Nothing Special   »   [go: up one dir, main page]

WO2011114846A1 - 感光性導電ペーストおよび導電パターンの製造方法 - Google Patents

感光性導電ペーストおよび導電パターンの製造方法 Download PDF

Info

Publication number
WO2011114846A1
WO2011114846A1 PCT/JP2011/053943 JP2011053943W WO2011114846A1 WO 2011114846 A1 WO2011114846 A1 WO 2011114846A1 JP 2011053943 W JP2011053943 W JP 2011053943W WO 2011114846 A1 WO2011114846 A1 WO 2011114846A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
conductive paste
glass transition
transition temperature
photosensitive conductive
Prior art date
Application number
PCT/JP2011/053943
Other languages
English (en)
French (fr)
Inventor
水口創
草野一孝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2011509744A priority Critical patent/JPWO2011114846A1/ja
Priority to CN201180014597XA priority patent/CN102812399A/zh
Priority to KR1020127018020A priority patent/KR20130016192A/ko
Publication of WO2011114846A1 publication Critical patent/WO2011114846A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste

Definitions

  • the present invention relates to a photosensitive conductive paste for forming a conductive pattern having flexibility.
  • the conductive pattern in the present invention refers to a conductive pattern containing both an organic component including a resin and an inorganic component including a conductive filler.
  • an inorganic conductive pattern can be obtained by applying and drying a paste containing a resin and a conductive filler, followed by baking.
  • a high temperature of 500 ° C. or higher it is provided on a substrate having low heat resistance. It has the disadvantage that it cannot.
  • the organic-inorganic composite conductive pattern can be formed by processing at a relatively low temperature, but it has been relatively difficult to achieve high conductivity.
  • a paste in which conductive fine particles are dispersed in photosensitive polyimide is applied, dried, exposed, developed, and after forming a fine pattern, the conductive fine particles are brought into contact with each other by shrinking the resin by curing.
  • a bump forming method for developing conductivity for example, see Patent Document 4
  • a method for producing a conductive pad, wiring, and the like using a photosensitive conductive paste in which silver powder is dispersed in a photosensitive phenoxy resin (For example, refer to Patent Documents 5 and 6).
  • Patent Document 3 requires a resist layer to be formed on the coating film in order to perform patterning by a photolithography method, and there is a problem that the number of steps increases.
  • patent document 4 in order to express electroconductivity, it was necessary to heat to about 400 degreeC, and there existed a subject that the base material to be used was restricted.
  • Patent Documents 5 and 6 a photosensitive phenoxy resin or a photosensitive acrylic-modified epoxy resin can be used to develop conductivity at a low temperature, but the resulting conductive pattern has a high specific resistance value and a fineness of 50 ⁇ m or less. There was a problem that patterning was difficult.
  • Patent Documents 7 and 8 a fine pattern can be formed, but in Patent Document 7, the conductivity is low, and in the method described in Patent Document 8, it is necessary to reduce the acrylic (methacrylic) equivalent in order to develop conductivity. There was a problem that the obtained conductive pattern was brittle.
  • the conductive pastes described in the cited references 1 to 8 are inferior in the flexibility of the obtained conductive pattern, and therefore when the conductive pattern is provided on a flexible substrate such as a film, peeling or disconnection occurs, resulting in a decrease in conductivity. There was a problem of doing.
  • An object of the present invention is to provide a photosensitive conductive paste that can solve the above-mentioned problems, can obtain a conductive pattern having high conductivity at a relatively low temperature, and excellent flexibility, and a conductive pattern produced using the same. It is to obtain a manufacturing method.
  • the photosensitive conductive paste of the present invention has the following configuration. That is, a compound (A) having an alkoxy group, a photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C., a photopolymerization initiator (C), and a conductive filler ( D) is a photosensitive conductive paste characterized by containing.
  • a conductive pattern having high conductivity at a relatively low temperature and excellent flexibility can be easily formed.
  • the photosensitive conductive paste of the present invention comprises a compound (A) having an alkoxy group, a photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C., a photopolymerization initiator (C)
  • a conductive filler (D) is dispersed in a photosensitive resin obtained by mixing the above.
  • the paste is a photosensitive conductive paste that can be applied on a substrate, dried to remove the solvent, and then a desired conductive pattern can be obtained on the substrate through exposure, development, and curing steps.
  • the obtained conductive pattern is an organic-inorganic composite, and the conductive fillers are brought into contact with each other by curing shrinkage during curing, so that conductivity is exhibited.
  • the compound (A) having an alkoxy group contained in the photosensitive conductive paste of the present invention is a compound having in its molecule an alkoxy group that generates an alcohol by heating to condense.
  • the alkoxy group include a methoxy group, an ethoxy group, a butoxy group, an isobutoxy group, and the like.
  • the molecular weight of the alcohol generated during the condensation is relatively large.
  • a butoxy group, an isobutoxy group, and the like are preferable, and at least one butoxy group is present. More preferably.
  • Such a compound (A) include N-methoxymethyl acrylamide, N-ethoxymethyl acrylamide, Nn-butoxymethyl acrylamide, N-isobutoxymethyl acrylamide, butoxyethyl acrylate, butoxytriethylene glycol acrylate, Honshu HMOM-TPHAP manufactured by Chemical Industry Co., Ltd., alkylated amino compounds manufactured by Sanwa Chemical Co., Ltd., MW-30M, MW-30, MW-22, MS-11, MS-001, MX-730, MX-750, MX- 706, MX-035, BL-60, BX-37, MX-302, MX-45, MX-410, BX-4000, BX-37, Nikarak MW-30HM, Nikarak MW-390, Nikarak MX-270, Nikarak MX-280, Nikarak MW-10 LM, and the like NIKALACK MX-750LM.
  • Nicarak is a registered trademark.
  • the addition amount of the compound (A) having an alkoxy group contained in the photosensitive conductive paste of the present invention has an unsaturated double bond and a glass transition temperature (hereinafter referred to as Tg) of 5 to 40 ° C.
  • the amount is preferably 10 to 300 parts by weight, more preferably 50 to 200 parts by weight, based on 100 parts by weight of the photosensitive component (B).
  • the amount of shrinkage during curing is particularly increased by adding 50 parts by weight or more with respect to 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and having a Tg in the range of 5 to 40 ° C.
  • the contact probability between the conductive fillers can be increased. As a result, the specific resistivity of the conductive pattern that is the final composition can be lowered.
  • the paste after removing the solvent in particular The tackiness of the composition film can be reduced, and the occurrence of defects in the conductive pattern can be suppressed.
  • the photosensitive component (B) having an unsaturated double bond used in the present invention and having a Tg in the range of 5 to 40 ° C. is a monomer, oligomer or oligomer having at least one unsaturated double bond in the molecule. It refers to a polymer and can be used alone or in combination of two or more.
  • the photosensitive component (B) is not particularly limited, it is preferable to include an alkali-soluble polymer because development with the pattern processing of the present invention is preferably performed with an aqueous alkali solution instead of an organic solvent.
  • alkali-soluble polymer examples include acrylic copolymers.
  • the acrylic copolymer is a copolymer containing at least an acrylic monomer as a copolymerization component, and as a specific example of the acrylic monomer, all compounds having a carbon-carbon double bond can be used.
  • methyl acrylate acrylic acid, 2-ethylhexyl acrylate, ethyl methacrylate, n-butyl acrylate, i-butyl acrylate, i-propane acrylate, glycidyl acrylate, N-methoxymethyl acrylamide, N-ethoxymethyl acrylamide, N- n-butoxymethylacrylamide, N-isobutoxymethylacrylamide, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl acrylate, isobonyl acrylate Relate, 2-hydroxypropyl acrylate, isodexyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, methoxydiethylene glycol acrylate, octafluoropentyl acrylate, phen
  • the glass transition temperature of the photosensitive component (B) having an unsaturated double bond used in the present invention and having a Tg in the range of 5 to 40 ° C. is measured by a differential scanning calorimeter (DSC) of the photosensitive component.
  • DSC differential scanning calorimeter
  • Tg is the glass transition temperature of the polymer (unit: K)
  • T1, T2, T3... Are the glass transition temperatures of the homopolymer of monomer 1, monomer 2, monomer 3,.
  • W2, W3,... Are the weight-based copolymerization ratios of monomer 1, monomer 2, monomer 3,.
  • the photosensitive component (B) having an unsaturated double bond used in the present invention and having a Tg in the range of 5 to 40 ° C. needs to have a glass transition temperature of 5 to 40 ° C. 30 is preferable.
  • Tg is 5 ° C. or higher, the tackiness of the dried film can be suppressed, and when it is 10 ° C. or higher, the shape stability particularly with respect to temperature change is increased. Further, when Tg is 40 ° C. or lower, flexibility is exhibited at room temperature, and when it is 30 ° C. or lower, internal stress at the time of bending can be relaxed, and generation of cracks can be particularly suppressed.
  • the acid value of the photosensitive component (B) having an unsaturated double bond used in the present invention and having a Tg in the range of 5 to 40 ° C. is 50 to 200 mg KOH / g from the viewpoint of development with an aqueous alkaline solution. It is preferably 80 to 150 mgKOH / g. When the acid value is 80 mgKOH / g or more, the solubility of the soluble part in the developer does not decrease, and when the acid value is 150 mgKOH / g or less, the development tolerance can be widened.
  • the acid value is measured according to JIS-K0070 (1992).
  • the photopolymerization initiator (C) contained in the photosensitive conductive paste of the present invention refers to a compound that absorbs light of a short wavelength such as ultraviolet rays and decomposes to generate radicals.
  • a short wavelength such as ultraviolet rays and decomposes to generate radicals.
  • Specific examples include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2, 4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone, 1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), Benzophenone, methyl o-benzoylbenzoate, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (
  • the addition amount of the photopolymerization initiator (C) is preferably 0.05 to 100 parts by weight with respect to 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C. It is added in the range of 30 parts by weight, and more preferably 5 to 20 parts by weight.
  • the addition amount of the photopolymerization initiator (C) 5 parts by weight or more with respect to 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C.
  • the cured density of the exposed area is increased, and the remaining film ratio after development can be increased.
  • the photopolymerization initiator (C) by adding 20 parts by weight or less of the photopolymerization initiator (C) to 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and having a glass transition temperature of 5 to 40 ° C.
  • the photosensitive component (B) having an unsaturated double bond and having a glass transition temperature of 5 to 40 ° C.
  • a sensitizer can be added together with the photopolymerization initiator (C) to improve sensitivity, or the wavelength range effective for the reaction can be expanded.
  • the sensitizer examples include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2,6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) Chalcone, p-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazo
  • the amount added is 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C.
  • the amount added is 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C.
  • it is preferably in the range of 0.05 to 10 parts by weight, more preferably 0.1 to 10 parts by weight.
  • the effect of improving the photosensitivity is sufficient by adding 0.1 parts by weight or more with respect to 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C.
  • the photosensitive component (B) By adding 10 parts by weight or less to 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and having a glass transition temperature of 5 to 40 ° C. Excessive light absorption occurs in the conductive pattern, the conductive pattern becomes a reverse taper shape, and the adhesiveness with the substrate can be prevented from being lowered.
  • the conductive filler (D) contained in the photosensitive conductive paste of the present invention is at least one of Ag, Au, Cu, Pt, Pb, Sn, Ni, Al, W, Mo, ruthenium oxide, Cr, Ti, and indium.
  • These conductive fillers can be used alone, as an alloy, or as a mixed powder.
  • covered the surface of the insulating particle or electroconductive particle with the above-mentioned component can be used similarly.
  • Ag, Cu and Au are preferable from the viewpoint of conductivity, and Ag is more preferable from the viewpoint of cost and stability.
  • the average particle diameter of the conductive filler (D) is preferably 0.5 to 10 ⁇ m, more preferably 1 to 6 ⁇ m.
  • the average particle size is 1 ⁇ m or more, the contact probability between the conductive fillers is improved, the specific resistance value of the conductive pattern to be produced, and the disconnection probability can be lowered, and the ultraviolet rays at the time of exposure smoothly in the film And fine patterning becomes easy.
  • the average particle size is 6 ⁇ m or less, the surface smoothness, pattern accuracy, and dimensional accuracy of the printed circuit pattern are improved.
  • the average particle diameter can be determined by a Coulter counter method, a photon correlation method, a laser diffraction method, or the like.
  • the amount of the conductive filler (D) added is preferably in the range of 70 to 95% by weight, more preferably 80 to 90% by weight, based on the total solid content in the photosensitive conductive paste.
  • 80 weight% or more especially the contact probability of the conductive fillers in the curing shrinkage at the time of curing can be improved, and the specific resistance value and the disconnection probability of the produced conductive pattern can be lowered.
  • by setting it to 90% by weight or less particularly ultraviolet rays at the time of exposure can smoothly pass through the film, and fine patterning becomes easy.
  • the solid content is obtained by removing the solvent from the photosensitive conductive paste.
  • the acid generator (E) contained in the photosensitive conductive paste of the present invention refers to a substance that reacts with light or heat to generate an acid. Due to the catalytic effect of the acid generated, it has the effect of accelerating the condensation reaction of the alkoxy group in the compound (A) having an alkoxy group at a low temperature. As a result, it is possible to develop conductivity under a lower temperature curing condition and reduce the specific resistivity.
  • photoacid generators examples include quinonediazide, diazodisulfone, and triphenylsulfonium substances
  • thermal acid generators examples include sulfonium salts. Since the photoacid generator generates an acid in the exposed portion by exposure, a difference in solubility between the exposed portion and the unexposed portion is reduced, and there is a possibility that the patterning property may be adversely affected. From the viewpoint of acid strength, a sulfonium salt is more preferable.
  • the amount of the acid generator (E) added is 0.01 to 5 parts by weight with respect to 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C. It is preferably within the range, more preferably 0.05 to 5 parts by weight.
  • the compound (F) having a total chlorine content of 300 ppm or more contained in the photosensitive conductive paste of the present invention is not particularly limited as long as the total chlorine content contained in the compound is 300 rpm or more.
  • the total chlorine amount refers to the total content of chlorine ions and chlorine atoms contained in the compound, and is present alone or incorporated in the structure, or in any form. It doesn't matter if they are. Moreover, the origin of these chlorine ions and chlorine atoms is not particularly limited.
  • Examples of the compound (F) having a total chlorine content of 300 ppm or more include a glycidyl group-containing compound that is an epichlorohydrin-derived compound, an unsaturated double bond adduct thereof, and the like.
  • Specific examples of the glycidyl group-containing compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, hydrogenated bisphenol type.
  • Epoxy resin bisphenol fluorene type epoxy resin, biscresol fluorene type epoxy resin, bisphenoxyethanol fluorene type epoxy resin, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether , Trimethylolpropane polyglycidyl ether, resorcinol diglycy Ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A type diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether Ether, allyl glycidyl ether,
  • the addition amount of the compound (F) having a total chlorine content of 300 ppm or more is preferably based on 100 parts by weight of the photosensitive component (B) having an unsaturated double bond and a glass transition temperature of 5 to 40 ° C. Is added in the range of 0.05 to 30 parts by weight, and more preferably 0.5 to 20 parts by weight.
  • the final composition The conductivity of the product can be increased, and by adjusting the amount of the compound (F) to be 30 parts by weight or less, the development margin and the adhesiveness under high temperature and high humidity can be improved.
  • the total chlorine content in the total solid content excluding the conductive filler (D) of the photosensitive conductive paste of the present invention is preferably 100 ppm or more because the conductivity of the final composition can be increased.
  • the total chlorine content in the total solid content excluding the compound (F) and the conductive filler (D) of the photosensitive conductive paste of the present invention can be measured using a chlorine analyzer.
  • the compound (F) diluted 100-fold with a solvent is used as a measurement sample, the photosensitive conductive paste of the present invention is centrifuged, the obtained supernatant solution is dried, and the obtained organic component is again used as a solvent.
  • a sample diluted 100 times with was used as a measurement sample.
  • membrane of the photosensitive electrically conductive paste was performed, and it computed using the weight decreasing rate.
  • the photosensitive conductive paste of the present invention may contain a solvent.
  • the solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, ⁇ -butyrolactone, ethyl lactate, 1-methoxy-2-propanol, 1 -Ethoxy-2-propanol, ethylene glycol mono-n-propyl ether, diacetone alcohol, tetrahydrofurfuryl alcohol, propylene glycol monomethyl ether acetate and the like.
  • a solvent can be used individually by 1 type, or 2 or more types can be mixed and used for it. The solvent may be added later for the purpose of adjusting the viscosity after preparing the paste.
  • the photosensitive conductive paste of the present invention is a non-photosensitive polymer, plasticizer, leveling agent, surfactant, silane coupling agent that does not have an unsaturated double bond in the molecule as long as the desired properties are not impaired. Additives such as antifoaming agents and pigments can also be blended.
  • the non-photosensitive polymer include epoxy resin, novolac resin, phenol resin, polyimide precursor, and closed ring polyimide.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, glycerin and the like.
  • leveling agent examples include a special vinyl polymer and a special acrylic polymer.
  • silane coupling agents methyltrimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane Etc.
  • the photosensitive electrically conductive paste of this invention is produced using a disperser, a kneader, etc. Specific examples of these include, but are not limited to, a three-roller, a ball mill, and a planetary ball mill.
  • a disperser a kneader
  • specific examples of these include, but are not limited to, a three-roller, a ball mill, and a planetary ball mill.
  • the manufacturing method of the conductive pattern using the photosensitive electrically conductive paste of this invention is demonstrated.
  • the paste of the present invention is applied on a substrate, heated to volatilize the solvent and dried. Thereafter, exposure is performed through a pattern formation mask, and a desired pattern is formed on the substrate through a development process. And it cures and produces a conductive pattern.
  • Examples of the substrate used in the present invention include a silicon wafer, a ceramic substrate, and an organic substrate.
  • the ceramic substrate include a glass substrate, an alumina substrate, an aluminum nitride substrate, and a silicon carbide substrate.
  • the resin substrate include an epoxy resin substrate, a polyetherimide resin substrate, a polyetherketone resin substrate, a polysulfone-based resin substrate, and a polyimide.
  • a film, a polyester film, an aramid film, etc. are mentioned, However, It is not limited to these.
  • Examples of the method for applying the photosensitive conductive paste of the present invention to a substrate include spin coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater and the like.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but is usually applied so that the film thickness after drying is in the range of 0.1 to 50 ⁇ m.
  • the solvent is removed from the coating film applied on the substrate.
  • the method for removing the solvent include heat drying using an oven, a hot plate, infrared rays, and vacuum drying. Heat drying is preferably performed in the range of 50 ° C. to 180 ° C. for 1 minute to several hours.
  • the pattern is processed by photolithography on the coating film after removing the solvent.
  • a light source used for exposure it is preferable to use i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp.
  • Developer solutions for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate
  • An aqueous solution of a compound such as dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine is preferred.
  • these aqueous solutions may contain polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and ⁇ -butyrolactone, alcohols such as methanol, ethanol and isopropanol.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and ⁇ -butyrolactone
  • alcohols such as methanol, ethanol and isopropanol.
  • Esters such as ethyl lactate and propylene glycol monomethyl ether acetate
  • ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be used alone or as a developer.
  • what added surfactant to these alkaline aqueous solution can also be
  • Developers for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, hexamethyl phosphortriamide, etc. Can be used alone or in combination with methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol, ethyl carbitol and the like.
  • the development can be performed by spraying the developer on the coating film surface while the substrate is allowed to stand or rotate, immersing the substrate in the developer, or applying ultrasonic waves while immersing.
  • a rinsing treatment with water may be performed.
  • alcohols such as ethanol and isopropyl alcohol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
  • the paste composition film is cured in order to perform a condensation reaction of the alkoxy group in the compound (A) having an alkoxy group.
  • the curing method include oven drying, inert oven, hot plate, heat drying using infrared rays, vacuum drying, and the like.
  • the curing temperature is preferably in the range of 130 to 400 ° C, more preferably 150 to 400 ° C. By setting the curing temperature to 150 ° C. or higher, the reaction rate of the condensation reaction of the compound (A) having an alkoxy group can be improved, and as a result, the contact probability between the conductive fillers is increased, and the specific resistivity is increased. Get smaller.
  • the photosensitive conductive paste of the present invention can obtain high conductivity with a relatively low temperature cure of 400 ° C. or lower, it can be used on a substrate having low heat resistance or in combination with a material having low heat resistance. it can. Thus, a conductive pattern can be produced through a curing process.
  • a photosensitive conductive paste is applied on a glass substrate so that the dry thickness is 12 ⁇ m, dried on a hot plate at 100 ° C. for 3 minutes, and a group of straight lines arranged in a constant line and space (L / S) form one unit.
  • a conductive pattern was obtained by exposure, development, and curing at 180 ° C. for 1 hour through a photomask having a light-transmitting pattern having nine types of units having different L / S values.
  • the L / S values of each unit were 500/500, 250/250, 100/100, 50/50, 40/40, 30/30, 25/25, 20/20, and 15/15 (respective line widths).
  • FIG. 2 schematically shows a sample used for the flexibility test.
  • a photosensitive conductive paste is applied onto a rectangular polyimide film (thickness 50 ⁇ m) having a length of 10 mm and a width of 100 mm so as to have a dry thickness of 10 ⁇ m, dried on a hot plate at 100 ° C. for 3 minutes, and the pattern shown in FIG.
  • a photomask having a light part A is placed and exposed so that the light-transmitting part is at the center of the sample, developed, cured in a drying oven at 180 ° C. for 1 hour to form a conductive pattern, and a resistance value using a tester Was measured.
  • the conductive pattern was bent so that the inner side and the outer side were alternately bent, the sample short side B and the sample short side C were brought into contact, and the bending operation to return to the original was repeated 100 times, and then the resistance value was measured again with a tester.
  • the change amount of the resistance value was 20% or less, and the case where the conductive pattern was not cracked, peeled off or disconnected was marked with ⁇ , and the others were marked with x.
  • Methyl methacrylate (MMA) glass transition temperature of homopolymer: 105 ° C.
  • EA glass transition temperature of homopolymer: ⁇ 22 ° C.
  • Acrylic acid (AA) Homopolymer glass transition temperature: 106 ° C.
  • i-BA Glass transition temperature of homopolymer: -24 ° C
  • Glycidyl methacrylate (GMA) glass transition temperature of homopolymer: 74 ° C.)
  • photosensitive component B-2 was obtained by adding 5 g of glycidyl methacrylate to 25 g of methyl acrylate, 25 g of cyclomethacrylate, 30 g of isobutyl acrylate, and 15 g of acrylic acid.
  • the obtained photosensitive component B-2 had an acid value of 98 mgKOH / g and a glass transition temperature obtained from the formula (1) of 36.5 ° C.
  • photosensitive component B-3 in which 5 g of glycidyl methacrylate was added to 25 g of styrene, 25 g of cyclomethacrylate, 25 g of isobutyl acrylate, and 20 g of acrylic acid was obtained.
  • the obtained photosensitive component B-3 had an acid value of 152 mgKOH / g and a glass transition temperature of 32.7 ° C. obtained from the formula (1).
  • photosensitive component F-1 was obtained in which 5 g of glycidyl methacrylate was added to 40 g of styrene, 10 g of cyclomethacrylate, 30 g of isobutyl acrylate, and 15 g of acrylic acid.
  • the obtained photosensitive component F-1 had an acid value of 105 mgKOH / g and a glass transition temperature obtained from the formula (1) of 65.5 ° C.
  • photosensitive component F-2 in which 5 g of glycidyl methacrylate was added to 15 g of styrene, 50 g of cyclomethacrylate, 15 g of isobutyl acrylate, and 15 g of acrylic acid was obtained.
  • the obtained photosensitive component F-2 had an acid value of 100 mgKOH / g and a glass transition temperature determined by the formula (1) of ⁇ 10.2 ° C.
  • the filtrate was diluted 100 times with a solvent and filtered with a solid-phase extraction cartridge GL-PakPLS-3 (GL Science). Using the chlorine / sulfur analyzer TOX-2100H (Mitsubishi Analytech) The total chlorine content was measured.
  • the weight loss value obtained by TG measurement under the following conditions after drying the photosensitive conductive paste of the present invention at 150 ° C. for 10 hours is used. Asked.
  • TG-50 / 51H (trade name, manufactured by Shimadzu Corporation) Temperature: 600 ° C. for 1 hour Holding temperature increase rate: 5 ° C./min Atmosphere: Air / Solvent: ⁇ -Butyrolactone (Mitsubishi Gas Chemical Co., Ltd.)
  • Example 1 In a 100 ml clean bottle, 20 g of photosensitive component B-1, 12 g of Nn-butoxymethylacrylamide, 4 g of photopolymerization initiator OXE-01 (manufactured by Ciba Japan Co., Ltd.), acid generator SI-110 (Sanshin Chemical) Kogyo Co., Ltd.) (0.6 g) and ⁇ -butyrolactone (Mitsubishi Gas Chemical Co., Ltd.) (10 g) are mixed with “Awatori Nertaro” (trade name ARE-310, manufactured by Shinky Co., Ltd.).
  • the obtained paste was applied onto a polyimide film having a thickness of 50 ⁇ m by screen printing, and prebaked at 100 ° C. for 10 minutes in a drying oven. Then, full line exposure was performed using an exposure apparatus “PEM-6M” (trade name, manufactured by Union Optical Co., Ltd.) with an exposure amount of 70 mJ / cm 2 (wavelength 365 nm conversion), and 0.5% Na 2 CO 3 solution was used. Immersion development was performed for 1 minute, rinsed with ultrapure water, and then cured at 200 ° C. for 1 hour in a drying oven. The film thickness of the patterned conductive pattern was 10 ⁇ m.
  • Examples 2 to 9 A photosensitive conductive paste having the composition shown in Table 2 was produced in the same manner as in Example 1, and the evaluation results are shown in Table 3. Comparative Examples 1 to 3 A photosensitive conductive paste having the composition shown in Table 2 was produced in the same manner as in Example 1, and the evaluation results are shown in Table 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

【課題】比較的低温で高い導電性を有し、屈曲性に優れた導電パターンを得ることができる感光性導電ペーストおよびそれを用いて作製される導電パターンの製造方法を得る。 【解決手段】 アルコキシ基を有する化合物(A)、不飽和二重結合を有し、ガラス転移温度が5~40℃の範囲内である感光性成分(B)、光重合開始剤(C)、および導電性フィラー(D)を含むことを特徴とする感光性導電ペーストとする。

Description

感光性導電ペーストおよび導電パターンの製造方法
 本発明は屈曲性を有する導電パターンを形成するための感光性導電ペーストに関する。
 本発明における導電パターンとは、樹脂を含む有機成分と導電性フィラー等を含む無機成分の両方を含有する導電パターンを指す。一般に、樹脂と導電性フィラーを含むペーストを塗布、乾燥した後に焼成することによって無機導電パターンを得ることができるが、500℃以上の高温で焼成する必要があるため耐熱性の低い基板上に設けることができないといったような欠点を有する。一方、有機-無機複合導電パターンは比較的低温の処理で形成できるが、高い導電性を達成するのが比較的困難であった。
 従来、上述のような有機-無機複合導電パターンを形成するために、樹脂や接着剤の中に微粒子状の銀フレークや銅粉、あるいはカーボン粒子を多量に混合した、いわゆる導電ペーストが実用化されている。これらのものの多くはスクリーン印刷法によりパターンを形成し、加熱硬化により導電パターンとするものである(例えば、特許文献1、2参照)。しかしながら、スクリーン印刷法ではパターンの高精細化が困難であった。この問題を解決するために、酸性エッチング可能な導電ペースト(例えば、特許文献3参照)や紫外線硬化型の導電ペーストが開発されている。例えば感光性ポリイミド中に導電性微粒子を分散させたペーストを塗布、乾燥、露光、現像し、微細パターンを形成した後、キュアすることにより樹脂分を収縮させることで導電性微粒子を互いに接触させ、導電性を発現させるバンプ形成方法や(例えば、特許文献4参照)、同様に感光性フェノキシ樹脂中に銀粉を分散させた感光性導電ペーストを用いて導電性パッド、配線等を作製する方法などがある(例えば、特許文献5、6参照)。
 しかしながら、特許文献3記載の導電ペーストではフォトリソグラフィー法でパターン化を行うためには塗布膜上にレジスト層を形成する必要があり、工程数が多くなるという課題があった。特許文献4では導電性を発現させるために400℃程度まで加熱する必要があり、使用する基材が限られるといった課題があった。また、特許文献5、6では感光性フェノキシ樹脂や感光性アクリル変性エポキシ樹脂を用い、低温で導電性を発現させることができるものの、得られる導電パターンの比抵抗値が高く、また50μm以下の微細パターニングは困難であるといった課題があった。特許文献7、8では微細パターンが形成可能なものの特許文献7では導電性が低く、特許文献8記載の方法では導電性発現のためにアクリル(メタクリル)当量を小さくする必要があり、この方法で得られる導電パターンは脆いといった課題があった。
 さらに、引用文献1~8記載の導電ペーストでは、得られる導電パターンの屈曲性が劣るため、フィルムなどのフレキシブルな基板上に導電パターンを設けた場合に剥がれや断線が発生し、導電性が低下してしまうという問題があった。
特願昭63-79727号公報 特願2004-73740号公報 特願平8-237384号公報 特願平4-327423号公報 特願昭58-17510号公報 特願平3-238020号公報 特願2001-362638号公報 特願2004-564422号公報
 本発明の目的は上述の問題を解決し、比較的低温で高い導電性を有し、屈曲性に優れた導電パターンを得ることができる感光性導電ペーストおよびそれを用いて作製される導電パターンの製造方法を得ることである。
 上述の課題を解決するため、本発明の感光性導電ペーストは以下の構成を有する。すなわち、アルコキシ基を有する化合物(A)、不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)、光重合開始剤(C)、および導電性フィラー(D)を含むことを特徴とする感光性導電ペーストである。
 本発明によれば、比較的低温で高い導電性を有し、屈曲性に優れた導電パターンを容易に形成することができる。
実施例の比抵抗率評価に用いたフォトマスクの透光パターンを示した模式図である。 実施例の屈曲性試験に用いたサンプルを模式的に示したものである。
 本発明の感光性導電ペーストはアルコキシ基を有する化合物(A)、不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)、光重合開始剤(C)を混合してなる感光性樹脂中に導電性フィラー(D)を分散させたものである。該ペーストは基板上に塗布し、乾燥させて溶媒を除去した後、露光、現像、キュア工程を経ることで基板上に所望の導電パターンを得ることができる感光性導電ペーストである。得られた導電パターンは有機-無機の複合物となっており、導電性フィラー同士がキュア時の硬化収縮により互いに接触することで導電性が発現する。
 本発明の感光性導電ペーストに含まれるアルコキシ基を有する化合物(A)とは、加熱によりアルコールを生じて縮合するアルコキシ基を分子内に有する化合物である。アルコキシ基としてはメトキシ基、エトキシ基、ブトキシ基、イソブトキシ基などが挙げられ、縮合時に生じるアルコールの分子量が比較的大きい方が好ましく、ブトキシ基、イソブトキシ基などが好ましく、少なくとも1以上のブトキシ基を有することがより好ましい。このような化合物(A)の具体例としてはN-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、ブトキシエチルアクリレート、ブトキシトリエチレングリコールアクリレート、本州化学工業社製のHMOM-TPHAP、三和ケミカル社製のアルキル化アミノ化合物、MW-30M、MW-30、MW-22、MS-11、MS-001、MX-730、MX-750、MX-706、MX-035、BL-60、BX-37、MX-302、MX-45、MX-410、BX-4000、BX-37、ニカラックMW-30HM、ニカラックMW-390、ニカラックMX-270、ニカラックMX-280、ニカラックMW-100LM、ニカラックMX-750LMなどが挙げられる。なお、ニカラックは登録商標である。
 本発明の感光性導電ペーストに含まれるアルコキシ基を有する化合物(A)の添加量としては、不飽和二重結合を有し、ガラス転移温度(以下Tgとする。)が5~40℃である感光性成分(B)100重量部に対し、好ましくは10~300重量部の範囲で添加され、より好ましくは、50~200重量部である。不飽和二重結合を有し、Tgが5~40℃の範囲内である感光性成分(B)100重量部に対する添加量が50重量部以上とすることで特にキュア時の収縮量を大きくすることができ、導電性フィラー同士の接触確率を大きくすることができる。その結果、最終組成物である導電パターンの比抵抗率を低くすることができる。また、不飽和二重結合を有し、Tgが5~40℃の範囲内である感光性成分(B)100重量部に対する添加量を200重量部以下とすることにより、特に溶剤除去後のペースト組成物膜のタック性を小さくすることができ、導電パターンの欠点発生を抑制できるなどパターニングに優位に働く。
 本発明で使用する不飽和二重結合を有し、Tgが5~40℃の範囲内である感光性成分(B)は分子内に不飽和二重結合を少なくとも一つ以上有するモノマー、オリゴマーもしくはポリマーのことをいい、1種または2種以上使用することができる。感光性成分(B)は特に限定されないが、本発明のパターン加工の現像には有機溶媒ではなくアルカリ水溶液による現像が好ましいため、アルカリ可溶性のポリマーを含むことが望ましい。
 アルカリ可溶性のポリマーとしては、アクリル系共重合体があげられる。アクリル系共重合体とは、共重合成分に少なくともアクリル系モノマーを含む共重合体であり、アクリル系モノマーの具体例としては炭素-炭素二重結合を有するすべての化合物が使用可能であるが、好ましくはメチルアクリレート、アクリル酸、アクリル酸2-エチルヘキシル、メタクリル酸エチル、n-ブチルアクリレート、i-ブチルアクリレート、i-プロパンアクリレート、グリシジルアクリレート、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アクリルアミド、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレートなどのアクリル系モノマーおよびこれらのアクリレートをメタクリレートに代えたものやスチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン、クロロメチルスチレン、ヒドロキシメチルスチレンなどのスチレン類、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドンなどが挙げられる。
 本発明で使用される不飽和二重結合を有し、Tgが5~40℃の範囲内である感光性成分(B)のガラス転移温度は、感光性成分の示差走査熱量計(DSC)測定によって求めることもできるが、共重合成分であるモノマーの共重合比率およびそれぞれのモノマーのホモポリマーのガラス転移温度を用いて下記の式(1)により算出でき、本発明ではこの値を用いた。
Figure JPOXMLDOC01-appb-M000001
ここで、Tgはポリマーのガラス転移温度(単位:K)、T1、T2、T3・・・はモノマー1、モノマー2、モノマー3・・・のホモポリマーのガラス転移温度(単位:K)、W1、W2、W3・・・はモノマー1、モノマー2、モノマー3・・・の重量基準の共重合比率である。
 本発明で使用する不飽和二重結合を有し、Tgが5~40℃の範囲内である感光性成分(B)のガラス転移温度は5~40℃であることが必要であり、10~30であることが好ましい。Tgが5℃以上であると乾燥膜のタック性を抑制することができ、さらに10℃以上であると特に温度変化に対する形状安定性が高くなる。また、Tgが40℃以下であると室温において屈曲性を発現し、さらに30℃以下であると屈曲時の内部応力を緩和することができ、特にクラックの発生を抑制することができる。
 本発明で使用される不飽和二重結合を有し、Tgが5~40℃の範囲内である感光性成分(B)の酸価はアルカリ水溶液での現像という観点から50~200mgKOH/gであることが好ましく、80~150mgKOH/gであることがより好ましい。酸価が80mgKOH/g以上であると可溶部分の現像液に対する溶解性が低下することがなく、酸価が150mgKOH/g以下であると現像許容幅を広くすることができる。なお、酸価の測定は、JIS-K0070(1992)に準拠して求める。
 本発明の感光性導電ペーストに含まれる光重合開始剤(C)とは紫外線などの短波長の光を吸収し、分解してラジカルを生じる化合物のことをいう。具体例としては、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、エタノン、1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4′-ビス(ジメチルアミノ)ベンゾフェノン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、4,4′-ジクロロベンゾフェノン、4-ベンゾイル-4′-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2′-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4′-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾインおよびエオシン、メチレンブルーなどの光還元性色素とアスコルビン酸、トリエタノールアミンなどの還元剤の組み合わせなどが挙げられるが、特にこれらに限定されない。本発明ではこれらを1種または2種以上使用することができる。また、中でもアルコキシ基を有する化合物(A)のアルコキシ基による縮合反応を促進するという観点から分子内にベンゾイル骨格を有しているものが好ましく、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、エタノン、または、1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)が特に好ましい。
 光重合開始剤(C)の添加量としては、不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対し、好ましくは0.05~30重量部の範囲で添加され、より好ましくは、5~20重量部である。不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対する光重合開始剤(C)の添加量を5重量部以上とすることにより、特に露光部の硬化密度が増加し、現像後の残膜率を高くすることができる。また、不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対する光重合開始剤(C)の添加量を20重量部以下とすることで、特に光重合開始剤(C)による塗布膜上部での過剰な光吸収を抑制し、導電パターンが逆テーパー形状となり基材との接着性が低下することを抑制することができる。
 本発明のペーストは光重合開始剤(C)と共に増感剤を添加して感度を向上させたり、反応に有効な波長範囲を拡大したりすることができる。
 増感剤の具体例としては、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノベンザル)アセトン、1,3-カルボニルビス(4-ジエチルアミノベンザル)アセトン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、N-フェニル-N-エチルエタノールアミン、N-フェニルエタノールアミン、N-トリルジエタノールアミン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、3-フェニル-5-ベンゾイルチオテトラゾール、1-フェニル-5-エトキシカルボニルチオテトラゾールなどが挙げられる。本発明ではこれらを1種または2種以上使用することができる。増感剤を本発明の感光性導電ペーストに添加する場合、その添加量は不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対して通常0.05~10重量部の範囲内であることが好ましく、より好ましくは0.1~10重量部である。不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対する添加量を0.1重量部以上とすることにより光感度を向上させる効果が十分に発揮されやすく、不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対する添加量を10重量部以下とすることにより、特に塗布膜上部での過剰な光吸収が起こり、導電パターンが逆テーパー形状となり、基材との接着性が低下することを抑制することができる。
 本発明の感光性導電ペーストに含まれる導電性フィラー(D)はAg、Au、Cu、Pt、Pb、Sn、Ni、Al、W、Mo、酸化ルテニウム、Cr、Ti、およびインジウムの少なくとも1種を含むことが好ましく、これらの導電性フィラーを単独、合金、あるいは混合粉末として用いることができる。また、上述の成分で絶縁性粒子または導電性粒子の表面を被膜した導電性粒子も同様に用いることができる。中でも導電性の観点からAg、CuおよびAuが好ましく、コスト、安定性の観点からAgがより好ましい。
 導電性フィラー(D)の平均粒子径は0.5~10μmが好ましく、より好ましくは1~6μmである。平均粒子径が1μm以上であると導電性フィラー同士の接触確率が向上し、作製される導電パターンの比抵抗値、および断線確率を低くすることができ、且つ露光時の紫外線が膜中をスムーズに透過することができ、微細パターニングが容易となる。また平均粒子径が6μm以下であれば印刷後の回路パターンの表面平滑度、パターン精度、寸法精度が向上する。なお、平均粒子径は、コールターカウンター法、光子相関法およびレーザー回折法等により体積平均粒子径を求めることができる。
 導電性フィラー(D)の添加量としては感光性導電ペースト中の全固形分に対し、70~95重量%の範囲内であることが好ましく、より好ましくは80~90重量%である。80重量%以上とすることにより、特にキュア時の硬化収縮における導電性フィラー同士の接触確率が向上し、作製される導電パターンの比抵抗値、および断線確率を低くすることができる。また、90重量%以下とすることにより、特に露光時の紫外線が膜中をスムーズに透過することができ、微細なパターニングが容易となる。また、固形分とは感光性導電ペーストから溶剤を除いたものである。
 本発明の感光性導電ペーストに含まれる酸発生剤(E)は、光もしくは熱により反応し、酸を発生する物質のことをいう。発生する酸による触媒効果により、アルコキシ基を有する化合物(A)中のアルコキシ基の縮合反応を低温で促進させる効果を有する。その結果、より低温のキュア条件において導電性を発現させ、且つ比抵抗率を小さくすることができる。
 光酸発生剤としてはキノンジアジド系、ジアゾジスルホン系、トリフェニルスルホニウム系の物質が挙げられ、熱酸発生剤としてはスルホニウム塩などが挙げられる。光酸発生剤は露光により露光部に酸を発生させるため、露光部と未露光部との溶解度差が小さくなり、パターニング性に悪影響を与える可能性があるため熱酸発生剤が好ましく、発生する酸の強さの観点からスルホニウム塩がより好ましい。
 酸発生剤(E)の添加量としては不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対して0.01~5重量部の範囲内であることが好ましく、より好ましくは0.05~5重量部である。不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対する添加量を0.05重量部以上とすることにより、特にアルコキシ基を有する化合物のアルコキシ基の縮合反応の触媒としての働きが顕著になる。また、5重量部以下とすることにより触媒としての効率が高くなる。
 本発明の感光性導電ペーストに含まれる全塩素含有量が300ppm以上である化合物(F)は化合物中に含まれる全塩素量が300rpm以上であれば特に限定されない。本発明において全塩素量とは、化合物中に含まれる塩素イオン、塩素原子のすべての含有量を指し、単独で存在しているか、構造中に取り込まれているか、またどのような態様で存在しているかは問わない。また、これら塩素イオン、塩素原子の由来元は特段限定されない。
 全塩素含有量が300ppm以上である化合物(F)としてはエピクロルヒドリン由来の化合物であるグリシジル基含有化合物、その不飽和二重結合付加物などが挙げられる。具体例として、グリシジル基含有化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型エポキシ樹脂、ビスフェノキシエタノールフルオレン型エポキシ樹脂、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レソルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、水添ビスフェノールA型ジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ポリブタジエンジグリシジルエーテル、ジグリシジルo-フタレート、ヒドロキノンジグリシジルエーテル、ジグリシジルテレフタレート、N-グリシジルフタルイミド、トリメチロールプロパントリグリシジルエーテルが挙げられ、不飽和二重結合付加物としてはこれらグリシジル基含有化合物のアクリル酸付加物、メタクリル酸付加物などが挙げられる。
 全塩素含有量が300ppm以上である化合物(F)の添加量としては不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対し、好ましくは0.05~30重量部の範囲で添加され、より好ましくは、0.5~20重量部である。不飽和二重結合を有し、ガラス転移温度が5~40℃である感光性成分(B)100重量部に対する化合物(F)の添加量を0.05重量部以上とすることにより、最終組成物の導電性を高めることができ、化合物(F)の添加量を30重量部以下とすることにより現像マージン、高温高湿度下での密着性をよくすることができる。
 本発明の感光性導電ペーストの導電性フィラー(D)を除く全固形分量における全塩素含有量は100ppm以上であることが、最終組成物の導電性を高くすることが出きるため好ましい。
 化合物(F)、本発明の感光性導電ペーストの導電性フィラー(D)を除く全固形分量における全塩素含有量は塩素分析装置を用いて測定することができる。化合物(F)については溶剤で100倍に希釈したものを測定試料とし、本発明の感光性導電ペーストについては遠心分離を行い、得られた上澄み溶液を乾燥し、得られた有機成分を再度溶剤で100倍に希釈したものを測定試料とした。なお導電性フィラー(D)を除く全固形分量については感光性導電ペーストの乾燥膜の熱重量分析(TG測定)を行い、重量減少率を用いて算出した。
 本発明の感光性導電ペーストは溶剤を含有してもよい。溶剤としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシド、γ-ブチロラクトン、乳酸エチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、エチレングリコールモノ-n-プロピルエーテル、ジアセトンアルコール、テトラヒドロフルフリルアルコール、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。溶剤は1種を単独で用いたり、2種以上を混合して用いたりすることができる。溶剤はペースト作製後、粘度調整を目的に後から添加してもかまわない。
 本発明の感光性導電ペーストは、その所望の特性を損なわない範囲であれば分子内に不飽和二重結合を有しない非感光性ポリマー、可塑剤、レベリング剤、界面活性剤、シランカップリング剤、消泡剤、顔料等の添加剤を配合することもできる。非感光性ポリマーの具体例としてはエポキシ樹脂、ノボラック樹脂、フェノール樹脂、ポリイミド前駆体、既閉環ポリイミドなどが挙げられる。
 可塑剤の具体例としてはジブチルフタレート、ジオクチルフタレート、ポリエチレングリコール、グリセリン等が挙げられる。レベリング剤の具体例としては特殊ビニル系重合物、特殊アクリル系重合物などが挙げられる。
 シランカップリング剤としては、メチルトリメトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシランなどが挙げられる。
 本発明の感光性導電ペーストは分散機、混練機などを用いて作製される。これらの具体例としては三本ローラー、ボールミル、遊星式ボールミルなどが挙げられるが、これらに限定されない。
次に本発明の感光性導電ペーストを用いた導電パターンの製造方法について説明する。導電パターンを作製するためには本発明のペーストを基板上に塗布し、加熱して溶剤を揮発させて乾燥する。その後パターン形成用マスクを介し、露光し、現像工程を経ることで基板上に所望のパターンを形成する。そしてキュアして導電パターンを作製する。
 本発明で用いる基板は、例えば、シリコンウエハー、セラミックス基板、有機系基板などが挙げられる。セラミックス基板としては、ガラス基板、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板等が挙げられ、樹脂基板としては、エポキシ樹脂基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板、ポリイミドフィルム、ポリエステルフィルム、アラミドフィルム等が挙げられるが、これらに限定されない。
 本発明の感光性導電ペーストを基板に塗布する方法としてはスピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーターなどの方法がある。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が、0.1~50μmの範囲内になるように塗布される。
 次に基板上に塗布した塗布膜から溶剤を除去する。溶剤を除去する方法としては、オーブン、ホットプレート、赤外線などによる加熱乾燥や真空乾燥などが挙げられる。加熱乾燥は50℃から180℃の範囲で1分から数時間行うのが好ましい。
 溶剤除去後の塗布膜上に、フォトリソグラフィー法によりパターン加工を行う。露光に用いられる光源としては水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いるのが好ましい。
 露光後、現像液を用いて未露光部を除去することによって、所望のパターンが得られる。アルカリ現像を行う場合の現像液としては、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどの化合物の水溶液が好ましい。また場合によっては、これらの水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトンなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは複数種添加したものを現像液として用いてもよい。また、これらのアルカリ水溶液に界面活性剤を添加したものを現像液として使用することもできる。有機現像を行う場合の現像液としては、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミドなどの極性溶媒を単独あるいは、メタノール、エタノール、イソプロピルアルコール、キシレン、水、メチルカルビトール、エチルカルビトールなどと組み合わせた混合溶液が使用できる。
 現像は、基板を静置または回転させながら上記の現像液を塗布膜面にスプレーする、基板を現像液中に浸漬する、あるいは浸漬しながら超音波をかけるなどの方法によって行うことができる。
 現像後、水によるリンス処理を施してもよい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 次にアルコキシ基を有する化合物(A)中のアルコキシ基の縮合反応を行うためにペースト組成物膜をキュアする。キュアする方法としては、オーブン、イナートオーブン、ホットプレート、赤外線などによる加熱乾燥や真空乾燥などが挙げられる。キュア温度は130~400℃の範囲が好ましく、より好ましくは150~400℃である。キュア温度を150℃以上とすることにより、特にアルコキシ基を有する化合物(A)の縮合反応の反応率を向上させることができ、その結果、導電性フィラー同士の接触確率が上がり、比抵抗率が小さくなる。また、本発明の感光性導電ペーストは400℃以下の比較的低温のキュアで高い導電性を得ることができるため、耐熱性が低い基板上や、耐熱性の低い材料と併用して用いることができる。このようにキュア工程を経て導電パターンを作製することができる。
 以下、本発明の実施例について説明するが、本発明はこれらによって限定されるものではない。各実施例および比較例で用いた材料および評価方法は以下の通りである。
 <パターニング性の評価方法>
 ガラス基板上に感光性導電ペーストを乾燥厚みが12μmになるように塗布、100℃のホットプレートで3分間乾燥し、一定のラインアンドスペース(L/S)で配列する直線群を1つのユニットとし、L/Sの値が異なる9種類のユニットを有する透光パターンを有するフォトマスクを介して露光、現像、そして180℃で1時間キュアすることによって導電パターンを得た。各ユニットのL/Sの値は500/500、250/250、100/100、50/50、40/40、30/30、25/25、20/20、15/15とした(それぞれライン幅(μm)/間隔(μm)を表す)。パターンを光学顕微鏡により観察し、パターン間に残渣がなく、かつパターン剥がれのない最小のL/Sの値を持つパターンを確認し、この最小のL/Sの値を現像可能なL/Sとした。
 <比抵抗率の評価方法>
 100℃のホットプレートで3分間乾燥し、図1に示すパターンの透光部Aを有するフォトマスクを介して露光し、現像そして180℃で1時間乾燥オーブンでキュアすることによって比抵抗率測定用導電性パターンを得た。導電性パターンのライン幅は0.400mm、ライン長さは80mmである。得られたパターンの端部を表面抵抗計でつなぎ、表面抵抗値を測定し、下記の計算式に当てはめて比抵抗率を算出した。なお膜厚の測定は触針式段差計“サーフコム1400”(商品名、(株)東京精密製)を用いて行った。膜厚の測定はランダムに3箇所の位置にて測り、その3点の平均値を膜厚とした。測長は1mm、走査速度は0.3mm/sとした。線幅はパターンを光学顕微鏡でランダムに3箇所の位置を観察し、画像データを解析して得られた3点の平均値を線幅とした。
比抵抗率=表面抵抗値×膜厚×線幅/ライン長
 <屈曲性の評価方法>
 図2は屈曲性試験に用いたサンプルを模式的に示したものである。縦10mm、横100mmの長方形のポリイミドフィルム(厚み50μm)上に感光性導電ペーストを乾燥厚みが10μmになるように塗布し、100℃のホットプレートで3分間乾燥し、図1に示すパターンの透光部Aを有するフォトマスクを、透光部がサンプル中央になるように配置して露光し、現像、180℃で1時間乾燥オーブンでキュアして導電パターンを形成し、テスターを用いて抵抗値を測定した。その後導電パターンが内側、外側と交互になるように曲げてサンプル短辺Bとサンプル短辺Cを接触させ、元に戻す屈曲動作を100回繰り返した後、再度テスターで抵抗値を測定した。その結果抵抗値の変化量が20%以下であること、且つ導電パターンにクラック、剥がれ、断線などがないものを○とし、そうでないものを×とした。
 実施例、比較例で用いた材料は以下の通りである。
・アルコキシ基を有する化合物(A)
N-n-ブトキシメチルアクリルアミド
BX-4000(商品名、株式会社三和ケミカル社製)
・感光性成分
以下のアクリルモノマーを用い、合成例1~5の方法で得られた感光性成分B-1~B-5を用いた。
メチルメタクリレート(MMA)(ホモポリマーのガラス転移温度:105℃)
エチルアクリレート(EA)(ホモポリマーのガラス転移温度:-22℃)
アクリル酸(AA)(ホモポリマーのガラス転移温度:106℃)
シクロメタクリレート(CMA)(ホモポリマーのガラス転移温度:-65℃)
スチレン(St)(ホモポリマーのガラス転移温度:100℃)
メタクリル酸2-エチルヘキシル(2-EHMA)(ホモポリマーのガラス転移温度:-10℃)
i-ブチルアクリレート(i-BA)(ホモポリマーのガラス転移温度:-24℃)
グリシジルメタクリレート(GMA)(ホモポリマーのガラス転移温度:74℃)
Figure JPOXMLDOC01-appb-T000002
 (合成例1)感光性成分B-1
 共重合比率(重量基準):EA/2-EHMA/St/GMA/AA=20/40/20/5/15
 窒素雰囲気の反応容器中にγ-BL150gを仕込みオイルバスを用いて80℃まで昇温した。これに、エチルアクリレート20g、メタクリル酸2-エチルヘキシル40g、スチレン20g、アクリル酸15g、2,2’-アゾビスイソブチロニトリル0.8gおよびγ-BL10gからなる混合物を1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、ハイドロキノンモノメチルエーテル1gを添加して重合反応を停止した。引き続きグリシジルメタクリレート5g、トリエチルベンジルアンモニウムクロライド1gおよびγ-BL10gからなる混合物を0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで感光性成分B-1を得た。得られた感光性成分B-1の酸価は103mgKOH/g、式(1)より求めたガラス転移温度は21.7℃であった。
 (合成例2)感光性成分B-2
 共重合比率(重量基準):MA/CMA/i-BA/GMA/AA=25/25/30/5/15
 合成例1と同様にメチルアクリレート25g、シクロメタクリレート25g、イソブチルアクリレート30g、アクリル酸15gにグリシジルメタクリレートを5g付加した感光性成分B-2を得た。得られた感光性成分B-2の酸価は98mgKOH/g、式(1)より求めたガラス転移温度は36.5℃であった。
 (合成例3)感光性成分B-3
 共重合比率(重量基準):St/CMA/i-BA/GMA/AA=25/25/25/5/20
 合成例1と同様にスチレン25g、シクロメタクリレート25g、イソブチルアクリレート25g、アクリル酸20gにグリシジルメタクリレートを5g付加した感光性成分B-3を得た。得られた感光性成分B-3の酸価は152mgKOH/g、式(1)より求めたガラス転移温度は32.7℃であった。
 (合成例4)感光性成分F-1
 共重合比率(重量基準):St/CMA/i-BA/GMA/AA=40/10/30/5/15
 合成例1と同様にスチレン40g、シクロメタクリレート10g、イソブチルアクリレート30g、アクリル酸15gにグリシジルメタクリレートを5g付加した感光性成分F-1を得た。得られた感光性成分F-1の酸価は105mgKOH/g、式(1)より求めたガラス転移温度は65.5℃であった。
 (合成例5)感光性成分F-2
 共重合比率(重量基準):St/CMA/i-BA/GMA/AA=15/50/15/5/15
 合成例1と同様にスチレン15g、シクロメタクリレート50g、イソブチルアクリレート15g、アクリル酸15gにグリシジルメタクリレートを5g付加した感光性成分F-2を得た。得られた感光性成分F-2の酸価は100mgKOH/g、式(1)より求めたガラス転移温度は-10.2℃であった。
・光重合開始剤(C)
IRGACURE 907(商品名、チバジャパン株式会社製)
IRGACURE OXE-01(商品名、チバジャパン株式会社製)
・導電性フィラー(D)
表2に記載の材料、平均粒子径のものを用いた。なお、平均粒子径は以下の方法により求めた。
<平均粒子径の測定>
導電性フィラー(D)の平均粒子径は、HORIBA社製動的光散乱式粒度分布計により体積平均粒子径を測定した。
・酸発生剤(E)
サンエイドSI-110(商品名、三新化学工業株式会社製)
・全塩素含有量が300ppm以上である化合物(F)
エポキシエステル80MFA(共栄社化学株式会社製、全塩素濃度300ppm以上)
<導電性フィラー(D)を除く全固形分量における全塩素含有量の測定方法>
本発明の感光性導電ペーストをテーブルトップ遠心機2420(商品名、久保田商事株式会社製)に50gいれ、3000rpmで30分間遠心分離を行い、上澄み溶液を150℃で10時間乾燥させて得られたものを溶剤で100倍に希釈し、固層抽出用カートリッジGL-PakPLS-3(GLサイエンス社製)でろ過したろ液について塩素・硫黄分析装置TOX-2100H(三菱アナリテック社製)を用いて全塩素含有量を測定した。導電性フィラー(D)を除く全固形分量については、本発明の感光性導電ペーストを150℃で10時間乾燥させたものを下記の条件でTG測定して得られた重量減少率の値を用いて求めた。
     装置:TG-50/51H(商品名、株式会社島津製作所社製)
     温度:600℃1時間保持
昇温速度:5℃/min
雰囲気:大気
・溶剤:γ-ブチロラクトン(三菱ガス化学株式会社製)
 実施例1
 100mlクリーンボトルに感光性成分B-1を20g、N-n-ブトキシメチルアクリルアミドを12g、光重合開始剤OXE-01(チバジャパン株式会社製)を4g、酸発生剤SI-110(三新化学工業株式会社製)を0.6g、γ-ブチロラクトン(三菱ガス化学株式会社製)を10gいれ、“あわとり練太郎”(商品名ARE-310、株式会社シンキー社製)で混合し、感光性樹脂溶液46.6g(固形分78.5重量%)を得た。得られた感光性樹脂溶液8.0gと平均粒子径2μmのAg粒子を42.0g混ぜ合わせ、3本ローラー“EXAKT M-50”(商品名、EXAKT社製)を用いて混練し、50gの感光性導電ペーストを得た。
 得られたペーストをスクリーン印刷で膜厚50μmのポリイミドフィルム上に塗布し、乾燥オーブンで100℃、10分でプリベークを行った。その後、露光装置“PEM-6M”(商品名、ユニオン光学(株)製)を用いて露光量70mJ/cm(波長365nm換算)で全線露光を行い、0.5%NaCO溶液で1分間浸漬現像を行い、超純水でリンス後、乾燥オーブンで200℃、1時間キュアを行った。パターン加工された導電パターンの膜厚は10μmであった。導電パターンのラインアンドスペース(L/S)パターンを光学顕微鏡により確認したところ、L/Sが20/20μmまでパターン間残渣、パターン剥がれがなく、良好にパターン加工されていることを確認した。そして導電パターンの比抵抗率を測定したところ7.3×10-5Ωcmであった。また屈曲性についても試験後クラックや断線などが生じておらず良好な結果が得られた。
 実施例2~9
 表2に示す組成の感光性導電ペーストを実施例1と同様の方法で製造し、評価結果を表3に示した。
比較例1~3
 表2に示す組成の感光性導電ペーストを実施例1と同様の方法で製造し、評価結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
A 透光部
B、C サンプル短辺
D 導電パターン
E ポリイミドフィルム

Claims (12)

  1. アルコキシ基を有する化合物(A)、不飽和二重結合を有し、ガラス転移温度が5~40℃の範囲内である感光性成分(B)、光重合開始剤(C)、および導電性フィラー(D)を含むことを特徴とする感光性導電ペースト。
  2. 前記不飽和二重結合を有し、ガラス転移温度が5~40℃の範囲内である感光性成分(B)のガラス転移温度が10~30℃の範囲内である請求項1記載の感光性導電ペースト。
  3. 前記不飽和二重結合を有し、ガラス転移温度が5~40℃の範囲内である感光性成分(B)の酸価が50~200mgKOH/gの範囲内である請求項1~2のいずれかに記載の感光性導電ペースト。
  4. 前記不飽和二重結合を有し、ガラス転移温度が5~40℃の範囲内である感光性成分(B)の酸価が80~150mgKOH/gの範囲内である請求項1~3のいずれかに記載の感光性導電ペースト。
  5. 前記光重合開始剤(C)が分子内にベンゾイル骨格を含むことを特徴とする請求項1~4のいずれかに記載の感光性導電ペースト。
  6. 前記光重合開始剤(C)が1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、またはエタノン,1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)である請求項1~5のいずれかに記載の感光性導電ペースト。
  7. さらに酸発生剤(E)を含有する請求項1~6のいずれかに記載の感光性導電ペースト。
  8. 前記酸発生剤(E)がスルホニウム塩である請求項7に記載の感光性導電ペースト。
  9. さらに全塩素含有量が300ppm以上である化合物(F)を含むことを特徴とする請求項1~8のいずれかに記載の感光性導電ペースト。
  10. 前記全塩素含有量が300ppm以上である化合物(F)が不飽和二重結合含有化合物もしくはグリシジル基含有化合物であることを特徴とする請求項9に記載の感光性導電ペースト。
  11. 請求項1~10のいずれかに記載の感光性導電ペーストの導電性フィラー(D)を除く全固形分量における全塩素含有量が100ppm以上であることを特徴とする感光性導電ペースト。
  12. 請求項1~11のいずれかに記載の感光性導電ペーストを基板上に塗布し、乾燥し、露光し、現像した後に130℃以上400℃以下の温度でキュアすることを特徴とする導電パターンの製造方法。
PCT/JP2011/053943 2010-03-18 2011-02-23 感光性導電ペーストおよび導電パターンの製造方法 WO2011114846A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011509744A JPWO2011114846A1 (ja) 2010-03-18 2011-02-23 感光性導電ペーストおよび導電パターンの製造方法
CN201180014597XA CN102812399A (zh) 2010-03-18 2011-02-23 感光性导电糊剂及导电图形的制备方法
KR1020127018020A KR20130016192A (ko) 2010-03-18 2011-02-23 감광성 도전 페이스트 및 도전 패턴의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-061990 2010-03-18
JP2010061990 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114846A1 true WO2011114846A1 (ja) 2011-09-22

Family

ID=44648952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053943 WO2011114846A1 (ja) 2010-03-18 2011-02-23 感光性導電ペーストおよび導電パターンの製造方法

Country Status (5)

Country Link
JP (1) JPWO2011114846A1 (ja)
KR (1) KR20130016192A (ja)
CN (1) CN102812399A (ja)
TW (1) TW201139577A (ja)
WO (1) WO2011114846A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180580A (ja) * 2010-02-02 2011-09-15 Toray Ind Inc 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP2013182800A (ja) * 2012-03-02 2013-09-12 Toray Ind Inc 感光性導電ペースト
JP2013195733A (ja) * 2012-03-21 2013-09-30 Toray Ind Inc 感光性導電ペースト
JP2013249467A (ja) * 2012-05-31 2013-12-12 Lg Chem Ltd 新規な高分子およびこれを含む着色組成物
JP2014228793A (ja) * 2013-05-24 2014-12-08 株式会社村田製作所 感光性ペースト
JP2015184626A (ja) * 2014-03-26 2015-10-22 東レ株式会社 感光性樹脂組成物、それからなる感光性樹脂ペーストならびにそれらを硬化させて得られる硬化膜およびそれを有する電極回路
US9963598B2 (en) 2011-02-23 2018-05-08 Dexerials Corporation Transparent conductive film, information input device, and electronic device
KR101865692B1 (ko) * 2015-10-08 2018-06-08 엘에스니꼬동제련 주식회사 감광성 도전 페이스트 조성물

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150017457A1 (en) * 2012-03-06 2015-01-15 Dexerials Corporation Transparent conductive film, conductive element, composition, input device, display device and electronic instrument
CN104145312B (zh) * 2012-03-06 2017-08-15 迪睿合电子材料有限公司 透明导电膜、导电性元件、组合物、有色自组织材料、输入装置、显示装置和电子设备
KR101473094B1 (ko) * 2012-05-31 2014-12-16 주식회사 엘지화학 신규한 고분자 및 이를 포함하는 착색 조성물
CN102929101B (zh) * 2012-10-12 2016-12-21 昆山维信诺显示技术有限公司 一种导电光刻胶及使用该导电光刻胶的oled电极及制造方法
JP6226105B1 (ja) * 2016-03-17 2017-11-08 東レ株式会社 積層部材及びタッチパネル
WO2017169807A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 レジストパターン形成方法及びレジスト
CN109581814A (zh) * 2017-09-29 2019-04-05 互耐普勒斯有限公司 低温固化型感光树脂组合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194493A (ja) * 1997-12-27 1999-07-21 Dainippon Printing Co Ltd 感光性導体ペースト
JP2002131927A (ja) * 2000-10-24 2002-05-09 Nippon Kayaku Co Ltd 無機粉体を感光性ペーストへ再利用する方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100629923B1 (ko) * 1998-09-30 2006-09-29 돗빤호무즈가부시기가이샤 도전성페이스트와 도전성페이스트의 경화방법, 및 도전성페이스트를 이용한 비접촉형 데이터송수신체용 안테나의 형성방법과, 비접촉형 데이터송수신체
TW200720846A (en) * 2005-07-13 2007-06-01 Taiyo Ink Mfg Co Ltd Silver paste composition, method for electrically conductive pattern formation using the same, and its electrically conductive pattern
TW200720845A (en) * 2005-07-13 2007-06-01 Taiyo Ink Mfg Co Ltd Black paste composition, method for black matrix pattern formation using the same, and its black matrix pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194493A (ja) * 1997-12-27 1999-07-21 Dainippon Printing Co Ltd 感光性導体ペースト
JP2002131927A (ja) * 2000-10-24 2002-05-09 Nippon Kayaku Co Ltd 無機粉体を感光性ペーストへ再利用する方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180580A (ja) * 2010-02-02 2011-09-15 Toray Ind Inc 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
US9963598B2 (en) 2011-02-23 2018-05-08 Dexerials Corporation Transparent conductive film, information input device, and electronic device
US10100208B2 (en) 2011-02-23 2018-10-16 Dexerials Corporation Method of manufacturing a transparent conductive film
US10196526B2 (en) 2011-02-23 2019-02-05 Dexerials Corporation Transparent conductive film, information input device, and electronic device
JP2013182800A (ja) * 2012-03-02 2013-09-12 Toray Ind Inc 感光性導電ペースト
JP2013195733A (ja) * 2012-03-21 2013-09-30 Toray Ind Inc 感光性導電ペースト
JP2013249467A (ja) * 2012-05-31 2013-12-12 Lg Chem Ltd 新規な高分子およびこれを含む着色組成物
JP2014228793A (ja) * 2013-05-24 2014-12-08 株式会社村田製作所 感光性ペースト
JP2015184626A (ja) * 2014-03-26 2015-10-22 東レ株式会社 感光性樹脂組成物、それからなる感光性樹脂ペーストならびにそれらを硬化させて得られる硬化膜およびそれを有する電極回路
KR101865692B1 (ko) * 2015-10-08 2018-06-08 엘에스니꼬동제련 주식회사 감광성 도전 페이스트 조성물

Also Published As

Publication number Publication date
JPWO2011114846A1 (ja) 2013-06-27
KR20130016192A (ko) 2013-02-14
TW201139577A (en) 2011-11-16
CN102812399A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2011114846A1 (ja) 感光性導電ペーストおよび導電パターンの製造方法
JP5967079B2 (ja) 導電ペーストおよび導電パターンの製造方法
JP5278632B2 (ja) 感光性導電ペーストおよび導電パターンの製造方法
JP5471376B2 (ja) 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP5360285B2 (ja) 感光性導電ペースト
JP5533043B2 (ja) 感光性導電ペーストおよび導電パターンの製造方法
JP5764931B2 (ja) 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP5884556B2 (ja) 感光性導電ペースト
US9846362B2 (en) Conductive paste and method of producing conductive pattern
JP5978683B2 (ja) 導電パターン付基板の製造方法
JP5403187B1 (ja) 感光性導電ペーストおよび導電パターンの製造方法
WO2014069436A1 (ja) 感光性導電ペースト及び導電パターンの製造方法
WO2015174348A1 (ja) 導電ペースト、タッチパネル及び導電パターンの製造方法
TWI704417B (zh) 感光性導電糊及附有導電圖案之基板的製造方法
JP2013196998A (ja) 感光性導電ペースト
JP6729378B2 (ja) 導電ペースト、タッチセンサー部材及び導電パターンの製造方法
JP2019114497A (ja) 導電ペーストおよび導電パターン形成基板の製造方法
KR20170009459A (ko) 포토 에칭형 도전 페이스트 조성물 및 이를 이용한 도전 패턴의 제조방법
KR20170013072A (ko) 포토 에칭형 도전 페이스트 조성물 및 이를 이용한 도전 패턴의 제조방법
JP2013157251A (ja) 感光性導電ペースト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014597.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011509744

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127018020

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756035

Country of ref document: EP

Kind code of ref document: A1