Nothing Special   »   [go: up one dir, main page]

WO2011046103A1 - ポリプロピレン系樹脂、ポリプロピレン系樹脂組成物、および射出発泡成形体 - Google Patents

ポリプロピレン系樹脂、ポリプロピレン系樹脂組成物、および射出発泡成形体 Download PDF

Info

Publication number
WO2011046103A1
WO2011046103A1 PCT/JP2010/067850 JP2010067850W WO2011046103A1 WO 2011046103 A1 WO2011046103 A1 WO 2011046103A1 JP 2010067850 W JP2010067850 W JP 2010067850W WO 2011046103 A1 WO2011046103 A1 WO 2011046103A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene resin
injection
weight
melt
molded article
Prior art date
Application number
PCT/JP2010/067850
Other languages
English (en)
French (fr)
Inventor
大倉徹雄
阿部輝正
中山亮二
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43876153&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011046103(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US13/501,193 priority Critical patent/US8552116B2/en
Priority to JP2011536132A priority patent/JP5770634B2/ja
Priority to KR1020127004605A priority patent/KR20120088653A/ko
Priority to EP10823371.9A priority patent/EP2489686B1/en
Priority to CN201080045925.8A priority patent/CN102574948B/zh
Publication of WO2011046103A1 publication Critical patent/WO2011046103A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F34/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • C08F34/04Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring in a ring containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a polypropylene-based resin, a polypropylene-based resin composition, and an injection-foamed molded article that can be suitably used for injection foam molding.
  • Polypropylene resin has good physical properties and moldability, and its use range is rapidly expanding as an environmentally friendly material.
  • lightweight and excellent polypropylene resin products are provided.
  • One such product is a polypropylene resin injection foam molding.
  • Polypropylene-based resin foam molded product is a molded product obtained by sandwiching an extruded foam sheet obtained by melting and mixing a mixture of a polypropylene resin and a foaming agent with an extruder and extruding it under atmospheric pressure, Pre-expanded polypropylene resin particles are filled into molds with desired shapes and heated with steam, etc., so that the pre-expanded particles are fused to form a molded body. Has been applied.
  • a resin containing a foaming agent is injection-molded in a mold space that is held so that the mold can be opened, and then the mold is opened.
  • core back method Moving Cavity method
  • polypropylene resin used for injection foam molding fluidity for filling the resin in every corner of the mold and foamability for foaming after filling are required.
  • an injection foam molded product of polypropylene resin is a large molded product such as a console box, luggage box, door trim, tool box, etc. as an automobile part, it may be a lightweight, thin and highly rigid molded product. In this case, it is necessary to increase the fluidity of the raw material resin to be used because molding defects such as short shots are likely to occur during molding.
  • the linear polypropylene resin usually used is crystalline and has a low melt tension (melting tension)
  • bubbles are easily broken and it is difficult to achieve high foaming.
  • an appearance defect called silver streak due to the foaming agent-derived gas is likely to occur on the surface of the injection-foamed molded body, and voids are easily generated inside, making it difficult to increase the expansion ratio.
  • Examples of methods for increasing the melt tension of polypropylene resins include the addition of cross-linking agents and silane-grafted thermoplastic resins (Patent Documents 2 and 3), and introduction of long-chain branches by irradiating uncrosslinked polypropylene resins with radiation. And a method of producing a modified polypropylene resin by melting and kneading a polypropylene resin, an isoprene monomer, and a radical polymerization initiator (Patent Document 5). Certainly, by these methods, an injection foamed molded article with a high foaming ratio can be obtained, but the viscosity at the time of resin melting is excessively increased, making injection molding difficult, and forming due to imparting foamability. There was a case where a defective flow mark was generated and the surface appearance was deteriorated.
  • a method for improving moldability in injection foam molding for example, a method in which a linear polypropylene resin is used in combination with a polypropylene resin having a melt flow rate of less than 30 g / 10 minutes and a melt tension of 5 cN or more (Patent Document) 6, 8) are proposed.
  • This method has improved fluidity and enables injection foam molding without causing short shots even in relatively large molds.
  • the projected area is 0. In injection foam molding using a large mold exceeding 2 m 2 , fluidity may be insufficient.
  • Patent Document 9 a method using a polyolefin wax in combination has also been proposed (Patent Document 9).
  • the fluidity is further improved by this method, the physical properties (impact resistance) of the molded product may be lowered by using wax.
  • the melt tension is greatly influenced by the melt flow rate, and if the melt flow rate is low, the melt tension tends to be high. Therefore, in a high-flowability polypropylene resin having a melt flow rate exceeding 30 g / 10 min.
  • the rule that the melt tension is 5 cN or more was insufficient as an index of foamability.
  • Patent Document 7 a method of using a polypropylene-based resin that defines a loss tangent with melt tension for extrusion foaming (Patent Document 7) has been proposed. However, it is a low melt flow rate resin suitable for extrusion foaming, and is an injection foam molding. It was unsuitable for.
  • An object of the present invention is a polypropylene resin and a polypropylene resin composition that are excellent in fluidity and foamability, have low resistance during extrusion and injection (low pressure rise), and can provide an injection foam molded article having a good surface appearance.
  • a material body for injection foam molding comprising the product and the resin or resin composition.
  • polypropylene that can be injection-molded with a thin wall using a large mold with a projected area of 0.2 m 2 or more, and can produce an injection-foamed molded article with a good surface appearance with little silver streak or flow mark and high impact resistance. It is to provide a material for injection foam molding comprising a resin, a polypropylene resin composition, and the resin or resin composition.
  • the present inventors have obtained a melt flow rate obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator and a conjugated diene compound, and measured under conditions of 230 ° C. and a load of 2.16 kg.
  • the loss tangent tan ⁇ which is the ratio of the above, was found to be able to solve the above problems by a polypropylene resin characterized in that the present invention was completed.
  • the present invention is obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator, and a conjugated diene compound, and the melt flow rate measured under the conditions of 230 ° C. and 2.16 kg load is 30 g / 10 min.
  • the ratio of the storage elastic modulus to the loss elastic modulus at an angular frequency of 1 rad / s in the dynamic viscoelasticity measurement at 200 ° C. and the melt tension at 200 ° C. is not less than 0.3 cN and not more than 250 g / 10 min.
  • a certain loss tangent tan ⁇ is 6.0 or less, and the present invention relates to a polypropylene-based resin.
  • the melt flow rate is preferably more than 50 g / 10 minutes and not more than 250 g / 10 minutes.
  • the addition amount of the radical polymerization initiator is preferably not less than the addition amount of the conjugated diene compound.
  • the addition amount of the radical polymerization initiator is more preferably 1.5 times or more of the addition amount of the conjugated diene compound.
  • the present invention also relates to a linear polypropylene resin having a polypropylene resin (A) of 3 to 50% by weight, a melt flow rate at 230 ° C. of 10 g / 10 min to 150 g / 10 min and a melt tension of less than 2 cN.
  • a polypropylene resin composition for injection foam molding characterized by containing 50 to 97% by weight.
  • the linear polypropylene resin (B) preferably has a Charpy impact strength at 23 ° C. of 5 kJ / m 2 or more.
  • the present invention relates to an injection foam molded article obtained by injection foam molding of the polypropylene resin or the polypropylene resin composition and a composition comprising a foaming agent.
  • the polypropylene resin and the polypropylene resin composition of the present invention are excellent in fluidity and foamability. Therefore, it can be suitably used particularly for injection foam molding, and in particular, thin-walled injection foam molding using a large mold is possible. Furthermore, since the polypropylene resin and the polypropylene resin composition of the present invention have a high flow rate with a melt flow rate exceeding 30 g / 10 min and can be greatly deformed even with a small expansion force, As compared with polypropylene resins and polypropylene resin compositions having a melt flow rate of 30 g / 10 min or less, an injection foam molded article having a desired expansion ratio can be obtained even if the amount of the foaming agent is reduced.
  • the injection-foamed molded article obtained from the polypropylene resin or the polypropylene resin composition of the present invention has a high foaming ratio, few silver streaks and flow marks, and a good surface appearance. Further, by using together a linear polypropylene having a low melt elasticity and a Charpy impact strength at 23 ° C. of 5 kJ / m 2 or more, an injection foam molded article having high impact resistance can be obtained.
  • the polypropylene resin (A) of the present invention is obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator and a conjugated diene compound, and has a melt flow rate measured at 230 ° C. and a load of 2.16 kg.
  • the loss tangent tan ⁇ which is a ratio of elastic modulus, is 6.0 or less.
  • the melt flow rate of the polypropylene resin (A) is such that the lower limit exceeds 30 g / 10 minutes, preferably exceeds 50 g / 10 minutes, and the upper limit is 250 g / 10 minutes or less, preferably 100 g / 10 minutes or less. . If the melt flow rate is 30 g / 10 min or less, the fluidity may be insufficient, resulting in a short shot in injection foam molding with a large mold, and if the melt flow rate exceeds 250 g / 10 min, injection foam molding. The weighing process at may become unstable.
  • melt flow rate (hereinafter may be abbreviated as “MFR”) is based on ASTM D-1238 and uses a melt indexer S-01 (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at 230 ° C. 2.
  • the predetermined time is 60 seconds when the melt flow rate is 3.5 g / 10 minutes or more and less than 10 g / 10 minutes, 30 seconds when the melt flow rate is 10 g / 10 minutes or more and less than 25 g / 10 minutes, and 25 g / 10 minutes.
  • melt flow rate measured in a certain number of seconds is not in the corresponding range, the measurement is performed again in the number of seconds corresponding to the melt flow rate.
  • the polypropylene resin (A) has a melt tension at 200 ° C. of 0.3 cN or more, preferably 0.5 cN or more, more preferably 0.8 cN or more, further preferably 1.0 cN or more, Most preferably, it is 1.05 cN or more.
  • the upper limit of the melt tension is not particularly limited, but is preferably 15 cN or less, more preferably 10 cN or less.
  • the melt tension (hereinafter sometimes abbreviated as “MT”) is a capillograph having a ⁇ 10 mm cylinder equipped with a melt tension measuring attachment and having an orifice of 1 mm ⁇ and a length of 10 mm at the tip. (Toyo Seiki Seisakusho Co., Ltd.) was used, and the strand discharged from the die when it was lowered at 200 ° C. with a piston lowering speed of 10 mm / min was hung on a pulley with a load cell below 350 mm at a speed of 1 m / min. The load applied to the pulley with a load cell when the strand breaks when the take-up speed is increased at 40 m / min 2 after take-up and stabilization. If the strand does not break, the melt tension is the load at which the load applied to the pulley with the load cell does not increase even if the take-up speed is increased.
  • the polypropylene resin has a loss tangent tan ⁇ which is a ratio of a storage elastic modulus and a loss elastic modulus at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement at 200 ° C. of 6.0 or less, preferably 5.0. It is as follows.
  • the angular frequency 1 rad / s is a so-called low shear region, and the loss tangent tan ⁇ is small in that region, that is, the relatively high storage elastic modulus is considered to be advantageous for holding bubbles during foaming. It is done.
  • a relatively high molecular weight polypropylene resin having a melt flow rate of 30 g / 10 min or less has a high ratio of molecular chains entangled with each other, and the loss tangent tan ⁇ tends to be measured as the melt flow rate decreases. .
  • the loss tangent tan ⁇ when the loss tangent tan ⁇ is low because the melt flow rate is low, the loss tangent tan ⁇ cannot be said to adequately represent the melting characteristics suitable for foaming, and is not necessarily sufficient to hold the bubbles in the injection foam molding. . That is, in the present invention, a low loss tangent tan ⁇ in a high-flowing polypropylene resin having a melt flow rate exceeding 30 g / 10 min is an index of bubble retention in injection foam molding, and the loss tangent tan ⁇ is 6.0. If it exceeds 1, foam breakage is likely to occur, and internal voids may be generated in the injection foam molded product, or the thickness of the injection foam molded product may be reduced.
  • the lower limit of the loss tangent tan ⁇ is not particularly limited, but is preferably 0.7 or more, more preferably 0.9 or more.
  • the ratio is less than 0.7, a ring-like pattern generated concentrically around a gate portion called a flow mark on the surface of the injection-foamed molded body is considerably conspicuous, and the surface appearance may be deteriorated.
  • the loss tangent tan ⁇ is in a range from a measurement temperature of 200 ° C., a parallel plate interval of 1 mm, an angular frequency of 0.1 rad / s to 100 rad / s using a 25 mm ⁇ parallel plate type jig.
  • the loss elastic modulus is divided by the storage elastic modulus.
  • a viscoelasticity measuring device manufactured by TA Instruments, ARES, or the like is preferably used for the viscoelasticity measurement.
  • the polypropylene resin (A) having the physical properties is obtained by a method of melt-mixing a linear polypropylene resin, a radical polymerization initiator and a conjugated diene compound, and contains a branched structure or a high molecular weight component.
  • the method is excellent in that it does not require expensive equipment and can be manufactured at low cost.
  • Examples of the conjugated diene compound used for obtaining the polypropylene resin (A) include butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, 2,5-dimethyl-2,4-hexadiene and the like. These may be used, but these may be used alone or in combination. Among these, butadiene and isoprene are particularly preferable because they are inexpensive and easy to handle and the reaction easily proceeds uniformly.
  • the addition amount of the conjugated diene compound is preferably 0.01 parts by weight or more and 5 parts by weight or less, and more preferably 0.05 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the linear polypropylene resin.
  • the addition amount of the conjugated diene compound is less than 0.01 parts by weight, the loss tangent tan ⁇ exceeds 6.0 and the foaming property may be insufficient.
  • the melt flow rate is 30 g / It may be 10 minutes or less, and fluidity may be insufficient.
  • a monomer copolymerizable with the conjugated diene compound for example, vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, acrylic acid, methacrylic acid, maleic acid
  • Maleic anhydride metal acrylate, metal methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate and other acrylic esters, methyl methacrylate, ethyl methacrylate, Methacrylic acid esters such as butyl methacrylate, 2-ethylhexyl methacrylate and stearyl methacrylate) may be used in combination.
  • the conjugated diene compound for example, vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, acrylic acid, me
  • the radical polymerization initiator used for obtaining the polypropylene resin (A) generally includes peroxides, azo compounds, etc., but those having hydrogen abstraction ability from the polypropylene resin and the conjugated diene compound are preferable. Examples thereof include organic peroxides such as ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester.
  • those having particularly high hydrogen abstraction ability are preferable, for example, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane.
  • the addition amount of the radical polymerization initiator used for obtaining the polypropylene resin (A) is preferably 0.05 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the linear polypropylene resin. More preferred is 5 parts by weight or more. If the addition amount of the radical polymerization initiator is less than 0.05 parts by weight, the loss tangent tan ⁇ exceeds 6.0 and the foaming property may be insufficient. It may become saturated and not economical.
  • the melt flow rate tends to be 30 g / 10 min or less.
  • the melt flow rate of the modified polypropylene resin exceeds 30 g / 10 min, and the melt tension is 0.3 cN or more.
  • the loss tangent tan ⁇ can be adjusted relatively easily so as to be 6.0 or less.
  • the addition amount of the radical initiator is, by weight, preferably more than the addition amount of the conjugated diene compound, more preferably more than 1.5 times the addition amount of the conjugated diene compound, and more preferably the addition amount of the conjugated diene compound. 2 times or more.
  • the linear polypropylene resin used for obtaining the polypropylene resin (A) is a polypropylene resin having a linear molecular structure, specifically, a propylene homopolymer, block copolymer. Examples thereof include crystalline polymers and random copolymers.
  • a copolymer of propylene a copolymer containing propylene in an amount of 75% by weight or more is preferable in that the crystallinity, rigidity, chemical resistance, etc., which are characteristics of the polypropylene resin, are maintained.
  • Examples of the ⁇ -olefin copolymerizable with propylene include ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4- ⁇ -olefins having 2 or 4 to 12 carbon atoms such as dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, cyclopentene, norbornene, tetracyclo [6,2,11 , 8, 13, 6] -4-dodecene, etc., 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl- Diene such as 1,6-octadiene, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacryl
  • the apparatus for reacting the linear polypropylene resin, the conjugated diene compound and the radical polymerization initiator includes a roll, a kneader, a Banbury mixer, a Brabender, a single screw extruder, 2 Examples thereof include a kneading machine such as a screw extruder, a biaxial surface renewal machine, a horizontal stirrer such as a two-shaft multi-disc device, and a vertical stirrer such as a double helical ribbon stirrer.
  • a kneader is preferably used, and an extruder is particularly preferable from the viewpoint of productivity.
  • the linear polypropylene resin, the conjugated diene compound and the radical polymerization initiator may be mixed and then melt-kneaded (stirred), or after the polypropylene resin is melt-kneaded (stirred), the conjugated diene compound or the radical initiator may be simultaneously mixed. Alternatively, they may be mixed separately, collectively or divided.
  • the temperature of the kneading (stirring) machine is preferably 130 to 300 ° C. from the viewpoint that the linear polypropylene resin melts and does not thermally decompose.
  • the kneading (stirring) time is generally preferably 1 to 60 minutes.
  • the polypropylene resin (A) of the present invention can be produced.
  • the polypropylene resin composition for injection foam molding of the present invention comprises 3 to 50% by weight of the polypropylene resin (A) and a melt flow rate at 230 ° C. of 10 g / 10 min to 150 g / 10 min.
  • the linear polypropylene resin (B) having a tension of less than 2 cN is contained in an amount of 50 to 97% by weight.
  • the linear polypropylene resin (B) preferably has a melt flow rate of 10 g / 10 min to 150 g / 10 min, more preferably 10 g / 10 min to 100 g / 10 min, and even more preferably 30 g / 10 min to 90 g. / 10 min or less, most preferably 30 g / 10 min or more and 50 g / 10 min or less, and the melt tension is preferably less than 2 cN, more preferably 1 cN or less.
  • melt flow rate of the linear polypropylene resin (B) is in the range of 10 g / 10 min to 150 g / 10 min, a thin-walled mold cavity having a clearance of about 1 to 2 mm when producing an injection-foamed molded article Even in molding having a portion, it is possible to fill the mold with the molten resin at a relatively low pressure, and there is a tendency that continuous injection foam molding can be performed. Moreover, if the melt tension is less than 2 cN, an injection-foamed molded article having a beautiful surface appearance that does not generate a flow mark can be obtained.
  • linear polypropylene resin examples include propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer and the like. Among these, it is preferable to use a linear polypropylene resin having a Charpy impact strength at 23 ° C. of 5 kJ / m 2 or more from the viewpoint of easily imparting impact resistance to the injection-foamed molded article.
  • Charpy impact strength refers to applying a high-speed impact to a notched prismatic test piece using a Charpy impact tester (manufactured by Toyo Seiki Seisakusho) in accordance with JIS K7111. This is the value obtained by breaking the test piece and dividing the impact energy absorbed at the time of the break by the original cross-sectional area of the test piece.
  • the mixing ratio of the polypropylene resin (A) and the linear polypropylene resin (B) is preferably 3% by weight or more and 50% by weight or less when the total of both is 100% by weight. More preferably, it is 5 wt% or more and 50 wt% or less, and further preferably 10 wt% or more and 45 wt% or less.
  • the linear polypropylene resin (B) is preferably 50% by weight or more and 97% by weight or less, more preferably 50% by weight or more and 95% by weight or less, and further preferably 55% by weight or more and 90% by weight or less.
  • the blending ratio is within the above range, it is possible to provide an injection-foamed molded article having a uniform fine surface, a foaming ratio of 2 times or more, and a beautiful surface appearance that does not generate a flow mark at low cost.
  • the blending ratio is out of the above range, for example, when the polypropylene resin (A) is less than 5% by weight, a foamed molded product having uniform fine bubbles tends to be not obtained, and exceeds 50% by weight. Then, there is a tendency that only a molded article having a poor appearance with many flow marks is obtained.
  • the present invention also relates to an injection foam molded article obtained by injection foam molding a composition comprising a foaming agent in the polypropylene resin or polypropylene resin composition.
  • the foaming agent used in the present invention is not particularly limited as long as it can be usually used for injection foam molding, such as a chemical foaming agent and a physical foaming agent.
  • the chemical foaming agent is premixed with the resin and then supplied to an extruder or an injection molding machine, and decomposes in a cylinder to generate a gas such as carbon dioxide.
  • the chemical foaming agent include inorganic chemical foaming agents such as sodium bicarbonate and ammonium carbonate, and organic chemical foaming agents such as azodicarbonamide and N, N′-dinitrosopentamethylenetetramine. These may be used alone or in combination of two or more.
  • a physical foaming agent is injected into a molten resin in a cylinder of an extruder or an injection molding machine as a gaseous or supercritical fluid, dispersed or dissolved, and foamed by being released from pressure after being injected into a mold. It functions as an agent.
  • Physical foaming agents include aliphatic hydrocarbons such as propane and butane, alicyclic hydrocarbons such as cyclobutane and cyclopentane, halogenated hydrocarbons such as chlorodifluoromethane and dichloromethane, nitrogen, carbon dioxide, air, etc. Inorganic gas. These may be used alone or in combination of two or more.
  • foaming agents ordinary extruders and injection molding machines can be used safely, and uniform fine bubbles are easily obtained.
  • chemical foaming agents inorganic chemical foaming agents, and as physical foaming agents, nitrogen Inorganic gases such as carbon dioxide and air are preferred.
  • foaming agents include, for example, foaming aids such as organic acids such as citric acid, talc, and lithium carbonate, in order to stably and uniformly make the bubbles of the injection foam molded article.
  • a nucleating agent such as inorganic fine particles may be added.
  • the inorganic chemical foaming agent is preferably used as a masterbatch of a polyolefin resin having a concentration of 10 to 50% by weight from the viewpoints of handleability, storage stability, and dispersibility in a polypropylene resin.
  • the usage-amount of the foaming agent in this invention suitably by the foaming magnification of the final product, the kind of foaming agent, and the resin temperature at the time of shaping
  • an inorganic chemical foaming agent in 100 parts by weight of the polypropylene resin of the present invention, preferably in the range of 0.5 to 30 parts by weight, more preferably in the range of 1 to 20 parts by weight. Used in.
  • injection molding is performed in the range of 0.05 to 10 parts by weight, preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the polypropylene resin of the present invention. Used to supply the machine.
  • the polypropylene resin composition in the present invention has a high fluidity especially with a melt flow rate exceeding 30 g / 10 min and can be greatly deformed even with a small expansion force, the conventional melt flow rate is Compared to a polypropylene resin of 30 g / 10 min or less, an injection-foamed molded article having a desired foaming ratio can be easily obtained even if the foaming agent is reduced.
  • the resin composition has a melt flow rate of more than 30 g / 10 min, the foaming ratio decreases due to outgassing when bubbles are broken, so the loss tangent tan ⁇ of the polypropylene resin must also be 6.0 or less. Requirements.
  • the foaming agent can be reduced for the first time by using the polypropylene resin composition of the present invention.
  • decrease of a foaming agent leads not only to cost reduction but reduction of silver streak, it is preferable also from a viewpoint of economical efficiency or a molded object quality.
  • high-density polyethylene resins in addition to polypropylene resins that are not within the scope of the present invention, high-density polyethylene resins, high-pressure low-density polyethylene resins, linear low-density polyethylene systems A resin, an ethylene- ⁇ -olefin copolymer, an olefin elastomer, a styrene elastomer, and other thermoplastic resins may be mixed.
  • an antioxidant if necessary, an antioxidant, a metal deactivator, a phosphorus processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, a fluorescent brightening agent, a metal soap, as long as the effects of the present invention are not impaired.
  • stabilizers such as antacid adsorbents, crosslinking agents, chain transfer agents, nucleating agents, plasticizers, lubricants, fillers, reinforcing materials, pigments, dyes, flame retardants, antistatic agents, etc. Also good.
  • injection foam molding will be specifically described.
  • a known method can be applied to the injection foam molding method itself, and the molding conditions may be appropriately adjusted depending on the melt flow rate of the polypropylene resin, the type of foaming agent, the type of molding machine, or the shape of the mold.
  • the polypropylene resin of the present invention for example, under conditions of a resin temperature of 170 to 250 ° C., a mold temperature of 10 to 100 ° C., a molding cycle of 1 to 120 minutes, an injection speed of 10 to 300 mm / second, an injection pressure of 10 to 200 MPa, and the like. Preferably it is done.
  • a mold composed of a fixed mold and a movable mold capable of moving forward and backward at an arbitrary position is used.
  • the so-called core back method Moving Cavity method
  • the so-called core back method which causes the foam to recede, has a non-foamed layer formed on the surface, and the foamed inner layer tends to be uniform fine bubbles, resulting in an injection foam molded article with excellent lightness. It is preferable because it is easy.
  • a method of retracting the movable mold it may be performed in one step, may be performed in multiple steps including two or more steps, and the reverse speed may be appropriately adjusted.
  • the present invention by applying a so-called counter pressure method in which a polypropylene resin composition is introduced into a mold while pre-pressing the mold with an inert gas or the like, surface appearance defects due to silver streaks are reduced. Since it can reduce, it is preferable. In this way, the injection foam molded article of the present invention can be obtained.
  • the expansion ratio of the injection-foamed molded article of the present invention is preferably 2 to 10 times, more preferably 2.5 to 6 times. If the expansion ratio is less than 2 times, it tends to be difficult to obtain light weight, and if it exceeds 10 times, the rigidity tends to decrease significantly.
  • the projected area is 0.2 m 2 or more, preferably it is possible to easily manufacture a 0.23 m 2 or more injection foam molding.
  • the projected area refers to the area when the injection-foamed molded product is projected onto a surface perpendicular to the moving direction of the mold, and is a numerical value that serves as a reference for calculating the clamping force required during molding.
  • the 50% fracture energy E 50 at ⁇ 30 ° C. is 1.0 J or more, which is practically no problem, but is 1.2 J or more. preferable.
  • test methods and criteria used in various evaluation methods are as follows.
  • melt flow rate (MFR) In accordance with ASTM D-1238, using a melt indexer S-01 (manufactured by Toyo Seiki Seisakusho Co., Ltd.), extruded from a die at a constant time under a load of 2.16 kg at 230 ° C for 10 minutes. The amount was converted to The predetermined time is 60 seconds when the melt flow rate is 3.5 g / 10 minutes or more and less than 10 g / 10 minutes, 30 seconds when the melt flow rate is 10 g / 10 minutes or more and less than 25 g / 10 minutes, and 25 g / 10 minutes or more.
  • the measurement was performed in the range of angular frequency from 0.1 rad / s to 100 rad / s, and storage elastic modulus and loss elastic modulus at each angular frequency and loss tangent tan ⁇ were obtained as calculated values. Among these results, the value of loss tangent tan ⁇ at an angular frequency of 1 rad / s was adopted. The amount of strain was 5%, and the measurement was performed in a nitrogen atmosphere.
  • Silver streaks appearing on the surface of the injection-foamed molded article were visually observed and evaluated according to the following criteria.
  • flow mark A flow mark (ring-shaped pattern generated concentrically around the gate portion) appearing on the surface of the injection-foamed molded body was visually observed and evaluated according to the following criteria. ⁇ : The flow mark is inconspicuous. X: A flow mark is conspicuous.
  • a propylene homopolymer manufactured by Prime Polymer Co., Ltd., J108M
  • t-butylperoxyisopropyl carbonate as a radical polymerization initiator Part of the mixture is fed from a hopper to a 45
  • Monomers were supplied at 0.3 parts by weight (rate of 0.21 kg / hour) using a metering pump and melt-kneaded in the twin-screw extruder to obtain pellets of modified polypropylene resin.
  • Table 1 shows the evaluation of the obtained modified polypropylene resin.
  • the injection filling was carried out at an injection speed of 100 mm / sec using only one valve gate installed in the nozzle.
  • Example 2 ⁇ Production of modified polypropylene resin> A modified polypropylene resin was obtained in the same manner as in Example 1 except that the blending amount of t-butyl peroxyisopropyl carbonate was changed to 0.4 parts by weight and the supply amount of isoprene was changed to 0.35 parts by weight. ⁇ Preparation of injection foam molding> Injection foaming was performed in the same manner as in Example 1 to obtain an injection foam molded article. Table 1 shows the evaluation of the resulting modified polypropylene resin, and Table 2 shows the evaluation of the injection foam molded article.
  • Example 3 ⁇ Production of modified polypropylene resin> A modified polypropylene resin was obtained in the same manner as in Example 1 except that the blending amount of t-butylperoxyisopropyl carbonate was changed to 0.4 parts by weight and the supply amount of isoprene was changed to 0.4 parts by weight.
  • Table 1 shows the evaluation of the resulting modified polypropylene resin
  • Table 2 shows the evaluation of the injection foam molded article.
  • Example 4 ⁇ Production of modified polypropylene resin> In the same manner as in Example 3, a modified polypropylene resin was obtained. ⁇ Preparation of injection foam molding> Change the clearance t 0 of the cavity bottom portion 1.5mm expansion ratio 3 times (bottom section thickness: 4.5 mm) except for retracting the movable die so that the injection foaming in the same manner as in Example 3 To obtain an injection foam molded article. Table 1 shows the evaluation of the resulting modified polypropylene resin, and Table 2 shows the evaluation of the injection foam molded article.
  • Example 5 ⁇ Production of modified polypropylene resin> In the same manner as in Example 1, a modified polypropylene resin was obtained. ⁇ Preparation of injection foam molding> Except that the blending amount of the foaming agent was changed to 6 parts by weight, injection foaming was performed in the same manner as in Example 1 to obtain an injection foam molded article. Table 1 shows the evaluation of the resulting modified polypropylene resin, and Table 2 shows the evaluation of the injection foam molded article.
  • Example 6 ⁇ Production of modified polypropylene resin> A modified polypropylene resin was obtained in the same manner as in Example 1 except that the blending amount of t-butyl peroxyisopropyl carbonate was changed to 1.4 parts by weight and the supply amount of isoprene was changed to 0.25 parts by weight. ⁇ Preparation of injection foam molding> Injection foaming was performed in the same manner as in Example 5 to obtain an injection foam molded article. Table 1 shows the evaluation of the resulting modified polypropylene resin, and Table 2 shows the evaluation of the injection foam molded article.
  • Example 7 ⁇ Production of modified polypropylene resin> A modified polypropylene resin was obtained in the same manner as in Example 1 except that the blending amount of t-butyl peroxyisopropyl carbonate was changed to 1.4 parts by weight and the supply amount of isoprene was changed to 0.22 parts by weight. ⁇ Preparation of injection foam molding> Injection foaming was performed in the same manner as in Example 5 to obtain an injection foam molded article. Table 1 shows the evaluation of the resulting modified polypropylene resin, and Table 2 shows the evaluation of the injection foam molded article.
  • Example 8 ⁇ Production of modified polypropylene resin> A modified polypropylene resin was obtained in the same manner as in Example 1 except that the blending amount of t-butylperoxyisopropyl carbonate was changed to 0.3 parts by weight and the supply amount of isoprene was changed to 0.4 parts by weight. ⁇ Preparation of injection foam molding> Injection foaming was performed in the same manner as in Example 4 to obtain an injection foam molded article. Table 1 shows the evaluation of the resulting modified polypropylene resin, and Table 2 shows the evaluation of the injection foam molded article.
  • the polypropylene resin composition of the present invention is excellent in fluidity, even when a large mold having a projected area of more than 0.2 m 2 is used, short shots during continuous molding are unlikely to occur, and injection filling properties are improved. It was good. Further, the foaming ratio of the bottom surface portion of the injection foamed molded product was 3 times, and a product with a high foaming ratio was obtained, and silver streaks and flow marks on the surface of the injection foamed molded product were not noticeable. In addition, an injection foam having improved impact resistance was obtained.
  • melt flow rate of the polypropylene-based resin exceeds 50 g / 10 min has good injection filling property also narrowing the clearance t 0 of the cavity bottom portion and 1.3 mm, in expansion ratio three times as high Regardless, it was possible to obtain a thin injection foam molded product having a thickness of less than 4 mm.
  • the polypropylene resin of Comparative Example 1 was insufficient injection filling property in some cases even to expand the clearance t 0 of the cavity bottom to 1.5mm of occurrence of short shot during continuous molding.
  • the polypropylene resin of Comparative Example 2 has good injection filling properties, but silver streaks on the surface of the injection foamed molded product are conspicuous, and only an injection foamed molded product with internal voids can be obtained even at a foaming ratio of 1.4 times. It was.
  • the polypropylene-based resin of Comparative Example 3 has a loss tangent tan ⁇ of 6.0 or less, the melt flow rate is low, and only an injection foam molded article having internal voids can be obtained even at a foaming ratio of 1.5 times. Further, silver streaks on the surface of the injection-foamed molded article were conspicuous, and the injection filling property was insufficient.
  • the polypropylene resin of the present invention was able to foam three times even when the foaming agent was reduced to 6 parts by weight, and an injection foam molded product with almost no noticeable silver streak was obtained, whereas a comparative example was obtained.
  • the polypropylene resin of No. 4 when the foaming agent was reduced to 6 parts by weight, the expansion ratio could not be increased to 3 times.
  • Monomers were supplied at a rate of 0.4 part by weight (rate of 0.28 kg / hour) using a metering pump, and melt-kneaded in the twin-screw extruder to obtain pellets of a modified polypropylene resin.
  • Table 3 shows the evaluation of the obtained modified polypropylene resin.
  • linear polypropylene resin B
  • polyolefin wax C
  • B-1 Propylene homopolymer having a melt flow rate of 45 g / 10 min, a melt tension of 0.7 cN, and a Charpy impact strength of 2.0 kJ / m 2 (manufactured by Prime Polymer Co., Ltd., J108M)
  • B-2) Propylene-ethylene copolymer having a melt flow rate of 45 g / 10 min, a melt tension of 0.8 cN, and a Charpy impact strength of 5.5 kJ / m 2 (manufactured by Prime Polymer Co., Ltd., J708UG)
  • C Homopolymer type polyethylene wax produced from a metallocene catalyst having a molecular weight of 2300, a density of 900 kg / m 3 , a softening point of 123 ° C. and a melting point of 105 ° C.
  • Example 9 to 17 ⁇ Preparation of polypropylene resin composition> In the types and composition ratios shown in Table 2, the modified polypropylene resin (A), the linear polypropylene resin (B), and a baking soda chemical foaming agent masterbatch as a blowing agent [manufactured by Eiwa Kasei Kogyo Co., Ltd. Polyslene EE275F, cracked gas amount 40 ml / g] was dry blended.
  • ⁇ Preparation of injection foam molding> After melt-kneading the obtained blended product at a cylinder temperature of 200 ° C.
  • Example 9 Injection foaming was performed in the same manner as in Example 1 except that only the linear polypropylene resin (B-2) was used without using the modified polypropylene resin of the present invention, but the foam having a uniform foam structure was used. I could't get a body.
  • Example 11 Injection foaming was performed in the same manner as in Example 1 except that only the modified polypropylene resin (A-1) was used without using the linear polypropylene resin of the present invention.
  • Table 4 shows the evaluation of the obtained injection-foamed molded article.
  • the polypropylene resin composition of the present invention is an injection-foamed molded article that can be expanded three times even when the foaming agent is reduced to 6 parts by weight, and silver streak is hardly noticeable.
  • the foaming agent was reduced to 6 parts by weight in the polypropylene resin composition of Comparative Example 8, the expansion ratio could not be increased to 3 times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

流動性、発泡性に優れ、特に射出発泡成形への適用において、大型金型でも狭い初期キャビティ・クリアランスで成形が可能なため、薄くて大面積の外観良好な射出発泡成形体を得ることができるポリプロピレン系樹脂およびプロピレン系樹脂組成物を提供する。 本発明は、線状ポリプロピレン樹脂、ラジカル重合開始剤および共役ジエン化合物を溶融混合して得られ、230℃、2.16kg荷重の条件にて測定されるメルトフローレートが30g/10分を超えて250g/10分以下、200℃でのメルトテンションが0.3cN以上、かつ、200℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接tanδが6.0以下であることを特徴とする、ポリプロピレン系樹脂、および前記ポリプロピレン系樹脂を含有する射出発泡成形用ポリプロピレン系樹脂組成物に関する。

Description

ポリプロピレン系樹脂、ポリプロピレン系樹脂組成物、および射出発泡成形体
本発明は、射出発泡成形に好適に使用し得るポリプロピレン系樹脂、ポリプロピレン系樹脂組成物および射出発泡成形体に関する。
ポリプロピレン樹脂は、良好な物性及び成形性を有しており、また、環境にやさしい材料として急速にその使用範囲が拡大している。特に、自動車部品等では、軽量で剛性に優れたポリプロピレン樹脂製品が提供されている。そのような製品の一つに、ポリプロピレン系樹脂の射出発泡成形体がある。
ポリプロピレン系樹脂発泡成形体は、ポリプロピレン系樹脂と発泡剤とからなる混合物を押出機で溶融混合して大気圧下に押出すことにより得られる押出発泡シートを金型で挟み込み成形体としたもの、ポリプロピレン系樹脂予備発泡粒子を所望の形状を有する金型内に充填し蒸気等で加熱することにより、予備発泡粒子を融着させ成形体としたもの、等があり、その軽量性から様々な用途に適用されている。
ポリプロピレン系樹脂の射出発泡成形体において、ポリプロピレン系樹脂を高発泡化させる技術としては、型開き可能に保持された金型の空間内に発泡剤を含む樹脂を射出成形した後、金型を開くことにより前記空間を拡大して樹脂を発泡させるいわゆるコアバック法(Moving Cavity法)がある(例えば、特許文献1)。
一般に、射出発泡成形に用いられるポリプロピレン系樹脂の特性としては、金型内の隅々まで樹脂が充填されるための流動性、および充填後に発泡するための発泡性が要求される。例えば、ポリプロピレン系樹脂の射出発泡成形体が、自動車部品として、特にコンソールボックス、ラゲージボックス、ドアトリム、ツールボックス等大型成形品である場合には、軽量、薄肉かつ高剛性な成形体であることが求められるが、その際、成形時のショートショット等の成形不良が起こりやすくなるために、使用する原料樹脂の流動性を高くする必要がある。
また、通常使用される線状ポリプロピレン系樹脂は、結晶性でメルトテンション(溶融張力)が低いため、気泡が破壊されやすく高発泡化が困難であった。その結果、射出発泡成形体表面に発泡剤由来ガスによるシルバーストリークと呼ばれる外観不良が発生しやすく、さらには内部にボイドが発生しやすく、発泡倍率を高くすることが困難であった。
ポリプロピレン系樹脂のメルトテンションを高める方法として、例えば、架橋剤やシラングラフト熱可塑性樹脂を添加する方法(特許文献2、3)、無架橋のポリプロピレン系樹脂に放射線照射することで長鎖分岐を導入する方法(特許文献4)、ポリプロピレン系樹脂とイソプレン単量体とラジカル重合開始剤とを溶融混練して改質ポリプロピレン系樹脂を製造する方法(特許文献5)などが提案されている。確かに、これらの方法により、高発泡倍率の射出発泡成形体が得られるものの、樹脂溶融時の粘度が上がりすぎ、射出成形が困難となると共に、発泡性を付与することに起因すると考えられる成形不良であるフローマークが発生し、表面外観が悪くなる場合があった。
一方、射出発泡成形において成形性を改良する方法として、例えば、メルトフローレートが30g/10分未満で、メルトテンションが5cN以上のポリプロピレン系樹脂に、線状ポリプロピレン系樹脂を併用する方法(特許文献6、8)などが提案されている。この方法により、流動性が改良され、比較的大型な金型においてもショートショットとなることなく、射出発泡成形が可能となったが、この方法を以ってしても、投影面積が0.2mを超えるような大型の金型を用いた射出発泡成形では流動性が不足する場合があった。
また、ポリオレフィンワックスを併用する方法も提案されている(特許文献9)。この方法により、更に流動性が改良されるが、ワックスを使用することにより、成形体物性(耐衝撃性)が低下する場合があった。特に、発泡倍率が2倍を超えるような高発泡倍率の薄肉の射出発泡成形体を得る場合は、初期キャビティ・クリアランスを狭くする必要があり、大型金型ではショートショットとなる場合があった。また、メルトテンションは、メルトフローレートにも大きく影響され、メルトフローレートが低いとメルトテンションは高くなりやすいことから、メルトフローレートが30g/10分を超えるような高流動性のポリプロピレン系樹脂においては、メルトテンションが5cN以上という規定は発泡性の指標として不充分であった。
一方、メルトテンションと共に損失正接を規定したポリプロピレン系樹脂を押出発泡に使用する方法(特許文献7)などが提案されているが、押出発泡に適した低メルトフローレートの樹脂であり、射出発泡成形には不適であった。
以上のように、前記した外観不良対策を含め、大型金型を用いて射出発泡成形するための、より良好な流動性および発泡性を両立するポリプロピレン系樹脂を得ることは困難であった。
WO2005/026255号公報 特開昭61-152754号公報 特開平7-109372号公報 特開2001-226510号公報 特開平9-188774号公報 WO2009/060792号公報 特開2009-29900号公報 WO2005/026255号公報 特開2008-101060号公報
本発明の目的は、流動性および発泡性に優れ、押出時や射出時で抵抗が少なく(圧力上昇が少なく)、表面外観の良好な射出発泡成形体が得られるポリプロピレン系樹脂、ポリプロピレン系樹脂組成物および該樹脂または樹脂組成物からなる射出発泡成形用の材料体を提供することである。特に投影面積が0.2m以上の大型金型による薄肉の射出発泡成形が可能であり、シルバーストリークやフローマークの少ない表面外観良好な、かつ耐衝撃性の高い射出発泡成形体が得られるポリプロピレン系樹脂、ポリプロピレン系樹脂組成物および該樹脂または樹脂組成物からなる射出発泡成形用の材料を提供することである。
本発明者らは、鋭意検討した結果、線状ポリプロピレン樹脂、ラジカル重合開始剤および共役ジエン化合物を溶融混合して得られ、230℃、2.16kg荷重の条件にて測定されるメルトフローレートが30g/10分を超えて250g/10分以下、200℃でのメルトテンションが0.3cN以上、200℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接tanδが6.0以下であることを特徴とするポリプロピレン樹脂が上記課題を解決できることを見出し、本発明を完成させるに至った。
すなわち、本発明は、線状ポリプロピレン樹脂、ラジカル重合開始剤および共役ジエン化合物を溶融混合して得られ、230℃、2.16kg荷重の条件にて測定されるメルトフローレートが30g/10分を超えて250g/10分以下、200℃でのメルトテンションが0.3cN以上、かつ、200℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接tanδが6.0以下であることを特徴とする、ポリプロピレン系樹脂に関する。
メルトフローレートは、50g/10分を超えて250g/10分以下であることが好ましい。
ラジカル重合開始剤の添加量が、共役ジエン化合物の添加量以上であることが好ましい。
ラジカル重合開始剤の添加量が、共役ジエン化合物の添加量の1.5倍以上であることがより好ましい。
また、本発明は、前記ポリプロピレン系樹脂(A)3~50重量%、および230℃でのメルトフローレートが10g/10分以上150g/10分以下、メルトテンションが2cN未満である線状ポリプロピレン樹脂(B)50~97重量%を含有することを特徴とする、射出発泡成形用ポリプロピレン系樹脂組成物に関する。
前記線状ポリプロピレン系樹脂(B)の23℃でのシャルピー衝撃強度が5kJ/m以上であることが好ましい。
さらに、本発明は、前記ポリプロピレン系樹脂または前記ポリプロピレン系樹脂組成物、および発泡剤を含んでなる組成物を射出発泡成形してなることを特徴とする、射出発泡成形体に関する。
本発明のポリプロピレン系樹脂、およびポリプロピレン系樹脂組成物は、流動性および発泡性に優れる。そのため、特に射出発泡成形に好適に使用でき、とりわけ、大型金型による薄肉の射出発泡成形が可能となる。さらには、本発明のポリプロピレン系樹脂、およびポリプロピレン系樹脂組成物は、メルトフローレートが30g/10分を超える高流動であり、少しの膨張力でも大きく変形することが可能であることから、従来のメルトフローレートが30g/10分以下のポリプロピレン系樹脂、ポリプロピレン系樹脂組成物と比較して、発泡剤を減量しても所望の発泡倍率の射出発泡成形体を得ることができる。
そして、本発明のポリプロピレン系樹脂、またはポリプロピレン系樹脂組成物から得られる射出発泡成形体は、高発泡倍率でシルバーストリークやフローマークが少なく、表面外観が良好なものとなる。また、溶融弾性の低く、かつ、23℃のシャルピー衝撃強度が5kJ/m以上である線状ポリプロピレンを併用することで、耐衝撃性の高い射出発泡成形体が得られる。
以下、本発明の実施の形態を説明する。
本発明のポリプロピレン系樹脂(A)は、線状ポリプロピレン樹脂、ラジカル重合開始剤および共役ジエン化合物を溶融混合して得られ、230℃、2.16kg荷重の条件にて測定されるメルトフローレートが30g/10分を超えて250g/10分以下、200℃でのメルトテンションが0.3cN以上、かつ、200℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接tanδが6.0以下であることを特徴とする。
ポリプロピレン系樹脂(A)のメルトフローレートは、下限が30g/10分を超え、好ましくは50g/10分を超えるものであり、上限が250g/10分以下、好ましくは100g/10分以下である。メルトフローレートが30g/10分以下の場合、流動性が不足して大型金型での射出発泡成形においてショートショットとなる場合があり、メルトフローレートが250g/10分を超える場合、射出発泡成形での計量工程が不安定になる場合がある。
ここで、メルトフローレート(以降、「MFR」と略す場合がある)とは、ASTM D-1238に準拠し、メルトインデクサーS-01((株)東洋精機製作所製)を用い、230℃、2.16kg荷重の条件にて、ダイから一定時間に押し出される樹脂量から、10分間に押し出される量に換算した値をいう。なお、前記一定時間とは、メルトフローレートが3.5g/10分以上10g/10分未満の場合は60秒間、10g/10分以上25g/10分未満の場合は30秒間、25g/10分以上50g/10分未満の場合は15秒間、50g/10分以上100g/10分未満の場合は5秒間、100g/10分以上の場合は3秒間である。仮に、ある秒数で測定した際のメルトフローレートが対応する範囲に無かった場合は、そのメルトフローレートに応じた秒数で再度測定するものとする。
ポリプロピレン系樹脂(A)は、200℃でのメルトテンションが0.3cN以上、好ましくは0.5cN以上であり、より好ましくは、0.8cN以上であり、さらに好ましくは1.0cN以上であり、最も好ましくは1.05cN以上である。また、メルトテンションの上限は特に限定されないが、好ましくは15cN以下であり、より好ましくは10cN以下である。メルトフローレートが30g/10分を超えるポリプロピレン系樹脂においてメルトテンションが0.3cN未満の場合、射出発泡成形時の溶融樹脂流動先端部での破泡が抑えられず、シルバーストリークが発生し、射出発泡成形体の表面外観が悪化する場合がある。一方、15cNを超えると、後述する線状ポリプロピレン系樹脂(B)との混合性が低下し、外観が悪化する場合がある。
ここで、メルトテンション(以降、「MT」と略す場合がある)とは、メルトテンション測定用アタッチメントが装備されており、先端に1mmφ、長さ10mmのオリフィスを装着したφ10mmのシリンダを有するキャピログラフ((株)東洋精機製作所製)を使用して、200℃、ピストン降下速度10mm/分で降下させた際にダイから吐出されるストランドを350mm下のロードセル付きプーリーに掛けて1m/分の速度で引き取り、安定後に40m/分で引き取り速度を増加させたとき、ストランドが破断したときのロードセル付きプーリーにかかる荷重をいう。なお、ストランドが破断に至らない場合は、引き取り速度を増加させてもロードセル付きプーリーにかかる荷重が増加しなくなった点の荷重をメルトテンションとする。
ポリプロピレン系樹脂は、200℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接tanδが6.0以下であり、好ましくは5.0以下である。
ここで、角振動数1rad/sはいわゆる低剪断領域であり、その領域において損失正接tanδが小さい、すなわち、相対的に貯蔵弾性率が高いことは発泡時の気泡の保持に有利であると考えられる。但し、メルトフローレートが30g/10分以下という分子量の比較的高いポリプロピレン系樹脂では、分子鎖が相互に絡む割合が高く、メルトフローレートが小さくなるほど前記損失正接tanδが小さく測定される傾向にある。しかし、メルトフローレートが低い故に損失正接tanδが低い場合、損失正接tanδは、発泡に適した溶融特性を適正に表わしているといえず、実際に射出発泡成形において必ずしも気泡の保持に充分ではない。すなわち、本発明においては、メルトフローレートが30g/10分を超える高流動のポリプロピレン系樹脂において損失正接tanδが低いことが、射出発泡成形での気泡保持の指標となり、損失正接tanδが6.0を超える場合、破泡しやすく、射出発泡成形体に内部ボイドが発生したり、射出発泡成形体の厚みが薄くなってしまう場合がある。
一方、前記損失正接tanδについて下限は特には無いが、好ましくは0.7以上であり、より好ましくは0.9以上である。0.7未満の場合には、射出発泡成形体表面にフローマークと呼ばれるゲート部を中心に同心円状に発生するリング状の模様がかなり目立ち、表面外観が悪くなる場合がある。
ここで、損失正接tanδは、25mmφのパラレルプレート型冶具を装着した粘弾性測定装置を用い、測定温度200℃、パラレルプレート間隔1mm、角振動数0.1rad/sから100rad/sまでの範囲で測定を行った際の、角振動数1rad/sでの貯蔵弾性率および損失弾性率の測定値を用いて、損失弾性率を貯蔵弾性率で除して算出する。なお、前記粘弾性測定には、例えば、TAインスツルメンツ社製粘弾性測定装置、ARESなどが好適に用いられる。
前記物性を有するポリプロピレン系樹脂(A)は、線状ポリプロピレン系樹脂、ラジカル重合開始剤および共役ジエン化合物を溶融混合する方法により得られ、分岐構造あるいは高分子量成分を含有する。前記方法では、高価な設備を必要とせず、安価に製造できる点で優れている。
ポリプロピレン系樹脂(A)を得るために用いられる共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、2,5-ジメチル-2,4-ヘキサジエンなどがあげられるが、これらを単独で使用してもよいし、組み合わせて使用してもよい。これらの中では、ブタジエン、イソプレンが安価で取り扱いやすく、反応が均一に進みやすい点から、特に好ましい。
共役ジエン化合物の添加量としては、線状ポリプロピレン系樹脂100重量部に対して、0.01重量部以上5重量部以下が好ましく、0.05重量部以上2重量部以下がさらに好ましい。共役ジエン化合物の添加量が0.01重量部未満では、損失正接tanδが6.0を超えて、発泡性が不充分となる場合があり、5重量部を超えると、メルトフローレートが30g/10分以下となり、流動性が不充分となる場合がある。
なお、本発明においては、前記共役ジエン化合物と共重合可能な単量体(例えば、塩化ビニル、塩化ビニリデン、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、アクリル酸金属塩、メタクリル酸金属塩、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ステアリルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリルなどのメタクリル酸エステルなど)を併用してもよい。
ポリプロピレン系樹脂(A)を得るために用いられるラジカル重合開始剤としては、一般に過酸化物、アゾ化合物などが挙げられるが、ポリプロピレン系樹脂や前記共役ジエン化合物からの水素引き抜き能を有するものが好ましく、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどの有機過酸化物が挙げられる。
これらのうち、特に水素引き抜き能が高いものが好ましく、例えば、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタンなどのパーオキシケタール、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシンなどのジアルキルパーオキサイド、ベンゾイルパーオキサイドなどのジアシルパーオキサイド、t-ブチルパーオキシオクテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレートなどのパーオキシエステルなどが挙げられる。これらは、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
ポリプロピレン系樹脂(A)を得るために用いられるラジカル重合開始剤の添加量としては、線状ポリプロピレン系樹脂100重量部に対して、0.05重量部以上10重量部以下が好ましく、0.2重量部以上5重量部以下がさらに好ましい。ラジカル重合開始剤の添加量が0.05重量部未満では、損失正接tanδが6.0を超えて、発泡性が不充分となる場合があり、10重量部を超えると、改質の効果が飽和してしまい、経済的でない場合がある。
一般に、損失正接tanδが6.0以下となるように線状ポリプロピレン系樹脂を改質する際、メルトフローレートが30g/10分以下となり易い傾向がある。本発明においては、ラジカル開始剤の添加量を、共役ジエン化合物の添加量以上とすることにより、改質ポリプロピレン系樹脂のメルトフローレートが30g/10分を超えて、メルトテンションが0.3cN以上、かつ損失正接tanδが6.0以下となるように、比較的容易に調整することができる。ラジカル開始剤の添加量は、重量で、好ましくは共役ジエン化合物の添加量以上であり、より好ましくは共役ジエン化合物の添加量の1.5倍以上であり、さらに好ましくは共役ジエン化合物の添加量の2倍以上である。
ポリプロピレン系樹脂(A)を得るために用いられる線状ポリプロピレン系樹脂とは、線状の分子構造を有しているポリプロピレン系樹脂であり、具体的には、プロピレンの単独重合体、ブロック共重合体およびランダム共重合体であって、結晶性の重合体があげられる。プロピレンの共重合体としては、プロピレンを75重量%以上含有しているものが、ポリプロピレン系樹脂の特徴である結晶性、剛性、耐薬品性などが保持されている点で好ましい。
プロピレンと共重合可能なα-オレフィンとしては、例えば、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテン、1-デセンなどの炭素数2または4~12のα-オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]-4-ドデセンなどの環状オレフィン、5-メチレン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、1,4-ヘキサジエン、メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられる。これらは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらのうち、エチレン、1-ブテンが、耐寒脆性向上、安価等という点で好ましい。
ポリプロピレン系樹脂(A)を得るために、線状ポリプロピレン系樹脂、共役ジエン化合物およびラジカル重合開始剤を反応させるための装置としては、ロール、コニーダー、バンバリーミキサー、ブラベンダー、単軸押出機、2軸押出機などの混練機、2軸表面更新機、2軸多円板装置などの横型撹拌機、ダブルヘリカルリボン撹拌機などの縦型撹拌機、などが挙げられる。これらのうち、混練機を使用することが好ましく、特に押出機が生産性の点から好ましい。
ポリプロピレン系樹脂(A)を得るために、線状ポリプロピレン系樹脂、共役ジエン化合物およびラジカル重合開始剤を混合、混練(撹拌)する順序、方法には、特に制限はない。線状ポリプロピレン系樹脂、共役ジエン化合物およびラジカル重合開始剤を混合したのち溶融混練(撹拌)してもよいし、ポリプロピレン系樹脂を溶融混練(撹拌)した後、共役ジエン化合物あるいはラジカル開始剤を同時にあるいは別々に、一括してあるいは分割して混合してもよい。混練(撹拌)機の温度は130~300℃であることが、線状ポリプロピレン系樹脂が溶融し、かつ熱分解しないという点で好ましい。また、混練(撹拌)時間は、一般に1~60分が好ましい。
このようにして、本発明のポリプロピレン樹脂(A)を製造することができる。改質ポリプロピレン樹脂(A)の形状、大きさに制限はなく、ペレット状でもよい。
また、本発明の射出発泡成形用ポリプロピレン系樹脂組成物は、前記ポリプロピレン系樹脂(A)3~50重量%、および230℃でのメルトフローレートが10g/10分以上150g/10分以下、メルトテンションが2cN未満である線状ポリプロピレン樹脂(B)50~97重量%を含有する。線状ポリプロピレン樹脂(B)を含有することで、射出発泡成形体のフローマークの発生を低減することができ、さらに線状ポリプロピレン樹脂(B)として衝撃強度が高い樹脂を用いることにより、射出発泡成形体の耐衝撃性を改良することができる。
線状ポリプロピレン樹脂(B)としては、メルトフローレートが好ましくは10g/10分以上150g/10分以下、より好ましくは10g/10分以上100g/10分以下、さらに好ましくは30g/10分以上90g/10分以下、最も好ましくは30g/10分以上50g/10分以下であり、メルトテンションが好ましくは2cN未満、さらに好ましくは1cN以下である。線状ポリプロピレン樹脂(B)のメルトフローレートが10g/10分以上150g/10分以下の範囲であると、射出発泡成形体を製造する際に、金型キャビティのクリアランスが1~2mm程度の薄肉部分を有する成形においても比較的低圧力で溶融樹脂を金型内に充填することが可能であり、連続して安定した射出発泡成形が行える傾向にある。また、メルトテンションが2cN未満であれば、フローマークが発生しない表面外観美麗な射出発泡成形体を得ることができる。
線状ポリプロピレン樹脂としては、具体的には、プロピレンホモポリマー、プロピレン-エチレンランダムコポリマー、プロピレン-エチレンブロックコポリマー等が挙げられる。これらのうち、射出発泡成形体に耐衝撃性を付与しやすいという点から、23℃でのシャルピー衝撃強度が5kJ/m以上である線状ポリプロピレン系樹脂を使用することが好ましい。
ここで、シャルピー衝撃強度とは、JIS K7111に準拠し、シャルピー衝撃試験機((株)東洋精機製作所製)を用い、切り欠きの入った角柱状の試験片に対して高速で衝撃を与えることで試験片を破壊し、破壊時に吸収される衝撃エネルギーを試験片の元の断面積で除した値をいう。
ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)の混合比率は、両者の合計を100重量%とした場合、ポリプロピレン樹脂(A)は、好ましくは3重量%以上50重量%以下であり、より好ましくは5重量%以上50重量%以下であり、さらに好ましくは10重量%以上45重量%以下である。線状ポリプロピレン樹脂(B)は、好ましくは50重量%以上97重量%以下であり、より好ましくは50重量%以上95重量%以下であり、さらに好ましくは55重量%以上90重量%以下である。配合比率が上記範囲内であると、均一微細な気泡を有し、発泡倍率2倍以上であり、フローマークが発生しない表面外観美麗な射出発泡成形体を安価に提供することができる。配合比率が上記の範囲外であると、例えば、ポリプロピレン系樹脂(A)が5重量%未満であると、均一微細な気泡を有する発泡成形体が得られない傾向があり、50重量%を超えると、フローマークが多く発生する外観の悪い成形体しか得られない傾向がある。
また、本発明は、前記ポリプロピレン系樹脂またはポリプロピレン系樹脂組成物に発泡剤を含んでなる組成物を射出発泡成形してなる射出発泡成形体にも関する。
本発明で用いられる発泡剤は、化学発泡剤、物理発泡剤など射出発泡成形に通常使用できるものであれば、特に制限はない。
化学発泡剤は、前記樹脂と予め混合してから押出機や射出成形機に供給され、シリンダ内で分解して炭酸ガス等の気体を発生するものである。化学発泡剤としては、重炭酸ナトリウム、炭酸アンモニウム等の無機系化学発泡剤や、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン等の有機系化学発泡剤があげられる。これらは単独で使用してもよいし、2種以上混合して使用してもよい。
物理発泡剤は、押出機や射出成形機のシリンダ内の溶融樹脂にガス状または超臨界流体として注入され、分散または溶解されるもので、金型内に射出後、圧力開放されることによって発泡剤として機能するものである。物理発泡剤としては、プロパン、ブタン等の脂肪族炭化水素類、シクロブタン、シクロペンタン等の脂環式炭化水素類、クロロジフルオロメタン、ジクロロメタン等のハロゲン化炭化水素類、窒素、炭酸ガス、空気等の無機ガスがあげられる。これらは単独で使用してもよいし、2種以上混合して使用してもよい。
これらの発泡剤の中では、通常の押出機や射出成形機が安全に使用でき、均一微細な気泡が得られやすいものとして、化学発泡剤としては無機系化学発泡剤、物理発泡剤としては窒素、炭酸ガス、空気等の無機ガスが好ましい。これらの発泡剤には、射出発泡成形体の気泡を安定的に均一微細にするために、必要に応じて、例えば、クエン酸のような有機酸等の発泡助剤やタルク、炭酸リチウムのような無機微粒子等の造核剤を添加してもよい。通常、上記無機系化学発泡剤は、取扱性、貯蔵安定性、ポリプロピレン系樹脂への分散性の点から、10~50重量%濃度のポリオレフィン系樹脂のマスターバッチとして使用されるのが好ましい。
本発明における発泡剤の使用量は、最終製品の発泡倍率と発泡剤の種類や成形時の樹脂温度によって適宜設定すればよい。例えば、通常、無機系化学発泡剤の場合は、本発明のポリプロピレン系樹脂100重量部中、好ましくは0.5重量部以上30重量部以下、さらに好ましくは1重量部以上20重量部以下の範囲で使用される。無機系化学発泡剤をこの範囲で使用することにより、経済的に発泡倍率が2倍以上、かつ、均一微細気泡の射出発泡成形体が得られやすい。なお、物理発泡剤の場合は、本発明のポリプロピレン系樹脂100重量部に対して、0.05重量部以上10重量部以下、好ましくは0.1重量部以上5重量部以下の範囲で射出成形機に供給して使用される。
本発明におけるポリプロピレン系樹脂組成物は、特にメルトフローレートが30g/10分を超える高流動性を有し、少しの膨張力でも大きく変形することが可能であることから、従来のメルトフローレートが30g/10分以下のポリプロピレン系樹脂に比べて、発泡剤を減量しても所望の発泡倍率の射出発泡成形体が得られやすい。ただし、メルトフローレートが30g/10分を超える樹脂組成物であっても、破泡するとガス抜けにより発泡倍率は低下するため、ポリプロピレン系樹脂の損失正接tanδが6.0以下であることも必要な要件となる。
すなわち、本発明のポリプロピレン系樹脂組成物を使用することにより、初めて、発泡剤を減量することが可能となる。なお、発泡剤の減量は、コストダウンのみならず、シルバーストリークの低減に繋がることから、経済性や成形体品質の観点からも好ましい。
本発明では、必要に応じて、本発明の効果を損なわない範囲で、本発明の範囲でないポリプロピレン系樹脂の他、高密度ポリエチレン系樹脂、高圧法低密度ポリエチレン系樹脂、線状低密度ポリエチレン系樹脂、エチレン-α-オレフィン共重合体、オレフィン系エラストマー、スチレン系エラストマー、その他の熱可塑性樹脂を混合しても良い。
本発明では、さらに必要に応じて、本発明の効果を損なわない範囲で、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、制酸吸着剤などの安定剤、架橋剤、連鎖移動剤、核剤、可塑剤、滑材、充填材、強化材、顔料、染料、難燃剤、帯電防止剤などの添加剤を併用してもよい。
次に、射出発泡成形の方法について、具体的に説明する。射出発泡成形方法自体は公知の方法が適用でき、ポリプロピレン系樹脂のメルトフローレート、発泡剤の種類、成形機の種類あるいは金型の形状によって、適宜成形条件を調整すればよい。
本発明のポリプロピレン系樹脂の場合、例えば、樹脂温度170~250℃、金型温度10~100℃、成形サイクル1~120分、射出速度10~300mm/秒、射出圧10~200MPa等の条件で行うことが好ましい。
また、金型内で発泡させる方法としては種々有るが、なかでも固定型と任意の位置に前進および後退が可能な可動型とから構成される金型を使用し、射出完了後、可動型を後退させて発泡させる、いわゆるコアバック法(Moving Cavity法)が、表面に非発泡層が形成され、内部の発泡層が均一微細気泡になりやすく、軽量性に優れた射出発泡成形体が得られやすいことから、好ましい。なお、可動型を後退させる方法としては、一段階で行ってもよいし、二段階以上の多段階で行ってもよく、後退させる速度も適宜調整してもよい。
本発明では、予め金型内を不活性ガス等で圧力をかけながら、ポリプロピレン系樹脂組成物を金型内に導入するいわゆるカウンタープレッシャー法を併用することにより、シルバーストリークに起因する表面外観不良を低減することができるため、好ましい。このようにして、本発明の射出発泡成形体を得ることができる。
本発明の射出発泡成形体の発泡倍率は、好ましくは2倍以上10倍以下、さらに好ましくは2.5倍以上6倍以下である。発泡倍率が2倍未満では、軽量性が得られ難い傾向があり、10倍を超える場合には、剛性の低下が著しくなる傾向がある。
本発明のポリプロピレン系樹脂を使用することにより、投影面積が0.2m以上、好ましくは0.23m以上の射出発泡成形体を容易に製造することが可能となる。なお、投影面積とは、射出発泡成形体を金型の移動方向に直角な面に投影した際の面積をいい、成形時に要する型締力の算定基準となる数値である。
本発明の射出発泡成形体の耐衝撃性としては、-30℃における50%破壊エネルギーE50が1.0J以上であると実用上問題のないレベルといえるが、1.2J以上であることが好ましい。
以下に、実施例によって本発明をより詳しく説明するが、本発明は、これらによって何ら制限されるものではない。
実施例および比較例において、各種の評価方法に用いられた試験法および判定基準は、次の通りである。
(1)メルトフローレート(MFR)
ASTM D-1238に準拠し、メルトインデクサーS-01((株)東洋精機製作所製)を用い、230℃、2.16kg荷重下でダイから一定時間に押し出される樹脂量から、10分間に押し出される量に換算した。なお、前記一定時間は、メルトフローレートが3.5g/10分以上10g/10分未満の場合は60秒間、10g/10分以上25g/10分未満の場合は30秒間、25g/10分以上50g/10分未満の場合は15秒間、50g/10分以上100g/10分未満の場合は5秒間、100g/10分以上の場合は3秒間とした。
(2)メルトテンション(MT)
メルトテンション測定用アタッチメントが装備されており、先端にφ1mm、長さ10mmのオリフィスを装着したφ10mmのシリンダを有するキャピログラフ((株)東洋精機製作所製)を使用して、200℃、ピストン降下速度10mm/分で降下させた際にダイから吐出されるストランドを350mm下のロードセル付きプーリーに掛けて1m/分の速度で引き取り、安定後に40m/分で引き取り速度を増加させたとき、ストランドが破断したときのロードセル付きプーリーにかかる荷重をメルトテンションとした。なお、ストランドが破断に至らない場合は、引き取り速度を増加させてもロードセル付きプーリーにかかる荷重が増加しなくなった点の荷重をメルトテンションとした。
(3)損失正接tanδ
ポリプロピレン系樹脂を、1.5mm厚のスペーサーを用いて、190℃にて5分間熱プレスして1.5mm厚のプレス板を作製し、ここから25mmφのポンチを用いて打ち抜き、試験片を得た。測定装置としては、TAインスツルメンツ社製粘弾性測定装置ARESを用い、25mmφのパラレルプレート型冶具を装着した。冶具を囲うように恒温槽を設置し、200℃に保温、冶具が予熱された後に、恒温槽を開け、パラレルプレート間に25mmφとした試験片を挿入して恒温槽を閉じ、5分間予熱した後にパラレルプレート間隔を1mmまで圧縮した。圧縮後、再度恒温槽を開き、パラレルプレートからはみ出した樹脂を真鍮のヘラで掻き取り、恒温槽を閉じて再度5分間保温した後に、動的粘弾性測定を開始した。
測定は、角振動数0.1rad/sから100rad/sまでの範囲で行い、各角振動数での貯蔵弾性率と損失弾性率および、計算値として損失正接tanδを得た。これらの結果のうち、角周波数1rad/sでの損失正接tanδの値を採用した。なお、歪み量は5%で、窒素雰囲気下で測定を行った。
(4)射出充填性
連続して20ショット成形した際に、ショートショットになった個数(不良個数)を求めて、以下の基準で評価した。
○:不良個数が0個。
×:不良個数が1個以上。
(5)表面外観(シルバーストリーク)
射出発泡成形体の表面に現れるシルバーストリークを目視により観察し、以下の基準で評価した。
◎:シルバーストリークがほとんど目立たない。
○:シルバーストリークが目立たない。
×:シルバーストリークが目立つ。
(6)表面外観(フローマーク)
射出発泡成形体の表面に現れるフローマーク(ゲート部を中心に同心円状に発生するリング状の模様)を、目視により観察し、以下の基準で評価した。
○:フローマークが目立たない。
×:フローマークが目立つ。
(7)発泡倍率
射出発泡成形体底部の厚みを測定し、当該部位の金型の型締め状態でのキャビティ・クリアランスtで除することにより、算出した。
(8)内部ボイド
射出発泡成形体の底面部において、ゲートから100mm離れた部位を厚み方向に切断した断面を、ルーペを用いて観察し、内部ボイド(気泡の連通により生ずる大型の気泡)の状態から以下の基準で評価した。
◎:1.2mm以上の内部ボイドが無い。
○:1.2mm以上1.5mm未満の内部ボイドが有る。
×:1.5mm以上の内部ボイドが有る。
(9)耐衝撃性(硬質プラスチックの落錘衝撃試験)
得られた成形体の底面から、4cm角の試験片を切り出し、JIS K7211-1(1976)に準拠して、-30℃における50%破壊エネルギーE50(単位:J)を求めた。
(実施例1)
<改質ポリプロピレン系樹脂の作製>
線状ポリプロピレン系樹脂としてメルトフローレート45g/10分のプロピレン単独重合体((株)プライムポリマー製、J108M)100重量部、および、ラジカル重合開始剤としてt-ブチルパーオキシイソプロピルカーボネート1.0重量部の混合物を、ホッパーから70kg/時で45mmφ二軸押出機(L/D=40)に供給して、シリンダ温度200℃で溶融混練し、途中に設けた圧入部より、共役ジエン化合物としてイソプレンモノマーを、定量ポンプを用いて0.3重量部(0.21kg/時の速度)で供給し、前記二軸押出機中で溶融混練することにより、改質ポリプロピレン系樹脂のペレットを得た。
得られた改質ポリプロピレン系樹脂の評価を、表1に示す。
<射出発泡成形体の作製>
得られた改質ポリプロピレン系樹脂100重量部に、発泡剤として重曹系化学発泡剤マスターバッチ[永和化成工業(株)製ポリスレンEE275F、分解ガス量40ml/g]を7.5重量部添加してドライブレンドした。型締め力850tで、コアバック機能を有する電動射出成形機[宇部興産機械(株)製]を用い、シリンダ温度200℃、背圧15MPaで得られたブレンド物(発泡剤を含む樹脂組成物)を溶融混練した後、30℃に設定された、3点のバルブゲート(ホットランナー)を有し、固定型と前進および後退が可能な可動型とから構成される、縦450mm×横550mm×高さ100mmの箱形状のキャビティ(投影面積:0.2475m、立壁部:傾斜10度、クリアランス2.5mm、底面部:クリアランスt=1.3mm)を有する金型中に、底面部中心位置に設置された1点のバルブゲートのみを使用して、射出速度100mm/秒で射出充填した。射出充填完了後に、発泡倍率3倍(底面部厚み:3.9mm)となるように可動型を後退(コアバック)させて、キャビティ内の樹脂を発泡させた。発泡完了後60秒間冷却した後、射出発泡成形体を取り出した。
得られた射出発泡成形体の評価を、表2に示す。
(実施例2)
<改質ポリプロピレン系樹脂の作製>
t-ブチルパーオキシイソプロピルカーボネートの配合量を0.4重量部、イソプレンの供給量を0.35重量部に変更した以外は、実施例1と同様にして、改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
実施例1と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
(実施例3)
<改質ポリプロピレン系樹脂の作製>
t-ブチルパーオキシイソプロピルカーボネートの配合量を0.4重量部、イソプレンの供給量を0.4重量部に変更した以外は、実施例1と同様にして、改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
実施例1と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
(実施例4)
<改質ポリプロピレン系樹脂の作製>
実施例3と同様にして、改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
キャビティ底面部のクリアランスtを1.5mmに変更して発泡倍率3倍(底面部厚み:4.5mm)となるように可動型を後退させた以外は、実施例3と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
(実施例5)
<改質ポリプロピレン系樹脂の作製>
実施例1と同様にして、改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
発泡剤の配合量を6重量部に変更した以外は、実施例1と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
(実施例6)
<改質ポリプロピレン系樹脂の作製>
t-ブチルパーオキシイソプロピルカーボネートの配合量を1.4重量部、イソプレンの供給量を0.25重量部に変更した以外は、実施例1と同様にして、改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
実施例5と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
(実施例7)
<改質ポリプロピレン系樹脂の作製>
t-ブチルパーオキシイソプロピルカーボネートの配合量を1.4重量部、イソプレンの供給量を0.22重量部に変更した以外は、実施例1と同様にして、改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
実施例5と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
(実施例8)
<改質ポリプロピレン系樹脂の作製>
t-ブチルパーオキシイソプロピルカーボネートの配合量を0.3重量部、イソプレンの供給量を0.4重量部に変更した以外は、実施例1と同様にして、改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
実施例4と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
(比較例1)
<改質ポリプロピレン系樹脂の作製>
t-ブチルパーオキシイソプロピルカーボネートの配合量を0.6重量部、イソプレンの供給量を0.8重量部に変更した以外は、実施例1と同様にして、改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
キャビティ底面部のクリアランスtを1.5mmに変更し、発泡倍率3倍(底面部厚み:4.5mm)となるように可動型を後退させた以外は、実施例1と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
(比較例2)
<射出発泡成形体の作製>
改質ポリプロピレン系樹脂の代わりに、市販のメルトフローレート60g/10分のプロピレン単独重合体を使用し、発泡倍率1.4倍(底面部厚み:1.8mm)となるように可動型を後退させた以外は、実施例1と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた射出発泡成形体の評価を表2に示す。
(比較例3)
<射出発泡成形体の作製>
改質ポリプロピレン系樹脂の代わりに、市販のメルトフローレート15g/10分のプロピレン単独重合体を使用し、発泡倍率1.6倍(底面部厚み:2.4mm)となるように可動型を後退させた以外は、比較例1と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた射出発泡成形体の評価を、表2に示す。
(比較例4)
<改質ポリプロピレン系樹脂の作製>
t-ブチルパーオキシイソプロピルカーボネートの配合量を0.6重量部、イソプレンの供給量を0.8重量部に変更した以外は、実施例1と同様にして改質ポリプロピレン系樹脂を得た。
<射出発泡成形体の作製>
発泡剤の配合量を6重量部に変更した以外は、比較例1と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた改質ポリプロピレン系樹脂の評価を表1に、射出発泡成形体の評価を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
本発明のポリプロピレン系樹脂組成物は、流動性に優れていることから、投影面積が0.2mを超える大型の金型を用いても連続成形時のショートショットが起こりにくく、射出充填性が良好であった。また、射出発泡成形体の底面部の発泡倍率は3倍であり、高発泡倍率のものが得られ、射出発泡成形体表面のシルバーストリークやフローマークも目立たなかった。また、耐衝撃性の向上した射出発泡体が得られた。
特に、ポリプロピレン系樹脂のメルトフローレートが50g/10分を超える場合はキャビティ底面部のクリアランスtを1.3mmと狭めても射出充填性が良好であり、発泡倍率が3倍と高いにも関わらず、厚み4mm未満の薄肉の射出発泡成形体を得ることが可能だった。
これに対し、比較例1のポリプロピレン系樹脂では、キャビティ底部のクリアランスtを1.5mmまで広げても連続成形時にショートショットの発生する場合があって射出充填性が不充分であった。また、比較例2のポリプロピレン系樹脂は、射出充填性は良好であるものの、射出発泡成形体表面のシルバーストリークが目立ち、発泡倍率1.4倍でも内部ボイドのある射出発泡成形体しか得られなかった。さらに、比較例3のポリプロピレン系樹脂は、損失正接tanδは6.0以下であるもののメルトフローレートが低い故であり、発泡倍率1.5倍でも内部ボイドのある射出発泡成形体しか得られず、射出発泡成形体表面のシルバーストリークも目立ち、更に射出充填性も不充分であった。
更には、本発明のポリプロピレン系樹脂は、発泡剤を6重量部まで減量しても3倍発泡が可能であり、シルバーストリークもほとんど目立たない射出発泡成形体が得られたのに対し、比較例4のポリプロピレン系樹脂では、発泡剤を6重量部まで減量すると、発泡倍率を3倍とすることができなかった。
(製造例)
改質ポリプロピレン系樹脂を、以下の製造条件にて、作製した。
(製造例A-1)
線状ポリプロピレン系樹脂としてメルトフローレート45g/10分のプロピレン単独重合体((株)プライムポリマー製、J108M)100重量部、および、ラジカル重合開始剤としてt-ブチルパーオキシイソプロピルカーボネート1.0重量部の混合物を、ホッパーから70kg/時で45mmφ二軸押出機(L/D=40)に供給して、シリンダ温度200℃で溶融混練し、途中に設けた圧入部より、共役ジエン化合物としてイソプレンモノマーを、定量ポンプを用いて0.4重量部(0.28kg/時の速度)で供給し、前記二軸押出機中で溶融混練することにより、改質ポリプロピレン系樹脂のペレットを得た。
得られた改質ポリプロピレン系樹脂の評価を、表3に示す。
(製造例A-2)
t-ブチルパーオキシイソプロピルカーボネートの配合量を0.4重量部、イソプレンの供給量を0.4重量部に変更した以外は、製造例A-1と同様にして、改質ポリプロピレン系樹脂を得た。
得られた改質ポリプロピレン系樹脂の評価を、表3に示す。
(製造例A-3)
t-ブチルパーオキシイソプロピルカーボネートの配合量を1.4重量部、イソプレンの供給量を0.3重量部に変更した以外は、製造例A-1と同様にして、改質ポリプロピレン系樹脂を得た。
得られた改質ポリプロピレン系樹脂の評価を、表3に示す。
(製造例A-4)
t-ブチルパーオキシイソプロピルカーボネートの配合量を1.4重量部、イソプレンの供給量を0.25重量部に変更した以外は、製造例A-1と同様にして、改質ポリプロピレン系樹脂を得た。
得られた改質ポリプロピレン系樹脂の評価を、表3に示す。
(製造例A-5)
t-ブチルパーオキシイソプロピルカーボネートの配合量を0.6重量部、イソプレンの供給量を0.8重量部に変更した以外は、製造例A-1と同様にして、改質ポリプロピレン系樹脂を得た。
得られた改質ポリプロピレン系樹脂の評価を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
線状ポリプロピレン系樹脂(B)、ポリオレフィンワックス(C)としては、以下のものを使用した。
(B-1)メルトフローレート45g/10分、メルトテンションが0.7cN、シャルピー衝撃強度が2.0kJ/mのプロピレン単独重合体((株)プライムポリマー製、J108M)
(B-2)メルトフローレート45g/10分、メルトテンションが0.8cN、シャルピー衝撃強度が5.5kJ/mのプロピレン-エチレン共重合体((株)プライムポリマー製、J708UG)
(C)分子量2300、密度900kg/m、軟化点123℃、融点105℃である、メタロセン系触媒から製造したホモポリマータイプのポリエチレンワックス(クラリアントジャパン(株)製リコセンPE4201)
(実施例9~17)
<ポリプロピレン系樹脂組成物の作製>
表2に示す種類・組成比にて、改質ポリプロピレン系樹脂(A)に、線状ポリプロピレン系樹脂(B)および、発泡剤としての重曹系化学発泡剤マスターバッチ[永和化成工業(株)製、ポリスレンEE275F、分解ガス量40ml/g]をドライブレンドした。
<射出発泡成形体の作製>
型締め力850tで、コアバック機能を有する電動射出成形機[宇部興産機械(株)製]を用い、得られたブレンド物を、シリンダ温度200℃、背圧15MPaの条件にて溶融混練した後、30℃に設定された、3点のバルブゲート(ホットランナー)を有し、固定型と前進および後退が可能な可動型とから構成される、縦450mm×横550mm×高さ100mmの箱形状のキャビティ(投影面積:0.2475m、立壁部:傾斜10度、クリアランス2.5mm、底面部:クリアランスt=1.3mm)を有する金型中に、底面部中心位置に設置された1点のバルブゲートのみを使用して、射出速度100mm/秒で射出充填した。射出充填完了後に、発泡倍率3倍(底面部厚み:3.9mm)となるように可動型を後退(コアバック)させて、キャビティ内の樹脂を発泡させた。発泡完了後60秒間冷却した後、射出発泡成形体を取り出した。
得られた射出発泡成形体の評価結果を表4に示す。
(比較例5~8、10)
<ポリプロピレン系樹脂組成物の作製>
表2に示す種類・組成比にて、改質ポリプロピレン系樹脂(A)に、線状ポリプロピレン系樹脂(B)、ポリオレフィンワックス(C)および、発泡剤としての重曹系化学発泡剤マスターバッチ[永和化成工業(株)製、ポリスレンEE275F、分解ガス量40ml/g]を、混合・ドライブレンドした。
<射出発泡成形体の作製>
得られたブレンド物を、実施例1と同様にして射出発泡を行い、射出発泡成形体を得た。
得られた射出発泡成形体の評価を表4に示す。
(比較例9)
本発明の改質ポリプロピレン系樹脂を使用せず、線状ポリプロピレン系樹脂(B-2)のみを使用した以外は、実施例1と同様に射出発泡を行ったが、均一な発泡構造を有する発泡体を得ることができなかった。
(比較例11)
本発明の線状ポリプロピレン系樹脂を使用せず、改質ポリプロピレン系樹脂(A-1)のみを使用した以外は、実施例1と同様に射出発泡を行った。
得られた射出発泡成形体の評価を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
比較例5のポリプロピレン系樹脂組成物では、改質ポリプロピレン系樹脂の流動性不足により、連続成形時にショートショットの発生する場合があり、射出充填性が不充分であり、所望の発泡倍率の射出発泡成形体は得られるものの、表面のフローマークが目立った。
また、比較例6のポリプロピレン系樹脂組成物では、線状ポリプロピレン系樹脂に(B-2)を使用することで耐衝撃性は改善するものの、比較例1同様、射出充填性と表面外観が悪いものしか得られなかった。
また、比較例7のポリプロピレン系樹脂組成物では、比較例6にポリエチレンワックスを添加したものであるが、比較例6よりも流動性が向上し射出充填性は十分であるものの、ポリエチレンワックスを添加したことにより成形体の耐衝撃性が低下し、表面外観も満足するものではなかった。
また、比較例9のポリプロピレン系樹脂組成物では、樹脂組成物そのものに溶融弾性が発現していないため、射出発泡成形を行うことができなかった。
また、比較例11のポリプロピレン系樹脂組成物では、所望の発泡倍率の射出発泡成形体は得られるものの、表面のフローマークが非常に目立つものとなった。
更には、本発明のポリプロピレン系樹脂組成物は、実施例17のように、発泡剤を6重量部まで減量しても3倍発泡が可能であり、シルバーストリークもほとんど目立たない射出発泡成形体が得られるのに対し、比較例8のポリプロピレン系樹脂組成物では発泡剤を6重量部まで減量すると発泡倍率を3倍とすることができなかった。
 

Claims (7)

  1. 線状ポリプロピレン樹脂、ラジカル重合開始剤および共役ジエン化合物を溶融混合して得られ、
    230℃、2.16kg荷重の条件にて測定されるメルトフローレートが30g/10分を超えて250g/10分以下、200℃でのメルトテンションが0.3cN以上、かつ、200℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接tanδが6.0以下であることを特徴とする、ポリプロピレン系樹脂。
  2. メルトフローレートが50g/10分を超えて250g/10分以下であることを特徴とする、請求項1記載のポリプロピレン系樹脂。
  3. ラジカル重合開始剤の添加量が、共役ジエン化合物の添加量以上であることを特徴とする、請求項1または2に記載のポリプロピレン系樹脂。
  4. ラジカル重合開始剤の添加量が、共役ジエン化合物の添加量の1.5倍以上であることを特徴とする、請求項3に記載のポリプロピレン系樹脂。
  5. 請求項1~4のいずれか1項に記載のポリプロピレン系樹脂(A)3~50重量%、および230℃でのメルトフローレートが10g/10分以上150g/10分以下、メルトテンションが2cN未満である線状ポリプロピレン樹脂(B)50~97重量%を含有することを特徴とする、射出発泡成形用ポリプロピレン系樹脂組成物。
  6. 前記線状ポリプロピレン系樹脂(B)の23℃でのシャルピー衝撃強度が5kJ/m以上であることを特徴とする、請求項5記載の射出発泡成形用ポリプロピレン系樹脂組成物。
  7. 請求項1~6のいずれかに記載のポリプロピレン系樹脂または射出発泡成形用ポリプロピレン系樹脂組成物、および発泡剤を含んでなる組成物を射出発泡成形してなることを特徴とする、射出発泡成形体。
PCT/JP2010/067850 2009-10-13 2010-10-12 ポリプロピレン系樹脂、ポリプロピレン系樹脂組成物、および射出発泡成形体 WO2011046103A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/501,193 US8552116B2 (en) 2009-10-13 2010-10-12 Polypropylene resin, polypropylene resin composition, and foam-injection-molded article
JP2011536132A JP5770634B2 (ja) 2009-10-13 2010-10-12 ポリプロピレン系樹脂、ポリプロピレン系樹脂組成物、および射出発泡成形体
KR1020127004605A KR20120088653A (ko) 2009-10-13 2010-10-12 폴리프로필렌계 수지, 폴리프로필렌계 수지 조성물, 및 사출 발포 성형체
EP10823371.9A EP2489686B1 (en) 2009-10-13 2010-10-12 Polypropylene resin, polypropylene resin composition, and foam-injection-molded article
CN201080045925.8A CN102574948B (zh) 2009-10-13 2010-10-12 聚丙烯类树脂、聚丙烯类树脂组合物及注塑发泡成型体

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-235987 2009-10-13
JP2009235987 2009-10-13
JP2010-003239 2010-01-08
JP2010003239 2010-01-08
JP2010-092799 2010-04-14
JP2010092799 2010-04-14
JP2010147306 2010-06-29
JP2010-147306 2010-06-29

Publications (1)

Publication Number Publication Date
WO2011046103A1 true WO2011046103A1 (ja) 2011-04-21

Family

ID=43876153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067850 WO2011046103A1 (ja) 2009-10-13 2010-10-12 ポリプロピレン系樹脂、ポリプロピレン系樹脂組成物、および射出発泡成形体

Country Status (6)

Country Link
US (1) US8552116B2 (ja)
EP (1) EP2489686B1 (ja)
JP (1) JP5770634B2 (ja)
KR (1) KR20120088653A (ja)
CN (1) CN102574948B (ja)
WO (1) WO2011046103A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121975A (ja) * 2010-12-07 2012-06-28 Kaneka Corp 射出発泡成形用ポリプロピレン系樹脂、およびその射出発泡成形体
JP2013127053A (ja) * 2011-11-14 2013-06-27 Kaneka Corp 射出発泡成形用オレフィン系エラストマー組成物及び該樹脂組成物からなる射出発泡成形体
JP2016000795A (ja) * 2014-06-12 2016-01-07 株式会社カネカ 射出発泡成形用熱可塑性樹脂組成物およびその成形体
JP2016003310A (ja) * 2014-06-18 2016-01-12 株式会社カネカ 射出発泡成形用熱可塑性樹脂組成物およびその成形体
JP2016521765A (ja) * 2013-06-05 2016-07-25 ボレアリス・アクチェンゲゼルシャフトBorealis Ag ポリプロピレン組成物の一段階製造
WO2017111100A1 (ja) * 2015-12-22 2017-06-29 株式会社カネカ ポリプロピレン系樹脂組成物の射出成形体
WO2022163627A1 (ja) * 2021-01-26 2022-08-04 株式会社カネカ 分岐構造を有するポリプロピレン系樹脂の製造方法、押出発泡粒子の製造方法、および、発泡成形体の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493622B2 (en) * 2012-11-27 2016-11-15 Kaneka Corporation Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
CN106029771B (zh) * 2013-12-23 2019-07-26 布拉斯科美国有限公司 具有增强的外观和优良模塑流动性的基于丙烯的组合物
EP4177298A1 (en) 2016-07-19 2023-05-10 Kaneka Corporation Polypropylene-type resin pre-expanded particles, and method for producing said pre-expanded particles
CN106751001A (zh) * 2016-12-27 2017-05-31 上海普利特复合材料股份有限公司 一种高表面质量聚丙烯微发泡复合材料及其制备方法
MY184007A (en) * 2017-09-21 2021-03-17 Tbm Co Ltd Thermoplastic resin composition and formed article formed by using thermoplastic resin composition
EP3816209A4 (en) * 2018-06-28 2022-04-27 Kaneka Corporation MODIFIED POLYPROPYLENE RESIN AND PROCESS OF PRODUCTION THEREOF, AND FOAM PARTICLES EXTRUDED WITH SUCH MODIFIED POLYPROPYLENE RESIN AND PROCESS OF PRODUCTION

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152754A (ja) 1984-12-26 1986-07-11 Idemitsu Petrochem Co Ltd ポリプロピレンの改質方法
JPH07109372A (ja) 1993-10-13 1995-04-25 Sekisui Chem Co Ltd 発泡成形体の製造方法
JPH09188774A (ja) 1996-01-10 1997-07-22 Kanegafuchi Chem Ind Co Ltd 改質ポリプロピレン系樹脂からなる発泡体およびその製法
JPH09309967A (ja) * 1995-11-24 1997-12-02 Jsp Corp ポリプロピレン系樹脂発泡体の製造方法
JP2001226510A (ja) 1999-12-06 2001-08-21 Sekisui Plastics Co Ltd ポリプロピレン系樹脂発泡体、成形品およびその製法
WO2005026255A1 (ja) 2003-09-12 2005-03-24 Kaneka Corporation ポリプロピレン系樹脂組成物、それからなる発泡成形体およびその製造方法
JP2007245450A (ja) * 2006-03-15 2007-09-27 Kaneka Corp 熱可塑性樹脂発泡成形体の製造方法および成形体
JP2008101060A (ja) 2006-10-17 2008-05-01 Kaneka Corp 射出発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物からなる射出発泡成形体
JP2008274024A (ja) * 2007-04-25 2008-11-13 Kaneka Corp ポリプロピレン系樹脂予備発泡粒子、及び型内発泡成形体
JP2009001772A (ja) * 2007-05-23 2009-01-08 Kaneka Corp ポリプロピレン系樹脂射出発泡成形体
JP2009029900A (ja) 2007-07-26 2009-02-12 Furukawa Electric Co Ltd:The ポリプロピレン系樹脂発泡体
WO2009060792A1 (ja) 2007-11-05 2009-05-14 Kaneka Corporation 発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物を発泡してなる発泡成形体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540739A (en) * 1978-09-18 1980-03-22 Kanegafuchi Chem Ind Co Ltd Foamed polypropylene resin article and its manufacturing
JPS61133240A (ja) * 1984-12-04 1986-06-20 Chisso Corp 高発泡用ポリプロピレン系樹脂組成物
EP0874009B1 (en) 1996-01-10 2003-12-03 Kaneka Corporation Processes for the preparation of a modified polypropylene resin and a foam made thereof
JP3623585B2 (ja) * 1996-01-10 2005-02-23 株式会社カネカ 改質ポリプロピレン系樹脂およびその製法
JP3522966B2 (ja) * 1996-04-17 2004-04-26 鐘淵化学工業株式会社 改質ポリプロピレン系樹脂組成物およびその製法
JP3703565B2 (ja) * 1996-05-30 2005-10-05 昭和電工株式会社 ポリプロピレン系樹脂組成物およびその発泡成形体
JP2001239568A (ja) * 2000-02-28 2001-09-04 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出板状発泡体
CA2398479C (en) 2000-03-17 2009-09-29 Chung P. Park Macrocellular polyolefin foam having a high service temperature for acoustical applications
US7759404B2 (en) 2004-10-22 2010-07-20 Dow Global Technologies Inc. Inherently open-celled polypropylene foam with large cell size
JP2007276219A (ja) * 2006-04-04 2007-10-25 Kaneka Corp ポリプロピレン系樹脂積層発泡シートおよびその成形体
JP4908043B2 (ja) * 2006-04-13 2012-04-04 株式会社カネカ ポリプロピレン系樹脂射出発泡成形体
JP2008120979A (ja) * 2006-11-15 2008-05-29 Kaneka Corp ポリプロピレン系樹脂発泡シートおよびその成形体
ATE552306T1 (de) 2007-05-25 2012-04-15 Kuraray Co Thermoplastische polymerzusammensetzung
JP5270935B2 (ja) * 2008-03-17 2013-08-21 株式会社プライムポリマー 発泡成形体用プロピレン系樹脂組成物およびその発泡成形体

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152754A (ja) 1984-12-26 1986-07-11 Idemitsu Petrochem Co Ltd ポリプロピレンの改質方法
JPH07109372A (ja) 1993-10-13 1995-04-25 Sekisui Chem Co Ltd 発泡成形体の製造方法
JPH09309967A (ja) * 1995-11-24 1997-12-02 Jsp Corp ポリプロピレン系樹脂発泡体の製造方法
JPH09188774A (ja) 1996-01-10 1997-07-22 Kanegafuchi Chem Ind Co Ltd 改質ポリプロピレン系樹脂からなる発泡体およびその製法
JP2001226510A (ja) 1999-12-06 2001-08-21 Sekisui Plastics Co Ltd ポリプロピレン系樹脂発泡体、成形品およびその製法
WO2005026255A1 (ja) 2003-09-12 2005-03-24 Kaneka Corporation ポリプロピレン系樹脂組成物、それからなる発泡成形体およびその製造方法
JP2007245450A (ja) * 2006-03-15 2007-09-27 Kaneka Corp 熱可塑性樹脂発泡成形体の製造方法および成形体
JP2008101060A (ja) 2006-10-17 2008-05-01 Kaneka Corp 射出発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物からなる射出発泡成形体
JP2008274024A (ja) * 2007-04-25 2008-11-13 Kaneka Corp ポリプロピレン系樹脂予備発泡粒子、及び型内発泡成形体
JP2009001772A (ja) * 2007-05-23 2009-01-08 Kaneka Corp ポリプロピレン系樹脂射出発泡成形体
JP2009029900A (ja) 2007-07-26 2009-02-12 Furukawa Electric Co Ltd:The ポリプロピレン系樹脂発泡体
WO2009060792A1 (ja) 2007-11-05 2009-05-14 Kaneka Corporation 発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物を発泡してなる発泡成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2489686A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121975A (ja) * 2010-12-07 2012-06-28 Kaneka Corp 射出発泡成形用ポリプロピレン系樹脂、およびその射出発泡成形体
JP2013127053A (ja) * 2011-11-14 2013-06-27 Kaneka Corp 射出発泡成形用オレフィン系エラストマー組成物及び該樹脂組成物からなる射出発泡成形体
JP2016521765A (ja) * 2013-06-05 2016-07-25 ボレアリス・アクチェンゲゼルシャフトBorealis Ag ポリプロピレン組成物の一段階製造
US20180334559A1 (en) * 2013-06-05 2018-11-22 Borealis Ag One-step production of a polypropylene composition
US10179851B2 (en) 2013-06-05 2019-01-15 Borealis Ag One-step production of a polypropylene composition
JP2016000795A (ja) * 2014-06-12 2016-01-07 株式会社カネカ 射出発泡成形用熱可塑性樹脂組成物およびその成形体
JP2016003310A (ja) * 2014-06-18 2016-01-12 株式会社カネカ 射出発泡成形用熱可塑性樹脂組成物およびその成形体
WO2017111100A1 (ja) * 2015-12-22 2017-06-29 株式会社カネカ ポリプロピレン系樹脂組成物の射出成形体
WO2022163627A1 (ja) * 2021-01-26 2022-08-04 株式会社カネカ 分岐構造を有するポリプロピレン系樹脂の製造方法、押出発泡粒子の製造方法、および、発泡成形体の製造方法

Also Published As

Publication number Publication date
JP5770634B2 (ja) 2015-08-26
CN102574948B (zh) 2013-11-06
KR20120088653A (ko) 2012-08-08
CN102574948A (zh) 2012-07-11
US20120264886A1 (en) 2012-10-18
EP2489686B1 (en) 2017-02-15
JPWO2011046103A1 (ja) 2013-03-07
US8552116B2 (en) 2013-10-08
EP2489686A1 (en) 2012-08-22
EP2489686A4 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5770634B2 (ja) ポリプロピレン系樹脂、ポリプロピレン系樹脂組成物、および射出発泡成形体
JP4745057B2 (ja) ポリプロピレン系樹脂組成物、それからなる発泡成形体およびその製造方法
JP5368148B2 (ja) 射出発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物からなる射出発泡成形体
JP5628553B2 (ja) 射出発泡成形用熱可塑性エラストマー組成物及び該樹脂組成物からなる射出発泡成形体
JP2009001772A (ja) ポリプロピレン系樹脂射出発泡成形体
JP5112674B2 (ja) 射出発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物からなる射出発泡成形体
JP4908043B2 (ja) ポリプロピレン系樹脂射出発泡成形体
JP2012107097A (ja) ポリプロピレン系樹脂組成物及び該樹脂組成物からなる射出発泡成形体
JP5122760B2 (ja) ポリプロピレン系樹脂射出発泡成形体
JP4963266B2 (ja) ポリプロピレン系樹脂射出発泡成形体
JP4519477B2 (ja) ポリプロピレン系樹脂発泡成形体およびその製法
JP4851104B2 (ja) ポリプロピレン系樹脂発泡成形体およびその製造方法
JP5638928B2 (ja) 射出発泡成形用ポリプロピレン系樹脂、およびその射出発泡成形体
WO2017164343A1 (ja) 射出発泡成形用のポリプロピレン系樹脂組成物、およびその射出発泡成形体
JP2012197345A (ja) 射出発泡成形用ポリプロピレン系樹脂組成物、及び該樹脂組成物からなる射出発泡成形体
JP2017171788A (ja) 射出発泡成形用のポリプロピレン系樹脂組成物、およびその射出発泡成形体
JP2010106093A (ja) 射出発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物からなる射出発泡成形体
JP2011094068A (ja) 射出発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物からなる射出発泡成形体
JP2012000909A (ja) 熱可塑性エラストマー発泡成形体
JP4536446B2 (ja) 熱可塑性樹脂発泡成形体の製造方法および成形体
JP2012166522A (ja) ポリプロピレン系樹脂組成物からなる射出発泡成形体の製造方法
JP2006056910A (ja) 射出発泡成形用ポリプロピレン系樹脂組成物およびその成形体
JP2019059861A (ja) ポリプロピレン系射出発泡成形体
JP2020007547A (ja) ポリプロピレン系射出発泡成形体
JP6026857B2 (ja) 射出発泡成形用オレフィン系エラストマー組成物及び該樹脂組成物からなる射出発泡成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045925.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823371

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536132

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127004605

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010823371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010823371

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 890/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13501193

Country of ref document: US