WO2011145618A1 - 沸騰冷却器 - Google Patents
沸騰冷却器 Download PDFInfo
- Publication number
- WO2011145618A1 WO2011145618A1 PCT/JP2011/061320 JP2011061320W WO2011145618A1 WO 2011145618 A1 WO2011145618 A1 WO 2011145618A1 JP 2011061320 W JP2011061320 W JP 2011061320W WO 2011145618 A1 WO2011145618 A1 WO 2011145618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- plate
- refrigerant
- heat receiving
- receiving member
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
- F28F13/187—Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0283—Means for filling or sealing heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a boiling cooler that suppresses heat generation of an LSI or IC by utilizing a phase change phenomenon of a refrigerant such as boiling or liquefaction, particularly in an electronic device equipped with an LSI or IC.
- LSIs and ICs used in electronic devices such as computers are acceleratingly increasing with each generation. Furthermore, in recent years, there has been an increasing demand for smaller and thinner devices. For this reason, the heat generation density of LSI and IC tends to increase further in the future. In order to operate these LSIs and ICs stably at high speed, it is necessary to control the operating temperature below a certain temperature. A cooling method is employed in accordance with the heat generation amount of these LSIs and ICs. However, when a device is reduced in size and thickness, a cooler such as a heat sink mounted on an LSI or IC cannot secure a size corresponding to the amount of heat generated.
- a boiling cooler including a heat receiving plate 3, a heat transfer means 4, and a heat sink 5 as shown in FIG. 11 has been proposed.
- the small heat receiving plate 3 is disposed on a heating element 2 such as an LSI or an IC installed on the substrate 1 and absorbs heat from the heating element 2.
- the heat absorbed by the heat receiving plate 3 is transported via the heat transfer means 4 to the heat sink 5 mounted on the board 1 wider than the heating element 2.
- the heat transfer means 4 a metal having high thermal conductivity such as aluminum or copper may be used. However, it is preferable to use the heat pipe 6 having better heat transfer performance as the heat transfer means 4.
- the heat pipe 6 utilizes a phase change phenomenon in which the refrigerant is vaporized by the heat receiving plate 3 in contact with the heating element 2, and the vaporized refrigerant is liquefied by the heat radiating plate 7 provided below the heat sink 5. The heat pipe 6 uses this phase change phenomenon to transfer heat generated in the heating element 2 such as an LSI or an IC to the heat sink 5.
- the structure of the heat pipe 6 will be described with reference to a schematic sectional view of FIG.
- the heat pipe 6 includes a hollow tubular container 8 made of a metal having high thermal conductivity such as aluminum and copper, and a refrigerant sealed in the container 8.
- One end of the heat pipe 6 is connected to a heat receiving plate 3 that is in contact with the heating element 2 such as an LSI or an IC.
- a heat radiating plate 7 in contact with the heat sink 5 serving as a cooler is connected to the other end of the heat pipe 6.
- the refrigerant changes phase from liquid to gas, while in the heat sink 7, the refrigerant changes phase from gas to liquid.
- the pressure on the heat receiving plate 3 side becomes high, and the vaporized refrigerant generated in the heat receiving plate 3 moves to the heat radiating plate 7 side.
- the liquid refrigerant generated on the heat radiating plate 7 side returns to the heat receiving plate 3 by passing through a fine mesh called a wick 9 attached to the inner surface of the heat pipe 6.
- the mesh gap is very narrow.
- the heat pipe 6 when the liquefied refrigerant generated in the heat radiating plate 7 is returned to the heat receiving plate 3, the heat pipe 6 passes through the fine mesh-like wick 9, so that the heat transport amount cannot be increased. Therefore, it is difficult to cool the heating element 2 having a large amount of heat.
- Patent Document 1 proposes a boiling cooler in which a refrigerant is boiled by a heat receiving plate, and a liquid generated by the heat radiating plate is refluxed by gravity.
- This heat transport using boiling is characterized by a large heat transport capability because it uses more refrigerant than the heat pipe and recirculates by gravity.
- the loop-shaped flow path is formed in the flat plate. With this configuration, the flow path through which the gaseous refrigerant passes and the liquid refrigerant generated in the heat radiating plate recirculate, so that the flow path is separated, reducing pressure loss due to collision between the two and increasing the equivalent thermal conductivity.
- Patent Document 2 the area where the heat receiving plate comes into contact with the refrigerant is increased by placing a boiling promoting structure on the heat receiving plate, the boiling is promoted by improving the heat transfer coefficient transmitted from the heat generating part to the refrigerant, and the equivalent thermal conductivity. Is increasing.
- the heat radiation wall is provided with a fin having a notch partially, and the equivalent thermal conductivity is increased by increasing the surface area for condensation and enhancing the condensation effect.
- Patent Document 4 shows a configuration in which corrugated fins having low heights are arranged in two stages (or three or more stages), and the corrugated fins are joined with their positions aligned so that heat can be transferred to each other. Has been.
- chevron-shaped first fins are arranged on the inner sides of the heat receiving plate and the heat radiating plate, respectively, and chevron-shaped second fins are arranged on the inner side of the first fins through a support member such as a wire mesh. The configuration shown is shown.
- Japanese Unexamined Patent Publication No. 2006-344636 Japanese Unexamined Patent Publication No. 07-161888 Japanese Unexamined Patent Publication No. 2000-74536 Japanese Unexamined Patent Publication No. 01-209356 Japanese Unexamined Patent Publication No. 11-31768
- Patent Document 1 if a structure in which the flow path of the boiling cooling gas and the liquid refrigerant is divided as a method for improving the equivalent thermal conductivity of the flat plate boiling cooler, the flat cooling plate using boiling cooling is adopted. There is a problem that the design becomes complicated. That is, if it is going to divide a flow path, it will be necessary to adjust a flow path finely for every apparatus, and versatility will be impaired.
- An example of the object of the present invention is to provide a boiling cooler that can efficiently dissipate heat with a simple configuration and can be applied to LSIs and ICs that generate large amounts of heat.
- the boiling cooler of the present invention includes a chamber, a heat sink, a heat receiving member, and a heat radiating member.
- the chamber includes a heat conduction plate in which a heating element is provided on the outer surface, and a sealed space that is provided inside the heat conduction plate and is filled with a refrigerant that changes phase between liquid and gas.
- the heat sink is provided on the outer surface of the heat conducting plate.
- the heat receiving member is provided on an inner surface of the heat conducting plate so as to face the heat generating member with the heat conducting plate interposed therebetween, and transmits heat generated by the heat generating member to the refrigerant.
- the heat dissipating member is provided on the inner surface of the heat conducting plate, receives heat transferred by the refrigerant, and dissipates heat to the heat sink.
- the heat receiving member and the heat radiating member are spaced apart from each other in the surface direction of the heat conducting plate. The heat receiving member is immersed in the liquid coolant.
- the heat generated in the heating element is transported to the heat sink by changing the phase of the refrigerant sealed in the sealed space of the chamber to a liquid / gas between the heat receiving member and the heat radiating member gas.
- the heat receiving member and the heat radiating member are disposed apart from each other in the surface direction of the heat conducting plate. That is, the heat receiving member and the heat radiating member are disposed in a positional relationship that does not face each other. Therefore, the movement of the refrigerant that is a gas in the heat receiving member is not hindered, and the heat conduction efficiency can be maintained high. Therefore, it is possible to efficiently dissipate heat with a simple configuration, and it is possible to deal with LSIs and ICs that generate a large amount of heat.
- FIGS. 1 to 3 show a boiling cooler 20 according to a first embodiment of the present invention.
- a heating element 10 such as an LSI or an IC is joined to the boiling cooler 20. More specifically, the heating element 10 is joined to the heat receiving plate 22 of the boiling cooler 20 with a heat conductive grease or a heat conductive sheet. At this time, the heating element 10 may be welded with solder.
- the boiling cooler 20 has a hollow chamber 24 having a flat plate shape.
- the chamber 24 includes a side wall portion 21 formed in a rectangular frame shape, a heat receiving plate (heat conducting plate) 22 covering the upper opening 21A of the side wall portion 21, and a heat radiating plate (heat conducting plate) covering the lower opening 21B of the side wall portion 21. Plate) 23.
- the side wall 21 of the chamber 24 is provided with a refrigerant inlet 21C for injecting the refrigerant C into the sealed space.
- the chamber 24 may be formed by separately manufacturing the side wall portion 21, the heat receiving plate 22, and the heat radiating plate 23 and then bonding them by brazing or the like. Alternatively, the chamber 24 may be formed by integrally molding either the heat receiving plate 22 or the heat radiating plate 23 with the side wall portion 21.
- the O-ring 25 may be disposed around the upper opening 21A and the lower opening 21B of the side wall portion 21.
- the upper opening 21A and the lower opening 21B may be blocked by the heat radiating plate 23 and the heat receiving plate 22 via the O-ring 25, and the heat radiating plate 23 and the heat receiving plate 22 may be attached to the side wall portion 21 with screws or the like.
- the heat receiving plate 22 and the heat radiating plate 23 can be easily detached. As a result, it is possible to improve workability when mounting a heating element 22 and a heat sink 28 described later.
- a heating element 10 such as an LSI or an IC serving as a heat source is disposed on the outer surface of the sealed space of the heat receiving plate 22 .
- a heat receiving member 26 is fixed to the inner surface of the heat receiving plate 22 where the heating element 10 is disposed. The heat receiving member 26 transmits the heat generated in the heating element 10 to the refrigerant C.
- each fin of the heat receiving member 26 has been subjected to a surface roughening process having a surface roughness in the range of 1 ⁇ m to 100 ⁇ m.
- a surface roughening process having a surface roughness in the range of 1 ⁇ m to 100 ⁇ m.
- a heat radiating member 27 for removing heat from the vaporized refrigerant C2 is provided inside the heat radiating plate 23 .
- the heat radiating member 27 is disposed away from the heat receiving member 26 in the surface direction of the heat receiving plate 22 and the heat radiating plate 23 (that is, the direction perpendicular to the thickness direction of the heat receiving plate 22 and the heat radiating plate 23). . That is, the heat dissipation member 27 is disposed so as not to face the heat receiving member 26.
- a heat sink 28 as a cooler is provided on the outer surface of the heat radiating plate 23 where the heat radiating member 27 is disposed.
- the coolant C filled in the chamber 24 may be easily available water.
- an organic refrigerant having insulation as the refrigerant C. This is because, when the refrigerant C leaks, etc., when the refrigerant C touches the electronic component or the substrate, the electronic component or the substrate is not affected and can be reused.
- many organic refrigerants have a surface tension smaller than that of water and a boiling point smaller than that of water. For this reason, it is possible to suppress the heat generating body 10 to temperature lower than the boiling point of water.
- the refrigerant C sealed in the chamber 24 is saturated vapor pressure by being evacuated, and has a boiling point in a normal temperature environment.
- the saturated vapor pressure is a maximum pressure generated in a space at a certain temperature in a sealed space where only a substance such as water exists.
- the liquid refrigerant C1 and the gas refrigerant C2 coexist in the sealed space in the chamber 24.
- the liquid refrigerant C1 exists in the lower part of the sealed space, and the gas refrigerant C2 exists in the upper part of the sealed space.
- the heating element 10 such as LSI or IC generates heat
- the heat reaches the heat receiving member 26 in the chamber 24 via the heat receiving plate 22 and heats the liquid refrigerant C1 around the heat receiving member 26.
- the heated refrigerant C1 reaches the boiling point, bubbles are formed with an acute shape as a nucleus.
- the droplets generated by the condensation in the heat radiating member 27 are recirculated to the liquid refrigerant C1 existing below the heat radiating member 27 and further transported to the heat receiving member 26, so that the liquid refrigerant C1 becomes the gaseous refrigerant C2 again. And phase change.
- the heat taken away from the gaseous refrigerant C1 by the heat radiating member 27 is radiated to the air or the like via the heat sink 28 attached to the outer surface of the chamber 24.
- the gas generated in the heat receiving member 26 may be deprived of heat by the heat radiating member 27 present in the immediate vicinity to generate droplets.
- the heat receiving member 26 and the heat radiating member 27 are arranged in a positional relationship that does not face each other. For this reason, the movement of the gas generated in the heat receiving member 26 is not hindered, and as a result, a decrease in heat conduction efficiency can be prevented.
- the refrigerant C sealed in the sealed space of the chamber 24 is changed into a liquid / gas phase between the heat receiving member 26 and the heat radiating member 27. I am letting. Thereby, the heat generated in the heating element 10 can be efficiently transported to the heat sink 28. Further, the heat receiving member 26 and the heat radiating member 27 are spaced apart from each other in the surface direction of the heat receiving plate 22 and the heat radiating plate 23. That is, the heat receiving member 26 and the heat radiating member 27 are arranged in a positional relationship that does not face each other.
- the heat receiving member 26 preferably has a large surface area in contact with the refrigerant C, but the surface area in contact with the liquid refrigerant C is not necessarily proportional to the boiling performance. It has been confirmed that when the pin fins of the first embodiment are rectangular fins 30, the surface area in contact with the refrigerant C is reduced, but the boiling performance is not significantly reduced. In terms of productivity, the rectangular fin 30 is more advantageous than the pin fin.
- the rectangular fin 30 may be formed integrally with the heat receiving plate 22 by cutting or forging. Alternatively, a rectangular parallelepiped member of the rectangular fin 30 may be separately manufactured and then welded to the heat receiving plate 22 by brazing or the like, and then the surface may be roughened from about 1 ⁇ m to several hundreds of ⁇ m. Such a rectangular fin 30 may also be applied to the heat radiating member 27 connected to the heat sink 28.
- the heat receiving member 26 is a plurality of columnar pin fins having a rough surface on the heat receiving plate 22 on which the heating element 10 is disposed. As shown in FIG. 5, the heat receiving member 26 may be constituted by a rectangular parallelepiped heat radiation block 31 having a rough surface.
- the chamber 24 is arranged to be horizontal, but the invention is not limited to this.
- the boiling cooler 20 may be arranged vertically as shown in FIG. That is, the heat receiving member 26 and the heat radiating member 27 may be positioned so that the normal lines of the heat receiving member 26 and the heat radiating member 27 are orthogonal to the heat receiving plate 22 and the heat radiating plate 23 in the vertical direction. Also in this case, at least the heat receiving member 26 of the heat receiving member 26 and the heat radiating member 27 is immersed in the liquid refrigerant C1. With such a configuration, the degree of freedom in design can be increased.
- the heat conductive plate 32 is made of, for example, metal.
- the heat of the heating element 10 is transferred from the heat receiving member 26 to the heat radiating member 27 by transferring the metal, and a synergistic effect combined with heat transport through the refrigerant C can be exhibited.
- the heat receiving and radiating member 32 may be manufactured by cutting or forging. Or you may attach the heat-receiving member 26 and the fin of the heat radiating member 27 which were produced separately by brazing.
- the sealing plate 33 disposed so as to face the heat conductive plate 32 may be made of aluminum or copper having good heat conductivity, or may be made of a resin such as acrylic in consideration of productivity.
- the chamber 24 is arranged to be horizontal, but the invention is not limited to this.
- the boiling cooler 10 is arranged vertically as shown in FIGS. 9 and 10, and the buffer tank 40 is arranged in the upper position thereof. Also good.
- the heat receiving member 26 connected to the heating element 10 must be immersed in the liquid refrigerant C1.
- the liquid refrigerant C1 is mostly occupied in the internal space of the chamber 24, the volume of the liquid refrigerant C1 is increased by vaporizing the liquid refrigerant C1 into the gas refrigerant C2 due to the phase change in the heat receiving member 26. .
- the pressure in the chamber 24 rises more than necessary. In this case, since the boiling point of the refrigerant C increases, the heating element 10 may not be cooled to a predetermined temperature.
- the buffer tank 40 shown in FIGS. 8 to 10 serves as an evacuation site for the gaseous refrigerant C2.
- the buffer tank 40 is disposed so as to protrude above the heat sink 23.
- a buffer space for accommodating the gaseous refrigerant C2 is formed inside the buffer tank 40.
- the buffer tank 40 is arranged above the heat sink 23 in the vertical direction and above the heat sink 28.
- the heat receiving member 26 connected to the heating element 10 is disposed at a position facing the buffer tank 40.
- the gas generated by the heat receiving member 26 can be stored in the internal space of the buffer tank 40 installed on the upper part of the heat sink 23.
- an increase in internal pressure in the chamber 24 can be suppressed, and a cooling effect can be brought out even for the heating element 10 installed on the upper portion of the chamber 24.
- the amount of heat of the heating element 10 is large, it is necessary that a large amount of liquid refrigerant C2 exists near the heat receiving member 26 because the amount of boiling liquid refrigerant C2 is large. In that case, by storing the refrigerant C in a part of the buffer tank 40 to supplement the insufficient refrigerant C, it is possible to cope with the heating element 10 having a large calorific value.
- the present invention can be applied to a boiling cooler. According to this boiling cooler, heat generation of LSI and IC can be suppressed by utilizing a phase change phenomenon of refrigerant such as boiling and liquefaction.
- Heating element 20 Boiling cooler 21 Side plate 22 Heat receiving plate 23 Heat sink 24 chambers 26 Heat receiving member 27 Heat dissipation member 28 Heat sink 32 Heat conduction plate C1 (C) Liquid refrigerant C2 (C) Gaseous refrigerant
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
さらに、このような特許文献2~5に示される技術では、受熱板や放熱板に設置されるフィン(受熱部材、放熱部材)が互いに干渉し合う位置関係にある。これによって冷媒の沸騰・凝縮の効率が低下してしまうという問題があった。
本発明の第1の実施形態について図1~図3を参照して説明する。
図1~図3には、本発明の第1の実施形態による沸騰冷却器20が示されている。沸騰冷却器20には、例えば、LSI、IC等である発熱体10が接合されている。より具体的には、発熱体10は、熱伝導性グリース又は熱伝導性シートなどにより、沸騰冷却器20の受熱板22に接合される。この際、発熱体10を半田により溶着しても良い。
チャンバー24は、側壁部21、受熱板22、放熱板23を別々に作製した後にこれらをろう付け等により接合することで形成しても良い。あるいは、チャンバー24は、受熱板22又は放熱板23のいずれかを側壁部21と一体成型しても良い。側壁部21の上部開口21A周囲及び下部開口21B周囲にOリング25を配置してもよい。このOリング25を介して放熱板23及び受熱板22によって上部開口21A及び下部開口21Bを閉塞し、さらに、放熱板23及び受熱板22をねじ等によって側壁部21に取り付けてもよい。このように、Oリング25を使用した場合、受熱板22、放熱板23の取り外しが容易となる。その結果、後述する発熱体22及びヒートシンク28を搭載する際の作業性を向上させることができる。
受熱部材26の高さは、冷媒Cへの熱伝達効率を考慮して対向位置にある放熱板23の対面から1mm以上離れるように設定することが好ましい。同様に、放熱部材27の高さは、冷媒Cへの熱伝達効率を考慮して対向位置にある受熱板22の対面から1mm以上離れるように設定することが好ましい。
チャンバー24に封入された冷媒Cは、真空引きが施されることで飽和蒸気圧となり、常温環境下にて沸点となる。飽和蒸気圧とは、例えば水のような物質のみが存在する密閉空間において、ある温度で空間に生じる最大圧力のことである。これにより、チャンバー24内の密閉空間には、液体の冷媒C1と気体の冷媒C2とが共存する。液体の冷媒C1は密閉空間の下部に存在し、気体の冷媒C2は密閉空間の上部に存在する。
一方で、本実施形態の沸騰冷却器20では、これら受熱部材26と放熱部材27が互いに対向しない位置関係に配置されている。このため、受熱部材26で発生する気体の移動を阻害することがなく、結果として熱伝導効率の低下を防止することができる。
次に、本発明の第2の実施形態について図4を参照して説明する。
上記第1の実施形態の沸騰冷却器20では、発熱体10が配置される受熱板22に設けられた、表面を粗面とした複数の柱状ピンフィンにより受熱部材26を構成した。図4に示すように複数の直方体部材を一定間隔で配置した矩形型フィン30により受熱部材26を構成しても良い。
この矩形型のフィンにより構成した受熱部材26では、表面を粗面とした直方体部材により構成され、全体がくし型に形成されている。
次に、本発明の第3の実施形態について図5を参照して説明する。
上記第1の実施形態の沸騰冷却器20では、発熱体10が配置される受熱板22に、表面を粗面とした複数の柱状ピンフィンを受熱部材26とした。図5に示すように受熱部材26を、表面を粗面とした直方体状の放熱ブロック31で構成しても良い。
生産性を考えるとブロック型の形状は、ピンフィンや矩形型フィンよりも製造し易く、製造上有利である。この受熱部材26は、受熱板22と一体で切削や鍛造などにより作成しても良い。あるいは、別に作製したブロックをろう付け等により受熱板22に溶着し、その後、表面を1μmから100μmに荒らす処理を行っても良い。
このような放熱ブロック31は、ヒートシンク28に接続される放熱部材27にも適用しても良い。
次に、本発明の第4の実施形態について図6を参照して説明する。
上記第1の実施形態の沸騰冷却器20では、チャンバー24が水平となるように配置したが、これに限定されない。沸騰冷却器20は、図6に示すように縦型に配置しても良い。即ち、受熱部材26、放熱部材27の法線が、鉛直方向の受熱板22及び放熱板23に対して直交する位置関係となるように、受熱部材26及び放熱部材27を位置させても良い。この場合も、受熱部材26と放熱部材27とのうち、少なくとも受熱部材26は液体の冷媒C1に浸漬される。このような構成とすることで、設計の自由度を高めることができる。
しかしながら、少なくとも、受熱部材26の高さまで冷媒Cを注入し、受熱部材26を液体の冷媒C1に浸漬させるようにする必要がある。これにより、いずれの位置関係であったとしても発熱体10を搭載する受熱部材26が液体の冷媒Cに浸る。受熱部材26により沸騰が起こって相変化を利用した循環が起こり、熱がチャンバー24が全体に伝えられヒートシンク28により放熱される。
次に、本発明の第5の実施形態について図7を参照して説明する。
上記第1の実施形態の沸騰冷却器20では、チャンバー24を構成している受熱板22に受熱部材26を配置し、受熱板22に対向する放熱板23に放熱部材27を配置している。この第5の実施形態では、図7に示すように、受熱部材26と放熱部材27とを、一枚の熱伝導板32に配置しても良い。
次に、本発明の第6の実施形態について図8~図10を参照して説明する。
上記第1の実施形態の沸騰冷却器20では、チャンバー24が水平となるように配置したが、これに限定されない。図8~図10に示すように、第6の実施形態においては、沸騰冷却器10を図9及び図10に示すように縦型に配置して、その上部位置にバッファタンク40を配置しても良い。
20 沸騰冷却器
21 側板部
22 受熱板
23 放熱板
24 チャンバー
26 受熱部材
27 放熱部材
28 ヒートシンク
32 熱伝導板
C1(C) 液体の冷媒
C2(C) 気体の冷媒
Claims (9)
- 発熱体が外側の面に設けられた熱伝導板、および前記熱伝導板の内側に設けられ、液体と気体との間で相変化する冷媒が充填された密閉空間を有するチャンバーと、
前記熱伝導板の外側の面に設けられたヒートシンクと、
前記熱伝導板を挟んで前記発熱体と対向するように前記熱伝導板の内側の面に設けられ、前記発熱体で発生した熱を冷媒に伝達する受熱部材と、
前記熱伝導板の内側の面に設けられ、前記冷媒により伝達された熱を受け入れて前記ヒートシンクに放熱する放熱部材とを備え、
前記受熱部材及び前記放熱部材は、前記熱伝導板の面方向に互いに離間して配置されており、
前記受熱部材が液体の前記冷媒に浸漬されている沸騰冷却器。 - 前記熱伝導板は、前記密閉空間を挟んで互いに対向して配置された受熱板及び放熱板であって、
前記発熱体及び前記受熱部材が、前記受熱板に設けられ、
前記ヒートシンク及び前記放熱部材が、前記放熱板に設けられている請求項1に記載の沸騰冷却器。 - 前記受熱部材の前記受熱板からの高さ及び前記放熱部材の前記放熱板からの高さが、それぞれ前記受熱板と前記放熱板との間の距離の略2分の1の寸法に設定されている請求項2に記載の沸騰冷却器。
- 前記受熱部材は、前記放熱板の内側の面から少なくとも1mm以上離間され、
前記放熱部材は、前記受熱板の内側の面から少なくとも1mm以上離間されている請求項2又は3に記載の沸騰冷却器。 - 前記受熱部材及び前記放熱部材は、前記熱伝導板の内側の面に立設された複数のフィンからなる請求項1から4のいずれか一項に記載の沸騰冷却器。
- 前記受熱部材及び前記放熱部材は、前記熱伝導板の内側の面に固定された直方体状をなすブロックである請求項1から4のいずれか一項に記載の沸騰冷却器。
- 前記受熱部材及び前記放熱部材の表面に、表面粗さ1μm~100μmの範囲の粗面化加工が施されている請求項1から6のいずれか一項に記載の沸騰冷却器。
- 前記チャンバーが、気体の前記冷媒が入り込むバッファタンクを備える請求項1から7のいずれか一項に記載の沸騰冷却器。
- 前記受熱部材及び前記放熱部材が液体の前記冷媒に浸漬されている請求項1に記載の沸騰冷却器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800203157A CN102869943A (zh) | 2010-05-19 | 2011-05-17 | 沸腾冷却装置 |
US13/698,149 US20130056178A1 (en) | 2010-05-19 | 2011-05-17 | Ebullient cooling device |
JP2012515893A JPWO2011145618A1 (ja) | 2010-05-19 | 2011-05-17 | 沸騰冷却器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010115539 | 2010-05-19 | ||
JP2010-115539 | 2010-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011145618A1 true WO2011145618A1 (ja) | 2011-11-24 |
Family
ID=44991720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/061320 WO2011145618A1 (ja) | 2010-05-19 | 2011-05-17 | 沸騰冷却器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130056178A1 (ja) |
JP (1) | JPWO2011145618A1 (ja) |
CN (1) | CN102869943A (ja) |
WO (1) | WO2011145618A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015103798A (ja) * | 2013-11-27 | 2015-06-04 | 旭徳科技股▲ふん▼有限公司 | 放熱基板 |
WO2018030478A1 (ja) * | 2016-08-10 | 2018-02-15 | 古河電気工業株式会社 | ベーパーチャンバ |
JP2020063895A (ja) * | 2018-09-14 | 2020-04-23 | 古河電気工業株式会社 | 冷却装置および冷却装置を用いた冷却システム |
WO2020196332A1 (ja) * | 2019-03-22 | 2020-10-01 | 日立化成株式会社 | 冷却構造体 |
WO2020196331A1 (ja) * | 2019-03-22 | 2020-10-01 | 日立化成株式会社 | 冷却構造体 |
WO2020209138A1 (ja) * | 2019-04-11 | 2020-10-15 | 古河電気工業株式会社 | 冷却装置 |
WO2020213464A1 (ja) * | 2019-04-18 | 2020-10-22 | 古河電気工業株式会社 | ヒートシンク |
JP2021135003A (ja) * | 2020-02-27 | 2021-09-13 | 三菱重工業株式会社 | 冷却装置 |
JPWO2020196334A1 (ja) * | 2019-03-22 | 2021-10-21 | 昭和電工マテリアルズ株式会社 | 冷却構造体 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014192279A1 (ja) * | 2013-05-29 | 2017-02-23 | 日本電気株式会社 | 冷却装置およびその製造方法 |
JPWO2016075838A1 (ja) * | 2014-11-14 | 2017-10-19 | 株式会社ExaScaler | 電子機器の冷却システム、及び冷却方法 |
CN107924896B (zh) * | 2015-08-31 | 2021-07-23 | 株式会社ExaScaler | 电子设备的冷却系统 |
US10262920B1 (en) * | 2016-12-05 | 2019-04-16 | Xilinx, Inc. | Stacked silicon package having a thermal capacitance element |
CN110869689B (zh) * | 2017-07-28 | 2021-12-14 | 古河电气工业株式会社 | 吸液芯结构体及收纳有吸液芯结构体的热管 |
CN109413929B (zh) * | 2017-08-16 | 2020-11-24 | 鹏鼎控股(深圳)股份有限公司 | 散热板及其制造方法 |
US10381562B1 (en) * | 2018-05-17 | 2019-08-13 | Qualcomm Incorporated | Method and apparatus for cooling of an electronic device |
CN109673131B (zh) * | 2018-12-05 | 2020-12-15 | 浙江欧托电气有限公司 | 一种新能源充电装置主板水冷板翅控温装置 |
AT522831B1 (de) * | 2019-08-08 | 2023-05-15 | Dau Gmbh & Co Kg | Luftwärmetauscher sowie Verfahren zu dessen Herstellung und damit ausgestatteter Elektronikaufbau |
CN110736972B (zh) * | 2019-11-15 | 2022-03-04 | 上海禾赛科技有限公司 | 激光雷达的散热结构和激光雷达 |
CN112902715A (zh) * | 2019-12-03 | 2021-06-04 | 中兴通讯股份有限公司 | 一种液冷板及散热设备 |
US20230147067A1 (en) * | 2021-11-05 | 2023-05-11 | Rochester Institute Of Technology | Cooling device having a boiling chamber with submerged condensation and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56160592A (en) * | 1980-05-14 | 1981-12-10 | Hitachi Ltd | Boiling cooler |
JPS60253790A (ja) * | 1984-05-30 | 1985-12-14 | Hitachi Ltd | 熱伝達装置 |
JP2002267378A (ja) * | 2001-03-12 | 2002-09-18 | Showa Denko Kk | ヒートパイプ |
JP2003214779A (ja) * | 2002-01-25 | 2003-07-30 | Fujikura Ltd | 平板型ヒートパイプ |
JP2005337701A (ja) * | 2004-04-27 | 2005-12-08 | Japan Science & Technology Agency | 冷却装置 |
JP2009088125A (ja) * | 2007-09-28 | 2009-04-23 | Panasonic Corp | 冷却装置およびそれを備えた電子機器 |
JP2009532886A (ja) * | 2006-03-31 | 2009-09-10 | ヴァプロ,インク. | 液体沸騰を使用する低コストの沸騰冷却器 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3741292A (en) * | 1971-06-30 | 1973-06-26 | Ibm | Liquid encapsulated air cooled module |
JPS6020676B2 (ja) * | 1977-06-29 | 1985-05-23 | 株式会社日立製作所 | 熱交換器用粗面フィンの製作方法 |
JPS57131990A (en) * | 1981-02-09 | 1982-08-16 | Matsushita Electric Ind Co Ltd | Gravitation type heat pipe |
JPS5965459A (ja) * | 1982-10-06 | 1984-04-13 | Fujitsu Ltd | 浸漬蒸発冷却装置 |
JPH02287095A (ja) * | 1989-04-26 | 1990-11-27 | Isuzu Ceramics Kenkyusho:Kk | セラミックス製ヒートパイプ |
US5168919A (en) * | 1990-06-29 | 1992-12-08 | Digital Equipment Corporation | Air cooled heat exchanger for multi-chip assemblies |
JPH07104110B2 (ja) * | 1990-11-13 | 1995-11-13 | さとみ 伊藤 | 放熱装置 |
FR2699365B1 (fr) * | 1992-12-16 | 1995-02-10 | Alcatel Telspace | Système de dissipation de l'énergie calorifique dégagée par un composant électronique. |
JPH0745761A (ja) * | 1993-07-30 | 1995-02-14 | Takeo Yoshino | 液冷式ハイブリッドic |
JPH07161888A (ja) * | 1993-12-07 | 1995-06-23 | Nippondenso Co Ltd | 沸騰冷却装置及びその製造方法 |
US5411077A (en) * | 1994-04-11 | 1995-05-02 | Minnesota Mining And Manufacturing Company | Flexible thermal transfer apparatus for cooling electronic components |
US6357517B1 (en) * | 1994-07-04 | 2002-03-19 | Denso Corporation | Cooling apparatus boiling and condensing refrigerant |
JP3525498B2 (ja) * | 1994-07-13 | 2004-05-10 | 株式会社デンソー | 沸騰冷却装置 |
JPH0897338A (ja) * | 1994-09-26 | 1996-04-12 | Fuji Electric Co Ltd | 電力用半導体機器の冷却装置 |
JP3890685B2 (ja) * | 1997-07-11 | 2007-03-07 | 株式会社デンソー | 沸騰冷却装置 |
JPH1187583A (ja) * | 1997-09-11 | 1999-03-30 | Denso Corp | 沸騰冷却装置 |
JPH11330329A (ja) * | 1998-05-20 | 1999-11-30 | Denso Corp | 沸騰冷却装置 |
JP2000049266A (ja) * | 1998-05-25 | 2000-02-18 | Denso Corp | 沸騰冷却装置 |
JP3900702B2 (ja) * | 1998-08-31 | 2007-04-04 | 株式会社デンソー | 沸騰冷却装置 |
US5937937A (en) * | 1998-06-18 | 1999-08-17 | Motorola, Inc. | Heat sink and method for removing heat from a plurality of components |
JP3964580B2 (ja) * | 1999-09-03 | 2007-08-22 | 富士通株式会社 | 冷却ユニット |
JP3376346B2 (ja) * | 2000-09-25 | 2003-02-10 | 株式会社東芝 | 冷却装置、この冷却装置を有する回路モジュールおよび電子機器 |
US6474074B2 (en) * | 2000-11-30 | 2002-11-05 | International Business Machines Corporation | Apparatus for dense chip packaging using heat pipes and thermoelectric coolers |
JP2002198675A (ja) * | 2000-12-26 | 2002-07-12 | Fujitsu Ltd | 電子機器 |
US6418019B1 (en) * | 2001-03-19 | 2002-07-09 | Harris Corporation | Electronic module including a cooling substrate with fluid dissociation electrodes and related methods |
US6483705B2 (en) * | 2001-03-19 | 2002-11-19 | Harris Corporation | Electronic module including a cooling substrate and related methods |
JP2003232594A (ja) * | 2002-02-07 | 2003-08-22 | Denso Corp | 沸騰冷却装置 |
JP2004037039A (ja) * | 2002-07-05 | 2004-02-05 | Sony Corp | 冷却装置、電子機器装置、表示装置及び冷却装置の製造方法 |
US6880626B2 (en) * | 2002-08-28 | 2005-04-19 | Thermal Corp. | Vapor chamber with sintered grooved wick |
US7258160B2 (en) * | 2002-09-25 | 2007-08-21 | Sony Corporation | Heat transfer element, cooling device and electronic device having the element |
TWI235906B (en) * | 2003-02-27 | 2005-07-11 | Shwin-Chung Wong | Microchannel heat pipe spreaders and microchannel loop heat pipes housed in a metal case and embodiments of the same |
JP2005140492A (ja) * | 2003-06-12 | 2005-06-02 | Denso Corp | 対向振動流型熱輸送装置 |
JP2005019905A (ja) * | 2003-06-30 | 2005-01-20 | Matsushita Electric Ind Co Ltd | 冷却装置 |
JP2005086078A (ja) * | 2003-09-10 | 2005-03-31 | Denso Corp | 発熱体の冷却装置 |
JP2005229047A (ja) * | 2004-02-16 | 2005-08-25 | Hitachi Ltd | 電子機器の冷却システム、及び、それを使用した電子機器 |
JP4367223B2 (ja) * | 2004-05-10 | 2009-11-18 | パナソニック株式会社 | 熱移動装置 |
US6899165B1 (en) * | 2004-06-15 | 2005-05-31 | Hua Yin Electric Co., Ltd. | Structure of a heat-pipe cooler |
US20060090882A1 (en) * | 2004-10-28 | 2006-05-04 | Ioan Sauciuc | Thin film evaporation heat dissipation device that prevents bubble formation |
US7246655B2 (en) * | 2004-12-17 | 2007-07-24 | Fujikura Ltd. | Heat transfer device |
US20080236795A1 (en) * | 2007-03-26 | 2008-10-02 | Seung Mun You | Low-profile heat-spreading liquid chamber using boiling |
JP2006344636A (ja) * | 2005-06-07 | 2006-12-21 | Fuji Electric Holdings Co Ltd | 並列ループ型熱分散プレート |
JP2007109695A (ja) * | 2005-10-11 | 2007-04-26 | Sumitomo Precision Prod Co Ltd | 起動特性に優れる素子冷却器 |
US7369410B2 (en) * | 2006-05-03 | 2008-05-06 | International Business Machines Corporation | Apparatuses for dissipating heat from semiconductor devices |
US20080093058A1 (en) * | 2006-10-24 | 2008-04-24 | Jesse Jaejin Kim | Systems and methods for orientation and direction-free cooling of devices |
JP2010062234A (ja) * | 2008-09-02 | 2010-03-18 | Sony Corp | ヒートスプレッダ、電子機器及びヒートスプレッダの製造方法 |
JPWO2010084717A1 (ja) * | 2009-01-23 | 2012-07-12 | 日本電気株式会社 | 冷却装置 |
US20110067841A1 (en) * | 2009-09-24 | 2011-03-24 | Gm Global Technology Operations, Inc. | Heat sink systems and devices |
-
2011
- 2011-05-17 WO PCT/JP2011/061320 patent/WO2011145618A1/ja active Application Filing
- 2011-05-17 CN CN2011800203157A patent/CN102869943A/zh active Pending
- 2011-05-17 JP JP2012515893A patent/JPWO2011145618A1/ja active Pending
- 2011-05-17 US US13/698,149 patent/US20130056178A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56160592A (en) * | 1980-05-14 | 1981-12-10 | Hitachi Ltd | Boiling cooler |
JPS60253790A (ja) * | 1984-05-30 | 1985-12-14 | Hitachi Ltd | 熱伝達装置 |
JP2002267378A (ja) * | 2001-03-12 | 2002-09-18 | Showa Denko Kk | ヒートパイプ |
JP2003214779A (ja) * | 2002-01-25 | 2003-07-30 | Fujikura Ltd | 平板型ヒートパイプ |
JP2005337701A (ja) * | 2004-04-27 | 2005-12-08 | Japan Science & Technology Agency | 冷却装置 |
JP2009532886A (ja) * | 2006-03-31 | 2009-09-10 | ヴァプロ,インク. | 液体沸騰を使用する低コストの沸騰冷却器 |
JP2009088125A (ja) * | 2007-09-28 | 2009-04-23 | Panasonic Corp | 冷却装置およびそれを備えた電子機器 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015103798A (ja) * | 2013-11-27 | 2015-06-04 | 旭徳科技股▲ふん▼有限公司 | 放熱基板 |
WO2018030478A1 (ja) * | 2016-08-10 | 2018-02-15 | 古河電気工業株式会社 | ベーパーチャンバ |
JP2020063895A (ja) * | 2018-09-14 | 2020-04-23 | 古河電気工業株式会社 | 冷却装置および冷却装置を用いた冷却システム |
TWI778292B (zh) * | 2018-09-14 | 2022-09-21 | 日商古河電氣工業股份有限公司 | 冷卻裝置及使用冷卻裝置之冷卻系統 |
WO2020196332A1 (ja) * | 2019-03-22 | 2020-10-01 | 日立化成株式会社 | 冷却構造体 |
WO2020196331A1 (ja) * | 2019-03-22 | 2020-10-01 | 日立化成株式会社 | 冷却構造体 |
JP7164022B2 (ja) | 2019-03-22 | 2022-11-01 | 昭和電工マテリアルズ株式会社 | 冷却構造体 |
JP7164020B2 (ja) | 2019-03-22 | 2022-11-01 | 昭和電工マテリアルズ株式会社 | 冷却構造体 |
JP7164019B2 (ja) | 2019-03-22 | 2022-11-01 | 昭和電工マテリアルズ株式会社 | 冷却構造体 |
JPWO2020196332A1 (ja) * | 2019-03-22 | 2021-10-21 | 昭和電工マテリアルズ株式会社 | 冷却構造体 |
JPWO2020196334A1 (ja) * | 2019-03-22 | 2021-10-21 | 昭和電工マテリアルズ株式会社 | 冷却構造体 |
JPWO2020196331A1 (ja) * | 2019-03-22 | 2021-10-21 | 昭和電工マテリアルズ株式会社 | 冷却構造体 |
US11337336B2 (en) | 2019-04-11 | 2022-05-17 | Furukawa Electric Co., Ltd. | Cooling device |
WO2020209138A1 (ja) * | 2019-04-11 | 2020-10-15 | 古河電気工業株式会社 | 冷却装置 |
US11112186B2 (en) | 2019-04-18 | 2021-09-07 | Furukawa Electric Co., Ltd. | Heat pipe heatsink with internal structural support plate |
WO2020213464A1 (ja) * | 2019-04-18 | 2020-10-22 | 古河電気工業株式会社 | ヒートシンク |
JP2021135003A (ja) * | 2020-02-27 | 2021-09-13 | 三菱重工業株式会社 | 冷却装置 |
JP7404107B2 (ja) | 2020-02-27 | 2023-12-25 | 三菱重工業株式会社 | 冷却装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011145618A1 (ja) | 2013-07-22 |
US20130056178A1 (en) | 2013-03-07 |
CN102869943A (zh) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011145618A1 (ja) | 沸騰冷却器 | |
US8813834B2 (en) | Quick temperature-equlizing heat-dissipating device | |
JP5644767B2 (ja) | 電子機器装置の熱輸送構造 | |
US8982559B2 (en) | Heat sink, cooling module and coolable electronic board | |
EP2057678B1 (en) | Three-dimensional thermal spreading in an air-cooled thermal device | |
JP5757086B2 (ja) | 冷却構造及び電子機器並びに冷却方法 | |
WO2013102973A1 (ja) | 冷却装置及びそれを用いた電子機器 | |
WO2010084717A1 (ja) | 冷却装置 | |
US9578781B2 (en) | Heat management for electronic enclosures | |
US20100032141A1 (en) | cooling system utilizing carbon nanotubes for cooling of electrical systems | |
WO2015146110A1 (ja) | 相変化冷却器および相変化冷却方法 | |
WO2013140761A1 (ja) | 電子基板の冷却構造及びそれを用いた電子装置 | |
JP5874935B2 (ja) | 平板型冷却装置及びその使用方法 | |
JP2010080507A (ja) | 電子装置 | |
JP2013007501A (ja) | 冷却装置 | |
JP2013033807A (ja) | 冷却装置およびそれを用いた電子機器 | |
US20200064074A1 (en) | Condenser and heat dissipation apparatus | |
WO2013005622A1 (ja) | 冷却装置およびその製造方法 | |
JP2018133529A (ja) | 冷却装置 | |
US20120024500A1 (en) | Thermosyphon for cooling electronic components | |
JP5860728B2 (ja) | 電子機器の冷却システム | |
US20140366572A1 (en) | Cooling device | |
WO2013073696A1 (ja) | 冷却装置およびそれを用いた電子機器 | |
WO2018179162A1 (ja) | 冷却装置 | |
WO2017208461A1 (ja) | 沸騰冷却装置、及びそれを搭載した電子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180020315.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11783552 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012515893 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13698149 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11783552 Country of ref document: EP Kind code of ref document: A1 |