Nothing Special   »   [go: up one dir, main page]

WO2007116750A1 - 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007116750A1
WO2007116750A1 PCT/JP2007/056426 JP2007056426W WO2007116750A1 WO 2007116750 A1 WO2007116750 A1 WO 2007116750A1 JP 2007056426 W JP2007056426 W JP 2007056426W WO 2007116750 A1 WO2007116750 A1 WO 2007116750A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
layer
substituted
unsubstituted
Prior art date
Application number
PCT/JP2007/056426
Other languages
English (en)
French (fr)
Inventor
Hironobu Morishita
Hisayuki Kawamura
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2008509779A priority Critical patent/JPWO2007116750A1/ja
Priority to EP07739864A priority patent/EP2000456A2/en
Publication of WO2007116750A1 publication Critical patent/WO2007116750A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/26Quinones containing groups having oxygen atoms singly bound to carbon atoms
    • C07C50/28Quinones containing groups having oxygen atoms singly bound to carbon atoms with monocyclic quinoid structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/37Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by etherified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C261/00Derivatives of cyanic acid
    • C07C261/04Cyanamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/753Unsaturated compounds containing a keto groups being part of a ring containing ether groups, groups, groups, or groups
    • C07C49/755Unsaturated compounds containing a keto groups being part of a ring containing ether groups, groups, groups, or groups a keto group being part of a condensed ring system with two or three rings, at least one ring being a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/26Quinones containing groups having oxygen atoms singly bound to carbon atoms
    • C07C50/32Quinones containing groups having oxygen atoms singly bound to carbon atoms the quinoid structure being part of a condensed ring system having two rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to a material for an organic electoluminescence device and an organic electroluminescence device using the same.
  • An organic electoluminescence device (hereinafter, “electtoluminescence” may be abbreviated as "EL”) is injected from the anode and the cathode injected from the anode by applying an electric field. It is a self-luminous element that utilizes the principle that fluorescent substances emit light by the recombination energy of electrons.
  • Non-Patent Document 1 Since the report of low-voltage-driven organic EL devices using stacked devices by CW Tang and others of Eastman Kodak Company (Non-Patent Document 1 etc.) has been made, research on organic EL devices using organic materials as constituent materials has been conducted It is actively performed.
  • the organic EL device reported by Tang et al. Has a laminated structure in which tris (8-hydroxyquinolinol aluminum) is used as a light emitting layer and triphenyldiamine derivative is used as a hole transporting layer.
  • tris (8-hydroxyquinolinol aluminum) is used as a light emitting layer
  • triphenyldiamine derivative is used as a hole transporting layer.
  • the advantages of the stacked structure are that it increases the efficiency of hole injection into the light emitting layer, increases the efficiency of exciton generation by recombination by blocking electrons injected from the cathode, and For example, confinement of excitons generated in the above.
  • the laminated structure of the organic EL element includes a hole transport (injection) layer, a two-layer type of an electron transporting light emitting layer, or a hole transport (injection) layer, a light emitting layer, and an electron transport (injection) layer.
  • the layer type is well known.
  • the element structure and the formation method have been devised in order to increase the recombination efficiency of injected holes and electrons.
  • tetrafluorologinoquinodimethane which is an electron-accepting compound exemplified in Patent Documents 5, 7, 8, etc., has a low molecular weight! /, And is substituted with fluorine.
  • an organic EL device with high sublimation properties is produced by vacuum deposition, it may diffuse into the device and contaminate the device or the device.
  • current leakage S leaks due to crystallization. There were problems such as.
  • Patent Document 1 U.S. Pat.No. 4,720,432
  • Patent Document 2 U.S. Patent 5, 061, 569
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-031365
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-297883
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-196140
  • Patent Document 6 Japanese Patent Laid-Open No. 11-251067
  • Patent Document 7 Japanese Patent Laid-Open No. 4-297076
  • Patent Document 8 Special Table 2004-514257
  • Non-Patent Document 1 C. W. Tang, S. A. Vanslyke, Applied Physics Letters, 51, 913 (1987)
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an organic EL element that can be driven at a low voltage and has a long lifetime.
  • the present inventors have maintained high electron acceptability by introducing an aryloxy group such as a phenoxy group into benzoquinone or naphthoquinone, which is an electron accepting compound. Furthermore, it has been found that crystallization is suppressed and heat resistance is improved. When these quinone derivatives are applied to organic EL devices, the drive voltage is lowered and the life is extended. I found out that I can do it.
  • organic electoluminescence device material containing a quinone derivative represented by the following formulas (1) to (3).
  • ⁇ To 16 are hydrogen, halogen, cyano group, alkoxy group, substituted or unsubstituted aryloxy group, alkyl group, fluoroalkyl group, aryl group or heterocyclic ring, respectively.
  • at least one of I ⁇ to R 4 , at least one of R 5 to R 1C> , or at least one of R 1 to 6 is an aryloxy group.
  • X is a deviation of substituents represented by the following formulas (a) to (f).
  • R 17 to R 19 are hydrogen, an alkyl group, and an aryl group, and R 18 and R 19 may combine to form a ring.
  • An organic electroluminescent device comprising an organic electroluminescent device comprising the organic electroluminescent device according to 1, wherein the organic thin film layer includes one or more organic thin film layers including a light emitting layer between the anode and the cathode. element.
  • organic electoluminescence device wherein the organic thin film layer is a laminate including a hole transport layer, a light emitting layer, and an electron transport layer in this order from the anode side.
  • the organic thin film layer is a laminate including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer in this order from the anode side,
  • Hole transport layer or hole injection layer force containing the organic electroluminescence device material, and an organic compound according to 4 or 5, further containing a furan-diamine compound represented by the following formula (4): Elect mouth luminescence element.
  • R to R are hydrogen, a halogen atom, a trifluoromethyl group, an alkyl group, an aryl group, or a heterocyclic ring. These, together with the bonded phenyl group, are a naphthalene skeleton, a carbazole skeleton, or a fluorene skeleton. N is 1 or 2.
  • R 27 R 42 represents hydrogen, halogen, cyano group, alkoxy group, substituted or unsubstituted aryloxy group, alkyl group, fluoroalkyl group, aryl group or heterocyclic ring, respectively.
  • at least R 31 R 36 of R 27 R 3 or at least R 37 R 42 is an aryloxy group having a fluorine atom or a fluoroalkyl group.
  • X is a deviation of substituents represented by the following formulas (a) and (f).
  • R 17 R 19 is hydrogen, an alkyl group, or an aryl group, and R 18 and R 19 may combine to form a ring.
  • the organic EL element material containing the quinone derivative which can reduce a high electron acceptability and crystallinity can be provided.
  • an organic EL element that can be driven at a low voltage and has a long life can be provided by using the material for an organic EL element of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an organic EL device of the present invention.
  • the quinone derivative (hereinafter referred to as the quinone derivative of the present invention) contained in the organic EL device material of the present invention will be described.
  • One of the quinone derivatives of the present invention is a benzoquinone derivative represented by the following formula (1).
  • I ⁇ to R 4 are each hydrogen, halogen, cyano group, alkoxy group, substituted or unsubstituted aralkyloxy group, alkyl group, fluoroalkyl group, aryl group or heterocyclic ring. However, at least one of I ⁇ to R 4 is an aryloxy group.
  • X is any of the substituents shown in the following formulas (a) to (f).
  • the benzoquinone derivative represented by the formula (1) has isomers (syn type and anti type), but the formula (1 The benzoquinone derivative represented by) may be either a syn-type, an anti-type, or a mixture thereof.
  • R 17 to R 19 is hydrogen, an alkyl group, an Ariru group, R 18 and R 19 combine to form a ring You can do it.
  • the halogen represented by I ⁇ to R 4 fluorine, chlorine is preferred.
  • the alkoxy group represented by I ⁇ to R 4, a methoxy group, an ethoxy group are preferable.
  • the to R 4 represents Ariruokishi group, have preferably a substituted or unsubstituted phenoxy group.
  • the substituent is preferably a halogen such as fluorine, or an electron-withdrawing group such as trifluoromethyl group or cyano group.
  • alkyl group represented by I ⁇ to R 4 a methyl group, is Echiru group.
  • alkyl group represented by R 17 to R 19 a methyl group, Echiru group, propyl group, tert
  • the aryl group represented by R 17 to R 19 is preferably a phenol group or a tolyl group.
  • R 17 and R 18 may combine with each other to form a ring.
  • the following ring structure can be formed.
  • R 2G represents a methyl group, an ethyl group, a propyl group, or a tert-butyl group.
  • the quinone derivative of the present invention is a naphthoquinone derivative represented by the following formula (2).
  • the quinone derivative of the present invention is a naphthoquinone derivative represented by the following formula (3).
  • novel quinone derivatives include quinone derivatives represented by the following formulas (5) to (7).
  • R 27 to R 3G At least one of R 31 to R 36 , or at least one of R 37 to R 42 is an aryloxy group having a fluorine atom or a fluoroalkyl group.
  • X is the same as X in the formulas (1) to (3).
  • R 27 to R 42 are the same as I ⁇ to R 4 .
  • the quinone derivative of the present invention can be produced by the following method.
  • the quinone derivative of the present invention is high, has an electron accepting property, and has low crystallinity.
  • This inductor can be used as a material for organic EL devices.
  • the organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between an anode and a cathode.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the organic EL device of the present invention.
  • the organic EL element 1 an anode 10, a hole injection layer 20, a hole transport layer 30, a light emitting layer 40, an electron transport layer 50, and a cathode 60 are laminated in this order on a substrate (not shown).
  • the organic thin film layer has a laminated structure including a hole injection layer 20, a hole transport layer 30, a light emitting layer 40 and an electron transport layer 50.
  • At least one layer of the organic thin film layers contains any of the quinone derivatives represented by the above formulas (1) to (3).
  • the content of the derivative in the layer containing the quinone derivative of the present invention is preferably 1 to 1 OOmol%.
  • a layer in the region (hole transport region) between the anode 10 and the light emitting layer 40, specifically, the hole injection layer 20 or the hole transport layer 30 is provided.
  • it preferably contains the quinone derivative of the present invention.
  • the hole injection layer 20 on the anode side preferably contains a quinone derivative. Masashi.
  • the hole injection layer or the hole transport layer is formed by the compound of the present invention alone. However, it may be used in combination with other materials.
  • the feather represented by the formula (4) is used.
  • a range amine compound is preferred.
  • R 1 to R 5 are hydrogen, a halogen atom, a trifluoromethyl group, an alkyl group, an aryl group, or a heterocyclic ring. These may form a naphthalene skeleton, a force rubazole skeleton or a fluorene skeleton together with a phenyl group to be bonded. n is 1 or 2. When this phenylenediamine compound is contained, the homogeneity of film quality, heat resistance, or charge injection property when the compound of the present invention is used alone may be improved.
  • fluorine atoms are preferred as the norogen atoms representing R 21 to R 26 ! /.
  • R 21 ⁇ R 26 for example, a methyl group, an isopropyl group, tert- butyl group, cyclohexyl group are preferable.
  • aryl group representing R 21 to R for example, a phenyl group, a naphthyl group, and a fluorenyl group are preferable.
  • R 21 to R 26 may include a phenyl group to be bonded to form a naphthalene skeleton, a carbal skeleton, or a fluorene skeleton.
  • the content of the compound of the formula (4) with respect to the hole transport layer or the hole injection layer is preferably 0.1.
  • HT-1 1 (HT-1 2)
  • HT-1 2 The configuration of the organic EL device of the present invention is not limited to the above embodiment. For example, it has the following configurations (1) to (15). May be.
  • the organic EL element of the present invention is fabricated on a light-transmitting substrate.
  • the translucent substrate referred to here is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda-lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyethersulfide, and polysulfone.
  • a TFT substrate on which a driving TFT is formed may be used.
  • the anode of the organic thin-film EL element plays a role of injecting holes into the hole transport layer or the light emitting layer.
  • ITO indium tin oxide
  • NESA oxidized Tin
  • IZO indium zinc oxide alloy
  • gold silver, platinum, copper, etc.
  • a reflective electrode that does not require transparency a metal or an alloy such as aluminum, molybdenum, chromium, or nickel can be used in addition to these metals.
  • the anode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is preferably greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ or less.
  • the film thickness of the anode is a force depending on the material, and is usually selected in the range of 10 nm to l ⁇ m, preferably 10 to 200 nm.
  • the light-emitting layer of the organic EL device has the following functions (1) to (3).
  • Injection function Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Luminescent function a function that provides a field for recombination of electrons and holes, and connects this to luminescence.
  • the light emitting layer for example, a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • a film can be classified from a thin film (accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and functional differences resulting from it.
  • a binder such as rosin and a material compound are dissolved in a solvent to form a solution, which is then thin-filmed by spin coating or the like.
  • the light emitting layer can also be formed by twisting.
  • a known light emitting material other than the light emitting material comprising the novel compound of the present invention may be included in the light emitting layer as desired.
  • a light emitting layer containing another known light emitting material may be laminated on the light emitting layer containing the light emitting material comprising the novel compound of the present invention.
  • Examples of the light-emitting material or doping material that can be used for the light-emitting layer include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, taricene, funole-resin, perylene, lid-perylene, naphthaperylene, perinone, and lid mouth Perinone, Naphthin Perinone
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X ′ is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted
  • a substituted aryl group having 5 to 50 nuclear atoms a substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyan group, a nitro group, and a hydroxyl group.
  • a, b and c are each an integer of 0-4.
  • n is an integer of 1 to 3. When n is 2 or more, the values in [] may be the same or different. )
  • R 31 to R 4 ° each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted 6 to 50 carbon atoms An aralkyl group, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms, Substituted or unsubstituted silyl group, carboxyl group, halogen
  • Ar 3 and Ar 4 are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L 1 and L 2 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L 1 or Ar 3 is bonded to any of the 1-5 positions of pyrene
  • L 2 or Ar 4 is bonded to any of the 6-10 positions of pyrene.
  • L 1 and L 2 or the force with which pyrene binds to different bond positions on Ar 3 and Ar 4 respectively (2-2-2) L 1 and L 2 , or Ru optionally bonded to the same position of pyrene force Ar 3 and Ar 4, substituted position location in pyrene L 1 and L 2 or Ar 3 and Ar 4 is 1-position and 6-position, or 2- and 7-position There is no case. )
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 5 and Ar 6 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • R 41 to R 5 ° each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nucleus atoms, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted 6 to 50 carbon atoms An aralkyl group, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms, Substituted or unsubstituted silyl group, carboxyl group,
  • Ar 5 , Ar 6 , R 49 and R 5G may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
  • R 51 to R 6G each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an optionally substituted aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an alkyl group, an aryl group).
  • a and b each represent an integer of 1 to 5, and when they are 2 or more, R 51s or R 52s are respectively They may be the same or different, and R 51 or R 52 may be bonded to form a ring, R 53 and R 54 , R 55 and R 56 , R 57 and R 58 , R 59 And R 6G may be bonded to each other to form a ring L 3 is a single bond, —O—, 1 S—, — N (R) — (R may be an alkyl group or may be substituted) An arylene group), an alkylene group or an arylene group.
  • R ′′ to R U are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group, or a plurality of which may be substituted.
  • Cd, e and f each represent an integer of 1 to 5, If al is 2 or more, R "each other, to each other, R bb together or 7 each other, in each Yogumata R 61 together be the same or different, R 62 to each other, the R 66 s or R 67 together bound May form a ring, or R 63 and R 64 , R 68 and R 69 may be bonded to each other to form a ring, L 4 is a single bond, -0-, -S -, — N (R) — (R represents an alkyl group or an optionally substituted aryl group), an alkylene group or an arylene group.
  • a 5 to A 8 are each independently a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
  • R 71 to! ⁇ Are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom. ⁇ 6 alkoxyl group, C 5-18 aryloxy group, C 7-18 aralkyloxy group, C 5-16 aryl amino group, nitro group, cyano group, C 1-6 ester group or halogen An atom, and at least one of A 9 to A 14 is a group having three or more condensed aromatic rings.
  • R and R are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted amino group, R 74 and R 75 bonded to different fluorene groups may be the same or different, and R 74 and R 75 bonded to the same fluorene group are the same.
  • R 76 and R 77 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted arylyl group, or a substituted or unsubstituted heterocyclic group. the stands, together R 76 to bind to different fluorene groups together R 77 may be different even in the same, R 76 and R 77 bonding to the same fluorene group be the same May be different.
  • a r 7 and Ar 8 a total of three or more substituted or unsubstituted fused polycyclic aromatic group or a benzene ring and a total of heterocycles three or more substituted or unsubstituted benzene ring And represents a condensed polycyclic heterocyclic group bonded to a fluorene group with a substituted carbon, and Ar 7 and Ar 8 may be the same or different, and n represents an integer of 1 to 10.
  • anthracene derivatives are preferable, monoanthracene derivatives are more preferable, and asymmetric anthracene is particularly preferable.
  • a phosphorescent compound can also be used.
  • the host material is preferably a compound containing a force rubazole ring.
  • the dopant is a compound capable of emitting triplet exciton force, and is not particularly limited as long as it also emits triplet exciton force, but a group force including Ir, Ru, Pd, Pt, Os and Re force is selected.
  • a compound suitable for a phosphorescent light emitting compound having a force rubazole ring is its excited state.
  • the compound has a function of emitting a phosphorescent compound.
  • the host compound is not particularly limited as long as it is a compound that can transfer the exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose.
  • the strong rubazole ring it may have an arbitrary heterocyclic ring.
  • host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, furan diamine derivatives, arylamine derivatives , Amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodis Methane derivatives, anthrone derivatives, diphenylquinone derivatives, thiobilane dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, distyrylvirazine derivatives, naphthalene derivatives Heterocycl
  • the phosphorescent dopant is a compound capable of emitting triplet exciton power.
  • the triplet exciton force is not particularly limited as long as it emits light, but a group complex of Ir, Ru, Pd, Pt, Os, and Re force is preferably a metal complex containing at least one selected metal, and is preferably a porphyrin metal complex or ortho metal ion. ⁇ Metal complexes are preferred.
  • the porphyrin metal complex is preferably a porphyrin platinum complex.
  • the phosphorescent compound may be used alone or in combination of two or more.
  • Ligands include 2 phenyl pyridine derivatives, 7, 8 benzoquinoline derivatives, 2- (2 chael) pyridine derivatives, 2- (1 naphthyl) pyridine derivatives, 2-phenol quinoline derivatives, etc. Can be mentioned. These derivatives may have a substituent as necessary. In particular, fluorinated compounds and trifluoromethyl groups introduced are preferred as blue dopants. Furthermore, it may have a ligand other than the above ligands such as acetylacetonate and picric acid as an auxiliary ligand.
  • the content of the phosphorescent dopant in the light-emitting layer is a force that can be appropriately selected according to the purpose of restriction, for example, 0.1 to 70% by mass, and 1 to 30 quality. % By weight is preferred. If the phosphorescent emissive compound content is less than 0.1% by mass, the light emission is weak and the effect of the content is not fully exhibited. If the content exceeds 70% by mass, a phenomenon called concentration quenching is prominent. The device performance deteriorates.
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder, if necessary.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If the thickness exceeds 50 nm, the driving voltage may increase.
  • the hole transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and the ion mobility with large hole mobility is usually as low as 5.5 eV or less.
  • a material that transports holes to the light emitting layer with lower electric field strength is preferable, and the mobility of holes is, for example, at least 10 _4 when an electric field of 10 4 to 10 6 VZcm is applied.
  • the material for the hole transport layer include, for example, triazole derivatives (see US Patent 3,112,197, etc.), oxadiazole derivatives (see US Patent 3,189,447, etc.), Imidazole derivatives (see Japanese Patent Publication No. 37-16096), polyarylalkane derivatives (US Pat. Nos. 3,615,402, 3,820,989, 3,542,544) No. 45-555, No. 51-10983, JP-A No. 51-93224, No. 55-17105, No. 56-4148, No. 55-108 667, No. 55- 156953 and 56-36656), pyrazoline derivatives and pyrazolone derivatives (US Pat. Nos.
  • a hole injection layer is separately provided to assist hole injection.
  • the material for the hole injection layer may be the organic EL material of the present invention alone, or may be used in combination with other materials. As other materials, the same materials as the hole transport layer and the compounds exemplified in the above formula (4) can be used.
  • Borhuylin compound (disclosed in JP-A-63-29556965 etc.), aromatic tertiary amin compound and styrylamine compound (US Pat. No. 4,127,412, JP-A 53-27033, 54-58445, 54-149634, 54-64299, 55-79450, 55 — See Publication Nos. 144250, 56-119132, 61-295558, 61-9853, 63-295695, etc.).
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the hole injection layer or the hole transport layer can be formed, for example, by thin-filming the above-described compound by a known method such as a vacuum deposition method, a spin coat method, a cast method, or an LB method. it can.
  • the thickness of the hole injection layer and hole transport layer is not particularly limited, but is usually 5 ⁇ ! ⁇ 5 m.
  • the hole injection or transport layer may be composed of one or more layers of the above-described materials, or the hole injection, It may be a layer in which a hole injection / transport layer made of a different kind of compound from the transport layer is laminated.
  • the organic semiconductor layer is also a hole transport layer, which is a layer for helping the injection of holes or electrons into the emitting layer, those having a conductivity of more than 10 _1 SZcm Preferred.
  • the material for such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive materials such as allylamin dendrimers. Sex dendrimers and the like can be used.
  • the electron injection layer 'transport layer assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • the adhesion improving layer is a layer made of a material that is particularly good in adhesion to the cathode among the electron injection layers.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several; zm.
  • the electron mobility is at least 1 when an electric field of 10 4 to 10 6 VZcm is applied.
  • 0 _5 cm it is preferably at 2 ZVs more.
  • 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable.
  • metal complexes of 8-hydroxyquinoline or derivatives thereof include metal chelate oxinoid compounds including chelates of oxine (generally 8-quinolinol or 8-hydroxyquinoline) such as tris (8 —Quinolinol) Aluminum can be used as an electron injection material.
  • metal chelate oxinoid compounds including chelates of oxine (generally 8-quinolinol or 8-hydroxyquinoline) such as tris (8 —Quinolinol) Aluminum can be used as an electron injection material.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following formula.
  • Ar 11 , Ar 12 , Ar 13 , Ar 15 , Ar 16 , Ar 19 each represents a substituted or unsubstituted aryl group, and may be the same or different from each other.
  • Ar 14 , Ar 17 , and Ar is represent a substituted or unsubstituted arylene group, which may be the same or different! /
  • the aryl group includes a phenyl group, a biphenyl group, an anthryl group, a perylenyl group, and a pyrenyl group.
  • the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthrylene group, a peryleneylene group, and a pyrenylene group.
  • the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group.
  • This electron transfer compound is preferably a thin film forming material.
  • electron-transmitting compound include the following.
  • a to A are each independently a nitrogen atom or a carbon atom.
  • Ar 21 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 22 is a hydrogen atom, substituted or unsubstituted Aryl group having 6 to 60 nuclear carbon atoms, substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted Is an unsubstituted alkoxy group having 1 to 20 carbon atoms, or a divalent group thereof.
  • any one of Ar 21 and Ar 22 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms, or These are divalent groups.
  • Ar 23 is a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 60 carbon atoms.
  • L 11 , L 12 and L 13 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or A substituted or unsubstituted fluorenylene group.
  • R 81 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted carbon number of 1 to 2
  • R 82 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted carbon number of 1 to 2
  • HAr is substituted a nitrogen-containing heterocyclic ring which may having 3 to 40 carbon atoms
  • L 1 4 is a single bond, a good number of carbon atoms from 6 may have a substituent It has a 60 arylene group, a substituent !, or a heteroarylene group having 3 to 60 carbon atoms or a substituent! /, May! /
  • Ar 24 is an optionally substituted divalent aromatic hydrocarbon group having 6 to 60 carbon atoms, and
  • Ar 25 is an aryl group having 6 to 60 carbon atoms which may have a substituent. Or a heteroaryl group having 3 to 60 carbon atoms which may have a substituent.
  • X 11 and Y 11 are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkoxy group, an alkyloxy group, a hydroxy group, a substituted or unsubstituted group.
  • Atom substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, alkoxy group, aryloxy group, perfluoroalkyl group, perfluoroalkoxy group, amino group, alkylcarbole group, arylocarbon Group, alkoxy carbo group, aryl carboxy group, azo group, alkyl carbo oxy group, aryl carbo oxy group, alkoxy carbo oxy group, ally oxy carboxy group Xy group, sulfier group, sulfol group, sulfar group, silyl group, strong rubamoyl group, aryl group, heterocyclic group, alkyl group, alkyl group, nitro group, formyl group, nitroso group, A formyloxy group, an isocyano group, a cyanate group, an isocyanate group, a thiocyanate group, an isothiocyanate group or a cyano group, or a structure in
  • R 91 to R 98 and Z 2 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an alkyl group;
  • Each of ⁇ 12 , Y 12 and Z 1 independently represents a saturated or unsaturated hydrocarbon group, aromatic group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group;
  • Z 1 and Z 2 substituents may be bonded to each other to form a condensed ring.
  • N represents an integer of 1 to 3, and when n is 2 or more, Z 1 is different. Also good.
  • Q 1 and Q 2 each independently represent a ligand represented by the following formula (G), and L 15 represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl.
  • Kill group substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, OR ′ (R ′ is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted A substituted aryl group, a substituted or unsubstituted heterocyclic group.) Or — O Ga—Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ) Represents. ]
  • rings A 24 and A 25 are 6-membered aryl structures fused to each other which may have a substituent. ]
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A 24 and A 25 forming the ligand of the formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl Group, butyl group, s Substituted or unsubstituted alkyl groups such as butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, phenyl group, naphthyl group, 3-methylphenol Substituted or unsubstituted aryl such as 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenol group, 3-trifluoromethylphenol group, 3-trifluorophenyl group, etc.
  • Substituted or unsubstituted alkylthio groups such as xylthio group, octylthio group, trifluoromethylthio group, phenolthio group, p-trophenylthio group, p-t-butylphenolthio group, 3-fluorophenylthio group, Substituted or unsubstituted arylylthio group, cyano group, nitro group, amino group, methylamino group, jetylamino group, ethylamino group, jetylamino group, such as pentafluorophenylthio group, 3-trifluoromethylphenolthio group, etc.
  • Mono- or di-substituted amino group such as dipropylamino group, dibutylamino group, diphenylamino group, etc.
  • Acetaminomethyl) amino group bis (acetoxetyl) amino group, bis (acetoxypropyl) amino group, bis (acetoxybutyl) amino group, etc.
  • a 6-membered aryl ring or a heterocyclic ring may be formed.
  • a preferred embodiment of the present invention is an element containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
  • the reducing dopant is defined as a substance capable of reducing an electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Li (work function: 2.9 eV),
  • At least one alkali in which the group force consisting of Na (work function: 2.36eV), K (work function: 2.28eV), Rb (work function: 2.16eV) and Cs (work function: 1.95eV) is also selected Metals, Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.5 2 eV) forces also at least one selected alkaline earth
  • Particularly preferred are those having a work function of 2.9 eV or less.
  • a more preferred reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. is there.
  • alkali metals can improve the light emission luminance and extend the life of the organic EL device by adding a relatively small amount to the electron injection region having a particularly high reducing ability.
  • a reducing dopant having a work function of 2.9 eV or less combinations of these two or more alkali metals are also preferred. Particularly, combinations containing Cs such as Cs and Na, Cs and K, Cs and R b or a combination of Cs, Na and K! /.
  • the reduction ability can be efficiently demonstrated, and by adding to the electron injection region, the emission luminance of the organic EL element can be improved and the lifetime can be extended.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented, and the electron injection property can be improved.
  • At least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides is used. Is preferred. Electron injection layer force S It is preferable that it is composed of these alkali metal chalcogenides and the like because the electron injection property can be further improved.
  • alkali metal chalcogenide for example, Li 0, LiO, Na
  • alkaline earth metal chalcogenides include
  • Examples include CaO, BaO, SrO, BeO, BaS, and CaSe.
  • Examples of preferred alkali metal halides include LiF, NaF, KF, LiCl, KC1, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF, BaF, SrF, MgF and BeF, and halogens other than fluorides.
  • At least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn is used as a semiconductor constituting the electron transport layer.
  • At least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn is used as a semiconductor constituting the electron transport layer.
  • One kind or a combination of two or more kinds of oxides, nitrides, or oxynitrides are included.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced.
  • Examples of such an inorganic compound include the above-mentioned alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • a cathode As a cathode, a metal, an alloy, an electrically conductive compound and a low work function (4 eV or less) What uses these mixtures as an electrode material is used.
  • electrode materials include sodium, sodium monopotassium alloy, magnesium, lithium, magnesium 'silver alloy, aluminum / acid aluminum, aluminum' lithium alloy, indium, and rare earth metals. .
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ . ⁇ 1 ⁇ m, preferably 50 to 200 nm.
  • organic EL applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, cesium fluoride, and carbonic acid.
  • Examples include cesium, aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide.
  • An organic EL device can be manufactured by forming an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer, and the like from the materials exemplified above and further forming a cathode.
  • the organic EL device can be fabricated from the cathode to the anode in the reverse order.
  • an organic EL device having a configuration in which an anode, a hole injection layer, a hole transport layer, a light emitting layer, a electron transport layer, and a cathode are sequentially provided on a translucent substrate will be described.
  • a thin film having an anode material force is formed on a suitable light-transmitting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 2 OOnm. Is made.
  • a hole injection layer and a hole transport layer are provided on the anode. These formations can be performed by methods such as vacuum deposition, spin coating, casting, LB, etc. Point power, such as a homogeneous film is obtained and pinholes are not easily generated. Preferably it is formed.
  • the deposition conditions depend on the compound used, the crystal structure and recombination structure of the target hole injection layer and hole transport layer, etc. different, but in general the evaporation source temperature 50 to 450 ° C, vacuum degree of 10 one 7 ⁇ 10 _3 ton :, deposition rate 0. 01 ⁇ 50NmZ sec, substrate temperature - of 50 to 300 ° C, film thickness 5nm ⁇ 5 ⁇ m It is preferable to select appropriately within the range.
  • a light emitting layer is provided on the hole transport layer.
  • the light-emitting layer can also be formed by thinning the organic light-emitting material using a desired organic light-emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting, but a homogeneous film can be obtained. It is preferable to form by vacuum vapor deposition from the viewpoints that pinholes are not easily generated.
  • the deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole transport layer.
  • an electron transport layer is provided on the light emitting layer.
  • a vacuum evaporation method because it is necessary to obtain a homogeneous film.
  • Deposition conditions can be selected in the same condition range as those for the hole transport layer and the light emitting layer.
  • an organic EL device can be obtained by laminating a cathode.
  • the cathode also has a metallic force, and vapor deposition and sputtering can be used. In order to protect the underlying organic layer from the damage when forming the film, vacuum deposition is preferred.
  • the organic EL devices described so far are preferably produced from the anode to the cathode in a single vacuum.
  • the method for forming each layer of the organic EL device of the present invention is not particularly limited. Specifically, vacuum deposition method, molecular beam deposition method (MBE method), or coating methods such as dating method, spin coating method, casting method, bar coating method, roll coating method, etc. using a solution in which the material is dissolved in a solvent. Can be formed by a known method.
  • the film thickness of each organic layer of the organic EL device of the present invention is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes occur. Conversely, if it is too thick, a high applied voltage is required. Usually, the range of several nm to 1 ⁇ m is preferable.
  • the organic EL element emits light when a voltage is applied between the electrodes.
  • a direct voltage is applied to the organic EL device, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to one polarity. Even if a voltage is applied with the opposite polarity, no current flows and no light emission occurs.
  • AC voltage is applied, uniform light emission is observed only when the anode is + and the cathode is of the same polarity.
  • the AC waveform to be applied is arbitrary!
  • the organic EL device of the present invention will be described in detail based on examples, but the present invention is not limited to the examples unless it exceeds the gist.
  • the obtained compound is dissolved in acetonitrile at a concentration of o.01 mol Z liter, using tetraptyl ammonium perchlorate (TBAP) as the supporting electrolyte and a saturated calomel (SCE) electrode as the reference electrode.
  • TBAP tetraptyl ammonium perchlorate
  • SCE saturated calomel
  • the reduction potential was measured by cyclic voltammetry and was -0. 05 V.
  • the resulting compound is dissolved in acetonitrile at a concentration of 0.01 mol Z liter, using tetraptyl ammonium perchlorate (TBAP) as the supporting electrolyte and a saturated calomel (SCE) electrode as the reference electrode.
  • TBAP tetraptyl ammonium perchlorate
  • SCE saturated calomel
  • Example 1 instead of 2,5-dibromobenzoquinone, 1,5-dibu-mouthed 2,6—naphthoquinone 5. Og was used, and 4-trifluoromethyl instead of 3-trifluoromethylphenol. The synthesis was performed in the same manner as in Example 1 except that 5.2 g of phenol was used, and 2.7 g of (B-7) was obtained.
  • the reduction potential by cyclic voltammetry was 0.01 V.
  • the reduction potential by cyclic voltammetry was 0.45V.
  • Example 1 instead of 2,5 dibromobenzoquinone, 2,3 dib-mouthed 1,4--naphthoquinone 5. Og was used, and 3,5-bis (trifluol instead of 3-trifluoromethylphenol). Synthesis was carried out in the same manner as in Example 1 except that 7.4 g of (o-methyl) phenol was used, and 3.2 g of (C9) was obtained.
  • the reduction potential by cyclic voltammetry was 0.05 V.
  • Example 4 synthesis was carried out in the same manner as in Example 4 except that (C-9) synthesized in Example 5 was used instead of (B-7), and (C-6) was changed to 0.4 g. Obtained.
  • the reduction potential by cyclic voltammetry was 0.39V.
  • Example 1 4-trifluoromethyl instead of 3 trifluoromethylphenol
  • the synthesis was performed in the same manner as in Example 1 except that 5.2 g of cliol was used, and (A-18) was changed to 3.2 g.
  • the reduction potential was ⁇ 0.02 V by cyclic voltammetry.
  • Example 4 synthesis was performed in the same manner as in Example 4 except that (A-18) synthesized in Example 7 was used instead of (B-7), and 0.6 g of (A-14) was synthesized. Obtained.
  • the reduction potential by cyclic voltammetry was 0.39V.
  • a glass substrate with a transparent electrode having a thickness of 25 mm X 75 mm X 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after the cleaning was mounted on the substrate holder of the vacuum deposition apparatus, and the film thickness was 60 nm so as to cover the transparent electrode on the surface where the transparent electrode line was formed.
  • the compound of the formula (A-1) synthesized in (1) and the above (HT-1) were formed to have a ratio of 2:98 (molar ratio). This mixed film functions as a hole injection layer.
  • the layer (HT-13) was formed on the mixed film with a thickness of 20 nm. This film functions as a hole transport layer.
  • the above (EM1) having a film thickness of 40 nm was deposited to form a film.
  • the above (D1) was deposited as a luminescent molecule so that the weight ratio of EM1 to D1 was 40: 2. This film functions as a light emitting layer.
  • the (Alq) film having a thickness of 10 nm was formed on this film. This functions as an electron injection layer. Thereafter, Li (Li source: manufactured by SAES Getter Co., Ltd.), which is a reducing dopant, and Alq were vapor-deposited, and an Alq: Li film (film thickness lOnm) was formed as an electron injection layer (cathode).
  • Li Li source: manufactured by SAES Getter Co., Ltd.
  • Alq Li film (film thickness lOnm) was formed as an electron injection layer (cathode).
  • This Alq: Li An organic EL light emitting device was formed by depositing metal Al on the film to form a metal cathode.
  • Table 1 shows the measurement results of the drive voltage at the current density lOmAZcm 2 and the half-life of light emission when the initial luminance was 1000 nits, room temperature, and DC constant current drive.
  • Example 9 the same procedure was followed except that only the (B-4) synthesized in Example 4 was used instead of (A-1) and (HT-1) to form the hole injection layer. It was. The results are shown in Table 1.
  • Example 9 The same procedure as in Example 9 was carried out except that (C-6) synthesized in Example 6 was used instead of (A-1), and (HT-13) was used instead of (HT-1). It was. The results are shown in Table 1.
  • Example 9 The same procedure as in Example 9 was performed except that (A-14) synthesized in Example 8 was used instead of (A-1). The results are shown in Table 1.
  • Example 9 an organic EL light-emitting device was formed and evaluated in the same manner except that the compound represented by the formula (HT-1) was formed alone as the hole injection layer. The results are shown in Table 1.
  • the material for an organic EL device of the present invention is suitable as a constituent material of the organic EL device, particularly as a material for a hole transport layer and a hole injection layer. It can also be used as a charge transport material for electrophotographic photoreceptors. In addition, it is also useful as a material for organic photoreceptors and organic solar cells.
  • the organic EL device of the present invention can be suitably used for light sources such as flat light emitters and display backlights, display units such as mobile phones, PDAs, car navigation systems, car instrument panels, and lighting.
  • light sources such as flat light emitters and display backlights
  • display units such as mobile phones, PDAs, car navigation systems, car instrument panels, and lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 下記式(1)~(3)で表されるキノン誘導体を含む有機エレクトロルミネッセンス素子用材料。  〔式中、R1~R16は、それぞれ水素、ハロゲン、シアノ基、アルコキシ基、置換もしくは無置換のアリールオキシ基、アルキル基、フルオロアルキル基、アリール基又は複素環である。但し、R1~R4のうち少なくとも一つ、R5~R10のうち少なくとも一つ、又はR11~R16のうち少なくとも一つはアリールオキシ基である。  Xは、下記式(a)~(f)に示す置換基のいずれかである。  (式中、R17~R19は水素、アルキル基、アリール基であり、R18及びR19は結合して環を形成してもよい。)〕

Description

明 細 書
有機エレクト口ルミネッセンス素子用材料、及びこれを用いた有機エレクト 口ルミネッセンス素子
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子用材料及びこれを用いた有機エレクト 口ルミネッセンス素子に関する。
背景技術
[0002] 有機エレクト口ルミネッセンス素子(以下、 「エレクト口ルミネッセンス」を「EL」と略記 することがある)は、電界を印可することにより、陽極より注入された正孔と陰極より注 入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自 発光素子である。
[0003] イーストマン 'コダック社の C. W. Tang等による積層型素子による低電圧駆動有機 EL素子の報告 (非特許文献 1等)がなされて以来、有機材料を構成材料とする有機 EL素子に関する研究が盛んに行われて 、る。
Tang等が報告した有機 EL素子は、トリス(8—ヒドロキシキノリノールアルミニウム) を発光層に、トリフエ-ルジァミン誘導体を正孔輸送層にする積層構造を有する。積 層構造の利点としては、発光層への正孔の注入効率を高めること、陰極より注入され た電子をブロックして再結合により生成する励起子の生成効率を高めること、及び発 光層内で生成した励起子を閉じ込めること等が挙げられる。
[0004] 有機 EL素子の積層構造としては、正孔輸送 (注入)層、電子輸送性発光層の二層 型、又は正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型等がよく知られて いる。こうした積層型構造素子では、注入された正孔と電子の再結合効率を高めるた め、素子構造や形成方法の工夫がなされている。
[0005] 従来、有機 EL素子に用いられる正孔輸送材料として、特許文献 1記載の芳香族ジ ァミン誘導体や、特許文献 2記載の芳香族縮合環ジァミン誘導体が知られて ヽた。 それらの芳香族ジァミン誘導体を正孔輸送材料に用いた有機 EL素子は、十分な 発光輝度を得るために印加電圧が高くなるため、素子寿命の低下や消費電力の大き くなる等の問題を生じて!/、た。
[0006] これらの問題の解決法として、有機 EL素子の正孔注入層にルイス酸等の電子受容 性ィ匕合物をドープする方法が提案されている (特許文献 3〜6等)。ただし、それらで 用いられて 、る電子受容性化合物は、有機 EL素子の製造工程にお 、て取扱 、上、 不安定であったり、あるいは有機 EL素子駆動時において、耐熱性等の安定性が不 足し、寿命が低下する等の問題があった。
また、特許文献 5, 7, 8等に例示されている電子受容性ィ匕合物であるテトラフルォ ロジシァノキノジメタンは、分子量が小さ!/、ことやフッ素で置換されて 、ることにより、 昇華性が高ぐ有機 EL素子を真空蒸着で作製する際に、装置内に拡散し、装置や 素子を汚染する恐れがあったり、また、素子にした際に結晶化により電流力 Sリークす る等の課題があった。
特許文献 1 :米国特許 4, 720, 432号明細書
特許文献 2 :米国特許 5, 061, 569号明細書
特許文献 3:特開 2003— 031365号公報
特許文献 4:特開 2001— 297883号公報
特許文献 5:特開 2000— 196140号公報
特許文献 6:特開平 11― 251067号公報
特許文献 7:特開平 4— 297076号公報
特許文献 8:特表 2004 - 514257号公報
非特許文献 1 : C. W. Tang, S. A. Vanslyke, Applied Physics Letters, 51, 913 (1987)
[0007] 本発明は上述の問題に鑑みなされたものであり、低電圧で駆動でき、かつ長寿命 な有機 EL素子を提供することを目的とする。
発明の開示
[0008] 本発明者らは、鋭意研究の結果、電子受容性ィ匕合物であるべンゾキノン又はナフト キノンに、フエノキシ基等のァリールォキシ基を導入することで、高い電子受容性を保 持し、さらに、結晶化を抑制や耐熱性を向上することを見出した。そして、それらのキ ノン誘導体を有機 EL素子に適用する場合に駆動電圧の低電圧化や長寿命化を発 現できることを見出した。
本発明によれば、以下の有機エレクト口ルミネッセンス素子用材料等が提供される。 1.下記式(1)〜(3)で表されるキノン誘導体を含む有機エレクト口ルミネッセンス素 子用材料。
[化 1]
Figure imgf000005_0001
〔式中、!^〜尺16は、それぞれ水素、ハロゲン、シァノ基、アルコキシ基、置換もしくは 無置換のァリールォキシ基、アルキル基、フルォロアルキル基、ァリール基又は複素 環である。但し、 I^〜R4のうち少なくとも一つ、 R5〜R1C>のうち少なくとも一つ、又は R1 ェ〜 6のうち少なくとも一つはァリールォキシ基である。
Xは、下記式 (a)〜 (f)に示す置換基の 、ずれかである。
[化 2]
NC^CN ^, Ν NC、zCF3 NC^COO 17 R18OOCゝノ COOR1
T N T T T
(b) (c) (d) (e) (f ) (式中、 R17〜R19は水素、アルキル基、ァリール基であり、 R18及び R19は結合して環 を形成してもよい。)〕
2.陽極と陰極と、
前記陽極と陰極の間に、発光層を含む一層又は複数層の有機薄膜層を有し、 前記有機薄膜層の少なくとも一層が、 1記載の有機エレクト口ルミネッセンス素子用 材料を含有する有機エレクト口ルミネッセンス素子。
3.前記有機薄膜層が、陽極側から正孔輸送層、発光層及び電子輸送層をこの順に 含む積層体である 2記載の有機エレクト口ルミネッセンス素子。
4.前記正孔輸送層が、前記有機エレクト口ルミネッセンス素子用材料を含有する 3記 載の有機エレクト口ルミネッセンス素子。
5.前記有機薄膜層が、陽極側から正孔注入層、正孔輸送層、発光層及び電子輸送 層をこの順に含む積層体であり、
前記正孔注入層が前記有機エレクト口ルミネッセンス素子用材料を含有する 2記載 の有機エレクト口ルミネッセンス素子。
6.前記有機エレクト口ルミネッセンス素子用材料を含有する正孔輸送層又は正孔注 入層力 さらに下記式 (4)で表されるフ -レンジアミンィ匕合物を含有する 4又は 5記 載の有機エレクト口ルミネッセンス素子。
[化 3]
Figure imgf000006_0001
(式中、 R 〜R は、水素、ハロゲン原子、トリフルォロメチル基、アルキル基、ァリー ル基又は複素環である。これらは結合するフ ニル基とともに、ナフタレン骨格、カル バゾール骨格又はフルオレン骨格を形成してもよい。 nは 1又は 2である。 )
7.下記式(5)〜(7)で表されるキノン誘導体 [化 4]
Figure imgf000007_0001
〔式中、 R27 R42は、それぞれ水素、ハロゲン、シァノ基、アルコキシ基、置換もしくは 無置換のァリールォキシ基、アルキル基、フルォロアルキル基、ァリール基又は複素 環である。但し、 R27 R3のうち少なくとも R31 R36のうち少なくとも 又は R37 R42のうち少なくとも はフッ素原子あるいはフルォロアルキル基を有するァリ ールォキシ基である。
Xは、下記式 (a) (f)に示す置換基の 、ずれかである。
[化 5]
O NCvCN CN NC CF3 NC^COOR 7 R18OOC^COOR19 ii Τ ΊΙ if Τ
(a) (b) (c) (d) (e) (f )
(式中、 R17 R19は水素、アルキル基、ァリール基であり、 R18及び R19は結合して環 を形成してもよい。)〕
本発明によれば、高 ヽ電子受容性や結晶性を低下できるキノン誘導体を含む有機 EL素子用材料を提供できる。 また、本発明によれば、本発明の有機 EL素子用材料を用いることにより低電圧で 駆動でき、かつ長寿命な有機 EL素子が提供できる。
図面の簡単な説明
[0011] [図 1]本発明の有機 EL素子の一実施形態を示す概略断面図である。
発明を実施するための最良の形態
[0012] はじめに、本発明の有機 EL素子用材料に含まれるキノン誘導体 (以下、本発明の キノン誘導体と言う)について説明する。
本発明のキノン誘導体の 1つは、下記式(1)で表されるベンゾキノン誘導体である。
[化 6]
Figure imgf000008_0001
[0013] 式(1)において、 I^〜R4は、それぞれ水素、ハロゲン、シァノ基、アルコキシ基、置 換もしくは無置換のァリールォキシ基、アルキル基、フルォロアルキル基、ァリール基 又は複素環である。ただし、 I^〜R4のうち少なくとも一つがァリールォキシ基である。
[0014] 式(1)において、 Xは、下記式(a)〜(f)に示す置換基のいずれかである。
尚、 Xが式 (c)〜(f)で表される置換基の場合、式(1)で表されるベンゾキノン誘導 体は、異性体 (シン型及びアンチ型)を有するが、式(1)で表されるベンゾキノン誘導 体は、シン型、アンチ型、又はそれらの混合体のいずれでもよい。
[化 7]
Figure imgf000008_0002
( a ) ( b ) ( c ) ( d ) ( e ) ( f ) 上記式において、 R17〜R19は水素、アルキル基、ァリール基であり、 R18及び R19は 結合して環を形成してもよ ヽ。
[0015] I^〜R4が示すハロゲンとしては、フッ素、塩素が好ましい。 [0016] I^〜R4が示すアルコキシ基としては、メトキシ基、エトキシ基が好ましい。
[0017] I^〜R4が示すァリールォキシ基としては、置換又は無置換のフエノキシ基が好まし い。
尚、置換基として、フッ素等のハロゲン、トリフルォロメチル基、シァノ基等の電子吸 引基が好ましい。
[0018] I^〜R4が示すアルキル基としては、メチル基、ェチル基が好ましい。
[0019] I^〜R4が示すフルォロアルキル基としては、トリフルォロメチル基、ペンタフルォロ ェチル基が好ましい。
[0020] I^〜R4が示すァリール基としては、フエ二ル基、トリル基が好ましい。
[0021] I^〜R4が示す複素環としては、ピリジン、ピラジン、ベンゾフランが好ましい。
[0022] また、 R17〜R19が示すアルキル基としては、メチル基、ェチル基、プロピル基、 tert
—プチル基が好ましい。
[0023] R17〜R19が示すァリール基としては、フエ-ル基、トリル基が好ましい。
[0024] R17及び R18は、互いに結合して環を形成してもよい。例えば、下記の環構造を形成 できる。
[化 8]
Figure imgf000009_0001
(式中、 R2Gは、メチル基、ェチル基、プロピル基、 tert—ブチル基である。 )
[0025] 式(1)のべンゾキノン誘導体の好適例を以下に示す。
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000011_0002
(A- 2 5) (A- 2 6 ) (A- 2 7) また、本発明のキノン誘導体は、下記式(2)で表されるナフトキノン誘導体である。
[化 10]
Figure imgf000011_0003
式(2)にお!/、て、 R5〜R1C)は、式(1)の I^〜R4と同じである。 Xは、式(1)の Xと同じ である。
式(2)のナフトキノン誘導体の好適例を以下に示す。
[化 11]
Figure imgf000012_0001
(B— 7) (B-8) (B-9)
[0029] さらに、本発明のキノン誘導体は、下記式(3)で表されるナフトキノン誘導体である
[化 12]
Figure imgf000012_0002
[0030] 式 )にお!/、て、 1〜!^1。は、式(1)の I^〜R4と同じである。 Xは、式(1)の Xと同じ である。
[0031] 式(3)のナフトキノン誘導体の好適例を以下に示す。
Figure imgf000013_0001
(C一 10) (C- 1 1)
新規なキノン誘導体として、下記式(5)〜(7)で表されるキノン誘導体が挙げられる
[化 14]
Figure imgf000014_0001
式中、!^〜 は、それぞれ水素、ハロゲン、シァノ基、アルコキシ基、置換もしく は無置換のァリールォキシ基、アルキル基、フルォロアルキル基、ァリール基又は複 素環である。但し、 R27〜R3Gのうち少なくとも一つ、 R31〜R36のうち少なくとも一つ、又 は R37〜R42のうち少なくとも一つはフッ素原子あるいはフルォロアルキル基を有する ァリールォキシ基である。
Xは、式(1)〜(3)の Xと同じである。
R27〜R42の好適例は I^〜R4と同じである。
本発明のキノン誘導体は、下記の方法等によって製造することができる。
例えば、スキーム 1に示した Kallmayerらの方法(Pharmazie, 49, 4, 235 (1994 ) )を参考にハロゲン化したキノン誘導体を DMSO溶剤中で、対応するフエノールと 力リゥム tert—ブトキシドと反応させること〖こより、ァリ一ノレォキシベンゾキノン誘導体を 合成できる。それをさらに、 Cowanらの方法 (J. Chem. Soc. , Chem. Commun. , 286 (1985) )を参考にマロノ-トリルと反応させる方法、又はスキーム 2に示すよう なビストリメチルシリルカルポジイミドと反応させること等により、種々のキノン誘導体を 合成できる。
[化 15]
Figure imgf000015_0001
(スキーム 1 )
[化 16]
Figure imgf000015_0002
(スキーム 2 )
[0034] 本発明のキノン誘導体は、高!、電子受容性を有し、かつ結晶性が低 、。この誘導 体は、有機 EL素子用材料として使用できる。
[0035] 次に、本発明の有機 EL素子について説明する。
本発明の有機 EL素子は、陽極と陰極の間に、発光層を含む一層又は複数層の有 機薄膜層を有する。
図 1は本発明の有機 EL素子の一実施形態を示す概略断面図である。
有機 EL素子 1では、基板(図示せず)上に陽極 10、正孔注入層 20、正孔輸送層 3 0、発光層 40、電子輸送層 50、陰極 60がこの順に積層されている。この素子におい て、有機薄膜層は正孔注入層 20、正孔輸送層 30、発光層 40及び電子輸送層 50か らなる積層構造となって 、る。
[0036] 本発明の有機 EL素子においては、有機薄膜層のうち、少なくとも 1層が上記式(1) 〜(3)で表されるキノン誘導体のいずれかを含む。これにより、素子の駆動電圧を低 下することができ、また、寿命が向上する。 本発明のキノン誘導体を含有する層における誘導体の含有量は、好ましくは 1〜1 OOmol%である。
[0037] 本発明の有機 EL素子においては、陽極 10と発光層 40との間の領域 (正孔輸送帯 域)にある層、具体的には、正孔注入層 20又は正孔輸送層 30が、本発明のキノン誘 導体を含有することが好ましい。尚、本実施形態のように、正孔注入層 20及び正孔 輸送層 30の両者を有する素子にお 、ては、陽極側にある正孔注入層 20がキノン誘 導体を含有することが好まし ヽ。
[0038] 尚、式(1)〜(3)で表されるキノン誘導体を正孔輸送帯域の層に用いる場合、本発 明の化合物単独で正孔注入層又は正孔輸送層を形成してもよ 、し、他の材料と混 合して用いてもよい。
例えば、式(1)〜(3)で表されるキノン誘導体と芳香族ァミン誘導体とを混合して、 正孔注入層又は正孔輸送層を形成する場合、式 (4)で表されるフエ-レンジアミンィ匕 合物が好ましい。
[化 17]
Figure imgf000016_0001
[0039] 式(4)にお!/、て、 R 〜R は、水素、ハロゲン原子、トリフルォロメチル基、アルキル 基、ァリール基又は複素環である。これらは結合するフエニル基とともに、ナフタレン 骨格、力ルバゾール骨格又はフルオレン骨格を形成してもよい。 nは 1又は 2である。 このフエ-レンジアミンィ匕合物を含有させると、本発明の化合物を単独に使用した 際の膜質の均質性や、耐熱性、あるいは電荷注入性を改良できる場合もある。
[0040] 式 (4)にお 、て、 R21〜R26を示すノヽロゲン原子としては、フッ素原子が好まし!/、。
[0041] R21〜R26を示すアルキル基として、例えば、メチル基、イソプロピル基、 tert—ブチ ル基、シクロへキシル基が好ましい。 [0042] R21〜R を示すァリール基として、例えば、フエ-ル基、ナフチル基、フルォレニル 基が好ましい。
[0043] R21〜R26を示す複素環として、例えば、ピリジン環、ピラジン環が好ま 、。
[0044] また R21〜R26は、結合するフエ二ル基を含んでナフタレン骨格やカルバール骨格、 フルオレン骨格を形成してもよ 、。
[0045] 正孔輸送層又は正孔注入層に対する式 (4)の化合物の含有量は、好ましくは 0. 1
〜99mol%である。
以下に式 (4)の化合物の好適例を示す。
[0046] [化 18]
Figure imgf000018_0001
(HT— 7) (HT— 8)
Figure imgf000019_0001
(HT - 9 ) (HT - 1 0 )
Figure imgf000019_0002
(HT - 1 1 ) (HT - 1 2 ) 本発明の有機 EL素子の構成は、上記実施形態に限定されるものではなぐ例えば 、以下に示す(1)〜(15)の構成を有していてもよい。
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔輸送層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子輸送層 Z陰極
(4)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極
(5)陽極 Z正孔輸送層 Z発光層 Z付着改善層 Z陰極
(6)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極 (図 1)
(7)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極
(8)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極
do)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z絶縁層 Z陰極
(11)陽極 Z無機半導体層 Z絶縁層 Z正孔輸送層 Z発光層 Z絶縁層 Z陰極 (12)陽極 z絶縁層 z正孔輸送層 z発光層 z電子輸送層 z絶縁層 z陰極
(13)陽極 z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z絶縁層 Z陰極
(14)陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z電子注 入層 Z陰極
(15)陽極 z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z電子注 入層 Z絶縁層 Z陰極
これらの中で通常 (4)、 (6)、 (7)、(8)、(12)、(13)及び(15)の構成が好ましく用 いられる。
以下、本発明の有機 EL素子を構成する各部材について説明する。
[0048] (基板)
発光が基板側力 出射される下面発光型又はボトムェミッション型の有機 EL素子と する場合、本発明の有機 EL素子は透光性の基板上に作製する。ここでいう透光性 基板は有機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過 率が 50%以上で、平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノリウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。また、駆動用の TFTが形成されている TF T基板であってもよい。
[0049] (陽極)
有機薄膜 EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担う ものであり、陽極側に透明性を必要とする場合は、酸化インジウム錫合金 (ITO)、酸 化錫 (NESA)、酸化インジウム亜鉛合金 (IZO)、金、銀、白金、銅等が適用できる。 また、透明性を必要としない、反射型電極とする場合には、それらの金属の他に、ァ ルミ、モリブデン、クロム、ニッケル等の金属や合金を使用することもできる。
これら材料は単独で用いることもできる力 これら材料同士の合金や、その他の元 素を添加した材料も適宜選択して用いることができる。 陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させる こと〖こより作製することができる。
発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率は 10%よ り大きくすることが好ましい。また陽極のシート抵抗は、数百 ΩΖ口以下が好ましい。 陽極の膜厚は材料にもよる力 通常 10nm〜l μ m、好ましくは 10〜200nmの範囲 で選択される。
[0050] (発光層)
有機 EL素子の発光層は以下(1)〜(3)の機能を併せ持つものである。
(1) 注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、 陰極又は電子注入層より電子を注入することができる機能
(2) 輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3) 発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 [0051] 正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた、正孔と 電子の移動度で表される輸送能に大小があってもょ 、が、どちらか一方の電荷を移 動することが好ましい。
[0052] この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、榭脂等の結着剤と材料 化合物とを溶剤に溶力して溶液とした後、これをスピンコート法等により薄膜ィ匕するこ とによっても、発光層を形成することができる。
[0053] 本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本 発明の新規化合物からなる発光材料以外の他の公知の発光材料を含有させてもよく 、また、本発明の新規化合物からなる発光材料を含む発光層に、他の公知の発光材 料を含む発光層を積層してもよい。 [0054] 発光層に使用できる発光材料又はドーピング材料としては、例えば、アントラセン、 ナフタレン、フエナントレン、ピレン、テトラセン、コロネン、タリセン、フノレ才レセイン、 ペリレン、フタ口ペリレン、ナフタ口ペリレン、ペリノン、フタ口ペリノン、ナフタ口ペリノン
、ジフエニルブタジエン、テトラフェニルブタジエン、クマリン、ォキサジァゾール、アル ダジン、ビスべンゾキサゾリン、ビススチリノレ、ピラジン、シクロペンタジェン、キノリン金 属錯体、ァミノキノリン金属錯体、ベンゾキノリン金属錯体、ィミン、ジフエ-ルェチレ ン、ビニルアントラセン、ジァミノカルバゾール、ピラン、チォピラン、ポリメチン、メロシ 了ニン、イミダゾールキレートィ匕ォキシノイド化合物、キナクリドン、ルブレン及び蛍光 色素等が挙げられる力 S、これらに限定されるものではない。
[0055] 発光層に使用できるホスト材料としては、下記 (i)〜 (ix)で表される化合物が好まし い。
下記式 (i)で表される非対称アントラセン。
[化 19]
Figure imgf000022_0001
(式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar,は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
X'は、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の 核原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキ ル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭 素数 6〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキ シ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換 の炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ 基、ニトロ基、ヒドロキシル基である。 a、 b及び cは、それぞれ 0〜4の整数である。
nは 1〜3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なってい てちよい。 )
下記式 (ii)で表される非対称モノアントラセン誘導体。
[化 20]
Figure imgf000023_0001
(式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m=n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
R31〜R4°は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50 の芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もし くは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
下記式 (iii)で表される非対称ピレン誘導体。
Figure imgf000024_0001
(式中、 Ar3及び Ar4は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L1及び L2は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L1又は Ar3は、ピレンの 1〜5位のいずれかに結合し、 L2又は Ar4は、ピレンの 6〜10位のいずれかに結合する。
ただし、 n+tが偶数の時、 Ar3, Ar4, L1, L2は下記(1)又は(2)を満たす。
(1) Ar3≠Ar4及び Z又は L L2(ここで≠は、異なる構造の基であることを示す。 )
(2) Ar3=Ar4かつ 1^=1 の時
(2- 1) m≠s及び Z又は n≠t、又は
(2- 2) m=sかつ n=tの時、
(2- 2- 1) L1及び L2、又はピレンが、それぞれ Ar3及び Ar4上の異なる結合位 置に結合している力、 (2- 2- 2) L1及び L2、又はピレン力 Ar3及び Ar4上の同じ 結合位置で結合して ヽる場合、 L1及び L2又は Ar3及び Ar4のピレンにおける置換位 置が 1位と 6位、又は 2位と 7位である場合はない。 )
下記式 (iv)で表される非対称アントラセン誘導体。
Figure imgf000025_0001
(式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar5及び Ar6は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
R41〜R5°は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50 の芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もし くは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
Ar5, Ar6、 R49及び R5Gは、それぞれ複数であってもよぐ隣接するもの同士で飽和 もしくは不飽和の環状構造を形成して 、てもよ 、。
ただし、式 (iv)において、中心のアントラセンの 9位及び 10位に、該アントラセン上 に示す X— Y軸に対して対称型となる基が結合する場合はない。)
下記式 (V)で表されるアントラセン誘導体。
Figure imgf000026_0001
(式中、 R51〜R6Gは、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置 換しても良いァリール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァルケ -ル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞ れ 1〜5の整数を示し、それらが 2以上の場合、 R51同士又は R52同士は、それぞれに おいて、同一でも異なっていてもよぐまた R51同士又は R52同士が結合して環を形成 していてもよいし、 R53と R54, R55と R56, R57と R58, R59と R6Gが互いに結合して環を形 成していてもよい。 L3は単結合、—O—, 一 S— , — N (R)—(Rはアルキル基又は置 換しても良いァリール基である)、アルキレン基又はァリーレン基を示す。 )
下記式 (vi)で表されるアントラセン誘導体。
[化 24]
Figure imgf000026_0002
(式中、 R"〜R Uは、それぞれ独立に水素原子,アルキル基,シクロアルキル基,ァリ ール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァリールアミノ基又は置 換しても良い複数環式基を示し、 c d, e及び fは、それぞれ 1〜5の整数を示し、それ らが 2以上の場合、 R"同士, 同士, Rbb同士又は 7同士は、それぞれにおいて 、同一でも異なっていてもよぐまた R61同士, R62同士, R66同士又は R67同士が結合 して環を形成していてもよいし、 R63と R64, R68と R69がたがいに結合して環を形成して いてもよい。 L4は単結合、 -0- , -S - , — N (R)— (Rはアルキル基又は置換して も良いァリール基である)、アルキレン基又はァリーレン基を示す。 )
[0061] 下記式 (vii)で表されるスピロフルオレン誘導体。
[化 25]
Figure imgf000027_0001
(式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフエ-ル基又は置換も しくは無置換のナフチル基である。 )
[0062] 下記式 (viii)で表される縮合環含有化合物。
[化 26]
Figure imgf000027_0002
(式中、 A9〜A14は前記と同じ、 R71〜! ^は、それぞれ独立に、水素原子、炭素数 1 〜6のアルキル基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基 、炭素数 5〜18のァリールォキシ基、炭素数 7〜18のァラルキルォキシ基、炭素数 5 〜16のァリールアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基 である。 ) [0063] 下記式 (ix)で表されるフルオレンィ匕合物。
[化 27]
Figure imgf000028_0001
(式中、 R 及び R は、水素原子、置換あるいは無置換のアルキル基、置換あるいは 無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基又はハロゲン原子を表わす。異なるフルオレン基 に結合する R74同士、 R75同士は、同じであっても異なっていてもよく、同じフルオレン 基に結合する R74及び R75は、同じであっても異なっていてもよい。 R76及び R77は、水 素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基、 置換あるいは無置換のァリール基又は置換あるいは無置換の複素環基を表わし、異 なるフルオレン基に結合する R76同士、 R77同士は、同じであっても異なっていてもよく 、同じフルオレン基に結合する R76及び R77は、同じであっても異なっていてもよい。 A r7及び Ar8は、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合多環芳香 族基又はベンゼン環と複素環の合計が 3個以上の置換あるいは無置換の炭素でフ ルオレン基に結合する縮合多環複素環基を表わし、 Ar7及び Ar8は、同じであっても 異なっていてもよい。 nは、 1〜10の整数を表す。 )
[0064] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
[0065] また、発光材料としては、りん光発光性の化合物を用いることもできる。りん光発光 性の化合物を使用する場合、ホスト材料は力ルバゾール環を含む化合物が好ま ヽ 。ドーパントとしては三重項励起子力 発光することのできる化合物であり、三重項励 起子力も発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re力もなる群 力 選択される少なくとも一つの金属を含む金属錯体であることが好ましぐポルフィ リン金属錯体又はオルトメタルイ匕金属錯体が好ましい。
[0066] 力ルバゾール環を含む化合物力 なるりん光発光に好適なホストは、その励起状態 からりん光発光性ィ匕合物へエネルギー移動が起こる結果、りん光発光性化合物を発 光させる機能を有する化合物である。ホストイ匕合物としては励起子エネルギーをりん 光発光性ィ匕合物にエネルギー移動できる化合物ならば特に制限はなぐ 目的に応じ て適宜選択することができる。力ルバゾール環以外に任意の複素環等を有して 、て も良い。
[0067] このようなホストイ匕合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フ -レンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルアミンィ匕合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフヱ-ルキノン誘導体、チ オビランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8—キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベ ンゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金 属錯体ポリシラン系化合物、ポリ(N—ビニルカルバゾール)誘導体、ァ-リン系共重 合体、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチォ フェン誘導体、ポリフ 二レン誘導体、ポリフ 二レンビニレン誘導体、ポリフルオレン 誘導体等の高分子化合物等が挙げられる。ホストイ匕合物は単独で使用しても良いし 、 2種以上を併用しても良い。
具体例としては、以下のような化合物が挙げられる。
[0068] [化 28]
Figure imgf000030_0001
[0069] りん光発光性のドーパントは三重項励起子力 発光することのできる化合物である 。三重項励起子力も発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re 力 なる群力 選択される少なくとも一つの金属を含む金属錯体であることが好ましく 、ポルフィリン金属錯体又はオルトメタルイ匕金属錯体が好ましい。ポルフィリン金属錯 体としては、ポルフィリン白金錯体が好ましい。りん光発光性ィ匕合物は単独で使用し ても良いし、 2種以上を併用しても良い。
[0070] オルトメタル化金属錯体を形成する配位子としては種々のものがあるが、好まし!/ヽ 配位子としては、 2 フエ二ルビリジン誘導体、 7、 8 べンゾキノリン誘導体、 2— (2 チェ-ル)ピリジン誘導体、 2—(1 ナフチル)ピリジン誘導体、 2—フエ-ルキノリ ン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特 に、フッ素化物、トリフルォロメチル基を導入したもの力 青色系ドーパントとしては好 ましい。さらに補助配位子としてァセチルァセトナート、ピクリン酸等の上記配位子以 外の配位子を有して 、ても良 、。 [0071] りん光発光性のドーパントの発光層における含有量としては、特に制限はなぐ目 的に応じて適宜選択することができる力 例えば、 0. 1〜70質量%であり、 1〜30質 量%が好ましい。りん光発光性ィヒ合物の含有量が 0. 1質量%未満では発光が微弱 でありその含有効果が十分に発揮されず、 70質量%を超える場合は、濃度消光と言 われる現象が顕著になり素子性能が低下する。
[0072] 発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含有して も良い。
発光層の膜厚は、好ましくは 5〜50nm、より好ましくは 7〜50nm、最も好ましくは 1 0〜50nmである。 5nm未満では発光層形成が困難となり、色度の調整が困難となる 恐れがあり、 50nmを超えると駆動電圧が上昇する恐れがある。
[0073] (正孔輸送層:正孔注入層)
正孔輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であって、正 孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さい。このような正孔 輸送層としてはより低 ヽ電界強度で正孔を発光層に輸送する材料が好ましく、さらに 正孔の移動度が、例えば 104〜106VZcmの電界印加時に、少なくとも 10_4cm2/ V·秒であれば好ましい。
[0074] 正孔輸送層の材料の具体例として、例えば、トリァゾール誘導体 (米国特許 3, 112 , 197号明細書等参照)、ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細 書等参照)、イミダゾール誘導体 (特公昭 37— 16096号公報等参照)、ポリアリール アルカン誘導体 (米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同 第 3, 542, 544号明細書、特公昭 45— 555号公報、同 51— 10983号公報、特開 昭 51— 93224号公報、同 55— 17105号公報、同 56— 4148号公報、同 55— 108 667号公報、同 55- 156953号公報、同 56— 36656号公報等参照)、ピラゾリン誘 導体及びピラゾロン誘導体 (米国特許第 3, 180, 729号明細書、同第 4, 278, 746 号明細書、特開昭 55— 88064号公報、同 55— 88065号公報、同 49— 105537号 公報、同 55— 51086号公報、同 56— 80051号公報、同 56— 88141号公報、同 57 —45545号公報、同 54— 112637号公報、同 55— 74546号公報等参照)、フエ- レンジァミン誘導体 (米国特許第 3, 615, 404号明細書、特公昭 51— 10105号公 報、同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 5 4— 110536号公報、同 54— 119925号公報等参照)、ァリールァミン誘導体 (米国 特許第 3, 567, 450号明細書、同第 3, 180, 703号明細書、同第 3, 240, 597号 明細書、同第 3, 658, 520号明細書、同第 4, 232, 103号明細書、同第 4, 175, 9 61号明細書、同第 4, 012, 376号明細書、特公昭 49— 35702号公報、 ^139- 27 577号公報、特開昭 55— 144250号公報、同 56— 119132号公報、同 56— 2243 7号公報、西独特許第 1, 110, 518号明細書等参照)、ァミノ置換カルコン誘導体( 米国特許第 3, 526, 501号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 2 57, 203号明細書等に開示のもの)、スチリルアントラセン誘導体 (特開昭 56— 462 34号公報等参照)、フルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒド ラゾン誘導体 (米国特許第 3, 717, 462号明細書、特開昭 54— 59143号公報、同 5 5— 52063号公報、同 55— 52064号公報、同 55— 46760号公報、同 55— 85495 号公報、同 57— 11350号公報、同 57— 148749号公報、特開平 2— 311591号公 報等参照)、スチルベン誘導体 (特開昭 61— 210363号公報、同第 61— 228451号 公報、同 61— 14642号公報、同 61— 72255号公報、同 62— 47646号公報、同 62 — 36674号公報、同 62— 10652号公報、同 62— 30255号公報、同 60— 93455 号公報、同 60— 94462号公報、同 60— 174749号公報、同 60— 175052号公報 等参照)、シラザン誘導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系 (特開 平 2— 204996号公報)、ァ-リン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示されて 、る導電性高分子オリゴマー(特にチォフェンオリ ゴマー)等を挙げることができる。
正孔輸送層の他、さらに正孔の注入を助けるために別途正孔注入層を設ける。正 孔注入層の材料としては本発明の有機 EL用材料単独でもよ 、し、他の材料と混合し て用いてもよい。他の材料としては正孔輸送層と同様の材料や、上記式 (4)で例示し た化合物を使用することができる。他に、ボルフイリンィ匕合物(特開昭 63— 2956965 号公報等に開示のもの)、芳香族第三級ァミン化合物及びスチリルァミン化合物 (米 国特許第 4, 127, 412号明細書、特開昭 53— 27033号公報、同 54— 58445号公 報、同 54— 149634号公報、同 54— 64299号公報、同 55— 79450号公報、同 55 — 144250号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 983 53号公報、同 63— 295695号公報等参照)を用いることもできる。
[0076] また米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内に 有する、例えば 4, 4,—ビス(N— (1—ナフチル)—N—フエ-ルァミノ)ビフエ-ル(N PD)、また特開平 4— 308688号公報に記載されているトリフエ-ルァミンユニットが 3 つスターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メチルフエ-ル)— N— フエ-ルァミノ)トリフエ-ルァミン(MTDATA)等を挙げることができる。
[0077] また、芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も正孔 注入層の材料として使用することができる。
[0078] 正孔注入層又は正孔輸送層は、例えば、上述した化合物を真空蒸着法、スピンコ ート法、キャスト法、 LB法等の公知の方法により薄膜ィ匕することにより形成することが できる。正孔注入層、正孔輸送層としての膜厚は特に制限はないが、通常は 5ηπ!〜 5 mである。正孔注入、輸送層は正孔輸送帯域に本発明の化合物を含有していれ ば、上述した材料の一種又は二種以上力もなる一層で構成されてもよいし、又は前 記正孔注入、輸送層とは別種の化合物カゝらなる正孔注入、輸送層を積層したもので あってもよい。
[0079] 尚、有機半導体層も正孔輸送層の一部であるが、これは発光層への正孔注入又は 電子注入を助ける層であって、 10_1 SZcm以上の導電率を有するものが好適であ る。このような有機半導体層の材料としては、含チォフェンオリゴマーゃ特開平 8—1 93191号公報に開示してある含ァリールァミンオリゴマー等の導電性オリゴマー、含 ァリールァミンデンドリマー等の導電性デンドリマー等を用いることができる。
[0080] (電子注入層'輸送層)
電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層 であって、電子移動度が大きい。尚、付着改善層は電子注入層の中で特に陰極との 付着が良 、材料カゝらなる層である。
電子輸送層は数 nm〜数; z mの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電 圧上昇を避けるために、 104〜106VZcmの電界印加時に電子移動度が少なくとも 1 0_5cm2ZVs以上であることが好まし 、。 [0081] 電子注入層に用いられる材料としては、 8—ヒドロキシキノリン又はその誘導体の金 属錯体やォキサジァゾール誘導体が好適である。上記 8—ヒドロキシキノリン又はそ の誘導体の金属錯体の具体例としては、ォキシン(一般に 8—キノリノール又は 8—ヒ ドロキシキノリン)のキレートを含む金属キレートォキシノイドィ匕合物、例えばトリス(8— キノリノール)アルミニウムを電子注入材料として用いることができる。
[0082] 一方、ォキサジァゾール誘導体としては、以下の式で表される電子伝達化合物が 挙げられる。
[化 29]
Figure imgf000034_0001
[0083] (式中、 Ar11, Ar12, Ar13, Ar15, Ar16, Ar19はそれぞれ置換又は無置換のァリール 基を示し、それぞれ互いに同一であっても異なっていてもよい。また Ar14, Ar17, Aris は置換又は無置換のァリーレン基を示し、それぞれ同一であっても異なって!/、てもよ い)
[0084] ここでァリール基としてはフエ-ル基、ビフエ-リル基、アントリル基、ペリレニル基、 ピレニル基が挙げられる。また、ァリーレン基としてはフエ-レン基、ナフチレン基、ビ フエ-レン基、アントリレン基、ペリレニレン基、ピレニレン基等が挙げられる。また、置 換基としては炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基又はシァノ 基等が挙げられる。この電子伝達ィ匕合物は薄膜形成性のものが好まし 、。
[0085] 上記電子伝達性ィ匕合物の具体例としては下記のものを挙げることができる。
[化 30]
Figure imgf000035_0001
さらに、電子注入層及び電子輸送層に用いられる材料として、下記式 (A)〜 (F)で 表されるちのち用いることがでさる。
[化 31]
Figure imgf000035_0002
(式 (A)及び (B)中、 A 〜A ま、それぞれ独立に、窒素原子又は炭素原子である
Ar21は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar22は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar21及び Ar22のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合 環基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基、あるいはこ れらの 2価の基である。
Ar23は、置換もしくは無置換の炭素数 6〜60のァリーレン基、又は置換もしくは無 置換の炭素数 3〜60のへテロアリーレン基である。
L11, L12及び L13は、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6 〜60のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、 又は置換もしくは無置換のフルォレニレン基である。
R81は、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしく は無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜2 0のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 n は 0〜5の整数であり、 nが 2以上の場合、複数の R81は同一でも異なっていてもよぐ また、隣接する複数の R81基同士で結合して、炭素環式脂肪族環又は炭素環式芳香 族環を形成していてもよい。
R82は、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしく は無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜2 0のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基、又は L n— Ar21— Ar22である。)で表される含窒素複素環誘導体。
[0087] HAr-L14-Ar24-Ar25 (C)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L1 4は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し て!、てもよ 、炭素数 3〜60のへテロアリーレン基又は置換基を有して!/、てもよ!/、フル ォレニレン基であり、 Ar24は、置換基を有していてもよい炭素数 6〜60の 2価の芳香 族炭化水素基であり、 Ar25は、置換基を有していてもよい炭素数 6〜60のァリール基 又は置換基を有して 、てもよ 、炭素数 3〜60のへテロアリール基である。 )で表され る含窒素複素環誘導体。
[0088] [化 32]
Figure imgf000037_0001
(式中、 X11及び Y11は、それぞれ独立に炭素数 1〜6の飽和若しくは不飽和の炭化 水素基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、ヒドロキシ基、置 換若しくは無置換のァリール基、置換若しくは無置換のへテロ環又は X11と Υ11が結 合して飽和又は不飽和の環を形成した構造であり、 R85〜R88は、それぞれ独立に水 素、ハロゲン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキ シ基、ァリールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミ ノ基、アルキルカルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリ ールォキシカルボ-ル基、ァゾ基、アルキルカルボ-ルォキシ基、ァリールカルボ- ルォキシ基、アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、 スルフィエル基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリー ル基、ヘテロ環基、ァルケ-ル基、アルキ-ル基、ニトロ基、ホルミル基、ニトロソ基、 ホルミルォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、 イソチオシァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の 環が縮合した構造である。 )で表されるシラシクロペンタジェン誘導体。
[化 33]
Figure imgf000037_0002
(式中、 R91〜R98及び Z2は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化 水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 χ12、 Y12及び Z1は、それぞれ独立に、飽和もしくは不飽和の炭 化水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基又はァリールォキシ 基を示し、 Z1と Z2の置換基は相互に結合して縮合環を形成してもよぐ nは 1〜3の整 数を示し、 nが 2以上の場合、 Z1は異なってもよい。但し、 nが 1、 X12、 Y12及び R92がメ チル基であって、 R98が、水素原子又は置換ボリル基の場合、及び nが 3で Z1がメチ ル基の場合を含まない。)で表されるボラン誘導体。
[0090] [化 34]
Figure imgf000038_0001
[式中、 Q1及び Q2は、それぞれ独立に、下記式 (G)で示される配位子を表し、 L15は 、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアル キル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 OR' (R'は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基である 。)又は— O Ga— Q3 (Q4) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配位子を表 す。 ]
[0091] [化 35]
Figure imgf000038_0002
[式中、環 A24及び A25は、置換基を有してよい互いに縮合した 6員ァリール環構造で ある。 ]
[0092] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
[0093] 式 (G)の配位子を形成する環 A24及び A25の置換基の具体的な例を挙げると、塩素 、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、ブチル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ス テアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フエニル基、ナ フチル基、 3—メチルフエ-ル基、 3—メトキシフエ-ル基、 3—フルオロフェ-ル基、 3 トリクロロメチルフエ-ル基、 3—トリフルォロメチルフエ-ル基、 3— -トロフエ-ル 基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 t—ブトキシ基、 トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキシ基、 2, 2, 3, 3 ーテトラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3 へキサフルオロー 2 プロポキシ 基、 6—(パーフルォロェチル)へキシルォキシ基等の置換もしくは無置換のアルコキ シ基、フエノキシ基、 p -トロフエノキシ基、 p—t—ブチルフエノキシ基、 3—フルォロ フエノキシ基、ペンタフルォロフエ-ル基、 3—トリフルォロメチルフエノキシ基等の置 換もしくは無置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 t プチルチオ 基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の置換もしくは無 置換のアルキルチオ基、フエ-ルチオ基、 p -トロフエ-ルチオ基、 p—t—ブチル フエ-ルチオ基、 3—フルオロフヱ-ルチオ基、ペンタフルオロフヱ-ルチオ基、 3—ト リフルォロメチルフエ-ルチオ基等の置換もしくは無置換のァリールチオ基、シァノ基 、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、ェチルァミノ基、ジェチルアミ ノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエ二ルァミノ基等のモノ又はジ置換 アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)アミノ基、ビスァセト キシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のァシルァミノ基、水酸基、 シロキシ基、ァシル基、力ルバモイル基、メチルカルバモイル基、ジメチルカルバモイ ル基、ェチルカルバモイル基、ジェチルカルバモイル基、プロィピルカルバモイル基 、ブチルカルバモイル基、フエ-ルカルバモイル基等の置換もしくは無置換の力ルバ モイル基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロへキシ ル基等のシクロアルキル基、フヱ -ル基、ナフチル基、ビフヱ-リル基、アントリル基、 フエナントリル基、フルォレニル基、ピレニル基等のァリール基、ピリジ-ル基、ピラジ -ル基、ピリミジ -ル基、ピリダジ -ル基、トリアジニル基、インドリ-ル基、キノリニル 基、アタリジ-ル基、ピロリジニル基、ジォキサニル基、ピベリジ-ル基、モルフオリジ ニル基、ピペラジ-ル基、トリアチュル基、カルバゾリル基、フラ-ル基、チオフヱ-ル 基、ォキサゾリル基、ォキサジァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チア ジァゾリル基、ベンゾチアゾリル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル 基、ブラ-ル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる
6員ァリール環もしくは複素環を形成しても良 、。
[0094] 本発明の好ましい形態に、電子を輸送する領域又は陰極と有機層の界面領域に、 還元性ドーパントを含有する素子がある。ここで、還元性ドーパントとは、電子輸送性 化合物を還元ができる物質と定義される。従って、一定の還元性を有するものであれ ば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、 アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、 アルカリ土類金属のハロゲンィ匕物、希土類金属の酸ィ匕物又は希土類金属のハロゲン 化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機 錯体力 なる群力 選択される少なくとも一つの物質を好適に使用することができる。
[0095] また、より具体的に、好ましい還元性ドーパントとしては、 Li (仕事関数: 2. 9eV)、
Na (仕事関数: 2. 36eV)、K (仕事関数: 2. 28eV)、 Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV)からなる群力も選択される少なくとも一つのアルカリ金属や 、Ca (仕事関数: 2. 9eV)、 Sr (仕事関数: 2. 0〜2. 5eV)、及び Ba (仕事関数: 2. 5 2eV)力もなる群力 選択される少なくとも一つのアルカリ土類金属が挙げられる仕事 関数が 2. 9eV以下のものが特に好ましい。
これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csからなる群から選択さ れる少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又は Csであり、最も好 ましいのは、 Csである。
[0096] これらのアルカリ金属は、特に還元能力が高ぐ電子注入域への比較的少量の添 加により、有機 EL素子における発光輝度の向上や長寿命化が図られる。また、仕事 関数が 2. 9eV以下の還元性ドーパントとして、これら 2種以上のアルカリ金属の組み 合わせも好ましぐ特に、 Csを含んだ組み合わせ、例えば、 Csと Na、 Csと K、 Csと R bあるいは Csと Naと Kとの組み合わせであることが好まし!/、。
Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子 注入域への添カ卩により、有機 EL素子における発光輝度の向上や長寿命化が図られ る。
[0097] 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けてもよい。この時、電流のリークを有効に防止して、電子注入性を向上さ せることができる。
[0098] このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲ ナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる 群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層 力 Sこれらのアルカリ金属カルコゲナイド等で構成されて ヽれば、電子注入性をさらに 向上させることができる点で好ま 、。
[0099] 具体的に、好まし 、アルカリ金属カルコゲナイドとしては、例えば、 Li 0、 LiO、 Na
2 2
S、 Na Se及び NaOが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、
2
例えば、 CaO、 BaO、 SrO、 BeO、 BaS、及び CaSeが挙げられる。また、好ましいァ ルカリ金属のハロゲン化物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1及び NaCl 等が挙げられる。また、好ましいアルカリ土類金属のハロゲンィ匕物としては、例えば、 CaF、 BaF、 SrF、 MgF及び BeFといったフッ化物や、フッ化物以外のハロゲン
2 2 2 2 2
化物が挙げられる。
[0100] また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又 は酸ィ匕窒化物等の一種単独又は二種以上の組み合わせが挙げられる。
また、電子輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜で あることが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均 質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる
[0101] 尚、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ 土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロ ゲンィ匕物等が挙げられる。
[0102] (陰極)
陰極としては仕事関数の小さい (4eV以下)金属、合金、電気伝導性化合物及びこ れらの混合物を電極物質とするものが用いられる。このような電極物質の具体例とし ては、ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、マグネシウム '銀 合金、アルミニウム/酸ィ匕アルミニウム、アルミニウム 'リチウム合金、インジウム、希土 類金属等が挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せること〖こより、作製することができる。
[0103] ここで発光層からの発光を陰極力 取り出す場合、陰極の発光に対する透過率は 1
0%より大きくすることが好ましい。
また陰極としてのシート抵抗は数百 Ω Z口以下が好ましぐ膜厚は通常 ΙΟηπ!〜 1 μ m、好ましくは 50〜200nmである。
[0104] (絶縁層)
有機 ELは超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じ やすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが 好ましい。
絶縁層に用いられる材料としては例えば酸ィ匕アルミニウム、弗化リチウム、酸化リチ ゥム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カル シゥム、弗化カルシウム、弗化セシウム、炭酸セシウム、窒化アルミニウム、酸化チタン 、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテ ユウム、酸ィ匕バナジウム等が挙げられる。
これらの混合物や積層物を用いてもょ ヽ。
[0105] (有機 EL素子の作製例)
以上例示した材料により陽極、正孔注入層、正孔輸送層、発光層、電子注入層等 を形成し、さらに陰極を形成することにより有機 EL素子を作製することができる。また 陰極から陽極へ、前記と逆の順序で有機 EL素子を作製することもできる。
[0106] 以下、透光性基板上に陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極が順次設けられた構成の有機 EL素子の作製例を記載する。
まず適当な透光性基板上に陽極材料力もなる薄膜を 1 μ m以下、好ましくは 10〜2 OOnmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。
[0107] 次に、この陽極上に正孔注入層及び正孔輸送層を設ける。これらの形成は、真空 蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことができる力 均質な 膜が得られやすぐかつピンホールが発生しにくい等の点力 真空蒸着法により形成 することが好ましい。
[0108] 真空蒸着法により正孔注入層及び正孔輸送層を形成する場合、その蒸着条件は 使用する化合物、目的とする正孔注入層及び正孔輸送層の結晶構造や再結合構造 等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10一7〜 10_3ton:、蒸着 速度 0. 01〜50nmZ秒、基板温度— 50〜300°C、膜厚 5nm〜5 μ mの範囲で適 宜選択することが好ましい。
[0109] 次に、正孔輸送層上に発光層を設ける。発光層の形成も、所望の有機発光材料を 用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発 光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐかつピンホ ールが発生しにく 、等の点から真空蒸着法により形成することが好まし 、。真空蒸着 法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、 一般的に正孔輸送層と同じような条件範囲の中から選択することができる。
[0110] 次にこの発光層上に電子輸送層を設ける。正孔輸送層、発光層と同様、均質な膜 を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔輸送層、 発光層と同様の条件範囲力 選択することができる。
[0111] 最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属力も構成されるもので、蒸着法、スパッタリングを用いることができる。し 力 下地の有機物層を製膜時の損傷力も守るためには真空蒸着法が好ましい。 これまで記載してきた有機 EL素子の作製は一回の真空引きで一貫して陽極から陰 極まで作製することが好ま 、。
[0112] 尚、本発明の有機 EL素子の各層の形成方法は特に限定されない。具体的には、 真空蒸着法、分子線蒸着法 (MBE法)、又は材料を溶媒に解かした溶液を使用した デイツビング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート 法等の塗布法による公知の方法で形成することができる。 [0113] 本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから 1 μ mの範囲が好ましい。
[0114] 有機 EL素子は電極間に電圧を印加することによって発光する。有機 EL素子に直 流電圧を印加する場合、陽極を +、陰極を一の極性にして、 5〜40Vの電圧を印加 すると発光が観測できる。尚、逆の極性で電圧を印加しても電流は流れず、発光は 全く生じない。また、交流電圧を印加した場合には陽極が +、陰極が一の極性にな つた時のみ均一な発光が観測される。印加する交流の波形は任意でよ!、。
[実施例]
[0115] 以下、本発明の有機 EL素子について、実施例をもとに詳細に説明するが、本発明 はその要旨を越えない限り実施例に限定されない。
尚、各実施例で使用したィ匕合物の構造を以下に示す。
[化 36]
Figure imgf000045_0001
(A-14) (A-18)
Figure imgf000046_0001
Figure imgf000046_0002
Figure imgf000046_0003
A l q
実施例 1
(A— 19)の合成
カリウム t—ブトキシド 4. 5gと DMSOlOmlを室温で、窒素雰囲気下で混合し、そこ に 3—トリフルォロメチルフヱノール 5. 2gを投入した。その混合液に 2, 5—ジブロモ ベンゾキノン 4. 3gと DMS015mlの溶液を滴下し、室温で 8時間、攪拌した。その後 、酢酸ェチル及び水を投入し、分液操作を行い、有機層を無水硫酸ナトリウムを加え てろ過し、溶剤を減圧留去した。その残渣をシリカゲルカラムで精製し、化合物 (A— 19)を 3. Ogを得た。
この化合物の IRを測定し、 1665cm_1にカルボ-ル基の吸収が確認された。マスス ベクトル測定により MZZ=428が確認された。 得られたィ匕合物をァセトニトリル中に o. 01モル Zリットルの濃度で溶解させ、支持 電解質として過塩素酸テトラプチルアンモ -ゥム (TBAP)、参照電極に飽和カロメル (SCE)電極を用い、サイクリック 'ボルタンメトリーにより還元電位を測定し、 -0. 05 Vであった。
[0117] 実施例 2
(A - 1)の合成
先に得られた (A— 19) 1. 7g及びマロノ-トリル 0. 54g及び塩化メチレンを混合し た溶液を窒素雰囲気下で氷冷しながら攪拌し、四塩ィ匕チタン 2. 4ml、その後、ピリジ ン 3. 6mlを滴下した。その後、 5時間攪拌した後、塩化メチレンを減圧留去し、 1N塩 酸 5mlを加えた。析出物をァセトニトリルで再結晶し、さらに昇華精製し 0. 8gを得た この化合物の IRを測定し、 2222cm_1にシァノ基の吸収が確認された。マススぺク トル測定により MZZ = 524が確認された。
得られたィ匕合物をァセトニトリル中に 0. 01モル Zリットルの濃度で溶解させ、支持 電解質として過塩素酸テトラプチルアンモ -ゥム (TBAP)、参照電極に飽和カロメル (SCE)電極を用い、サイクリック 'ボルタンメトリーにより還元電位を測定し、 0. 33V であった。
[0118] 実施例 3
(B— 7)の合成
実施例 1において、 2, 5—ジブロモベンゾキノンの代わりに、 1, 5—ジブ口モー 2, 6 —ナフトキノン 5. Ogを使用し、 3—トリフルォロメチルフエノールの代わりに 4—トリフ ルォロメチルフエノール 5. 2gを用いた他は実施例 1と同様にして合成を行い、(B— 7)を 2. 7g得た。
この化合物の IRを測定し、 1658cm_1にカルボ-ル基の吸収が確認された。マスス ベクトル測定により MZZ=478が確認された。
また、サイクリック 'ボルタンメトリーによる還元電位は、 0. 01Vであった。
[0119] 実施例 4
(B— 4)の合成 先に得られた (B— 7) 1. lgを窒素雰囲気下で、塩化メチレン 40ml、さらに四塩ィ匕 チタン 1. 7gを混合した。その溶液に、ビストリメチルシリルカルポジイミド 4. lgを塩化 メチレン 10mlに混合した溶液を氷浴で冷却しながら滴下した。その後、室温で 8時 間、攪拌を継続した。反応終了後、混合物に塩化メチレンと水を加え有機層を抽出し 、塩化メチレン溶液を濃縮し、シリカゲルカラム精製を行った。さらに昇華精製を行い 、(B—4)を 0. 5g得た。
この化合物の IRを測定し、 2133cm_1にシァノ基の吸収が確認された。マススぺク トル測定により MZZ = 526が確認された。
また、サイクリック 'ボルタンメトリーによる還元電位は、 0. 45Vであった。
[0120] 実施例 5
(C 9)の合成
実施例 1において、 2, 5 ジブロモベンゾキノンの代わりに、 2, 3 ジブ口モー 1, 4 —ナフトキノン 5. Ogを使用し、 3—トリフルォロメチルフエノールの代わりに 3, 5—ビ ス(トリフルォロメチル)フエノール 7. 4gを用いた他は実施例 1と同様にして合成を行 い、(C 9)を 3. 2g得た。
この化合物の IRを測定し、 1655cm_1にカルボ-ル基の吸収が確認された。マスス ベクトル測定により MZZ = 614が確認された。
また、サイクリック 'ボルタンメトリーによる還元電位は、 0. 05Vであった。
[0121] 実施例 6
(C 6)合成
実施例 4において、(B— 7)の代わりに、実施例 5で合成した (C— 9)を使用した他 は実施例 4と同様にして合成を行い、(C— 6)を 0. 4g得た。
この化合物の IRを測定し、 2130cm_1にシァノ基の吸収が確認された。マススぺク トル測定により MZZ = 662が確認された。
また、サイクリック 'ボルタンメトリーによる還元電位は、 0. 39Vであった。
[0122] 実施例 7
(A— 18)の合成
実施例 1にお 、て、 3 トリフルォロメチルフエノールの代わりに 4 -トリフルォロメチ ルフエノール 5. 2gを用いた他は実施例 1と同様にして合成を行い、(A— 18)を 3. 2 g に。
この化合物の IRを測定し、 1665cm_1にカルボ-ル基の吸収が確認された。マスス ベクトル測定により MZZ=428が確認された。
また、サイクリック 'ボルタンメトリーにより還元電位は、—0. 02Vであった。
[0123] 実施例 8
(A— 14)の合成
実施例 4において、(B— 7)の代わりに、実施例 7で合成した (A— 18)を使用した 他は実施例 4と同様にして合成を行い、(A— 14)を 0. 6g得た。
この化合物の IRを測定し、 2125cm_1にシァノ基の吸収が確認された。マススぺク トル測定により MZZ=476が確認された。
また、サイクリック 'ボルタンメトリーによる還元電位は、 0. 39Vであった。
[0124] 実施例 9
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し 、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜 厚 60nmで、実施例 2で合成した式 (A— 1)の化合物及び上記 (HT— 1)を、 2: 98 ( モル比)の比になるように成膜した。この混合膜は、正孔注入層として機能する。
[0125] 続けて、この混合膜上に膜厚 20nmで、上記 (HT— 13)の層を成膜した。この膜は 正孔輸送層として機能する。
さらに膜厚 40nmの上記 (EM1)を蒸着し成膜した。同時に発光分子として、上記( D1)を、 EM1と D1の重量比が 40 : 2になるように蒸着した。この膜は、発光層として 機能する。
この膜上に膜厚 10nmの上記 (Alq)の膜を成膜した。これは、電子注入層として機 能する。この後、還元性ドーパントである Li (Li源:サエスゲッタ一社製)と Alqを二元 蒸着させ、電子注入層(陰極)として Alq :Li膜 (膜厚 lOnm)を形成した。この Alq :Li 膜上に金属 Alを蒸着させ金属陰極を形成し有機 EL発光素子を形成した。
[0126] 電流密度 lOmAZcm2における駆動電圧と、初期輝度 1000nit、室温、 DC定電 流駆動での発光の半減寿命を測定した結果を表 1に示す。
[0127] 実施例 10
実施例 9において、(A— 1)及び (HT— 1)の代わりに、実施例 4で合成した (B— 4 )のみを使用して正孔注入層を形成したこと以外は、同様に行った。結果を表 1に示 す。
[0128] 実施例 11
実施例 9において、(A—1)の代わりに実施例 6で合成した (C— 6)を、(HT— 1) の代わりに (HT— 13)を、それぞれ用いたこと以外は同様に行った。結果を表 1に示 す。
[0129] 実施例 12
実施例 9において、 (A- 1)の代わりに実施例 8で合成した (A— 14)を用いたこと 以外は同様に行った。結果を表 1に示す。
[0130] 比較例 1
実施例 9において、正孔注入層として式 (HT—1)で示される化合物を単独で成膜 した以外は、同様にして有機 EL発光素子を形成し、評価した。結果を表 1に示す。
[0131] [表 1]
Figure imgf000050_0001
産業上の利用可能性 本発明の有機 EL素子用材料は、有機 EL素子の構成材料、特に、正孔輸送層、正 孔注入層の材料として好適である。また、電子写真感光体の電荷輸送材料としても 用いることができる。その他、有機感光体材料や有機太陽電池用材料としても有用で ある。
本発明の有機 EL素子は、平面発光体やディスプレイのバックライト等の光源、携帯 電話、 PDA、カーナビゲーシヨン、車のインパネ等の表示部、照明等に好適に使用 できる。

Claims

請求の範囲
下記式(1)〜(3)で表されるキノン誘導体を含む有機エレクト口ルミネッセンス素子 用材料。
[化 37]
Figure imgf000052_0001
〔式中、!^〜尺16は、それぞれ水素、ハロゲン、シァノ基、アルコキシ基、置換もしくは 無置換のァリールォキシ基、アルキル基、フルォロアルキル基、ァリール基又は複素 環である。但し、 I^〜R4のうち少なくとも一つ、 R5〜R1Gのうち少なくとも一つ、又は R1 ェ〜 6のうち少なくとも一つはァリールォキシ基である。
Xは、下記式 (a)〜 (f)に示す置換基の 、ずれかである。
[化 38]
Figure imgf000052_0002
(式中、 R"〜R1は水素、アルキル基、ァリール基であり、 R1B及び R1は結合して環 を形成してもよい。)〕
[2] 陽極と陰極と、 前記陽極と陰極の間に、発光層を含む一層又は複数層の有機薄膜層を有し、 前記有機薄膜層の少なくとも一層が、請求項 1記載の有機エレクト口ルミネッセンス 素子用材料を含有する有機エレクト口ルミネッセンス素子。
[3] 前記有機薄膜層が、陽極側から正孔輸送層、発光層及び電子輸送層をこの順に 含む積層体である請求項 2記載の有機エレクト口ルミネッセンス素子。
[4] 前記正孔輸送層が、前記有機エレクト口ルミネッセンス素子用材料を含有する請求 項 3記載の有機エレクト口ルミネッセンス素子。
[5] 前記有機薄膜層が、陽極側から正孔注入層、正孔輸送層、発光層及び電子輸送 層をこの順に含む積層体であり、
前記正孔注入層が前記有機エレクト口ルミネッセンス素子用材料を含有する請求 項 2記載の有機エレクト口ルミネッセンス素子。
[6] 前記有機エレクト口ルミネッセンス素子用材料を含有する正孔輸送層又は正孔注 入層力 さらに下記式 (4)で表されるフ -レンジアミンィ匕合物を含有する請求項 4又 は 5記載の有機エレクト口ルミネッセンス素子。
[化 39]
Figure imgf000053_0001
(式中、 R21〜R は、水素、ハロゲン原子、トリフルォロメチル基、アルキル基、ァリー ル基又は複素環である。これらは結合するフ ニル基とともに、ナフタレン骨格、カル バゾール骨格又はフルオレン骨格を形成してもよい。 nは 1又は 2である。 )
下記式(5)〜(7)で表されるキノン誘導体
[化 40]
Figure imgf000054_0001
〔式中、 〜 ま、それぞれ水素、ハロゲン、シァノ基、アルコキシ基、置換もしくは 無置換のァリールォキシ基、アルキル基、フルォロアルキル基、ァリール基又は複素
30 31 36
環である。但し、 R 〜 uのうち少なくとも一つ、 1〜 °のうち少なくとも一つ、又は
R 〜 のうち少なくとも一つはフッ素原子あるいはフルォロアルキル基を有するァリ ールォキシ基である。
Xは、下記式 (a)〜 (f)に示す置換基の 、ずれかである。
[化 41]
Figure imgf000054_0002
19 18- 19 は水素、アルキル基、ァリール基であり、 R1B及び R1は結合して環 を形成してもよい。)〕
PCT/JP2007/056426 2006-03-30 2007-03-27 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子 WO2007116750A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008509779A JPWO2007116750A1 (ja) 2006-03-30 2007-03-27 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子
EP07739864A EP2000456A2 (en) 2006-03-30 2007-03-27 Material for organic electroluminescent device and organic electroluminescent device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-094470 2006-03-30
JP2006094470 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007116750A1 true WO2007116750A1 (ja) 2007-10-18

Family

ID=38581047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056426 WO2007116750A1 (ja) 2006-03-30 2007-03-27 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20080093985A1 (ja)
EP (1) EP2000456A2 (ja)
JP (1) JPWO2007116750A1 (ja)
KR (1) KR20080105127A (ja)
CN (1) CN101410364A (ja)
TW (1) TW200803613A (ja)
WO (1) WO2007116750A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073581A1 (ja) * 2011-11-15 2013-05-23 コニカミノルタ株式会社 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
CN107266679A (zh) * 2008-02-15 2017-10-20 三菱化学株式会社 共轭聚合物、有机场致发光元件材料、有机场致发光元件用组合物、有机场致发光元件
WO2017203932A1 (ja) * 2016-05-23 2017-11-30 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2564842A1 (en) 2005-06-01 2013-03-06 Edison Pharmaceuticals, Inc. Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
EA019675B1 (ru) 2006-02-22 2014-05-30 Эдисон Фармасьютикалз, Инк. Редокс-активные терапевтические средства для лечения митохондриальных заболеваний и модуляции биомаркера коэнзима q
JP2008192576A (ja) * 2007-02-08 2008-08-21 Sony Corp 有機電界発光素子の製造方法および表示装置の製造方法
JP2009277986A (ja) * 2008-05-16 2009-11-26 Sony Corp 有機電界発光素子および表示装置
CA2736250C (en) 2008-09-10 2016-12-20 Edison Pharmaceuticals, Inc. Treatment of pervasive developmental disorders with redox-active therapeutics
WO2011008168A1 (en) * 2009-07-14 2011-01-20 Agency For Science, Technology And Research Organic light emitting materials
US20120196182A1 (en) * 2009-11-12 2012-08-02 National Institute Of Advanced Industrial Science And Technolgoy Positive electrode active material for nonaqueous secondary battery
KR20140063300A (ko) * 2012-11-16 2014-05-27 삼성디스플레이 주식회사 유기 발광 소자
KR102174066B1 (ko) * 2013-12-03 2020-11-05 엘지디스플레이 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
US11706979B2 (en) * 2014-09-25 2023-07-18 Eni S.P.A. Disubstituted diaryloxybenzoheterodiazole compounds
ES2719751T3 (es) * 2014-09-25 2019-07-12 Eni Spa Compuestos de diariloxibenzoheterodiazol disustituido
ITUB20155558A1 (it) * 2015-11-13 2017-05-13 Eni Spa Composti diarilossibenzoeterodiazolici disostituiti
CN108712903A (zh) 2015-12-17 2018-10-26 生物电子技术有限公司 用于治疗氧化应急障碍的氟烷基、氟代烷氧基、苯氧基、杂芳氧基、烷氧基和胺1,4-苯醌衍生物
CN109074009B (zh) * 2016-05-25 2022-03-25 京瓷办公信息系统株式会社 电子照相感光体、处理盒和图像形成装置
CN106800533B (zh) * 2016-12-14 2019-06-28 中节能万润股份有限公司 一种萘醌类有机电致发光材料及其制备方法和应用
CN110372540B (zh) * 2018-04-12 2022-11-11 武汉尚赛光电科技有限公司 3,6-二(丙-2-亚基)环己-1,4-二烯衍生物及其制备方法、应用和器件
IT201900020970A1 (it) * 2019-11-12 2021-05-12 Eni Spa Composti diarilossibenzoeterodiazolici disostituiti con gruppi tienotiofenici

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS4935702B1 (ja) 1969-06-20 1974-09-25
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPS63256965A (ja) 1987-04-15 1988-10-24 Canon Inc 静電荷像現像用トナ−
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04230997A (ja) * 1990-06-14 1992-08-19 Idemitsu Kosan Co Ltd 素子用薄膜電極及びそれを有するエレクトロルミネッセンス素子並びにそれらの製造方法
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH09176082A (ja) * 1995-12-25 1997-07-08 Kemipuro Kasei Kk p−ベンゾキノン類の製造方法
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2001006878A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 薄膜el素子およびその駆動方法
JP2001297883A (ja) 2000-04-17 2001-10-26 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
JP2004514257A (ja) 2000-11-20 2004-05-13 ノヴァレッド・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 有機層を持つ発光素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2006041020A (ja) * 2004-07-23 2006-02-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377382C (zh) * 2001-05-24 2008-03-26 出光兴产株式会社 有机电致发光器件
DE10357044A1 (de) * 2003-12-04 2005-07-14 Novaled Gmbh Verfahren zur Dotierung von organischen Halbleitern mit Chinondiiminderivaten

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
JPS4935702B1 (ja) 1969-06-20 1974-09-25
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPS63256965A (ja) 1987-04-15 1988-10-24 Canon Inc 静電荷像現像用トナ−
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
JPH04230997A (ja) * 1990-06-14 1992-08-19 Idemitsu Kosan Co Ltd 素子用薄膜電極及びそれを有するエレクトロルミネッセンス素子並びにそれらの製造方法
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH09176082A (ja) * 1995-12-25 1997-07-08 Kemipuro Kasei Kk p−ベンゾキノン類の製造方法
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2001006878A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 薄膜el素子およびその駆動方法
JP2001297883A (ja) 2000-04-17 2001-10-26 Mitsubishi Chemicals Corp 有機電界発光素子
JP2004514257A (ja) 2000-11-20 2004-05-13 ノヴァレッド・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 有機層を持つ発光素子
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
JP2006041020A (ja) * 2004-07-23 2006-02-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. W. TANG; S. A. VANSLYKE, APPLIED PHYSICS LETTERS, vol. 51, 1987, pages 913
COWAN ET AL., J. CHEM. SOC., CHEM. COMMUN., 1985, pages 286
KALLMAYER ET AL., PHARMAZIE, vol. 49, no. 4, 1994, pages 235

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266679A (zh) * 2008-02-15 2017-10-20 三菱化学株式会社 共轭聚合物、有机场致发光元件材料、有机场致发光元件用组合物、有机场致发光元件
WO2013073581A1 (ja) * 2011-11-15 2013-05-23 コニカミノルタ株式会社 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
JPWO2013073581A1 (ja) * 2011-11-15 2015-04-02 コニカミノルタ株式会社 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
US9318707B2 (en) 2011-11-15 2016-04-19 Konica Minolta, Inc. Organic photoelectric conversion element, and solar cell and optical sensor array each using same
WO2017203932A1 (ja) * 2016-05-23 2017-11-30 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Also Published As

Publication number Publication date
EP2000456A9 (en) 2009-04-08
JPWO2007116750A1 (ja) 2009-08-20
KR20080105127A (ko) 2008-12-03
CN101410364A (zh) 2009-04-15
US20080093985A1 (en) 2008-04-24
EP2000456A2 (en) 2008-12-10
TW200803613A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
KR101414914B1 (ko) 유기 전계발광 소자용 재료 및 유기 전계발광 소자
JP5274459B2 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP5329429B2 (ja) アザインデノフルオレンジオン誘導体、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP5249781B2 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
US8168327B2 (en) Imide derivative, material for organic electroluminescent device and organic electroluminescent device using the same
WO2007116750A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007032162A1 (ja) ピレン系誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006120859A1 (ja) 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008509779

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007739864

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780011308.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087023752

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE