KR20130141455A - 반도체 기판의 가변 밀도 플라즈마 프로세싱 - Google Patents
반도체 기판의 가변 밀도 플라즈마 프로세싱 Download PDFInfo
- Publication number
- KR20130141455A KR20130141455A KR1020137005196A KR20137005196A KR20130141455A KR 20130141455 A KR20130141455 A KR 20130141455A KR 1020137005196 A KR1020137005196 A KR 1020137005196A KR 20137005196 A KR20137005196 A KR 20137005196A KR 20130141455 A KR20130141455 A KR 20130141455A
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- plasma
- substrate
- shower head
- plasma generator
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 182
- 238000012545 processing Methods 0.000 title claims description 52
- 239000004065 semiconductor Substances 0.000 title claims description 32
- 238000000034 method Methods 0.000 claims abstract description 175
- 230000008569 process Effects 0.000 claims abstract description 136
- 238000009826 distribution Methods 0.000 claims description 21
- 239000003989 dielectric material Substances 0.000 claims description 16
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000001459 lithography Methods 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 4
- 230000009977 dual effect Effects 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000008033 biological extinction Effects 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims 1
- 238000004891 communication Methods 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 description 210
- 239000007789 gas Substances 0.000 description 27
- 239000002245 particle Substances 0.000 description 14
- 238000013459 approach Methods 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 235000012489 doughnuts Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68792—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32541—Shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67201—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- Plasma Technology (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
가변 밀도 플라즈마를 발생하기 위한 방법들 및 하드웨어가 개시된다. 예를 들어, 일 실시형태에 있어서, 프로세스 스테이션은 샤워 헤드 전극을 포함하는 샤워 헤드 및 기판을 지지하도록 구성된 메사를 포함하는 기판 홀더를 포함하며, 기판 홀더는 샤워 헤드 아래에 배치된다. 기판 홀더는 기판 홀더의 내부 영역에 배치된 내부 전극과 기판 홀더의 외부 영역에 배치된 외부 전극을 포함한다. 프로세스 스테이션은 샤워 헤드와 기판 홀더 사이에 배치된 플라즈마 영역에서 플라즈마를 발생하도록 구성된 플라즈마 발생기, 및 플라즈마 영역의 내부 부분 보다 플라즈마 영역이 외부 부분에서 더 큰 플라즈마 밀도를 유발하기 위해 플라즈마 발생기, 내부 전극, 외부 전극 및 샤워 헤드 전극을 제어하도록 구성된 제어기를 더 포함한다.
Description
관련 출원들의 상호 참조
본 출원은 2010년 12월 22일에 출원되고 명칭이 "VARIABLE-DENSITY PLASMA PROCESSING OF SEMICONDUCTOR SUBSTRATES" 인 미국 특허출원 제 12/976,391 호의 우선권을 주장하며, 이는 그 전부가 모든 목적들을 위해 참조로서 여기에 통합된다.
많은 반도체 기판 프로세스 툴이 프로세싱 동안 플라즈마를 사용한다. 일부 플라즈마 보조 프로세싱 툴에 있어서, 플라즈마는 기판의 에지 근방에서 불균일한 프로세싱을 야기하여, 기판 두께 불균일성을 유도할 수 있다. 리소그라피 툴은 불균일한 막들에 패턴을 정확하게 전사하는 것이 어렵기 때문에, 이러한 두께 불균일성을 갖는 막들의 패터닝이 어려워질 수 있다.
따라서, 플라즈마 영역의 내부 부분에서보다 플라즈마 영역의 외부 부분에서 더 큰 플라즈마 밀도를 갖는 가변 밀도 플라즈마를 발생하는 것과 관련된 다양한 실시형태들이 본 명세서에 개시된다. 예를 들어, 일 실시형태에 있어서, 반도체 기판 프로세스 스테이션은 샤워 헤드 전극을 포함하는 샤워 헤드, 기판을 지지하도록 구성된 메사 표면을 포함하는 메사를 포함하는 기판 홀더를 포함하고, 기판 홀더는 샤워 헤드 아래에 배치된다. 기판 홀더는 기판 홀더의 내부 영역에 배치된 내부 전극 및 기판 홀더의 외부 영역에 배치된 외부 전극을 포함한다. 또한, 프로세스 스테이션은 샤워 헤드와 기판 홀더 사이에 배치된 플라즈마 영역에서 플라즈마를 발생하도록 구성된 플라즈마 발생기, 및 외부 전극을 내부 전극과 샤워 헤드 전극 중 하나의 전극과 커플링함으로써 플라즈마 영역의 내부 부분에서 보다 플라즈마 영역의 외부 부분에서 더 큰 플라즈마 밀도를 유발하기 위해 플라즈마 발생기, 내부 전극, 외부 전극 및 샤워 헤드 전극을 제어하도록 구성된 제어기를 포함한다.
이러한 개요는 하기의 상세한 설명에서 더 설명되는 개념들의 선택을 개략적인 형태로 도입하도록 제공된다. 이 개요는 청구되는 청구물의 주요 피쳐들 또는 본질적인 피쳐들을 식별하도록 의도되는 것이 아니며, 또한 청구되는 청구물의 범위를 한정하기 위해 사용되도록 의도되는 것도 아니다. 게다가, 청구되는 청구물은 본 개시물이 임의의 부분에서 주시되는 임의의 또는 모든 단점들을 해결하는 실행들에 한정되지 않는다.
도 1은 본 개시물의 일 실시형태에 따른 일 예의 반도체 기판 프로세스 스테이션을 개략적으로 나타낸다.
도 2는 본 개시물의 일 실시형태에 따른 기판 홀더의 컷어웨이 (cutaway) 상부 사시도를 나타낸다.
도 3은 도 2에 나타낸 기판 홀더의 저부 사시도를 나타낸다.
도 4는 도 2 및 도 3에 나타낸 기판 홀더의 컷어웨이 측면도를 나타낸다.
도 5는 도 4에 나타낸 기판 홀더의 부분 (5) 의 클로즈업 단면도를 나타낸다.
도 6은 본 개시물의 일 실시형태에 따른 기판 홀더에 사용되는 일 예의 전극 세트를 나타낸다.
도 7은 본 개시물의 일 실시형태에 따른 기판 홀더에 사용되는 다른 예의 전극 세트를 나타낸다.
도 8은 본 개시물의 일 실시형태에 따른 기판 홀더에 사용되는 다른 예의 전극 세트를 나타낸다.
도 9는 본 개시물의 일 실시형태에 따른 기판 홀더에 사용되는 다른 예의 전극 세트를 나타낸다.
도 10은 반도체 기판 프로세스 스테이션에서 가변 밀도 플라즈마를 발생시켜 반도체 기판을 프로세싱하는 방법의 일 실시형태를 도시하는 플로우 챠트를 나타낸다.
도 11은 본 개시물의 일 실시형태에 따른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 12는 본 개시물의 일 실시형태에 따른 내부 및 외부 전극에 분배된 전력량과 용량 제어 회로의 조정 사이의 관계를 도시하는 그래프를 나타낸다.
도 13은 본 개시물의 일 실시형태에 따른 전극 전력 공급, 프로세스 스테이션 압력 및 가변 밀도 플라즈마의 전류 밀도 사이의 관계를 도시하는 그래프를 나타낸다.
도 14는 본 개시물의 일 실시형태에 따른 전극 전력 공급, 프로세스 스테이션 압력 및 가변 밀도 플라즈마의 전류 밀도 사이의 관계를 도시하는 다른 그래프를 나타낸다.
도 15는 본 개시물의 일 실시형태에 따른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 16은 본 개시물의 일 실시형태에 따른 전류 밀도와 전력 분포 사이의 관계를 도시하는 그래프 및 표를 나타낸다.
도 17은 본 개시물의 일 실시형태에 따른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 18은 본 개시물의 일 실시형태에 다른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 19는 본 개시물의 일 실시형태에 따른 복수의 프로세스 스테이션 전극에 대한 반경 방향 전류 밀도 프로파일을 도시하는 그래프이다.
도 20은 본 개시물의 일 실시형태에 따른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 21은 본 개시물의 일 실시형태에 따른 일 예의 다중 스테이션 프로세스 툴을 개략적으로 나타낸다.
도 2는 본 개시물의 일 실시형태에 따른 기판 홀더의 컷어웨이 (cutaway) 상부 사시도를 나타낸다.
도 3은 도 2에 나타낸 기판 홀더의 저부 사시도를 나타낸다.
도 4는 도 2 및 도 3에 나타낸 기판 홀더의 컷어웨이 측면도를 나타낸다.
도 5는 도 4에 나타낸 기판 홀더의 부분 (5) 의 클로즈업 단면도를 나타낸다.
도 6은 본 개시물의 일 실시형태에 따른 기판 홀더에 사용되는 일 예의 전극 세트를 나타낸다.
도 7은 본 개시물의 일 실시형태에 따른 기판 홀더에 사용되는 다른 예의 전극 세트를 나타낸다.
도 8은 본 개시물의 일 실시형태에 따른 기판 홀더에 사용되는 다른 예의 전극 세트를 나타낸다.
도 9는 본 개시물의 일 실시형태에 따른 기판 홀더에 사용되는 다른 예의 전극 세트를 나타낸다.
도 10은 반도체 기판 프로세스 스테이션에서 가변 밀도 플라즈마를 발생시켜 반도체 기판을 프로세싱하는 방법의 일 실시형태를 도시하는 플로우 챠트를 나타낸다.
도 11은 본 개시물의 일 실시형태에 따른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 12는 본 개시물의 일 실시형태에 따른 내부 및 외부 전극에 분배된 전력량과 용량 제어 회로의 조정 사이의 관계를 도시하는 그래프를 나타낸다.
도 13은 본 개시물의 일 실시형태에 따른 전극 전력 공급, 프로세스 스테이션 압력 및 가변 밀도 플라즈마의 전류 밀도 사이의 관계를 도시하는 그래프를 나타낸다.
도 14는 본 개시물의 일 실시형태에 따른 전극 전력 공급, 프로세스 스테이션 압력 및 가변 밀도 플라즈마의 전류 밀도 사이의 관계를 도시하는 다른 그래프를 나타낸다.
도 15는 본 개시물의 일 실시형태에 따른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 16은 본 개시물의 일 실시형태에 따른 전류 밀도와 전력 분포 사이의 관계를 도시하는 그래프 및 표를 나타낸다.
도 17은 본 개시물의 일 실시형태에 따른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 18은 본 개시물의 일 실시형태에 다른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 19는 본 개시물의 일 실시형태에 따른 복수의 프로세스 스테이션 전극에 대한 반경 방향 전류 밀도 프로파일을 도시하는 그래프이다.
도 20은 본 개시물의 일 실시형태에 따른 다른 예의 프로세스 스테이션을 개략적으로 나타낸다.
도 21은 본 개시물의 일 실시형태에 따른 일 예의 다중 스테이션 프로세스 툴을 개략적으로 나타낸다.
플라즈마 보조 반도체 기판 프로세스 스테이션 (예를 들어, 플라즈마 식각 툴 및/또는 플라즈마 강화 화학기상증착 툴) 을 위한 플라즈마는, 2개의 용량 결합된 플레이트들을 사용하여 저압 가스에 무선 주파수 (RF) 장을 인가함으로써 발생될 수 있다. RF 장에 의한 플레이트들 사이에서의 가스의 이온화는 플라즈마를 점화하여, 플라즈마 방전 영역에 자유 전자들을 생성한다. 이 전자들은 RF 장에 의해 가속화되고 가스 상의 반응물 분자들과 충돌할 수 있다. 이러한 반응물 분자들과 전자들의 충돌은 기판 프로세싱에 참여하는 라디칼 종들을 형성할 수 있다. 일부 예들에 있어서, 플라즈마 영역은 기판 표면 위에 직접 형성될 수 있다. 한정이 아닌 일 예에 있어서, 플라즈마에 의해 발생된 반응물 라디칼들은 기판 상에 막 층을 성막할 수 있다. 한정이 아닌 다른 예에 있어서, 플라즈마에 의해 발생된 에천트 라디칼들은 기판 표면을 식각할 수 있다.
플라즈마 방전 영역은 플라즈마의 경계들에서 형성하는 시스 (sheath) 에 의의해 둘러싸인다. 일부 플라즈마 보조 프로세싱 툴 (상술한 성막 및 식각 툴들을 포함하지만 이에 한정되지 않음) 에 있어서, 시스의 포지션 및 플라즈마 밀도의 크기 (magnitude) 는 기판의 에지 근방에서 불균일한 프로세싱을 야기하여 기판 내 두께 불균일성을 유도할 수 있다. 예를 들어, 프로세스 조건들에 의존하여, 기판은 볼록 또는 오목 불균일성을 가질 수 있다.
두께 불균일성을 갖는 막들을 패터닝하는 것은 어려울 수 있다. 예를 들어, 다운 스트림 리소그라피 툴은 불균일한 막들에 패턴을 정확히 전사하는 것이 어려울 수 있다. 프로세스 불균일성을 회피하기 위한 종래의 접근법들은 다른 프로세스와 양립할 수 없는 프로세스 특정 하드웨어를 사용하였다. 예를 들어, 일부 종래 접근법들은 플라즈마의 일 부분을 억제하기 위해 기판 에지에 패시브 세라믹 재료를 제공하는 것, 홀들의 불균일한 분포를 갖는 플라즈마 가스 분배 샤워 헤드를 사용하는 것, 및 기판에 걸쳐 RF 커플링을 조정하도록 접시 형상의 기판 지지 표면들을 사용하는 것을 포함한다. 이에 따라, 프로세스들 사이, 예컨대 식각과 성막 사이, 상이한 프로세스 화학물질들 사이에서 툴을 변화시키면, 샤워 헤드의 교체 및/또는 기판 지지체의 교체를 수반할 수도 있음을 알게 된다. 이러한 교체들은 프로세스들을 변화시키는 것과 연관된 정지시간 비용에 부가하여 더 높은 소모성 부품 비용들을 유도할 수도 있다.
이로써, 본 명세서에서는 기판 표면에 걸친 플라즈마 밀도를 조정하기 위해 반도체 기판 프로세스 스테이션에서 다중 전극들을 사용하여 가변 밀도 플라즈마를 형성, 조정 및 제어하는 것에 관한 다양한 실시형태들이 개시된다. 예를 들어, 일 실시형태에 있어서, 가변 밀도 플라즈마는 기판 에지로부터 더 먼 플라즈마 영역의 내부 부분에서보다 기판 에지 근방의 플라즈마 영역의 외부 부분에서 더 큰 플라즈마 밀도를 유발하도록 조정되고 제어될 수 있다. 따라서, 본 명세서에서 설명되는 일부 실시형태들은 반도체 기판 프로세스 스테이션에서의 프로세스 동안 기판 내 불균일성을 회피하거나 감소시키기 위해 채용될 수 있고, 본 명세서에서 설명되는 일부 실시형태들은 프로세스 스테이션에서의 프로세스 동안 발생하는 기판 내 불균일성을 완화하거나 보상하기 위해 채용될 수도 있다.
게다가, 본 명세서에서는 플라즈마가 점화될 때 및/또는 플라즈마가 꺼질 때, 부유 파티클들을 기판 표면으로부터 멀리 지향시키도록 가변 밀도 플라즈마를 제어하고 조정하는 것에 관한 다양한 실시형태들이 개시된다. 상기 설명된 바와 같이, 프로세싱 동안, 기판 표면 위에 플라즈마가 형성될 수 있으며, 이는 더 큰 플라즈마 밀도를 제공하고 기판 프로세싱 레이트를 향상시킬 수 있다. 그러나, 작은 파티클들이 다양한 성막 및 식각 반응들로부터 플라즈마 내에 형성될 수 있다. 이 작은 파티클들은 전기적으로 "부유" 여서, 파티클 표면 상에 전자 및 이온 전류들이 밸런싱된다. 통상적으로 전자는 이온 보다 높은 이동도를 갖기 때문에, 파티클이 네거티브 충전될 수 있다. 결과적으로, 이 파티클들은 플라즈마 시스 경계들에서 포획될 수 있으며, 여기서 분자는 플라즈마 방전 영역 쪽으로 지향된 성막 표면 밸런스 정전력들 쪽으로 지향된 중성 및 이온화된 종들로부터의 힘들을 드래그한다.
플라즈마를 끄면 정전력이 소멸되어, 파티클들로 하여금 기판 표면 상에 랜드하게 할 수도 있다. 기판 표면을 장식하는 파티클들은 계면 거칠기 결함들 또는 계면 모폴로지 결함들로서 나타날 수도 있으며, 결국 디바이스 성능 및 신뢰성을 감소시킬 수 있다. 플라즈마 발생형 파티클들에 의해 생성된 결함들을 완화시키기 위한 일부 접근법들은 반응기 환경의 펌핑 및 퍼징을 교호시키는 것을 포함한다. 그러나, 이러한 접근법들은 시간 소모적일 수 있으며 툴 쓰루풋을 감소시킬 수 있다. 즉, 부유 파티클들을 기판 표면으로부터 멀리 지향시키면 이러한 문제들을 회피하는 것을 도울 수 있다.
도 1은 프로세싱 동안 기판 (186) 주위에 저압 환경을 유지하기 위해 진공 챔버 (102) 를 포함하는, 반도체 기판 프로세스 스테이션 (100) 의 일 실시형태를 나타낸다. 진공 챔버 (102) 는 배출 라인 (134) 및 압력 제어 밸브 (130) 와 유동적으로 접속된다.
반도체 기판 프로세스 스테이션 (100) 은 또한 프로세싱 동안 가변 밀도 플라즈마 영역 (118) 및 기판 (186) 에 프로세스 가스들을 분배하는 가스 분배 샤워 헤드 (104), 및 프로세싱 동안 기판 (186) 을 지지하는 기판 홀더 (110) 를 포함한다.
도 1에 나타낸 바와 같이, 샤워 헤드 (104) 는, 하나 이상의 프로세스 가스 공급 라인들 (108) 을 통해 수신된 다양한 프로세스 가스들이 진공 챔버 (102) 내에 분포될 수 있는, 복수의 홀들 (106) 을 포함한다. 도 1에서는 샤워 헤드 (104) 가 단일 플리넘 샤워 헤드로서 나타나 있지만, 일부 실시형태들에 있어서, 이중 또는 다중 플리넘 구성이 제공되어 샤워 헤드 (104) 내에서의 상호작용으로부터 비양립식 프로세스 가스들을 잠재적으로 분리할 수 있다. 또한, 도 1에서는 홀들 (106) 이 균일한 반경 방향 분포를 갖도록 나타나 있지만, 본 개시물의 범위를 벗어나지 않으면서 일부 실시형태들에서는 홀들 (106) 의 임의의 적당한 반경 방향 및/또는 방위각 분포가 채용될 수 있음을 이해하게 된다.
도 1에 도시된 실시형태에 있어서, 샤워 헤드 전극 (105) 을 형성하는 샤워 헤드 (104) 의 일 부분은 플라즈마 발생기 (124) 와 전기적 접속으로 나타나 있다. 플라즈마 발생기 (124) 는 플라즈마 발생기 제어기 (125) 에 의해 제어된다. 일부 실시형태들에 있어서, 플라즈마 발생기 제어기 (125) 는 하나 이상의 다양한 매칭 회로들 (일부 실시형태들에 있어서, 탭 페이즈 회로를 포함할 수 있음), 분배 네트워크들, 및 용량성 제어기들 (하기에서 설명되는 바와 같음) 을 포함하여, 플라즈마 상태 동안, 플라즈마 발생기 (124) 에 의해 샤워 헤드 전극 (105) 으로 공급된 전력이, 기판 (186) 의 표면 위로 내부 부분 (119) 및 외부 부분 (117) 을 포함하는, 가변 밀도 플라즈마 영역 (118) 을 형성하도록 기판 홀더 (110)(하기에서 논의됨) 에 제공된 외부 전극과 커플링할 수도 있다.
도 1에 나타낸 예시의 샤워 헤드 전극 (105) 은 플라즈마 발생기 (124) 와 전기적으로 접속되지만, 일부 실시형태들 (이하 논의됨) 에 있어서, 샤워 헤드 전극 (105) 은 전기적으로 접지될 수 있음을 알게 된다. 또한, 도 1에 나타낸 예시의 샤워 헤드 전극 (105) 은 샤워 헤드 (104) 의 일 부분을 완전히 형성하지만, 일부 실시형태들에 있어서, 샤워 헤드 전극 (105) 이 샤워 헤드 (104) 와 분리될 수 있음을 알게된다.
도시된 실시형태에 있어서, 기판 홀더 (110) 가 샤워 헤드 (104) 아래에 배치되어, 프로세싱 동안, 가변 밀도 플라즈마 영역 (118) 에 기판 (186) 이 직접 노출된다. 기판 홀더 (110) 는 메사 (140) 상에 기판 (186) 을 보유하도록 구성되며, 메사 (140) 는 유전체 재료를 포함하고, 도 1에 나타낸 예에서 컬럼 (142) 에 의해 지지된다. 일부 실시형태들에 있어서, 기판 홀더 (110) 는 프로세싱 동안 기판 (186) 에 열을 제공하기 위해 히터 (116) 와 열적으로 커플링될 수 있다. 기판 홀더 (110) 는 또한 샤워 헤드 (104) 에 관하여 기판 홀더 (110) 에 대한 회전 및/또는 높이 조정을 각각 제공하기 위해 회전 유닛 및/또는 엘레베이터 유닛 (미도시) 에 기계적으로 또는 유동적으로 커플링될 수 있다.
도 1에 나타낸 바와 같이, 메사 (140)(도 1에서 단면으로 도시됨) 는 메사 (140) 의 외부 영역 (122) 에 배치된 적어도 하나의 외부 전극 (114) 과, 메사 (140) 의 내부 영역 (120) 에 배치된 적어도 하나의 내부 전극 (112) 을 포함한다. 하기에서 보다 상세하게 설명되는 바와 같이, 플라즈마 제어기 (125) 는 플라즈마 발생기 (124), 샤워 헤드 전극 (105), 내부 전극 (112) 및 외부 전극 (114) 을 제어하여, 가변 밀도 플라즈마 (118) 의 외부 부분 (117) 에서 내부 부분 (119) 에서보다 더 큰 플라즈마 밀도를 유발할 수 있다. 예를 들어, 일부 실시형태들에 있어서, 플라즈마 제어기 (125) 는 가변 밀도 플라즈마 (118) 를 발생하도록 샤워 헤드 전극 (105) 및/또는 내부 전극 (112) 및/또는 외부 전극 (114) 에 전력을 공급하기 위해 플라즈마 발생기 (124) 를 제어할 수 있다. 메사 (140) 의 외부 영역 (122) 및 내부 영역 (120) 이 가변 밀도 플라즈마 (118) 의 외부 부분 (117) 및 내부 부분 (119) 과 정렬로 도시되지는 않았지만, 일부 실시형태들에 있어서, 내부 영역 (120) 과 내부 부분 (119) 이 실질적으로 정렬할 수 있고, 외부 영역 (122) 과 외부 부분 (117) 이 실질적으로 정렬할 수 있음을 알게 된다.
도 1에 도시된 실시형태에 있어서, 외부 전극 (114) 의 좌측 및 우측 부분은 도전성 암 (113) 에 의해 전기적으로 접속된다. 도 1에 나타낸 바와 같이, 외부 전극 (114) 은 플라즈마 발생기 (124) 와 전기적으로 접속된 단일 전극이다. 그러나, 복수의 외부 전극들 (114) 을 포함하는 일부 실시형태들에 있어서, 제 1 세트의 외부 전극들 (114) 의 하나 이상이 제 2 세트의 외부 전극들 (114) 의 하나 이상과 전기적으로 절연될 수 있어서, 제 1 및 제 2 세트들이 전기적으로 독립된 외부 전극 존들로서 제어될 수 있으며, 이 존들 중 하나 이상은 플라즈마 발생기 (124) 로부터 전력을 수신할 수도 있다.
내부 전극 (112) 은 메사 (140) 에 배치되고 유전체 재료의 층에 의해, 또는 임의의 다른 적절한 방식으로 외부 전극 (114) 과 분리되며, 메사 (140) 는 유전체 재료의 층으로 형성된다. 도 1에 나타낸 예에 있어서, 내부 전극 (112) 은 전기적으로 접지된다 (미도시). 그러나, 하기에서 논의되는 일부 실시형태들에 있어서, 내부 전극 (112) 은 플라즈마 발생기 (124) 에 전기적으로 접속될 수 있다. 도 1에 나타낸 바와 같이, 내부 전극 (112) 은 기판 (186) 아래에 배치된 단일 전극이다. 그러나, 다른 실시형태들에 있어서, 메사 (140) 는 복수의 내부 전극들 (112) 을 포함하며, 제 1 세트의 내부 전극들이 제 2 세트의 내부 전극들과 전기적으로 절연되어 전기적으로 독립된 내부 전극 존들로서 제어될 수 있다.
도 2 및 도 3은 기판 홀더 (110) 의 컷어웨이 상부 사시도 및 기판 홀더 (110) 의 저부 사시도를 각각 개략적으로 나타낸다. 도 4는 도 2에 나타낸 컷어웨이 평면을 따라 취해진 기판 홀더 (110) 의 컷어웨이 측면도를 나타낸다.
도 2에 나타낸 바와 같이, 메사 (140) 는 기판 (186) 을 지지하도록 구성된 상부 표면 (202) 을 포함한다. 메사 (140) 는, 기판이 기판 홀더 (110) 상에 안착할 때, 기판 (186) 의 후면과 접촉하는 상부 표면 (202) 으로부터 돌출하는 복수의 상승형 접촉점들 (212), 및 리프트 핀들 (211)(도 3에 도시됨) 이 기판 (186) 을 상승 및 하강하도록 이머지 (emergy) 할 수 있는 복수의 리프트 핀 홀들 (210) 을 포함하여, 기판 이송 동작 동안, 엔드 이펙터 또는 패들이 상부 표면 (202) 과 기판 (186) 의 후면 사이를 통과할 수 있다. 메사 (140) 는 임의의 적절한 사이즈를 가질 수 있다. 300mm 실리콘 웨이퍼들을 지지하기 위해 사용되는 일 예에 있어서, 메사 (140) 는 대략 12.75 인치의 직경을 갖는다.
옵션으로, 도 2에 나타낸 예에서와 같은, 일부 실시형태들에 있어서, 메사 (140) 는 메사 (140) 의 전부 또는 일 부분 주위에 상승형 에지 (204) 를 포함할 수 있어서, 상승형 에지 (204) 의 내부 립 (206) 및 상부 표면 (202) 이 웨이퍼 포켓 (207) 을 정의한다. 웨이퍼 포켓 (207) 을 포함하는 일 예에 있어서, 기판 (186) 의 에지와 립 (206) 사이의 공차는 대략 1.5mm 일 수 있고, 상승형 에지 (204) 의 상부 표면에서 상부 표면 (202) 까지 측정될 때 상승형 에지 (204) 의 높이는 대략 1.27mm 일 수 있으며, 웨이퍼 포켓 (207) 의 직경은 대략 11.9 인치 일 수 있다.
부가적으로 또는 대안적으로, 웨이퍼 포켓 (207) 을 포함하는 일부 실시형태들에 있어서, 하나 이상의 갭들 (미도시) 이 상승형 에지 (204) 에 포함될 수 있다. 일 예에 있어서, 2인치 간격의 4개의 대칭 갭들이 상승형 에지 (204) 주위에 배치될 수 있다.
상부 표면 (202) 은 기판 (186) 과 메사 (140) 에 포함된 전극들 사이의 직접적인 전기 접속을 방지하도록 적절한 유전체 재료로 형성된다. 일부 예들에 있어서, 메사 (140) 및 상부 표면 (202) 은 제조 동안 치밀해지고 소결될 수 있는 알루미늄 질화물과 같은 세라믹 재료로 형성될 수 있다. 대안적으로, 일부 실시형태들에 있어서, 메사 (140) 의 부분들 및 상부 표면 (202) 은 함께 적절히 어셈블링되고 본딩되는 상이한 유전체 재료들 (예를 들어, 유사한 열팽창 계수를 갖는 재료들) 로 형성될 수 있다.
메사 (140) 는 컬럼 (142) 에 의해 지지된다. 일부 실시형태들에 있어서, 메사 (140) 및 컬럼 (142) 은 별도의 피스들로부터 적절히 페데스탈 어셈블리로 적절히 결합될 수 있음을 알게 되겠지만, 도 2 및 도 3에 나타낸 예에 있어서, 메사 (140) 및 컬럼 (142) 은 통합된 페데스탈 피스이다. 컬럼 (142) 은 피드스루 스풀 (feedthrough spool)(218) 및 칼라 (collar)(216) 와 짝을 이루도록 구성된 플랜지 (221) 를 포함한다. 가스켓 (222) 은 칼라 (216) 의 구속 (urging) 하에서 피드스루 스풀 (218) 의 상호보완적인 메이팅 표면에 대해 플랜지 (221) 를 시일하며, 그래서 시일이 되면, 컬럼 (142) 의 내부가 진공 챔버 (102) 의 진공 환경보다 비교적 높은 압력 (예를 들어, 분위기 압력) 으로 유지될 수 있다. 본 개시물의 범위로부터 벗어나지 않으면서 피드스루 스풀 (218) 의 상호보완적인 메이팅 표면에 대하여 플랜지 (221) 를 시일하기 위해 임의의 적절한 커넥터가 채용될 수 있음을 알게 되지만, 칼라 (216) 에 대해 피드스루 스풀 (218) 을 고정하기 위해 복수의 볼트들 (223) 이 제공된다.
피드스루 스풀 (218) 은 외측 전력 소스와 컬럼 (142) 내에 포함된 내부 전극 버스 (230), 외부 전극 버스 (232) 및 히터 버스 (240) 사이에 전기적 접속들을 제공하도록 구성된다. 도 2 및 도 4는 내부 전극 접속점 (231) 에서 내부 전극 버스 (230) 에 전기적으로 접속되는 내부 전극 (112) 을 나타낸다. 일부 실시형태에 있어서 단일 도전성 암 (113) 이 외부 전극 접속점 (233) 을 외부 전극 (114) 과 접속시킬 수 있음을 알게 되겠지만, 도 3은 외부 전극 접속점 (233) 에서 외부 전극 (114) 을 외부 전극 버스 (232) 와 전기적으로 접속하도록 구성된 복수의 도전성 암들 (113) 을 나타낸다. 외부 전극 버스 (232) 및 내부 전극 버스 (230) 는 전극 버스 접속 (250) 에서 종료되며, 전극 버스 접속 (250) 은 버스들을 피드스루 스풀 (218) 과 전기적으로 절연시키기 위해 적절한 유전체 재료 (252) 를 포함할 수도 있다. 유사하게, 히터 버스 (240) 는 적절한 유전체 재료 (미도시) 에 의해 피드스루 스풀 (218) 과 전기적으로 절연될 수 있다.
도 2 및 도 3에 나타낸 바와 같이, 피드스루 스풀 (218) 은 진공 챔버 (102) 의 상호보완적인 부분에 피드스루 스풀 (218) 을 정렬하도록 구성된 하나 이상의 로케이팅 핀들 (224) 을 포함한다. 도 2 및 도 3에 나타내지는 않았지만, 일부 실시형태들에 있어서, 피드스루 스풀 (218) 은 내부에 설치될 때 진공 챔버에 대해 시일되도록 구성될 수 있음을 알 수 있게 된다.
도 5는 도 4의 표시된 부분 "5" 의 클로즈업 단면도를 나타낸다. 도 5에 나타낸 바와 같이, 그 내부 전극 (112) 이 상부 표면 (202) 의 조금 아래의 평면에 배치되어서, 유전체 재료의 층이 내부 전극을 상부 표면과 모두 분리시킨다. 일 예에 있어서, 내부 전극 (112) 은 상부 표면 (202) 아래의 대략 0.05 인치에 위치될 수 있다.
도 5는 외부 전극 (114) 이 메사 (140) 의 외부 영역에 그리고 내부 전극 (112) 의 평면 조금 아래의 평면에 배치되어서, 유전체 재료의 층이 내부 전극을 외부 전극과 분리시키는 것을 나타낸다. 일 예에 있어서, 외부 전극 (114) 은 상부 표면 (202) 아래 대략 0.10 인치에 위치될 수 있다. 또한, 도 4 및 도 5에 나타낸 바와 같이, 외부 전극 (114) 의 내직경이 내부 전극 (112) 의 최대 직경보다 커서, 상술한 수직 갭 뿐만 아니라 내부 전극 (112) 과 외부 전극 (114) 사이에 수평 갭이 존재한다. 일 예에 있어서, 외부 전극 (114) 의 내직경은 내부 전극 (112) 의 최대 직경을 대략 5mm 로 초과할 수 있다. 상술한 수평 및 수직 갭들은 내부 전극 (112) 을 외부 전극 (114) 과 분리시켜 전극들 사이의 커플링의 미리 결정된 양을 허용하면서 전극들 사이의 전기적 아킹을 회피할 수 있다. 이러한 갭들은 다른 고려 사항들 중에서, 전극들 각각에 대해 미리 결정된 전력 범위들 및 유전체 재료에 대한 유전체 브레이크다운 값에 기초하여 구성될 수 있다. 도전성 암들 (113) 의 부분들이 외부 전극 (114) 에 대하여 내부 전극 (112) 으로부터 더 큰 깊이에 위치될 수 있음을 알게 되지만, 수직 갭은 또한 내부 전극 (112) 과 도전성 암들 (113) 사이에서 적절한 분리를 제공할 수도 있다.
내부 전극 (112), 외부 전극 (114), 및 도전성 암들 (113) 은 임의의 적절한 도전성 재료 또는 재료들로 제조될 수 있다. 한정이 아닌 일 예의 도전성 재료는 알루미늄이다. 또한, 내부 전극 (112), 외부 전극 (114), 및 도전성 암들 (113) 은 임의의 적절한 방식으로 제조될 수 있다. 일 예에 있어서, 이들은 제조 동안 메사 (140) 내부에 삽입된 금속 메시로 제조될 수 있다. 다른 예에 있어서, 이들은 메사 (140) 의 제조 동안 금속막을 리소그라피 패터닝함으로서 제조될 수 있다.
도 2 내지 도 5에 나타낸 바와 같이, 내부 전극 (112) 의 도시된 실시형태는 단일의 실질적으로 디스크 형상의 전극을 포함하고, 외부 전극 (114) 은 단일의 실질적으로 링 형상의 전극이다. 보다 구체적으로, 도 2 내지 도 5에 나타낸 예들은 메사 표면의 기하학적 중심 및 외부 전극의 기하학적 중심과 동심인 내부 전극의 기하학적 중심을 나타낸다. 그러나, 본 개시물의 범위를 벗어나지 않으면서 임의의 적절한 상호보완적인 형상의 전극들의 세트가 임의의 적절한 배열로 채용될 수 있음을 알게 된다. 따라서, 일부 실시형태들에 있어서, 내부 및 외부 전극들은 가변 밀도 플라즈마 영역 (118) 내에서 플라즈 밀도의 반경 방향 또는 방위각 제어를 제공하도록 구성될 수 있음을 알게 된다.
예를 들어, 도 6 내지 도 9는 내부 전극들 (112) 및 외부 전극들 (114) 의 다양한 상호보완적인 형상의 전극 세트들 (600, 700, 800 및 900) 을 각각 개략적으로 나타낸다. 도 6에 나타낸 전극 세트 (600) 는, 가변 밀도 플라즈마 영역의 반경 방향 제어를 제공하는, 도 2 내지 도 5에 나타낸 것과 같은 내부 전극 (112) 및 외부 전극 (114) 의 구성을 도시한다. 반경 방향 플라즈마 밀도의 제어는 반경 방향으로 플라즈마 프로세싱 파라미터들을 조정하는 방식을 제공할 수 있다. 예를 들어, 플라즈마 밀도의 반경 방향 제어는 오목 및 도넛 형상의 플라즈마의 제어를 제공할 수 있으며, 이는 오목 및 도넛 형상의 플라즈마를 발생시키는 접근법을 제공할 수 있다. 즉, 일 예에 있어서, 업스트림 툴로부터 들어오는 기판의 일반적으로 볼록한 웨이퍼 내 기판 두께 불균일성은 반도체 기판 프로세스 스테이션 (100) 의 일 실시형태에서의 프로세싱 동안 오목한 플라즈마를 발생함으로서 부분적으로 또는 완전히 오프셋될 수 있다. 다른 예에 있어서, 반도체 기판 프로세스 스테이션 (100) 의 일 실시형태의 프로세스에서의 기판은 다운스트림 툴의 알려진 불균일한 패턴 특성을 우선적으로 오프셋하도록 프로세싱될 수 있다.
도 7의 전극 세트 (700) 는 또한 별 형상의 상호보완적인 전극들의 세트에 대한 플라즈마 밀도의 반경 방향 제어를 제공할 수 있다. 도 8의 전극 세트 (800) 는 복수의 외부 전극들 (114) 을 포함하고, 도 9의 전극 세트 (900) 는 복수의 내부 전극들 (112) 및 외부 전극들 (114) 모두를 포함하고, 이들 중 어느 하나는 가변 밀도 플라즈마 영역 (118) 의 반경 방향 및 방위각 제어 모두를 제공할 수 있다. 반경 방향 제어뿐만 아니라 플라즈마 밀도의 방위각 제어를 제공함으로써, 웨지 형상의 플라즈마가 발생되어, 업스트림 및/또는 다운스트림 툴들과 연관된 두께 불균일성들을 오프셋하기 위해 사용될 수 있는, 프로세싱 동안 웨지 형상의 플라즈마를 발생하는 접근법을 잠재적으로 제공할 수 있다.
기판에 걸쳐 가변 밀도 플라즈마를 발생하기 위해 상술한 하드웨어가 사용될 수 있음을 이해하게 된다. 도 10은 반도체 기판 프로세스 스테이션에서 가변 밀도 플라즈마를 발생함으로써 반도체 기판을 프로세싱하는 방법 (1000) 의 일 실시형태를 도시하는 플로우 챠트를 나타낸다. 그러나, 일부 실시형태들에 있어서, 방법 (1000) 의 부분들은 본 개시물의 범위를 벗어나지 않으면서 상이한 순서로 배열될 수도 있고, 생략될 수도 있으며, 또는 추가될 수도 있다. 1002 에서, 방법 (1000) 은 기판 홀더 상에 기판을 배치하는 것을 포함한다. 1004 에서, 방법 (1000) 은 반도체 기판 프로세스 스테이션에 플라즈마 가스를 공급하는 것을 포함한다.
1006에서, 방법 (1000) 은, 1008에서 외부 전극을 내부 전극 및 샤워 헤드 전극 중 하나와 커플링함으로써 가변 밀도 플라즈마를 발생하는 것을 포함한다. 일부 실시형태들에 있어서, 제 2 전극과 외부 전극의 커플링은, 제 3 전극이 전기적으로 접지되면서, 외부 전극, 내부 전극, 및 샤워 헤드 전극으로부터 선택된 2개의 전극들에 하나 이상의 플라즈마 발생기로부터의 전력을 분배함으로써 실현될 수 있다.
도 11은 내부 전극 (112) 과 커플링된 외부 전극 (114) 을 갖는 기판 홀더 (110) 를 포함하는 프로세스 스테이션 (1100) 의 일 실시형태를 개략적으로 나타낸다. 도 11에 나타낸 예시의 프로세스 스테이션 (1100) 은 고주파 플라즈마 발생기 (1102), 저주파 플라즈마 발생기 (1104) 및 샤워 헤드 전극 (105) 을 포함한다. 일부 실시형태들에 있어서, 고주파 플라즈마 발생기 (1102) 는 30 와트 내지 5000 와트의 전력 레벨들에서 2 MHz 내지 60MHz 의 주파수들을 생성할 수 있다. 또한, 일부 실시형태들에 있어서, 저주파 플라즈마 발생기 (1104) 는 1KHz 내지 2MHz 의 주파수들 및 30 와트 내지 5000 와트의 전력 레벨들을 생성할 수 있다. 도 11이 고주파 및 저주파 플라즈마 발생기들 모두를 도시하고 있지만, 일부 실시형태들에 있어서, 본 개시물의 범위를 벗어나지 않으면서, 단지 하나의 유형의 플라즈마 발생기만 (예를 들어, 고주파 플라즈마 발생기 (1102) 또는 저주파 플라즈마 발생기 (1104) 만) 채용될 수 있음을 알게 된다.
도 11에 도시된 예에 있어서, 고주파 플라즈마 발생기 (1102) 는 고주파 플라즈마 발생기 (1102) 의 임피던스를 매치하도록 구성된 매칭 회로 (1106), 및 내부 및 외부 전극들로 공급되는 전력을 전력 분기들에 분배하도록 구성된 분배 회로 (1110) 에 전기적으로 접속된다. 도 11에 도시된 예에 있어서, 분배 회로 (1110) 는 LC 회로를 포함한다. 저주파 플라즈마 발생기 (1104) 는 저주파 매칭 회로 (1108) 에 전기적으로 접속되고, 매칭 임피던스 (일부 실시형태들에 있어서, 대략 50 옴) 를 제공하도록 구성되며, 그리고 분배 회로 (1110) 에 전기적으로 접속된다. 옵션의 케이블 (1114)(예를 들어, 일부 실시형태들에 있어서 동축 케이블) 이 각각의 전극에 분배 및/또는 매칭 회로를 접속시키기 위해 포함된다. 분기 지점 (1116) 에서, 분배 회로 (1110) 로부터의 전력은 내부 전극 (112) 에 전력을 공급하는 내부 전극 전력 분기 (1118) 와 외부 전극 (114) 에 전력을 공급하는 외부 전극 전력 분기 (1120) 사이에서 분할된다.
도 10에 이어서, 방법 (1000) 은 1010에서, 가변 밀도 플라즈마의 외부 부분의 플라즈마 밀도가 가변 밀도 플라즈마의 내부 부분의 플라즈마 밀도보다 더 크도록 외부 전극 및 제 2 전극 중 하나의 전극에 전력을 공급하는 회로의 임피던스를 설정하는 것을 포함한다. 도 11에 나타낸 실시형태에 있어서, 플라즈마 발생기는 내부 전극 (112) 및 외부 전극 (114) 에 전기적으로 접속되고, 샤워 헤드 전극은 전기적으로 접지되어서, 내부 전극 (112) 및 외부 전극 (114) 에 전력이 공급될 때, 각각의 전계가 다른 것과 커플링하게 된다. 커플링 정도의 제어는 외부 전극 (114) 에 전력을 제공하는 분기와 전기적으로 접속된 용량성 제어기 (1112) 에 의해 제공된다. 도 11에 나타낸 바와 같이, 용량성 제어기 (1112) 는 외부 전극 (114) 에 공급된 전력의 조정 및 용량성 제어를 제공한다. 한정인 아닌 일 예에 있어서, 용량성 제어기 (1112) 는 대략 40pF 내지 대략 600pF 범위의 캐패시턴스의 조정을 제공할 수 있지만, 전극 임피던스 및 전력 공급 용량에 의존하여 다른 범위들이 적당할 수도 있음을 알게 된다. 또한, 도 11에 나타낸 예에 있어서, 용량성 제어기 (1112) 에서 외부 전극 전력 분기 (1120) 의 임피던스를 변화시키면, 저주파 플라즈마 전력의 양보다 많은 외부 전극 전력 분기 (1120) 에서 고주파 플라즈마 전력을 변화시킬 수 있다. 그러나, 일부 실시형태들에 있어서, 용량성 제어기 (1112) 는 외부 전극 전력 분기 (1120) 에 공급된 고주파 및/또는 저주파 플라즈마 전력을 임의의 적절한 방식으로 변화시키도록 구성될 수도 있음을 이해하게 된다.
도 12는 외부 전극 및 내부 전극 중 하나의 전극에 전력을 공급하는 용량성 제어 회로의 조정치와 외부 전극 (곡선 (1204)) 및 내부 전극 (곡선 (1202)) 에 분포된 전력량 사이의 관계를 도시하는 그래프 (1200) 를 나타낸다. 도 12에 나타낸 예에서는, 용량성 제어기가 전극들 사이의 전력 분할을 보여주기 위해 전후로 임의적으로 조정되었다. 본 예에서는 단일 플라즈마 발생기가 사용되었기 때문에, 도 12는 외부 전극에 공급된 전력 증가가 내부 전극에 공급된 전력에서의 대응 감소를 초래하는 것을 나타낸다. 그러나, 일부 실시형태들에 있어서, 하나의 전극에 공급된 전력에 대한 조정이 다른 전극 (이하 더 상세하게 논의됨) 에 공급된 전력에 영향을 미치지 않도록, 2개 이상의 플라즈마 발생기들이 상이한 전극들에 접속될 수도 있음을 알게 된다.
국부적 플라즈마 밀도는 주어진 전압에서 플라즈마로부터 도출된 이온 전류의 양을 샘플링하는 플라즈마 프로브에 의해 측정될 수 있다. 일부 플라즈마에서, 높은 이온 전류는 높은 플라즈마 밀도와 상관할 수 있고 낮은 이온 전류는 낮은 플라즈마 밀도와 상관할 수 있다. 도 13 및 도 14는, 기판 반경 방향의 함수로서 프로브 이온 전류 밀도 사이의 일 예의 관계를 도시하는, 그래프 (1300 및 1400) 를 각각 나타낸다. 도 13 및 도 14에 나타낸 실시형태들에 있어서, 기판의 중심으로서 0mm 가 정의되고, 150mm 는 300mm 기판의 에지이다. 도 13에 나타낸 바와 같이, 외부 전극에 공급된 전력이 대략 0W로부터, 도 14에 나타낸 바와 같이, 대략 35-41W로 증가됨에 따라, 그리고 내부 전극에 공급된 전력이 대략 160-170W 내지 대략 111-115W 로 감소됨에 따라, 도 13 및 도 14에 나타낸 바와 같이, 프로브 이온 전류 밀도가 변화한다. 상기 설명된 바와 같이, 프로브 이온 전류 밀도는 플라즈마 밀도를 근사치화하기 위해 사용될 수 있음을 알게 되며; 즉, 도 13 및 도 14는 외부 전극에 대한 전력 증가가 가변 밀도 플라즈마의 외부 부분에서 플라즈마 밀도를 증가시키는 것을 도시한다.
도 10에 이어서, 일부 실시형태들에 있어서, 방법 (1000) 은, 1012에서, 가변 밀도 플라즈마의 내부 부분의 플라즈마 밀도보다 가변 밀도 플라즈마의 외부 부분의 플라즈마 밀도가 더 크도록 프로세스 스테이션 압력을 설정하는 것을 포함한다. 일부 실시형태들에 있어서, 플라즈마 밀도 분포는 프로세스 스테이션 압력의 함수에 따라 달라질 수 있다. 또한, 도 13 및 도 14는 반경 방향 전류 분포 상에서 대략 1 torr (곡선들 (1302 및 1402)) 에서 대략 2 torr (곡선들 (1304 및 1404)) 내지 대략 4 torr (곡선들 (1306 및 1406)) 의 프로세스 스테이션 내의 압력 증가의 효과를 도시한다. 이로써, 프로세스 스테이션 압력을 조정하고, 외부 전극 및 제 2 전극 중 하나의 전극에 공급되는 전력을 변화시키면, 가변 밀도 플라즈마의 외부 부분에서 가변 밀도 플라즈마의 밀도를 더 조정할 수 있음을 알게 된다. 일부 실시형태들에 있어서, 다른 프로세스 스테이션 파라미터들은 가변 밀도 플라즈마 내에서 플라즈마 밀도 분포를 조정하거나 유지하도록 조정되거나 제어될 수 있음을 알게 된다. 이러한 프로세스 스테이션 파라미터들의 한정이 아닌 예들은 프로세스 가스 조성물 (즉, 다양한 희석제, 플라즈마, 및 반응성 가스들을 포함하는, 프로세스 스테이션에 공급되는 가스 혼합물의 조성물), 전체 프로세스 가스 유량, 프로세스 스테이션 온도 (예를 들어, 플라즈마 방전 영역 근방의 프로세스 스테이션에서의 다양한 표면들의 온도들) 를 포함한다.
도 10에 이어서, 방법 (1000) 은, 1014에서, 가변 밀도 플라즈마에 의해 기판을 프로세싱하는 것을 포함한다. 예를 들어, 일부 실시형태들에 있어서, 기판을 프로세싱하는 것은 플라즈마 강화 화학기상증착 (PECVD) 기술을 사용하여 기판 상의 막을 성막하는 것을 포함할 수 있다. 다른 예에 있어서, 일부 실시형태들에서는, 기판을 프로세싱하는 것이 플라즈마 활성화된 건식 식각 기술을 사용하여 기판 상에 막을 식각하는 것을 포함할 수도 있다.
상기 설명된 바와 같이, 가변 밀도 플라즈마를 제공하는 것은 프로세스 스테이션의 고유한 것들 및 업스트림 및 다운스트림 프로세스 툴들의 고유한 것들을 포함하는, 프로세스 특정 불균일 패턴들을 완화시키는 접근법들을 제공할 수 있다. 결과적으로, 일부 실시형태들에 있어서, 인입 기판의 기판 내 불균일 프로파일은 프로세싱 후 비교적 더 평탄해 질 수 있다. 이것은 후속 리소그라피 단계들에 대해 비교적 더 평탄한 기판 표면들을 제공할 수 있다.
이로써, 일부 실시형태들에 있어서, 방법 (1000) 은, 1016에서 기판 내 불균일성을 오프셋하기 위해 가변 밀도 플라즈마의 형상을 설정하는 것을 포함할 수 있다. 부가적으로 또는 대안적으로, 일부 실시형태들에 있어서, 방법 (1000) 은, 1018에서, 볼록 형상, 도넛 형상 및 웨지 형상 중 하나를 갖도록 가변 밀도 플라즈마의 형상을 설정하는 것을 포함할 수 있다. 예를 들어, 업스트림 프로세스 툴이 기판 상에 볼록한 두께 프로파일을 발생하는 경우, 가변 밀도 플라즈마에 의한 후속 PECVD 프로세싱은 볼록 프로파일을 오프셋하기 위해 기판 에지들의 근방에 부가적인 막을 성막할 수 있다. 이것은 리소그라피 트랙 툴에서 기판 상으로 회전된 포토레지스트의 비교적 더 균일한 커버리지 및 현상과, 스텝퍼 동작에서 보다 균일한 노광을 얻을 수 있다.
1020에서, 방법 (1000) 은 가변 밀도 플라즈마를 소멸시키는 것을 포함한다. 상기 설명된 바와 같이, 일부 플라즈마 프로세스들에서, 작은 파티클들은 플라즈마에서 전기적으로 "부유" 한다. 플라즈마를 끄면 이러한 파티클들의 표면들 상의 정전력이 사라져서, 파티클들로 하여금 기판 표면 상에 랜딩하게 할 수 있다. 이로써, 일부 실시형태들에 있어서, 방법 (1000) 은 1022에서, 가변 밀도 플라즈마의 외부 부분에서 소멸되기 전에 가변 밀도 플라즈마의 내부 부분에서 가변 밀도 플라즈마가 소멸되도록 가변 밀도 플라즈마를 소멸시키는 것을 포함한다. 이것은, 플라즈마 시스가 플라즈마의 내부 부분으로부터 재처리될 때 작은 파티클들로 하여금 반송되버리게 하여, 플라즈마 소멸 동안 기판 표면의 결함 유발성 장식을 잠재적으로 회피할 수 있다. 플라즈마가 일단 소멸되면, 방법 (1000) 은 1024에서 기판 홀더로부터 기판을 제거하는 것을 포함할 수 있다.
방법 (1000) 은 상술한 구성을 포함하고 그리고 이하 보다 상세하게 설명되는 다양한 다른 실시형태들을 포함하는, 임의의 적절한 전력 공급 및 전극 구성으로 사용될 수 있다. 예를 들어, 일부 실시형태들에 있어서, 외부 전극과 전기적으로 접속된 전력 분기의 캐패시턴스 및/또는 임피던스는 제 2 전극 (즉, 내부 전극 또는 샤워 헤드 전극) 의 임피던스와 외부 전극의 임피던스를 밸런싱하도록 조정될 수 있다. 이것은 각각의 전력 분기들 사이에서 전류 밸런스 및/또는 전력 밸런스를 제공할 수 있으며, 이는 도 11에 나타낸 예에 비해 더 안정한 플라즈마를 제공할 수 있다.
도 15는 도 11의 프로세스 스테이션 (1100) 과 같은 전극 구성을 갖는 일 예의 프로세스 스테이션 (1500) 을 개략적으로 나타낸다. 그러나, 도 11에 나타낸 예와 달리, 프로세스 스테이션 (1500) 은 이중 분기 분배 회로 (1510) 를 포함하며, 이중 분기 분배 회로 (1510) 의 각각의 분기는 분기 포인트들 (1116) 로부터 전력을 수신하고 내부 전극 전력 분기 (1118) 및 외부 전극 전력 분기 (1120) 에 전력을 분배하도록 구성된다. 또한, 도 15에 나타낸 예에 있어서, 용량성 제어기 (1112) 는 외부 전극 전력 분기 (1120) 에 공급된 저주파 플라즈마 전력량 및 고주마 플라즈마 전력량의 양자를 변화시키도록 구성된다. 그러나, 일부 실시형태들에 있어서, 용량성 제어기 (1112) 가 임의의 적절한 방식으로 외부 전극 전력 분기 (1120) 에 공급된 고주파 및/또는 저주파 플라즈마 전력을 변화시키도록 구성될 수 있다.
도 16은 대략 2torr 의 압력에서 도 15의 프로세스 스테이션 (1500) 과 유사한 프로세스 스테이션 구성의 일 실시형태를 사용하여, 3개의 상이한 전력 분배 스킴 (도 16의 표 (1610) 에 나타낸 곡선들 (1602, 1604, 및 1606) 참조) 에 대하여 반경 방향에서 플라즈마 프로브 전류 밀도 분포들을 도시하는 그래프 (1600) 를 나타낸다. 도 16에 나타낸 바와 같이, 외부 전극에 더 큰 전력을 공급하면 반경 방향 프로파일의 외부 에지에서 더 높은 전류 밀도를 제공할 수 있다.
일부 실시형태들에 있어서, 가변 밀도 플라즈마의 내부 부분에서보다 가변 밀도 플라즈마의 외부 부분에서 더 큰 플라즈마 밀도를 갖는 가변 밀도 플라즈마는, 외부 전극이 내부 전극 및 샤워 헤드 전극 중 하나의 전극으로부터 선택된 제 2 전극과 커플링되는 한, 샤워 헤드 전극에 전력이 공급되고, 내부 전극 및 외부 전극 중 하나의 전극이 전기적으로 접지되는 구성들을 사용하여 발생될 수 있다.
일 예로서, 도 17은 프로세스 스테이션 (1700) 을 개략적으로 나타낸다. 도 17에 나타낸 예에 있어서, 샤워 헤드 전극 (105) 및 외부 전극 (114) 은 고주파 플라즈마 발생기 (1102) 및 저주파 플라즈마 발생기 (1104) 와 전기적으로 접속되고, 내부 전극 (112) 은 전기적으로 접지된다. 도 17에 나타낸 바와 같이, 용량성 제어기 (1112) 는 외부 전극 (114) 과 샤워 헤드 전극 (105) 사이의 커플링을 조정하기 위해 제공된다. 다른 예로서, 도 18은 프로세스 스테이션 (1800) 을 개략적으로 나타내며, 여기서 고주파 플라즈마 발생기 (1102) 및 저주파 플라즈마 발생기 (1104) 는 샤워 헤드 전극 (105) 및 내부 전극 (112) 과 전기적으로 접속되고, 외부 전극 (114) 은 전기적으로 접지된다. 도 18에 도시된 예에 있어서, 용량성 제어기 (1112) 는 외부 전극 (114) 이 내부 전극 (112) 과 커플링되도록 내부 전극 (112) 을 조정하기 위해 제공된다.
도 19는 프로세스 스테이션 (1700) 에 의해 나타낸 구성을 통해 발생된 가변 밀도 플라즈마 (곡선 (1902)) 및 프로세스 스테이션 (1800) 에 의해 나타낸 구성을 통해 발생된 가변 밀도 플라즈마 (곡선 (1904)) 에 대한 반경 방향 전류 밀도 프로파일들을 도시하는 그래프 (1900) 를 나타낸다. 각 구성이 플라즈마의 내부 영역에서보다 플라즈마의 외부 영역에서 더 큰 플라즈마 밀도를 갖는 가변 밀도 플라즈마를 제공하기 위해 조정될 수 있지만, 도 17에 나타낸 예에서와 같이, 외부 전극에 전력을 직접 공급하는 것은 도 18에 나타낸 것과 같은 외부 전극에 전력을 간접적으로 공급하는 것에 대한 반경 방향 프로파일의 에지에서 비교적 더 높은 전류 밀도를 제공할 있음을 도 19에 제시된 데이터로부터 알게 된다.
상술한 예시의 커플링 구성들이 2개 이상의 전극들 사이의 고주파 및 저주파 플라즈마 전력 양자의 분열로 지향되지만, 일부 실시형태들에 있어서, 고주파 및 저주파 플라즈마 전력 중 단 하나만이 분할될 수도 있다. 예를 들어, 2개의 무선 주파수 소스들이 플라즈마를 발생하기 위해 동시에 사용되는 일부 실시형태들에서, 외부 전극과 제 2 전극 사이에서 단지 고주파 전력만이 분할될 수 있고, 저주파 전력은 외부 전극과 제 2 전극 중 하나의 전극에만 공급될 수 있다. 이것은 가변 밀도 플라즈마의 미리 정의된 영역 내에서 플라즈마 에너지 및/또는 밀도에 대해 튜닝 능력을 제공할 수 있다. 예를 들어, 일부 플라즈마 조건들 하에서, 저주파 RF 소스가 이온 에너지를 제어하기 위해 사용될 수 있고, 고주파 RF 소스는 플라즈마 밀도를 제어하기 위해 사용될 수 있다. 이로써, 하나의 시나리오에서, 저주파 플라즈마 전력은 내부 전극에 대해 배타적으로 공급될 수 있는 반면, 고주파 플라즈마 에너지는 내부 전극 및 외부 전극 양자에 공급될 수 있다. 이것은 플라즈마의 외부 영역에 부가적인 플라즈마 밀도를 제공하면서 플라즈마의 내부 영역에 부가적인 이온 충격을 유발할 수 있다. 상술한 예시의 접근법은 한정이 아닌 것임을 알게 된다. 예를 들어, 다른 실시형태에 있어서, 저주파 전력은 외부 전극과 내부 전극 사이에서 분할될 수 있고, 고주파 플라즈마 전력이 외부 전극에 제공된다.
상술한 예시의 전력 공급 구성들이 단일 플라즈마 발생기로부터 2개의 전극들로의 플라즈마 전력 공급으로 지향되지만, 일부 실시형태들은 복수의 플라즈마 발생기들을 제공할 수 있음을 알게 된다. 상기 설명된 바와 같이, 복수의 플라즈마 발생기들은 다양한 전극들의 실질적으로 독립적인 제어를 제공할 수 있다. 예를 들어, 일부 실시형태들에 있어서, 프로세스 스테이션은 2개 이상의 플라즈마 발생기들을 포함할 수 있고, 각각의 발생기는 상이한 전극에 전기적으로 접속된다. 도 20은 2개의 고주파 플라즈마 발생기들 (1102) 및 2개의 저주파 플라즈마 발생기들 (1104) 을 갖는 프로세스 스테이션 (2000) 을 개략적으로 나타낸다. 도 20에 나타낸 바와 같이, 고주파 플라즈마 발생기 (1102) 는 저주파 플라즈마 발생기들 (1104) 이 그런 것처럼 서로 위상 고정된다. 또한, 동기화된 매칭 네트워크 회로 (2020) 는 빠른 동기화 시간 (한정이 아닌 일 예에서 5msec 보다 빠름) 을 제공하고, 플라즈마 소스들 간 전력 발진들을 감쇠시키기 위해 제공된다. 부가적으로 또는 대안적으로, 일부 실시형태들에서, 동기화된 매칭 네트워크 회로 (2020) 는 제 1 쌍의 발생기들 (예를 들어, 고주파 플라즈마 발생기 (1102A) 및 저주파 플라즈마 발생기 (1104A)) 을 제 2 쌍의 발생기들 (고주파 플라즈마 발생기 (1102B) 및 저주파 플라즈마 발생기 (1104B)) 의 고정 임피던스와 매칭시키도록 구성된 주파수 튜닝 회로를 포함할 수 있다.
상기 하드웨어 설명들은 단일 프로세스 스테이션에 관련되지만, 일부 실시형태들에 있어서, 2개 이상의 프로세스 스테이션들이 프로세스 툴에 포함될 수 있음을 알게 된다. 이러한 일부 실시형태들에서, 다양한 프로세스 입력들 (예를 들어, 프로세스 가스들, 플라즈마 전력, 히터 전력 등) 의 제어 및/또는 공급은 공유 소스들로부터 프로세스 툴에 포함된 복수의 프로세스 스테이션들에 분포될 수 있다. 예를 들어, 일부 실시형태들에 있어서, 공유 플라즈마 발생기는 2개 이상의 프로세스 스테이션들에 플라즈마 전력을 공급할 수 있다. 다른 예에 있어서, 공유 가스 분배 메니폴드는 2개 이상의 프로세스 스테이션들에 프로세스 가스들을 공급할 수 있다.
도 21은 인바운드 로드 록 (2102) 및 아웃바운드 로드 록 (2104) 을 갖는 다중 스테이션 프로세싱 툴 (2100) 의 일 실시형태의 개략도를 나타낸다. 로봇 (2106) 은, 분위기 압력에서, 포드 (pod)(2108) 를 통해 로딩된 카세트로부터 인바운드 로드 록 (2102) 으로 분위기 포트 (2110) 를 통해 기판들을 이동시키도록 구성된다. 인바운드 로드 록 (2102) 은 진공 소스 (미도시) 에 커플링되어서, 분위기 포트 (2110) 가 닫힐 때, 인바운드 로드 록 (2102) 이 펌핑 다운될 수 있다. 또한, 인바운드 로드 록 (2102) 은 프로세싱 챔버 (2114) 와 인터페이스되는 챔버 이송 포트 (2116) 를 포함한다. 이로써, 챔버 이송 포트 (2116) 가 개방될 때, 다른 로봇 (미도시) 은 인바운드 로드 록 (2102) 으로부터 프로세싱을 위한 제 1 프로세스 스테이션의 페데스탈로 기판을 이동시킬 수 있다.
일부 실시형태들에 있어서, 인바운드 로드 록 (2102) 은 로드 록에 플라즈마를 공급하도록 구성된 리모트 플라즈마 소스 (미도시) 에 접속될 수 있다. 이것은 인바운드 로드 록 (2102) 에 위치된 기판에 대한 리모트 플라즈마 처리들을 제공할 수 있다. 부가적으로 또는 대안적으로, 일부 실시형태들에 있어서, 인바운드 로드 록 (2102) 은 기판을 가열하도록 구성된 히터 (미도시) 를 포함할 수 있다. 이것은 인바운드 로드 록 (2102) 에 위치된 기판 상에 흡수된 수분 및 가스들을 제거할 수 있다. 도 21에 도시된 실시형태는 로드 록들을 포함하지만, 일부 실시형태들에 있어서 프로세스 스테이션으로의 기판의 진입을 지향시키는 것이 제공될 수 있음을 알게 된다.
도시된 프로세싱 챔버 (2114) 는 도 21에 나타낸 실시형태에서 1 내지 4로 넘버링된, 4개의 프로세스 스테이션들을 포함한다. 일부 실시형태들에 있어서, 프로세싱 챔버 (2114) 는 저압 환경을 유지하도록 구성될 수 있어서 기판들이 진공 브레이크 및/또는 공기 노출을 경험하지 않으면서 프로세스 스테이션들 사이에서 이송될 수 있다. 도 21에 도시된 각각의 프로세스 스테이션은 프로세스 스테이션 기판 홀더 (스테이션 1에 대하여 110에서 나타냄) 및 프로세스 가스 전달 라인 입구들을 포함한다. 일부 실시형태들에서, 하나 이상의 프로세스 스테이션 기판 홀더들 (110) 은 가열될 수 있다.
일부 실시형태들에 있어서, 각각의 프로세스 스테이션은 상이한 목적 또는 다중 목적을 가질 수도 있다. 예를 들어, 프로세스 스테이션은 PECVD 또는 CVD 모드 사이에서, 또는 다양한 식각 모드들 사이에서, 또는 성막 및 식각 모드들 사이에서 스위치가능할 수 있다. 부가적으로 또는 대안적으로, 일부 실시형태들에 있어서, 프로세싱 챔버 (2114) 는 하나 이상의 매칭된 쌍들의 성막 및 식각 프로세스 스테이션들을 포함할 수도 있어서, 막이 동일한 프로세스 챔버에서 성막되고 식각될 수 있다. 다른 예에 있어서, 프로세스 스테이션은 2 이상의 막 유형들에 대한 성막 프로세스들 사이에서 스위치가능할 수 있어서, 상이한 막 유형들의 스택들이 동일한 프로세스 챔버에서 성막될 수 있다,
도시된 프로세싱 챔버 (2114) 는 4개의 스테이션들을 포함하지만, 본 개시물에 따는 프로세싱 챔버가 임의의 적당한 개수의 스테이션들을 가질 수도 있음을 이해하게 된다. 예를 들어, 일부 실시형태들에 있어서, 프로세싱 챔버는 5 개 이상의 스테이션들을 가질 수 있으며, 다른 실시형태들에서 프로세싱 챔버는 3 개 이하의 스테이션들을 가질 수 있다.
또한, 도 21은 프로세싱 챔버 (2114) 내에서 기판을 이송하기 위한 기판 핸들링 시스템 (2190) 의 일 실시형태를 도시한다. 일부 실시형태들에 있어서, 기판 핸들링 시스템 (2190) 은 다양한 프로세스 스테이션들 사이 및/또는 프로세스 스테이션과 로드 록 사이에서 기판들을 이송하도록 구성될 수 있다. 임의의 적당한 기판 핸들링 시스템이 채용될 수 있음을 알게 된다. 한정이 아닌 예들은 기판 컨베이어 벨트 (carousel) 및 기판 핸들링 로봇을 포함한다.
또한, 도 21은 프로세싱 툴 (2100) 의 하드웨어 스테이트들 및 프로세스 조건들을 제어하기 위해 채용된 시스템 제어기 (2150) 의 일 실시형태를 도시한다. 예를 들어, 일부 실시형태들에 있어서, 시스템 제어기 (2150) 는 상술한 하드웨어의 실시형태들 (예를 들어, 중공 캐소드 마그네트론 및 평면 마그네트론을 포함하는 플라즈마 발생기, 플라즈마 제어기 및 전력 분배 회로, 기판 홀더 히터 제어기, 질량 유량 제어기, 압력 제어 디바이스 등) 을 제어하는 명령들을 포함하여 상술한 방법의 실시형태들을 수행할 수 있다.
시스템 제어기 (2150) 는 하나 이상의 메모리 디바이스들 (2156), 하나 이상의 질량 저장 디바이스들 (2154), 및 하나 이상의 프로세서들 (2152) 을 포함할 수 있다. 프로세서 (2152) 는 CPU 또는 컴퓨터, 아날로그 및/또는 디지털 입력/출력 접속들, 스텝퍼 모터 제어기 보드 등을 포함할 수 있다.
일부 실시형태들에 있어서, 시스템 제어기 (2150) 는 프로세싱 툴 (2100) 의 도든 작동들을 제어할 수 있다. 일부 실시형태들에 있어서, 시스템 제어기 (2150) 는 질량 저장 디바이스 (2154) 에 저장된 머신 판독가능 시스템 제어 소프트웨어 (2158) 또는 메모리 디바이스 (2156) 로 로딩되고 프로세서 (2152) 상에서 실행되는 다른 적당한 머신 판독가능 매체를 실행시킨다. 시스템 제어 소프트웨어 (2158) 는 타이밍, 가스 혼합물, 챔버 및/또는 스테이션 압력, 챔버 및/또는 스테이션 온도, 기판 온도, 타겟 전력 레벨, RF 전력 레벨, 기판 페데스탈, 척 및/또는 서셉터 포지션, 및 프로세싱 툴 (2100) 에 의해 수행되는 특정 프로세스의 다른 파라미터들을 제어하는 명령들을 포함할 수 있다. 시스템 제어 소프트웨어 (2158) 는 임의의 적당한 방식으로 구성될 수 있다. 예를 들어, 다양한 프로세스 툴 컴포넌트 서브루틴들 또는 제어 오브젝트들은 다양한 프로세스 툴 프로세스들을 수행하기 위한 프로세스 툴 컴포넌트들의 동작을 제어하기 위해 기록될 수 있다. 시스템 제어 소프트웨어 (2158) 는 임의의 적당한 컴퓨터 판독가능 프로그래밍 언어로 코딩될 수 있다.
일부 실시형태들에 있어서, 시스템 제어 소프트웨어 (2158) 는 상술한 다양한 파라미터들을 제어하기 위해 입력/출력 제어 (IOC) 시퀀싱 명령들을 포함할 수 있다. 예를 들어, 가변 밀도 플라즈마 프로세스의 각 위상은 시스템 제어기 (2150) 에 의한 실행을 위한 하나 이상의 명령들을 포함할 수 있다. 가변 밀도 플라즈마 프로세스 페이즈에 대한 프로세스 조건들을 설정하기 위한 명령들은 대응 하는 가변 밀도 플라즈마 레시피 페이즈에 포함될 수 있다. 일부 실시형태들에 있어서, 가변 밀도 플라즈마 PECVD 레시피 페이즈는 순차적으로 배열될 수 있어서, 가변 밀도 플라즈마 프로세스 페이즈에 대한 모든 명령들이 그 프로세스 페이즈와 동시에 실행된다.
시스템 제어기 (2150) 와 연관된 질량 저장 디바이스 (2154) 및/또는 메모리 디바이스 (2156) 에 저장된 다른 컴퓨터 소프트웨어 및/또는 프로그램들은 일부 실시형태들에 채용될 수 있다. 이러한 목적을 위한 프로그램들의 예들 또는 프로그램들의 섹션들은 기판 포지셔닝 프로그램, 프로세스 가스 제어 프로그램, 압력 제어 프로그램, 히터 제어 프로그램, 및 플라즈마 제어 프로그램을 포함한다.
기판 포지셔닝 프로그램은 프로세스 스테이션 기판 홀더 (110) 상으로 기판을 로딩하기 위해 그리고 기판과 프로세싱 툴 (2100) 의 다른 부분들 사이의 스페이싱을 제어하기 위해 사용되는 프로세스 툴 컴포넌트들에 대한 프로그램 코드를 포함할 수 있다.
프로세스 가스 제어 프로그램은 가스 조성물 및 유량을 제어하고, 옵션으로 프로세스 스테이션에서의 압력을 안정화하기 위해 성막 이전에 하나 이상의 프로세스 스테이션들 내부로 가스를 플로우 시키기 위한 코드를 포함할 수 있다. 압력 제어 프로그램은, 예를 들어, 프로세스 스테이션의 배출 시스템 내의 스로틀 밸브 (throttle valve), 프로세스 스테이션 내부로의 가스 플로우 등을 조절함으로써 프로세스 스테이션 내의 압력을 제어하기 위한 코드를 포함할 수 있다.
히터 제어 프로그램은 기판을 가열하기 위해 사용되는 가열 유닛으로의 전류를 제어하기 위한 코드를 포함할 수 있다. 대안적으로, 히터 제어 프로그램은 기판으로의 열 전달 가스 (예를 들어, 헬륨) 의 전달을 제어할 수 있다.
플라즈마 제어 프로그램은 하나 이상의 프로세스 스테이션들에서 프로세스 전극들에 인가되는 RF 전력 레벨들을 설정하기 위한 코드를 포함할 수 있다.
일부 실시형태들에 있어서, 시스템 제어기 (2150) 와 연관된 사용자 인터페이스가 있을 수 있다. 사용자 인터페이스는 디스플레이 스크린, 장치 및/또는 프로세스 조건들의 그래픽 소프트웨어 디스플레이, 및 포인팅 디바이스, 키보드, 터치 스크린, 마이크론폰 등과 같은 사용자 입력 디바이스를 포함할 수 있다.
일부 실시형태들에 있어서, 시스템 제어기 (2150) 에 의해 조정되는 파라미터들은 프로세스 조건들과 관련될 수 있다. 한정이 아닌 예들은 프로세스 가스 조성물 및 유량, 온도, 압력, 플라즈마 조건들 (예컨대, RF 바이어스 전력 레벨들), 압력, 온도 등을 포함한다. 이 파라미터들은 사용자 인터페이스를 사용하여 진입될 수 있는 레시피의 형태로 사용자에게 제공된다.
프로세스를 모니터링하는 신호들은 다양한 프로세스 툴 센서들로부터 시스템 제어기 (2150) 의 아날로그 및/또는 디지털 입력 접속들에 의해 제공될 수 있다. 프로세스를 제어하는 신호들은 프로세싱 툴 (2100) 의 아날로그 및 디지털 입력 접속들 상에 출력될 수 있다. 모니터링될 수 있는 프로세스 툴 센서들의 한정이 아닌 예들은 제어기, 압력 센서 (예컨대, 마노미터), 열전쌍 등을 포함한다. 적절히 프로그램된 피드백 및 제어 알고리즘은 프로세스 조건들을 유지하기 위해 상기 센서로부터의 데이터와 함께 사용될 수 있다.
시스템 제어기 (2150) 는 상술한 성막 프로세스들을 구현하기 위한 프로그램 명령들을 제공할 수 있다. 프로그램 명령들은 DC 전력 레벨, RF 바이어스 전력 레벨, 압력, 온도 등과 같은 다양한 프로세스 파라미터들을 제어할 수 있다. 명령들은 본 명세서에서 설명되는 다양한 실시형태들에 따라 막 스택의 인시튜 성막을 동작시키도록 파라미터들을 제어할 수 있다.
상술한 다양한 하드웨어 및 방법 실시형태들은, 예를 들어 반도체 디바이스, 디스플레이, LED, 광기전력 패널 등의 공정 또는 제조를 위해, 리소그라피 패터닝 툴들 또는 프로세스들과 함께 사용될 수 있다. 필수는 아니지만, 통상적으로, 이러한 툴들/프로세스들은 통상의 제조 설비에서 함께 사용되거나 행해지게 된다.
막의 리소그라피 패터닝은 일반적으로 다음의 단계들의 일부 또는 전부를 포함하며, 각 단계는 다수의 가능한 툴들로 가능하게 된다: (1) 스핀 온 또는 스프레이 온 툴을 사용한, 워크피스, 즉 기판 상의 포토레지스트의 도포; (2) 핫 플레이트 또는 노 또는 다른 적당한 경화 툴을 사용한 포토레지스트의 경화; (3) 웨이퍼 스텝퍼와 같은 툴에 의한 가시 또는 UV 또는 x-레이 광에 대한 포토레지스트의 노광; (4) 습식 벤치 또는 스프레이 현상기와 같은 툴을 사용하여 레지스트를 선택적으로 제거하고 이로써 레지스트를 패터닝하도록 레지스트를 현상; (5) 건식 또는 플라즈마 보조 식각 툴을 사용하여 하부막 또는 워크피스로의 레지스트 패턴의 전사; 및 (6) RF 또는 마이크로파 플라즈마 레지스트 스트립퍼와 같은 툴을 사용한 레지스트의 제거. 일부 실시형태들에 있어서, 애셔블 하드 마스크층 (예컨대, 비정질 탄소층) 및 다른 적당한 하드 마스크 (예컨대, 반사방지층) 가 포토레지스트를 도포하기 전에 성막될 수 있다.
본 명세서에서 설명된 구성들 및/또는 접근법들은 사실상 예시적인 것이고, 이러한 특정 실시형태들 또는 예들은, 다양한 변형들이 가능하기 때문에 한정적인 의미로 고려되지 않아야 함을 이해해야 한다. 본 명세서에서 설명된 루틴들 또는 방법들은 임의의 개수의 프로세싱 전략들 중 하나 이상을 나타낼 수 있다. 그와 같이, 도시된 다양한 동작들은, 도시된 시퀀스로, 다른 시퀀스로, 동시에, 또는 생략된 일부 경우들로 수행될 수 있다. 마찬가지로, 상술한 프로세스들의 순서는 변경될 수 있다.
본 개시물의 구성 요소는 다양한 프로세스들, 시스템들 및 구성들의 모든 신규하고 비자명한 결합, 및 본 명세서에 개시된 다른 피쳐들, 기능들, 동작들 및/또는 특성들 뿐만 아니라 그의 모든 등가물 및 임의의 등가물을 포함한다.
Claims (20)
- 반도체 기판 프로세스 스테이션으로서,
샤워 헤드 전극을 포함하는 샤워 헤드;
기판을 지지하도록 구성된 메사 (mesa) 표면을 포함하는 메사를 구비하는 기판 홀더로서, 상기 기판 홀더는 상기 샤워 헤드 아래에 배치되고, 상기 기판 홀더는 상기 기판 홀더의 내부 영역에 배치된 내부 전극과 상기 기판 홀더의 외부 영역에 배치된 외부 전극을 포함하는, 상기 기판 홀더;
상기 샤워 헤드와 상기 기판 홀더 사이에 배치된 플라즈마 영역에서 플라즈마를 발생하도록 구성된 플라즈마 발생기; 및
메모리에 저장되고, 상기 외부 전극을 상기 내부 전극 및 상기 샤워 헤드 전극 중 하나의 전극으로부터 선택된 제 2 전극과 커플링함으로써 상기 플라즈마 영역의 내부 부분에서 보다 상기 플라즈마 영역의 외부 부분에서 더 큰 플라즈마 밀도를 유발하기 위해 상기 플라즈마 발생기, 상기 내부 전극, 상기 외부 전극 및 상기 샤워 헤드 전극을 제어하도록 프로세서에 의해 실행가능한 명령들을 포함하는 제어기를 포함하는, 반도체 기판 프로세스 스테이션. - 제 1 항에 있어서,
상기 내부 전극의 기학학적 중심이 상기 메사 표면의 기하학적 중심 및 상기 외부 전극의 기하학적 중심과 동심인, 반도체 기판 프로세스 스테이션. - 제 1 항에 있어서,
상기 플라즈마 발생기에 의해 공급된 고주파 전력은 상기 외부 전극과 상기 제 2 전극 사이에서 분할되고,
상기 플라즈마 발생기에 의해 공급된 저주파 전력은 상기 외부 전극과 상기 제 2 전극 중 하나의 전극에만 공급되는, 반도체 기판 프로세스 스테이션. - 제 1 항에 있어서,
상기 제어기는 상기 외부 전극과 상기 제 2 전극 사이의 전력 밸런스에 영향을 미치도록 상기 외부 전극에 전기적으로 접속된 전력 분기의 임피던스를 변화시키도록 구성된, 반도체 기판 프로세스 스테이션. - 제 1 항에 있어서,
상기 플라즈마 발생기는 제 1 플라즈마 발생기이고,
상기 반도체 기판 프로세스 스테이션은,
상기 외부 전극 및 상기 제 2 전극과 전기적 통신하는 제 2 플라즈마 발생기를 더 포함하고,
상기 제어기는 상기 제 1 플라즈마 발생기에 의해 상기 외부 전극을 제어하고 상기 제 2 플라즈마 발생기에 의해 상기 제 2 전극을 제어하도록 구성되며, 상기 제 1 플라즈마 발생기 및 상기 제 2 플라즈마 발생기가 서로 위상 고정된, 반도체 기판 프로세스 스테이션. - 제 5 항에 있어서,
상기 제 1 플라즈마 발생기와 상기 제 2 플라즈마 발생기의 각각의 임피던스를 매치시켜 상기 외부 전극과 상기 제 2 전극 사이의 전력 발진을 감쇠시키도록 구성된 동기화된 매칭 네트워크 회로를 더 포함하는, 반도체 기판 프로세스 스테이션. - 제 1 항에 있어서,
상기 외부 전극과 전기적으로 접속된 제 1 전력 분기 및 상기 제 2 전극과 전기적으로 접속된 제 2 전력 분기로 전력을 분할하도록 구성된 이중 분기 분배 회로를 더 포함하는, 반도체 기판 프로세스 스테이션. - 반도체 기판 프로세스 스테이션의 기판 홀더로서,
유전체 재료를 포함하고, 기판을 지지하도록 구성된 상부 표면을 갖는 메사;
상기 상부 표면 아래의 제 1 평면에 배치된 내부 전극; 및
상기 상부 표면 아래의 제 2 평면에 배치된 외부 전극을 포함하고,
유전체 재료의 제 1 층이 상기 내부 전극을 상기 외부 전극과 분리시키고, 유전체 재료의 제 2 층이 상기 내부 전극 및 상기 외부 전극 모두를 상기 상부 표면과 분리시키는, 반도체 기판 프로세스 스테이션의 기판 홀더. - 제 8 항에 있어서,
상기 내부 전극의 기하학적 중심이 상기 메사의 기하학적 중심 및 상기 외부 전극의 기하학적 중심과 동심인, 반도체 기판 프로세스 스테이션의 기판 홀더. - 제 9 항에 있어서,
상기 외부 전극은 실질적으로 링 형상이고,
상기 내부 전극은 실질적으로 디스크 형상이며,
상기 외부 전극의 내직경이 상기 내부 전극의 최대 직경보다 더 큰, 반도체 기판 프로세스 스테이션의 기판 홀더. - 제 9 항에 있어서,
상기 내부 전극은 상기 기판의 최대 치수보다 작은 최대 치수를 갖는, 반도체 기판 프로세스 스테이션의 기판 홀더. - 제 8 항에 있어서,
상기 제 2 평면은 상기 제 1 평면 아래에 배치되고,
상기 외부 전극은 도전성 암에 의해 외부 전극 전력 버스에 전기적으로 접속되고,
상기 도전성 암은 유전체 재료에 의해 상기 내부 전극과 분리되는, 반도체 기판 프로세스 스테이션의 기판 홀더. - 제 8 항에 있어서,
상기 유전체 재료는 알루미늄 질화물을 포함하고,
상기 외부 전극 및 상기 내부 전극은 각각 알루미늄을 포함하는, 반도체 기판 프로세스 스테이션의 기판 홀더. - 제 8 항에 있어서,
상기 외부 전극은 복수의 외부 전극들 중 하나이고,
상기 복수의 외부 전극들의 하나 이상의 전극이 상기 복수의 외부 전극들의 다른 전극과 전기적으로 절연되는, 반도체 기판 프로세스 스테이션의 기판 홀더. - 제 8 항에 있어서,
상기 외부 전극 및 상기 내부 전극의 하나 이상이 금속 메시 및 리소그라피로 패터닝된 금속막의 하나 이상을 포함하고,
상기 유전체 재료는 괴성화 세라믹 (compacted ceramic) 을 포함하는, 반도체 기판 프로세스 스테이션의 기판 홀더. - 제 8 항에 있어서,
상기 메사의 하부측에 결합된 컬럼 (column) 을 더 포함하고,
상기 컬럼은, 상기 컬럼의 내부 부분이 진공 환경보다 높은 압력을 유지할 수 있도록 상기 진공 환경에서 상기 기판 홀더를 시일가능하게 유지하도록 구성된 플랜지를 포함하는, 반도체 기판 프로세스 스테이션의 기판 홀더. - 반도체 기판 프로세스 스테이션에서 가변 밀도 플라즈마를 발생하여 반도체 기판을 프로세싱하는 방법으로서,
상기 반도체 기판 프로세스 스테이션은 상기 가변 밀도 플라즈마에 플라즈마 가스를 분배하는 샤워 헤드, 상기 가변 밀도 플라즈마를 발생시키는 플라즈마 발생기, 및 상기 기판이 상기 가변 밀도 플라즈마에 노출되도록 상기 샤워 헤드에 대하여 기판을 지지하는 기판 홀더를 포함하고,
상기 반도체 기판을 프로세싱하는 방법은,
상기 반도체 기판 프로세스 스테이션에 플라즈마 가스를 공급하는 단계;
외부 전극을 내부 전극 및 샤워 헤드 전극 중 하나로부터 선택된 제 2 전극과 커플링하고, 그리고,
플라즈마 영역의 외부 부분의 플라즈마 밀도가 상기 플라즈마 영역의 내부 부분의 플라즈마 밀도보다 크도록 상기 외부 전극 및 상기 제 2 전극 중 하나의 전극에 상기 플라즈마 발생기로부터의 전력을 공급하는 회로의 임피던스를 설정함으로써,
상기 가변 밀도 플라즈마를 발생하는 단계; 및
상기 가변 밀도 플라즈마에 의해 상기 기판을 프로세싱하는 단계를 포함하는, 반도체 기판을 프로세싱하는 방법. - 제 17 항에 있어서,
상기 가변 밀도 플라즈마가 상기 플라즈마 영역의 상기 외부 부분에서 소멸되기 전에 상기 플라즈마 영역의 상기 내부 부분에서 소멸되도록, 상기 플라즈마 발생기에 의해 공급되는 전력을 조정함으로써, 상기 기판을 프로세싱 한 후, 상기 가변 밀도 플라즈마를 소멸시키는 단계를 더 포함하는, 반도체 기판을 프로세싱하는 방법. - 제 17 항에 있어서,
상기 가변 밀도 플라즈마에 의해 상기 기판을 프로세싱하는 단계는,
상기 기판의 프로세싱 동안, 상기 반도체 기판의 기판 내 불균일 프로파일에 대해 오프셋을 유발하도록 상기 가변 밀도 플라즈마의 형상을 설정하기 위해 상기 회로의 캐패시턴스를 설정하는 단계를 포함하고,
상기 기판 내 불균일 프로파일은 상기 반도체 기판 프로세스 툴에서의 프로세싱 이전에 상기 반도체 기판에 의해 나타나는, 반도체 기판을 프로세싱하는 방법. - 제 17 항에 있어서,
상기 기판에 포토레지스트를 도포하는 단계;
상기 포토레지스트를 노광하는 단계;
상기 레지스트를 패턴으로 패터닝하고 상기 레지스트로부터의 상기 패턴을 상기 기판에 전사하는 단계; 및
상기 기판으로부터 상기 포토레지스트를 선택적으로 제거하는 단계를 더 포함하는, 반도체 기판을 프로세싱하는 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/976,391 US20120164834A1 (en) | 2010-12-22 | 2010-12-22 | Variable-Density Plasma Processing of Semiconductor Substrates |
US12/976,391 | 2010-12-22 | ||
PCT/US2011/065099 WO2012087737A2 (en) | 2010-12-22 | 2011-12-15 | Variable-density plasma processing of semiconductor substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130141455A true KR20130141455A (ko) | 2013-12-26 |
Family
ID=46314766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137005196A KR20130141455A (ko) | 2010-12-22 | 2011-12-15 | 반도체 기판의 가변 밀도 플라즈마 프로세싱 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120164834A1 (ko) |
JP (1) | JP2014505362A (ko) |
KR (1) | KR20130141455A (ko) |
CN (1) | CN103069550A (ko) |
SG (1) | SG187143A1 (ko) |
TW (1) | TW201234458A (ko) |
WO (1) | WO2012087737A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160129730A (ko) * | 2015-04-30 | 2016-11-09 | 램 리써치 코포레이션 | 증착 불균일성을 보상하기 위한 전극간 갭 변동 방법들 |
KR20170017826A (ko) * | 2015-08-07 | 2017-02-15 | 어플라이드 머티어리얼스, 인코포레이티드 | 강화된 웨이퍼 에지 성능을 갖는 세라믹 가열기 및 esc |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8962101B2 (en) | 2007-08-31 | 2015-02-24 | Novellus Systems, Inc. | Methods and apparatus for plasma-based deposition |
US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US8956983B2 (en) | 2010-04-15 | 2015-02-17 | Novellus Systems, Inc. | Conformal doping via plasma activated atomic layer deposition and conformal film deposition |
US20110256734A1 (en) | 2010-04-15 | 2011-10-20 | Hausmann Dennis M | Silicon nitride films and methods |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9076646B2 (en) | 2010-04-15 | 2015-07-07 | Lam Research Corporation | Plasma enhanced atomic layer deposition with pulsed plasma exposure |
US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
US8592328B2 (en) | 2012-01-20 | 2013-11-26 | Novellus Systems, Inc. | Method for depositing a chlorine-free conformal sin film |
US9088085B2 (en) * | 2012-09-21 | 2015-07-21 | Novellus Systems, Inc. | High temperature electrode connections |
JP6207880B2 (ja) * | 2012-09-26 | 2017-10-04 | 東芝メモリ株式会社 | プラズマ処理装置およびプラズマ処理方法 |
KR102207992B1 (ko) | 2012-10-23 | 2021-01-26 | 램 리써치 코포레이션 | 서브-포화된 원자층 증착 및 등각막 증착 |
SG2013083241A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Conformal film deposition for gapfill |
JP6538300B2 (ja) | 2012-11-08 | 2019-07-03 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | 感受性基材上にフィルムを蒸着するための方法 |
CN105190843A (zh) * | 2013-03-15 | 2015-12-23 | 应用材料公司 | 在处理室中使用调节环来调节等离子体分布的装置和方法 |
US10032608B2 (en) | 2013-03-27 | 2018-07-24 | Applied Materials, Inc. | Apparatus and method for tuning electrode impedance for high frequency radio frequency and terminating low frequency radio frequency to ground |
TWI635197B (zh) * | 2013-06-10 | 2018-09-11 | 諾發系統有限公司 | 用於使用直流自偏壓之基板處理系統的診斷及控制系統與方法 |
CN104733278B (zh) * | 2013-12-23 | 2017-03-15 | 中微半导体设备(上海)有限公司 | 等离子体处理装置及等离子体处理方法 |
CN103792842B (zh) * | 2014-01-22 | 2016-08-17 | 清华大学 | 一种可用于功率场空间分布精细控制的基台及控制方法 |
US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
US9472410B2 (en) * | 2014-03-05 | 2016-10-18 | Applied Materials, Inc. | Pixelated capacitance controlled ESC |
CN107078013B (zh) * | 2014-05-09 | 2019-06-21 | Ev 集团 E·索尔纳有限责任公司 | 用于衬底的等离子体处理的方法和装置 |
US10186450B2 (en) | 2014-07-21 | 2019-01-22 | Asm Ip Holding B.V. | Apparatus and method for adjusting a pedestal assembly for a reactor |
US9478438B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor |
US9478411B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
CN106298418B (zh) * | 2015-05-18 | 2018-10-16 | 中微半导体设备(上海)有限公司 | 电感耦合等离子体处理系统及处理方法 |
CN106298419B (zh) * | 2015-05-18 | 2018-10-16 | 中微半导体设备(上海)有限公司 | 电感耦合等离子体处理系统及处理方法 |
US10153139B2 (en) | 2015-06-17 | 2018-12-11 | Applied Materials, Inc. | Multiple electrode substrate support assembly and phase control system |
US10526701B2 (en) | 2015-07-09 | 2020-01-07 | Lam Research Corporation | Multi-cycle ALD process for film uniformity and thickness profile modulation |
US10163610B2 (en) | 2015-07-13 | 2018-12-25 | Lam Research Corporation | Extreme edge sheath and wafer profile tuning through edge-localized ion trajectory control and plasma operation |
US10550469B2 (en) * | 2015-09-04 | 2020-02-04 | Lam Research Corporation | Plasma excitation for spatial atomic layer deposition (ALD) reactors |
US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US11069553B2 (en) * | 2016-07-07 | 2021-07-20 | Lam Research Corporation | Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity |
US10553465B2 (en) * | 2016-07-25 | 2020-02-04 | Lam Research Corporation | Control of water bow in multiple stations |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
US10665433B2 (en) * | 2016-09-19 | 2020-05-26 | Varian Semiconductor Equipment Associates, Inc. | Extreme edge uniformity control |
JP6869034B2 (ja) * | 2017-01-17 | 2021-05-12 | 東京エレクトロン株式会社 | プラズマ処理装置 |
WO2018163935A1 (ja) * | 2017-03-06 | 2018-09-13 | 日本碍子株式会社 | ウエハ支持台 |
US10147610B1 (en) | 2017-05-30 | 2018-12-04 | Lam Research Corporation | Substrate pedestal module including metallized ceramic tubes for RF and gas delivery |
US11289355B2 (en) * | 2017-06-02 | 2022-03-29 | Lam Research Corporation | Electrostatic chuck for use in semiconductor processing |
US10704142B2 (en) * | 2017-07-27 | 2020-07-07 | Applied Materials, Inc. | Quick disconnect resistance temperature detector assembly for rotating pedestal |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
WO2019152528A1 (en) * | 2018-01-31 | 2019-08-08 | Lam Research Corporation | Electrostatic chuck (esc) pedestal voltage isolation |
SG11202007851PA (en) * | 2018-02-28 | 2020-09-29 | Applied Materials Inc | Electrostatic chuck with multiple radio frequency meshes to control plasma uniformity |
US11086233B2 (en) | 2018-03-20 | 2021-08-10 | Lam Research Corporation | Protective coating for electrostatic chucks |
KR20200140388A (ko) * | 2018-05-03 | 2020-12-15 | 어플라이드 머티어리얼스, 인코포레이티드 | 패터닝을 위한 고품질 c 막들의 펄스형 플라즈마(dc/rf) 증착 |
EP3588533A1 (en) * | 2018-06-21 | 2020-01-01 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Plasma source and method of operating the same |
US11289310B2 (en) * | 2018-11-21 | 2022-03-29 | Applied Materials, Inc. | Circuits for edge ring control in shaped DC pulsed plasma process device |
WO2020149972A1 (en) * | 2019-01-15 | 2020-07-23 | Applied Materials, Inc. | Pedestal for substrate processing chambers |
SG11202111962QA (en) | 2019-05-01 | 2021-11-29 | Lam Res Corp | Modulated atomic layer deposition |
US11114279B2 (en) | 2019-06-28 | 2021-09-07 | COMET Technologies USA, Inc. | Arc suppression device for plasma processing equipment |
US11527385B2 (en) | 2021-04-29 | 2022-12-13 | COMET Technologies USA, Inc. | Systems and methods for calibrating capacitors of matching networks |
US11596309B2 (en) | 2019-07-09 | 2023-03-07 | COMET Technologies USA, Inc. | Hybrid matching network topology |
US20210159107A1 (en) * | 2019-11-21 | 2021-05-27 | Applied Materials, Inc. | Edge uniformity tunability on bipolar electrostatic chuck |
US11830708B2 (en) | 2020-01-10 | 2023-11-28 | COMET Technologies USA, Inc. | Inductive broad-band sensors for electromagnetic waves |
US11670488B2 (en) | 2020-01-10 | 2023-06-06 | COMET Technologies USA, Inc. | Fast arc detecting match network |
US11887820B2 (en) | 2020-01-10 | 2024-01-30 | COMET Technologies USA, Inc. | Sector shunts for plasma-based wafer processing systems |
US12027351B2 (en) | 2020-01-10 | 2024-07-02 | COMET Technologies USA, Inc. | Plasma non-uniformity detection |
US11521832B2 (en) | 2020-01-10 | 2022-12-06 | COMET Technologies USA, Inc. | Uniformity control for radio frequency plasma processing systems |
US11961711B2 (en) | 2020-01-20 | 2024-04-16 | COMET Technologies USA, Inc. | Radio frequency match network and generator |
US11605527B2 (en) | 2020-01-20 | 2023-03-14 | COMET Technologies USA, Inc. | Pulsing control match network |
JP7242612B2 (ja) * | 2020-07-22 | 2023-03-20 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法およびプログラム |
JP7547861B2 (ja) * | 2020-08-24 | 2024-09-10 | セイコーエプソン株式会社 | 液体吐出装置及び乾燥装置 |
JP7484581B2 (ja) * | 2020-08-28 | 2024-05-16 | セイコーエプソン株式会社 | 液体吐出装置 |
KR20220059640A (ko) | 2020-11-03 | 2022-05-10 | 삼성전자주식회사 | 플라즈마 공정 장치 및 이를 이용한 반도체 장치의 제조 방법 |
US12057296B2 (en) | 2021-02-22 | 2024-08-06 | COMET Technologies USA, Inc. | Electromagnetic field sensing device |
JP2024512465A (ja) * | 2021-03-16 | 2024-03-19 | ラム リサーチ コーポレーション | 静電チャック用の三極電極配置 |
JP7557429B2 (ja) * | 2021-05-27 | 2024-09-27 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US11923175B2 (en) | 2021-07-28 | 2024-03-05 | COMET Technologies USA, Inc. | Systems and methods for variable gain tuning of matching networks |
US11898236B2 (en) | 2021-10-20 | 2024-02-13 | Applied Materials, Inc. | Methods and apparatus for processing a substrate |
US12040139B2 (en) | 2022-05-09 | 2024-07-16 | COMET Technologies USA, Inc. | Variable capacitor with linear impedance and high voltage breakdown |
US11657980B1 (en) | 2022-05-09 | 2023-05-23 | COMET Technologies USA, Inc. | Dielectric fluid variable capacitor |
US12051549B2 (en) | 2022-08-02 | 2024-07-30 | COMET Technologies USA, Inc. | Coaxial variable capacitor |
US12125689B2 (en) | 2022-09-08 | 2024-10-22 | Applied Materials, Inc. | Methods and apparatus for toroidal plasma generation |
US12132435B2 (en) | 2022-10-27 | 2024-10-29 | COMET Technologies USA, Inc. | Method for repeatable stepper motor homing |
WO2024201919A1 (ja) * | 2023-03-30 | 2024-10-03 | 日本碍子株式会社 | セラミックヒータ及びそれを含むキット、並びにセラミックヒータの放熱特性を調整する方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4512841A (en) * | 1984-04-02 | 1985-04-23 | International Business Machines Corporation | RF Coupling techniques |
JPS61265820A (ja) * | 1985-05-21 | 1986-11-25 | Anelva Corp | プラズマ処理装置 |
US6042686A (en) * | 1995-06-30 | 2000-03-28 | Lam Research Corporation | Power segmented electrode |
JP3949186B2 (ja) * | 1995-12-25 | 2007-07-25 | 富士通株式会社 | 基板載置台、プラズマ処理装置及び半導体装置の製造方法 |
JPH10326772A (ja) * | 1997-05-26 | 1998-12-08 | Ricoh Co Ltd | ドライエッチング装置 |
US6367413B1 (en) * | 1999-06-15 | 2002-04-09 | Tokyo Electron Limited | Apparatus for monitoring substrate biasing during plasma processing of a substrate |
US6232236B1 (en) * | 1999-08-03 | 2001-05-15 | Applied Materials, Inc. | Apparatus and method for controlling plasma uniformity in a semiconductor wafer processing system |
US20030079983A1 (en) * | 2000-02-25 | 2003-05-01 | Maolin Long | Multi-zone RF electrode for field/plasma uniformity control in capacitive plasma sources |
AU2001245938A1 (en) * | 2000-03-28 | 2001-10-08 | Tokyo Electron Limited | Method and apparatus for controlling power delivered to a multiple segment electrode |
JP2002009043A (ja) * | 2000-06-23 | 2002-01-11 | Hitachi Ltd | エッチング装置及びそれを用いた半導体装置の製造方法 |
US6642661B2 (en) * | 2001-08-28 | 2003-11-04 | Tokyo Electron Limited | Method to affect spatial distribution of harmonic generation in a capacitive discharge reactor |
JP4137419B2 (ja) * | 2001-09-28 | 2008-08-20 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US20050098106A1 (en) * | 2003-11-12 | 2005-05-12 | Tokyo Electron Limited | Method and apparatus for improved electrode plate |
US20050130620A1 (en) * | 2003-12-16 | 2005-06-16 | Andreas Fischer | Segmented radio frequency electrode apparatus and method for uniformity control |
JP2006196681A (ja) * | 2005-01-13 | 2006-07-27 | Sharp Corp | プラズマ処理装置および同装置により製造された半導体素子 |
US7993489B2 (en) * | 2005-03-31 | 2011-08-09 | Tokyo Electron Limited | Capacitive coupling plasma processing apparatus and method for using the same |
JP2006319043A (ja) * | 2005-05-11 | 2006-11-24 | Hitachi High-Technologies Corp | プラズマ処理装置 |
US7432467B2 (en) * | 2006-03-28 | 2008-10-07 | Tokyo Electron Limited | Plasma processing apparatus |
JP4801522B2 (ja) * | 2006-07-21 | 2011-10-26 | 株式会社日立ハイテクノロジーズ | 半導体製造装置及びプラズマ処理方法 |
TWI440405B (zh) * | 2007-10-22 | 2014-06-01 | New Power Plasma Co Ltd | 電容式耦合電漿反應器 |
JP5231038B2 (ja) * | 2008-02-18 | 2013-07-10 | 東京エレクトロン株式会社 | プラズマ処理装置およびプラズマ処理方法、ならびに記憶媒体 |
US20100015357A1 (en) * | 2008-07-18 | 2010-01-21 | Hiroji Hanawa | Capacitively coupled plasma etch chamber with multiple rf feeds |
US8438990B2 (en) * | 2008-09-30 | 2013-05-14 | Applied Materials, Inc. | Multi-electrode PECVD source |
JP5496568B2 (ja) * | 2009-08-04 | 2014-05-21 | 東京エレクトロン株式会社 | プラズマ処理装置及びプラズマ処理方法 |
JP2011228436A (ja) * | 2010-04-19 | 2011-11-10 | Hitachi High-Technologies Corp | プラズマ処理装置およびプラズマ処理方法 |
-
2010
- 2010-12-22 US US12/976,391 patent/US20120164834A1/en not_active Abandoned
-
2011
- 2011-12-15 JP JP2013546225A patent/JP2014505362A/ja active Pending
- 2011-12-15 SG SG2013004353A patent/SG187143A1/en unknown
- 2011-12-15 WO PCT/US2011/065099 patent/WO2012087737A2/en active Application Filing
- 2011-12-15 CN CN2011800410778A patent/CN103069550A/zh active Pending
- 2011-12-15 KR KR1020137005196A patent/KR20130141455A/ko not_active Application Discontinuation
- 2011-12-21 TW TW100147834A patent/TW201234458A/zh unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160129730A (ko) * | 2015-04-30 | 2016-11-09 | 램 리써치 코포레이션 | 증착 불균일성을 보상하기 위한 전극간 갭 변동 방법들 |
KR20170017826A (ko) * | 2015-08-07 | 2017-02-15 | 어플라이드 머티어리얼스, 인코포레이티드 | 강화된 웨이퍼 에지 성능을 갖는 세라믹 가열기 및 esc |
Also Published As
Publication number | Publication date |
---|---|
US20120164834A1 (en) | 2012-06-28 |
SG187143A1 (en) | 2013-02-28 |
CN103069550A (zh) | 2013-04-24 |
WO2012087737A3 (en) | 2012-11-29 |
JP2014505362A (ja) | 2014-02-27 |
TW201234458A (en) | 2012-08-16 |
WO2012087737A2 (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20130141455A (ko) | 반도체 기판의 가변 밀도 플라즈마 프로세싱 | |
TWI851944B (zh) | 用於循環與選擇性材料移除與蝕刻的處理腔室 | |
CN107452616B (zh) | 使用电不对称效应控制等离子体处理空间的系统和方法 | |
CN106992107B (zh) | 频率调制射频电源以控制等离子体不稳定性的系统和方法 | |
KR102454532B1 (ko) | 전기적 아크 및 발광을 방지하고 프로세스 균일도를 개선하기 위한 피처들을 갖는 정전 척 | |
TW201836008A (zh) | 電漿處理裝置 | |
US20150020848A1 (en) | Systems and Methods for In-Situ Wafer Edge and Backside Plasma Cleaning | |
JP2018082149A (ja) | 酸素適合性プラズマ源 | |
CN107516626B (zh) | 用于原位晶片边缘和背侧等离子体清洁的系统和方法 | |
KR102405729B1 (ko) | 저주파수 바이어스를 활용한 유전체 막들의 기하학적 선택적 증착 | |
WO2009009607A1 (en) | Apparatus and method for processing a substrate edge region | |
KR20210057669A (ko) | 플라즈마 처리 장치 | |
JP2022153353A (ja) | 空間プラズマ原子層堆積(pe-ald)処理ツール用のマイクロ波プラズマ源 | |
KR20200067104A (ko) | 플라즈마 처리 장치 및 플라즈마 처리 방법 | |
US11195696B2 (en) | Electron beam generator, plasma processing apparatus having the same and plasma processing method using the same | |
WO2021257318A1 (en) | Asymmetric exhaust pumping plate design for a semiconductor processing chamber | |
US20190311886A1 (en) | Microwave Plasma Source With Split Window | |
KR20200051505A (ko) | 배치대 및 기판 처리 장치 | |
WO2022201351A1 (ja) | プラズマ処理装置およびプラズマ処理方法 | |
KR20230109169A (ko) | 증착 잔류물 제어를 위한 시스템들 및 방법들 | |
US10991591B2 (en) | Reactive ion etching apparatus | |
US10699879B2 (en) | Two piece electrode assembly with gap for plasma control | |
KR20220070573A (ko) | 개선된 증착 균일성을 위해 다양한 프로파일을 갖는 측부들을 갖는 섀도우 프레임 | |
WO2020153118A1 (ja) | 基板処理装置及び基板処理方法 | |
TW202331918A (zh) | 電漿處理裝置及電漿處理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |