Nothing Special   »   [go: up one dir, main page]

WO2013047520A1 - 部品内蔵基板実装体及びその製造方法並びに部品内蔵基板 - Google Patents

部品内蔵基板実装体及びその製造方法並びに部品内蔵基板 Download PDF

Info

Publication number
WO2013047520A1
WO2013047520A1 PCT/JP2012/074562 JP2012074562W WO2013047520A1 WO 2013047520 A1 WO2013047520 A1 WO 2013047520A1 JP 2012074562 W JP2012074562 W JP 2012074562W WO 2013047520 A1 WO2013047520 A1 WO 2013047520A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
thermal
wiring
substrate
mounting
Prior art date
Application number
PCT/JP2012/074562
Other languages
English (en)
French (fr)
Inventor
啓貴 上田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP12835560.9A priority Critical patent/EP2763518A4/en
Publication of WO2013047520A1 publication Critical patent/WO2013047520A1/ja
Priority to US14/229,425 priority patent/US9635763B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/301Assembling printed circuits with electric components, e.g. with resistor by means of a mounting structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1453Applying the circuit pattern before another process, e.g. before filling of vias with conductive paste, before making printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/462Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar double-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4623Manufacturing multilayer circuits by laminating two or more circuit boards the circuit boards having internal via connections between two or more circuit layers before lamination, e.g. double-sided circuit boards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Definitions

  • the present invention relates to a component built-in board mounting body in which a component built-in board in which an electronic component is built is mounted on a mounting board, a manufacturing method thereof, and a component built-in board.
  • the thermal design is made to be within the range.
  • the heat conduction coefficient is about 1 in the periphery of the built-in electronic component (IC chip or passive component) compared to a wiring metal material (for example, copper having a heat conduction coefficient of about 370 W / mk). Since it is covered with an insulating resin material (for example, an epoxy resin or a polyimide resin having a thermal conductivity coefficient of about 0.2 W / mk), a structural design considering heat dissipation characteristics is required.
  • an electronic component-embedded wiring substrate disclosed in Patent Document 1 below is known.
  • a thermal via is formed on the surface opposite to the electrode forming surface of the built-in electronic component, so that the heat of the electronic component is externally discharged from the thermal via via the surface heat dissipation substrate. It has a structure that dissipates heat.
  • the electronic component built-in wiring board disclosed in Patent Document 1 has a structure in which heat is radiated only to the outside air through the thermal via and the heat radiating substrate, so that the heat dissipation characteristics of the electronic component are sufficiently improved.
  • the thickness of the entire board increases by the thickness of the heat dissipation board, for example, when mounted on a mounting board, the overall height increases, and a structure that can sufficiently meet demands for miniaturization, etc. Is hard to say.
  • it is necessary to arrange the heat dissipation board in the vicinity of the electronic component there is a problem in that the degree of freedom in the layout of the electronic component is limited.
  • the present invention solves the above-mentioned problems caused by the prior art, can be miniaturized and has a high degree of freedom in the layout of the electronic components incorporated therein, and improves the heat dissipation characteristics of the electronic components incorporated in the component-embedded substrate. It is an object of the present invention to provide a component built-in board mounting body that can be achieved, a method for manufacturing the same, and a component built-in board.
  • the component-embedded board mounting body includes a component-embedded board in which a plurality of printed wiring bases each having a wiring pattern and a via formed on a resin base material and a built-in electronic component are disposed on the mounting surface of the mounting board.
  • the surface opposite to the electrode forming surface of the electronic component built in the component built-in board has the thermal via, the thermal wiring, and the bump formed on the surface layer of the component built-in board. It is connected to the mounting board via. For this reason, the heat of the electronic component is transmitted through the thermal via, the thermal wiring and the bump as a heat dissipation path, and is efficiently and reliably radiated to the mounting substrate. Since the mounting substrate has a sufficiently large area as compared with the electronic component and the component built-in substrate, the heat dissipation medium is better than the heat dissipation substrate, and it is not necessary to provide a conventional heat dissipation substrate. As a result, it is possible to reduce the size and increase the degree of freedom of the layout of the electronic components, and improve the heat dissipation characteristics of the built-in electronic components.
  • the electronic component is disposed between the thermal wiring in the stacking direction of the printed wiring base and the mounting substrate.
  • the thermal wiring is disposed between the electronic component in the stacking direction of the printed wiring substrate and the mounting board.
  • a method for manufacturing a component-embedded board mounting body includes stacking a plurality of printed wiring base materials each having a wiring pattern and vias formed on a resin base material, and incorporating a component-embedded board including electronic components.
  • a method of manufacturing a component built-in board mounting body mounted on a mounting surface wherein the wiring pattern including thermal wiring and the via including thermal vias are formed on a plurality of resin base materials, and the plurality of resin base materials Forming a plurality of printed wiring bases by forming an opening containing the electronic component in at least one of them, and a surface opposite to the electrode forming surface of the electronic component via the thermal via Forming the component-embedded substrate by thermo-compressing the plurality of printed wiring substrates so as to be connected to the thermal wiring, and forming the component-embedded substrate; and the thermal wiring on a surface layer of the component-embedded substrate Forming bumps to be connected, characterized in that the component-embedded substrate via the bumps and a step of mounting on the mounting surface of the mounting substrate.
  • the surface opposite to the electrode forming surface of the electronic component built in the component built-in substrate is connected to the thermal wiring via the thermal via, and the component built-in Since bumps connected to the thermal wiring are formed on the surface layer of the substrate and mounted on the mounting substrate, the same effects as described above can be obtained.
  • a component-embedded substrate is a component-embedded substrate in which a plurality of printed wiring substrates each having a wiring pattern and a via formed on a resin substrate are stacked and an electronic component is built-in. At least a part of the material includes thermal wiring in the wiring pattern, the via includes thermal via, and is mounted on a mounting board via bumps formed on the surface layer, and electrode formation of the built-in electronic component A surface opposite to the surface is connected to the bump via the thermal via and the thermal wiring.
  • the surface opposite to the electrode forming surface of the built-in electronic component is connected to the surface bump via the thermal via and the thermal wiring.
  • the component-embedded board mounting body includes a plurality of printed wiring substrates each having a wiring pattern and a via formed on a resin substrate, and a first electronic component built in, and the second electronic component on the surface.
  • the thermal via is included, the via is included in the via via a first bump formed on one surface layer, and the second via is formed on the other surface layer via the second bump.
  • the electrode of the first electronic component is connected to the second bump via the via and the wiring pattern, and the surface opposite to the electrode forming surface is the thermal surface.
  • the first electronic component and the second electronic component are connected to the via, the wiring pattern, the thermal wiring, the thermal via, and the first bump. And it is thermally connected to the mounting substrate through the second bump.
  • the surface opposite to the electrode formation surface of the first electronic component built in the component built-in substrate is one of the thermal via, the thermal wiring, and the component built-in substrate.
  • the first electronic component electrode is connected to the mounting substrate via the first bump formed on the surface layer, and the surface mounting is performed via the via, the wiring pattern, and the second bump formed on the other surface layer of the component built-in substrate. Connected to the second electronic component. For this reason, the heat of the built-in first electronic component is transmitted through the thermal via, the thermal wiring, and the first bump as a heat dissipation path, and is efficiently and reliably radiated to the mounting substrate.
  • the heat of the second electronic component mounted on the surface is mainly transmitted through the second bump, the wiring pattern, the via, the first electronic component, the thermal via, the thermal wiring, and the first bump as a heat dissipation path, so that it is also efficient. Heat is reliably radiated to the mounting board. As a result, it is not necessary to form the heat dissipation path of the second electronic component around the first electronic component, so that the heat dissipation path can be shortened and the degree of freedom in wiring design can be improved. it can.
  • the mounting substrate has a sufficiently large area compared to each electronic component and component-embedded substrate, the heat dissipation medium is better than the heat dissipation substrate, and there is no need to provide a conventional heat dissipation substrate. Therefore, it is possible to improve the heat dissipation characteristics of the built-in first electronic component and the surface-mounted second electronic component while reducing the size and increasing the flexibility of the layout of the electronic component.
  • the method for manufacturing a component-embedded board mounting body includes stacking a plurality of printed wiring substrates having wiring patterns and vias formed on a resin substrate, incorporating a first electronic component, and a second electronic component.
  • Forming the via and forming a plurality of printed wiring substrates by forming an opening containing the first electronic component in at least one of the plurality of resin substrates; and the opening
  • the electrode of the first electronic component built in the part is connected to the wiring pattern via the via, and the surface opposite to the electrode formation surface is connected to the thermal wiring via the thermal via.
  • Forming the component-embedded substrate by thermo-compressing the plurality of printed wiring substrates together and forming the component-embedded substrate on one surface layer of the component-embedded substrate on the surface opposite to the surface on which the electrodes are formed.
  • the surface opposite to the electrode formation surface of the first electronic component built in the component built-in substrate is connected to the thermal wiring and the second via the thermal via.
  • the electrode of the first electronic component was connected to the wiring pattern and the second bump via the via
  • the second electronic component surface-mounted on the component-embedded substrate was connected to the second bump Since the component-embedded substrate is mounted on the mounting substrate via the first bumps, the same effects as described above can be obtained.
  • the component-embedded substrate according to the present invention includes a plurality of printed wiring substrates each having a wiring pattern and a via formed on a resin substrate, a first electronic component built in, and a second electronic component mounted on the surface.
  • the second electronic component is mounted on the surface via the second bump formed on the other surface layer, and the electrode of the first electronic component is connected to the via and the wiring pattern. And a surface opposite to the electrode forming surface is connected to the first bump via the thermal via and the thermal wiring. .
  • the surface opposite to the electrode formation surface of the built-in first electronic component is connected to the first bump on one surface layer via the thermal via and the thermal wiring
  • the electrode of the first electronic component is connected to the second bump on which the second electronic component on the other surface layer is surface-mounted via the via and the wiring pattern, and is thermally applied to the mounting substrate via the first bump.
  • the component built-in board mounting body is a method of mounting a component built-in board in which a plurality of printed wiring boards having wiring patterns and vias formed on a resin base material and a built-in electronic component are mounted on the mounting board.
  • a component built-in board mounting body mounted on a surface wherein the component built-in board includes at least a part of the plurality of printed wiring bases, the wiring pattern includes thermal wiring, and the via includes thermal vias,
  • the thermal wiring and the thermal vias are arranged on the outer peripheral side of the electronic component except for a part, and the component built-in substrate is mounted on the mounting substrate via bumps formed on the surface layer and is built in
  • the surface opposite to the electrode forming surface of the electronic component is connected to the thermal via, the thermal wiring, and the thermal wiring and thermal via disposed on the outer peripheral side of the electronic component. Is connected to the serial bumps, characterized in that it is thermally connected to the mounting substrate via the bumps.
  • the surface opposite to the electrode forming surface of the electronic component built in the component built-in substrate is the thermal via, the thermal wiring, and the thermal arranged on the outer peripheral side of the electronic component. It is connected to the bump via the wiring and the thermal via, and is thermally connected to the mounting substrate via this bump. For this reason, the heat of the electronic component is transmitted through the thermal via, the thermal wiring, and the thermal wiring, the thermal via, and the bump arranged on the outer peripheral side of the electronic component as heat dissipation paths, and efficiently and reliably radiated to the mounting substrate.
  • the heat dissipation medium is better than the heat dissipation substrate, and it is not necessary to provide a conventional heat dissipation substrate. As a result, it is possible to reduce the size and increase the degree of freedom of the layout of the electronic components, and improve the heat dissipation characteristics of the built-in electronic components.
  • the electronic component is disposed between the thermal wiring in the stacking direction of the printed wiring base and the mounting substrate.
  • the method for manufacturing a component-embedded board mounting body includes mounting a component-embedded board in which a plurality of printed wiring base materials each having a wiring pattern and vias formed on a resin base material are stacked and an electronic component is embedded.
  • a plurality of printed wiring substrates by forming an opening for incorporating the electronic component in at least one of the plurality of resin substrates.
  • a surface opposite to the electrode forming surface of the electronic component is connected to the thermal wiring via the thermal via and disposed on the outer peripheral side of the electronic component.
  • the surface opposite to the electrode forming surface of the electronic component built in the component built-in substrate is connected to the thermal wiring through the thermal via, and the electronic component is mounted. Since it is connected to the surface layer of the component built-in board through thermal wiring and thermal vias arranged on the outer periphery side of the component, bumps connected to the thermal wiring are formed on the surface layer of the component built-in board and mounted on the mounting board. The same operational effects can be achieved.
  • the component-embedded substrate according to the present invention is a component-embedded substrate in which a plurality of printed wiring substrates each having a wiring pattern and a via formed on a resin substrate are stacked and an electronic component is embedded. At least a part of the wiring substrate includes a thermal wiring in the wiring pattern, the via includes a thermal via, and the thermal wiring and the thermal via are arranged on the outer peripheral side of the electronic component except for a part, It is mounted on the mounting substrate through the formed bumps, and the surface opposite to the electrode forming surface of the built-in electronic component is disposed on the outer peripheral side of the thermal via, the thermal wiring, and the electronic component.
  • the bump is connected to the bump via a thermal wiring and a thermal via.
  • the surface opposite to the electrode forming surface of the built-in electronic component passes through the thermal via, the thermal wiring, and the thermal wiring and the thermal via disposed on the outer peripheral side of the electronic component. Since it is connected to the bumps on the surface layer, it is possible to improve the heat dissipation characteristics of the built-in electronic component by being thermally connected to the mounting substrate via the bumps.
  • the present invention it is possible to reduce the size and improve the heat radiation characteristics of the built-in electronic component while increasing the degree of freedom of layout of the built-in electronic component.
  • FIG. 1 is a sectional view showing a structure of a component built-in board mounting body according to the first embodiment of the present invention.
  • a component built-in board mounting body 100 according to the first embodiment includes a component built-in board 1 and a mounting board 2 on which the component built-in board 1 is mounted on a mounting surface 2a.
  • the component-embedded substrate 1 has a structure in which a first printed wiring substrate 10, a second printed wiring substrate 20, a third printed wiring substrate 30, and a fourth printed wiring substrate 40 are collectively laminated by thermocompression bonding. I have.
  • the component-embedded substrate 1 is sandwiched between the first and third printed wiring substrates 10 and 30 in the opening 29 formed in the second resin substrate 21 of the second printed wiring substrate 20.
  • a built-in electronic component 90 is provided. Further, the component-embedded substrate 1 includes bumps 49 formed on the mounting surface 2a side of the fourth printed wiring substrate 40.
  • the first to fourth printed wiring substrates 10 to 40 are the first to fourth resin substrates 11, 21, 31, 41, respectively, and signal signals formed on at least one side of the first to fourth resin substrates. Wirings 32, 42 and thermal wirings 13, 23, 33, 43 are provided.
  • the first to fourth printed wiring base materials 10 to 40 are filled with via holes formed in the first, third and fourth resin base materials 11, 31 and 41, respectively. 44 and via holes formed in the second resin base material 21 are provided with thermal vias 24 and signal vias 35 and 45 formed so as to conduct both surfaces of the second resin base material 21.
  • a single-sided copper-clad laminate single-sided CCL
  • a double-sided copper-clad laminate double-sided CCL
  • the second printed wiring board 20 is formed based on the double-sided CCL, and the other is formed based on the single-sided CCL. Accordingly, the thermal wiring 23 of the second printed wiring substrate 20 is formed on both surfaces of the second resin substrate 21, and the thermal via 24 interconnects the thermal wirings 23 on both surfaces.
  • the thermal via 24 has a structure in which, for example, a through hole formed from the other thermal wiring 23 side is plated without penetrating one thermal wiring 23, and is formed by copper plating. At this time, it is good also as a structure filled with the electrically conductive paste instead of plating the inside of a through-hole.
  • the first to fourth resin base materials 11 to 41 are each composed of, for example, a resin film having a thickness of about 25 ⁇ m.
  • a resin film for example, a resin film made of thermoplastic polyimide, polyolefin, liquid crystal polymer, or the like, or a resin film made of a thermosetting epoxy resin can be used.
  • the electronic component 90 is, for example, a semiconductor component such as an IC chip or a passive component, and the electronic component 90 in FIG. 1 indicates a WLP (Wafer Level Package) subjected to rewiring.
  • a plurality of rewiring electrodes 91 are formed on the electrode formation surface 91 b of the electronic component 90.
  • the signal wirings 32 and 42 and the thermal wirings 13 to 43 are formed by patterning a conductive material such as copper foil.
  • the signal vias 35, 45 and the thermal vias 14, 34, 44 are made of conductive paste filled in the via holes, respectively, and the thermal via 24 is formed by plating.
  • the thermal wiring and the thermal via are formed so as to be arranged on the outer peripheral side of the electronic component 90 except for a part thereof.
  • the conductive paste is, for example, at least one kind of low electrical resistance metal particles selected from nickel, gold, silver, zinc, aluminum, iron, tungsten, etc., and at least one kind selected from bismuth, indium, lead, etc. Metal particles having a melting point.
  • the conductive paste is made of a paste in which tin is contained as a component in these metal particles and a binder component mainly composed of epoxy, acrylic, urethane, or the like is mixed.
  • the conductive paste configured as described above can form an alloy by melting the contained tin and the low melting point metal at 200 ° C. or less, and particularly can form an intermetallic compound with copper or silver. With characteristics. Note that the conductive paste can also be formed of a nanopaste in which fillers such as gold, silver, copper, and nickel having a nanometer particle size are mixed with the binder component as described above.
  • the conductive paste can be composed of a paste in which metal particles such as nickel are mixed with the binder component as described above.
  • the conductive paste has a characteristic that electrical connection is made when metal particles come into contact with each other.
  • a method for filling the via holes with the conductive paste for example, a printing method, a spin coating method, a spray coating method, a dispensing method, a laminating method, and a method using these in combination can be used.
  • the bump 49 is made of solder or the like, and is not covered with the signal wiring 42 and the solder resist 48 on the thermal wiring 43 formed on the mounting surface 2a side of the fourth resin base 41 of the fourth printed wiring base 40. It is formed in the part.
  • the component built-in substrate 1 is mounted on the mounting surface 2 a of the mounting substrate 2 through these bumps 49.
  • the first to fourth printed wiring substrates 10 to 40 are laminated via the adhesive layer 9.
  • the adhesive layer 9 is made of an organic adhesive containing a volatile component such as an epoxy adhesive or an acrylic adhesive.
  • the electronic component 90 is arranged between the thermal wiring 13 of the first printed wiring base 10 and the mounting board 2.
  • the heat of the electronic component 90 built in the component built-in substrate 1 is transferred to the mounting substrate 2 along the following heat dissipation path. That is, the heat of the electronic component 90 is transmitted from the back surface 91a opposite to the electrode forming surface 91b of the electronic component 90 to the thermal via 14 of the first printed wiring board 10 connected to the back surface 91a.
  • the heat transmitted to the thermal via 14 passes from the thermal wiring 13 of the first printed wiring substrate 10 through the thermal via 14 formed on the outer peripheral side of the electronic component 90, and the thermal wiring 23 of the second printed wiring substrate 20. Then, it is transmitted to the thermal via 34 of the third printed wiring board 30 via the thermal via 24 and the thermal wiring 23.
  • the heat transmitted to the thermal via 34 passes through the thermal wiring 33 of the third printed wiring substrate 30, is transmitted to the thermal via 44 of the fourth printed wiring substrate 40, and is transmitted to the bumps 49 via the thermal wiring 43.
  • the heat transmitted to the bumps 49 is transmitted to the mounting board 2 having a larger area than the component-embedded board 1 through the bumps 49 and is radiated from the mounting board 2.
  • FIG. 2 is a flowchart showing a manufacturing process of the component built-in board mounting body.
  • FIG. 3 is a cross-sectional view showing the component built-in board mounting body for each manufacturing process.
  • a plurality of resin base materials such as a single-sided copper-clad laminate (single-sided CCL) having a conductor layer formed on one side are prepared (step S100), etched, and the like.
  • a wiring pattern such as wiring is formed (step S102).
  • step S104 an adhesive layer is formed by sticking an adhesive on the resin base material (step S104), and a via hole is formed by a laser processing machine or the like (step S106). Then, the via hole is filled with a conductive paste to form a signal via and a thermal via (step S108).
  • the second printed wiring substrate 20 as shown in FIG. 3B is connected to the second resin substrate 21 such as a double-sided copper-clad laminate (double-sided CCL), for example, and one thermal wiring 23 (specifically, the thermal wiring 23).
  • a through hole is formed from the other thermal wiring 23 (specifically, a land portion connected to the thermal wiring 23) side so as not to penetrate the land 23 connected to the wiring 23, and the thermal via 24 is plated by plating in the through hole.
  • the opening 29 is formed (step S110).
  • the first to fourth printed wiring substrates 10 to 40 are prepared.
  • the rewiring electrode 91 of the electronic component 90 is aligned with the signal via 35 of the third printed wiring substrate 30 by the electronic component mounting machine, and the adhesive layer 9 and the signal of the third printed wiring substrate 30 are signaled.
  • the electronic component 90 is temporarily bonded by heating at a temperature equal to or lower than the curing temperature of the conductive paste for the via 35 (step S112).
  • the first to fourth printed wiring substrates 10 to 40 are aligned and thermo-compression bonded at, for example, a heating temperature of 200 ° C. or less (step S114) to produce the component built-in substrate 1.
  • a solder resist 48 is formed on the signal wiring 42 of the fourth printed wiring base 40 and the fourth resin base 41 on the thermal wiring 43 side in the component built-in substrate 1.
  • bumps 49 are formed on the wirings 42 and 43 (Step S118), and the component-embedded substrate 1 is mounted on the mounting substrate 2 (Step S120), so that the components are embedded as shown in FIG.
  • the substrate mounting body 100 is manufactured.
  • you may make it form the soldering resist 48 which is not shown in figure so that the thermal wiring 13 may be covered on the 1st resin base material 11 shown in FIG.
  • FIG. 4 is a cross-sectional view showing the structure of the component built-in board mounting body according to the second embodiment of the present invention.
  • the component built-in board mounting body 200 according to the second embodiment mounts the component built-in board 1 on the mounting surface 2 a of the mounting board 2 face up (upside down), and each printed wiring
  • the component-embedded board mounting according to the first embodiment is that the connection mode of the signal wiring and the thermal wiring of the base materials 10 to 40 is changed by changing the pattern of the thermal wiring 13 of the first printed wiring base material 10. It is different from the body 100.
  • the solder resist 48 patterned on the first resin base material 11 on the thermal wiring 13 side of the first printed wiring base material 10 in the component built-in board 1 is provided, and the signal use Bumps 49 are formed on the wiring 12 and the thermal wiring 13, and the component built-in substrate 1 is mounted on the mounting substrate 2 via the bumps 49.
  • signal wiring 22 and signal vias 15 and 25 are formed on the first and second printed wiring substrates 10 and 20 in addition.
  • the thermal wiring 13 of the first printed wiring board 10 is arranged between the electronic component 90 and the mounting board 2. Accordingly, the heat of the electronic component 90 built in the component built-in substrate 1 is transmitted from the back surface 91 a to the thermal via 14 of the first printed wiring substrate 10, and is transmitted to the mounting substrate 2 through the thermal wiring 13 and the bumps 49. According to such a structure, since the distance in the mounting direction between the electronic component 90 that is a heat generation source and the mounting substrate 2 that is a heat radiator is closer, heat dissipation is further performed than the component built-in substrate mounting body 100 according to the first embodiment. Characteristics can be improved.
  • FIG. 5 is a cross-sectional view showing the structure of the component built-in board mounting body according to the third embodiment of the present invention.
  • the component built-in board mounting body 300 according to the third embodiment is further added to the component built-in board mounting body 200 according to the second embodiment in which the electronic component 90 (first electronic component) is built, and further to the electronic component 98 (the first electronic component). 2 is different from the component-embedded substrate mounting body 200 according to the second embodiment.
  • the first bumps 49 are formed on the signal wiring 12 and the thermal wiring 13 of the first printed wiring substrate 10 in the component built-in board 1. Further, a solder resist 48 patterned on the fourth resin base 41 on the signal wiring 42 side of the fourth printed wiring base 40 is further provided, and the second bump 97 is formed on the signal wiring 42. .
  • the electrode 99 of the electronic component 98 is connected to the signal wiring 42 via the second bump 97, and the underfill 96 is formed between the electrode forming surface 99 b of the electronic component 98 and the solder resist 48.
  • the electronic component 98 is surface-mounted on the component-embedded substrate 1.
  • the component built-in substrate 1 is mounted on the mounting surface 2 a of the mounting substrate 2 via the first bumps 49.
  • the signal transmission path (the redistribution electrode 91 of the electronic component 90 built in the component built-in board 1 and the electrode 99 of the surface mounted electronic component 98 ( Signal distance) can be shortened, so that the signal speed can be improved.
  • the heat of the electronic components 90 and 98 built in and mounted on the surface of the component built-in substrate 1 is a signal connected to all the first bumps including the path by the thermal via 14 and the thermal wiring 13 on the back surface 91a side of the electronic component 90. It is transmitted from the first bump 49 to the mounting substrate 2 through the paths of the wirings 12, 22, 32, 42 and the signal vias 15, 25, 35, 45.
  • the degree of freedom in wiring design can be improved.
  • FIG. 6 is a cross-sectional view showing another structure of the component built-in board mounting body.
  • the surface mounting side of the electronic component 98 of the fourth printed wiring substrate 40 of the component-embedded substrate 1 is used.
  • the whole may be covered with, for example, a mold resin 95 and mounted on the mounting board 2 to constitute the component built-in board mounting body 300.
  • FIG. 7 is a diagram showing an analysis result of heat dissipation characteristics of the component built-in board mounting body according to the example of the present invention and the component built-in board mounting body of the comparative example.
  • the vertical axis in FIG. 7 indicates the Tj temperature.
  • the component built-in board mounting body in which the component built-in board having the four-layer structure as described above was mounted on the mounting board was used.
  • Comparative Example 1 is a component built-in substrate mounting body in which a component built-in substrate having a structure in which the electrodes of the electronic component are arranged on the mounting substrate side without mounting a thermal via on the back surface side of the electronic component is mounted on the mounting substrate.
  • Comparative Example 2 is a component having a structure in which a thermal via is formed on the back side of an electronic component, a heat dissipation substrate connected to the thermal via is formed on a surface layer, and electrodes of the electronic component are arranged on the mounting substrate side.
  • This is a component built-in board mounting body in which the built-in board is mounted on the mounting board.
  • Example 1 and Example 2 the structures similar to those of the component built-in substrate mounting bodies 100 and 200 were used, respectively.
  • the Tj temperature was around 115 ° C. in both Comparative Examples 1 and 2, whereas in Example 1, the Tj temperature was around 97.5 ° C. It became about 94 ° C. From this, it goes without saying that there is no thermal via as in Comparative Example 1, and simply forming a thermal via or heat dissipation board on the back side of the electronic component as in Comparative Example 2 will result in a component-embedded board mounting body. It was found that the heat dissipation characteristics cannot be improved.
  • Comparative Example 1 in the component built-in board mounting body in which the heat of the electronic component built in the component built-in board is dissipated by the mounting board via the thermal via or the thermal wiring, Comparative Example 1, It was found that the heat dissipation characteristics were clearly improved compared to 2. In particular, as in Example 2, if the distance between the heat generation source and the radiator in the mounting direction is short, the heat dissipation characteristics can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

部品内蔵基板実装体100は、部品内蔵基板1と、これが実装された実装基板2とからなる。部品内蔵基板1は、第1~第4プリント配線基材10~40を熱圧着により一括積層した構造を備える。第2プリント配線基材20の第2樹脂基材21に形成された開口部29内には電子部品90が内蔵されている。第4プリント配線基材40の実装面2a側にはバンプ49が形成されている。電子部品90の裏面91aに接続されたサーマルビア14及びサーマル配線13を介して、各層のサーマルビア及びサーマル配線を通り、バンプ49から実装基板2に電子部品90の熱が伝わって、実装基板2にて放熱される。

Description

部品内蔵基板実装体及びその製造方法並びに部品内蔵基板
 この発明は、電子部品が内蔵された部品内蔵基板を実装基板に実装した部品内蔵基板実装体及びその製造方法並びに部品内蔵基板に関する。
 近年、半導体などの電子部品は小型化や高集積化が求められており、CoC(Chip on Chip)やPoP(Package on Package)等の三次元パッケージ技術や電子部品を内蔵する部品内蔵基板の採用が拡大化する傾向にある。これらのパッケージ技術等においては、搭載される電子部品の放熱特性を十分に考慮した構造設計が重要となる。
 一般的に用いられるシリコン半導体からなる電子部品では、例えばTj温度(半導体素子温度)が175℃以上になると、半導体素子自体が破壊されてしまう可能性があり、Tj温度が80℃~100℃の範囲内となるように熱設計が行われている。特に、部品内蔵基板においては、内蔵された電子部品(ICチップや受動部品)の周囲が配線金属材料(例えば、熱伝導係数が約370W/mkの銅)に比べて、熱伝導係数が約1/1000倍の絶縁樹脂材料(例えば、熱伝導係数が約0.2W/mkのエポキシ樹脂やポリイミド樹脂)により覆われていることから、放熱特性を考慮した構造設計が必要である。
 このように放熱特性を考慮した部品内蔵基板として、下記特許文献1に開示された電子部品内蔵型配線基板が知られている。この電子部品内蔵型配線基板は、内蔵された電子部品の電極形成面とは反対側の面にサーマルビアを形成することで、このサーマルビアから表層の放熱基板を介して電子部品の熱を外気に放熱する構造となっている。
特開2008-205124号公報
 しかしながら、上記特許文献1に開示された電子部品内蔵型配線基板では、サーマルビア及び放熱基板を介して熱を外気にのみ放熱する構造であるため、電子部品の放熱特性を十分に向上させているとは言い難く、更なる放熱特性の向上を図る余地がある。また、放熱基板の厚さ分だけ基板全体の厚さが増してしまうため、例えば実装基板に実装した場合には全体の高さが増えてしまい、小型化などの要求に十分に応えられる構造とは言い難い。更に、放熱基板を電子部品の近傍に配置する必要があるため、電子部品のレイアウトの自由度が制限されてしまうという問題がある。
 この発明は、上述した従来技術による問題点を解消し、小型化が可能であると共に内蔵される電子部品のレイアウトの自由度が高く、部品内蔵基板に内蔵された電子部品の放熱特性の向上を図ることができる部品内蔵基板実装体及びその製造方法並びに部品内蔵基板を提供することを目的とする。
 本発明に係る部品内蔵基板実装体は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体であって、前記部品内蔵基板は、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、表層に形成されたバンプを介して前記実装基板に実装されると共に、前記内蔵された電子部品の電極形成面と反対側の面が、前記サーマルビア及び前記サーマル配線を介して前記バンプに接続され、前記バンプを介して前記実装基板に熱的に接続されていることを特徴とする。
 本発明に係る部品内蔵基板実装体によれば、部品内蔵基板に内蔵された電子部品の電極形成面とは反対側の面が、サーマルビア、サーマル配線及び部品内蔵基板の表層に形成されたバンプを介して実装基板に接続されている。このため、電子部品の熱がサーマルビア、サーマル配線及びバンプを放熱経路として伝わって、効率よく確実に実装基板に放熱される。実装基板は電子部品や部品内蔵基板と比べると十分に面積が広いので、放熱媒体としては放熱基板よりも良好であり、従来のような放熱基板を設ける必要がない。これにより、小型化が可能であると共に電子部品のレイアウトの自由度を高めつつ、内蔵された電子部品の放熱特性の向上を図ることができる。
 本発明の一つ実施形態においては、前記電子部品が、前記プリント配線基材の積層方向の前記サーマル配線と前記実装基板との間に配置されている。
 また、本発明の他の実施形態においては、前記サーマル配線が、前記プリント配線基材の積層方向の前記電子部品と前記実装基板との間に配置されている。
 本発明に係る部品内蔵基板実装体の製造方法は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体の製造方法であって、複数の樹脂基材にサーマル配線を含む前記配線パターン及びサーマルビアを含む前記ビアを形成すると共に、前記複数の樹脂基材のうちの少なくとも一つに前記電子部品を内蔵する開口部を形成して複数のプリント配線基材を形成する工程と、前記電子部品の電極形成面と反対側の面が、前記サーマルビアを介して前記サーマル配線と接続されるように前記複数のプリント配線基材を熱圧着して一括積層し前記部品内蔵基板を形成する工程と、前記部品内蔵基板の表層に前記サーマル配線と接続されるバンプを形成する工程と、前記バンプを介して前記部品内蔵基板を前記実装基板の実装面上に実装する工程とを備えたことを特徴とする。
 本発明に係る部品内蔵基板実装体の製造方法によれば、部品内蔵基板に内蔵された電子部品の電極形成面とは反対側の面が、サーマルビアを介してサーマル配線に接続され、部品内蔵基板の表層にサーマル配線と接続されるバンプを形成して実装基板に実装するので、上記と同様の作用効果を奏することができる。
 本発明に係る部品内蔵基板は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板であって、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、表層に形成されたバンプを介して実装基板に実装されると共に、前記内蔵された電子部品の電極形成面と反対側の面が、前記サーマルビア及び前記サーマル配線を介して前記バンプに接続されていることを特徴とする。
 本発明に係る部品内蔵基板によれば、内蔵された電子部品の電極形成面と反対側の面が、サーマルビア及びサーマル配線を介して表層のバンプに接続されているので、このバンプを介して実装基板に熱的に接続されることにより、内蔵された電子部品の放熱特性の向上を図ることができる。
 また、本発明に係る部品内蔵基板実装体は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に第1の電子部品を内蔵し、第2の電子部品を表面実装してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体であって、前記部品内蔵基板は、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、一方の表層に形成された第1バンプを介して前記実装基板に実装されると共に、他方の表層に形成された第2バンプを介して前記第2の電子部品が表面実装され、前記第1の電子部品の電極が前記ビア及び前記配線パターンを介して前記第2バンプに接続されると共に、前記電極の形成面と反対側の面が前記サーマルビア及び前記サーマル配線を介して前記第1バンプに接続され、前記第1の電子部品及び前記第2の電子部品が、前記ビア、前記配線パターン、前記サーマル配線、前記サーマルビア、前記第1バンプ及び前記第2バンプを介して前記実装基板に熱的に接続されていることを特徴とする。
 本発明に係る部品内蔵基板実装体によれば、部品内蔵基板に内蔵された第1の電子部品の電極の形成面とは反対側の面が、サーマルビア、サーマル配線及び部品内蔵基板の一方の表層に形成された第1バンプを介して実装基板に接続され、第1の電子部品の電極が、ビア、配線パターン及び部品内蔵基板の他方の表層に形成された第2バンプを介して表面実装された第2の電子部品と接続されている。このため、内蔵された第1の電子部品の熱がサーマルビア、サーマル配線及び第1バンプを放熱経路として伝わって、効率よく確実に実装基板に放熱される。また、表面実装された第2の電子部品の熱が主に第2バンプ、配線パターン、ビア、第1の電子部品、サーマルビア、サーマル配線及び第1バンプを放熱経路として伝わって、同じく効率よく確実に実装基板に放熱される。これにより、第2の電子部品の放熱経路を第1の電子部品の周囲に迂回させて形成する必要がなく放熱経路の短縮化を図ることができると共に、配線設計の自由度を向上させることができる。なお、実装基板は各電子部品や部品内蔵基板と比べると十分に面積が広いので、放熱媒体としては放熱基板よりも良好であり、従来のような放熱基板を設ける必要がない。従って、小型化が可能であると共に電子部品のレイアウトの自由度を高めつつ、内蔵された第1の電子部品及び表面実装された第2の電子部品の放熱特性の向上を図ることができる。
 また、本発明に係る部品内蔵基板実装体の製造方法は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に第1の電子部品を内蔵し、第2の電子部品を表面実装してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体の製造方法であって、複数の樹脂基材にサーマル配線を含む前記配線パターン及びサーマルビアを含む前記ビアを形成すると共に、前記複数の樹脂基材のうちの少なくとも一つに前記第1の電子部品を内蔵する開口部を形成して複数のプリント配線基材を形成する工程と、前記開口部に内蔵される前記第1の電子部品の電極が前記ビアを介して前記配線パターンと接続され、前記電極の形成面と反対側の面が前記サーマルビアを介して前記サーマル配線と接続されるように前記複数のプリント配線基材を熱圧着して一括積層し前記部品内蔵基板を形成する工程と、前記部品内蔵基板の一方の表層に前記電極の形成面と反対側の面側の前記サーマル配線と接続される第1バンプを形成すると共に、他方の表層に前記電極側の前記配線パターンと接続される第2バンプを形成する工程と、前記第2バンプを介して前記第2の電子部品を前記部品内蔵基板に実装すると共に、前記第1バンプを介して前記部品内蔵基板を前記実装基板の実装面上に実装する工程とを備えたことを特徴とする。
 本発明に係る部品内蔵基板実装体の製造方法によれば、部品内蔵基板に内蔵された第1の電子部品の電極の形成面とは反対側の面が、サーマルビアを介してサーマル配線及び第1バンプに接続され、第1の電子部品の電極が、ビアを介して配線パターン及び第2バンプに接続され、部品内蔵基板に表面実装された第2の電子部品が第2バンプに接続された上で、第1バンプを介して部品内蔵基板を実装基板に実装するので、上記と同様の作用効果を奏することができる。
 また、本発明に係る部品内蔵基板は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に第1の電子部品を内蔵し、第2の電子部品を表面実装してなる部品内蔵基板であって、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、一方の表層に形成された第1バンプを介して前記実装基板に実装されると共に、他方の表層に形成された第2バンプを介して前記第2の電子部品が表面実装され、前記第1の電子部品の電極が前記ビア及び前記配線パターンを介して前記第2バンプに接続されると共に、前記電極の形成面と反対側の面が前記サーマルビア及び前記サーマル配線を介して前記第1バンプに接続されていることを特徴とする。
 本発明に係る部品内蔵基板によれば、内蔵された第1の電子部品の電極の形成面と反対側の面が、サーマルビア及びサーマル配線を介して一方の表層の第1バンプに接続され、第1の電子部品の電極が、ビア及び配線パターンを介して他方の表層の第2の電子部品が表面実装された第2バンプに接続されており、第1バンプを介して実装基板に熱的に接続されることにより、内蔵された第1の電子部品及び表面実装された第2の電子部品の放熱特性の向上を図ることができる。
 更に、本発明に係る部品内蔵基板実装体は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体であって、前記部品内蔵基板は、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、前記サーマル配線及びサーマルビアは一部を除いて前記電子部品の外周側に配置され、前記部品内蔵基板は、表層に形成されたバンプを介して前記実装基板に実装されると共に、前記内蔵された電子部品の電極形成面と反対側の面が、前記サーマルビア、前記サーマル配線並びに前記電子部品の外周側に配置されたサーマル配線及びサーマルビアを介して前記バンプに接続され、前記バンプを介して前記実装基板に熱的に接続されていることを特徴とする。
 本発明に係る部品内蔵基板実装体によれば、部品内蔵基板に内蔵された電子部品の電極形成面とは反対側の面が、サーマルビア、サーマル配線並びに電子部品の外周側に配置されたサーマル配線及びサーマルビアを介してバンプに接続され、このバンプを介して実装基板に熱的に接続されている。このため、電子部品の熱が、サーマルビア、サーマル配線並びに電子部品の外周側に配置されたサーマル配線及びサーマルビア、バンプを放熱経路として伝わって、効率よく確実に実装基板に放熱される。実装基板は電子部品や部品内蔵基板と比べると十分に面積が広いので、放熱媒体としては放熱基板よりも良好であり、従来のような放熱基板を設ける必要がない。これにより、小型化が可能であると共に電子部品のレイアウトの自由度を高めつつ、内蔵された電子部品の放熱特性の向上を図ることができる。
 本発明の一つ実施形態においては、前記電子部品が、前記プリント配線基材の積層方向の前記サーマル配線と前記実装基板との間に配置されている。
 更に、本発明に係る部品内蔵基板実装体の製造方法は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体の製造方法であって、複数の樹脂基材にサーマル配線を含む前記配線パターン及びサーマルビアを含む前記ビアを前記サーマル配線及びサーマルビアが一部を除いて前記電子部品の外周側に配置されるように形成すると共に、前記複数の樹脂基材のうちの少なくとも一つに前記電子部品を内蔵する開口部を形成して複数のプリント配線基材を形成する工程と、前記電子部品の電極形成面と反対側の面が、前記サーマルビアを介して前記サーマル配線と接続され、且つ前記電子部品の外周側に配置されたサーマル配線及びサーマルビアを介して前記部品内蔵基板の表層に接続されるように前記複数のプリント配線基材を熱圧着して一括積層し前記部品内蔵基板を形成する工程と、前記部品内蔵基板の表層に前記サーマル配線と接続されるバンプを形成する工程と、前記バンプを介して前記部品内蔵基板を前記実装基板の実装面上に実装する工程とを備えたことを特徴とする。
 本発明に係る部品内蔵基板実装体の製造方法によれば、部品内蔵基板に内蔵された電子部品の電極形成面とは反対側の面が、サーマルビアを介してサーマル配線と接続され、且つ電子部品の外周側に配置されたサーマル配線及びサーマルビアを介して部品内蔵基板の表層に接続され、部品内蔵基板の表層にサーマル配線と接続されるバンプを形成して実装基板に実装するので、上記と同様の作用効果を奏することができる。
 更に、本発明に係る部品内蔵基板は、樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板であって、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、前記サーマル配線及びサーマルビアは一部を除いて前記電子部品の外周側に配置され、表層に形成されたバンプを介して実装基板に実装されると共に、前記内蔵された電子部品の電極形成面と反対側の面が、前記サーマルビア、前記サーマル配線並びに前記電子部品の外周側に配置されたサーマル配線及びサーマルビアを介して前記バンプに接続されていることを特徴とする。
 本発明に係る部品内蔵基板によれば、内蔵された電子部品の電極形成面と反対側の面が、サーマルビア、サーマル配線並びに電子部品の外周側に配置されたサーマル配線及びサーマルビアを介して表層のバンプに接続されているので、このバンプを介して実装基板に熱的に接続されることにより、内蔵された電子部品の放熱特性の向上を図ることができる。
 本発明によれば、小型化が可能であると共に内蔵される電子部品のレイアウトの自由度を高めつつ、内蔵された電子部品の放熱特性の向上を図ることができる。
本発明の第1の実施形態に係る部品内蔵基板実装体の構造を示す断面図である。 同部品内蔵基板実装体の製造工程を示すフローチャートである。 同部品内蔵基板実装体を製造工程毎に示す断面図である。 本発明の第2の実施形態に係る部品内蔵基板実装体の構造を示す断面図である。 本発明の第3の実施形態に係る部品内蔵基板実装体の構造を示す断面図である。 同部品内蔵基板実装体の他の構造を示す断面図である。 本発明の実施例に係る部品内蔵基板実装体と比較例の部品内蔵基板実装体との放熱特性の解析結果を示す図である。
 以下、添付の図面を参照して、この発明の実施の形態に係る部品内蔵基板実装体及びその製造方法並びに部品内蔵基板を詳細に説明する。
[第1の実施形態]
 図1は、本発明の第1の実施形態に係る部品内蔵基板実装体の構造を示す断面図である。図1に示すように、第1の実施形態に係る部品内蔵基板実装体100は、部品内蔵基板1と、この部品内蔵基板1が実装面2a上に実装された実装基板2とからなる。
 部品内蔵基板1は、第1プリント配線基材10と、第2プリント配線基材20と、第3プリント配線基材30と、第4プリント配線基材40とを熱圧着により一括積層した構造を備えている。また、部品内蔵基板1は、第2プリント配線基材20の第2樹脂基材21に形成された開口部29内に、第1及び第3プリント配線基材10,30に挟まれた状態で内蔵された電子部品90を備えている。更に、部品内蔵基板1は、第4プリント配線基材40の実装面2a側に形成されたバンプ49を備えている。
 第1~第4プリント配線基材10~40は、それぞれ第1~第4樹脂基材11,21,31,41と、これら第1~第4樹脂基材の少なくとも片面に形成された信号用配線32,42及びサーマル配線13,23,33,43とを備える。
 また、第1~第4プリント配線基材10~40は、それぞれ第1,第3,第4樹脂基材11,31,41に形成されたビアホール内に充填形成されたサーマルビア14,34,44と第2樹脂基材21に形成されたビアホール内に第2樹脂基材21の両面を導通するように形成されたサーマルビア24及び信号用ビア35,45を備える。これら第1~第4プリント配線基材10~40は、例えば片面銅張積層板(片面CCL)や両面銅張積層板(両面CCL)などを用いてもよい。
 本例では、第2プリント配線基材20が両面CCLに基づき形成され、それ以外が片面CCLに基づき形成されている。従って、第2プリント配線基材20のサーマル配線23は第2樹脂基材21の両面に形成され、サーマルビア24はこれら両面のサーマル配線23を層間接続している。この場合、サーマルビア24は、例えば一方のサーマル配線23を貫通させることなく他方のサーマル配線23側から形成した貫通孔内にめっきを施した構造からなり、銅めっきにより形成される。このとき、貫通孔内をめっきする代わりに導電ペーストを充填させた構造としてもよい。
 第1~第4樹脂基材11~41は、それぞれ例えば厚さ25μm程度の樹脂フィルムにより構成されている。ここで、樹脂フィルムとしては、例えば熱可塑性のポリイミド、ポリオレフィン、液晶ポリマーなどからなる樹脂フィルムや、熱硬化性のエポキシ樹脂からなる樹脂フィルムなどを用いることができる。
 電子部品90は、例えばICチップなどの半導体部品や受動部品等であり、図1における電子部品90は、再配線を施したWLP(Wafer Level Package)を示している。電子部品90の電極形成面91bに複数の再配線電極91が形成されている。信号用配線32,42及びサーマル配線13~43は、銅箔などの導電材をパターン形成してなる。信号用ビア35,45及びサーマルビア14,34,44は、ビアホール内にそれぞれ充填された導電ペーストからなり、サーマルビア24はめっきにより形成される。サーマル配線及びサーマルビアは、一部を除いて電子部品90の外周側に配置されるように形成されている。
 導電ペーストは、例えばニッケル、金、銀、亜鉛、アルミニウム、鉄、タングステンなどから選択される少なくとも1種類の低電気抵抗の金属粒子と、ビスマス、インジウム、鉛などから選択される少なくとも1種類の低融点の金属粒子とを含む。そして、導電ペーストは、これらの金属粒子に錫を成分として含有させ、エポキシ、アクリル、ウレタンなどを主成分とするバインダ成分を混合したペーストからなる。
 このように構成された導電ペーストは、含有された錫と低融点の金属が200℃以下で溶融し合金を形成することができ、特に銅や銀などとは金属間化合物を形成することができる特性を備える。なお、導電ペーストは、例えば粒子径がナノレベルの金、銀、銅、ニッケル等のフィラーが、上記のようなバインダ成分に混合されたナノペーストで構成することもできる。
 その他、導電ペーストは、上記ニッケル等の金属粒子が、上記のようなバインダ成分に混合されたペーストで構成することもできる。この場合、導電ペーストは、金属粒子同士が接触することで電気的接続が行われる特性となる。導電ペーストのビアホールへの充填方法としては、例えば印刷工法、スピン塗布工法、スプレー塗布工法、ディスペンス工法、ラミネート工法、及びこれらを併用した工法などを用いることができる。
 バンプ49は、半田などからなり、第4プリント配線基材40の第4樹脂基材41の実装面2a側に形成された信号用配線42及びサーマル配線43上のソルダーレジスト48が被覆していない部分に形成されている。部品内蔵基板1は、これらバンプ49を介して実装基板2の実装面2a上に実装されている。なお、第1~第4プリント配線基材10~40は、接着層9を介して積層されている。接着層9は、エポキシ系やアクリル系接着剤など、揮発成分が含まれた有機系接着剤などからなる。
 このように構成された部品内蔵基板実装体100では、電子部品90が、第1プリント配線基材10のサーマル配線13と実装基板2との間に配置される構造となる。こうして部品内蔵基板1に内蔵された電子部品90の熱は、次のような放熱経路を辿って実装基板2に伝えられる。すなわち、電子部品90の熱は、電子部品90の電極形成面91bとは反対側の裏面91aから、この裏面91aに接続された第1プリント配線基材10のサーマルビア14に伝わる。
 サーマルビア14に伝わった熱は、第1プリント配線基材10のサーマル配線13から、電子部品90の外周側に形成されたサーマルビア14を通って、第2プリント配線基材20のサーマル配線23に伝わり、その後、サーマルビア24及びサーマル配線23を介して第3プリント配線基材30のサーマルビア34に伝わる。
 サーマルビア34に伝わった熱は、第3プリント配線基材30のサーマル配線33を通って、第4プリント配線基材40のサーマルビア44に伝わり、サーマル配線43を介してバンプ49に伝わる。こうして、バンプ49に伝わった熱は、このバンプ49を介して部品内蔵基板1よりも面積の大きな実装基板2に伝わり、実装基板2から放熱される。
 このような構造により、部品内蔵基板1に内蔵された電子部品90で発生した熱の殆どが、従来のような放熱基板が不要な構造の部品内蔵基板1から実装基板2に伝わって放熱されることとなる。これにより、部品内蔵基板実装体100の小型化が可能であると共に電子部品90のレイアウトの自由度を高めることができ、部品内蔵基板1に内蔵された電子部品90の放熱特性の向上を図ることができる。
 次に、第1の実施形態に係る部品内蔵基板実装体100の製造方法について説明する。
 図2は、部品内蔵基板実装体の製造工程を示すフローチャートである。図3は、部品内蔵基板実装体を製造工程毎に示す断面図である。まず、一方の面に導体層が形成された、例えば片面銅張積層板(片面CCL)等の樹脂基材を複数準備し(ステップS100)、エッチングなどを行って、それぞれに信号用配線及びサーマル配線等の配線パターンを形成する(ステップS102)。
 次に、樹脂基材に接着剤を貼り付けるなどして接着層を形成し(ステップS104)、レーザ加工機などによってビアホールを形成する(ステップS106)。そして、ビアホールに導電ペーストを充填して信号用ビア及びサーマルビアを形成する(ステップS108)。ここまでの処理で、図3(a)に示すような第1プリント配線基材10や、図3(c)に示すような第3プリント配線基材30、或いは第4プリント配線基材40などの、配線パターン及びビアを有する基本的なプリント配線基材を複数作製する。
 一方、図3(b)に示すような第2プリント配線基材20は、例えば両面銅張積層板(両面CCL)等の第2樹脂基材21に、一方のサーマル配線23(詳細にはサーマル配線23に接続するランド部)を貫通させないように他方のサーマル配線23(詳細にはサーマル配線23に接続するランド部)側から貫通孔を形成し、貫通孔内にめっきしてサーマルビア24を形成した後、開口部29を形成する(ステップS110)。こうして、第1~第4プリント配線基材10~40が準備される。
 そして、電子部品90の再配線電極91を、第3プリント配線基材30の信号用ビア35に、電子部品用実装機で位置合わせして、第3プリント配線基材30の接着層9及び信号用ビア35の導電ペーストの硬化温度以下で加熱することによって、電子部品90を仮留め接着する(ステップS112)。
 その後、第1~第4プリント配線基材10~40を、それぞれ位置合わせして例えば加熱温度200℃以下で熱圧着する(ステップS114)ことにより一括積層し、部品内蔵基板1を作製する。そして、図3(d)に示すように、部品内蔵基板1における第4プリント配線基材40の信号用配線42及びサーマル配線43側の第4樹脂基材41上に、ソルダーレジスト48をパターン形成し(ステップS116)、各配線42,43上にバンプ49を形成して(ステップS118)、部品内蔵基板1を実装基板2に実装する(ステップS120)ことで、図1に示すような部品内蔵基板実装体100を製造する。なお、図1に示した第1樹脂基材11上において、サーマル配線13を覆うように図示しないソルダーレジスト48を形成するようにしてもよい。
[第2の実施形態]
 図4は、本発明の第2の実施形態に係る部品内蔵基板実装体の構造を示す断面図である。図4に示すように、第2の実施形態に係る部品内蔵基板実装体200は、部品内蔵基板1を、実装基板2の実装面2a上にフェイスアップ(天地逆)で実装し、各プリント配線基材10~40の信号用配線及びサーマル配線の接続態様を第1プリント配線基材10のサーマル配線13のパターンを変更することにより変更した点が、第1の実施形態に係る部品内蔵基板実装体100と相違している。
 すなわち、この部品内蔵基板実装体200では、部品内蔵基板1における第1プリント配線基材10のサーマル配線13側の第1樹脂基材11上にパターン形成されたソルダーレジスト48が設けられ、信号用配線12及びサーマル配線13上にバンプ49が形成されて、このバンプ49を介して部品内蔵基板1が実装基板2に実装されている。なお、第1及び第2プリント配線基材10,20には、その他、信号用配線22及び信号用ビア15,25が形成されている。
 このように構成された部品内蔵基板実装体200では、第1プリント配線基材10のサーマル配線13が、電子部品90と実装基板2との間に配置される構造となる。従って、部品内蔵基板1に内蔵された電子部品90の熱は、裏面91aから第1プリント配線基材10のサーマルビア14に伝わり、サーマル配線13及びバンプ49を通って実装基板2に伝えられる。このような構造によると、発熱源である電子部品90と放熱体である実装基板2との実装方向の距離が近くなるので、第1の実施形態に係る部品内蔵基板実装体100よりも更に放熱特性を向上させることができる。
[第3の実施形態]
 図5は、本発明の第3の実施形態に係る部品内蔵基板実装体の構造を示す断面図である。第3の実施形態に係る部品内蔵基板実装体300は、電子部品90(第1の電子部品)が内蔵された第2の実施形態に係る部品内蔵基板実装体200に、更に電子部品98(第2の電子部品)が表面実装された点が、第2の実施形態に係る部品内蔵基板実装体200と相違している。
 すなわち、図5に示すように、この部品内蔵基板実装体300では、部品内蔵基板1における第1プリント配線基材10の信号用配線12及びサーマル配線13上に第1バンプ49が形成されると共に、第4プリント配線基材40の信号用配線42側の第4樹脂基材41上にパターン形成されたソルダーレジスト48が更に設けられ、信号用配線42上に第2バンプ97が形成されている。
 そして、第2バンプ97を介して電子部品98の電極99が信号用配線42に接続され、電子部品98の電極形成面99bとソルダーレジスト48との間に充填形成されたアンダーフィル96を介して、電子部品98が部品内蔵基板1に表面実装されている。部品内蔵基板1は、第1バンプ49を介して実装基板2の実装面2a上に実装されている。
 このように構成された部品内蔵基板実装体300では、部品内蔵基板1に内蔵された電子部品90の再配線電極91と、表面実装された電子部品98の電極99との間の信号伝達経路(信号距離)を短くすることができるので、信号速度を向上させることができる。
 また、部品内蔵基板1に内蔵及び表面実装された電子部品90,98の熱は、電子部品90の裏面91a側のサーマルビア14及びサーマル配線13による経路を含む、全ての第1バンプに繋がる信号用配線12,22,32,42及び信号用ビア15,25,35,45の経路を通って第1バンプ49から実装基板2に伝えられる。
 このような構造によると、発熱源である電子部品90,98から放熱体である実装基板2への信号距離及び放熱経路をそれぞれ短くすることができるので、信号速度を向上させながら更に放熱特性を向上させることが可能となる。また、配線設計の自由度を向上させることが可能となる。
[その他の実施形態]
 図6は、部品内蔵基板実装体の他の構造を示す断面図である。図6に示すように、電子部品98の電極99の形成面99b側に設けられたアンダーフィル96の代わりに、部品内蔵基板1の第4プリント配線基材40の電子部品98の表面実装側の全体を、例えばモールド樹脂95で覆うようにして、実装基板2に実装し、部品内蔵基板実装体300を構成するようにしても良い。
 以下、実施例により本発明に係る部品内蔵基板実装体を具体的に説明する。
 図7は、本発明の実施例に係る部品内蔵基板実装体と比較例の部品内蔵基板実装体との放熱特性の解析結果を示す図である。図7の縦軸はTj温度を示している。実施例及び比較例共に、上述したような4層構造の部品内蔵基板を実装基板に実装した部品内蔵基板実装体を用いた。
 比較例1は、電子部品の裏面側にサーマルビアを形成せず、電子部品の電極が実装基板側に配置された構造の部品内蔵基板を実装基板に実装した部品内蔵基板実装体である。また、比較例2は、電子部品の裏面側にサーマルビアを形成し、表層にこのサーマルビアと接続された放熱基板を形成して、電子部品の電極が実装基板側に配置された構造の部品内蔵基板を実装基板に実装した部品内蔵基板実装体である。実施例1及び実施例2は、それぞれ部品内蔵基板実装体100,200と同様の構造とした。
 Tj温度の解析は、汎用ソフトウェア「ANSYS(登録商標)」を用い、解析の境界条件は次のようなものとした。すなわち、比較例1,2及び実施例1,2について、部品内蔵基板に内蔵された電子部品に1ワット(W)の発熱量を与え、部品内蔵基板実装体の外気との接触面には外気の対流がない静止状態として、4.5W/mkの熱伝達係数で雰囲気温度25℃の環境下にて解析を行った。
 図7に示すように、解析結果によれば、比較例1,2共にTj温度が115℃近辺となったのに対し、実施例1ではTj温度は97.5℃近辺となり、実施例2では94℃程度となった。このことから、比較例1のようにサーマルビアがないものは言うまでもなく、比較例2のように単純に電子部品の裏面側にサーマルビアや放熱基板を形成しただけでは、部品内蔵基板実装体の放熱特性を向上させることはできないことが判明した。
 一方、実施例1,2のように、サーマルビアやサーマル配線を介して部品内蔵基板に内蔵された電子部品の熱を実装基板にて放熱するタイプの部品内蔵基板実装体では、比較例1,2に比べて明らかに放熱特性が向上していることが判明した。特に、実施例2のように、発熱源と放熱体との実装方向の距離が近い構造であれば、放熱特性を更に向上させることができる結果となった。
 1         部品内蔵基板
 2         実装基板
 2a        実装面
 9         接着層
 10        第1プリント配線基材
 11        第1樹脂基材
 12        信号用配線
 13        サーマル配線
 14        サーマルビア
 15        信号用ビア
 20        第2プリント配線基材
 29        開口部
 30        第3プリント配線基材
 40        第4プリント配線基材
 48        ソルダーレジスト
 49        バンプ
 90,98     電子部品
 91a       裏面
 100,200   部品内蔵基板実装体

Claims (12)

  1.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体であって、
     前記部品内蔵基板は、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、
     表層に形成されたバンプを介して前記実装基板に実装されると共に、前記内蔵された電子部品の電極形成面と反対側の面が、前記サーマルビア及び前記サーマル配線を介して前記バンプに接続され、前記バンプを介して前記実装基板に熱的に接続されている
     ことを特徴とする部品内蔵基板実装体。
  2.  前記電子部品は、前記プリント配線基材の積層方向の前記サーマル配線と前記実装基板との間に配置されていることを特徴とする請求項1記載の部品内蔵基板実装体。
  3.  前記サーマル配線は、前記プリント配線基材の積層方向の前記電子部品と前記実装基板との間に配置されていることを特徴とする請求項1記載の部品内蔵基板実装体。
  4.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体の製造方法であって、
     複数の樹脂基材にサーマル配線を含む前記配線パターン及びサーマルビアを含む前記ビアを形成すると共に、前記複数の樹脂基材のうちの少なくとも一つに前記電子部品を内蔵する開口部を形成して複数のプリント配線基材を形成する工程と、
     前記電子部品の電極形成面と反対側の面が、前記サーマルビアを介して前記サーマル配線と接続されるように前記複数のプリント配線基材を熱圧着して一括積層し前記部品内蔵基板を形成する工程と、
     前記部品内蔵基板の表層に前記サーマル配線と接続されるバンプを形成する工程と、
     前記バンプを介して前記部品内蔵基板を前記実装基板の実装面上に実装する工程とを備えた
     ことを特徴とする部品内蔵基板実装体の製造方法。
  5.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板であって、
     前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、
     表層に形成されたバンプを介して実装基板に実装されると共に、前記内蔵された電子部品の電極形成面と反対側の面が、前記サーマルビア及び前記サーマル配線を介して前記バンプに接続されている
     ことを特徴とする部品内蔵基板。
  6.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に第1の電子部品を内蔵し、第2の電子部品を表面実装してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体であって、
     前記部品内蔵基板は、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、
     一方の表層に形成された第1バンプを介して前記実装基板に実装されると共に、他方の表層に形成された第2バンプを介して前記第2の電子部品が表面実装され、
     前記第1の電子部品の電極が前記ビア及び前記配線パターンを介して前記第2バンプに接続されると共に、前記電極の形成面と反対側の面が前記サーマルビア及び前記サーマル配線を介して前記第1バンプに接続され、
     前記第1の電子部品及び前記第2の電子部品が、前記ビア、前記配線パターン、前記サーマル配線、前記サーマルビア、前記第1バンプ及び前記第2バンプを介して前記実装基板に熱的に接続されている
     ことを特徴とする部品内蔵基板実装体。
  7.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に第1の電子部品を内蔵し、第2の電子部品を表面実装してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体の製造方法であって、
     複数の樹脂基材にサーマル配線を含む前記配線パターン及びサーマルビアを含む前記ビアを形成すると共に、前記複数の樹脂基材のうちの少なくとも一つに前記第1の電子部品を内蔵する開口部を形成して複数のプリント配線基材を形成する工程と、
     前記開口部に内蔵される前記第1の電子部品の電極が前記ビアを介して前記配線パターンと接続され、前記電極の形成面と反対側の面が前記サーマルビアを介して前記サーマル配線と接続されるように前記複数のプリント配線基材を熱圧着して一括積層し前記部品内蔵基板を形成する工程と、
     前記部品内蔵基板の一方の表層に前記電極の形成面と反対側の面側の前記サーマル配線と接続される第1バンプを形成すると共に、他方の表層に前記電極側の前記配線パターンと接続される第2バンプを形成する工程と、
     前記第2バンプを介して前記第2の電子部品を前記部品内蔵基板に実装すると共に、前記第1バンプを介して前記部品内蔵基板を前記実装基板の実装面上に実装する工程とを備えた
     ことを特徴とする部品内蔵基板実装体の製造方法。
  8.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に第1の電子部品を内蔵し、第2の電子部品を表面実装してなる部品内蔵基板であって、
     前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、
     一方の表層に形成された第1バンプを介して前記実装基板に実装されると共に、他方の表層に形成された第2バンプを介して前記第2の電子部品が表面実装され、
     前記第1の電子部品の電極が前記ビア及び前記配線パターンを介して前記第2バンプに接続されると共に、前記電極の形成面と反対側の面が前記サーマルビア及び前記サーマル配線を介して前記第1バンプに接続されている
     ことを特徴とする部品内蔵基板。
  9.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体であって、
     前記部品内蔵基板は、前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、前記サーマル配線及びサーマルビアは一部を除いて前記電子部品の外周側に配置され、
     前記部品内蔵基板は、表層に形成されたバンプを介して前記実装基板に実装されると共に、前記内蔵された電子部品の電極形成面と反対側の面が、前記サーマルビア、前記サーマル配線並びに前記電子部品の外周側に配置されたサーマル配線及びサーマルビアを介して前記バンプに接続され、前記バンプを介して前記実装基板に熱的に接続されている
     ことを特徴とする部品内蔵基板実装体。
  10.  前記電子部品は、前記プリント配線基材の積層方向の前記サーマル配線と前記実装基板との間に配置されていることを特徴とする請求項9記載の部品内蔵基板実装体。
  11.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板を、実装基板の実装面上に実装した部品内蔵基板実装体の製造方法であって、
     複数の樹脂基材にサーマル配線を含む前記配線パターン及びサーマルビアを含む前記ビアを前記サーマル配線及びサーマルビアが一部を除いて前記電子部品の外周側に配置されるように形成すると共に、前記複数の樹脂基材のうちの少なくとも一つに前記電子部品を内蔵する開口部を形成して複数のプリント配線基材を形成する工程と、
     前記電子部品の電極形成面と反対側の面が、前記サーマルビアを介して前記サーマル配線と接続され、且つ前記電子部品の外周側に配置されたサーマル配線及びサーマルビアを介して前記部品内蔵基板の表層に接続されるように前記複数のプリント配線基材を熱圧着して一括積層し前記部品内蔵基板を形成する工程と、
     前記部品内蔵基板の表層に前記サーマル配線と接続されるバンプを形成する工程と、
     前記バンプを介して前記部品内蔵基板を前記実装基板の実装面上に実装する工程とを備えた
     ことを特徴とする部品内蔵基板実装体の製造方法。
  12.  樹脂基材に配線パターン及びビアが形成されたプリント配線基材を複数積層すると共に電子部品を内蔵してなる部品内蔵基板であって、
     前記複数のプリント配線基材の少なくとも一部が、前記配線パターンにサーマル配線を含み、前記ビアにサーマルビアを含み、前記サーマル配線及びサーマルビアは一部を除いて前記電子部品の外周側に配置され、
     表層に形成されたバンプを介して実装基板に実装されると共に、前記内蔵された電子部品の電極形成面と反対側の面が、前記サーマルビア、前記サーマル配線並びに前記電子部品の外周側に配置されたサーマル配線及びサーマルビアを介して前記バンプに接続されている
     ことを特徴とする部品内蔵基板。
PCT/JP2012/074562 2011-09-30 2012-09-25 部品内蔵基板実装体及びその製造方法並びに部品内蔵基板 WO2013047520A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12835560.9A EP2763518A4 (en) 2011-09-30 2012-09-25 ASSEMBLY BODY FOR COMPONENT EMBEDDED SUBSTRATE, MANUFACTURING METHOD AND COMPONENT EMBEDDED SUBSTRATE
US14/229,425 US9635763B2 (en) 2011-09-30 2014-03-28 Component built-in board mounting body and method of manufacturing the same, and component built-in board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011216527A JP5100878B1 (ja) 2011-09-30 2011-09-30 部品内蔵基板実装体及びその製造方法並びに部品内蔵基板
JP2011-216527 2011-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/229,425 Continuation US9635763B2 (en) 2011-09-30 2014-03-28 Component built-in board mounting body and method of manufacturing the same, and component built-in board

Publications (1)

Publication Number Publication Date
WO2013047520A1 true WO2013047520A1 (ja) 2013-04-04

Family

ID=47528470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074562 WO2013047520A1 (ja) 2011-09-30 2012-09-25 部品内蔵基板実装体及びその製造方法並びに部品内蔵基板

Country Status (4)

Country Link
US (1) US9635763B2 (ja)
EP (1) EP2763518A4 (ja)
JP (1) JP5100878B1 (ja)
WO (1) WO2013047520A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913535B1 (ja) * 2014-11-19 2016-04-27 株式会社フジクラ 部品内蔵基板及びその製造方法
WO2019073801A1 (ja) * 2017-10-11 2019-04-18 ソニーセミコンダクタソリューションズ株式会社 半導体装置およびその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260806B2 (ja) 2013-09-27 2018-01-17 インテル・コーポレーション 両面ダイパッケージ
US9826646B2 (en) * 2014-05-27 2017-11-21 Fujikura Ltd. Component built-in board and method of manufacturing the same, and mounting body
DE102015104641A1 (de) * 2015-03-26 2016-09-29 At & S Austria Technologie & Systemtechnik Ag Träger mit passiver Kühlfunktion für ein Halbleiterbauelement
CN107615894B (zh) * 2015-06-03 2020-07-17 株式会社村田制作所 元器件安装基板
WO2017039275A1 (ko) 2015-08-31 2017-03-09 한양대학교 산학협력단 반도체 패키지 구조체, 및 그 제조 방법
KR101923659B1 (ko) * 2015-08-31 2019-02-22 삼성전자주식회사 반도체 패키지 구조체, 및 그 제조 방법
US20200161206A1 (en) * 2018-11-20 2020-05-21 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and semiconductor manufacturing process
CN111463190B (zh) * 2020-04-10 2022-02-25 青岛歌尔智能传感器有限公司 传感器及其制作方法、以及电子设备
DE102021109974A1 (de) 2020-04-27 2021-10-28 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Bauteilträger mit einem eingebetteten wärmeleitfähigen Block und Herstellungsverfahren
JP2022154932A (ja) * 2021-03-30 2022-10-13 株式会社デンソー 回路基板内に電気部品を備える半導体装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198660A (ja) * 2000-12-27 2002-07-12 Kyocera Corp 回路基板及びその製造方法
JP2002299775A (ja) * 2001-03-30 2002-10-11 Kyocera Corp 電子部品装置
JP2006108483A (ja) * 2004-10-07 2006-04-20 Hitachi Metals Ltd キャビティを備えた多層セラミック基板およびその製造方法
JP2006310541A (ja) * 2005-04-28 2006-11-09 Ngk Spark Plug Co Ltd 多層配線基板及びその製造方法、多層配線基板構造体及びその製造方法
WO2007043714A1 (ja) * 2005-10-14 2007-04-19 Ibiden Co., Ltd. 多層プリント配線板およびその製造方法
JP2008205124A (ja) 2007-02-19 2008-09-04 Fujikura Ltd 電子部品内蔵型配線基板及びその製造方法
JP2010021368A (ja) * 2008-07-10 2010-01-28 Ngk Spark Plug Co Ltd 部品内蔵配線基板及びその製造方法
JP2010118589A (ja) * 2008-11-14 2010-05-27 Shinko Electric Ind Co Ltd 電子部品内蔵配線基板の製造方法
JP2010123632A (ja) * 2008-11-17 2010-06-03 Shinko Electric Ind Co Ltd 電子部品内蔵配線基板の製造方法
JP2011009715A (ja) * 2009-05-25 2011-01-13 Denso Corp 半導体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226456A (ja) * 1993-04-23 1995-08-22 Nippon Micron Kk Icパッケージ及びその製造方法
US20020175402A1 (en) * 2001-05-23 2002-11-28 Mccormack Mark Thomas Structure and method of embedding components in multi-layer substrates
TW550997B (en) * 2001-10-18 2003-09-01 Matsushita Electric Ind Co Ltd Module with built-in components and the manufacturing method thereof
JP3937840B2 (ja) * 2002-01-10 2007-06-27 株式会社日立製作所 高周波モジュール
JP2006019441A (ja) * 2004-06-30 2006-01-19 Shinko Electric Ind Co Ltd 電子部品内蔵基板の製造方法
JP2006019361A (ja) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd 回路装置およびその製造方法
JP4535801B2 (ja) * 2004-07-28 2010-09-01 京セラ株式会社 セラミック配線基板
DE102005037040A1 (de) * 2005-08-05 2007-02-08 Epcos Ag Elektrisches Bauelement
JP2008098285A (ja) * 2006-10-10 2008-04-24 Rohm Co Ltd 半導体装置
JP5326269B2 (ja) * 2006-12-18 2013-10-30 大日本印刷株式会社 電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法
JP4833192B2 (ja) * 2007-12-27 2011-12-07 新光電気工業株式会社 電子装置
JP5494586B2 (ja) * 2010-09-30 2014-05-14 大日本印刷株式会社 電圧変換モジュール

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198660A (ja) * 2000-12-27 2002-07-12 Kyocera Corp 回路基板及びその製造方法
JP2002299775A (ja) * 2001-03-30 2002-10-11 Kyocera Corp 電子部品装置
JP2006108483A (ja) * 2004-10-07 2006-04-20 Hitachi Metals Ltd キャビティを備えた多層セラミック基板およびその製造方法
JP2006310541A (ja) * 2005-04-28 2006-11-09 Ngk Spark Plug Co Ltd 多層配線基板及びその製造方法、多層配線基板構造体及びその製造方法
WO2007043714A1 (ja) * 2005-10-14 2007-04-19 Ibiden Co., Ltd. 多層プリント配線板およびその製造方法
JP2008205124A (ja) 2007-02-19 2008-09-04 Fujikura Ltd 電子部品内蔵型配線基板及びその製造方法
JP2010021368A (ja) * 2008-07-10 2010-01-28 Ngk Spark Plug Co Ltd 部品内蔵配線基板及びその製造方法
JP2010118589A (ja) * 2008-11-14 2010-05-27 Shinko Electric Ind Co Ltd 電子部品内蔵配線基板の製造方法
JP2010123632A (ja) * 2008-11-17 2010-06-03 Shinko Electric Ind Co Ltd 電子部品内蔵配線基板の製造方法
JP2011009715A (ja) * 2009-05-25 2011-01-13 Denso Corp 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763518A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913535B1 (ja) * 2014-11-19 2016-04-27 株式会社フジクラ 部品内蔵基板及びその製造方法
WO2019073801A1 (ja) * 2017-10-11 2019-04-18 ソニーセミコンダクタソリューションズ株式会社 半導体装置およびその製造方法
JPWO2019073801A1 (ja) * 2017-10-11 2020-10-22 ソニーセミコンダクタソリューションズ株式会社 半導体装置およびその製造方法
US11355465B2 (en) 2017-10-11 2022-06-07 Sony Semiconductor Solutions Corporation Semiconductor device including glass substrate having improved reliability and method of manufacturing the same
JP7191842B2 (ja) 2017-10-11 2022-12-19 ソニーセミコンダクタソリューションズ株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US9635763B2 (en) 2017-04-25
EP2763518A4 (en) 2015-07-22
US20140211437A1 (en) 2014-07-31
EP2763518A1 (en) 2014-08-06
JP5100878B1 (ja) 2012-12-19
JP2013077691A (ja) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5100878B1 (ja) 部品内蔵基板実装体及びその製造方法並びに部品内蔵基板
JP4833192B2 (ja) 電子装置
JP4277036B2 (ja) 半導体内蔵基板及びその製造方法
JP5406389B2 (ja) 部品内蔵基板及びその製造方法
JP5167516B1 (ja) 部品内蔵基板及びその製造方法並びに部品内蔵基板実装体
EP1796163B1 (en) Semiconductor device and electronic control unit using the same
JP6669586B2 (ja) 半導体装置、半導体装置の製造方法
KR20110085481A (ko) 적층 반도체 패키지
JP2008226945A (ja) 半導体装置およびその製造方法
US9269685B2 (en) Integrated circuit package and packaging methods
US11450597B2 (en) Semiconductor package substrate having heat dissipating metal sheet on solder pads, method for fabricating the same, and electronic package having the same
JP5760260B2 (ja) 部品内蔵プリント基板及びその製造方法
KR20070010915A (ko) 방열층을 갖는 배선기판 및 그를 이용한 반도체 패키지
US9105562B2 (en) Integrated circuit package and packaging methods
US9425116B2 (en) Integrated circuit package and a method for manufacturing an integrated circuit package
JP3944898B2 (ja) 半導体装置
JP2014067819A (ja) 部品内蔵基板実装体及びその製造方法並びに部品内蔵基板
US20060108146A1 (en) Structure of electronic package and method for fabricating the same
JP2008243966A (ja) 電子部品が実装されたプリント基板及びその製造方法
JP5358515B2 (ja) 半導体装置及びそれを用いた電子制御装置
JP2001168226A (ja) 半導体パッケージ及び半導体装置
CN113964093A (zh) 封装结构及其制备方法
JP2004214286A (ja) 部品内蔵モジュール
JP6028256B2 (ja) 部品内蔵基板及びその製造方法
JP2012199283A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012835560

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE