Nothing Special   »   [go: up one dir, main page]

WO2009130887A1 - アンテナ装置及び無線通信装置 - Google Patents

アンテナ装置及び無線通信装置 Download PDF

Info

Publication number
WO2009130887A1
WO2009130887A1 PCT/JP2009/001814 JP2009001814W WO2009130887A1 WO 2009130887 A1 WO2009130887 A1 WO 2009130887A1 JP 2009001814 W JP2009001814 W JP 2009001814W WO 2009130887 A1 WO2009130887 A1 WO 2009130887A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
frequency
slit
antenna device
isolation
Prior art date
Application number
PCT/JP2009/001814
Other languages
English (en)
French (fr)
Inventor
坂田勉
山本温
岩井浩
天利悟
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2009538202A priority Critical patent/JP4437167B2/ja
Priority to CN2009800004508A priority patent/CN101689703B/zh
Priority to US12/665,456 priority patent/US8264414B2/en
Priority to EP09735883.2A priority patent/EP2278660A4/en
Publication of WO2009130887A1 publication Critical patent/WO2009130887A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention mainly relates to an antenna device for mobile communication such as a mobile phone and a wireless communication device including the antenna device.
  • Mobile communication wireless devices such as mobile phones are rapidly becoming smaller and thinner.
  • portable wireless communication devices have been transformed into data terminals that are used not only as conventional telephones but also for sending and receiving e-mails and browsing web pages on the WWW (World Wide Web).
  • the amount of information handled has increased from conventional voice and text information to photographs and moving images, and further improvements in communication quality are required.
  • portable wireless communication devices are required to cope with various applications such as voice calls as telephones, data communication for browsing web pages, and viewing of television broadcasts. Under such circumstances, an antenna device that can operate in a wide range of frequencies is required to perform wireless communication according to each application.
  • an antenna device that covers a wide frequency band and adjusts the resonance frequency for example, as described in Patent Document 1, an antenna device that adjusts the resonance frequency by providing a slit in the antenna element unit, or Patent Document 2
  • Patent Document 2 there was a notch antenna having a trap circuit in the slit.
  • the antenna device of Patent Document 1 includes a plate-shaped radiating element (radiating plate) and a grounding plate facing in parallel with the plate-shaped radiating element.
  • a short-circuit portion that short-circuits the radiation plate and the ground plate in the vicinity of the power supply portion, and two resonators that are respectively formed by providing a slit portion on the edge portion that substantially faces the power supply portion on the radiation plate. Consists of.
  • the degree of coupling between the two resonators is optimized by adjusting the shape and size of the slit portion or by loading a reactance element or a conductor plate in the slit portion. Thus, a small and low-profile antenna having appropriate characteristics can be obtained.
  • the slit can be opened at a high frequency at the position of the trap circuit, and when it should resonate in a high communication frequency band, The slit can be closed in a high frequency at the position, and the resonance length of the notch antenna can be appropriately changed according to the communication frequency band to be resonated.
  • an antenna device using MIMO Multi-Input Multi-Output
  • MIMO Multi-Input Multi-Output
  • an antenna device that performs MIMO communication needs to simultaneously transmit and receive a plurality of radio signals that have low correlation with each other by changing directivity or polarization characteristics, etc. .
  • An object of the present invention is to solve the above-mentioned problems and to provide an antenna device capable of simultaneously transmitting and receiving a plurality of radio signals having a low correlation while having a simple configuration, and such an antenna device. Another object of the present invention is to provide a wireless communication device.
  • the antenna device includes first and second feeding ports provided at predetermined positions on the antenna element, respectively.
  • the antenna elements are simultaneously excited through the first and second power supply ports so as to operate simultaneously as first and second antenna portions corresponding to the first and second power supply ports, respectively.
  • the antenna device is Provided between the first and second power supply ports to change the resonance frequency of the antenna element and generate a predetermined isolation between the first and second power supply ports at a predetermined isolation frequency
  • Electromagnetic coupling adjusting means for Impedance matching means for shifting the operating frequency of the antenna element from the changed resonant frequency to the isolation frequency.
  • the electromagnetic coupling adjusting means is at least one slit provided in the antenna element.
  • the antenna device is configured as a dipole antenna including a first antenna element and a second antenna element,
  • the first power feeding port is provided at a first position where the first and second antenna elements face each other,
  • the second feeding port is provided at a second position where the first and second antenna elements are opposed to each other at a position different from the first position.
  • the electromagnetic coupling adjusting means is at least one slit provided in at least one of the first and second antenna elements.
  • the antenna device further includes a trap circuit provided at a predetermined distance from the opening of the slit along the slit in at least one of the slits, and the trap circuit includes a predetermined first circuit.
  • the slit is opened at a frequency of 1, and the entire slit is resonated, and only the section from the opening of the slit to the trap circuit is resonated at a frequency separated from the first frequency.
  • the antenna device further includes a reactance element that is provided in at least one of the slits and changes the resonance frequency and the isolation frequency.
  • the antenna device is A variable reactance element provided in at least one of the slits; It further comprises control means for changing the resonance frequency and the isolation frequency by changing a reactance value of the variable reactance element.
  • the electromagnetic coupling adjusting means is at least one slot provided in the antenna element.
  • the antenna element is configured as a plate-like inverted F antenna element on a ground conductor.
  • the wireless communication apparatus is a wireless communication apparatus that transmits and receives a plurality of wireless signals, and includes the antenna apparatus according to the first aspect of the present invention.
  • the antenna device and the wireless communication device using the antenna device according to the present invention it is possible to resonate the antenna element at a predetermined operating frequency and ensure high isolation between the feeding ports.
  • a MIMO antenna apparatus that operates by coupling can be realized. By providing a slit in an antenna element having a plurality of feeding ports, the resonance frequency of the antenna element is changed. The slit also serves to increase the isolation between the two power supply ports.
  • the antenna In order to communicate using a plurality of power supply ports at the same time, the antenna must resonate at a predetermined frequency to be operated, and the isolation between the power supply ports must be high.
  • the antenna device of the present invention and the wireless communication device including the antenna device are configured to include a matching circuit connected to each power supply port in order to adjust the resonance frequency and the frequency at which the isolation is increased to the same frequency. According to the present invention, the operating frequency of the antenna element can be adjusted, and the isolation between the two power supply ports can be increased at the operating frequency.
  • a communication device can be provided.
  • the antenna elements can be operated as a plurality of antenna units, and at the same time, isolation between the plurality of antenna units can be ensured. .
  • isolation and making the plurality of antenna units of the MIMO antenna apparatus have low coupling to each other, it is possible to simultaneously transmit and receive a plurality of radio signals having low correlation with each other using each antenna unit.
  • the operating frequency of the antenna element can be adjusted, and it is possible to deal with applications having different frequencies.
  • FIG. 17 is a Smith chart showing impedance characteristics when there are no matching circuits 11 and 12 related to the antenna apparatus of FIG. 16.
  • FIG. 17 is a Smith chart showing impedance characteristics when matching circuits 11 and 12 according to the antenna apparatus of FIG. 16 are provided.
  • It is a figure which shows the structure of the antenna element 1 of the antenna apparatus which concerns on Example 4 of this invention.
  • 24 is a graph showing a reflection coefficient parameter S11 with respect to the position and frequency of the reactance element 15 when the reactance value of the variable reactance element 15A according to the antenna apparatus of FIG. 23 is 10 pF.
  • 24 is a graph showing a parameter S21 of a pass coefficient with respect to the position and frequency of the reactance element 15 when the reactance value of the variable reactance element 15A according to the antenna apparatus of FIG. 23 is 10 pF.
  • 24 is a graph showing a reflection coefficient parameter S11 with respect to the position and frequency of the reactance element 15 when the reactance value of the variable reactance element 15A according to the antenna apparatus of FIG. 23 is 4.7 nH.
  • 24 is a graph showing a parameter S21 of a pass coefficient with respect to the position and frequency of the reactance element 15 when the reactance value of the variable reactance element 15A according to the antenna apparatus of FIG. 23 is 4.7 nH.
  • FIG. 37B is a side view of the antenna device of FIG. 37A. It is a graph which shows parameter S11 of the reflection coefficient with respect to length D1 and frequency of slit S1 which concerns on the antenna apparatus of FIG. 37A and FIG. 37B. It is a graph which shows parameter S21 of the passage coefficient with respect to length D1 and frequency of slit S1 which concerns on the antenna apparatus of FIG. 37A and FIG. 37B. It is a graph which shows the characteristic of the frequency with respect to length D1 of the slit S1 which concerns on the antenna apparatus of FIG. 37A and FIG. 37B.
  • FIG. 1 is a block diagram showing a schematic configuration of an antenna apparatus according to the first embodiment of the present invention.
  • the antenna device according to the present embodiment includes a rectangular antenna element 1 having two different feeding points 1a and 1b.
  • the antenna element 1 is excited as a first antenna unit via the feeding point 1a, and at the same time feeding
  • the single antenna element 1 is operated as two antenna parts by exciting the antenna element 1 as the second antenna part via the point 1b.
  • the slit S1 is provided between the feeding points 1a and 1b of the antenna element 1, and the resonance frequency of the antenna element 1 is adjusted by the length of the slit S1, and further, the isolation is provided between the feeding points 1a and 1b. The frequency that can be secured is adjusted.
  • the antenna device includes an antenna element 1 made of a rectangular conductor plate and a ground conductor 2 made of a rectangular conductor plate.
  • the antenna element 1 and the ground conductor 2 each have one side. Opposing each other, they are juxtaposed at a predetermined distance.
  • feed ports are provided at both ends of a pair of sides of the antenna element 1 and the ground conductor 2 facing each other.
  • One feed port includes a feed point 1 a provided at one end of the side facing the ground conductor 2 on the antenna element 1 (the lower left end of the antenna element 1 in FIG. 1), and an antenna on the ground conductor 2.
  • a connection point 2a provided at one end of the side facing the element 1 (the upper left end of the ground conductor 2 in FIG. 1).
  • the other feeding port is on the antenna element 1 on the other end of the side facing the ground conductor 2 (the lower right end of the antenna element 1 in FIG. 1) and on the ground conductor 2. And a connection point 2b provided at the other end of the side facing the antenna element 1 (the upper right end of the ground conductor 2 in FIG. 1).
  • the antenna element 1 further includes a slit S1 between the two feeding ports, that is, between the feeding points 1a and 1b, for adjusting electromagnetic coupling between the antenna units and ensuring a predetermined isolation between the feeding ports.
  • the slit S1 has a predetermined width and length, and one end thereof is configured as an open end by having an opening on the side between the feeding points 1a and 1b.
  • the feeding point 1a and the connection point 2a are connected to an impedance matching circuit 11 (hereinafter referred to as a matching circuit 11) via signal lines F3a and F3b (hereinafter collectively referred to as a feeding line F3). Is connected to the MIMO communication circuit 10 via the feeder line F1. Similarly, the feeding point 1b and the connection point 2b are connected to the impedance matching circuit 12 (hereinafter referred to as the matching circuit 12) via signal lines F4a and F4b (hereinafter collectively referred to as the feeding line F4).
  • the matching circuit 12 is connected to the MIMO communication circuit 10 via the feeder line F2.
  • the feeder lines F1 and F2 are each configured by a coaxial cable having a characteristic impedance of 50 ⁇ , for example.
  • the feeder lines F3 and F4 are each configured by a coaxial cable having a characteristic impedance of 50 ⁇ , for example.
  • each of the signal lines F3a and F4a serves as an internal conductor of the coaxial cable and the antenna element 1 and the matching circuit 11, 12 and the signal lines F3b and F4b respectively connect the ground conductor 2 and the matching circuits 11 and 12 as the outer conductors of the coaxial cable.
  • each of the feed lines F3 and F4 may be configured as a balanced feed line.
  • the MIMO communication circuit 10 transmits and receives radio signals of a plurality of channels (two channels in the present embodiment) related to the MIMO communication scheme through the antenna element 1.
  • the antenna element 1 is excited as the first antenna unit via one feeding port (that is, feeding point 1a) and at the same time the other feeding port (that is, feeding point).
  • the single antenna element 1 can be operated as two antenna parts.
  • the effect obtained by providing the antenna element 1 with the slit S1 is as follows.
  • the resonance frequency of the antenna element 1 itself decreases.
  • the slit S1 operates as a resonator according to the length of the slit S1, as will be described later with reference to FIGS. 10A, 10B, and 11. Since the slit S1 is electromagnetically coupled to the antenna element 1 itself, the resonance frequency of the antenna element 1 changes according to the frequency of the resonance condition of the slit S1 as compared to the case where the slit S1 is not provided.
  • the resonance frequency of the antenna element 1 can be changed, and the isolation between the feeding ports can be increased at a predetermined frequency.
  • the frequency at which high isolation can be secured by providing the slit S1 does not coincide with the resonance frequency of the antenna element 1. Therefore, in the present embodiment, in order to shift the operating frequency of the antenna element 1 (that is, the frequency for transmitting / receiving a desired signal) from the resonance frequency changed by the slit S1 to the isolation frequency, each feed port and the MIMO communication circuit 10 Are provided with matching circuits 11 and 12.
  • the matching circuit 11 the impedance when the antenna element 1 is viewed from the terminal at the terminal on the MIMO communication circuit 10 side (that is, the terminal connected to the feeder line F1) is the MIMO communication circuit from the terminal.
  • the impedance 10 corresponds to the impedance (ie, 50 ⁇ characteristic impedance of the feeder line F1).
  • the matching circuit 12 the impedance when the antenna element 1 is viewed from the terminal at the terminal on the MIMO communication circuit 10 side (that is, the terminal connected to the feeder line F2) is from the terminal. This corresponds to the impedance when the MIMO communication circuit 10 is viewed (that is, the characteristic impedance of 50 ⁇ of the feeder line F2).
  • Providing the matching circuits 11 and 12 affects both the resonance frequency and the isolation frequency, but mainly contributes to change the resonance frequency. In the present embodiment, by providing the above configuration, it is possible to resonate the antenna element 1 at a desired operating frequency and to ensure high isolation between the feeding ports, thereby realizing a MIMO antenna device that operates with low coupling. can do.
  • the single antenna element 1 when operated as two antenna units, it is possible to ensure the isolation between the feeding ports with a simple configuration. A plurality of radio signals can be transmitted and received simultaneously.
  • the antenna device can be regarded as a dipole antenna including the antenna element 1 and the ground conductor 2.
  • the ground conductor 2 is excited as a third antenna part via one power supply port (ie, connection point 2a) and at the same time as a fourth antenna part via the other power supply port (ie, connection point 2b).
  • the ground conductor 2 also operates as two antenna portions.
  • the image (mirror image) of the slit S1 is formed on the ground conductor 2, the isolation between the feeding ports can be ensured also for the third and fourth antenna portions.
  • the first and third antenna units are excited as the first dipole antenna unit via one power supply port, and at the same time, the second and fourth antenna units are connected via the other power supply port.
  • a single dipole antenna that is, the antenna element 1 and the ground conductor 2
  • the antenna device of the present embodiment when a single dipole antenna is operated as two dipole antenna units, it is possible to ensure isolation between feeding ports while having a simple configuration, Transmission and reception can be performed simultaneously.
  • FIG. 2 is a block diagram showing a schematic configuration of an antenna apparatus according to the second embodiment of the present invention.
  • the antenna device according to the present embodiment includes a plurality of different slits S1 and S2 so as to ensure isolation at a plurality of different frequencies.
  • the antenna device of the present embodiment ensures a predetermined isolation between the power feeding ports between the two power feeding ports on the antenna element 1, that is, between the power feeding points 1a and 1b.
  • a slit S2 for electromagnetic coupling adjustment is further provided.
  • the slit S2 has a predetermined width and length, and one end thereof is configured as an open end by having an opening on the side between the feeding points 1a and 1b.
  • the slit S2 for example, by making its length different from that of the slit S1, causes the antenna element 1 to resonate at a frequency different from the frequency at which the antenna element 1 resonates by providing the slit S1, and the slit S1.
  • the antenna device of the present embodiment further includes matching circuits 11A, 12A and a MIMO communication circuit 10A capable of adjusting the operating frequency, instead of the matching circuits 11, 12 and the MIMO communication circuit 10 in the first embodiment.
  • the controller 13 is configured to adjust the operating frequency. The controller 13 selectively shifts the operating frequency of the antenna element 1 to one of the two isolation frequencies by adjusting the operating frequency of the matching circuits 11A and 12A.
  • a plurality of slits S1 and S2 are provided, and by setting the lengths of the slits S1 and S2 separately, different resonance frequencies can be realized and different isolation frequencies can be obtained. Can be realized.
  • the antenna element 1 since the slits S1 and S2 are electromagnetically coupled to the antenna element 1 at different frequencies, the antenna element 1 has a plurality of resonance frequencies and also has a plurality of isolation frequencies. By selectively shifting the operating frequency to one of these isolation frequencies, the antenna device can be multi-frequency.
  • the isolation between the feeding ports is performed at a plurality of isolation frequencies with a simple configuration. And transmission / reception of a plurality of radio signals can be performed simultaneously.
  • FIG. 3 is a block diagram showing a schematic configuration of an antenna apparatus according to the third embodiment of the present invention.
  • the antenna device of the present embodiment is characterized by including a slit S3 on the ground conductor 2 in addition to the slit S1 on the antenna element 1.
  • the slit S1 is provided on the antenna element 1 side.
  • the ground conductor 2 is the same size as the antenna element 1 as described above, the antenna device becomes a dipole antenna. Even if a slit is further provided on the ground conductor 2 side, the same frequency adjustment effect can be obtained.
  • the antenna element 1 is provided with a slit S1 between the feeding points 1a and 1b as in the case of the first embodiment.
  • the ground conductor 2 includes a slit S3 for electromagnetic coupling adjustment so as to ensure a predetermined isolation between the two power feeding ports, that is, between the connection points 2a and 2b.
  • the slit S3 has a predetermined width and length, and one end thereof is configured as an open end by having an opening on the side between the connection points 2a and 2b.
  • the slit S3 is different in frequency from the frequency at which the antenna element 1 and the ground conductor 2 resonate by providing the slit S1, for example, by making its length different from that of the slit S1.
  • the antenna device of this embodiment further includes matching circuits 11A and 12A and a MIMO communication circuit 10A that can adjust the operating frequency, and a controller 13 that adjusts these operating frequencies. Is done. The controller 13 selectively shifts the operating frequencies of the antenna element 1 and the ground conductor 2 to one of two isolation frequencies by adjusting the operating frequencies of the matching circuits 11A and 12A.
  • a plurality of slits S1 and S3 are provided, and by setting the lengths of the slits S1 and S3 separately, different resonance frequencies can be realized, and different isolation frequencies can be obtained. Can be realized.
  • the slits S1 and S3 are electromagnetically coupled to the antenna element 1 and the ground conductor 2 at different frequencies, the resonance frequency of the antenna element 1 and the ground conductor 2 is plural, and the isolation frequency is also plural. By separately shifting the operating frequency of the antenna element 1 and the ground conductor 2 to any one of these isolation frequencies, the antenna device can be multi-frequency.
  • a single isolation frequency may be realized by configuring the slits S1 and S3 to have the same length.
  • the matching circuits 11A and 12A and the MIMO communication circuit 10A instead of the matching circuits 11A and 12A and the MIMO communication circuit 10A, the matching circuits 11 and 12 and the MIMO communication circuit 10 having fixed operating frequencies are provided as in the first embodiment, and the controller 13 is omitted. Can do.
  • the antenna apparatus since the feed lines F3 and F4 are balanced feed lines, the antenna apparatus may be configured to include only the slit S3 on the ground conductor 2 without providing the slit S1 on the antenna element 1. . Thereby, the freedom degree on the structure of an antenna apparatus can be increased.
  • the isolation between the feeding ports is performed at a plurality of isolation frequencies with a simple configuration. And transmission / reception of a plurality of radio signals can be performed simultaneously.
  • FIG. 4 is a block diagram showing a schematic configuration of an antenna apparatus according to the fourth embodiment of the present invention. Like the antenna device of this embodiment, the configurations of the antenna devices according to the second and third embodiments may be combined.
  • the antenna element 1 includes slits S1 and S2 between the feeding points 1a and 1b as in the case of the second embodiment, and the ground conductor 2 is a connection point as in the case of the third embodiment.
  • a slit S3 is provided between 2a and 2b.
  • the slits S1, S2, and S3 are configured to realize different resonance frequencies, for example, by making their lengths different from each other, and to ensure isolation between the feeding ports at different frequencies.
  • each of the feeder lines F3 and F4 is configured as a balanced feeder line.
  • the controller 13 selectively shifts the operating frequencies of the antenna element 1 and the ground conductor 2 to any one of the three isolation frequencies by adjusting the operating frequencies of the matching circuits 11A and 12A.
  • a plurality of slits S1, S2, and S3 are provided, and by setting the lengths of the slits S1, S2, and S3 separately, different resonance frequencies can be realized and different from each other.
  • An isolation frequency can be realized.
  • the slits S1, S2, and S3 are electromagnetically coupled to the antenna element 1 and the ground conductor 2 at different frequencies, the resonance frequency of the antenna element 1 and the ground conductor 2 is plural, and the isolation frequency is also high.
  • the antenna device can be multi-frequency by selectively shifting the operating frequency of the antenna element 1 and the ground conductor 2 to any one of these isolation frequencies.
  • the arrangement of the slits is not limited to that described in the first to fourth embodiments, and a configuration in which at least one of the antenna element 1 and the ground conductor 2 is provided with at least one slit can be used.
  • the isolation between the feeding ports is performed at a plurality of isolation frequencies with a simple configuration. And transmission / reception of a plurality of radio signals can be performed simultaneously.
  • FIG. 5 is a block diagram showing a schematic configuration of an antenna apparatus according to the fifth embodiment of the present invention.
  • the antenna device of the present embodiment is replaced by providing a plurality of slits S1 and S2 on the antenna element 1 as in the second embodiment in order to ensure isolation between feeding ports at a plurality of isolation frequencies.
  • a single slit S1 having a trap circuit 14 is provided.
  • the antenna device of the present embodiment includes a trap circuit 14 at a predetermined distance from the opening of the slit S1 along the slit S1.
  • the trap circuit 14 includes an inductor (L) and a capacitor (C) connected in parallel, and is open only at the resonance frequency of the parallel LC. Therefore, the trap circuit 14 resonates the entire slit S1 at this frequency, and resonates only the section from the opening of the slit S1 to the trap circuit 14 at other frequencies separated from this frequency.
  • the antenna device according to the present embodiment since the effective length of the slit S1 changes according to the frequency, the antenna device according to the present embodiment has different resonances by changing the operating frequency of the antenna element 1 to change the effective length of the slit S1.
  • the isolation between electric power feeding ports may be ensured in a mutually different frequency.
  • two different isolation frequencies can be realized by changing the operating frequency of the antenna element 1 to change the effective length of the slit S1.
  • the controller 13 selectively shifts the operating frequency of the antenna element 1 to one of two isolation frequencies by adjusting the operating frequencies of the matching circuits 11A and 12A and the MIMO communication circuit 10A.
  • the antenna device can be multi-frequency with the above configuration.
  • the isolation between the feeding ports is performed at a plurality of isolation frequencies with a simple configuration. And transmission / reception of a plurality of radio signals can be performed simultaneously.
  • FIG. 6 is a block diagram showing a schematic configuration of an antenna apparatus according to the sixth embodiment of the present invention.
  • the antenna device of the present embodiment not only changes the length of the slit S1 as in the first embodiment, but also adjusts the resonance frequency of the antenna element 1 and the frequency at which isolation can be ensured.
  • the reactance element 15 is provided at a predetermined position along the line.
  • the antenna device of the present embodiment includes a reactance element 15 at a predetermined distance from the opening of the slit S1 along the slit S1 in addition to the configuration of FIG.
  • the resonance frequency of the antenna element 1 and the frequency at which isolation can be secured vary depending on the length of the slit S1, and thus the length of the slit S1.
  • the length is determined to adjust these frequencies.
  • a reactance element 15 that is, a capacitor or an inductor having a predetermined reactance value is provided at a predetermined position along the slit S1.
  • the position of the reactance element 15 is determined so as to adjust these frequencies.
  • the frequency adjustment amount (transition amount) is maximized when the reactance element 15 is provided in the opening of the slit S1. From this, it is possible to finely adjust the resonance frequency of the antenna element 1 and the frequency at which isolation can be ensured by determining the reactance value of the reactance element 15 and then shifting the mounting position thereof.
  • the single antenna element 1 when operated as two antenna units, it is possible to ensure the isolation between the feeding ports with a simple configuration. A plurality of radio signals can be transmitted and received simultaneously.
  • FIG. 7 is a block diagram showing a schematic configuration of an antenna apparatus according to the seventh embodiment of the present invention.
  • the antenna device according to the present embodiment includes a variable reactance element 15A whose reactance value changes under the control of the controller 13A, instead of the reactance element 15 of the sixth embodiment.
  • the antenna apparatus of this embodiment provides the single slit S1 provided with the variable reactance element 15A without providing the plurality of slits S1 and S2 on the antenna element 1 as in the second embodiment.
  • the antenna device of the present embodiment includes a variable reactance element 15A at a predetermined distance from the opening of the slit S1 along the slit S1.
  • a variable capacitance element such as a varactor diode can be used as a capacitive reactance element, and the reactance value of the variable reactance element 15A changes according to a control voltage applied from the controller 13A.
  • the antenna device of the present embodiment is configured to realize different resonance frequencies of the antenna element 1 by changing the reactance value of the variable reactance element 15A and to ensure isolation between the feeding ports at different frequencies. .
  • the controller 13A changes the reactance value of the variable reactance element 15A and adjusts the operating frequencies of the matching circuits 11A and 12A and the MIMO communication circuit 10A, thereby changing the operating frequency of the antenna element 1 to the reactance value of the variable reactance element 15A. Shift to the isolation frequency determined by.
  • the antenna device can be multi-frequency with the above configuration.
  • the reactance value of the variable reactance element 15A can be adaptively changed, and the operating frequency of the antenna element 1 can be changed according to the application to be used.
  • the isolation between the feeding ports is performed at a plurality of isolation frequencies with a simple configuration. And transmission / reception of a plurality of radio signals can be performed simultaneously.
  • FIG. 8 is a block diagram showing a schematic configuration of an antenna apparatus according to the eighth embodiment of the present invention.
  • the antenna device of the present embodiment is characterized by including a slot S4 having no opening on the side of the antenna element 1 instead of the slit S1 of the first embodiment. Even with such a configuration, when the single antenna element 1 is operated as two antenna units, it is possible to ensure the isolation between the feeding ports while being a simple configuration, and to simultaneously transmit and receive a plurality of radio signals. Can be executed.
  • the number of slots is not limited to one, and at least one of the antenna element 1 and the ground conductor 2 may be provided with two or more slots.
  • the slot S4 is not provided on the antenna element 1 and the slot is provided only on the ground conductor 2 as in the third embodiment. May be. According to the configuration of the present embodiment, the degree of freedom in configuration of the antenna device can be increased.
  • FIG. 9 is a perspective view showing a schematic configuration of an antenna apparatus according to a ninth embodiment of the present invention.
  • the antenna device of this embodiment is configured as a plate-like inverted F-type antenna device instead of the configuration of the dipole antenna as in the first to eighth embodiments.
  • the antenna device includes an antenna element 1 made of a rectangular conductor plate and a ground conductor 2 made of a rectangular conductor plate, and the antenna element 1 and the ground conductor 2 overlap each other. , Provided in parallel by being separated by a predetermined distance. One side of the antenna element 1 and one side of the ground conductor 2 are provided close to each other and are mechanically and electrically connected to each other by the linear connection conductors 3a and 3b. In the antenna element 1, a slit S1 having a predetermined width and length is provided so as to extend between the side to which the connection conductors 3a and 3b are connected and the opposite side.
  • One end of the slit S1 is configured as an open end by having an opening at substantially the center of the opposite side of the side to which the connection conductors 3a and 3b are connected.
  • feeding points 1a and 1b are provided on both sides of the slit S1.
  • the feeding points 1a and 1b pass through the grounding conductor 2 from the back side of the grounding conductor 2 to the feeding line F3.
  • F4 are connected.
  • the feeder lines F3 and F4 are, for example, coaxial cables.
  • the signal lines F3a and F4a that are the internal conductors are connected to the feed points 1a and 1b, respectively, and the signal lines F3b and F4b that are the external conductors are the connection points 1b and 2b, respectively.
  • each of the feeder lines F3 and F4 is connected to the MIMO communication circuit 10 via the matching circuits 11 and 12 and the feeder lines F1 and F2 as in the first embodiment.
  • the antenna element 1 is excited as the first antenna unit via one feeding point 1a and at the same time, the antenna element 1 is placed via the other feeding point 1b.
  • the single antenna element 1 can be operated as two antenna parts.
  • the antenna element 1 and the ground conductor 2 may be connected by a single conductor plate instead of being connected by the plurality of connection conductors 3a and 3b.
  • the single antenna element 1 when operated as two antenna units, it is possible to ensure the isolation between the feeding ports with a simple configuration. A plurality of radio signals can be transmitted and received simultaneously.
  • FIG. 10A is a diagram illustrating a configuration of the antenna element 1 of the antenna device according to the first embodiment of the present invention
  • FIG. 10B is a diagram illustrating an equivalent circuit of the slit S1 in FIG. 10A.
  • the antenna device of the present example corresponds to the antenna device of the first embodiment.
  • the length D1 of the slit S1 is made variable, and the resonance frequency characteristics with respect to the length D1 are shown.
  • the width of the slit S1 is assumed to be 1 mm, and this value is the same in the simulations of Examples 2 to 7.
  • the slit S1 When adjusting the resonance frequency, the slit S1 is seen as a transmission line and considered as a resonator of the slit S1.
  • Slit S1 in FIG. 10A has a length D1, and the predetermined characteristic impedance Z 0, and a predetermined propagation constant beta.
  • a radio signal having a wavelength ⁇ is fed.
  • Ends A of the slit S1 shown in FIG. 10B, of the B the upper end A is short-circuited end, the lower end B is open ends, the input impedance Z in seen from the end A, since B end is open, the following equation It is represented by
  • the speed of light is expressed by c [m / s] and the slit length D1 is expressed in meters
  • the relationship between the resonance frequency f [Hz] and the length D1 of the slit S1 is expressed by the following equation.
  • FIG. 11 is a graph showing the characteristic of the resonance frequency f with respect to the length D1 of the slit S1 in the antenna device of FIG. 10A.
  • the resonance frequency f decreases to 0.84 GHz.
  • the resonance frequency of the antenna element 1 is changed according to the frequency of the resonance condition of the slit S1 as compared with the case where the slit S1 is not provided. Yes.
  • the degree of coupling is small and the change in the resonance frequency of the antenna element 1 is small.
  • the resonance condition frequency of the slit S1 becomes lower, and when the slit S1 becomes shorter, the resonance condition frequency becomes higher. Therefore, the resonance frequency of the antenna element 1 is adjusted by the length D1 of the slit S1. Can do.
  • FIG. 12 is a diagram illustrating a schematic configuration of the antenna device according to the second embodiment of the present invention. Similarly to the antenna device of the first embodiment, the antenna device of the present embodiment also corresponds to the antenna device of the first embodiment.
  • the simulation of this example shows that the resonance frequency and the isolation frequency of the antenna element 1 change depending on the length D1 of the slit S1.
  • the antenna element 1 and the ground conductor 2 were each formed using a single-sided copper-clad substrate having a size of 45 ⁇ 90 mm. From the center in the width direction of the antenna element 1, the conductor was completely removed over a width of 1 mm, and a copper tape was attached to the portion where the conductor was removed, thereby forming a slit S 1 having a desired length D 1. By adjusting the length D1 of the slit S1, changes in the frequency characteristics of the antenna device were examined.
  • a semi-rigid cable having a length of 50 mm is supplied to each of the two feeding ports of the antenna device (that is, the feeding port consisting of the feeding point 1a and the connection point 2a and the feeding port consisting of the feeding point 1b and the connection point 2b). It connected as electric wire F3, F4.
  • the inner conductor of each semi-rigid cable was soldered to the substrate constituting the antenna element 1 over a length of 5 mm, and the outer conductor of each semi-rigid cable was soldered to the substrate constituting the ground conductor 2 over a length of 40 mm.
  • the feeder lines F3 and F4 are respectively connected to signal sources schematically shown as P1 and P2 in FIG.
  • FIGS. 13 is a graph showing a reflection coefficient parameter S11 with respect to the length D1 and frequency of the slit S1 according to the antenna apparatus of FIG. 12, and FIG. 14 is a graph illustrating the length D1 and frequency of the slit S1 according to the antenna apparatus of FIG. Is a graph showing a parameter S21 of a passage coefficient (that is, a characteristic of isolation between power supply ports) with respect to. Since the antenna apparatus of FIG. 12 has a symmetrical structure, the parameter S12 is the same as S21, and the parameter S22 is the same as S11. 13 and 14 that the resonance frequency and the isolation frequency of the antenna element 1 are changed by changing the length D1 of the slit S1.
  • FIG. 15 is a graph showing frequency characteristics with respect to the length D1 of the slit S1 according to the antenna apparatus of FIG. According to Table 1 and FIG. 15, it can be seen that as the slit S1 becomes longer, the resonance frequency and the isolation frequency of the antenna element 1 become lower. Regarding parameter S21, it is considered that the isolation frequency has decreased due to the length of the detour path from feeding point 1a to feeding point 1b becoming longer.
  • the frequency transition range is 960 MHz to 2.6 GHz for the parameter S11 and 730 MHz to 2.7 GHz for the parameter S21.
  • FIG. 16 is a diagram illustrating a schematic configuration of the antenna device according to the third embodiment of the present invention. Similarly to the antenna device of the first embodiment, the antenna device of the present embodiment also corresponds to the antenna device of the first embodiment.
  • the antenna device 1 is provided with matching circuits 11 and 12 for the purpose of resonating the antenna element 1 at a predetermined frequency and ensuring high isolation between the feeding ports. The effect by having
  • the antenna element 1 and the ground conductor 2 are configured in the same manner as in the second embodiment (see FIG. 12), and the length of the slit S1 is fixed to 30 mm.
  • matching circuits 11 and 12 are inserted on the feeder lines F3 and F4. Specifically, in the matching circuits 11 and 12, a 3.3nH inductor 11a is inserted in series on the signal line F3a of the feeder line F3, and a 3.3nH inductor 12a is inserted in series on the signal line F4a of the feeder line F4. Configured to be.
  • FIG. 17 is a graph showing a reflection coefficient parameter S11 with respect to the presence / absence and frequency of the matching circuits 11 and 12 according to the antenna apparatus of FIG. 16, and FIG. 18 is a graph of the matching circuits 11 and 12 according to the antenna apparatus of FIG. It is a graph which shows parameter S21 of a passage coefficient to existence and frequency.
  • 19A is a Smith chart showing the impedance characteristics when the matching circuits 11 and 12 according to the antenna apparatus of FIG. 16 are not provided
  • FIG. 19B is the impedance characteristic when the matching circuits 11 and 12 according to the antenna apparatus of FIG. 16 are provided. It is a Smith chart which shows.
  • FIG. 19A and FIG. 19B show impedance characteristics in the power feeding port on the power feeding point 1a side.
  • the resonance frequency of the antenna element 1 without the matching circuits 11 and 12 is 2.08 GHz
  • the isolation frequency without the matching circuits 11 and 12 is 1.99 GHz. It can be seen that it is.
  • the constants of the matching circuits 11 and 12 that is, the inductance of 3.3 nH
  • the resonance frequency of the antenna element 1 changes due to the provision of the matching circuits 11 and 12, but the isolation frequency hardly changes depending on the presence or absence of the matching circuits 11 and 12. Recognize. As can be seen from FIG.
  • the resonance frequency shift of 90 MHz is reduced to 10 MHz by providing the matching circuits 11 and 12.
  • the parameters S11 and S21 are both ⁇ 20 dB or less in the range of 1.96 to 2.00 GHz, and a 40 MHz band can be secured. Further, when the matching circuits 11 and 12 are provided, the parameters S11 and S21 are both ⁇ 10 dB or less in the range of 1.87 to 2.09 GHz, and a bandwidth of 220 MHz can be secured.
  • FIG. 20A is a diagram illustrating a configuration of the antenna element 1 of the antenna device according to the fourth embodiment of the present invention
  • FIG. 20B is a diagram illustrating an equivalent circuit of the slit S1 and the reactance element 15 in FIG. 20A
  • FIG. 21 is a graph showing the relationship between the reactance element 15 and the frequency characteristics according to the antenna element of FIG. 20A
  • FIG. 22 is a graph showing resonance frequency characteristics with respect to the length D1 of the slit S1 and the reactance value of the reactance element 15 in the antenna element of FIG. 20A.
  • the antenna device of the present example corresponds to the antenna device of the sixth embodiment. In the simulation of the present embodiment, the length D1 of the slit S1 and the reactance value of the reactance element 15 are made variable, and the resonance frequency characteristics with respect to these parameters are shown.
  • the antenna device has the same configuration as that of the antenna device of Embodiment 1 (see FIG. 10A), and further includes a reactance element having a predetermined reactance value at the opening of the slit S1.
  • Slit S1 is has a length D1, and the predetermined characteristic impedance Z 0, and a predetermined propagation constant beta.
  • Reactance element 15 has a predetermined load impedance Z L.
  • a radio signal having a wavelength ⁇ is fed.
  • the resonance condition of the equivalent circuit in FIG. 20B is that the input impedance Z in viewed from the A-end is 0, that is, To be zero.
  • Z L + jZ 0 tan ( ⁇ ⁇ D1) 0 (4) Therefore, the resonance condition is transformed from the equation (4) to the following equation.
  • tan ( ⁇ ⁇ D1) ⁇ Z L / jZ 0 (5)
  • Figure 21 is the case of using a capacitor having a predetermined capacitance value C1, was plotted y 2 when using a capacitor having a large capacitance value C2 than C1.
  • Figure 21 is the case of using an inductor having a predetermined inductance L1, was plotted y 3 when using an inductor having a large inductance L2 than L1.
  • the resonance condition of the slit S1 When the resonance condition of the slit S1 is satisfied, that is, when Equation (5) is satisfied, it is represented by an intersection of y 1 and y 2 or y 3 in FIG. In the present embodiment, for example, only a part of the case where the resonance condition is satisfied is shown as intersections Q2, Q3, Q4, and Q5.
  • the reactance element 15 When the reactance element 15 is capacitive and the capacitance C increases, the resonance condition changes from the intersection Q2 toward the intersection Q3, and the coordinates of the intersection on the horizontal axis, that is, the resonance frequency decreases.
  • the reactance element 15 When the reactance element 15 is inductive and the inductance L decreases, the resonance condition changes from the intersection point Q5 toward the intersection point Q4, and the resonance frequency increases.
  • the reactance value is either a predetermined capacity, a predetermined inductance, or a case where nothing is loaded.
  • the resonance frequency varies from 0.3 to 4.2 GHz depending on the reactance value.
  • the resonance frequency decreases, and when an inductor is loaded, the resonance frequency increases.
  • the resonance frequency was 2.5 GHz, but when the 20 pF capacitor was used, it changed to 0.3 GHz, and when the 2.7 nH inductor was used, the resonance frequency was 2.5 GHz. It has changed to 2 GHz. From this, the resonant frequency can be lowered by loading the capacitive reactance element 15, which contributes to the miniaturization of the antenna.
  • FIG. 22 shows characteristics of the resonance frequency with respect to the length D1 of the slit S1 and the reactance value of the reactance element 15, including the case where the length D1 of the slit S1 is other than 30 mm. It can be seen that the shorter the length D1 of the slit S1, the greater the variable width of the resonance frequency depending on the reactance value.
  • FIG. 23 is a diagram illustrating a schematic configuration of the antenna device according to the fifth embodiment of the present invention. Similarly to the antenna device of the fourth embodiment, the antenna device of the present embodiment also corresponds to the antenna device of the sixth embodiment.
  • the simulation of this example shows that the resonance frequency and the isolation frequency of the antenna element 1 change depending on the distance D2 of the reactance element 15 from the opening of the slit S1.
  • the antenna element 1 and the ground conductor 2 are configured in the same manner as in the second embodiment (see FIG. 12), and the length of the slit S1 is fixed to 30 mm. Furthermore, a reactance element 15 is provided at a position a predetermined distance D2 from the opening of the slit S1. The change in the frequency characteristic of the antenna device when the position where the reactance element 15 is provided (that is, the distance D2 from the opening) was changed was examined.
  • FIG. 24 to 26 show simulation results when the reactance value of the variable reactance element 15A according to the antenna apparatus of FIG. 23 is 0.5 pF.
  • FIG. 24 is a graph showing the reflection coefficient parameter S11 with respect to the position and frequency of the reactance element 15, and
  • FIG. 25 is a graph showing the pass coefficient parameter S21 with respect to the position and frequency of the reactance element 15.
  • FIG. 26 is a graph showing the frequency characteristics with respect to the position of the reactance element 15, and changes in the resonance frequency (ie, S11) of the antenna element 1 and the isolation frequency (ie, S21) when the position of the reactance element 15 is changed. ) Change.
  • FIG. 27 to 29 show simulation results when the reactance value of the variable reactance element 15A according to the antenna device of FIG. 23 is 10 pF.
  • FIG. 27 is a graph showing a reflection coefficient parameter S11 with respect to the position and frequency of the reactance element 15, and
  • FIG. 28 is a graph showing a pass coefficient parameter S21 with respect to the position and frequency of the reactance element 15.
  • FIG. 29 is a graph showing the frequency characteristics with respect to the position of the reactance element 15, and shows the relationship between the change in the resonance frequency of the antenna element 1 and the change in the isolation frequency when the position of the reactance element 15 is changed. .
  • FIG. 30 to 32 show simulation results when the reactance value of the variable reactance element 15A according to the antenna device of FIG. 23 is 4.7 nH.
  • FIG. 30 is a graph showing the reflection coefficient parameter S11 with respect to the position and frequency of the reactance element 15, and
  • FIG. 31 is a graph showing the pass coefficient parameter S21 with respect to the position and frequency of the reactance element 15.
  • FIG. 32 is a graph showing the frequency characteristics with respect to the position of the reactance element 15, and shows the relationship between the change in the resonance frequency of the antenna element 1 and the change in the isolation frequency when the position of the reactance element 15 is changed. .
  • the resonance frequency and isolation frequency of the antenna element 1 change depending on the position where the reactance element 15 is provided.
  • the capacitive reactance element 15 having a capacity of 0.5 pF the fluctuation range is 1.5 to 1.9 GHz in S11, 1.4 to 1.8 GHz in S21, and a frequency over 400 MHz. It can be seen that a shift has occurred.
  • the capacitive reactance element 15 having a capacitance of 10 pF is used and when the inductive reactance element 15 having an inductance of 4.5 nH is used, the change in the resonance frequency of S11 and S21 is almost the same.
  • FIG. 33 is a diagram showing a schematic configuration of an antenna apparatus according to Embodiment 6 of the present invention.
  • the antenna device of this example corresponds to the antenna device of the seventh embodiment.
  • the simulation of this example shows that the resonance frequency and the isolation frequency of the antenna element 1 change depending on the reactance value of the variable reactance element 15A.
  • the antenna element 1 and the ground conductor 2 are configured in the same manner as in Example 5 (see FIG. 23), and the variable reactance element 15A is fixed at a position 15 mm from the opening of the slit S1.
  • the components such as the controller 13A in FIG. 7 are not shown.
  • FIG. 34 is a graph showing a reflection coefficient parameter S11 with respect to the reactance value and frequency of the variable reactance element 15A according to the antenna apparatus of FIG. 33
  • FIG. 35 is a reactance of the variable reactance element 15A according to the antenna apparatus of FIG. It is a graph which shows parameter S21 of the passage coefficient with respect to a value and a frequency.
  • the resonance frequency decreases as the capacity C increases.
  • the variable reactance element 15A is inductive, the resonance frequency increases as the inductance L decreases.
  • FIG. 35 it can be seen that the isolation frequency changes in the same manner as the resonance frequency and changes over a range of 600 MHz to 2.5 GHz.
  • the lower limit of the reactance value used in the simulation according to FIGS. 34 and 35 was 10 pF, and the upper limit was 4.7 nH. If the range for changing the reactance value is further increased, it is expected that a wider frequency shift is possible.
  • FIG. 36 is a graph showing the frequency characteristic with respect to the reactance value of the variable reactance element 15A according to the antenna apparatus of FIG. According to Table 3 and FIG. 36, when there is no variable reactance element 15A in the configuration of the antenna device of the present embodiment, the ratio of frequency change to the change in reactance value differs between S11 and S21, but the variable reactance element 15A It can be seen that the frequency difference between S11 and S21 is small when the frequency is shifted by the reactance value.
  • FIG. 37A is a perspective view showing a schematic configuration of an antenna apparatus according to Embodiment 7 of the present invention
  • FIG. 37B is a side view thereof.
  • the antenna device of the present example corresponds to the antenna device of the ninth embodiment.
  • the simulation of this example shows that the resonance frequency and the isolation frequency of the antenna element 1 change depending on the length D1 of the slit S1.
  • the antenna device is configured in the same manner as in the ninth embodiment (see FIG. 9).
  • the positions of the feeding points 1a and 1b are moved in the ⁇ Z direction as compared with the other embodiments.
  • FIG. 38 is a graph showing a reflection coefficient parameter S11 with respect to the length D1 and frequency of the slit S1 according to the antenna apparatus of FIGS. 37A and 37B
  • FIG. 39 is a slit S1 according to the antenna apparatus of FIGS. 37A and 37B. It is a graph which shows parameter S21 of the passage coefficient with respect to length D1 and frequency.
  • FIG. 40 is a graph showing frequency characteristics with respect to the length D1 of the slit S1 in the antenna device of FIGS. 37A and 37B. From Table 4 and FIG. 40, it can be seen that the resonance frequency changes over a range of 1.19 GHz to 2.478 GHz, and the isolation frequency changes over a range of 0.989 GHz to 2.573 GHz.
  • S11 and S21 are ⁇ 10 dB or less in the band 1.399 to 1.525 [GHz], and the bandwidth is 0.125 [GHz].
  • the shapes of the antenna element 1 and the ground conductor 2 are not limited to rectangles, and may be other polygons, circles, ellipses, or the like. It is also possible to configure an antenna device that combines the embodiments.
  • the trap circuit 14 of the fifth embodiment is replaced with at least one of the antenna devices of the second to fourth embodiments. You may provide in a slit.
  • the reactance element 15 of the sixth embodiment or the variable reactance element 15A of the seventh embodiment may be provided in at least one slit in any of the antenna devices of the second to fourth embodiments. .
  • the plurality of resonance frequencies can be adjusted by the slit length, the reactance value of the reactance element, and the mounting position of the reactance element, and the degree of freedom in frequency adjustment is increased.
  • a wireless communication circuit that performs modulation / demodulation of two independent wireless signals may be provided.
  • the antenna device of this embodiment performs wireless communication related to a plurality of applications. It is possible to execute at the same time or simultaneously execute wireless communication in a plurality of frequency bands.
  • the antenna device of the present invention and a wireless device using the antenna device can be mounted as a mobile phone, for example, or can be mounted as a device for a wireless LAN.
  • This antenna device can be mounted on, for example, a wireless communication device for performing MIMO communication, but is not limited to MIMO, and is mounted on a wireless communication device capable of simultaneously executing communication for a plurality of applications (multi-application). It is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

 アンテナ装置は、アンテナ素子(1)上の所定の各位置にそれぞれ設けられた2つの給電ポートを備え、アンテナ素子(1)は、2つの給電ポートにそれぞれ対応した2つのアンテナ部として同時に動作するように、各給電ポートを介してそれぞれ同時に励振される。アンテナ装置は、2つの給電ポート間に設けられ、アンテナ素子(1)の共振周波数を変化させるとともに、所定のアイソレーション周波数において給電ポート間に所定のアイソレーションを生成するスリット(S1)と、アンテナ素子(1)の動作周波数を、変化された共振周波数からアイソレーション周波数にシフトさせる整合手段(11,12)とを備える。

Description

アンテナ装置及び無線通信装置
 本発明は、主として携帯電話などの移動体通信用のアンテナ装置と、それを備えた無線通信装置に関する。
 携帯電話機等の移動体通信無線装置の小型化、薄型化が急速に進んでいる。また、携帯無線通信装置は、従来の電話機として使用されるのみならず、電子メールの送受信やWWW(ワールドワイドウェブ)によるウェブページの閲覧などを行うデータ端末機に変貌を遂げている。取り扱う情報も従来の音声や文字情報から写真や動画像へと大容量化を遂げており、通信品質のさらなる向上が求められている。また、携帯無線通信装置は、電話としての音声通話、ウェブページの閲覧のためのデータ通信、テレビジョン放送の視聴など、さまざまなアプリケーションに対処することが求められている。このような状況にあって、それぞれのアプリケーションに係る無線通信を行うために、幅広い周波数で動作できるアンテナ装置が必要である。
 従来、広い周波数帯域をカバーしかつ共振周波数を調整するアンテナ装置として、例えば、特許文献1記載のように、アンテナ素子部にスリットを設けて共振周波数を調整するアンテナ装置や、特許文献2記載のように、スリットにトラップ回路を設けたノッチアンテナがあった。
 特許文献1のアンテナ装置は、板状放射素子(放射板)とそれに平行に対向する接地板を含み、さらに、放射板の縁端部の略中央に位置して高周波信号を供給する給電部と、給電部の近傍で放射板と接地板とを短絡する短絡部と、放射板上において給電部と略対向する縁端部にスリット部を設けることによりそれぞれ形成された2つの共振器とを含んで構成される。このスリット部の形状や寸法を調整することにより、又はスリット部にリアクタンス素子や導体板を装荷することにより、2つの共振器間の結合度が最適化される。こうして、適切な特性を有する小型・低背化アンテナが得られる。
 特許文献2のノッチアンテナは、低い通信周波数帯で共振すべき時には、トラップ回路の位置においてスリットを高周波的に開状態とすることができると共に、高い通信周波数帯で共振すべき時には、トラップ回路の位置においてスリットを高周波的に閉状態にすることができ、かくして共振すべき通信周波数帯に応じてノッチアンテナの共振長を適宜変更することができる。
国際出願の国際公開WO2002/075853号。 特開2004-32303号公報。
 最近になって、通信容量を増大させて高速通信を実現するために、複数のチャンネルの無線信号を空間分割多重により同時に送受信するMIMO(Multi-Input Multi-Output)技術を採用したアンテナ装置が登場している。MIMO通信を実行するアンテナ装置は、空間分割多重を実現するために、指向性又は偏波特性などを相違させることにより、互いに低相関である複数の無線信号の送受信を同時に実行する必要がある。
 特許文献1及び2の構成では、共振周波数を変えることができるものの、給電部が1つだけであるので、MIMO通信、ダイバーシチ方式を用いた通信、またアダプティブアレーに利用できないという課題を有していた。
 本発明の目的は、以上の問題点を解決し、簡単な構成でありながら、互いに低相関である複数の無線信号の送受信を同時に実行することができるアンテナ装置、及びそのようなアンテナ装置を備えた無線通信装置を提供することにある。
 本発明の第1の態様に係るアンテナ装置は、アンテナ素子上の所定の各位置にそれぞれ設けられた第1及び第2の給電ポートを備え、
 上記アンテナ素子は、上記第1及び第2の給電ポートにそれぞれ対応した第1及び第2のアンテナ部として同時に動作するように、上記第1及び第2の給電ポートを介してそれぞれ同時に励振され、
 上記アンテナ装置は、
 上記第1及び第2の給電ポートの間に設けられ、上記アンテナ素子の共振周波数を変化させるとともに、所定のアイソレーション周波数において上記第1及び第2の給電ポートの間に所定のアイソレーションを生成する電磁結合調整手段と、
 上記アンテナ素子の動作周波数を、上記変化された共振周波数から上記アイソレーション周波数にシフトさせるインピーダンス整合手段とを備えたことを特徴とする。
 上記アンテナ装置において、上記電磁結合調整手段は、上記アンテナ素子に設けられた少なくとも1つのスリットであることを特徴とする。
 また、上記アンテナ装置は、第1のアンテナ素子及び第2のアンテナ素子を備えたダイポールアンテナとして構成され、
 上記第1の給電ポートは、上記第1及び第2のアンテナ素子が対向した第1の位置において設けられ、
 上記第2の給電ポートは、上記第1の位置とは異なる位置であって、上記第1及び第2のアンテナ素子が対向した第2の位置において設けられ、
 上記電磁結合調整手段は、上記第1及び第2のアンテナ素子の少なくとも1つに設けられた少なくとも1つのスリットであることを特徴とする。
 さらに、上記アンテナ装置は、上記スリットのうちの少なくとも1つにおいて、当該スリットに沿って当該スリットの開口部から所定距離の位置に設けられたトラップ回路をさらに備え、上記トラップ回路は、所定の第1の周波数では開放となって上記スリット全体を共振させ、上記第1の周波数から離隔した周波数では上記スリットの開口部から上記トラップ回路までの区間のみを共振させることを特徴とする。
 またさらに、上記アンテナ装置は、上記スリットのうちの少なくとも1つに設けられ、上記共振周波数及び上記アイソレーション周波数を変化させるリアクタンス素子をさらに備えたことを特徴とする。
 また、上記アンテナ装置は、
 上記スリットのうちの少なくとも1つに設けられた可変リアクタンス素子と、
 上記可変リアクタンス素子のリアクタンス値を変化させることにより上記共振周波数及び上記アイソレーション周波数を変化させる制御手段とをさらに備えたことを特徴とする。
 さらに、上記アンテナ装置において、上記電磁結合調整手段は、上記アンテナ素子に設けられた少なくとも1つのスロットであることを特徴とする。
 またさらに、上記アンテナ装置において、上記アンテナ素子は、接地導体上に板状逆Fアンテナ素子として構成されたことを特徴とする。
 本発明の第2の態様に係る無線通信装置は、複数の無線信号を送受信する無線通信装置において、本発明の第1の態様に係るアンテナ装置を備えたことを特徴とする。
 以上説明したように、本発明に係るアンテナ装置及びそれを用いた無線通信装置によれば、所定の動作周波数においてアンテナ素子を共振させるとともに給電ポート間のアイソレーションを高く確保することができ、低結合で動作するMIMOアンテナ装置を実現することができる。複数の給電ポートをもつアンテナ素子にスリットを設けることで、アンテナ素子の共振周波数を変化させる。また、スリットは、2つの給電ポート間のアイソレーションを高くする役目も果たす。
 複数の給電ポートを同時に用いて通信するためには、動作させようとする所定の周波数においてアンテナが共振し、かつ、給電ポート間のアイソレーションが高くなければならない。本発明のアンテナ装置及びそれを備えた無線通信装置は、共振周波数とアイソレーションが高くなる周波数を同一周波数に調整するために、各給電ポートに接続された整合回路を備えて構成される。本発明によれば、アンテナ素子の動作周波数を調整することができ、その動作周波数において2つの給電ポート間のアイソレーションを高くすることができるので、複数の無線信号の送受信を同時に実行可能な無線通信装置を提供することができる。
 本発明によれば、アンテナ素子数は1つのままでありながら、当該アンテナ素子を複数のアンテナ部として動作させることができ、それとともに、複数のアンテナ部の間のアイソレーションを確保することができる。アイソレーションを確保してMIMOアンテナ装置の複数のアンテナ部を互いに低結合にすることにより、各アンテナ部を用いて、互いに低相関である複数の無線信号の送受信を同時に実行することができる。また、アンテナ素子の動作周波数を調整することができ、周波数の異なるアプリケーションにも対応することができる。
本発明の第1の実施形態に係るアンテナ装置の概略構成を示すブロック図である。 本発明の第2の実施形態に係るアンテナ装置の概略構成を示すブロック図である。 本発明の第3の実施形態に係るアンテナ装置の概略構成を示すブロック図である。 本発明の第4の実施形態に係るアンテナ装置の概略構成を示すブロック図である。 本発明の第5の実施形態に係るアンテナ装置の概略構成を示すブロック図である。 本発明の第6の実施形態に係るアンテナ装置の概略構成を示すブロック図である。 本発明の第7の実施形態に係るアンテナ装置の概略構成を示すブロック図である。 本発明の第8の実施形態に係るアンテナ装置の概略構成を示すブロック図である。 本発明の第9の実施形態に係るアンテナ装置の概略構成を示す斜視図である。 本発明の実施例1に係るアンテナ装置のアンテナ素子1の構成を示す図である。 図10AのスリットS1の等価回路を示す図である。 図10Aのアンテナ装置に係るスリットS1の長さD1に対する共振周波数の特性を示すグラフである。 本発明の実施例2に係るアンテナ装置の概略構成を示す図である。 図12のアンテナ装置に係るスリットS1の長さD1及び周波数に対する反射係数のパラメータS11を示すグラフである。 図12のアンテナ装置に係るスリットS1の長さD1及び周波数に対する通過係数のパラメータS21を示すグラフである。 図12のアンテナ装置に係るスリットS1の長さD1に対する周波数の特性を示すグラフである。 本発明の実施例3に係るアンテナ装置の概略構成を示す図である。 図16のアンテナ装置に係る整合回路11,12の有無と周波数とに対する反射係数のパラメータS11を示すグラフである。 図16のアンテナ装置に係る整合回路11,12の有無と周波数とに対する通過係数のパラメータS21を示すグラフである。 図16のアンテナ装置に係る整合回路11,12がない場合のインピーダンス特性を示すスミスチャートである。 図16のアンテナ装置に係る整合回路11,12を設けた場合のインピーダンス特性を示すスミスチャートである。 本発明の実施例4に係るアンテナ装置のアンテナ素子1の構成を示す図である。 図20AのスリットS1及びリアクタンス素子15の等価回路を示す図である。 図20Aのアンテナ素子に係るリアクタンス素子15と周波数特性との関係を示すグラフである。 図20Aのアンテナ素子に係るスリットS1の長さD1とリアクタンス素子15のリアクタンス値とに対する共振周波数の特性を示すグラフである。 本発明の実施例5に係るアンテナ装置の概略構成を示す図である。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が0.5pFであるときのリアクタンス素子15の位置及び周波数に対する反射係数のパラメータS11を示すグラフである。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が0.5pFであるときのリアクタンス素子15の位置及び周波数に対する通過係数のパラメータS21を示すグラフである。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が0.5pFであるときのリアクタンス素子15の位置に対する周波数の特性を示すグラフである。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が10pFであるときのリアクタンス素子15の位置及び周波数に対する反射係数のパラメータS11を示すグラフである。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が10pFであるときのリアクタンス素子15の位置及び周波数に対する通過係数のパラメータS21を示すグラフである。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が10pFであるときのリアクタンス素子15の位置に対する周波数の特性を示すグラフである。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が4.7nHであるときのリアクタンス素子15の位置及び周波数に対する反射係数のパラメータS11を示すグラフである。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が4.7nHであるときのリアクタンス素子15の位置及び周波数に対する通過係数のパラメータS21を示すグラフである。 図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が4.7nHであるときのリアクタンス素子15の位置に対する周波数の特性を示すグラフである。 本発明の実施例6に係るアンテナ装置の概略構成を示す図である。 図33のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値と周波数とに対する反射係数のパラメータS11を示すグラフである。 図33のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値と周波数とに対する通過係数のパラメータS21を示すグラフである。 図33のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値に対する周波数の特性を示すグラフである。 本発明の実施例7に係るアンテナ装置の概略構成を示す斜視図である。 図37Aのアンテナ装置の側面図である。 図37A及び図37Bのアンテナ装置に係るスリットS1の長さD1及び周波数に対する反射係数のパラメータS11を示すグラフである。 図37A及び図37Bのアンテナ装置に係るスリットS1の長さD1及び周波数に対する通過係数のパラメータS21を示すグラフである。 図37A及び図37Bのアンテナ装置に係るスリットS1の長さD1に対する周波数の特性を示すグラフである。
 以下、本発明に係る実施形態について図面を参照して説明する。なお、同様の構成要素については同一の符号を付している。
第1の実施形態.
 図1は、本発明の第1の実施形態に係るアンテナ装置の概略構成を示すブロック図である。本実施形態のアンテナ装置は、異なる2つの給電点1a,1bを備えた長方形形状のアンテナ素子1を備え、給電点1aを介してアンテナ素子1を第1のアンテナ部として励振させると同時に、給電点1bを介してアンテナ素子1を第2のアンテナ部として励振させることにより、単一のアンテナ素子1を2つのアンテナ部として動作させる。
 通常、単一のアンテナ素子に複数の給電ポート(又は給電点)を設けた場合、給電ポート間のアイソレーションを確保することができず、異なるアンテナ部間の電磁結合が高くなるので、信号間の相関が高くなってしまう。従って、例えば受信時には、各給電ポートから同一の受信信号が出力される。このような場合、ダイバーシチやMIMOの良好な特性を得ることが出来ない。本実施形態では、アンテナ素子1の給電点1a,1b間にスリットS1を備え、スリットS1の長さによってアンテナ素子1の共振周波数を調整するとともに、さらに、給電点1a,1b間にアイソレーションを確保できる周波数を調整することを特徴とする。
 図1において、アンテナ装置は、長方形形状の導体板にてなるアンテナ素子1と、長方形形状の導体板にてなる接地導体2とを備え、アンテナ素子1と接地導体2とは、それぞれの一辺を対向させて、所定距離だけ離隔して並置されている。アンテナ素子1及び接地導体2の互いに対向した一対の辺の両端において、給電ポートがそれぞれ設けられる。一方の給電ポートは、アンテナ素子1上において、接地導体2に対向した辺の一端(図1ではアンテナ素子1の左下の端部)に設けられた給電点1aと、接地導体2上において、アンテナ素子1に対向した辺の一端(図1では接地導体2の左上の端部)に設けられた接続点2aとを含む。他方の給電ポートは、アンテナ素子1上において、接地導体2に対向した辺の他端(図1ではアンテナ素子1の右下の端部)に設けられた給電点1bと、接地導体2上において、アンテナ素子1に対向した辺の他端(図1では接地導体2の右上の端部)に設けられた接続点2bとを含む。アンテナ素子1はさらに、2つの給電ポート間、すなわち給電点1a,1b間に、アンテナ部間の電磁結合を調整し、給電ポート間の所定のアイソレーションを確保するためのスリットS1を備える。スリットS1は所定幅及び長さを有し、その一端は給電点1a,1b間の辺に開口部を有することにより開放端として構成される。給電点1a及び接続点2aは、信号線F3a,F3b(以下、総称して給電線F3で表す。)を介してインピーダンス整合回路11(以下、整合回路11という。)に接続され、整合回路11は給電線F1を介してMIMO通信回路10に接続される。同様に、給電点1b及び接続点2bは、信号線F4a,F4b(以下、総称して給電線F4で表す。)を介してインピーダンス整合回路12(以下、整合回路12という。)に接続され、整合回路12は給電線F2を介してMIMO通信回路10に接続される。給電線F1,F2は、例えば、50Ωの特性インピーダンスを有する同軸ケーブルにてそれぞれ構成される。同様に、給電線F3,F4は、例えば、50Ωの特性インピーダンスを有する同軸ケーブルにてそれぞれ構成され、この場合、各信号線F3a,F4aは同軸ケーブルの内部導体としてアンテナ素子1と整合回路11,12とをそれぞれ接続し、各信号線F3b,F4bは同軸ケーブルの外部導体として接地導体2と整合回路11,12とをそれぞれ接続する。それに代わって、給電線F3,F4はそれぞれ、平衡給電線路として構成されてもよい。また、MIMO通信回路10は、MIMO通信方式に係る複数のチャンネル(本実施形態では2チャンネル)の無線信号をアンテナ素子1により送受信させる。本実施形態では、以上の構成を備えたことにより、一方の給電ポート(すなわち給電点1a)を介してアンテナ素子1を第1のアンテナ部として励振させると同時に、他方の給電ポート(すなわち給電点1b)を介してアンテナ素子1を第2のアンテナ部として励振させることにより、単一のアンテナ素子1を2つのアンテナ部として動作させることができる。
 アンテナ素子1にスリットS1を設けることによる効果は、以下の通りである。スリットS1を設けることにより、アンテナ素子1自体の共振周波数は低下する。さらに、スリットS1は、図10A、図10B及び図11を参照して後述するように、スリットS1の長さに応じて共振器として動作する。スリットS1はアンテナ素子1自体と電磁的に結合するので、アンテナ素子1の共振周波数は、スリットS1を持たない場合と比較して、スリットS1の共振条件の周波数に従って変化している。スリットS1を設けることにより、アンテナ素子1の共振周波数が変化するとともに、所定の周波数において給電ポート間のアイソレーションを高くすることができる。スリットS1を設けたことによりアイソレーションを高く確保できる周波数(以下、アイソレーション周波数という。)は、一般には、アンテナ素子1の共振周波数とは一致しない。従って、本実施形態では、アンテナ素子1の動作周波数(すなわち所望信号を送受信する周波数)を、スリットS1により変化された共振周波数からアイソレーション周波数にシフトさせるために、各給電ポートとMIMO通信回路10との間に整合回路11,12を設けている。整合回路11を設けたことにより、MIMO通信回路10側の端子(すなわち給電線F1に接続された側の端子)において、当該端子からアンテナ素子1をみたときのインピーダンスは、当該端子からMIMO通信回路10を見たときのインピーダンス(すなわち給電線F1の50Ωの特性インピーダンス)に一致する。同様に、整合回路12を設けたことにより、MIMO通信回路10側の端子(すなわち給電線F2に接続された側の端子)において、当該端子からアンテナ素子1をみたときのインピーダンスは、当該端子からMIMO通信回路10を見たときのインピーダンス(すなわち給電線F2の50Ωの特性インピーダンス)に一致する。整合回路11,12を設けることは、共振周波数とアイソレーション周波数との両方に影響するが、主に、共振周波数を変化させるように寄与する。本実施形態では、以上の構成を備えたことにより、所望の動作周波数においてアンテナ素子1を共振させるとともに給電ポート間のアイソレーションを高く確保することができ、低結合で動作するMIMOアンテナ装置を実現することができる。
 以上説明したように、本実施形態のアンテナ装置によれば、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
 なお、図1に例示するように接地導体2がアンテナ素子1と同じような大きさの場合には、このアンテナ装置は、アンテナ素子1及び接地導体2からなるダイポールアンテナとみなすことができる。接地導体2は、一方の給電ポート(すなわち接続点2a)を介して第3のアンテナ部として励振されると同時に、他方の給電ポート(すなわち接続点2b)を介して第4のアンテナ部として励振され、これにより、接地導体2もまた2つのアンテナ部として動作する。このとき、接地導体2には、スリットS1のイメージ(鏡像)が形成されるので、第3及び第4のアンテナ部に関しても、給電ポート間のアイソレーションを確保することができる。以上の構成を備えたことにより、一方の給電ポートを介して第1及び第3のアンテナ部を第1のダイポールアンテナ部として励振させると同時に、他方の給電ポートを介して第2及び第4のアンテナ部を第2のダイポールアンテナ部として励振させることにより、単一のダイポールアンテナ(すなわちアンテナ素子1及び接地導体2)を2つのダイポールアンテナ部として動作させることができる。本実施形態のアンテナ装置によれば、単一のダイポールアンテナを2つのダイポールアンテナ部として動作させるとき、簡単な構成でありながら給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
第2の実施形態.
 図2は、本発明の第2の実施形態に係るアンテナ装置の概略構成を示すブロック図である。本実施形態のアンテナ装置は、複数の異なる周波数でアイソレーションを確保するように、複数の異なるスリットS1,S2を備えたことを特徴とする。
 図2において、本実施形態のアンテナ装置は、図1の構成に加えて、アンテナ素子1上の2つの給電ポート間、すなわち給電点1a,1b間に、給電ポート間の所定のアイソレーションを確保するように電磁結合調整のためのスリットS2をさらに備える。スリットS2は、スリットS1と同様に、所定幅及び長さを有し、その一端は給電点1a,1b間の辺に開口部を有することにより開放端として構成される。ただし、スリットS2は、例えばその長さをスリットS1とは相違させることにより、スリットS1を設けたことによってアンテナ素子1が共振する周波数とは異なる周波数においてアンテナ素子1を共振させるとともに、スリットS1とは異なる周波数において給電ポート間のアイソレーションを確保するように構成される。本実施形態では、給電ポート間に2つのスリットS1,S2を備えたことにより、異なる2つのアイソレーション周波数を実現することができる。本実施形態のアンテナ装置はさらに、第1の実施形態における整合回路11,12及びMIMO通信回路10に代えて、動作周波数を調整可能な整合回路11A,12A及びMIMO通信回路10Aを備えるとともに、これらの動作周波数を調整するコントローラ13を備えて構成される。コントローラ13は、整合回路11A,12Aの動作周波数を調整することにより、アンテナ素子1の動作周波数を2つのアイソレーション周波数のいずれかに選択的にシフトさせる。
 このように、本実施形態では、複数のスリットS1,S2を備え、それぞれのスリットS1,S2の長さを別々に設定することにより、それぞれ異なる共振周波数を実現できるとともに、それぞれ異なるアイソレーション周波数を実現することができる。言い換えると、スリットS1,S2はそれぞれの異なる周波数でアンテナ素子1と電磁的に結合するので、アンテナ素子1の共振周波数は複数個になり、アイソレーション周波数もまた複数個になり、アンテナ素子1の動作周波数をこれらのアイソレーション周波数のいずれかに選択的にシフトさせることにより、アンテナ装置の多周波化が可能になる。
 以上説明したように、本実施形態のアンテナ装置によれば、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら複数のアイソレーション周波数で給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
第3の実施形態.
 図3は、本発明の第3の実施形態に係るアンテナ装置の概略構成を示すブロック図である。本実施形態のアンテナ装置は、アンテナ素子1上のスリットS1に加えて、接地導体2上のスリットS3を備えたことを特徴とする。第1の実施形態においてはアンテナ素子1の側にスリットS1を設けたが、前述のように接地導体2がアンテナ素子1と同じような大きさの場合にはこのアンテナ装置はダイポールアンテナとなるので、接地導体2の側にさらにスリットを設けても同様の周波数調整の効果を得ることができる。
 図3において、アンテナ素子1は、第1の実施形態の場合と同様に給電点1a,1b間にスリットS1を備える。また、接地導体2は、2つの給電ポート間、すなわち接続点2a,2b間に、給電ポート間の所定のアイソレーションを確保するように電磁結合調整のためのスリットS3を備える。スリットS3は所定幅及び長さを有し、その一端は接続点2a,2b間の辺に開口部を有することにより開放端として構成される。好ましくは、スリットS3は、例えばその長さをスリットS1とは相違させることにより、スリットS1を設けたことによってアンテナ素子1及び接地導体2が共振する周波数とは異なる周波数においてアンテナ素子1及び接地導体2を共振させるとともに、スリットS1とは異なる周波数において給電ポート間のアイソレーションを確保するように構成される。本実施形態では、給電ポート間に2つのスリットS1,S3を備えたことにより、異なる2つのアイソレーション周波数を実現することができる。また、給電線F3,F4はそれぞれ、平衡給電線路として構成される。本実施形態のアンテナ装置はさらに、第2の実施形態と同様に、動作周波数を調整可能な整合回路11A,12A及びMIMO通信回路10Aと、これらの動作周波数を調整するコントローラ13とを備えて構成される。コントローラ13は、整合回路11A,12Aの動作周波数を調整することにより、アンテナ素子1及び接地導体2の動作周波数を2つのアイソレーション周波数のいずれかに選択的にシフトさせる。
 このように、本実施形態では、複数のスリットS1,S3を備え、それぞれのスリットS1,S3の長さを別々に設定することにより、それぞれ異なる共振周波数を実現できるとともに、それぞれ異なるアイソレーション周波数を実現することができる。言い換えると、スリットS1,S3はそれぞれの異なる周波数でアンテナ素子1及び接地導体2と電磁的に結合するので、アンテナ素子1及び接地導体2の共振周波数は複数個になり、アイソレーション周波数もまた複数個になり、アンテナ素子1及び接地導体2の動作周波数をこれらのアイソレーション周波数のいずれかに選択的にシフトさせることにより、アンテナ装置の多周波化が可能になる。
 本実施形態では、スリットS1,S3を互いに異なる長さになるように構成することに代えて、スリットS1,S3を等長に構成することにより単一のアイソレーション周波数を実現してもよい。この場合、整合回路11A,12A及びMIMO通信回路10Aに代えて、第1の実施形態と同様に固定された動作周波数を有する整合回路11,12及びMIMO通信回路10を備え、コントローラ13を省くことができる。この場合さらに、給電線F3,F4が平衡給電線路であるので、アンテナ装置は、アンテナ素子1上にスリットS1を設けることなく、接地導体2上のスリットS3のみを備えるように構成されてもよい。これにより、アンテナ装置の構成上の自由度を増大させることができる。
 以上説明したように、本実施形態のアンテナ装置によれば、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら複数のアイソレーション周波数で給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
第4の実施形態.
 図4は、本発明の第4の実施形態に係るアンテナ装置の概略構成を示すブロック図である。本実施形態のアンテナ装置のように、第2及び第3の実施形態に係るアンテナ装置の構成を組み合わせてもよい。
図4において、アンテナ素子1は、第2の実施形態の場合と同様に給電点1a,1b間にスリットS1,S2を備え、接地導体2は、第3の実施形態の場合と同様に接続点2a,2b間にスリットS3を備える。好ましくは、スリットS1,S2,S3は、例えばその長さを互いに相違させることにより、互いに異なる共振周波数を実現するとともに、互いに異なる周波数において給電ポート間のアイソレーションを確保するように構成される。本実施形態では、給電ポート間に3つのスリットS1,S2,S3を備えたことにより、異なる3つのアイソレーション周波数を実現することができる。また、給電線F3,F4はそれぞれ、平衡給電線路として構成される。コントローラ13は、整合回路11A,12Aの動作周波数を調整することにより、アンテナ素子1及び接地導体2の動作周波数を3つのアイソレーション周波数のいずれかに選択的にシフトさせる。
 このように、本実施形態では、複数のスリットS1,S2,S3を備え、それぞれのスリットS1,S2,S3の長さを別々に設定することにより、それぞれ異なる共振周波数を実現できるとともに、それぞれ異なるアイソレーション周波数を実現することができる。言い換えると、スリットS1,S2,S3はそれぞれの異なる周波数でアンテナ素子1及び接地導体2と電磁的に結合するので、アンテナ素子1及び接地導体2の共振周波数は複数個になり、アイソレーション周波数もまた複数個になり、アンテナ素子1及び接地導体2の動作周波数をこれらのアイソレーション周波数のいずれかに選択的にシフトさせることにより、アンテナ装置の多周波化が可能になる。
 スリットの配置は第1乃至第4の実施形態について説明したものに限定されず、アンテナ素子1と接地導体2との少なくとも一方に少なくとも1つのスリットを備えた構成を用いることができる。
 以上説明したように、本実施形態のアンテナ装置によれば、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら複数のアイソレーション周波数で給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
第5の実施形態.
 図5は、本発明の第5の実施形態に係るアンテナ装置の概略構成を示すブロック図である。本実施形態のアンテナ装置は、複数のアイソレーション周波数で給電ポート間のアイソレーションを確保するために、第2の実施形態のようにアンテナ素子1上に複数のスリットS1,S2を設けることに代えて、トラップ回路14を備えた単一のスリットS1を設けたことを特徴とする。
 図5において、本実施形態のアンテナ装置は、スリットS1に沿ってスリットS1の開口部から所定距離の位置にトラップ回路14を備える。トラップ回路14は、並列接続されたインダクタ(L)及びキャパシタ(C)を備えて構成され、並列LCの共振周波数のみにおいて開放となる。従って、トラップ回路14は、この周波数ではスリットS1全体を共振させ、この周波数から離隔した他の周波数ではスリットS1の開口部からトラップ回路14までの区間のみを共振させる。このように、スリットS1は周波数に応じて実効長が変化するので、本実施形態のアンテナ装置は、アンテナ素子1の動作周波数を変化させてスリットS1の実効長を変化させることにより、互いに異なる共振周波数を実現するとともに、互いに異なる周波数において給電ポート間のアイソレーションを確保するように構成される。本実施形態では、アンテナ素子1の動作周波数を変化させてスリットS1の実効長を変化させることにより、異なる2つのアイソレーション周波数を実現することができる。コントローラ13は、整合回路11A,12A及びMIMO通信回路10Aの動作周波数を調整することにより、アンテナ素子1の動作周波数を2つのアイソレーション周波数のいずれかに選択的にシフトさせる。本実施形態では、以上の構成により、アンテナ装置の多周波化が可能になる。
 以上説明したように、本実施形態のアンテナ装置によれば、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら複数のアイソレーション周波数で給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
第6の実施形態.
 図6は、本発明の第6の実施形態に係るアンテナ装置の概略構成を示すブロック図である。本実施形態のアンテナ装置は、アンテナ素子1の共振周波数とアイソレーションを確保できる周波数とを調整するために、第1の実施形態のようにスリットS1の長さを変化させるだけでなく、スリットS1に沿った所定の位置にリアクタンス素子15を設けたことを特徴とする。
 図6において、本実施形態のアンテナ装置は、図1の構成に加えて、スリットS1に沿ってスリットS1の開口部から所定距離の位置にリアクタンス素子15を備える。図10A、図10B及び図11を参照して後述するように、アンテナ素子1の共振周波数とアイソレーションを確保できる周波数とは、スリットS1の長さに依存して変化するので、スリットS1の長さはこれらの周波数を調整するように決定される。本実施形態ではさらに、これらの周波数を調整するために、スリットS1に沿った所定の位置に、所定のリアクタンス値を有するリアクタンス素子15(すなわちキャパシタ又はインダクタ)を設ける。また、これらの周波数は、リアクタンス素子15がスリットS1に設けられる位置にも依存して変化するので、リアクタンス素子15の位置はこれらの周波数を調整するように決定される。周波数の調整量(推移量)は、リアクタンス素子15がスリットS1の開口部に設けられたときに最大になる。このことから、リアクタンス素子15のリアクタンス値を決定した後に、その実装位置をずらすことによって、アンテナ素子1の共振周波数とアイソレーションを確保できる周波数とを微調整することが可能である。
 以上説明したように、本実施形態のアンテナ装置によれば、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
第7の実施形態.
 図7は、本発明の第7の実施形態に係るアンテナ装置の概略構成を示すブロック図である。本実施形態のアンテナ装置は、第6の実施形態のリアクタンス素子15に代えて、コントローラ13Aの制御下でリアクタンス値が変化する可変リアクタンス素子15Aを備えたことを特徴とする。これにより、本実施形態のアンテナ装置は、第2の実施形態のようにアンテナ素子1上に複数のスリットS1,S2を設けることなく、可変リアクタンス素子15Aを備えた単一のスリットS1を設けることにより、複数のアイソレーション周波数で給電ポート間のアイソレーションを確保することができる。
 図7において、本実施形態のアンテナ装置は、スリットS1に沿ってスリットS1の開口部から所定距離の位置に可変リアクタンス素子15Aを備える。可変リアクタンス素子15Aには、容量性のリアクタンス素子として例えばバラクタダイオードなどの可変容量素子を用いることができ、可変リアクタンス素子15Aのリアクタンス値は、コントローラ13Aから印加される制御電圧に従って変化する。本実施形態のアンテナ装置は、可変リアクタンス素子15Aのリアクタンス値を変化させることにより、アンテナ素子1の異なる共振周波数を実現するとともに、異なる周波数において給電ポート間のアイソレーションを確保するように構成される。コントローラ13Aは、可変リアクタンス素子15Aのリアクタンス値を変化させるとともに、整合回路11A,12A及びMIMO通信回路10Aの動作周波数を調整することにより、アンテナ素子1の動作周波数を、可変リアクタンス素子15Aのリアクタンス値によって決まるアイソレーション周波数にシフトさせる。本実施形態では、以上の構成により、アンテナ装置の多周波化が可能になる。
 本実施形態では、可変リアクタンス素子15Aのリアクタンス値を適応的に変化させて、使用するアプリケーションに応じてアンテナ素子1の動作周波数を変化させることができる。
 以上説明したように、本実施形態のアンテナ装置によれば、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら複数のアイソレーション周波数で給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
第8の実施形態.
 図8は、本発明の第8の実施形態に係るアンテナ装置の概略構成を示すブロック図である。本実施形態のアンテナ装置は、第1の実施形態のスリットS1に代えて、アンテナ素子1の辺に開口部を持たないスロットS4を備えたことを特徴とする。このような構成によっても、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。スロットの個数は1つに限らず、アンテナ素子1及び接地導体2の少なくとも一方に、2つ以上のスロットを設けてもよい。給電線F3,F4がそれぞれ平衡給電線路である場合には、第3の実施形態と同様に、アンテナ素子1上にスロットS4を設けることなく、接地導体2上にのみスロットを備えるように構成されてもよい。本実施形態の構成によれば、アンテナ装置の構成上の自由度を増大させることができる。
第9の実施形態.
 図9は、本発明の第9の実施形態に係るアンテナ装置の概略構成を示す斜視図である。本実施形態のアンテナ装置は、第1乃至第8の実施形態のようなダイポールアンテナの構成に代えて、板状逆F型アンテナ装置として構成されたことを特徴とする。
 図9において、アンテナ装置は、長方形形状の導体板にてなるアンテナ素子1と、長方形形状の導体板にてなる接地導体2とを備え、アンテナ素子1と接地導体2とは、互いに重なり合うように、所定距離だけ離隔して平行に設けられる。アンテナ素子1の一辺と接地導体2の一辺とは、互いに近接して設けられ、直線状の接続導体3a,3bによって互いに機械的かつ電気的に接続される。アンテナ素子1において、接続導体3a,3bが接続された辺と、その対辺との間に延在するように、所定幅及び長さを有するスリットS1が設けられる。スリットS1の一端は、接続導体3a,3bが接続された辺の対辺のほぼ中央部に開口部を有することにより開放端として構成される。アンテナ素子1上において、スリットS1をはさんでその両側に、給電点1a,1bが設けられ、給電点1a,1bにはそれぞれ、接地導体2の裏側から接地導体2を貫通して給電線F3,F4が接続される。給電線F3,F4は例えば同軸ケーブルであり、その内部導体である信号線F3a,F4aはそれぞれ給電点1a,1bに接続され、その外部導体である信号線F3b,F4bはそれぞれ接続点1b,2bにおいて接地導体2に接続される。さらに、給電線F3,F4はそれぞれ、第1の実施形態と同様に、整合回路11,12及び給電線F1,F2を介してMIMO通信回路10に接続される。本実施形態では、以上の構成を備えたことにより、一方の給電点1aを介してアンテナ素子1を第1のアンテナ部として励振させると同時に、他方の給電点1bを介してアンテナ素子1を第2のアンテナ部として励振させることにより、単一のアンテナ素子1を2つのアンテナ部として動作させることができる。変形例として、アンテナ素子1と接地導体2を複数の接続導体3a,3bによって接続することに代えて、単一の導体板によって接続してもよい。
 以上説明したように、本実施形態のアンテナ装置によれば、単一のアンテナ素子1を2つのアンテナ部として動作させるとき、簡単な構成でありながら給電ポート間のアイソレーションを確保することができ、複数の無線信号の送受信を同時に実行することができる。
 以下の実施例1~7において、実施形態のアンテナ装置を銅板スリットアンテナ装置としてモデル化したときのシミュレーション結果について説明する。
 図10Aは本発明の実施例1に係るアンテナ装置のアンテナ素子1の構成を示す図であり、図10Bは図10AのスリットS1の等価回路を示す図である。本実施例のアンテナ装置は、第1の実施形態のアンテナ装置に対応する。本実施例のシミュレーションでは、スリットS1の長さD1を可変にし、長さD1に対する共振周波数の特性を示す。スリットS1の幅は1mmであるとし、この値は実施例2~7のシミュレーションでも同じである。
 共振周波数を調整する際には、スリットS1を伝送線路にみたてて、スリットS1の共振器として考える。図10AのスリットS1は、長さD1と、所定の特性インピーダンスZと、所定の伝搬定数βとを有する。波長λを有する無線信号が給電される。図10Bに示すスリットS1の両端A,Bのうち、上端Aは短絡端であり、下端Bは開放端であり、A端からみた入力インピーダンスZinは、B端が開放であるので、次式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、A端は短絡端であるので、図10Bの等価回路の共振条件は、A端から見た入力インピーダンスZinが0になることである。すなわち、共振するのは式(1)のtan(β・D1)が無限大のときであるので、β・D1=π/2のとき、すなわちβ=2π/λよりD1=λ/4のときに、入力インピーダンスZinは0になる。光速をc[m/s]で表し、スリット長さD1をメートルを単位として表するとき、共振周波数f[Hz]とスリットS1の長さD1との関係は、次式で表される。
Figure JPOXMLDOC01-appb-M000002
 図11は、図10Aのアンテナ装置に係るスリットS1の長さD1に対する共振周波数fの特性を示すグラフである。B端が開放されている条件下では、スリットS1の長さD1を90mmまで長くしたとき、すなわちアンテナ素子1がスリットS1の左側のアンテナ部と右側のアンテナ部とに完全に分離されたとき、共振周波数fは0.84GHzまで下がる。
 前述のように、スリットS1はアンテナ素子1自体と電磁的に結合するので、アンテナ素子1の共振周波数は、スリットS1を持たない場合と比較して、スリットS1の共振条件の周波数に従って変化している。ただし、スリットS1の共振条件の周波数がアンテナ素子1自体の共振周波数と大きくずれている場合には、結合度が小さく、アンテナ素子1の共振周波数の変化が小さくなる。図11によれば、スリットS1が長くなるとスリットS1の共振条件の周波数が低くなり、短くなると共振条件の周波数は高くなるので、スリットS1の長さD1によりアンテナ素子1の共振周波数を調整することができる。
 図12は、本発明の実施例2に係るアンテナ装置の概略構成を示す図である。本実施例のアンテナ装置もまた、実施例1のアンテナ装置と同様に、第1の実施形態のアンテナ装置に対応する。本実施例のシミュレーションでは、スリットS1の長さD1に依存して、アンテナ素子1の共振周波数と、アイソレーション周波数とが変化することを示す。
 図12において、アンテナ素子1及び接地導体2はそれぞれ、45×90mmの大きさを有する片面銅張基板を用いて作成された。アンテナ素子1の幅方向の中央からは、幅1mmにわたって完全に導体が除去され、この導体が除去された部分に銅テープを貼り付けることにより、所望の長さD1を有するスリットS1を形成した。スリットS1の長さD1を調節することにより、アンテナ装置の周波数特性の変化を調べた。また、アンテナ装置の2つの給電ポート(すなわち、給電点1a及び接続点2aからなる給電ポートと、給電点1b及び接続点2bからなる給電ポート)にはそれぞれ、長さ50mmを有するセミリジッドケーブルを給電線F3,F4として接続した。各セミリジッドケーブルの内部導体は、長さ5mmにわたって、アンテナ素子1を構成する基板にハンダ付けされ、各セミリジッドケーブルの外部導体は、長さ40mmにわたって、接地導体2を構成する基板にハンダ付けされた。さらに、給電線F3,F4はそれぞれ、図12ではP1,P2として概略的に示した信号源に接続した。
 次に、図13及び図14を参照して、スリットS1の長さD1を変化させたときに2つの給電ポートに係るSパラメータS11,S21の周波数特性がどのように変化するかを示す。図13は、図12のアンテナ装置に係るスリットS1の長さD1及び周波数に対する反射係数のパラメータS11を示すグラフであり、図14は、図12のアンテナ装置に係るスリットS1の長さD1及び周波数に対する通過係数(すなわち給電ポート間のアイソレーションの特性)のパラメータS21を示すグラフである。図12のアンテナ装置は対称構造を有するので、パラメータS12はS21と同じであり、パラメータS22はS11と同じである。図13及び図14より、スリットS1の長さD1を変えることにより、アンテナ素子1の共振周波数及びアイソレーション周波数が変化していることがわかる。
 次に、スリットS1の長さD1(単位:mm)を変化させたときにおけるアンテナ素子1の共振周波数(単位:GHz)の変化とアイソレーション周波数(単位:GHz)の変化との関係を、以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
 上の表1の関係を、図15のグラフにも示す。図15は、図12のアンテナ装置に係るスリットS1の長さD1に対する周波数の特性を示すグラフである。表1及び図15によれば、スリットS1が長くなるにつれて、アンテナ素子1の共振周波数及びアイソレーション周波数が低くなることがわかる。パラメータS21に関しては、給電点1aから給電点1bまでの迂回経路が長くなったことが原因でアイソレーション周波数が下がったと考えられる。周波数が推移する範囲は、パラメータS11に関しては960MHz~2.6GHzとなり、パラメータS21に関しては730MHz~2.7GHzとなった。
 図16は、本発明の実施例3に係るアンテナ装置の概略構成を示す図である。本実施例のアンテナ装置もまた、実施例1のアンテナ装置と同様に、第1の実施形態のアンテナ装置に対応する。本実施例のシミュレーションでは、所定の周波数においてアンテナ素子1を共振させるとともに給電ポート間のアイソレーションを高く確保することを目的としてアンテナ装置に整合回路11,12を設け、整合回路11,12を設けたことによる効果を示す。
 図16において、アンテナ素子1及び接地導体2は、実施例2の場合(図12参照)と同様に構成され、スリットS1の長さは30mmに固定される。さらに、給電線F3,F4上には整合回路11,12が挿入される。詳しくは、整合回路11,12は、給電線F3の信号線F3a上に3.3nHのインダクタ11aが直列に挿入され、給電線F4の信号線F4a上に3.3nHのインダクタ12aが直列に挿入されるように構成される。
 図17は、図16のアンテナ装置に係る整合回路11,12の有無と周波数とに対する反射係数のパラメータS11を示すグラフであり、図18は、図16のアンテナ装置に係る整合回路11,12の有無と周波数とに対する通過係数のパラメータS21を示すグラフである。図19Aは図16のアンテナ装置に係る整合回路11,12がない場合のインピーダンス特性を示すスミスチャートであり、図19Bは図16のアンテナ装置に係る整合回路11,12を設けた場合のインピーダンス特性を示すスミスチャートである。ここで、図19A及び図19Bは、給電点1aの側の給電ポートにおけるインピーダンス特性を示す。図17によれば、整合回路11,12がない場合のアンテナ素子1の共振周波数は2.08GHzであり、図18によれば、整合回路11,12がない場合のアイソレーション周波数は1.99GHzであることがわかる。整合回路11,12の定数(すなわち、3.3nHのインダクタンス)は、整合回路11,12を設けた場合のアンテナ素子1の共振周波数を、整合回路11,12がない場合のアイソレーション周波数1.99GHにシフトさせて一致させるように設定されたものである。図17及び図18によれば、アンテナ素子1の共振周波数は、整合回路11,12を設けたことにより変化するが、アイソレーション周波数は整合回路11,12の有無によってほとんど変化していないことがわかる。図17からわかるように、整合回路11,12が内場合には共振周波数のずれが90MHzあったものが、整合回路11,12を設けたことにより10MHzにおさまった。整合回路11,12を設けたとき、パラメータS11,S21の両方が-20dB以下となるのは1.96~2.00GHzの範囲においてであって、40MHzの帯域を確保できる。また、整合回路11,12を設けたとき、パラメータS11,S21の両方が-10dB以下となるのは1.87~2.09GHzの範囲においてであって、220MHzの帯域を確保できている。
 本実施例のシミュレーションによれば、アンテナ装置に整合回路11,12を設けたことにより、所定の周波数においてアンテナ素子1を共振させるとともに給電ポート間のアイソレーションを高く確保できることがわかる。
 図20Aは本発明の実施例4に係るアンテナ装置のアンテナ素子1の構成を示す図であり、図20Bは図20AのスリットS1及びリアクタンス素子15の等価回路を示す図である。図21は、図20Aのアンテナ素子に係るリアクタンス素子15と周波数特性との関係を示すグラフである。図22は、図20Aのアンテナ素子に係るスリットS1の長さD1とリアクタンス素子15のリアクタンス値とに対する共振周波数の特性を示すグラフである。本実施例のアンテナ装置は、第6の実施形態のアンテナ装置に対応する。本実施例のシミュレーションでは、スリットS1の長さD1と、リアクタンス素子15のリアクタンス値とを可変にし、これらのパラメータに対する共振周波数の特性を示す。
 図20Aにおいて、アンテナ装置は実施例1のアンテナ装置(図10A参照)と同様の構成を備え、さらに、スリットS1の開口部に所定のリアクタンス値を有するリアクタンス素子を備えて構成される。スリットS1は、長さD1と、所定の特性インピーダンスZと、所定の伝搬定数βとを有する。リアクタンス素子15は、所定の負荷インピーダンスZを有する。波長λを有する無線信号が給電される。まず、スリットS1の長さD1を30mmに固定したときの、リアクタンス値と共振周波数の関係について検討する。図20Aに示すスリットS1の両端A,Bのうち、上端Aは短絡端であり、下端Bは開放端であり、A端からみた入力インピーダンスZinは、B端が開放であるので、次式で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、A端は短絡端であるので、図20Bの等価回路の共振条件は、A端から見た入力インピーダンスZinが0になること、すなわち、式(3)右辺の分数式の分子が0になることである。
+jZtan(β・D1)=0   (4)
よって、共振条件は、式(4)から次式のように変形される。
tan(β・D1)=-Z/jZ   (5)
 ここで、式(5)の左辺を関数yとして、図21のグラフにプロットした。
=tan(β・D1)   (6)
 また、図20Aのリアクタンス素子15として容量Cを有するキャパシタを用いたときは、負荷インピーダンスZ=1/jωCとなり、式(5)の右辺を関数yとすると次式のように表される。
Figure JPOXMLDOC01-appb-M000004
 図21には、所定の容量値C1を有するキャパシタを用いたときと、C1よりも大きな容量値C2を有するキャパシタを用いたときのyをプロットした。
 また、図20Aのリアクタンス素子15としてインダクタンスLを有するインダクタを用いたときは、負荷インピーダンスZ=jωLとなり、式(5)の右辺を関数yとすると次式のように表される。
Figure JPOXMLDOC01-appb-M000005
 図21には、所定のインダクタンスL1を有するインダクタを用いたときと、L1よりも大きなインダクタンスL2を有するインダクタを用いたときのyをプロットした。
 スリットS1の開口部が開放されているときには、負荷インピーダンスZ=∞となり、式(5)の右辺を関数yとすると次式のように表される。
=-∞   (9)
 スリットS1の共振条件が満たされる場合、すなわち式(5)が成り立つ場合は、図21において、yと、y又はyとの交点で表される。本実施例では例示的に、共振条件が満たされる場合のうちのごく一部を、交点Q2,Q3,Q4,Q5として示す。リアクタンス素子15が容量性であるとき、容量Cが大きくなると、共振条件は交点Q2から交点Q3に向かうように変化し、横軸における交点の座標、すなわち共振周波数が下がる。また、リアクタンス素子15が誘導性であるとき、インダクタンスLが小さくなると、共振条件は交点Q5から交点Q4に向かうように変化し、共振周波数が増大する。負荷インピーダンスZが∞である場合、共振条件はスリットS1の長さD1で決まり、β・D1=π/2をみたす周波数のときに共振する。図21では、これを点Q1で表す。
 次に、スリットS1の長さD1=30mmであり、特性インピーダンスZ=139Ωであるときの、リアクタンス素子15のリアクタンス値に対する共振周波数(単位:GHz)の変化を、以下の表に示す。ここで、リアクタンス値は、所定の容量である場合、所定のインダクタンスである場合、又は何も負荷されていない場合のいずれかになる。
Figure JPOXMLDOC01-appb-T000002
 上の表2によれば、共振周波数は、リアクタンス値に応じて0.3~4.2GHzまで変化していることがわかる。スリットS1の開口部にキャパシタを装荷したときには共振周波数が低下し、インダクタを装荷したときには共振周波数が増大する。特に、スリットの開口部が開放されている場合には共振周波数2.5GHzであったものが、20pFのキャパシタを用いたときには0.3GHzに変化し、2.7nHのインダクタを用いたときには4.2GHzにまで変化している。このことから、容量性のリアクタンス素子15を装荷することで共振周波数を低くすることができ、アンテナの小型化に寄与する。
 また、図22に、スリットS1の長さD1が30mm以外の場合も含む、スリットS1の長さD1と、リアクタンス素子15のリアクタンス値とに対する共振周波数の特性を示す。スリットS1の長さD1が短いほうが、リアクタンス値による共振周波数の可変幅が大きいことがわかる。
 図23は、本発明の実施例5に係るアンテナ装置の概略構成を示す図である。本実施例のアンテナ装置もまた、実施例4のアンテナ装置と同様に、第6の実施形態のアンテナ装置に対応する。本実施例のシミュレーションでは、スリットS1の開口からのリアクタンス素子15の距離D2に依存して、アンテナ素子1の共振周波数と、アイソレーション周波数とが変化することを示す。
 図23において、アンテナ素子1及び接地導体2は、実施例2の場合(図12参照)と同様に構成され、スリットS1の長さは30mmに固定される。さらに、スリットS1の開口部から所定距離D2の位置に、リアクタンス素子15を備える。このリアクタンス素子15を設ける位置(すなわち開口部からの距離D2)を変化させたときの、アンテナ装置の周波数特性の変化を調べた。
 図24乃至図26に、図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が0.5pFであるときのシミュレーション結果を示す。図24は、リアクタンス素子15の位置及び周波数に対する反射係数のパラメータS11を示すグラフであり、図25は、リアクタンス素子15の位置及び周波数に対する通過係数のパラメータS21を示すグラフである。図26は、リアクタンス素子15の位置に対する周波数の特性を示すグラフであり、リアクタンス素子15の位置を変化させたときの、アンテナ素子1の共振周波数(すなわちS11)の変化とアイソレーション周波数(すなわちS21)の変化との関係を示す。
 図27乃至図29に、図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が10pFであるときのシミュレーション結果を示す。図27は、リアクタンス素子15の位置及び周波数に対する反射係数のパラメータS11を示すグラフであり、図28は、リアクタンス素子15の位置及び周波数に対する通過係数のパラメータS21を示すグラフである。図29は、リアクタンス素子15の位置に対する周波数の特性を示すグラフであり、リアクタンス素子15の位置を変化させたときの、アンテナ素子1の共振周波数の変化とアイソレーション周波数の変化との関係を示す。
 図30乃至図32に、図23のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値が4.7nHであるときのシミュレーション結果を示す。図30は、リアクタンス素子15の位置及び周波数に対する反射係数のパラメータS11を示すグラフであり、図31は、リアクタンス素子15の位置及び周波数に対する通過係数のパラメータS21を示すグラフである。図32は、リアクタンス素子15の位置に対する周波数の特性を示すグラフであり、リアクタンス素子15の位置を変化させたときの、アンテナ素子1の共振周波数の変化とアイソレーション周波数の変化との関係を示す。
 図24乃至図32を参照すると、リアクタンス素子15を設ける位置に応じて、アンテナ素子1の共振周波数及びアイソレーション周波数が変化することがわかる。0.5pFの容量を有する容量性のリアクタンス素子15を用いた場合には、変動幅はS11で1.5~1.9GHzであり、S21で1.4~1.8GHzであり、400MHzにわたる周波数シフトが生じていることがわかる。10pFの容量を有する容量性のリアクタンス素子15を用いた場合と、4.5nHのインダクタンスを有する誘導性のリアクタンス素子15を用いた場合には、S11とS21の共振周波数の変化はほぼ同じであり、10pFのときは0.4~1.3GHzの900MHzにわたる周波数シフトが生じ、4.5nHのときは2.8~2.0GHzの800MHzにわたる周波数シフトが生じていることがわかる。リアクタンス素子15としてキャパシタを用いた場合には、スリットS1の開口からのリアクタンス素子15の距離D2を大きくすると共振周波数が上がり、一方、リアクタンス素子15としてインダクタを用いた場合には、距離D2を大きくすると共振周波数が下がる傾向があることがわかった。
 図33は、本発明の実施例6に係るアンテナ装置の概略構成を示す図である。本実施例のアンテナ装置は、第7の実施形態のアンテナ装置に対応する。本実施例のシミュレーションでは、可変リアクタンス素子15Aのリアクタンス値に依存して、アンテナ素子1の共振周波数と、アイソレーション周波数とが変化することを示す。
 図33において、アンテナ素子1及び接地導体2は、実施例5の場合(図23参照)と同様に構成され、可変リアクタンス素子15AはスリットS1の開口から15mmの位置に固定される。図7のコントローラ13A等の構成要素は、図示を省略した。
 図34は、図33のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値と周波数とに対する反射係数のパラメータS11を示すグラフであり、図35は、図33のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値と周波数とに対する通過係数のパラメータS21を示すグラフである。図34によれば、可変リアクタンス素子15Aが容量性であるとき、容量Cが大きくなるにつれて共振周波数が低くなり、可変リアクタンス素子15Aが誘導性であるとき、インダクタンスLが小さくなるにつれて共振周波数が高くなることがわかる。また、図35によれば、アイソレーション周波数は共振周波数と同様に変化し、600MHz~2.5GHzの範囲にわたって変化していることがわかる。図34及び図35に係るシミュレーションで用いたリアクタンス値の下限は10pFであり、上限は4.7nHであった。リアクタンス値を変化させる範囲をさらに大きくすれば、より広帯域な周波数シフトが可能であると期待される。
 次に、可変リアクタンス素子15Aのリアクタンス値を変化させたときにおけるアンテナ素子1の共振周波数(単位:GHz)の変化とアイソレーション周波数(単位:GHz)の変化との関係を、以下の表に示す。
Figure JPOXMLDOC01-appb-T000003
 上の表3の関係を、図36のグラフにも示す。図36は、図33のアンテナ装置に係る可変リアクタンス素子15Aのリアクタンス値に対する周波数の特性を示すグラフである。表3及び図36によれば、本実施例のアンテナ装置の構成において可変リアクタンス素子15Aがない場合には、S11とS21ではリアクタンス値の変化に対する周波数の変化の割合が異なるが、可変リアクタンス素子15Aのリアクタンス値により周波数シフトさせた場合には、S11とS21の周波数の差が小さくなることがわかる。
 図37Aは、本発明の実施例7に係るアンテナ装置の概略構成を示す斜視図であり、図37Bはその側面図である。本実施例のアンテナ装置は、第9の実施形態のアンテナ装置に対応する。本実施例のシミュレーションでは、スリットS1の長さD1に依存して、アンテナ素子1の共振周波数と、アイソレーション周波数とが変化することを示す。
 図37A及び図37Bにおいて、アンテナ装置は第9の実施形態の場合(図9参照)と同様に構成された。本実施例では、スリットS1の効果を大きくするために、給電点1a,1bの位置を他の実施例に比べて-Z方向に移動した。
 図38は、図37A及び図37Bのアンテナ装置に係るスリットS1の長さD1及び周波数に対する反射係数のパラメータS11を示すグラフであり、図39は、図37A及び図37Bのアンテナ装置に係るスリットS1の長さD1及び周波数に対する通過係数のパラメータS21を示すグラフである。
 次に、スリットS1の長さD1(単位:mm)を変化させたときにおけるアンテナ素子1の共振周波数(単位:GHz)の変化とアイソレーション周波数(単位:GHz)の変化との関係を、以下の表に示す。
Figure JPOXMLDOC01-appb-T000004
 上の表1の関係を、図40のグラフにも示す。図40は、図37A及び図37Bのアンテナ装置に係るスリットS1の長さD1に対する周波数の特性を示すグラフである。表4及び図40より、共振周波数は1.19GHz~2.478GHzの範囲にわたって変化し、アイソレーション周波数は0.989GHz~2.573GHzの範囲にわたって変化することがわかる。スリットS1の長さD1=40mmのときに、帯域1.399~1.525[GHz]の範囲においてS11とS21が-10dB以下になり、帯域幅は0.125[GHz]である。
変形例.
 アンテナ素子1及び接地導体2の形状は、長方形に限定されるものではなく、例えば他の多角形、円形、楕円形などであってもよい。また、各実施形態を組み合わせたアンテナ装置を構成することも可能であり、例えば、第5の実施形態のトラップ回路14を、第2乃至第4の実施形態のアンテナ装置のいずれかにおける少なくとも1つのスリットに設けてもよい。また、例えば、第6の実施形態のリアクタンス素子15又は第7の実施形態の可変リアクタンス素子15Aを、第2乃至第4の実施形態のアンテナ装置のいずれかにおける少なくとも1つのスリットに設けてもよい。この場合、複数の共振周波数を、スリット長、リアクタンス素子のリアクタンス値、リアクタンス素子の実装位置によって調整することが可能となり、周波数調整の自由度があがる。さらに、MIMO通信回路10,10Aに代えて、独立した2つの無線信号の変復調を実行する無線通信回路を設けてもよく、この場合、本実施形態のアンテナ装置は複数のアプリケーションに係る無線通信を同時に実行したり、複数の周波数帯での無線通信を同時に実行したりすることが可能になる。
 本発明のアンテナ装置及びそれを用いた無線装置によれば、例えば携帯電話機として実装することができ、あるいは無線LAN用の装置として実装することもできる。このアンテナ装置は、例えばMIMO通信を行うための無線通信装置に搭載することができるが、MIMOに限らず、複数のアプリケーションのための通信を同時に実行可能(マルチアプリケーション)な無線通信装置に搭載することも可能である。
1…アンテナ素子、
1a,1b…給電点、
2a,2b…接続点、
2…接地導体、
3a,3b…接続導体、
10,10A…MIMO通信回路、
11,12,11A,12A…インピーダンス整合回路、
11a,12a…インダクタ、
13,13A…コントローラ、
14…トラップ回路、
15…リアクタンス素子、
15A…可変リアクタンス素子、
S1,S2,S3…スリット、
S4…スロット、
F1,F2,F3,F4…給電線、
F3a,F3b,F4a,F4b…信号線、
P1,P2…信号源。

Claims (9)

  1.  アンテナ素子上の所定の各位置にそれぞれ設けられた第1及び第2の給電ポートを備えたアンテナ装置において、
     上記アンテナ素子は、上記第1及び第2の給電ポートにそれぞれ対応した第1及び第2のアンテナ部として同時に動作するように、上記第1及び第2の給電ポートを介してそれぞれ同時に励振され、
     上記アンテナ装置は、
     上記第1及び第2の給電ポートの間に設けられ、上記アンテナ素子の共振周波数を変化させるとともに、所定のアイソレーション周波数において上記第1及び第2の給電ポートの間に所定のアイソレーションを生成する電磁結合調整手段と、
     上記アンテナ素子の動作周波数を、上記変化された共振周波数から上記アイソレーション周波数にシフトさせるインピーダンス整合手段とを備えたことを特徴とするアンテナ装置。
  2.  上記電磁結合調整手段は、上記アンテナ素子に設けられた少なくとも1つのスリットであることを特徴とする請求項1記載のアンテナ装置。
  3.  上記アンテナ装置は、第1のアンテナ素子及び第2のアンテナ素子を備えたダイポールアンテナとして構成され、
     上記第1の給電ポートは、上記第1及び第2のアンテナ素子が対向した第1の位置において設けられ、
     上記第2の給電ポートは、上記第1の位置とは異なる位置であって、上記第1及び第2のアンテナ素子が対向した第2の位置において設けられ、
     上記電磁結合調整手段は、上記第1及び第2のアンテナ素子の少なくとも1つに設けられた少なくとも1つのスリットであることを特徴とする請求項1記載のアンテナ装置。
  4.  上記アンテナ装置は、上記スリットのうちの少なくとも1つにおいて、当該スリットに沿って当該スリットの開口部から所定距離の位置に設けられたトラップ回路をさらに備え、上記トラップ回路は、所定の第1の周波数では開放となって上記スリット全体を共振させ、上記第1の周波数から離隔した周波数では上記スリットの開口部から上記トラップ回路までの区間のみを共振させることを特徴とする請求項2又は3記載のアンテナ装置。
  5.  上記スリットのうちの少なくとも1つに設けられ、上記共振周波数及び上記アイソレーション周波数を変化させるリアクタンス素子をさらに備えたことを特徴とする請求項2又は3記載のアンテナ装置。
  6.  上記スリットのうちの少なくとも1つに設けられた可変リアクタンス素子と、
     上記可変リアクタンス素子のリアクタンス値を変化させることにより上記共振周波数及び上記アイソレーション周波数を変化させる制御手段とをさらに備えたことを特徴とする請求項2又は3記載のアンテナ装置。
  7.  上記電磁結合調整手段は、上記アンテナ素子に設けられた少なくとも1つのスロットであることを特徴とする請求項1記載のアンテナ装置。
  8.  上記アンテナ素子は、接地導体上に板状逆Fアンテナ素子として構成されたことを特徴とする請求項1記載のアンテナ装置。
  9.  複数の無線信号を送受信する無線通信装置において、請求項1乃至8のうちのいずれか1つに記載のアンテナ装置を備えたことを特徴とする無線通信装置。
PCT/JP2009/001814 2008-04-21 2009-04-21 アンテナ装置及び無線通信装置 WO2009130887A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009538202A JP4437167B2 (ja) 2008-04-21 2009-04-21 アンテナ装置及び無線通信装置
CN2009800004508A CN101689703B (zh) 2008-04-21 2009-04-21 天线装置及无线通信装置
US12/665,456 US8264414B2 (en) 2008-04-21 2009-04-21 Antenna apparatus including multiple antenna portions on one antenna element
EP09735883.2A EP2278660A4 (en) 2008-04-21 2009-04-21 ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008110215 2008-04-21
JP2008-110215 2008-04-21

Publications (1)

Publication Number Publication Date
WO2009130887A1 true WO2009130887A1 (ja) 2009-10-29

Family

ID=41216628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001814 WO2009130887A1 (ja) 2008-04-21 2009-04-21 アンテナ装置及び無線通信装置

Country Status (5)

Country Link
US (1) US8264414B2 (ja)
EP (1) EP2278660A4 (ja)
JP (1) JP4437167B2 (ja)
CN (1) CN101689703B (ja)
WO (1) WO2009130887A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089676A1 (ja) * 2010-01-19 2011-07-28 パナソニック株式会社 アンテナ装置及び無線通信装置
WO2011102143A1 (ja) * 2010-02-19 2011-08-25 パナソニック株式会社 アンテナ装置及びこれを搭載した携帯無線端末
JP2011229143A (ja) * 2010-04-02 2011-11-10 Harada Ind Co Ltd 折り返しモノポールアンテナ
WO2012004930A1 (ja) * 2010-07-05 2012-01-12 パナソニック株式会社 アンテナ装置及び無線通信装置
EP2592688A1 (en) * 2010-07-05 2013-05-15 Panasonic Corporation Antenna device, and wireless communication device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126410B2 (en) * 2007-06-07 2012-02-28 Vishay Intertechnology, Inc. Miniature sub-resonant multi-band VHF-UHF antenna
US8723745B2 (en) * 2009-08-25 2014-05-13 Panasonic Corporation Antenna apparatus including multiple antenna portions on one antenna element operable at multiple frequencies
KR101718715B1 (ko) * 2010-04-28 2017-03-22 삼성전자주식회사 무선 전력 전송 시스템에서 공진 대역폭의 제어 방법 및 장치
JP5399567B2 (ja) * 2010-10-25 2014-01-29 シャープ株式会社 無線通信装置、無線通信装置の制御方法、プログラム及び記憶媒体
TWI523316B (zh) * 2012-03-14 2016-02-21 宏碁股份有限公司 通訊裝置
US9601833B2 (en) 2013-03-25 2017-03-21 Wavcatcher Broadband notch antennas
CN103346400B (zh) * 2013-06-28 2016-04-06 宇龙计算机通信科技(深圳)有限公司 终端和天线隔离度的优化方法
KR20160099359A (ko) * 2015-02-12 2016-08-22 삼성전기주식회사 인몰드 안테나, 안테나 특성 제어 장치 및 인몰드 안테나 제조 방법
CN106199653A (zh) * 2016-06-29 2016-12-07 努比亚技术有限公司 一种移动终端和提高移动终端gps性能的方法
FR3061340B1 (fr) 2016-12-26 2019-05-31 Somfy Sas Dispositif multifrequence, dispositif de commande et/ou de controle, equipement domotique et systeme multifrequence associe
KR102640129B1 (ko) 2018-03-19 2024-02-22 피보탈 컴웨어 인코포레이티드 물리적 장벽들을 통한 무선 신호들의 통신
US10522897B1 (en) 2019-02-05 2019-12-31 Pivotal Commware, Inc. Thermal compensation for a holographic beam forming antenna
US10468767B1 (en) * 2019-02-20 2019-11-05 Pivotal Commware, Inc. Switchable patch antenna
US11069975B1 (en) 2020-04-13 2021-07-20 Pivotal Commware, Inc. Aimable beam antenna system
EP4158796A4 (en) 2020-05-27 2024-06-26 Pivotal Commware, Inc. RF SIGNAL REPEATER DEVICE MANAGEMENT FOR 5G WIRELESS NETWORKS
US11026055B1 (en) 2020-08-03 2021-06-01 Pivotal Commware, Inc. Wireless communication network management for user devices based on real time mapping
WO2022056024A1 (en) 2020-09-08 2022-03-17 Pivotal Commware, Inc. Installation and activation of rf communication devices for wireless networks
WO2022155529A1 (en) 2021-01-15 2022-07-21 Pivotal Commware, Inc. Installation of repeaters for a millimeter wave communications network
CA3209376A1 (en) 2021-01-26 2022-08-04 Eric James Black Smart repeater systems
AU2022307056A1 (en) 2021-07-07 2024-02-15 Pivotal Commware, Inc. Multipath repeater systems
US11937199B2 (en) 2022-04-18 2024-03-19 Pivotal Commware, Inc. Time-division-duplex repeaters with global navigation satellite system timing recovery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519914A (ja) * 2001-03-06 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ アンテナ装置
JP2007151115A (ja) * 2005-11-23 2007-06-14 Samsung Electronics Co Ltd モノポールアンテナ、及びそれを含むmimoアンテナ
JP2007282124A (ja) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd 携帯無線機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075853A1 (fr) 2001-03-15 2002-09-26 Matsushita Electric Industrial Co., Ltd. Dispositif d'antenne
FR2826185B1 (fr) * 2001-06-18 2008-07-11 Centre Nat Rech Scient Antenne fil-plaque multifrequences
GB0208130D0 (en) * 2002-04-09 2002-05-22 Koninkl Philips Electronics Nv Improvements in or relating to wireless terminals
US6624789B1 (en) * 2002-04-11 2003-09-23 Nokia Corporation Method and system for improving isolation in radio-frequency antennas
JP2004032303A (ja) 2002-06-25 2004-01-29 Sony Ericsson Mobilecommunications Japan Inc ノッチアンテナ及び携帯無線通信端末
CN1695268A (zh) * 2002-11-28 2005-11-09 捷讯研究有限公司 具有贴片和隙缝结构的多频带天线
WO2004077610A1 (en) * 2003-02-28 2004-09-10 Research In Motion Limited Multiple-element antenna with wide-band antenna element
DE60335674D1 (de) * 2003-06-12 2011-02-17 Research In Motion Ltd Mehrelement-Antenne mit schwimmenden parasitären Antennenelement
GB0319211D0 (en) * 2003-08-15 2003-09-17 Koninkl Philips Electronics Nv Antenna arrangement and a module and a radio communications apparatus having such an arrangement
CN2757347Y (zh) * 2004-10-19 2006-02-08 明基电通股份有限公司 无线通讯装置
JP3889423B2 (ja) * 2004-12-16 2007-03-07 松下電器産業株式会社 偏波切り替えアンテナ装置
JP2007013643A (ja) * 2005-06-30 2007-01-18 Lenovo Singapore Pte Ltd 一体型平板多素子アンテナ及び電子機器
CN101197465B (zh) * 2006-12-05 2012-10-10 松下电器产业株式会社 天线装置和无线通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519914A (ja) * 2001-03-06 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ アンテナ装置
JP2007151115A (ja) * 2005-11-23 2007-06-14 Samsung Electronics Co Ltd モノポールアンテナ、及びそれを含むmimoアンテナ
JP2007282124A (ja) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd 携帯無線機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2278660A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742999B2 (en) 2010-01-19 2014-06-03 Panasonic Corporation Antenna apparatus for simultaneously transmitting multiple radio signals with different radiation characteristics
JP5715071B2 (ja) * 2010-01-19 2015-05-07 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America アンテナ装置及び無線通信装置
CN102356514A (zh) * 2010-01-19 2012-02-15 松下电器产业株式会社 天线装置和无线通信装置
CN102356514B (zh) * 2010-01-19 2015-01-07 松下电器(美国)知识产权公司 天线装置和无线通信装置
WO2011089676A1 (ja) * 2010-01-19 2011-07-28 パナソニック株式会社 アンテナ装置及び無線通信装置
WO2011102143A1 (ja) * 2010-02-19 2011-08-25 パナソニック株式会社 アンテナ装置及びこれを搭載した携帯無線端末
JP2011229143A (ja) * 2010-04-02 2011-11-10 Harada Ind Co Ltd 折り返しモノポールアンテナ
EP2592692A1 (en) * 2010-07-05 2013-05-15 Panasonic Corporation Antenna device, and wireless communication device
EP2592688A4 (en) * 2010-07-05 2014-04-16 Panasonic Corp ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
EP2592692A4 (en) * 2010-07-05 2014-04-23 Panasonic Corp ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
EP2592688A1 (en) * 2010-07-05 2013-05-15 Panasonic Corporation Antenna device, and wireless communication device
US8884831B2 (en) 2010-07-05 2014-11-11 Panasonic Intellectual Property Corporation Of America Antenna apparatus including multiple antenna portions on one antenna element associated with multiple feed points
US20120176276A1 (en) * 2010-07-05 2012-07-12 Satoru Amari Antenna apparatus including multiple antenna portions on one antenna element associated with multiple feed points
JP5714507B2 (ja) * 2010-07-05 2015-05-07 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Mimoアンテナ装置及び無線通信装置
WO2012004930A1 (ja) * 2010-07-05 2012-01-12 パナソニック株式会社 アンテナ装置及び無線通信装置

Also Published As

Publication number Publication date
JP4437167B2 (ja) 2010-03-24
CN101689703B (zh) 2013-08-21
CN101689703A (zh) 2010-03-31
US20100207823A1 (en) 2010-08-19
EP2278660A4 (en) 2013-06-26
US8264414B2 (en) 2012-09-11
EP2278660A1 (en) 2011-01-26
JPWO2009130887A1 (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP4437167B2 (ja) アンテナ装置及び無線通信装置
JP5409792B2 (ja) アンテナ装置及び無線通信装置
JP5526131B2 (ja) アンテナ装置及び無線通信装置
US7557761B2 (en) Array antenna apparatus having at least two feeding elements and operable in multiple frequency bands
JP5826823B2 (ja) アンテナ装置及び無線通信装置
JP5380462B2 (ja) アレーアンテナ装置及び無線通信装置
US8933853B2 (en) Small antenna apparatus operable in multiple bands
JP5714507B2 (ja) Mimoアンテナ装置及び無線通信装置
JP5694953B2 (ja) アンテナ装置及び無線通信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000450.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009538202

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009735883

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12665456

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE