミクロ組織を有する穿孔圧延用工具では、ネット状スケールが微細化していた。本発明者らは、このネット状スケールの微細化が、スケール層の耐剥離性を向上させて、工具の顕著な寿命延長をもたらしたものと考えた。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
(1)基材の表面層にスケール層を有する穿孔圧延用工具であって、前記基材が、質量%で、C:0.05~0.5%、Si:0.1~1.5%、Mn:0.1~1.5%、Cr:0.1~1.5%、Mo:0.6~3.5%、W:0.5~3.5%、Nb:0.1~1.0%を含み、さらにCo:0.5~3.5%、Ni:0.5~4.0%を次(1)式
           1.0<Ni+Co<4.0      ‥‥(1)
(ここで、Ni、Co:各元素の含有量(質量%))
を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する。前記スケール層のうち基材側に形成されるスケール層を、深さ方向に10~200μmの厚さを有する地鉄と複雑に絡み合ったネット状スケール層とする。該ネット状スケール層と基材との界面から深さ方向で少なくとも300μmの範囲の基材側組織を、面積率で50%以上のフェライト相を含み、かつ該フェライト相が最大長さ:1~60μmのフェライト粒を400個/mm以上含む相である組織とすることを特徴とする耐久性に優れた穿孔圧延用工具。
(2)(1)において、前記組成に加えてさらに、Al:0.05%以下含有することを特徴とする穿孔圧延用工具。
本発明によれば、穿孔圧延用工具の著しい長寿命化が達成でき、工具コストを低減できる。また、高合金鋼製継目無鋼管製造の生産性を向上できるとともに、高合金鋼製継目無鋼管の製造コストを低減でき、産業上格段の効果を奏する。
スケール層と地鉄との界面近傍の断面組織を模式的に示す説明図である。 本発明で適用する熱処理パターンを模式的に示す説明図である。 実施例で使用した熱処理パターンを模式的に示す説明図である。
本発明になる穿孔圧延用工具は、特定組成を有する基材の表面層にスケール層を有する穿孔圧延用工具である。まず、基材の組成限定理由について説明する。以下、とくに断わらない限り、質量%は単に%で記す。
 C:0.05~0.5%
Cは、固溶して基材の強度を増加させ、さらには炭化物を形成して基材の高温強度の低下を抑制する元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、0.5%を超える含有は、基材組織をフェライト相が析出した組織とすることが困難となり、さらに融点が低下し高温強度が低下して、プラグ寿命が低下する。このため、Cは0.05~0.5%の範囲に限定した。なお、好ましくは0.1~0.4%である。
 Si:0.1~1.5%
Siは、固溶強化により基材の強度を増加させるとともに、基材の炭素活量を増加させて、脱炭層を形成しやすくし、基材組織をフェライト相が析出した組織を形成しやすくする作用を有する。このような効果を得るためには、0.1%以上の含有を必要とする。一方、1.5%を超える含有は、緻密な酸化物を基材表面に形成し、ネット状スケール層の形成を阻害する。このため、Siは0.1~1.5%の範囲に限定した。なお、好ましくは0.2~1.0%である。
 Mn:0.1~1.5%
Mnは、固溶して基材の強度を増加させるとともに、不純物として混入し材質に悪影響を及ぼすSと結合しMnSを形成し、Sの悪影響を抑制する。このような効果を得るためには、0.1%以上の含有を必要とする。一方、1.5%を超える含有は、ネット状スケールの成長を阻害する。このようなことから、Mnは0.1~1.5%の範囲に限定した。なお、好ましくは0.2~1.0%である。
 Cr:0.1~1.5%
Crは、固溶して基材の強度を増加させ、また炭化物を形成し高温強度を増加させ、プラグの耐熱性を高める作用を有する。また、CrはFeより酸化しやすい元素であり、選択酸化(selective oxidaization)を助長する。このような効果を得るためには、0.1%以上の含有を必要とする。一方、1.5%を超える含有は、緻密なCr酸化物を形成し、ネット状スケール層の成長を阻害するとともに、基材の炭素活量(carbon activity)を低下させて、脱炭層(decarburized layer)の成長を阻害し、フェライト相が析出した基地組織の形成を抑制する。このため、Crは0.1~1.5%の範囲に限定した。なお、好ましくは0.2~1.0%である。
 Mo:0.6~3.5%
Moは、フェライト相中にミクロ偏析し、選択酸化を誘起しネット状スケール層の形成を促進させる重要な元素である。また、Mo系酸化物は、650℃以上の温度で昇華を開始し、酸化反応に係るH、HO、CO、COの経路を形成し、選択酸化および脱炭層の形成を促進する。このような効果は、0.6%以上の含有で認められる。一方、3.5%を超える含有は、ミクロ偏析が粗くなり、ネット状スケール層の成長が抑制され、スケール層の密着性が低下するとともに、融点が低下しプラグの溶損を助長し、耐熱性が低下する。このため、Moは0.6~3.5%の範囲に限定した。なお、好ましくは0.8~2.0%である。
 W:0.5~3.5%
Wは、Moと同様に、フェライト相中にミクロ偏析し、選択酸化を助長するとともに、Ni、Coの負偏析部を形成しやすくして、ネット状スケール層の成長を助長する。また、Wは固溶強化により、基材の強度を増加し、炭化物を形成しプラグの高温強度を増加する。このような効果は、0.5%以上の含有で認められる。しかし、3.5%を超える含有は、ミクロ偏析が粗くなり、ネット状スケール層の成長を阻害するとともに、スケール融点が低下しプラグの溶損を助長する。このため、Wは0.5~3.5%の範囲に限定した。なお、好ましくは1.0~3.0%である。
 Nb:0.1~1.0%
Nbは、炭化物形成元素であり、Cと結合して炭化物を形成し、基材中の遊離Cを減少して、フェライト相の生成を助長し、フェライト相を主体とする基地組織の形成に寄与する。また、Nb炭化物は結晶粒界に生成しやすく、また同時に非常に酸化しやすいため、酸素の侵入経路となって、スケール層の成長を助長する作用を有する。また、NbはMoとの親和力が大きいため、Moのミクロ偏析を促進するという効果もある。このような効果を得るためには、Nbは0.1%以上含有する必要がある。一方、1.0%を超える含有は、炭化物が粗大化し、プラグを割損させやすくする。このため、Nbは0.1~1.0%の範囲に限定した。なお、好ましくは0.1~0.8%である。
 Co:0.5~3.5%
Coは、固溶して基材の高温強度を高めるとともに、FeやMoより酸化し難いため、Fe、Moの選択酸化を促進しネット状スケールの形成を助長する。そして、Coは、ネット状スケールの成長過程で選択酸化部近傍の地鉄中に濃縮される。Coが濃縮された地鉄領域は酸化が抑制されるため、地鉄とスケールが複雑に絡み合った形態を形成しやすくする。また、Coが濃縮された地鉄領域は展延性に富むため、地鉄とネット状スケールとのなじみが向上し、スケールの剥離を防止できる。このような効果を得るためには、Coを0.5%以上含有する必要がある。一方、3.5%を超えて含有すると、Coが基材とスケール層との界面に線状に濃縮するため、Mo、Feの選択酸化を抑制し、ネット状スケール層の成長が困難となる。このため、Coは0.5~3.5%の範囲に限定した。なお、好ましくは0.5~3.0%である。
 Ni:0.5~4.0%
Niは、固溶して基材の強度、靭性を向上させるとともに、FeやMoより酸化し難いため、Fe、Moの選択酸化を促進しネット状スケールの形成を助長する。そして、Niは、ネット状スケールの成長過程で選択酸化部近傍の地鉄中に濃縮される。Niが濃縮された地鉄領域は酸化が抑制されるため、地鉄とスケールが複雑に絡み合った形態を形成しやすくする。また、Niが濃縮された地鉄領域は展延性に富むため、地鉄とネット状スケールとのなじみが向上し、スケールの剥離を防止できる。このような効果を得るためには、0.5%以上の含有を必要とする。一方、4.0%を超えて含有すると、Niが基材とスケール層との界面に線状に濃縮するため、Mo、Feの選択酸化を抑制し、ネット状スケール層の成長が困難となる。このため、Niは0.5~4.0%の範囲に限定した。なお、好ましくは1.0~3.0%である。
 なお、Ni、Coは、上記した含有範囲内で、かつ次(1)式
1.0<Ni+Co<4.0 ‥‥(1)
(ここで、Ni、Co:各元素の含有量(質量%))
を満足するように調整する。NiとCoの含有量の合計である(Ni+Co)が1.0以下では、ネット状スケール層の形成が不十分である。一方、4.0以上では、Ni、Coが基材とスケール層の界面に過剰に濃縮し、Fe、Moの選択酸化を抑制し、ネット状スケール層の生成を困難とする。このようなことから、(Ni+Co)を1.0超え4.0未満に限定した。
 上記した成分が基本の成分であるが、基本の組成に加えてさらに、選択元素としてAl:0.05%以下を必要に応じて含有できる。
Al:0.05%以下
Alは、脱酸剤であり、必要に応じて含有できる。このような効果は0.005%以上の含有で顕著となる。一方、0.05%を超える含有は、鋳造性が低下し、ピンホール、引け巣等の欠陥が発生しやすくなる。一方、0.05%を超えて過剰に含有すると、熱処理時に表面に緻密なAlO膜が形成され、ネット状スケール層の形成を阻害する。このため、Alは、含有する場合には、0.05%以下に限定することが好ましい。
 なお、脱酸剤として、Alに代えて、REM:0.05%以下、Ca:0.01%以下を含有してもよい。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、P:0.05%以下、S:0.03%以下、以外にN:0.06%以下、Ti:0.015%以下、Zr:0.03%以下、V:0.6%以下、Pb:0.05%以下、Sn:0.05%以下、Zn:0.05%以下、Cu:0.2%以下が許容できる。
 つぎに、本発明になる穿孔圧延用工具の組織について説明する。
本発明になる穿孔圧延用工具は、図1に示すように、上記した組成の基材の表面層にスケール層を有する。そして、スケール層のうち基材側に形成されるスケール層は、地鉄と複雑に絡み合ったネット状スケール層である。
ネット状スケール層は、基材の地鉄と複雑に絡み合ったスケール層である。地鉄とスケール層とが複雑に混ざり合った状態となっているため、スケール層の摩滅は、スケール層単体より著しく抑制される。また、このようなネット状スケール層が存在すると、スケール層の潤滑作用(lubrication ability)により被圧延材のプラグへの焼付きを防止できる。
 本発明穿孔圧延用工具では、このようなネット状スケール層は、深さ方向に10~200μmの厚さを有する。ネット状スケール層の厚さが10μm未満では、被圧延材との摩擦で早期に摩耗し、ネット状スケール層が消滅する。このため、プラグが損傷し、プラグ寿命が低下する。一方、200μmを超えて厚くなると、密着性が低下し剥離が促進されるため、プラグが損傷し、プラグ寿命が低下する。しかも、過剰に厚いスケール層を形成すると、肌荒れ、スケールオフによるプラグ径の顕著な減少を誘発し、鋼管内面の欠陥発生につながり、鋼管寸法精度の劣化を生じる。このようなことから、ネット状スケール層の厚さは深さ方向に10~200μmの範囲に限定した。
 そして、本発明穿孔圧延用工具では、図1に示すように、このネット状スケール層と基材との界面から深さ方向で少なくとも300μmの範囲の基材側組織を、面積率で50%以上のフェライト相を含み、かつ該フェライト相が最大長さ:1~60μmのフェライト粒を400個/mm以上含む相である組織とする。
ネット状スケール層と基材との界面から深さ方向で少なくとも300μmの範囲の基材側組織を、面積率で50%以上のフェライト相とすることにより、Moのミクロ偏析が生じやすくなり、その領域が選択酸化され、ネット状スケール層の形成が容易となる。フェライト相が面積率で50%未満では、ネット状スケール層の形成が困難となる。
 また、界面から深さ方向で少なくとも300μmの範囲の基材側組織を、フェライト相を主体とする組織とすることにより、その後の酸化熱処理により、選択酸化された領域近傍の地鉄にNi、Co等がさらに濃縮され、ネット状スケール層の密着性がさらに向上する。また、ネット状スケール層との界面から深さ方向に少なくとも300μmの基材側の範囲を、面積率で50%以上のフェライト相を含む、フェライト相を主体とする組織にすることにより、スケールの耐剥離性、耐摩滅性が向上する。フェライト相を主体とする組織が、ネット状スケール層との界面から深さ方向に300μm未満では、所望のスケールの耐剥離性、耐摩滅性を確保できない。
 さらに、本発明では、ネット状スケール層との界面から深さ方向に少なくとも300μmの範囲の基材側の地鉄を、上記したようにフェライト相を主体とする組織とする。さらにそのフェライト相を、最大長さ:1~60μmの微細フェライト粒を400個/mm以上含む相とする。これにより、ネット状スケール層が微細化し、プラグ寿命が顕著に向上する。フェライト粒の最大長さが60μm超の粗大なフェライト粒では、ネット状スケール層の微細化の程度が少なく、プラグ寿命の顕著な向上が認められない。一方、1μm未満では、フェライト粒が増加してもプラグ寿命の向上効果は小さい。
 また、微細フェライト粒の数が、400個/mm未満では、ネット状スケール層の微細化が不十分で、プラグ寿命の顕著な向上が得られない。このようなことから、ネット状スケール層と地鉄との界面から深さ方向に少なくとも300μmの基材側組織を、フェライト相を主体とする組織とした。さらにそのフェライト相を、最大長さ:1~60μm未満の微細フェライト粒を400個/mm以上含む相である組織に限定した。
ここで、フェライト粒の「最大長さ」とは、ネット状スケール層の平均界面と垂直な断面で観察し、各フェライト粒の長さを測定し、そのうちの最大値をその粒の最大長さとした。
 つぎに、本発明穿孔圧延用工具の好ましい製造方法について説明する。
上記した組成の溶鋼を、電気炉、高周波炉等の通常の方法で溶製し、減圧鋳造法、生型鋳造法、シェルモールド法など、通常、公知の方法で鋳造し鋳片としたのち、切削加工等で所定形状の基材(工具)とすることが好ましい。なお、鋼片から切削加工等で所定形状の基材(工具)としてもよい。
 得られた基材(工具)は、ついで熱処理(スケール付け熱処理)を施されて、基材表面層にスケール層を形成される。熱処理は、通常の、ガス燃焼炉、電気炉等を用いて行えばよく、また熱処理の雰囲気は大気雰囲気でよく、とくに雰囲気調整を行う必要はない。
熱処理としては、第一段と第二段の2段階の熱処理を適用する。
第一段の熱処理は、900~1000℃の範囲の温度に加熱・保持したのち、少なくとも850~650℃の温度領域を平均で40℃/h以下で冷却(徐冷)する処理とすることが好ましい。第一段の熱サイクルパターンを模式的に図2(a)に示す。
 これにより、表層にスケール層が形成され、基材組織にフェライトが析出した組織が形成される。さらに基地中に固溶されたMo、W等の合金元素が温度と冷却速度に応じて拡散し、炭化物として析出したり、結晶粒界近傍に濃縮したりして、基地中に合金元素のミクロ偏析が発生する。このミクロ偏析の存在により、その後の熱処理で、Fe、Mo等の不均一酸化(選択酸化)が生じ、地鉄と複雑に絡み合った界面を有するネット状スケール層が発達する。
 加熱温度が、900℃未満では、合金元素の固溶が促進されず、所望の合金元素のミクロ偏析分布を達成できない。一方、1000℃を超える加熱では、外層のスケール層の形成が顕著となり、密着性に優れたスケール層の形成が阻害される。なお、加熱温度での保持は、2~8hとすることが好ましい。保持時間が2h未満では、合金元素の固溶が不十分となる。一方、8hを超えると、保持時間が長くなりすぎ、生産性が低下するとともに、形成されるスケール量が厚くなり、プラグ寸法精度が低下する。また、少なくとも850~650℃の温度領域の平均冷却速度が40℃/hを超えると、冷却が速くなりすぎて、ネット状スケール層の成長に必須の合金偏析が抑制される。
 第二段の熱処理は、900~1000℃の範囲の加熱温度に加熱・保持したのち、一旦、600~700℃の範囲の温度まで30℃/h以上の平均冷却速度で冷却し、しかる後に750℃以上800℃以下の温度まで復熱させ、さらに3~20℃/h の範囲の冷却速度で700℃以下の温度まで冷却(徐冷)し、その後放冷する熱処理とすることが好ましい。第二段の熱サイクルパターンを模式的に図2(b)に示す。
 第二段の熱処理における加熱温度が、900℃未満では、合金元素の拡散と凝集が促進されず、所望のネット状スケール層の形成、所望の地鉄組織(微細フェライト相)の形成を達成できない。一方、1000℃を超える加熱では、外層のスケール層の形成が顕著となり、密着性に優れたスケール層の形成が阻害される。なお、加熱温度での保持は、1~8hとすることが好ましい。保持時間が1h未満では、スケールの成長が抑制されるとともに、合金元素の固溶が不十分となる。一方、8hを超えると、保持時間が長くなりすぎ、生産性が低下するとともに、形成されるスケール量が多くなりすぎ、プラグ寸法精度が低下する。
 加熱保持後、600~700℃の範囲の温度までの冷却速度が、30℃/h未満では、フェライトの生成・成長が促進され、ネット状スケール層直下の基材側組織をフェライト相を主体とする組織で、しかも微細なフェライト相を析出した組織とすることができなくなる。
上記した冷却を600~700℃の範囲の温度で停止して、750℃以上800℃以下の温度まで復熱させる。復熱後、3~20℃/hの範囲の平均冷却速度で700℃以下の温度まで徐冷する。これにより、ネット状スケール層直下の基材側組織をフェライト相を主体とする組織で、しかも微細なフェライト相が析出した組織とすることができる。第二段の熱処理を、上記したように、一旦所定の温度範囲にまで急冷した後、復熱させその後徐冷するサイクルの熱処理とすることにより、ネット状スケール層と基材側の界面より下の地鉄組織を、微細なフェライト粒が多数析出した組織とすることができる。
 なお、上記した第二段の熱処理に代えて、第二段の熱処理を、900~1000℃の範囲の温度に加熱・保持したのち、20~200℃/hの冷却速度で850~800℃の温度域まで冷却する前段冷却と、該前段冷却後、前段冷却の冷却速度との差が10℃/h以上となるように3~20℃/hの範囲の冷却速度で700℃まで冷却する後段冷却とからなる一次冷却を施し、ついで100℃/h以上の冷却速度で400℃以下まで冷却する二次冷却からなる熱処理としてもよい。この第二段の熱サイクルパターンを模式的に図2(c)に示す。
 この第二段の熱処理は、一次冷却を、急冷の前段冷却と、徐冷の後段冷却とを組み合わせた熱処理とすることに特徴がある。高温領域での冷却(前段冷却)を20℃/h未満の徐冷とすると、基材側ではフェライトの析出が顕著となり、冷却中に成長して粗大粒となるため、所望の基材側組織を確保できなくなる。高温領域での冷却(前段冷却)を急冷とし、さらに低温領域の冷却(後段冷却)を20℃/h以下の徐冷とすることによってはじめて、フェライト粒が微細に析出し、所望の基材側組織を確保できるようになる。
 このような熱処理を施すことにより、基材との境界に形成されるスケール層が深さ方向の厚さ:10~200μmのネット状スケール層となるとともに、さらにネット状スケール層と基材との界面から深さ方向に少なくとも300μmまでの基材側組織がフェライト相を主体とする組織で、しかもフェライト相を、最大粒長さ:1~60μmの微細なフェライト粒が400個/mm以上存在する相とすることができる。なお、前段冷却と、後段冷却とは、10℃/h以上の冷却速度差を持たせた冷却とすることが、微細なフェライト粒を多数析出されるために、有利となる。
 このような熱処理を施された穿孔圧延用工具は、複数回の穿孔圧延に供され、継目無鋼管の製造に寄与する。穿孔圧延用工具を穿孔圧延に供すると、表面に形成されたスケール層が摩滅し、溶損や焼付き、えぐれが発生する前に、再スケール付けを実施することにより、再使用することができる。なお、再スケール付け熱処理は、上記した第2段階の熱処理と同じ処理とすることが、穿孔圧延用工具の寿命延長に有利に寄与する。
なお、いずれの熱処理でも500℃以下の温度はなるべく急冷したほうがスケール層のヘマタイト化に伴う潤滑作用の劣化を防ぐ観点から好ましく、可能であれば炉外空冷あるいは炉外での衝風空冷することが好ましい。
  表1に示す組成の溶鋼を、大気雰囲気の高周波炉で溶製し、Vプロセス法(vacuum sealed molding process)で鋳造し、最大外径:174mmφのピアサプラグとした。得られたピアサプラグを基材とし、該基材に、図3に示す熱処理(A)、(B),(C)のいずれかを施し、表2に示す、スケール層と界面下の基材側組織を有する穿孔圧延用工具とし、穿孔圧延に供した。
 熱処理(A)では、加熱温度:920℃で4h保持したのち、40℃/hで700℃まで冷却する第一段の熱処理と、加熱温度:920℃で4h保持したのち、炉の蓋を開けて炉内中心部温度(雰囲気温度)が680℃になるまで急冷(30℃/h)した。ついで炉の蓋を閉めて炉内中心部温度(雰囲気温度)で790℃まで復熱させ、ついで平均で14℃/hの冷却速度で650℃になるまで徐冷する第二段の熱処理とを施す処理とした。
 また、熱処理(B)は、加熱温度:920℃で4h保持したのち、40℃/hで700℃まで冷却する第一段の熱処理と、加熱温度:920℃で4h保持したのち、炉内中心部温度(雰囲気温度)が840℃になるまで平均で30℃/hの冷却速度で冷却する前段冷却と、平均で10℃/hの冷却速度で650℃まで冷却する後段冷却とからなる一次冷却を施した。ついで、100℃/hの平均冷却速度で400℃以下まで冷却する二次冷却を施す第二段の熱処理とを施す処理とした。
 また、熱処理(C)は、従来の熱処理であり、加熱温度:970℃で4h保持したのち、平均で40℃/hの冷却速度で700℃まで冷却する第一段の熱処理と、加熱温度:970℃で4h保持したのち、40℃/hの平均冷却速度で500℃まで冷却する第二段の熱処理とを施す処理とした。
熱処理後に、プラグの断面組織を、ナイタール腐食して断面組織を光学顕微鏡(倍率:200倍)で観察し、ネット状スケール層の深さ方向の厚さを測定した。ネット状スケール層は、スケール中の地鉄の含有量が面積率で10~80%の範囲となるスケール層とした。
また、ネット状スケール層と基材との界面下の基材側組織を、同様に観察し、フェライト相の面積率を測定し、面積率で50%以上のフェライト相が存在するフェライト相を主体とする組織の厚さを測定した。なお、フェライト相を主体とする組織の厚さは、フェライト相界面が凹凸を呈しているため、maxとminを10点ずつ測定し、その平均値を50μm単位でまとめて表記した。また、フェライト相におけるフェライト粒を観察し、その最大長さを測定し、最大長さが10μm以上60μm以下のフェライト粒の粒数を測定した。測定範囲は、界面下300μm角の範囲とした。
 上記した熱処理により、基材表面層に、厚さ;約700~800μmのスケール層を形成した。ついで、表面層にスケール層を付与されたピアサプラグは、まず、13Cr鋼ビレット(外径207mm×長さ1800mm:ビレット温度1050~1150℃)の穿孔圧延に供した。ビレット2本を圧延するごとに、プラグ表面を目視観察した。計4本圧延した時点で、プラグに溶損、焼付き、えぐれ等がない場合に、プラグをさらに再使用するために、図3(A)~(C)に示す熱処理を施し、繰り返し使用した。プラグ表面に溶損、焼付き、えぐれ等が発生するまでに、圧延した累積圧延本数をそのプラグの寿命とした。同じ条件のプラグを各3本用意し、それらの累積圧延本数の平均値を、そのプラグの寿命とした。なお、平均値は、小数点以下を四捨五入して整数値とした。
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明例はいずれも、表面に形成されたスケール層の基材側に、所望厚さのネット状スケール層が形成され、しかも、ネット状スケール層との界面直下の基材側に、微細なフェライト粒を多数含むフェライト層が形成され、従来例に比較して、プラグ寿命が格段に長寿命化している。これに対し、本発明の組成範囲を外れる比較例では、スケール付け処理が本発明範囲であっても、ネット状スケール層の厚さが少ないか、微細なフェライト粒が少ないか、してプラグ寿命の長寿命化を達成できていない。

Claims (2)

  1. 基材の表面層にスケール層を有する穿孔圧延用工具であって、前記基材が、質量%で、
    C:0.05~0.5%、           Si:0.1~1.5%、
    Mn:0.1~1.5%、           Cr:0.1~1.5%、
    Mo:0.6~3.5%、            W:0.5~3.5%、
    Nb:0.1~1.0%
    を含み、さらにCo:0.5~3.5%、Ni:0.5~4.0%を下記(1)式を満足するように含み、残部Feおよび不可避的不純物からなる組成を有し、
    前記スケール層のうち基材側に形成されるスケール層を、深さ方向に10~200μmの厚さを有する地鉄と複雑に絡み合ったネット状スケール層とし、該ネット状スケール層と基材との界面から深さ方向で少なくとも300μmの範囲の基材側組織を、面積率で50%以上のフェライト相を含み、かつ該フェライト相が最大長さ:1~60μmのフェライト粒を400個/mm以上含む相である組織とすることを特徴とする耐久性に優れた穿孔圧延用工具。

               1.0<Ni+Co<4.0      ‥‥(1)
               ここで、Ni、Co:各元素の含有量(質量%)
  2.  前記組成に加えてさらに、Al:0.05%以下含有することを特徴とする請求項1に記載の穿孔圧延用工具。
PCT/JP2012/007617 2011-11-30 2012-11-28 穿孔圧延用工具 WO2013080528A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12853205.8A EP2786813B1 (en) 2011-11-30 2012-11-28 Tool for piercing mill
CN201280059297.8A CN103974787B (zh) 2011-11-30 2012-11-28 穿孔轧制用工具
US14/361,679 US9194031B2 (en) 2011-11-30 2012-11-28 Tool for piercing mill
BR112014013153-8A BR112014013153B1 (pt) 2011-11-30 2012-11-28 Ferramenta para laminador-mandrilador
IN820MUN2014 IN2014MN00820A (ja) 2011-11-30 2012-11-28
MX2014006120A MX2014006120A (es) 2011-11-30 2012-11-28 Herramienta para laminador perforador.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011261307A JP5321673B2 (ja) 2011-11-30 2011-11-30 穿孔圧延用工具
JP2011-261307 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080528A1 true WO2013080528A1 (ja) 2013-06-06

Family

ID=48535022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007617 WO2013080528A1 (ja) 2011-11-30 2012-11-28 穿孔圧延用工具

Country Status (8)

Country Link
US (1) US9194031B2 (ja)
EP (1) EP2786813B1 (ja)
JP (1) JP5321673B2 (ja)
CN (1) CN103974787B (ja)
BR (1) BR112014013153B1 (ja)
IN (1) IN2014MN00820A (ja)
MX (1) MX2014006120A (ja)
WO (1) WO2013080528A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741062A (zh) * 2013-12-23 2014-04-23 马鞍山市盈天钢业有限公司 一种核电用无缝钢管材料及其制备方法
CN104099531A (zh) * 2014-07-31 2014-10-15 宁国市宁武耐磨材料有限公司 一种高硬度耐磨球及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741074B (zh) * 2013-12-23 2015-12-09 马鞍山市盈天钢业有限公司 一种汽车半轴套管用无缝钢管材料及其制备方法
JP6385195B2 (ja) * 2014-08-19 2018-09-05 新報国製鉄株式会社 シームレスパイプ製造用ピアサープラグ
CN109487170B (zh) * 2017-09-13 2020-11-17 宝山钢铁股份有限公司 一种高穿孔寿命的顶头及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599154A (ja) 1982-07-05 1984-01-18 Kawasaki Steel Corp 継目無鋼管製造用工具材料
JPS6369948A (ja) 1986-09-09 1988-03-30 Kawasaki Steel Corp 継目無鋼管製造用工具材料
JPH0890015A (ja) * 1994-09-26 1996-04-09 Kawasaki Steel Corp 継目無鋼管圧延用プラグの冷却方法
JPH08193241A (ja) 1994-09-26 1996-07-30 Kawasaki Steel Corp 熱間加工用工具及びその製造方法
JPH105821A (ja) 1996-06-14 1998-01-13 Sumitomo Metal Ind Ltd 継目無鋼管製造用プラグの熱処理方法および継目無鋼管の製造方法
JPH11179407A (ja) 1997-12-19 1999-07-06 Nkk Corp 継目無鋼管製造用工具
JP2000190008A (ja) * 1998-12-25 2000-07-11 Nippon Steel Corp 継目無鋼管製造用工具およびその製造方法
JP2003103301A (ja) * 2001-07-25 2003-04-08 Kawasaki Steel Corp 穿孔圧延用工具およびその製造方法
JP2003129184A (ja) 2001-10-25 2003-05-08 Kawasaki Steel Corp 穿孔圧延用工具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4388676B2 (ja) * 2000-07-28 2009-12-24 日本鋳造株式会社 継目無管製造用工具及びその製造方法
CN101942610A (zh) * 2010-08-05 2011-01-12 黄贞益 一种热轧无缝钢管穿孔顶头及其加工工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599154A (ja) 1982-07-05 1984-01-18 Kawasaki Steel Corp 継目無鋼管製造用工具材料
JPS6369948A (ja) 1986-09-09 1988-03-30 Kawasaki Steel Corp 継目無鋼管製造用工具材料
JPH0890015A (ja) * 1994-09-26 1996-04-09 Kawasaki Steel Corp 継目無鋼管圧延用プラグの冷却方法
JPH08193241A (ja) 1994-09-26 1996-07-30 Kawasaki Steel Corp 熱間加工用工具及びその製造方法
JPH105821A (ja) 1996-06-14 1998-01-13 Sumitomo Metal Ind Ltd 継目無鋼管製造用プラグの熱処理方法および継目無鋼管の製造方法
JPH11179407A (ja) 1997-12-19 1999-07-06 Nkk Corp 継目無鋼管製造用工具
JP2000190008A (ja) * 1998-12-25 2000-07-11 Nippon Steel Corp 継目無鋼管製造用工具およびその製造方法
JP2003103301A (ja) * 2001-07-25 2003-04-08 Kawasaki Steel Corp 穿孔圧延用工具およびその製造方法
JP2003129184A (ja) 2001-10-25 2003-05-08 Kawasaki Steel Corp 穿孔圧延用工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2786813A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741062A (zh) * 2013-12-23 2014-04-23 马鞍山市盈天钢业有限公司 一种核电用无缝钢管材料及其制备方法
CN104099531A (zh) * 2014-07-31 2014-10-15 宁国市宁武耐磨材料有限公司 一种高硬度耐磨球及其制备方法

Also Published As

Publication number Publication date
US9194031B2 (en) 2015-11-24
IN2014MN00820A (ja) 2015-04-17
BR112014013153A2 (pt) 2017-06-13
JP2013112869A (ja) 2013-06-10
EP2786813A4 (en) 2015-05-27
JP5321673B2 (ja) 2013-10-23
US20150176107A1 (en) 2015-06-25
EP2786813B1 (en) 2016-05-18
CN103974787B (zh) 2015-10-21
MX2014006120A (es) 2014-08-27
EP2786813A1 (en) 2014-10-08
BR112014013153B1 (pt) 2022-06-14
CN103974787A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
JP4462452B1 (ja) 高合金管の製造方法
WO2013080528A1 (ja) 穿孔圧延用工具
JP2683861B2 (ja) 熱間製管用工具及びその製造方法
JP3797192B2 (ja) 穿孔圧延用工具
JP2004068142A (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP5458654B2 (ja) 熱間圧延機用ワークロールとその製造方法
JP6070005B2 (ja) 穿孔圧延用工具の使用方法
JP4165058B2 (ja) 穿孔圧延用工具およびその製造方法
JP5900241B2 (ja) 使用済み穿孔圧延用工具の再生方法
JP4118560B2 (ja) 圧延用単層スリーブロール
JP2005264322A (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP3997779B2 (ja) 穿孔圧延用工具の製造方法
JP6919493B2 (ja) 継目無鋼管の製造方法
JP7400771B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP4525444B2 (ja) 熱間圧延用鋳造ロール材および熱間圧延用ロール
JP4569122B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2006283168A (ja) 熱間圧延用鋳造ロール材および熱間圧延用ロール
JPH11197716A (ja) 継目無鋼管製造用プラグミルプラグ
WO2020110660A1 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2000190008A (ja) 継目無鋼管製造用工具およびその製造方法
JP2683861C (ja)
JP2023064473A (ja) 鋼板およびその製造方法
CN117265404A (zh) 一种冶金轧机轴承套圈用轴承钢新材料及制备方法
CN117737387A (zh) 一种高过钢量稀土轧辊的制造方法
JP2005066606A (ja) 高清浄度鋼素材を用いるベアリングレースの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/006120

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14361679

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014013153

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014013153

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140530