Nothing Special   »   [go: up one dir, main page]

WO2012164642A1 - バイポーラ全固体電池 - Google Patents

バイポーラ全固体電池 Download PDF

Info

Publication number
WO2012164642A1
WO2012164642A1 PCT/JP2011/062205 JP2011062205W WO2012164642A1 WO 2012164642 A1 WO2012164642 A1 WO 2012164642A1 JP 2011062205 W JP2011062205 W JP 2011062205W WO 2012164642 A1 WO2012164642 A1 WO 2012164642A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
bipolar
current collector
material layer
Prior art date
Application number
PCT/JP2011/062205
Other languages
English (en)
French (fr)
Inventor
拓海 田中
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/114,838 priority Critical patent/US9373869B2/en
Priority to KR1020137030338A priority patent/KR101577881B1/ko
Priority to CN201180070981.1A priority patent/CN103548196B/zh
Priority to PCT/JP2011/062205 priority patent/WO2012164642A1/ja
Priority to DE112011105286.3T priority patent/DE112011105286B4/de
Priority to JP2013517709A priority patent/JP5720779B2/ja
Publication of WO2012164642A1 publication Critical patent/WO2012164642A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/126Small-sized flat cells or batteries for portable equipment
    • H01M10/127Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/281Large cells or batteries with stacks of plate-like electrodes
    • H01M10/282Large cells or batteries with stacks of plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a bipolar all solid state battery capable of suitably preventing a short circuit caused by a breakage of a current collector of a bipolar electrode, and a method for manufacturing the same.
  • lithium batteries currently on the market use an electrolyte containing a flammable organic solvent, it is possible to install safety devices that suppress the temperature rise during short circuits and to improve the structure and materials to prevent short circuits. Necessary.
  • a lithium battery in which the electrolyte is changed to a solid electrolyte layer to make the battery completely solid does not use a flammable organic solvent in the battery, so the safety device can be simplified, and manufacturing costs and productivity can be reduced. It is considered excellent.
  • bipolar battery for electric vehicles, attention is focused on a laminated bipolar battery that can achieve high energy density and high output density.
  • a bipolar electrode in which a positive electrode active material layer is formed on one surface of a current collector and a negative electrode active material layer is formed on the other surface, and an electrolyte are alternately stacked.
  • Patent Document 1 discloses that an insulating portion made of an insulating material is provided on a current collector around a bipolar electrode where an electrode active material layer is not formed.
  • the present invention has been made in view of the above problems, and it is possible to prevent the current collector of the bipolar electrode from being broken and to suitably prevent the occurrence of a short circuit, and the above bipolar all solid state.
  • the main object is to provide a battery manufacturing method.
  • a current collector a positive electrode active material layer containing a positive electrode active material formed on one surface of the current collector, and the other surface of the current collector are provided.
  • a bipolar electrode having an electrode active material layer formed of a negative electrode active material layer containing a negative electrode active material and a solid electrolyte layer containing a solid electrolyte, wherein the plurality of bipolar electrodes are interposed via the solid electrolyte layer
  • the electrode active material layer is formed inside an end of the current collector, and between the end of the electrode active material layer and the current collector surface.
  • a bipolar all solid state battery is provided in which a reinforcing layer formed on the surface of the current collector is disposed.
  • the reinforcing layer can be disposed between the end of the electrode active material layer and the current collector surface, the current collector near the end of the electrode active material layer can be reinforced. It becomes. Therefore, it becomes possible to provide the current collector with durability against the above-described shearing shear force, and it is possible to suitably prevent the occurrence of a short circuit due to the current collector being broken. Therefore, a bipolar all solid state battery that is less likely to cause a short circuit due to breakage of the current collector can be obtained.
  • the reinforcing layer is preferably an insulator. It is possible to suitably prevent the occurrence of a short circuit in the portion where the reinforcing layer is formed.
  • the end of the current collector is covered with an insulator.
  • a bipolar all solid state battery in which a short circuit due to contact between current collectors adjacent in the stacking direction is unlikely to occur can be obtained.
  • the bipolar all solid state battery manufacturing method described above the end of the electrode active material layer forming region is formed on the inner side of the end of the current collector, the electrode active material layer forming region, Forming the reinforcing layer on the surface of the current collector so that the reinforcing layer is disposed between the surface of the current collector and then forming the electrode active material layer in the electrode active material layer forming region;
  • a bipolar electrode forming step for forming a bipolar electrode by the step, a solid electrolyte layer forming step for forming a solid electrolyte layer, and an assembly step for assembling a bipolar all solid state battery by laminating a plurality of the bipolar electrodes via the solid electrolyte layer A method for producing a bipolar all solid state battery is provided.
  • the reinforcing layer can be disposed between the end portion of the electrode active material layer and the current collector surface by having the bipolar electrode forming step, the vicinity of the end portion of the electrode active material layer can be provided.
  • the current collector can be reinforced, and the current collector can be provided with durability against the above-described shear shear force. Therefore, it is possible to manufacture a bipolar all solid state battery that is less likely to cause a short circuit due to breakage of the current collector.
  • the bipolar all solid state battery of the present invention includes a current collector, a positive electrode active material layer containing a positive electrode active material formed on one surface of the current collector, and a negative electrode active material formed on the other surface of the current collector.
  • a bipolar electrode having an electrode active material layer made of a negative electrode active material layer containing a substance and a solid electrolyte layer containing a solid electrolyte, and a plurality of the bipolar electrodes are laminated via the solid electrolyte layer
  • the electrode active material layer is formed inside an end portion of the current collector, and between the end portion of the electrode active material layer and the current collector surface, on the current collector surface.
  • the formed reinforcing layer is arranged.
  • a plurality of bipolar electrodes are laminated via a solid electrolyte layer
  • a positive electrode active material layer of one bipolar electrode and a negative electrode active material layer of another bipolar electrode adjacent to the one bipolar electrode It means that a plurality of bipolar electrodes are laminated so that a solid electrolyte layer is disposed between them.
  • the reinforcing layer is disposed between the end of the electrode active material layer and the current collector surface means that the end of the positive electrode active material layer or the end of the negative electrode active material layer This means that a reinforcing layer is disposed between the end of at least one electrode active material layer and the current collector surface. In this case, it means that a reinforcing layer is formed on at least one current collector surface.
  • FIG. 1 is a schematic sectional view showing an example of a bipolar all solid state battery of the present invention.
  • a bipolar all solid state battery 100 of the present invention includes a current collector 11, a positive electrode active material layer 12 formed on one surface of the current collector 11 and containing a positive electrode active material, and a current collector.
  • a bipolar electrode 10 having a negative electrode active material layer 13 formed on the other surface of the electrode 11 and comprising a negative electrode active material layer 13 containing a negative electrode active material, a reinforcing layer 14 formed on the surface of the current collector 11, and a solid electrolyte.
  • the bipolar all solid state battery 100 of the present invention may have a battery case 30 and a restraining jig 40 in addition to the above-described configuration.
  • FIG. 2 (a) is a schematic plan view showing an example of a bipolar electrode used in the bipolar all solid state battery of the present invention
  • FIG. 2 (b) is a cross-sectional view taken along line AA of FIG. 2 (a).
  • . 2A is a view of the bipolar electrode 10 as viewed from the negative electrode active material layer 13 side, and the current collector 11 and the positive electrode active material layer 12 are not shown. As shown in FIGS.
  • the positive electrode active material layer 12 is formed inside the end s of the current collector 11, and the positive electrode A reinforcing layer 14 is disposed between the end p of the active material layer 12 and the surface of the current collector 11, and the reinforcing layer 14 continues from the end s of the current collector 11 to the end p of the positive electrode active material layer 12. Is formed.
  • the negative electrode active material layer 13 is formed inside the end s of the current collector 11, and the end q of the negative electrode active material layer 13 and the surface of the current collector 11 are formed.
  • a reinforcing layer 14 is disposed therebetween, and the reinforcing layer 14 is continuously formed from the end s of the current collector 11 to the end q of the negative electrode active material layer 13.
  • r in FIG.2 (b) has shown the edge part by the side of the electrode active material layer of the reinforcement layer 14.
  • FIG. Moreover, the dashed-dotted line in Fig.2 (a) has shown the edge part r (negative electrode active material layer 13 side) of the reinforcement layer 14.
  • the reinforcing layer can be disposed between the end of the electrode active material layer and the current collector surface, the current collector near the end of the electrode active material layer can be reinforced. It becomes. Therefore, it becomes possible to provide the current collector with durability against the above-described shearing shear force, and it is possible to suitably prevent the occurrence of a short circuit due to the current collector being broken. Therefore, a bipolar all solid state battery that is less likely to cause a short circuit due to breakage of the current collector can be obtained.
  • the reinforcing layer is formed on the surface of the current collector and does not completely seal the outer periphery of the bipolar all solid state battery, even when gas is generated from the solid electrolyte layer, the bipolar layer It becomes possible to discharge out of the all solid state battery, and it is possible to suitably prevent the deterioration of the electrode active material layer.
  • Bipolar electrode used in the present invention has a current collector, a positive electrode active material layer, a negative electrode active material layer, and a reinforcing layer.
  • the reinforcing layer used in the present invention is formed on the surface of the current collector, and is disposed between the end of the electrode active material layer and the current collector surface.
  • Such a reinforcing layer is only required to be able to reinforce the current collector, and may be an insulator or a conductor, but an insulator is more preferable. This is because when the reinforcing layer is an insulator, it is possible to suitably prevent occurrence of a short circuit in the portion where the reinforcing layer is formed.
  • the position where such a reinforcing layer is formed is not particularly limited as long as the current collector can be reinforced.
  • the surface of the current collector on the positive electrode active material layer side or the surface of the current collector on the negative electrode active material layer side Or may be formed on both the positive electrode active material layer side surface and the negative electrode active material layer side surface of the current collector.
  • the reinforcing layer is preferably formed on both the positive electrode active material layer side surface and the negative electrode active material layer side surface of the current collector. This is because the durability of the current collector against the above-described shearing shear force can be made higher.
  • the region where the reinforcing layer is formed on the surface of the current collector is not particularly limited as long as the reinforcing layer can be disposed between the end of the electrode active material layer and the current collector surface. Since the formation region of the reinforcing layer is formed in consideration of the area contributing to power generation (power generation area) in the bipolar electrode, it is usually formed in the region described below, for example, in the central portion of the bipolar electrode. Is not.
  • the reinforcing layer Since the reinforcing layer is disposed between the end of the electrode active material layer and the current collector surface, it is usually formed inside the electrode active material layer forming region where the electrode active material layer is formed. It is what has been. As the width of the reinforcing layer formed inside the electrode active material layer forming region, that is, the laminated portion of the electrode active material layer and the reinforcing layer, it is possible to give the current collector durability against the above-described shear shear force. It is not particularly limited as long as it is about a certain level, and can be appropriately selected depending on the use of the bipolar all solid state battery of the present invention.
  • the ratio of the width of the laminated portion of the electrode active material layer and the reinforcing layer to the width of the electrode active material layer is in the range of 0.01% to 30%, in particular, 0.1% to 10%. Preferably, it is in the range of 1% to 5%. This is because when the ratio is less than the above range, the manufacturing process may be complicated because high accuracy is required for alignment of the electrode active material layer and the reinforcing layer. On the other hand, when the ratio exceeds the above range, the power generation area in the bipolar electrode is reduced, and the battery characteristics of the bipolar all solid state battery of the present invention may be deteriorated.
  • the width of the laminated portion of the electrode active material layer and the reinforcing layer refers to the distances indicated by L1 and L1 'in FIGS. 2 (a) and 2 (b).
  • the width of the electrode active material layer refers to the distance from one end side of the electrode active material layer to the other end side facing the one end side.
  • L2 , L2 ′ In FIGS. 2A and 2B, L2 , L2 ′.
  • the reinforcing layer is formed continuously from the end of the current collector
  • the end s of the current collector 11 and the reinforcing layer 14 are formed as shown in FIG. 3 (b), not only when the reinforcing layer 14 is continuously formed on the surface of the current collector 11 so as to coincide with the end r ′ of the current collector (the end side of the current collector).
  • the bipolar all solid state battery of the present invention is more than the end portion s of the end portion 11 of the current collector to the extent that it is possible to prevent a short circuit due to contact between the current collectors adjacent in the stacking direction.
  • FIG. 14 is a concept including a case where 14 is continuously formed so as to cover the end s and the end face of the current collector 11.
  • the reinforcing layer 14 is continuously formed so as to cover the end portion s and the end surface of the current collector 11. This is because it is possible to more suitably prevent the short circuit due to the contact between the adjacent current collectors described above.
  • FIGS. 3A and 3B are schematic cross-sectional views showing other examples of the bipolar electrode used in the present invention, and the reference numerals not described are the same as those in FIG. 2B.
  • the reinforcing layer may also be formed inside the end portion of the electrode active material layer, so that “the reinforcing layer is continuously formed up to the end portion of the electrode active material layer.
  • the term “has” is a concept including the case where the reinforcing layer is continuously formed to the end of the electrode active material layer and the inside thereof.
  • the reinforcing layer is formed continuously from the end of the current collector to the end of the electrode active material layer, and the positive electrode active material layer side surface of the current collector or the negative electrode active of the current collector When formed on either one of the material layer side surfaces, in the bipolar all solid state battery of the present invention, in the two bipolar electrodes adjacent to each other in the stacking direction, the current collector surface of each of the opposing bipolar electrodes It is preferable that a reinforcing layer is formed on either side. It is because it becomes possible to prevent the short circuit by the contact of the collectors adjacent in the lamination direction more suitably.
  • the material of the reinforcing layer is not particularly limited as long as desired durability can be imparted to the current collector.
  • the material of the reinforcing layer is preferably an insulator in the present invention
  • the material of the reinforcing layer is preferably an insulating material.
  • the insulating material is not particularly limited as long as it has a desired insulating property, and can be the same as the material of the reinforcing layer used in a general bipolar battery. It is preferable that Since the resin material has a high durability against the above-mentioned shearing force and has a property of extending, for example, even when the current collector is torn in the region where the reinforcing layer is formed, the reinforcing layer extends. Thus, it is possible to suitably prevent a through-hole from occurring in the current collector and causing a short circuit.
  • the reinforcing layer may have an adhesive layer on the surface on the current collector side. This is because the adhesion between the reinforcing layer and the current collector can be improved.
  • the material used for an adhesion layer since it can be set as a general adhesive, description here is abbreviate
  • stacked the reinforcement layer and the adhesion layer is a grade used as the thickness of the reinforcement layer mentioned above.
  • the method for forming the reinforcing layer is not particularly limited as long as it can form a reinforcing layer having a desired thickness in a desired region on the surface of the current collector.
  • the above-described resin material is applied.
  • the method of forming by doing this, the method of bonding the film using the resin material mentioned above on the surface of an electrical power collector using an adhesion layer, etc. can be mentioned.
  • Electrode active material layer The electrode active material layer in the present invention is formed on one surface of the current collector and formed on the other surface of the current collector and the positive electrode active material layer containing the positive electrode active material. It consists of a negative electrode active material layer containing a negative electrode active material.
  • Positive electrode active material layer used in the present invention is formed on one surface of a current collector and contains a positive electrode active material.
  • the positive electrode active material layer forming region for forming the positive electrode active material layer is inside the end of the current collector, the bipolar electrode has a desired power generation area, and inside the end of the positive electrode active material layer.
  • the region is not particularly limited as long as it can form a reinforcing layer.
  • the positive electrode active material layer forming region is appropriately selected according to the application of the bipolar all solid state battery of the present invention.
  • the positive electrode active material layer is a layer containing at least a positive electrode active material, and may contain at least one of a conductive material, a solid electrolyte material, and a binder as necessary.
  • a positive electrode active material for example, in the case of a bipolar all solid lithium battery, LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 and the like.
  • the positive electrode active material layer in the present invention may further contain a conductive material. By adding a conductive material, the conductivity of the positive electrode active material layer can be improved. Examples of the conductive material include acetylene black, ketjen black, and carbon fiber.
  • the positive electrode active material layer may further contain a solid electrolyte material. By adding the solid electrolyte material, the ion conductivity of the positive electrode active material layer can be improved.
  • the solid electrolyte material can be the same as the material described in the section of the solid electrolyte layer described later.
  • the positive electrode active material layer may further contain a binder. Examples of the binder include a fluorine-containing binder such as polytetrafluoroethylene (PTFE).
  • the thickness of the positive electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the method for forming the positive electrode active material layer is not particularly limited as long as it is a method capable of forming a positive electrode active material layer having a desired thickness in a desired region on the surface of the current collector. Examples include a method of forming by pressing the material of the layer under pressure, and a method of forming by preparing a slurry containing the material of the positive electrode active material layer and a solvent, and applying the slurry to the surface of the current collector. it can.
  • Negative electrode active material layer used in the present invention is formed on the surface of the current collector opposite to the positive electrode active material layer side, and contains a negative electrode active material. is there.
  • the negative electrode active material layer forming region for forming the negative electrode active material layer is inside the end of the current collector, the bipolar electrode has a desired power generation area, and is inside the end of the negative electrode active material layer.
  • the region is not particularly limited as long as it can form a reinforcing layer.
  • the negative electrode active material layer forming region is appropriately selected according to the use of the bipolar all solid state battery of the present invention.
  • the negative electrode active material layer in the present invention is a layer containing at least a negative electrode active material, and may contain at least one of a conductive material, a solid electrolyte material, and a binder as necessary.
  • the negative electrode active material include a metal active material and a carbon active material.
  • the metal active material include In, Al, Si, and Sn.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • the conductive material, the solid electrolyte material, and the binder used for the negative electrode active material layer are the same as those in the positive electrode active material layer described above.
  • the thickness of the negative electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the method for forming the negative electrode active material layer can be the same as the method for forming the positive electrode active material layer described above, description thereof is omitted here.
  • the current collector in the present invention will be described.
  • the material of the current collector in the present invention is not particularly limited as long as it has conductivity and can form a positive electrode active material layer, a negative electrode active material layer, and a reinforcing layer on the current collector surface.
  • stainless steel, aluminum, copper, etc. can be mentioned.
  • the thickness of the current collector can be appropriately selected according to the application of the bipolar all solid state battery of the present invention, but is usually preferably in the range of 1 ⁇ m to 100 ⁇ m, It is preferably in the range of 5 ⁇ m to 30 ⁇ m, particularly in the range of 10 ⁇ m to 20 ⁇ m. Moreover, it is preferable that the thickness of the current collector is thinner within the above-described range. This is because the effect of preventing the occurrence of a short circuit due to the breakage of the current collector can be exhibited more greatly.
  • the shape of the current collector can be appropriately selected according to the use of the bipolar all solid state battery of the present invention.
  • an electrode active material layer and a reinforcing layer are usually provided on the outer surface (T surface in FIG. 1) of the bipolar electrode located in the outermost layer of the bipolar all solid state battery. Is not formed.
  • the end of the current collector is covered with an insulator.
  • the insulator may be a coating of an insulating material formed separately from the reinforcing layer, and is formed continuously from the end of the current collector to the end of the electrode active material layer.
  • it may be a reinforcing layer, it is more preferably a reinforcing layer. This is because the manufacturing process can be simplified as compared with the case where the coating of the insulating material is separately formed.
  • Solid electrolyte layer The solid electrolyte layer used in the present invention has a solid electrolyte.
  • the solid electrolyte layer is disposed between a positive electrode active material layer of one bipolar electrode and a negative electrode active material layer of another bipolar electrode adjacent to the one bipolar electrode. It is.
  • the formation region of such a solid electrolyte layer is not particularly limited as long as it can be disposed between the positive electrode active material layer and the negative electrode active material layer, and as shown in FIG. 20 is preferably formed so as to cover the surface and the end face of the electrode active material layer (negative electrode active material layer 13 in FIG. 1). It is because it becomes possible to prevent the short circuit of a bipolar all-solid-state battery more suitably.
  • the solid electrolyte material constituting the solid electrolyte layer is not particularly limited as long as it has ion conductivity.
  • the bipolar all solid battery of the present invention is a bipolar all solid lithium battery, Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—B 2 O 3 , Li 2 O—B 2 O 3 —ZnO, and other oxide amorphous solid electrolytes Materials: Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PO 4 —Li 2 S—Si 2 S, Li 3 PO 4 —Li 2 S—SiS 2 , Li 3 PO 4 —Li 2 S—SiS, LiI—Li 2 S—P 2 O 5 , LiI—Li 3 PO 4 —P 2 S 5 , Li 2 S-P
  • the solid electrolyte layer may contain a binder in addition
  • the thickness of the solid electrolyte layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the method for forming the solid electrolyte layer is not particularly limited.
  • a method for forming the solid electrolyte layer by press-pressing the material of the solid electrolyte layer, a slurry containing the material for the solid electrolyte layer and a solvent, and the above slurry are prepared.
  • the bipolar all solid state battery of the present invention has at least the bipolar electrode described above and a solid electrolyte layer. Usually, a battery case is used.
  • a battery case used in the present invention a general battery case of a bipolar all solid state battery can be used, and examples thereof include a battery case made of SUS.
  • Bipolar all-solid-state battery The bipolar all-solid-state battery of the present invention is obtained by laminating a plurality of bipolar electrodes via the solid electrolyte layer described above. The number of stacked bipolar electrodes is appropriately selected according to the application of the bipolar all solid state battery of the present invention.
  • Examples of the bipolar all solid state battery of the present invention include an all solid lithium battery, an all solid sodium battery, an all solid magnesium battery, an all solid calcium battery, and the like. Batteries and all solid sodium batteries are preferred, and all solid lithium batteries are particularly preferred. Further, the all solid state battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful, for example, as a vehicle-mounted battery. Examples of the shape of the all solid state battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type.
  • the method for producing a bipolar all solid state battery of the present invention is not particularly limited, and for example, the method described in the section “B. Production method for bipolar all solid state battery” described later can be used.
  • the manufacturing method of the bipolar all solid state battery of the present invention is the manufacturing method of the bipolar all solid state battery described in the above-mentioned section “A. Bipolar all solid state battery”, and is located inside the end portion of the current collector.
  • FIG. 4A to 4D are process diagrams showing an example of a method for manufacturing a bipolar all solid state battery of the present invention.
  • the bipolar all solid state battery manufacturing method of the present invention first, in the bipolar electrode forming step, as shown in FIG. 4A, on one surface of the current collector 11, inside the end of the current collector 11.
  • the reinforcing layer 14 is disposed between the position and the positive electrode active end of the positive electrode active material layer forming region X 12 where material layer is formed and the current collector 11 surface from the end of the current collector 11 the reinforcing layer 14 to the end portion of the positive electrode active material layer forming region X 12 are continuously formed in the current collector 11 on the surface.
  • the reinforcing layer 14 is disposed between the end of the negative electrode active material layer forming region X 13 where the negative electrode active material layer is formed and the surface of the current collector 11. as such, continuously formed reinforcing layer 14 on the current collector 11 on the surface from the end of the current collector 11 to the end portion of the negative electrode active material layer forming region X 13.
  • the positive electrode active material layer 12 and the negative electrode active material layer 13 are formed in the positive electrode active material layer forming region X 12 and the negative electrode active material layer X 13 to thereby form the bipolar electrode 10.
  • the solid electrolyte layer forming step as shown in FIG. 4C, the solid electrolyte layer 20 is formed so as to cover the negative electrode active material layer 13.
  • the bipolar all solid state battery 100 is assembled by laminating a plurality of bipolar electrodes 10 via the solid electrolyte layer 20.
  • the bipolar all solid state battery shown in FIG. 1 can be obtained by enclosing the assembled bipolar all solid state battery in a battery case and disposing a restraining jig.
  • the reinforcing layer can be disposed between the end portion of the electrode active material layer and the current collector surface by having the bipolar electrode forming step, the vicinity of the end portion of the electrode active material layer can be provided.
  • the current collector can be reinforced, and the current collector can be provided with durability against the above-described shear shear force. Therefore, it is possible to manufacture a bipolar all solid state battery that is less likely to cause a short circuit due to breakage of the current collector.
  • Bipolar electrode forming step in the present invention includes an end portion of an electrode active material layer forming region where an electrode active material layer is formed inside the end portion of the current collector, and the current collector surface.
  • step of forming a bipolar electrode by forming the electrode active material layer in the electrode active material layer forming region after forming the reinforcement layer on the current collector surface so that the reinforcement layer is disposed therebetween. is there.
  • this step includes forming a reinforcing layer on the current collector surface, and then forming a positive electrode active material layer on each surface of the current collector or It may be a step of forming a negative electrode active material layer, and after forming a reinforcing layer on one surface of the current collector, a positive electrode active material layer or a negative electrode active material layer on the surface of the current collector on which the reinforcing layer is formed After forming one of these, and further forming a reinforcing layer on the other surface of the current collector, a step in which the positive electrode active material layer or the negative electrode active material layer is not formed may be formed.
  • the reinforcing layer is continuously formed from the end of the current collector to the end of the electrode active material layer. Since the current collector located outside the edge of the electrode active material layer can be covered with the reinforcing layer, and the exposed portion of the current collector can be reduced or eliminated, the current collector adjacent to the stacking direction can be removed. This is because it is possible to manufacture a bipolar all solid state battery that is less likely to cause a short circuit due to contact between electric bodies.
  • the formation position of the reinforcing layer, the forming region of the reinforcing layer, the forming reinforcing layer and the forming method thereof, the electrode active material layer and the forming method thereof, and the bipolar electrode in this step are described in “A. Since it may be the same as that described in the section of “Solid Battery”, description thereof is omitted here.
  • Solid electrolyte layer forming step is a step of forming a solid electrolyte layer.
  • the solid electrolyte layer formed by this step and the method for forming the solid electrolyte layer can be the same as those described in the above-mentioned section “A. Bipolar all-solid battery”, and thus the description thereof is omitted here.
  • the assembling process in the present invention is an assembling process for assembling a bipolar all solid state battery by laminating a plurality of the bipolar electrodes through the solid electrolyte layer.
  • the assembly method of the bipolar all solid state battery used in this step is not particularly limited as long as it is a method capable of laminating the plurality of bipolar electrodes through the solid electrolyte layer, and may be a known method. it can.
  • the bipolar all solid state battery obtained in this step can be the same as the contents described in the above-mentioned section “A. Bipolar all solid state battery”, and therefore the description thereof is omitted here.
  • the method for producing a bipolar all solid state battery of the present invention can be performed by appropriately selecting necessary steps in addition to the steps described above. Examples of such a process include a process of enclosing a bipolar all solid state battery in a battery case, a process of arranging a restraining jig, and the like.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • a SUS304 foil having a thickness of 10 ⁇ m was prepared as a current collector, and a PEN film having a thickness of 12 ⁇ m was thermocompression bonded to the outer periphery of the SUS304 foil as a reinforcing layer.
  • the reinforcing layer was thermocompression bonded to both surfaces of the current collector.
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 positive electrode active material
  • 75Li 2 S-25P 2 S 5 solid electrolyte
  • butylene rubber manufactured by JSR
  • heptane solvent
  • the reinforcing layer is a positive electrode active material
  • a positive electrode active material layer having a thickness of 60 ⁇ m was obtained by coating on a current collector and drying so as to be formed inside the end of the layer.
  • Natural graphite negative electrode active material
  • 75Li 2 S-25P 2 S 5 solid electrolyte
  • butylene rubber manufactured by JSR
  • heptane solvent
  • the mixture is mixed and kneaded to form a slurry, so that the reinforcing layer is formed inside the end portion of the positive electrode active material layer.
  • the negative electrode active material layer having a thickness of 80 ⁇ m was obtained by applying and drying on the current collector on the side opposite to the side where the positive electrode active material layer is formed.
  • bipolar electrodes As described above, four bipolar electrodes are prepared, and the solid electrolyte layer is disposed between the positive electrode active material layer of one bipolar electrode and the negative electrode layer of the bipolar electrode adjacent to the one bipolar electrode. Bipolar electrodes were stacked. The outer surface of the bipolar electrode disposed in the outermost layer is not formed with a reinforcing layer, an electrode active material layer, or a solid electrolyte layer.
  • the obtained bipolar all solid state battery was put in an aluminum laminate film and sealed. Further, the laminate film was fastened by a restraining jig having a structure capable of applying a load. Thereby, a bipolar all solid state battery was obtained.
  • the occurrence rate of current collector breakage could be reduced by adopting the above-mentioned structure of the bipolar all solid state battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、バイポーラ電極の集電体の破れを防止し、短絡の発生を好適に防止することが可能なバイポーラ全固体電池、および上記バイポーラ全固体電池の製造方法を提供することを課題とする。 本発明は、集電体、並びに上記集電体の一方の表面に形成され正極活物質を含有する正極活物質層、および上記集電体の他方の表面に形成され負極活物質を含有する負極活物質層からなる電極活物質層を有するバイポーラ電極と、固体電解質を含有する固体電解質層とを有し、上記固体電解質層を介して複数の上記バイポーラ電極が積層されているバイポーラ全固体電池であって、上記電極活物質層は上記集電体の端部の内側に形成され、上記電極活物質層の端部と上記集電体表面との間には上記集電体表面上に形成された補強層が配置されていることを特徴とするバイポーラ全固体電池を提供することにより上記課題を解決する。

Description

バイポーラ全固体電池
 本発明は、バイポーラ電極の集電体の破れにより生じる短絡を好適に防止することが可能なバイポーラ全固体電池、およびその製造方法に関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。
 現在市販されているリチウム電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
 また、上述の電気自動車用のリチウム電池としては、高エネルギー密度、高出力密度が達成できる積層型のバイポーラ電池に注目が集まっている。バイポーラ電池は、集電体の一方の面に正極活物質層が形成され他方の面に負極活物質層が形成されてなるバイポーラ電極と、電解質とが交互に積層されてなるものである。
 ここで、バイポーラ電池においては、複数のバイポーラ電極を積層させた構成を有することから、集電体同士の接触や、バイポーラ電極の端部の不揃い部分における電極活物質層および集電体の接触等より短絡が発生する可能性があるという問題がある。そこで、特許文献1においては、電極活物質層が形成されていないバイポーラ電極の周辺部の集電体上に絶縁材料からなる絶縁部を設けることが開示されている。
特開2004-253155号公報
 ところで、バイポーラ電極においては、1つの集電体のそれぞれの表面に形成される正極活物質層の端部と、負極活物質層の端部との位置を精度高く合わせて形成することが困難であるという問題がある。そのため、正極活物質層の端部と負極活物質層の端部との位置ずれを有する場合は、位置ずれによる剪断力(以下、ずれ剪断力と称して説明する場合がある。)が集電体に加わり、集電体が破れて貫通孔を生じ、短絡が発生してしまうという問題がある。さらに、バイポーラ全固体電池の集電体としては、電池の体積を小さくすることを目的として、より薄膜の金属箔が好適に用いられることから、上述の集電体の破れによる短絡が発生しやすいという問題がある。なお、このようなずれ剪断力を原因とする集電体の破れによる短絡の問題については特許文献1においては言及されていない問題である。
 本発明は、上記問題点に鑑みてなされたものであり、バイポーラ電極の集電体の破れを防止し、短絡の発生を好適に防止することが可能なバイポーラ全固体電池、および上記バイポーラ全固体電池の製造方法を提供することを主目的とする。
 上記課題を解決するために、本発明においては、集電体、並びに上記集電体の一方の表面に形成され正極活物質を含有する正極活物質層、および上記集電体の他方の表面に形成され負極活物質を含有する負極活物質層からなる電極活物質層を有するバイポーラ電極と、固体電解質を含有する固体電解質層とを有し、上記固体電解質層を介して複数の上記バイポーラ電極が積層されているバイポーラ全固体電池であって、上記電極活物質層は上記集電体の端部の内側に形成され、上記電極活物質層の端部と上記集電体表面との間には上記集電体表面上に形成された補強層が配置されていることを特徴とするバイポーラ全固体電池を提供する。
 本発明によれば、電極活物質層の端部と集電体表面との間に補強層を配置することができることから、電極活物質層の端部付近の集電体を補強することが可能となる。よって、集電体に上述したずれ剪断力に対する耐久性を付与することが可能となり、集電体が破れることによる短絡の発生を好適に防止することが可能となる。よって、集電体の破れによる短絡の生じにくいバイポーラ全固体電池とすることができる。
 上記発明においては、上記補強層が絶縁体であることが好ましい。補強層が形成されている部分における短絡の発生を好適に防止することが可能となる。
 上記発明においては、上記集電体の端部が絶縁体で覆われていることが好ましい。積層方向に隣接する集電体同士の接触による短絡が生じにくいバイポーラ全固体電池とすることができる。
 また、本発明においては、上述したバイポーラ全固体電池の製造方法であって、集電体の端部の内側に位置し電極活物質層が形成される電極活物質層形成領域の端部と、上記集電体表面との間に補強層が配置されるように、上記補強層を上記集電体表面上に形成した後、上記電極活物質層形成領域に上記電極活物質層を形成することによりバイポーラ電極を形成するバイポーラ電極形成工程と、固体電解質層を形成する固体電解質層形成工程と、上記固体電解質層を介して複数の上記バイポーラ電極を積層させることによりバイポーラ全固体電池を組立てる組立工程とを有することを特徴とするバイポーラ全固体電池の製造方法を提供する。
 本発明によれば、バイポーラ電極形成工程を有することにより、電極活物質層の端部と集電体表面との間に補強層を配置することができることから、電極活物質層の端部付近の集電体を補強することが可能となり、集電体に上述したずれ剪断力に対する耐久性を付与することが可能となる。よって、集電体の破れによる短絡の生じにくいバイポーラ全固体電池を製造することが可能となる。
 本発明においては、バイポーラ全固体電池の端部付近における集電体の破れを防止し、短絡の発生を好適に防止することが可能なバイポーラ全固体電池、および上記バイポーラ全固体電池の製造方法を提供することができるという効果を奏する。
本発明のバイポーラ全固体電池の一例を示す概略断面図である。 本発明に用いられるバイポーラ電極の一例を示す概略図である。 本発明に用いられるバイポーラ電極の他の例を示す概略図である。 本発明のバイポーラ全固体電池の製造方法の一例を示す工程図である。
 以下、本発明のバイポーラ全固体電池、およびバイポーラ全固体電池の製造方法について説明する。
A.バイポーラ全固体電池
 まず、本発明のバイポーラ全固体電池について説明する。本発明のバイポーラ全固体電池は、集電体、並びに上記集電体の一方の表面に形成され正極活物質を含有する正極活物質層、および上記集電体の他方の表面に形成され負極活物質を含有する負極活物質層からなる電極活物質層を有するバイポーラ電極と、固体電解質を含有する固体電解質層とを有し、上記固体電解質層を介して複数の上記バイポーラ電極が積層されているものであって、上記電極活物質層は上記集電体の端部の内側に形成され、上記電極活物質層の端部と上記集電体表面との間には上記集電体表面上に形成された補強層が配置されていることを特徴とするものである。
 なお、「固体電解質層を介して複数のバイポーラ電極が積層されている」とは、1つのバイポーラ電極の正極活物質層と上記1つのバイポーラ電極に隣接する他のバイポーラ電極の負極活物質層との間に固体電解質層が配置されるように、複数のバイポーラ電極が積層されていることを指す。
 また、本発明において「電極活物質層の端部と集電体表面との間に補強層が配置されている」とは、正極活物質層の端部または負極活物質層の端部のうち、少なくとも一方の電極活物質層の端部と集電体表面との間に補強層が配置されていることを指す。また、この場合、少なくとも一方の集電体表面に補強層が形成されていることを指す。
 ここで、本発明のバイポーラ全固体電池について図を用いて説明する。図1は本発明のバイポーラ全固体電池の一例を示す概略断面図である。図1に示すように、本発明のバイポーラ全固体電池100は、集電体11、並びに集電体11の一方の表面に形成され正極活物質を含有する正極活物質層12、および集電体11の他方の表面に形成され負極活物質を含有する負極活物質層13からなる電極活物質層、並びに集電体11の表面に形成された補強層14を有するバイポーラ電極10と、固体電解質を含有する固体電解質層20とを有し、固体電解質層20を介して複数のバイポーラ電極10が積層されているものである。また、本発明のバイポーラ全固体電池100は、上述の構成の他に、電池ケース30や拘束治具40を有していてもよい。
 ここで、本発明に用いられるバイポーラ全固体電極についてより詳しく説明する。
 また、図2(a)は本発明のバイポーラ全固体電池に用いられるバイポーラ電極の一例を示す概略平面図であり、図2(b)は図2(a)のA-A線断面図である。なお、図2(a)は、バイポーラ電極10を負極活物質層13側からみた図であり、集電体11および正極活物質層12については省略して示している。図2(a)、(b)に示すように、本発明において、集電体11の一方の表面においては、正極活物質層12が集電体11の端部sの内側に形成され、正極活物質層12の端部pと集電体11表面との間には補強層14が配置され、補強層14が集電体11の端部sから正極活物質層12の端部pまで連続して形成されている。また、集電体11の他方の表面においては、負極活物質層13が集電体11の端部sの内側に形成され、負極活物質層13の端部qと集電体11表面との間には補強層14が配置され、補強層14が集電体11の端部sから負極活物質層13の端部qまで連続して形成されている。なお、図2(b)中のrは補強層14の電極活物質層側の端部を示している。また、図2(a)中の一点鎖線は補強層14の端部r(負極活物質層13側)を示している。
 本発明によれば、電極活物質層の端部と集電体表面との間に補強層を配置することができることから、電極活物質層の端部付近の集電体を補強することが可能となる。よって、集電体に上述したずれ剪断力に対する耐久性を付与することが可能となり、集電体が破れることによる短絡の発生を好適に防止することが可能となる。よって、集電体の破れによる短絡の生じにくいバイポーラ全固体電池とすることができる。
 また、本発明によれば、補強層は集電体の表面上に形成され、バイポーラ全固体電池の外周を完全にシールするものではないことから、固体電解質層からガスが発生した場合も、バイポーラ全固体電池の外に排出することが可能となり、電極活物質層の劣化を好適に防止することが可能となる。
 以下、本発明のバイポーラ全固体電池の各構成について説明する。
1.バイポーラ電極
 本発明に用いられるバイポーラ電極は、集電体と、正極活物質層と、負極活物質層と、補強層とを有するものである。
(1)補強層
 本発明に用いられる補強層は、集電体の表面に形成され、電極活物質層の端部と集電体表面との間に配置されるものである。
 このような補強層としては、集電体を補強することが可能であればよく、絶縁体であってもよく、導電体であってもよいが、絶縁体であることがより好ましい。補強層が絶縁体であることにより、補強層が形成されている部分における短絡の発生を好適に防止することができるからである。
 このような補強層の形成位置としては、集電体を補強することが可能であれば特に限定されず、例えば集電体の正極活物質層側表面または集電体の負極活物質層側表面のいずれか一方に形成されていてもよく、集電体の正極活物質層側表面および負極活物質層側表面の両方に形成されていてもよい。
 本発明においては、なかでも、補強層が集電体の正極活物質層側表面および負極活物質層側表面の両方に形成されていることが好ましい。上述したずれ剪断力に対する集電体の耐久性をより高いものとすることができるからである。
 また、集電体の表面における補強層の形成領域としては、電極活物質層の端部と集電体表面との間に補強層を配置することが可能な位置であれば特に限定されない。補強層の形成領域は、バイポーラ電極において発電に寄与する面積(発電面積)を考慮して形成されることから、通常は、以下に説明する領域に形成され、例えばバイポーラ電極の中央部分には形成されないものである。
 ここで、補強層の形成領域についてより詳しく説明する。上記補強層は、電極活物質層の端部と集電体表面との間に配置されるものであることから、通常、電極活物質層が形成される電極活物質層形成領域の内側に形成されているものである。電極活物質層形成領域の内側に形成されている補強層、すなわち電極活物質層および補強層の積層部分の幅としては、集電体に上述したずれ剪断力に対する耐久性を付与することが可能な程度であれば特に限定されず、本発明のバイポーラ全固体電池の用途等により適宜選択することができる。より具体的には、電極活物質層の幅に対する上記電極活物質層および補強層の積層部分の幅の比率が、0.01%~30%の範囲内、なかでも0.1%~10%の範囲内、特に1%~5%の範囲内であることが好ましい。上記比率が上記範囲に満たない場合は、電極活物質層および補強層の位置合わせに高い精度が必要となることから製造工程が煩雑となる可能性があるからである。一方、上記比率が上記範囲を超える場合は、バイポーラ電極における発電面積が小さくなり、本発明のバイポーラ全固体電池の電池特性が低下する可能性があるからである。なお電極活物質層および補強層の積層部分の幅とは、図2(a)、(b)においてL1、L1’で示される距離を指す。また、電極活物質層の幅とは、電極活物質層の1つの端辺から上記1つの端辺に対向する他の端辺までの距離を指し、図2(a)、(b)においてL2、L2’で示される距離を指す。
 本発明においては、上記補強層が、集電体の端部から電極活物質層の端部まで連続して形成されているものであることが好ましい。電極活物質層の端部の外側に位置する集電体を絶縁層で被覆することができ、集電体の露出部分が少ない、または無いものとすることができることから、積層方向に隣接する集電体同士の接触による短絡が生じにくいバイポーラ全固体電池とすることができるからである。なお、この場合は上記補強層が絶縁体である必要がある。
 なお、本発明において「補強層が集電体の端部から電極活物質層の端部まで連続して形成されている」とは、補強層が集電体の端部から正極活物質層の端部または負極活物質層の端部まで連続して形成されていることを指す。
 また、本発明において、「補強層が集電体の端部から連続して形成されている」とは、図3(a)に示すように、集電体11の端部sと補強層14の端部r’(集電体の端部側)とが一致するように、補強層14が集電体11の表面上に連続して形成されている場合だけではなく、図3(b)に示すように、本発明のバイポーラ全固体電池において積層方向に隣接する集電体同士の接触による短絡を防止することが可能となる程度に、集電体の端部11の端部sよりも内側に補強層14の端部r’が位置するように、補強層14が集電体11の表面上に連続して形成されている場合や、図2(b)に示すように、補強層14が集電体11の端部sおよび端面を覆うように連続して形成されている場合を含む概念である。本発明においては、なかでも、補強層14が集電体11の端部sおよび端面を覆うように連続して形成されていることが好ましい。上述した隣接する集電体同士の接触による短絡をより好適に防止することが可能となるからである。なお、図3(a)、(b)は本発明に用いられるバイポーラ電極の他の例を示す概略断面図であり、説明していない符号については、図2(b)と同様とすることができるので、ここでの説明は省略する。
 また上述したように、本発明においては補強層が電極活物質層の端部の内側にも形成される場合があることから、「補強層が電極活物質層の端部まで連続して形成されている」とは、補強層が電極活物質層の端部およびその内側まで連続して形成されている場合を含む概念である。
 また、上記補強層が集電体の端部から電極活物質層の端部まで連続して形成されている場合であって、集電体の正極活物質層側表面または集電体の負極活物質層側表面のいずれか一方に形成される場合は、本発明のバイポーラ全固体電池において、積層方向に隣接する2つバイポーラ電極において、対向するそれぞれのバイポーラ電極の集電体表面のうち、いずれか一方に補強層が形成されることが好ましい。積層方向に隣接する集電体同士の接触による短絡をより好適に防止することが可能となるからである。
 このような補強層の厚みとしては、集電体に上述したずれ剪断力に対する耐久性を付与することが可能であり、かつ、バイポーラ全固体電池の積層方向に隣接する集電体同士の接触による短絡を防止することが可能となる程度であれば特に限定されず、1μm~100μmの範囲内、なかでも5μm~50μmの範囲内、特に10μm~30μmの範囲内であることが好ましい。補強層の厚みが上記範囲に満たない場合は、集電体に上述したずれ剪断力に対する耐久性を十分に付与することができず、集電体に破れを生じる可能性があるからである。一方、補強層の厚みが上記範囲を超える場合は、補強層の厚みによる段差により、電極活物質層の表面を平坦なものとすることが困難となる場合があるからである。
 補強層の材料としては、集電体に所望の耐久性を付与することが可能であれば特に限定されない。上述したように、本発明においては補強層が絶縁体であることが好ましいことから、補強層の材料としては絶縁性材料であることが好ましい。
 上記絶縁性材料としては、所望の絶縁性を有するものであれば特に限定されず、一般的なバイポーラ電池に用いられる補強層の材料と同様とすることが可能であるが、なかでも、樹脂材料であることが好ましい。樹脂材料は上述の剪断力に対する耐久性が高く、伸びるといった性質を有することから、例えば補強層が形成されている領域において集電体に破れが生じた場合であっても、補強層が伸びることにより集電体に貫通孔が生じて短絡が発生することを好適に防止することが可能となる。
 上記補強層に用いられる樹脂材料としては、例えばポリエステル、ポリプロピレン、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリカーボネート等を挙げることができる。
 上記補強層は、集電体側の表面に粘着層を有していてもよい。補強層および集電体の密着性を向上させることが可能となるからである。なお、粘着層に用いられる材料については、一般的な粘着剤とすることができるので、ここでの説明は省略する。また、粘着剤の厚みについては、補強層および粘着層を積層させた層厚みが上述した補強層の厚みとなる程度であることが好ましい。
 上記補強層の形成方法としては、集電体の表面の所望の領域に所望の厚みを有する補強層を形成することが可能な方法であれば特に限定されず、例えば、上述した樹脂材料を塗布することにより形成する方法、上述した樹脂材料を用いたフィルムを粘着層を用いて集電体の表面に貼り合わせる方法等を挙げることができる。
(2)電極活物質層
 本発明における電極活物質層は、上記集電体の一方の表面に形成され正極活物質を含有する正極活物質層と、上記集電体の他方の表面に形成され負極活物質を含有する負極活物質層とからなるものである。
(i)正極活物質層
 本発明に用いられる正極活物質層は、集電体の一方の表面に形成されるものであり、かつ正極活物質を含有するものである。
 上記正極活物質層を形成する正極活物質層形成領域としては、集電体の端部の内側であり、バイポーラ電極が所望の発電面積を有し、かつ正極活物質層の端部の内側に補強層を形成することが可能となる領域であれば特に限定されない。正極活物質層形成領域については、本発明のバイポーラ全固体電池の用途等に応じて適宜選択される。
 上記正極活物質層は、少なくとも正極活物質を含有する層であり、必要に応じて、導電化材、固体電解質材料および結着材の少なくとも一つを含有していても良い。正極活物質としては、例えばバイポーラ全固体リチウム電池である場合は、LiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等を挙げることができる。
 本発明における正極活物質層は、さらに導電化材を含有していても良い。導電化材の添加により、正極活物質層の導電性を向上させることができる。導電化材としては、例えばアセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、正極活物質層は、さらに固体電解質材料を含有していても良い。固体電解質材料の添加により、正極活物質層のイオン伝導性を向上させることができる。固体電解質材料としては、後述する固体電解質層の項で説明する材料と同様とすることができる。また、正極活物質層は、さらに結着材を含有していても良い。結着材としては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素含有結着材等を挙げることができる。正極活物質層の厚みは、例えば0.1μm~1000μmの範囲内であることが好ましい。
 正極活物質層の形成方法としては、集電体の表面の所望の領域に所望の厚みを有する正極活物質層を形成することが可能な方法であれば特に限定されず、例えば、正極活物質層の材料を加圧プレスすることにより形成する方法や、正極活物質層の材料および溶剤を含むスラリーを調製し、上記スラリーを集電体の表面に塗布することにより形成する方法を挙げることができる。
(ii)負極活物質層
 本発明に用いられる負極活物質層は、集電体の正極活物質層側とは反対側の表面に形成されるものであり、かつ負極活物質を含有するものである。
 上記負極活物質層を形成する負極活物質層形成領域としては、集電体の端部の内側であり、バイポーラ電極が所望の発電面積を有し、かつ負極活物質層の端部より内側に補強層を形成することが可能となる領域であれば特に限定されない。負極活物質層形成領域については、本発明のバイポーラ全固体電池の用途等に応じて適宜選択される。
 次に、本発明における負極活物質層について説明する。本発明における負極活物質層は、少なくとも負極活物質を含有する層であり、必要に応じて、導電化材、固体電解質材料および結着材の少なくとも一つを含有していても良い。負極活物質としては、例えば金属活物質およびカーボン活物質を挙げることができる。金属活物質としては、例えばIn、Al、SiおよびSn等を挙げることができる。一方、カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。
 なお、負極活物質層に用いられる、導電化材、固体電解質材料および結着材については、上述した正極活物質層における場合と同様である。また、負極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
 負極活物質層の形成方法については、上述した正極活物質層の形成方法と同様とすることができるので、ここでの説明は省略する。
(3)集電体
 本発明における集電体について説明する。本発明における集電体の材料としては、導電性を有し、正極活物質層、負極活物質層、および補強層を集電体表面上に形成することが可能なものであれば特に限定されず、たとえば、ステンレス、アルミニウム、銅等を挙げることができる。
また、上記集電体の厚みについては、本発明のバイポーラ全固体電池の用途等に応じて適宜選択することが可能であるが、通常、1μm~100μmの範囲内であることが好ましく、なかでも5μm~30μmの範囲内、特に10μm~20μmの範囲内であることが好ましい。また、上述した範囲内においては、集電体の厚みはより薄いことが好ましい。集電体の破れによる短絡の発生を防止する効果をより大きく発揮することができるからである。また、集電体の形状については本発明のバイポーラ全固体電池の用途等に応じて適宜選択することが可能である。
(4)バイポーラ電極
 本発明に用いられるバイポーラ電極において、バイポーラ全固体電池の最外層に位置するバイポーラ電極の外側の面(図1中のT面)においては、通常、電極活物質層および補強層は形成されないものである。
 また、本発明に用いられるバイポーラ電極は、集電体の端部が絶縁体で覆われていることが好ましい。バイポーラ全固体電池において積層方向に隣接する集電体同士の接触による短絡を好適に防止することが可能となる。また、この場合、上記絶縁体としては補強層と別体で形成された絶縁性材料の被膜であってもよく、集電体の端部から電極活物質層の端部まで連続して形成された補強層であってもよいが、補強層であることがより好ましい。上述した絶縁性材料の被膜を別途形成する場合に比べて、製造工程を簡略化することが可能となるからである。
2.固体電解質層
 本発明に用いられる固体電解質層は、固体電解質を有するものである。
 また、上記固体電解質層は、バイポーラ全固体電池において、1つのバイポーラ電極の正極活物質層と、上記1つのバイポーラ電極に隣接する他のバイポーラ電極の負極活物質層との間に配置されるものである。このような固体電解質層の形成領域としては、上記正極活物質層よび負極活物質層の間に配置可能な位置であれば特に限定されないが、なかでも、図1に示すように、固体電解質層20が電極活物質層(図1では負極活物質層13)の表面および端面を覆うように形成されていることが好ましい。バイポーラ全固体電池の短絡をより好適に防止することが可能となるからである。
 固体電解質層を構成する固体電解質材料としては、イオン伝導性を有するものであれば特に限定されるものではないが、例えば、本発明のバイポーラ全固体電池が、バイポーラ全固体リチウム電池である場合は、LiO-B-P、LiO-SiO、LiO-B、LiO-B-ZnO等の酸化物非晶質固体電解質材料、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-B、LiPO-LiS-SiS、LiPO-LiS-SiS、LiPO-LiS-SiS、LiI-LiS-P、LiI-LiPO-P、LiS-P等の硫化物非晶質固体電解質材料、LiI、LiI-Al、LiN、LiN-LiI-LiOH、Li1+xAlTi2-x(PO(0≦x≦2)、Li1+x+yTi2-xSi3-y12(A=AlまたはGa、0≦x≦0.4、0<y≦0.6)、[(A1/2Li1/21-x]TiO(A=La、Pr、Nd、Sm、B=SrまたはBa、0≦x≦0.5)、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4-3/2x)(x<1)、Li3.6Si0.60.4等の結晶質酸化物・酸窒化物等を挙げることができる。
 また、固体電解質層は、上述の固体電解質材料の他に、結着材を含有していてもよい。なお、結着材については、上述した正極活物質層に用いられるものと同様とすることができるので、ここでの説明は省略する。
 固体電解質層の厚さは、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。
 固体電解質層の形成方法としては、特に限定されず、例えば、固体電解質層の材料を加圧プレスすることにより形成する方法や、固体電解質層の材料および溶剤を含有するスラリーを調製し、上記スラリーを電極活物質層が形成された集電体上に塗布することにより形成する方法を挙げることができる。なかでも、スラリーを塗布する方法であることが好ましい。電極活物質層を覆うようにして固体電解質層を形成することが容易となるからである。
3.その他の構成
 本発明のバイポーラ全固体電池は、上述したバイポーラ電極と、固体電解質層とを少なくとも有するものである。さらに通常は、電池ケースが用いられる。本発明に用いられる電池ケースとしては、一般的なバイポーラ全固体電池の電池ケースを用いることができ、例えばSUS製電池ケース等を挙げることができる。
4.バイポーラ全固体電池
 本発明のバイポーラ全固体電池は、上述した固体電解質層を介して、複数のバイポーラ電極を積層させたものである。上記バイポーラ電極の積層数については、本発明のバイポーラ全固体電池の用途等に応じて適宜選択される。
 本発明のバイポーラ全固体電池の種類(全固体電池の種類)としては、全固体リチウム電池、全固体ナトリウム電池、全固体マグネシウム電池および全固体カルシウム電池等を挙げることができ、中でも、全固体リチウム電池および全固体ナトリウム電池が好ましく、特に、全固体リチウム電池が好ましい。また、本発明の全固体電池は、一次電池であっても良く、二次電池であっても良いが、中でも、二次電池であることが好ましい。繰り返し充放電でき、例えば、車載用電池として有用だからである。本発明の全固体電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。
 また、本発明のバイポーラ全固体電池の製造方法は、特に限定されず、たとえば後述する「B.バイポーラ全固体電池の製造方法」の項で説明する方法を用いることができる。
B.バイポーラ全固体電池の製造方法
 次に、本発明のバイポーラ全固体電池の製造方法について説明する。
 本発明のバイポーラ全固体電池の製造方法は、上述した「A.バイポーラ全固体電池」の項で説明したバイポーラ全固体電池の製造方法であって、集電体の端部の内側に位置し電極活物質層が形成される電極活物質層形成領域の端部と、上記集電体表面との間に補強層が配置されるように、上記補強層を上記集電体表面上に形成した後、上記電極活物質層形成領域に上記電極活物質層を形成することによりバイポーラ電極を形成するバイポーラ電極形成工程と、固体電解質層を形成する固体電解質層形成工程と、上記固体電解質層を介して複数の上記バイポーラ電極を積層させることによりバイポーラ全固体電池を組立てる組立工程とを有することを特徴とする製造方法である。
 ここで、本発明のバイポーラ全固体電池の製造方法について図を用いて説明する。図4(a)~(d)は、本発明のバイポーラ全固体電池の製造方法の一例を示す工程図である。本発明のバイポーラ全固体電池の製造方法において、まず、バイポーラ電極形成工程においては、図4(a)に示すように、集電体11の一方の表面において、集電体11の端部の内側に位置し正極活物質層が形成される正極活物質層形成領域X12の端部と集電体11表面との間に補強層14が配置されるように、集電体11の端部から正極活物質層形成領域X12の端部まで補強層14を集電体11表面上に連続して形成する。また集電体11の他方の表面においても同様に、負極活物質層が形成される負極活物質層形成領域X13の端部と集電体11表面との間に補強層14が配置されるように、集電体11の端部から負極活物質層形成領域X13の端部まで補強層14を集電体11表面上に連続して形成する。次に、図4(b)に示すように、正極活物質層形成領域X12、および負極活物質層X13に正極活物質層12、および負極活物質層13を形成することによりバイポーラ電極10を形成する。次に固体電解質層形成工程においては、図4(c)に示すように、固体電解質層20を負極活物質層13を覆うように形成する。次に組立工程においては、固体電解質層20を介して複数のバイポーラ電極10を積層させることによりバイポーラ全固体電池100を組立てる。図示はしないが、組立てたバイポーラ全固体電池を電池ケースに封入し、拘束治具を配置することにより、図1に示すバイポーラ全固体電池を得ることができる。
 本発明によれば、バイポーラ電極形成工程を有することにより、電極活物質層の端部と集電体表面との間に補強層を配置することができることから、電極活物質層の端部付近の集電体を補強することが可能となり、集電体に上述したずれ剪断力に対する耐久性を付与することが可能となる。よって、集電体の破れによる短絡の生じにくいバイポーラ全固体電池を製造することが可能となる。
 以下、本発明のバイポーラ全固体電池の製造方法について説明する。
1.バイポーラ電極形成工程
 本発明におけるバイポーラ電極形成工程は、集電体の端部の内側に位置し電極活物質層が形成される電極活物質層形成領域の端部と、上記集電体表面との間に補強層が配置されるように、補強層を上記集電体表面上に形成した後、上記電極活物質層形成領域に上記電極活物質層を形成することによりバイポーラ電極を形成する工程である。
 本工程により形成されるバイポーラ電極が両方の表面に補強層を有する場合は、本工程としては、集電体表面に補強層を形成した後、集電体のそれぞれの表面に正極活物質層または負極活物質層を形成する工程であってもよく、集電体の一方の表面に補強層を形成した後、補強層が形成された集電体の表面に正極活物質層または負極活物質層のいずれか一方を形成し、さらに集電体の他方の表面に補強層を形成した後、正極活物質層または負極活物質層の形成されていない方を形成する工程であってもよい。
 また、本工程においては、補強層を集電体の端部から電極活物質層の端部まで連続して形成することが好ましい。電極活物質層の端部の外側に位置する集電体を補強層で被覆することができ、集電体の露出部分が少ない、または無いものとすることができるため、積層方向に隣接する集電体同士の接触による短絡が生じにくいバイポーラ全固体電池を製造することが可能となるからである。
 なお、本工程における補強層の形成位置、補強層の形成領域、形成される補強層およびその形成方法、電極活物質層およびその形成方法、並びに、バイポーラ電極については、上述した「A.バイポーラ全固体電池」の項で説明した内容と同様とすることができるので、ここでの説明は省略する。
2.固体電解質層形成工程
 本発明における固体電解質層形成工程は、固体電解質層を形成する工程である。なお、本工程により形成される固体電解質層およびその形成方法については上述した「A.バイポーラ全固体電池」の項で説明した内容と同様とすることができるので、ここでの説明は省略する。
3.組立工程
 本発明における組立工程は、上記固体電解質層を介して複数の上記バイポーラ電極を積層させることによりバイポーラ全固体電池を組立てる組立工程である。本工程に用いられるバイポーラ全固体電池の組立方法については、上記固体電解質層を介して上記複数のバイポーラ電極を積層させることが可能な方法であれば特に限定されず、公知の方法とすることができる。また、本工程により得られるバイポーラ全固体電池については、上述した「A.バイポーラ全固体電池」の項で説明した内容と同様とすることができるので、ここでの説明は省略する。
4.その他の工程
 本発明のバイポーラ全固体電池の製造方法は、上述した各工程以外にも必要な工程を適宜選択して行うことができる。このような工程としては、例えば、バイポーラ全固体電池を電池ケースに封入する工程や、拘束治具を配置する工程等を挙げることができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して、本発明をさらに具体的に説明する。
 集電体として厚み10μmのSUS304箔を準備し、補強層として厚み12μmのPENフィルムをSUS304箔の外周に熱圧着させた。なお、補強層は集電体の両方の表面に熱圧着させた。
 次に、LiNi1/3Co1/3Mn1/3(正極活物質)と、75LiS-25P(固体電解質)と、ブチレンラバー(JSR社製)(結着材)と、ヘプタン(溶剤)とを正極活物質:固体電解質:結着材:ヘプタン=47:16:1:36の質量比で混合し、混練することにより、スラリー状にし、補強層が正極活物質層の端部よりも内側に形成されるように、集電体上に塗布して乾燥させることにより、厚み60μmの正極活物質層を得た。
 天然黒鉛(負極活物質)、75LiS-25P(固体電解質)と、ブチレンラバー(JSR社製)(結着材)と、ヘプタン(溶剤)とを負極活物質:固体電解質:結着材:ヘプタン=40:30:0.2:29.8の質量比で混合し、混練することにより、スラリー状にし、補強層が正極活物質層の端部よりも内側に形成されるように、正極活物質層が形成されている側とは反対側の集電体上に塗布して乾燥させることにより、厚み80μmの負極活物質層を得た。
 75LiS-25P(固体電解質)と、ブチレンラバー(JSR社製)(結着材)と、ヘプタン(溶剤)とを固体電解質:結着材:ヘプタン=34.5:0.5:65の質量比で混合し、混練することにより、スラリー状にし、集電体の負極活物質層を完全に覆うように塗布し、乾燥させることにより、厚み20μmの固体電解質層を得た。
 上述のようにして、バイポーラ電極を4枚作製し、1つのバイポーラ電極の正極活物質層および上記1つのバイポーラ電極に隣接するバイポーラ電極の負極層の間に固体電解質層が配置されるように、バイポーラ電極を積層させた。なお、最外層に配置されるバイポーラ電極の外側の面は、補強層、電極活物質層、および固体電解質層は形成されていないものである。
 得られたバイポーラ全固体電池をアルミラミネートフィルムに入れ、密封した。また、上記ラミネートフィルムに荷重をかけることが可能な構造を有する拘束治具により、締結させた。これにより、バイポーラ全固体電池を得た。
[評価]
 締結したバイポーラ全固体電池を、電圧4.2V~2Vの範囲において電流密度4.8mA/cmで繰り返し充放電を実施した。
 バイポーラ全固体電池の上述の構造とすることにより、集電体の破れの発生率を低減することができた。
 10 … バイポーラ電極
 11 … 集電体
 12 … 正極活物質層
 13 … 負極活物質層
 14 … 補強層
 20 … 固体電解質層
 100 … バイポーラ全固体電池
 p … 正極活物質層の端部
 q … 負極活物質層の端部
 r、r’ … 補強層の端部
 s … 集電体の端部
 X12 … 正極活物質層形成領域
 X13 … 負極活物質層形成領域

Claims (4)

  1.  集電体、並びに前記集電体の一方の表面に形成され正極活物質を含有する正極活物質層、および前記集電体の他方の表面に形成され負極活物質を含有する負極活物質層からなる電極活物質層を有するバイポーラ電極と、
     固体電解質を含有する固体電解質層とを有し、
     前記固体電解質層を介して複数の前記バイポーラ電極が積層されているバイポーラ全固体電池であって、
     前記電極活物質層は前記集電体の端部の内側に形成され、
     前記電極活物質層の端部と前記集電体表面との間には前記集電体表面上に形成された補強層が配置されていることを特徴とするバイポーラ全固体電池。
  2.  前記補強層が絶縁体であることを特徴とする請求の範囲第1項に記載のバイポーラ全固体電池。
  3.  前記集電体の端部が絶縁体で覆われていることを特徴とする請求の範囲第1項または請求の範囲第2項に記載のバイポーラ全固体電池。
  4.  請求項1に記載のバイポーラ全固体電池の製造方法であって、
     集電体の端部の内側に位置し電極活物質層が形成される電極活物質層形成領域の端部と、前記集電体表面との間に補強層が配置されるように、前記補強層を前記集電体表面上に形成した後、前記電極活物質層形成領域に前記電極活物質層を形成することによりバイポーラ電極を形成するバイポーラ電極形成工程と、
     固体電解質層を形成する固体電解質層形成工程と、
     前記固体電解質層を介して複数の前記バイポーラ電極を積層させることによりバイポーラ全固体電池を組立てる組立工程と
    を有することを特徴とするバイポーラ全固体電池の製造方法。
PCT/JP2011/062205 2011-05-27 2011-05-27 バイポーラ全固体電池 WO2012164642A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/114,838 US9373869B2 (en) 2011-05-27 2011-05-27 Bipolar all-solid-state battery
KR1020137030338A KR101577881B1 (ko) 2011-05-27 2011-05-27 바이폴라 전고체 전지
CN201180070981.1A CN103548196B (zh) 2011-05-27 2011-05-27 双极全固体电池
PCT/JP2011/062205 WO2012164642A1 (ja) 2011-05-27 2011-05-27 バイポーラ全固体電池
DE112011105286.3T DE112011105286B4 (de) 2011-05-27 2011-05-27 Bipolare Festkörperbatterie
JP2013517709A JP5720779B2 (ja) 2011-05-27 2011-05-27 バイポーラ全固体電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062205 WO2012164642A1 (ja) 2011-05-27 2011-05-27 バイポーラ全固体電池

Publications (1)

Publication Number Publication Date
WO2012164642A1 true WO2012164642A1 (ja) 2012-12-06

Family

ID=47258531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062205 WO2012164642A1 (ja) 2011-05-27 2011-05-27 バイポーラ全固体電池

Country Status (6)

Country Link
US (1) US9373869B2 (ja)
JP (1) JP5720779B2 (ja)
KR (1) KR101577881B1 (ja)
CN (1) CN103548196B (ja)
DE (1) DE112011105286B4 (ja)
WO (1) WO2012164642A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014210296A1 (en) * 2013-06-28 2014-12-31 Google Inc. Substrate for solid-state battery
JP2015026530A (ja) * 2013-07-26 2015-02-05 トヨタ自動車株式会社 電極体の製造方法
WO2015080305A1 (ko) * 2013-11-27 2015-06-04 주식회사 엘지화학 전극조립체 및 이를 포함하는 전기화학소자
US9748582B2 (en) 2014-03-31 2017-08-29 X Development Llc Forming an interconnection for solid-state batteries
JP2017183120A (ja) * 2016-03-31 2017-10-05 日立造船株式会社 全固体二次電池およびその製造方法
US9825301B2 (en) 2013-09-30 2017-11-21 Lg Chem, Ltd. Electrode with improvement of biased movement and secondary battery comprising the same
JP2018055871A (ja) * 2016-09-27 2018-04-05 株式会社日立製作所 二次電池
JP2018152197A (ja) * 2017-03-10 2018-09-27 東京電力ホールディングス株式会社 固体電解質及び固体電池
WO2018179079A1 (ja) * 2017-03-28 2018-10-04 日立化成株式会社 二次電池
WO2018203474A1 (ja) * 2017-05-01 2018-11-08 株式会社村田製作所 固体電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2019003934A (ja) * 2017-06-15 2019-01-10 パナソニックIpマネジメント株式会社 電池、および、電池製造方法
US10218030B2 (en) 2016-09-21 2019-02-26 Kabushiki Kaisha Toshiba Electrode structure, secondary battery, battery pack and vehicle
JP2019510352A (ja) * 2016-03-28 2019-04-11 ビーエーエスエフ コーポレーション 充電式電池用のシリコンに基づく固体電解質
WO2019078093A1 (ja) * 2017-10-20 2019-04-25 富士フイルム株式会社 電極積層体、全固体積層型二次電池及びその製造方法
WO2019078001A1 (ja) * 2017-10-17 2019-04-25 日本電気硝子株式会社 バイポーラ型全固体ナトリウムイオン二次電池
JP2019096476A (ja) * 2017-11-22 2019-06-20 トヨタ自動車株式会社 直列積層型全固体電池
US10340511B2 (en) 2016-09-20 2019-07-02 Kabushiki Kaisha Toshiba Electrode, nonaqueous electrolyte battery, battery pack and vehicle
JP2019145285A (ja) * 2018-02-19 2019-08-29 トヨタ自動車株式会社 全固体電池
JP2020087710A (ja) * 2018-11-26 2020-06-04 株式会社Soken 全固体電池
JP2021026885A (ja) * 2019-08-05 2021-02-22 トヨタ自動車株式会社 非水電解質二次電池
WO2021131094A1 (ja) 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 電池
WO2021131095A1 (ja) 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 電池の製造方法
JPWO2020017467A1 (ja) * 2018-07-18 2021-08-02 本田技研工業株式会社 固体電池用正極、固体電池用正極の製造方法、および固体電池
JP2021525444A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP2021525443A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh セル縁部封止体を有するバイポーラセルを含むバッテリ
JP2021525442A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 固体ポリマー周縁部絶縁体を有するバイポーラセルを含むバッテリ
JP2021526294A (ja) * 2018-05-30 2021-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 支持枠により支持された縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP2021526295A (ja) * 2018-05-30 2021-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 位置決め表面特徴部を備える基板を有するバイポーラセルを含むバッテリ
WO2021210446A1 (ja) * 2020-04-17 2021-10-21 パナソニックIpマネジメント株式会社 電池
WO2021256398A1 (ja) * 2020-06-15 2021-12-23 株式会社村田製作所 固体電池
WO2022145120A1 (ja) 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 電池、積層電池及びその製造方法
JP2022145585A (ja) * 2021-03-18 2022-10-04 輝能科技股▲分▼有限公司 電極組立体及びその電池装置
JP2022543417A (ja) * 2020-06-25 2022-10-12 エルジー エナジー ソリューション リミテッド バインダー層が形成された電極及びその製造方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2754194B1 (en) 2011-09-07 2018-12-12 24M Technologies, Inc. Semi-solid electrode cell having a porous current collector and methods of manufacture
US9401501B2 (en) 2012-05-18 2016-07-26 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US9640834B2 (en) 2014-07-28 2017-05-02 Electronics And Telecommunications Research Institute Lithium battery and method of manufacturing the same
US10637038B2 (en) 2014-11-05 2020-04-28 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
KR101664629B1 (ko) * 2014-12-31 2016-10-11 현대자동차주식회사 바이폴라 전고체 전지의 제조방법
KR102606052B1 (ko) 2015-06-18 2023-11-27 24엠 테크놀로지즈, 인크. 단일 파우치 배터리 셀들 및 제조 방법들
KR102124712B1 (ko) * 2015-07-07 2020-06-18 애플 인크. 바이폴라 배터리 설계
JP6288057B2 (ja) * 2015-12-02 2018-03-07 トヨタ自動車株式会社 積層型全固体電池
KR101836581B1 (ko) * 2015-12-10 2018-03-08 현대자동차주식회사 전고체 전지 및 이의 제조방법
US20170263981A1 (en) * 2016-03-11 2017-09-14 Hitachi Metals, Ltd. Bipolar laminated all-solid-state lithium-ion rechargeable battery and method for manufacturing same
JP6615660B2 (ja) * 2016-03-17 2019-12-04 株式会社東芝 非水電解質電池、電池パック及び車両
CN107305939B (zh) * 2016-04-25 2021-12-03 松下知识产权经营株式会社 电池
JP6534975B2 (ja) * 2016-08-16 2019-06-26 トヨタ自動車株式会社 バイポーラ電池
WO2018057566A1 (en) 2016-09-22 2018-03-29 Cougeller Research Llc Current collector for a stacked battery design
KR101905984B1 (ko) * 2016-10-17 2018-10-08 현대자동차주식회사 바이폴라 전고체 전지 및 그 제조방법
JP6705358B2 (ja) * 2016-10-17 2020-06-03 株式会社豊田自動織機 蓄電装置の製造方法
WO2018195372A1 (en) 2017-04-21 2018-10-25 Cougeller Research Llc Battery cell with electrolyte diffusion material
US10686213B2 (en) * 2017-05-18 2020-06-16 Panasonic Intellectual Property Management Co., Ltd. Battery
US11888112B2 (en) 2017-05-19 2024-01-30 Apple Inc. Rechargeable battery with anion conducting polymer
CN108933226B (zh) * 2017-05-23 2020-06-16 辉能科技股份有限公司 可挠曲式电池结构
US11018343B1 (en) 2017-06-01 2021-05-25 Apple Inc. Current collector surface treatment
US10923728B1 (en) 2017-06-16 2021-02-16 Apple Inc. Current collector structures for rechargeable battery
US10916741B1 (en) 2017-08-08 2021-02-09 Apple Inc. Metallized current collector devices and materials
US11189834B1 (en) 2017-08-09 2021-11-30 Apple Inc. Multiple electrolyte battery cells
US11862801B1 (en) 2017-09-14 2024-01-02 Apple Inc. Metallized current collector for stacked battery
US11335977B1 (en) 2017-09-21 2022-05-17 Apple Inc. Inter-cell connection materials
US11043703B1 (en) 2017-09-28 2021-06-22 Apple Inc. Stacked battery components and configurations
CN109659595A (zh) * 2017-10-11 2019-04-19 北京卫蓝新能源科技有限公司 一种全固态锂离子电池
KR102529492B1 (ko) * 2017-11-17 2023-05-04 현대자동차주식회사 전고체 전지의 제조 방법 및 이에 의해 제조된 전고체 전지
CN111033852B (zh) * 2017-12-21 2023-04-18 株式会社Lg新能源 包括双极电极的柔性二次电池
WO2019136467A1 (en) 2018-01-08 2019-07-11 24M Technologies, Inc. Electrochemical cells including selectively permeable membranes, systems and methods of manufacturing the same
EP3738162A4 (en) * 2018-01-09 2022-01-05 The Regents of the University of Michigan CURRENT COLLECTOR COATED WITH A SOLID ELECTROLYTE CONDUCTING LITHIUM ION
US10916796B1 (en) 2018-02-02 2021-02-09 Apple Inc. Selective charging matrix for rechargeable batteries
JP7172127B2 (ja) 2018-05-14 2022-11-16 トヨタ自動車株式会社 全固体電池及びその製造方法
DE102018221341A1 (de) 2018-12-10 2020-06-10 Robert Bosch Gmbh Elektrodenstapel für eine galvanische Zelle
DE102018221343A1 (de) 2018-12-10 2020-06-10 Robert Bosch Gmbh Elektrodenstapel für eine galvanische Zelle
DE102018221345A1 (de) 2018-12-10 2020-06-10 Robert Bosch Gmbh Elektrodenstapel für eine galvanische Zelle
JP7247595B2 (ja) * 2019-01-18 2023-03-29 トヨタ自動車株式会社 全固体電池
JP7220617B2 (ja) * 2019-04-24 2023-02-10 本田技研工業株式会社 全固体電池および全固体電池の製造方法
PL3907808T3 (pl) 2019-06-14 2023-11-13 Lg Energy Solution, Ltd. Bipolarna litowa bateria akumulatorowa
KR102239783B1 (ko) 2019-08-05 2021-04-13 (주)티디엘 멀티스택 모노폴라 전고체 전지
US11715845B2 (en) * 2019-09-02 2023-08-01 Samsung Electronics Co., Ltd. All solid battery
JP7209191B2 (ja) * 2019-10-02 2023-01-20 トヨタ自動車株式会社 積層電池
JP7276689B2 (ja) 2019-10-02 2023-05-18 トヨタ自動車株式会社 積層電池およびその製造方法
KR20210088257A (ko) * 2020-01-06 2021-07-14 주식회사 엘지에너지솔루션 테이핑 영역을 포함하는 전극 집전체용 금속 박막 및 이를 이용한 전극 제조방법
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same
JP2021136112A (ja) * 2020-02-26 2021-09-13 Fdk株式会社 固体電池の製造方法及び固体電池
KR20220000067A (ko) * 2020-06-25 2022-01-03 주식회사 엘지에너지솔루션 저항층이 형성된 전극의 제조방법
US20230344083A1 (en) * 2020-09-07 2023-10-26 Samsung Sdi Co., Ltd. All-solid-state rechargeable battery, stacked rechargeable all-solid-state battery, and manufacturing method thereof
US11677120B2 (en) 2020-09-08 2023-06-13 Apple Inc. Battery configurations having through-pack fasteners
US11923494B2 (en) 2020-09-08 2024-03-05 Apple Inc. Battery configurations having through-pack fasteners
US11588155B1 (en) 2020-09-08 2023-02-21 Apple Inc. Battery configurations for cell balancing
US11600891B1 (en) 2020-09-08 2023-03-07 Apple Inc. Battery configurations having balanced current collectors
CN112086621B (zh) * 2020-09-29 2021-07-06 珠海冠宇电池股份有限公司 一种负极片及包括该负极片的叠片式锂离子电池
JP7484683B2 (ja) * 2020-12-03 2024-05-16 トヨタ自動車株式会社 全固体電池
WO2022212404A1 (en) * 2021-03-30 2022-10-06 24M Technologies, Inc. Electrochemical cells with reinforced current collectors, and methods of producing the same
JP2022180935A (ja) * 2021-05-25 2022-12-07 本田技研工業株式会社 固体電池及び固体電池の製造方法
CN115149086A (zh) * 2021-06-15 2022-10-04 宁德新能源科技有限公司 电化学装置和电子装置
WO2023191576A1 (ko) * 2022-03-31 2023-10-05 삼성에스디아이 주식회사 전고체 이차전지, 적층 전고체 이차전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353377A (ja) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd ポリマー電池、ポリマー電池の製造方法、組電池、および、これらを搭載した車両
JP2010003692A (ja) * 2008-06-20 2010-01-07 Samsung Sdi Co Ltd 電極組立体とこれを利用した二次電池及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582937A (en) * 1994-10-12 1996-12-10 Bipolar Technologies, Inc. Bipolar battery cells, batteries and methods
CN1123473A (zh) 1994-11-19 1996-05-29 风帆蓄电池厂 单元组合式双极密封电池
JP4594590B2 (ja) * 2002-12-27 2010-12-08 パナソニック株式会社 電気化学素子
JP4100188B2 (ja) 2003-02-18 2008-06-11 日産自動車株式会社 バイポーラ電池
KR20070085876A (ko) * 2004-12-10 2007-08-27 닛산 지도우샤 가부시키가이샤 바이폴라 전지
JP5266618B2 (ja) 2006-03-20 2013-08-21 日産自動車株式会社 バイポーラ電池
JP5157354B2 (ja) * 2006-11-30 2013-03-06 日産自動車株式会社 バイポーラ電池およびその製造方法
JP5552731B2 (ja) * 2007-10-25 2014-07-16 日産自動車株式会社 双極型電池の製造方法、および双極型電池
JP2010250978A (ja) 2009-04-10 2010-11-04 Nissan Motor Co Ltd 電池用電極の製造方法、電池用電極、双極型電池、組電池、および車両
JP2011018481A (ja) * 2009-07-07 2011-01-27 Nissan Motor Co Ltd 双極型二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353377A (ja) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd ポリマー電池、ポリマー電池の製造方法、組電池、および、これらを搭載した車両
JP2010003692A (ja) * 2008-06-20 2010-01-07 Samsung Sdi Co Ltd 電極組立体とこれを利用した二次電池及びその製造方法

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318774B2 (en) 2013-06-28 2016-04-19 Google Inc. Substrate for solid-state battery
WO2014210296A1 (en) * 2013-06-28 2014-12-31 Google Inc. Substrate for solid-state battery
US10084207B2 (en) 2013-06-28 2018-09-25 Google Llc Substrate for solid-state battery
JP2015026530A (ja) * 2013-07-26 2015-02-05 トヨタ自動車株式会社 電極体の製造方法
US9825301B2 (en) 2013-09-30 2017-11-21 Lg Chem, Ltd. Electrode with improvement of biased movement and secondary battery comprising the same
WO2015080305A1 (ko) * 2013-11-27 2015-06-04 주식회사 엘지화학 전극조립체 및 이를 포함하는 전기화학소자
CN104904053A (zh) * 2013-11-27 2015-09-09 株式会社Lg化学 电极组件和包含其的电化学装置
US9350006B2 (en) 2013-11-27 2016-05-24 Lg Chem, Ltd. Electrode assembly and electrochemical device including the same
US9748582B2 (en) 2014-03-31 2017-08-29 X Development Llc Forming an interconnection for solid-state batteries
JP2019510352A (ja) * 2016-03-28 2019-04-11 ビーエーエスエフ コーポレーション 充電式電池用のシリコンに基づく固体電解質
JP7021102B2 (ja) 2016-03-28 2022-02-16 ビーエーエスエフ コーポレーション 充電式電池用のシリコンに基づく固体電解質
JP2017183120A (ja) * 2016-03-31 2017-10-05 日立造船株式会社 全固体二次電池およびその製造方法
US10340511B2 (en) 2016-09-20 2019-07-02 Kabushiki Kaisha Toshiba Electrode, nonaqueous electrolyte battery, battery pack and vehicle
US10218030B2 (en) 2016-09-21 2019-02-26 Kabushiki Kaisha Toshiba Electrode structure, secondary battery, battery pack and vehicle
JP2018055871A (ja) * 2016-09-27 2018-04-05 株式会社日立製作所 二次電池
JP2018152197A (ja) * 2017-03-10 2018-09-27 東京電力ホールディングス株式会社 固体電解質及び固体電池
WO2018179079A1 (ja) * 2017-03-28 2018-10-04 日立化成株式会社 二次電池
WO2018203474A1 (ja) * 2017-05-01 2018-11-08 株式会社村田製作所 固体電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN110582886B (zh) * 2017-05-01 2022-07-08 株式会社村田制作所 固体电池、电池组、电动车辆、蓄电系统、电动工具以及电子设备
US11165095B2 (en) 2017-05-01 2021-11-02 Murata Manufacturing Co., Ltd. Solid-state battery, battery pack, electric motor vehicle, power storage system, electric tool, and electronic device
JPWO2018203474A1 (ja) * 2017-05-01 2019-11-07 株式会社村田製作所 固体電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN110582886A (zh) * 2017-05-01 2019-12-17 株式会社村田制作所 固体电池、电池组、电动车辆、蓄电系统、电动工具以及电子设备
JP2019003934A (ja) * 2017-06-15 2019-01-10 パナソニックIpマネジメント株式会社 電池、および、電池製造方法
JP7065403B2 (ja) 2017-06-15 2022-05-12 パナソニックIpマネジメント株式会社 電池、および、電池製造方法
US20230155181A1 (en) * 2017-10-17 2023-05-18 Nippon Electric Glass Co., Ltd. Bipolar all-solid-state sodium ion secondary battery
JPWO2019078001A1 (ja) * 2017-10-17 2020-09-17 日本電気硝子株式会社 バイポーラ型全固体ナトリウムイオン二次電池
US11588180B2 (en) 2017-10-17 2023-02-21 Nippon Electric Glass Co., Ltd. Bipolar all-solid-state sodium ion secondary battery
JP7218725B2 (ja) 2017-10-17 2023-02-07 日本電気硝子株式会社 バイポーラ型全固体ナトリウムイオン二次電池
WO2019078001A1 (ja) * 2017-10-17 2019-04-25 日本電気硝子株式会社 バイポーラ型全固体ナトリウムイオン二次電池
JPWO2019078093A1 (ja) * 2017-10-20 2020-10-22 富士フイルム株式会社 電極積層体、全固体積層型二次電池及びその製造方法
WO2019078093A1 (ja) * 2017-10-20 2019-04-25 富士フイルム株式会社 電極積層体、全固体積層型二次電池及びその製造方法
JP2019096476A (ja) * 2017-11-22 2019-06-20 トヨタ自動車株式会社 直列積層型全固体電池
JP2019145285A (ja) * 2018-02-19 2019-08-29 トヨタ自動車株式会社 全固体電池
JP2021525442A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 固体ポリマー周縁部絶縁体を有するバイポーラセルを含むバッテリ
JP2021526294A (ja) * 2018-05-30 2021-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 支持枠により支持された縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP2021526295A (ja) * 2018-05-30 2021-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 位置決め表面特徴部を備える基板を有するバイポーラセルを含むバッテリ
JP7143446B2 (ja) 2018-05-30 2022-09-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 支持枠により支持された縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP2021525443A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh セル縁部封止体を有するバイポーラセルを含むバッテリ
JP7105924B2 (ja) 2018-05-30 2022-07-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 位置決め表面特徴部を備える基板を有するバイポーラセルを含むバッテリ
JP6997346B2 (ja) 2018-05-30 2022-01-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP2021525444A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP7150883B2 (ja) 2018-05-30 2022-10-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング セル縁部封止体を有するバイポーラセルを含むバッテリ
JP7280287B2 (ja) 2018-05-30 2023-05-23 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 固体ポリマー周縁部絶縁体を有するバイポーラセルを含むバッテリ
JP7046185B2 (ja) 2018-07-18 2022-04-01 本田技研工業株式会社 固体電池用正極、固体電池用正極の製造方法、および固体電池
JPWO2020017467A1 (ja) * 2018-07-18 2021-08-02 本田技研工業株式会社 固体電池用正極、固体電池用正極の製造方法、および固体電池
JP7188991B2 (ja) 2018-11-26 2022-12-13 株式会社Soken 全固体電池
JP2020087710A (ja) * 2018-11-26 2020-06-04 株式会社Soken 全固体電池
JP7104886B2 (ja) 2019-08-05 2022-07-22 トヨタ自動車株式会社 非水電解質二次電池
JP2021026885A (ja) * 2019-08-05 2021-02-22 トヨタ自動車株式会社 非水電解質二次電池
WO2021131094A1 (ja) 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 電池
WO2021131095A1 (ja) 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 電池の製造方法
WO2021210446A1 (ja) * 2020-04-17 2021-10-21 パナソニックIpマネジメント株式会社 電池
WO2021256398A1 (ja) * 2020-06-15 2021-12-23 株式会社村田製作所 固体電池
JP2022543417A (ja) * 2020-06-25 2022-10-12 エルジー エナジー ソリューション リミテッド バインダー層が形成された電極及びその製造方法
JP7376686B2 (ja) 2020-06-25 2023-11-08 エルジー エナジー ソリューション リミテッド バインダー層が形成された電極及びその製造方法
WO2022145120A1 (ja) 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 電池、積層電池及びその製造方法
JP2022145585A (ja) * 2021-03-18 2022-10-04 輝能科技股▲分▼有限公司 電極組立体及びその電池装置
JP7417647B2 (ja) 2021-03-18 2024-01-18 輝能科技股▲分▼有限公司 電極組立体及びその電池装置

Also Published As

Publication number Publication date
CN103548196B (zh) 2016-03-02
CN103548196A (zh) 2014-01-29
US20140079992A1 (en) 2014-03-20
US9373869B2 (en) 2016-06-21
KR101577881B1 (ko) 2015-12-15
JPWO2012164642A1 (ja) 2014-07-31
DE112011105286T5 (de) 2014-02-20
JP5720779B2 (ja) 2015-05-20
KR20140009497A (ko) 2014-01-22
DE112011105286B4 (de) 2020-06-18

Similar Documents

Publication Publication Date Title
JP5720779B2 (ja) バイポーラ全固体電池
JP5212470B2 (ja) 電極体、全固体型電池素子および全固体型電池
US9837651B2 (en) Electric core for thin film battery
KR20010090538A (ko) 비수성-전해질 2차 전지 및 그 제조방법
KR101664244B1 (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
JP6936670B2 (ja) リチウムイオン電池用セパレータ
JP2013243004A (ja) 固体電池、及び固体電池の製造方法
JP2020013729A (ja) 直列積層型全固体電池の製造方法
CN112424975A (zh) 固体电池用正极、固体电池用正极的制造方法、及固体电池
JP2011150974A (ja) 電極体、および当該電極体の製造方法
JP2011096550A (ja) 固体電池、及び当該固体電池の製造方法
JP5605348B2 (ja) 電池
JP2014086226A (ja) 全固体電池システム
CN111864211B (zh) 二次电池用电极及其制造方法、二次电池
JP5704251B2 (ja) 組電池及び組電池の製造方法
JP2012226862A (ja) モノポーラ型固体電池、積層型固体電池および移動体
US20210020895A1 (en) Secondary battery and manufacturing method thereof
CN112909219A (zh) 一种电极组件和锂离子电池
JP2013097907A (ja) 固体電池及びその製造方法
CN111697261A (zh) 锂二次电池
JP5429304B2 (ja) 固体電池モジュール
JP2011175905A (ja) 全固体型リチウムイオン二次電池
JP2013101860A (ja) 電池
JP2014102982A (ja) 全固体電池及びその製造方法
CN112670597A (zh) 一种电极组件、电化学装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517709

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137030338

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14114838

Country of ref document: US

Ref document number: 112011105286

Country of ref document: DE

Ref document number: 1120111052863

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866836

Country of ref document: EP

Kind code of ref document: A1