Nothing Special   »   [go: up one dir, main page]

KR101456838B1 - 복합 투명 도전체 및 그 제조 방법 - Google Patents

복합 투명 도전체 및 그 제조 방법 Download PDF

Info

Publication number
KR101456838B1
KR101456838B1 KR1020097024079A KR20097024079A KR101456838B1 KR 101456838 B1 KR101456838 B1 KR 101456838B1 KR 1020097024079 A KR1020097024079 A KR 1020097024079A KR 20097024079 A KR20097024079 A KR 20097024079A KR 101456838 B1 KR101456838 B1 KR 101456838B1
Authority
KR
South Korea
Prior art keywords
conductive
transparent conductor
metal
composite transparent
conductive medium
Prior art date
Application number
KR1020097024079A
Other languages
English (en)
Other versions
KR20100017128A (ko
Inventor
데이빗 존스
플로리안 체니츠카
시나 콴
마이클 에이. 스페이드
제프리 워크
Original Assignee
캄브리오스 테크놀로지즈 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39620244&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101456838(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 캄브리오스 테크놀로지즈 코포레이션 filed Critical 캄브리오스 테크놀로지즈 코포레이션
Publication of KR20100017128A publication Critical patent/KR20100017128A/ko
Application granted granted Critical
Publication of KR101456838B1 publication Critical patent/KR101456838B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/247Finish coating of conductors by using conductive pastes, inks or powders
    • H05K3/249Finish coating of conductors by using conductive pastes, inks or powders comprising carbon particles as main constituent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

복합 투명 도전체가 개시되는데, 이것은 금속 나노와이어 또는 금속 나노튜브에 기반한 1차 도전성 매질 및 상이한 유형의 나노구조체 또는 연속적인 도전성 막에 기반한 2차 도전성 매질을 포함한다.

Description

복합 투명 도전체 및 그 제조 방법{COMPOSITE TRANSPARENT CONDUCTORS AND METHODS OF FORMING THE SAME}
본 발명은 도전성 나노구조체에 기반한 복합 투명 도전체 및 그 제조 방법에 관한 것이다.
투명 도전체들은 광학적으로 투명한 얇은 도전성 막들을 말한다. 그것들은 액정 표시장치, 플라즈마 표시장치, 터치 패널, 전계발광 장치(electroluminescent devices) 및 박막 광전지(thin film photovoltaic cells)와 같은 평판 전기변색(flat panel electrochromic) 표시장치들에서 투명 전극들로 널리 사용되고, 또한 대전 방지층들(anti-static layers) 및 전자기파 차폐층들로서 널리 사용되고 있다.
종래의 투명 도전체는 인듐 주석 산화물(indium tin oxide;ITO)과 같은 진공 증착 금속 산화물들을 포함한다. 그러나, 금속 산화막들은 높은 도전성 수준을 달성하기 위하여 진공 챔버, 높은 증착 온도 및/또는 높은 어닐링(annealing) 온도를 요하기 때문에 제조 비용이 많이 든다. 금속 산화막들은 벤딩(bending)과 같은 미약한 물리적 스트레스들이 가해질 때조차도 깨지고 쉬우며 손상받기 쉽다.
도전성 폴리머들이 또한 광학적으로 투명한 전기적 도전체들로서 사용되어 왔다. 그러나, 그것들은 일반적으로 금속 산화막들에 비해 낮은 전도율 값들과 높은 광흡수성(optical absorption)(특히 가시광 파장들에서)을 가지며, 화학적 및 장기적 안정성 부족으로 인해 곤란을 겪는다.
도전성 나노구조체들은 그들의 서브마이크론 치수 때문에 광학적으로 투명한 도전성 막을 형성할 수 있다. 미국 특허출원번호 11/504,822, 11/871,767 및 11/871,721호는 금속 나노와이어와 같은 이방성 도전성 나노구조체(anisotropic conductive nanostructures)를 네트워크화함으로써 형성되는 투명 도전체를 기술한다. ITO 막처럼, 나노구조체에 기반한 투명 도전체는 평판 표시장치들 및 터치 스크린들과 같은 전기변색 표시장치에서 박막 트랜지스터에 결합될 수 있는 전극으로서 특히 유용하다. 또한, 나노구조체에 기반한 투명 도전체는 컬러 필터 및 편광자 상의 코팅, 편광자 등으로서 적합하다. 상기 출원들은 모두 그 전체로써 참고문헌으로 여기에 포함된다.
높은 품질의 표시장치 시스템에 대한 증가하는 수요를 만족시키기 위하여 저비용 및 고성능의 나노구조체에 기반한 투명 도전체를 제공할 필요가 있다.
복합 투명 도전체 및 그들의 어플리케이션이 개시된다.
일 실시예는 복합 투명 도전체를 개시하는데, 이것은 복수의 금속 나노와이어 또는 복수의 금속 나노튜브를 포함하는 1차 도전성 매질(primary conductive medium); 및 상기 1차 도전성 매질에 결합되는 2차 도전성 매질을 포함하며, 상기 2차 도전성 매질은 제2 유형의 나노구조체 또는 연속적인 도전성 막을 포함한다.
다른 실시예는 복합 투명 도전체를 포함하는 장치(device)를 개시하는데, 이 복합 투명 도전체는 복수의 금속 나노와이어 또는 복수의 금속 나노튜브를 포함하는 1차 도전성 매질; 및 상기 1차 도전성 매질에 결합되는 2차 도전성 매질을 포함하며, 상기 2차 도전성 매질은 연속적인 도전성 막이다.
또 다른 실시예는 액정 표시장치 셀을 개시하는데, 이 셀은 제1 전극 및 제2 전극을 포함하며, 상기 제1 전극 및 상기 제2 전극 사이의 수직 거리가 셀 갭(cell gap)을 정의하고, 상기 제1 전극은 1차 도전성 매질 및 2차 도전성 매질을 포함하는 복합 투명 도전체이고, 상기 1차 도전성 매질은 상기 셀 갭의 차수(order)의 메쉬 크기를 갖는 금속 나노와이어 또는 금속 나노튜브를 포함하고, 상기 2차 도전성 매질은 연속적인 도전성 막 또는 상기 셀 갭의 약 1/5 내지 1/100의 메쉬 크기를 갖는 나노구조체의 도전성 네트워크이다.
도면들에서, 동일한 참조번호들은 유사한 구성요소들 또는 작용들을 식별한다. 도면들에서 구성요소들의 크기 및 상대적인 위치는 반드시 축척에 맞게 도시되지는 않는다. 예를 들어, 다양한 구성요소들의 모양 및 각도들이 축척에 맞게 도시되지 않으며, 이들 구성요소들 중 일부는 도면 판독을 좋게 하기 위해 임의로 확대되고 배치된다. 나아가, 도시된 바와 같은 구성요소들의 특정 모양들은 특정 구성요소들의 실제 모양에 관한 어떤 정보를 전달하도록 의도되어지지는 않으며, 도면들에서 단지 인식을 쉽게 하기 위해 선택되었다.
도 1은 전기적 퍼콜레이션 레벨(above electrical percolation level) 위에 서의 금속 나노와이어의 막을 도시한다.
도 2A는 전기적 퍼콜레이션 레벨 아래에서의 금속 나노와이어의 막을 도시한다.
도 2B는 금속 퍼콜레이션 레벨 아래에서 그리고 연속적인 도전성 막과 조합된 금속 나노와이어를 포함하는 복합 투명 도전체를 도시한다.
도 2C는 금속 퍼콜레이션 레벨 아래에서 그리고 제2 유형의 이방성 나노구조체로 형성된 도전성 막과 조합된 금속 나노와이어를 포함하는 복합 투명 도전체를 도시한다.
도 3A는 인접한 금속 나노와이어들 사이에 국한된 불균일한 전기장을 도시한다.
도 3B는 연속적인 도전성 막들의 존재하에 균일한 전기장을 도시한다.
도 4A 내지 도 4C는 금속 나노와이어 및 탄소 나노튜브에 기반하는 복합 투명 도전체의 실시예들을 도시한다.
도 5는 치수가 다른 두개의 서로 다른 유형의 금속 나노와이어들을 갖는 복합 투명 도전체를 도시한다.
도 6A 및 도 6B은 금속 나노와이어 및 금속 산화막에 기반하는 복합 투명 도전체의 실시예들을 도시한다.
도 6C는 한 쌍의 병렬 저항기를 개략적으로 도시한다.
도 7A 및 도 7B은 금속 나노와이어 및 도전성 폴리머 막에 기반하는 복합 투명 도전체의 실시예들을 도시한다.
도 8은 두 개의 투명 전극들 사이에 위치하는 액정 물질을 개략적으로 도시한다.
도 9는 복합 투명 도전체를 포함하는 장치를 도시한다.
일반적으로, 복합 투명 도전체는 적어도 두 개의 유형의 투명 도전성 매질로 형성되는 도전성 막이다. 보다 구체적으로, 복합 투명 도전체는 1차 도전성 매질로서의(여기에 기재된 바와 같은) 금속 이방성 나노구조체 및 1차 도전성 매질에 결합된 2차 도전성 매질을 포함한다. 2차 도전성 매질은 전형적으로 제2 유형의 도전성 나노구조체의 도전성 네트워크 또는 도전성 폴리머나 금속 산화물로 형성된 연속적인 도전성 막이다.
복합 투명 도전체의 전기적 및 광학적 특성은 구성 도전성 매질들의 구조, 전도율, 광학적 특성, 분포 및 충전 레벨과 같은 인자에 의해 결정된다.
특정 실시예들에서, 복합 투명 도전체는 별개의 도전성 막들의 적층 구조이다. 다른 실시예들에서, 복합 투명 도전체는 두 개 이상 유형의 도전성 매질(예를 들어, 2개 이상 유형의 도전성 나노구조체)이 완전히 통합된 결속 구조이다. 구조적 배열에 관계없이, 투명 도전체는 이러한 구성 도전성 매질들의 적절한 선택을 통해 구성 도전성 매질들의 단순한 부가 효과 이상의 특성을 보일 수 있다.
도전성 나노구조체
특정 실시예들에서, 복합 투명 도전체는 적어도 두 개 유형의 나노구조체를 포함하는데, 그 중 하나는 금속 이방성 나노구조체와 관련된다. 본원에 사용된 바와 같이, '나노구조체' 또는 '도전성 나노구조체'는 일반적으로, 적어도 하나의 치수가 500nm 이하, 보다 바람직하게는 250nm, 100nm, 50nm 또는 25nm 이하인 나노 크기의 구조체를 말한다.
나노구조체는 임의의 모양 및 구조일 수 있다. 특정 실시예에서, 나노구조체는 등방성으로 형상화된다(즉, 종횡비 = 1). 전형적인 등방성 나노구조체는 나노입자를 포함한다. 바람직일 실시예에서, 나노구조체는 이방성으로 형상화된다(즉, 종횡비 ≠ 1). 본원에 사용되듯이, 종횡비는 나노구조체의 길이와 폭(또는 직경) 사이의 비를 뜻한다. 이방성 나노구조체는 전형적으로 길이를 따라 횡축(longitudinal axis)을 갖는다. 예시적 이방성 나노구조체는 본원에 정의된 바와 같이 나노와이어 및 나노튜브를 포함한다.
나노구조체는 속이 알차거나 속이 빌 수 있다. 속이 찬 나노구조체는 예를 들어 나노입자 및 나노와이어를 포함한다. '나노와이어'는 본원에 정의된 바와 같이 속이 찬 이방성 나노구조를 뜻한다. 전형적으로, 각 나노와이어는 10보다 큰 종횡비(길이:직경), 바람직하게는 50보다 큰, 보다 바람직하게는 100보다 큰 종횡비를 갖는다. 전형적으로, 나노와이어는 길이가 500nm, 또는 1㎛ 또는 10㎛보다 길다.
속이 빈 나노구조체는 예를 들어, 나노튜브를 포함한다. '나노튜브'는 본원에 정의된 바와 같이 속이 빈 이방성 나노구조체를 말한다. 전형적으로 나노튜브는 10보다 큰 종횡비(길이:직경), 바람직하게는 50보다 큰, 더욱 바람직하게는 100보 다 큰 종횡비를 갖는다. 전형적으로, 나노튜브는 길이가 500nm, 또는 1㎛ 또는 10㎛보다 길다.
나노구조체는 임의의 도전성 물질로 제조될 수 있다. 가장 전형적으로, 상기 도전성 물질은 금속이다. 금속 물질은 원소 금속(elemental metal)(예, 전이 금속) 또는 금속 화합물(예, 금속 산화물)일 수 있다. 금속 물질은 또한 두 가지 이상 유형의 금속을 포함하는 금속 합금 또는 두 금속 물질(bimetallic material)일 수 있다. 적합한 금속은 은, 금, 구리, 니켈, 금 도금된 은, 백금 및 팔라듐을 포함하나, 이에 한정되지 않는다. 도전성 물질은 또한 탄소 또는 그래파이트(탄소의 동소체)와 같은 비금속일 수 있다.
상술한 바와 같이, 금속 이방성 나노구조체는 복합 투명 도전체에서 1차 도전성 매질로서 사용될 수 있다. 바람직한 유형의 이방성 금속 나노구조체는 금속 나노와이어를 포함한다. 금속 나노와이어는 금속, 금속 합금, 도금된 금속 도는 금속 산화물로 제조된 나노와이어이다. 적합한 금속 나노와이어는 은 나노와이어, 금 나노와이어, 구리 나노와이어, 니켈 나노와이어, 금 도금된 은 나노와이어, 백금 나노와이어 및 팔라듐 나노와이어를 포함하나, 이에 한정되지 않는다. 미국 특허 출원번호 11/766,552, 11/504,822, 11/871,767, 및 11/871,721호는 금속 나노와이어(예, 은 나노와이어)를 제조하는 방법 및 금속 나노와이어에 기반한 투명 도전체의 제조 및 패터닝 방법을 개시하는데, 이들의 기재는 전체로서 본원에 참고문헌으로 포함된다.
1차 도전성 매질에 사용된 이방성 금속 나노구조체의 다른 바람직한 유형은 금속 나노튜브를 포함한다. 2008. 2. 26일자 출원된 미국 특허 출원번호 61/031,643호는 금속 나노튜브(예, 금 나노튜브) 제조 방법 및 금속 나노튜브에 기반한 투명 도전체의 제조 및 패터닝 방법을 개시하는데, 이들의 기재는 전체로서 본원에 참고문헌으로 포함된다.
본원에서 더 자세히 논의될 것인 바, 나노와이어 및 나노튜브와 같은 금속 이방성 나노구조체는 다른 유형의 도전성 나노구조체에 의해 형성되는 2차 도전성 매질과 결합될 수 있다. 2차 도전성 매질은 다음의 나노구조체의 하나일 수 있으나, 이에 한정되지 않는다: 탄소 나노튜브, 1차 도전성 매질을 형성하는 금속 나노와이어(또는 나노튜브)와 상이한 금속 나노와이어(또는 나노튜브), 도전성 나노입자 등.
특정 실시예들에서, 2차 도전성 매질을 형성하는 도전성 나노구조체는 탄소 나노튜브이다. 탄소 나노튜브는 또한 도전성 이방성 나노구조체이다. 더 구체적으로, '탄소 나노튜브'는 감긴(rolled-up) 그래핀(graphene) 시트의 실린더 또는 튜브를 뜻한다. 각 그래핀 시트는 sp2 하이브리드 탄소 원자를 포함한다. 탄소 나노튜브는 단일 벽(single-walled) 또는 다중 벽(multi-walled)의 형태이거나 둘의 혼합 형태를 취할 수 있다. 단일 벽 탄소 나노튜브(SWNT; single-walled carbon nanotube)는 단일의 감긴 그래핀 시트에 의해 형성된다. 다중 벽 탄소 나노튜브(MVNTs; multi-walled carbon nanotubes)는 서로 포개진 둘 이상의 동축으로 배열된 SWNT들이다. SWNT 및 MWNT가 금속 및 도전성 특성을 보인다는 것은 공지이다.
탄소 나노튜브는 전형적으로 높은 종횡비의 견고한(rigid) 구조이다. SWNT 및 MWNT의 길이는 보통 1㎛를 훨씬 넘고 직경은 약 1nm(SWNT의 경우) 내지 약 50 nm(MWNT의 경우) 범위이다. 전형적으로, 탄소 나노튜브의 종횡비는 약 10 - 100,000의 범위에 있다. 더욱 전형적으로, 종횡비는 약 1,000 - 10,000의 범위에 있다. SWNT는 Sigma-Aldrich(St. Louis, MO) 로부터 상업적으로 구입가능하다.
선택사양으로, 탄소 나노튜브는 응집을 방지하기 위해 표면 처리될 수 있다. 예를 들어, 친수성 작용기들이 수성 매질 내로의 더 나은 분산을 위하여 상기 표면상에 포함될 수 있다. 표면 처리의 다양한 방법이 Peng H. et al. Sidewall Carboxylic Acid Functionalization of Single-Walled Carbon Nanotubes, J. Am. Chem. Soc. 125, 15174-15182, 2003 및 Liu J. et al. Fullerene Pipes, Science, 280, 1253-1256, 1998 에 개시되어 있다.
또 다른 실시예들에서, 도전성 나노구조체는 은, 금, 구리, 니켈 나노입자와 같은 금속 나노입자 및 인듐 주석 산화물 및 도핑된 아연 산화물 나노입자와 같은 금속 산화물 나노입자를 포함하는 도전성 나노입자이다. 비금속 도전성 나노입자는 카본 블랙, 그래핀 시트 등을 포함한다. 이러한 도전성 나노입자는 당업계에 공지되어 있다.
도전성 나노구조체들은 연속적인 물리적 접촉뿐만 아니라 하나의 나노구조체에서 다른 나노구조체로의 전하의 터널링을 통해 전기적 전도성을 달성할 수 있다.
1차 도전성 매질
금속 나노와이어 또는 금속 나노튜브는 1차 도전성 매질을 형성한다. 적합한 금속 나노와이어는 금속, 금속 합금, 도금된 금속 또는 금속 산화물로 형성된 나노와이어이다. 적합한 금속 나노와이어는 은 나노와이어, 금 나노와이어, 구리 나노와이어, 니켈 나노와이어, 금 도금된 은 나노와이어, 백금 나노와이어 및 팔라듐 나노와이어를 포함하나, 이에 한정되지 않는다. 적합한 금속 나노튜브는 금 나노튜브 및 미국 가출원번호 61/031,643호에 기재된 것들을 포함한다.
다양일 실시예들에서, 금속 나노와이어는 길이가 약 5-100㎛ 이고 직경이 약 5-100nm이다. 특정 실시예들에서, 상기 금속 나노와이어는 약 5-30㎛ 이고 직경이 약 20-80nm이다. 바람직일 실시예에서, 금속 나노와이어(예, 은 나노와이어)는 길이가 약 20㎛ 이고 직경이 50nm이다.
적합한 금속 나노튜브는 금속 나노와이어에 기재된 것과 유사한 치수를 갖는다. 나노튜브의 경우, 직경은 나노튜브의 외경을 뜻한다.
나노구조는 퍼콜레이션 공정을 통하여 도전성 네트워크를 형성한다. 퍼콜라티브(percolative) 도전성은 상호 연결되는 나노구조체들을 통하여 도전성 경로가 형성될 때 수립될 수 있다. 충분한 나노구조체들이 전기적 퍼콜레이션 문턱값에 도달하여 도전성이 되도록 존재하여야만 한다. 전기적 퍼콜레이션 문턱값은 따라서 그 위에서 장거리 연결성이 달성될 수 있는 나노구조체들의 충전 밀도(loading density) 또는 농도에 관한 중요한 값이다. 전형적으로, 충전 밀도는 "개수/㎛2" 으로 표시될 수 있는 면적당 나노구조체의 개수를 뜻한다.
미국 특허출원번호 11/504,822호에 기재된 바와 같이, 나노구조체의 종횡비(길이:직경)가 높을수록, 퍼콜라티브 연결성을 달성하는데 더 적은 나노구조체가 필요하다. 나노와이어와 같은 이방성 나노구조체에 있어서, 전기적 퍼콜레이션 문턱값 또는 충전 밀도는 나노와이어의 길이2에 역으로 관련된다. 전체로서 본원에 참고문헌으로 포함된 미국 출원번호 11/871,053호는 퍼콜레이션 문턱값에서의 나노와이어의 크기/형상과 표면 충전 밀도 사이의 이론적인 것 뿐만 아니라 실험적인 관련성을 자세히 개시한다.
도 1은 전기적 퍼콜레이션 문턱값 위에서 나노와이어(20)에 의해 형성된 도전성 네트워크(10)를 개략적으로 도시한다. 도전성 경로는 상호 연결하는 나노와이어들에 의해 형성될 수 있다(예컨대, 경로는 연결하는 나노와이어들을 통해 네트워크의 한 끝에서 다른 끝까지 이어질 수 있다). 전류는 따라서 나노와이어 네트워크(10)를 가로질러 운반될 수 있다.
본원에 사용된 바와 같이, '도전성 네트워크' 또는 '네트워크'는 전기적 퍼콜레이션 문턱값 위에서 도전성 나노구조체들에 의해 형성되는 상호 연결 네트워크를 말한다. 전형적으로, 도전성 네트워크 표면 비저항(또는 '면저항')은 108 오옴/스퀘어(또한 "Ω/□" 라고도 함)보다 높지 않다. 바람직하게, 표면 비저항은 104Ω/□, 3,000Ω/□, 1 ,000Ω/□ 또는 100 Ω/□보다 높지 않다. 전형적으로, 금속 나노와이어에 의해 형성된 도전성 네트워크의 표면 비저항은 10Ω/□ 내지 1000Ω/□, 100Ω/□ 내지 750Ω/□, 50Ω/□ 내지 200Ω/□, 100Ω/□ 내지 500Ω/□, 또 는 100Ω/□ 내지 250Ω/□, 또는 10Ω/□ 내지 200Ω/□, 10Ω/□ 내지 50Ω/□, 또는 1Ω/□ 내지 10Ω/□의 범위에 있다.
또한, 도 1에 도시된 바와 같이, 네트워크 나노와이어는 와이어 사이(inter-wire)의 공간(30)을 정의한다. 퍼콜레이션 문턱값 위에서, 와이어 사이 공간의 크기('메쉬 크기'라고도 함)는 네트워크의 전도성에 상호 관련된다. 전형적으로, 더 작은 메쉬 크기는 더 촘촘하게 분포된 나노와이어를 뜻하는데, 이는 더 높은 전도성에 상응한다.
메쉬 크기는 또한 표면 충전 레벨의 지표로서 사용될 수 있다. 예를 들어, 주어진 길이의 나노와이어에 대하여, 낮은 표면 충전은 더 큰 메쉬 크기를 야기한다. 메쉬 크기가 특정 문턱값 위에 있을 때, 나노와이어는 너무 멀리 떨어져서 퍼콜레이션이 더 이상 가능하지 않고 와이어 사이의 공간은 사실상 절연체가 된다. 도 2A는 막(12)을 도시하는데, 여기서 나노와이어들(20)은 네트워크를 형성하기에는 불충분한 밀도에 있다. 와이어 사이 공간(30)은 절연성이 된다. 달리 설명하면, 도 1과 비교하여 나노와이어의 낮은 밀도 때문에, 메쉬 크기는 커지고 나노와이어들 사이의 도전성은 제거된다.
충전제로서의 2차 도전성 매질
복합 투명 도전체에서, 금속 나노와이어가 전기적 퍼콜레이션 문턱값 아래의 충전 밀도라 하더라도, 도전성은 2차 도전성 매질의 존재하에 달성될 수 있다. 1차 도전성 매질의 금속 나노와이어가, 다양일 실시예에서, 퍼콜라티브하거나 퍼컬라티 브하지 않을 수 있는 반면, 2차 도전성 매질의 존재는 복합 투명 도전체에서 예상되지 않거나 상승적인(synergistic) 특성을 제공한다.
특정 실시예들에서, 2차 도전성 매질은 1차 도전성 매질을 형성하는 금속 나노와이어와는 상이한 물질, 치수, 형태 또는 구조의 나노구조체를 포함한다. 예를 들어, 2차 도전성 매질은 탄소 나노튜브, 금속 나노튜브, 나노입자 및 다른 치수 또는 물질의 금속 나노와이어를 포함하나, 이에 한정되지 않는다.
다른 실시예들에서, 2차 도전성 매질은 연속적인 도전성 막일 수 있다. 본원에 사용된 바와 같이, '연속적인 도전성'은 얇은 층을 가로질러서(예컨대, 표면 또는 면내를 가로질러서) 방해받지 않고 균일한 도전성 경로를 의미하며, 여기서 전기적 도전성은 도전성 매질의 연속적인 물리적 접촉에 의해 수립될 수 있다. 연속적인 도전성 막의 예는 스퍼터링된 또는 퇴적된 금속 산화막, 도전성 폴리머 막 등을 포함하나, 이에 한정되지 않는다.
일 태양에서, 2차 도전성 매질은 나노와이어 막의 와이어 사이 공간을 채우는 역할을 한다. 도 2B는 복합 투명 도전체(34)를 도시하는데, 여기서 연속적인 도전성 막(40)이 도 2A의 나노와이어(20)에 첨가된다. 연속적인 도전성 막은 절연성 공간(30)을 채워 메쉬 크기를 사실상 제거한다.
도 2C는 또 다른 복합 투명 도전체(44)를 도시하는데, 여기서 복수의 제2 유형의 이방성 나노구조체(48)가 또한 제공된다. 이방성 나노구조체(48)는 나노와이어(20)보다 훨씬 높은 종횡비를 갖는 것으로 도시된다. 도시된 바와 같이, 더 긴 나노구조체(48)에 의한 더 효율적인 연결성 때문에 와이어 사이 공간(30)은 효과적 으로 감소된다.
도 2B 및 도 2C에 도시된 바와 같이, 나노와이어 및 2차 도전성 매질의 결합된 효과는 1차 도전성 매질이 전기적 퍼콜레이션 문턱값에 도달하지 않아도 도전성을 수립할 수 있다.
추가적 실시예에서, 와이어 사이 공간을 채우는 2차 도전성 매질의 존재는 또한 주어진 투명 도전체에서 전기적 전위 분포를 균등하게 하는 역할을 한다. 또한, 두 전극이 이격되고 전기적 전위가 인가될 때, 두 전극의 공간 사이에 전기장이 생성된다. 전극으로서 복합 투명 도전체를 채택하는 것은 전기장의 균일성을 향상시키는 역할을 한다. 도 3A는 상부 도전성 막(50) 및 하부 도전성 막(54) 사이의 전기장 선들을 도시한다. 두 도전성 막들(50, 54)은 모두 나노와이어만에 기반한다. 상부 도전성 막(50)은 상부 기판(50b)상에 분포된 나노와이어(50a)(단면도로 도시됨)를 포함한다. 마찬가지로, 하부 도전성 막(54)은 하부 기판(54b)상에 분포된 나노와이어(54a)(역시 단면도로 도시됨)를 포함한다. 전기장(선(58)으로 개략적으로 도시됨)은 예를 들어, 나노와이어(50a)로부터 시작되어 나노와이어(54a)에서 끝난다. 각 전극 내 나노와이어들 사이의 와이어 사이 공간(예, 62 및 66) 때문에, 선들(58)은 대향하는 와이어들 근처에 집중된다. 도 3B는 2차 도전성 매질, 예를 들어 각각 와이어 사이 공간(62, 66)을 채우는 연속적인 막들(70, 74)을 도시한다. 그 결과, 선들(78)로 도시되는 전기장은 더욱 균일하게 분포된다.
1차 도전성 매질로서, 높은 도전성 금속 나노와이어는 전형적으로 복합 투명 도전체에서 전류의 대부분을 감당한다. 2차 도전성 매질은 전류 전달의 부담을 받 지 않지만 그럼에도 불구하고 금속 나노와이어 사이 공간을 채우는 도전성 층을 형성할 수 있다. 이를 위해, 2차 도전성 매질은 108 오옴/스퀘어("Ω/□" 로도 칭함) 보다 높지 않은 표면 비저항(또는 '면저항')을 갖는 도전성 층을 형성한다. 바람직하게, 표면 비저항은 1O4Ω/□, 3,000Ω/□, 1,000Ω/□ 또는 100Ω/□보다 높지 않다. 전형적으로, 연속적인 도전막의 면저항은 10Ω/□ 내지 1000Ω/□, 100Ω/□ 내지 750Ω/□, 50Ω/□ 내지 200Ω/□, 100Ω/□ 내지 500Ω/□, 또는 100Ω/□ 내지 250Ω/□, 또는 10Ω/□ 내지 200Ω/□, 10Ω/□ 내지 50Ω/□, 또는 1Ω/□ 내지 10Ω/□의 범위에 있다.
다양일 실시예들에서, 2차 도전성 매질에 의해 형성된 도전성 층은 본원에 정의된 바와 같이 광학적으로 깨끗하다. 또한, 2차 도전성 매질의 존재는 광 산란의 전체적인 감소로 이어질 수 있다. 금속 나노와이어는 반사 구조체로, 광 산란 및 반사 때문에 탈분극(depolarization)을 야기할 수 있다. 탈분극은 전형적으로 표시 장치(예, 평판 표시장치)의 광 경로내에 있는 투명 도전체 막에서 명암비(contrast ratio)를 감소시키는데 기여하는 주요 인자중의 하나이다. 낮은 명암비는 표시장치의 이미지 품질에 역으로 영향을 미치는 경향이 있다. 예를 들어, 미국 가출원번호 61/031,643호를 참조하라. 나노와이어로만 형성된 투명 도전체 막에서, 나노와이어의 수의 감소는 광 산란 감소를 야기할 수 있으나, 잠재적으로 도전성에서 손실을 치를 수 있다. 이 실시예에 따른 복합 막은 2차 도전성 매질에 의해 제공되는 보완적 연결성 때문에 반드시 도전성 감소를 일으키지 않으면서 더 적은 나노와이어를 채택함으로써 반사율이 감소되도록 한다.
또한, 적절한 물질(예, 저반사 또는 무반사), 입자 치수(예컨대, 작은 직경 또는 단면을 갖는 나노구조체는 광 산란을 덜 야기함), 특정 구조(예, 나노튜브는 동일한 외경의 나노와이어보다 광 산란을 덜 야기함)의 나노구조체를 선택함으써, 최적화된 광학 특성을 갖는 복합 투명 도전체를 주문 제작하는 것이 가능하다.
전형적으로, 다양일 실시예들에서, 2차 도전성 매질에 의해 형성되는 도전성 층은 약 100nm 내지 200nm 두께, 또는 50nm 내지 100nm 두께, 또는 150nm 내지 200nm 두께이다.
복합 투명 도전체
따라서, 복합 투명 도전체는 1차 도전성 매질로서 금속 나노와이어 및 1차 도전성 매질에 결합된 2차 도전성 매질을 포함한다. 본원에 사용된 바와 같이, '결합된'은 두 개의 도전성 매질 사이의 직접적 연관을 뜻하며 물리적 접촉, 전기적 연결 등을 포함한다.
상기 복합체에서 결합된 도전성 매질들은 예상되지 않는 기여 또는 개별 도전성 매질의 합보다 강화된 특성을 제공한다. 본원에서 보다 상세히 개시될 것인바, 복합 투명 도전체의 상승적인 개선은 복합 투명 도전체내의 더욱 균등해진 전위, 복합 투명 도전체에 의해 형성된 두 개의 전극 사이의 더욱 균일한 전기장, 높은 도전성, 더 나은 내구성, 높은 종횡비 등을 포함하나, 이에 한정되지 않는다. 또한, 나노와이어를 적절하게 선택된 2차 도전성 매질과 결합할 때, 복합 투명 도 전체의 성능 표준을 손상함이 없이 전체 제조 비용이 감소될 수 있다.
다음의 구체적 실시예는 1차 도전성 매질로서 금속 나노와이어 및 다양한 2차 도전성 매질에 기반한 복합 투명 도전체를 개시한다.
1. 2차 도전성 매질로서 탄소 나노튜브 막
또 다른 실시예에서, 복합 투명 도전체는 2차 도전성 매질과 결합된 복수의 금속 나노와이어를 포함하는 바, 2차 도전성 매질은 탄소 나노튜브(CNT)로 형성된 연속적인 도전성 막이다.
도 4A는 나노와이어 층(144) 및 기판(152)상에 형성된 하지 CNT 층(148)을 포함하는 복합 투명 도전체(140)을 도시한다. CNT들은 나노와이어 아래의 도전성 막을 형성한다. 도 4B는 구성 막들의 역 배열을 갖는 복합 투명 도전체(150)를 도시하는 바, 나노와이어 층(144)이 CNT 층(148) 아래에 있다. 도 4A 및 도 4B 모두에서, 구성 막들은 차례로 퇴적될 수 있다. 또는, 나노와이어 및 CNT는 또한 동시에 함께 퇴적(co-deposited)되어 완전히 통합된 도전성 막을 형성할 수 있다. 도 4C는 나노와이어(168) 및 CNT(172)가 완전히 통합되어 밀착된 구조를 제공하는 도전성 층(164)을 구비하는 복합 투명 도전체(160)를 도시한다.
도 4A 내지 도 4C에 도시된 복합 막들은 전류를 전달하기 위한 고 도전성 금속 나노와이어와 도전성 CNT 막의 충전효과의 보완적 특성에 의지하는 장거리 연결성을 제공한다. CNT는 주어진 충전 레벨에서 금속 나노와이어(은 나노와이어의 경 우, 약 10.5g/cm3 )에 비하여 더 낮은 비중(약 1.7-1.9g/cm3 )을 가지므로, CNT는 금속 나노와이어에 비하여 더 작은 메쉬 크기를 갖는 도전성 막을 형성할 수 있다. 따라서, CNT 층을 갖는 복합 투명 도전체는 또한 전원에 연결될 때 복합 막의 전위의 균일성을 향상시킬 수 있다.
또한, CNT는 검고 매우 좁은 치수(즉, 이들의 직경 또는 단면적은 전형적으로 2nm보다 작음)를 가졌는데, 이는 광 산란을 감소시키고 명암비를 개선하는 바람직한 조건이다. 그 결과, CNT 및 금속 나노와이어에 기반한 결합된 도전성 매질들은 주어진 도전성에서 전체 반사율을 감소시킨다.
또한, CNT 및 나노와이어에 기반한 복합 막은 비아 콘택으로서 특히 적합하다. 본원에 사용된 바와 같이, '비아'는 전형적으로 유전층을 통한 두 개의 도전체 사이의 연결을 뜻한다. 논의된 바와 같이, CNT가 금속 나노와이어보다 훨씬 낮은 비중을 갖기 때문에, CNT의 충전 밀도는 동일한 중량의 금속 나노와이어보다 단위 면적당 훨씬 높을 수 있다. 이것은 제한된 영역(약 5-10 마이크론)에서 고전류 밀도를 지탱하는 부담을 갖는 비아 콘택에 유익하게 적용될 수 있다. CNT의 큰 밀도는 추가적 전류를 효과적으로 전달할 수 있고 금속 나노와이어에 대한 심각한 손상을 방지할 수 있다.
특정 실시예들에서, 3차 도전성 매질이 복합 투명 도전체에 추가로 포함될 수 있다. 본원에서 사용된 바와 같이, '제2 유형의 나노구조체' 및 '제3 유형 나노구조체'는 특히 나노구조체의 재료, 치수, 형상 또는 구조와 같은 적어도 하나의 측면에서 서로는 물론 1차 도전성 매질을 형성하는 금속 나노와이어 또는 금속 나노튜브와 상이한 나노구조체를 뜻한다.
적합한 3차 도전성 매질은 도전성 나노입자, 1차 도전성 매질의 금속 나노와이어와 다른 재료, 치수 또는 구조의 도전성 나노구조체와 같은 도전성 나노구조체를 포함한다. 예를 들어, 도전성 나노입자들은 금속성 나노입자, 금속 산화 나노입자, 카본 블랙 및 이들의 조합일 수 있다. 도전성 나노구조체는 상이한 금속의 나노와이어, 나노튜브 또는 높은 종횡비나 더 작은 단면의 나노와이어일 수 있다. 복합 투명 도전체 전체에 분포된 제3 유형의 도전성 나노구조체는 CNT의 충전 효과를 보완할 수 있고 복합 투명 도전체를 가로질러 더욱 균일된 전위가 되도록 기여할 수 있다.
전형적으로, 금속 나노와이어(예, 은 나노와이어) 및 CNT 막의 결합에 기반한 복합 투명 도전체는 (대기를 기준으로 사용하여) 적어도 50%, 적어도 60%, 적어도 70%, 또는 적어도 80%, 또는 적어도 85%, 또는 적어도 90%, 또는 적어도 95%의 광 투과율을 갖는다.
전형적으로, 금속 나노와이어(예, 은 나노와이어) 및 CNT 막의 결합에 기반한 복합 투명 도전체는, 복합 투명 도전체의 최종 적용에 따라, 1-108Ω/□ 범위의 면저항을 갖는다. 더욱 전형적으로, 면저항은 10Ω/□ 내지 1000Ω/□, 100Ω/□ 내지 750Ω/□, 50Ω/□ 내지 200Ω/□, 100Ω/□ 내지 500Ω/□, 또는 100Ω/□ 내지 250Ω/□, 또는 10Ω/□ 내지 200Ω/□, 10Ω/□ 내지 50Ω/□, 또는 1Ω/□ 내지 10Ω/□의 범위에 있다.
바람직일 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 CNT 막의 조합에 기반한 복합 투명 도전체는 85%보다 높은 광 투과율 및 1000Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 CNT 막의 조합에 기반한 복합 투명 도전체는 95%보다 높은 광 투과율 및 500Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 CNT 막의 조합에 기반한 복합 투명 도전체는 90%보다 높은 광 투과율 및 100Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 CNT 막의 조합에 기반한 복합 투명 도전체는 85%보다 높은 광 투과율 및 50Ω/□보다 작은 면저항을 갖는다.
2. 2차 도전성 매질로서 다른 유형의 나노구조체
CNT 이외의 나노구조체가 또한 2차 도전성 매질로서 적합하다. 특정 실시예들에서, 상기 도전성 나노구조체는 1차 도전성 매질을 형성하는 금속 나노와이어와 상이한 물질 또는 치수의 금속 나노와이어이다. 예를 들어, 저반사 금속으로 형성되거나 또는 저반사 산화물 외피(sheath)를 갖는 나노와이어들이 복합 투명 도전체의 전체적 도전성을 손상하지 않으면서 광 산란을 감소시키기 위해 사용될 수 있다. 또한, 1차 도전성 매질의 금속 나노와이어의 직경에 비해 더 작은 직경(즉, 단면적)을 갖는 나노와이어가 또한 광 산란을 감소시킬 수 있다.
도 5는 1차 도전성 매질로서의 제1 유형의 나노와어어 및 제2 유형의 나노와 이어(188)를 포함하는 복합 투명 도전체(170)를 도시한다. 제2 유형의 나노와이어(188)는 제1 유형의 나노와이어(174)의 직경보다 훨씬 작은 직경을 갖는다. 그 결과, 2차 도전성 매질은 와이어 사이 공간(182)을 채움으로써 복합 투명 도전체의 도전성을 도울 뿐 아니라 이들의 좁은 치수 때문에 광 산란에 실질적으로 기여하지 않는다.
다양한 다른 실시예들에서, 상기 제2 유형의 나노구조체는 금속 나노튜브, 도전성 나노입자(예컨대, 카본 블랙 및 금속 또는 금속 산화물 나노입자) 등일 수 있다.
3. 2차 도전성 매질로서 금속 산화막
일 실시예에서, 복합 투명 도전체는 2차 도전성 매질과 결합된 복수의 금속 나노와이어를 포함하는데, 여기서 2차 도전성 매질은 도전성 금속 산화막이다. 인듐 주석 산화물(ITO)과 같은 도전성 금속 산화물은 당해 분야에 공지되어 있다. 스퍼터링된 ITO 막은 투명 도전체를 채택하는 장치에 통상적으로 적용되어 왔다. 그러나, ITO 막은 깨지기 쉽고 스트레스에 낮은 내구력 때문에 적용에 한계가 있다. ITO 막에서의 미세한 파손조차 도전성의 급격한 손실을 야기할 수 있다.
금속 나노와이어에 기반한 막과 ITO 막을 결합하는 것은 상승하는 잇점을 갖는 복합 막을 제공한다. 도 6A는 기판(110)(예, 유리) 상의 ITO 막(188), 및 ITO 막(188)의 상부 상에 위치한 나노와이어 막(192)를 포함하는 복합 막을 도시하는데, 나노와이어 막(192)은 나노와이어(194)를 포함한다.
일 실시예에서, 나노와이어(194)의 충전 밀도는 전기적 퍼콜레이션 문턱값 아래에 있다. 그럼에도 불구하고, 표면 도전성은 나노와이어 및 하지 ITO 막(188)의 결합에 의해 상기 복합 막(186)에서 수립될 수 있다. 논의된 바와 같이, ITO 막은 나노와이어 사이의 임의의 절연 갭(insulating gap)을 채울 수 있다.
도 6B는 나노와이어에 기반한 막 및 ITO 막의 다른 배열을 갖는 복합 막(196)을 도시한다. 도시된 바와 같이, 나노와이어 막(192)이 기판(110) 상에 먼저 퇴적된다. ITO 막(188)은 나노와이어 막(192)의 상부 상에 스퍼터링된다. 도 6A에서와 같이, 나노와이어(194)는 반드시 도전성 네트워크 자체를 형성하지는 않는다. 그럼에도 불구하고, 평면내(in-plane) 도전성은 나노와이어 및 위의 ITO 막(188)의 결합에 의해 복합 막(196)에서 수립될 수 있다.
도시된 바와 같이, 복합 막 전반의 도전성은, 표면 및 평면내 도전성을 포함하여, 구성 막 단독, 즉, 나노와이어에 기반한 막과 ITO 막 어느 것의 도전성보다 뛰어날 수 있다. 바람직하게, 상기 구성 막들은 서로 보완하여 구성 막의 단순한 부가적 효과 이상인 특성을 상승적으로 제공한다. 예를 들어, 연속적인 ITO 막의 존재 때문에, 전압 소스(voltage source)에 연결될 때, 복합 막은 나노와이어 단독에 기반한 투명 도전체의 전위보다 더 균일한 전기적 전위를 갖는다(또한, 도 2B 참조). 한편, 나노와이어는 도전성 손실을 야기하지 않으면서 복합 막에서 어느 정도의 굽힘(flexing)을 허용한다. 예를 들어, 나노와이어는 ITO 막의 벌크 내의 작은 파손을 연결하여 도전성을 유지할 수 있고, 따라서 물리적 스트레스가 있을 때 복합 막에서의 심각한 불량을 방지할 수 있다.
또한, 나노와이어의 높은 도전성 때문에, 복합 막의 도전성은 동일한 두께에서 순수 ITO 막의 도전성과 비교하여 훨씬 높을 수 있다. 따라서, 순수 ITO 막보다 더 얇은 ITO 막을 구성요소로서 갖고, 또한 순수한 더 두꺼운 ITO 막과 동일한 레벨의 도전성에 도달할 수 있는 복합 막을 제조하는 것이 가능하다. ITO 막의 두께를 줄이는 것은 바로 제조 비용의 감소를 가져올 수 있고, 덜 부서지기 쉬운 ITO 막을 가져올 수 있다.
또한, 도 6A 및 도 6B의 구성 막들이 두 개의 병렬 저항기를 닮은 배열이지만, 복합 막의 비저항은 병렬 저항기에서 기대되는 비저항보다 낮을 수 있다(실시예 4 참조). 도 6C는 두 개의 병렬 저항기들(198; 비저항 R1, 및 199; 비저항 R2))을 개략적으로 도시한다. 공지되었듯, 병렬 저항기 세트의 총 비저항 R은
R =(R1 x R2)/(R1 + R2) 이다.
실시예 4는 250Ω/□의 비저항을 갖는 ITO 막 및 약 250 /□의 비저항을 갖는 나노와이어에 기반한 막에 의해 형성된 복합 막의 비저항을 측정한다. 이러한 두 개의 구성 막들이 단순하게 병렬 저항기였다면, 총 비저항은 약 125Ω/□ 일 것이다. 그러나, 복합 막의 비저항은 병렬 저항기로서 ITO 막(250Ω/□) 및 나노와이어 막(250 Ω/□)의 기대되는 비저항보다 훨씬 낮은 약 50-80Ω/□ 범위에 있었다.
광학적으로, 복합 막은 주어진 도전성 레벨에서 나노와이어에 기반한 막 단독보다 덜 반사적일 수 있다. 논의된 바와 같이, 나노와이어로만 형성된 투명 도전체 막에서, 나노와이어의 숫자의 감소는 투명 도전체에서의 광 산란의 감소를 야기할 수 있으나, 도전성에서 심각한 손실을 치를 수 있다. 본 실시예에 따른 복합 막 은 ITO 막에 의해 제공되는 보완적 연결 때문에 도전성 감소를 반드시 야기하지 않으면서 적은 수의 나노와이어를 채택함으로써 광 산란을 감소하게 한다.
다른 금속 산화막이 도 6A 및 도 6B의 ITO 막 자리에 사용될 수 있다. 예시적 금속 산화막은 도핑된 아연 산화막, 플루오린 도핑된 주석 산화막, 알루미늄 도핑된 아연 산화막, Zn2SnO4, ZnSnO3, MgIn2O4, GaInO3,(Ga2In)2O3, Zn2In2O5, In4Sn3O12 등을 포함할 수 있다. Crawford, G. P., Flexible Flat Panel Display(John Wiley and Sons, 2005).
전형적으로, 금속 나노와이어(예, 은 나노와이어) 및 금속 산화막의 조합에 기반한 복합 투명 도전체는 (대기를 기준으로 사용하여) 적어도 50%, 적어도 60%, 적어도 70%, 또는 적어도 80%, 또는 적어도 85%, 또는 적어도 90%, 또는 적어도 95%의 광 투과율을 갖는다.
전형적으로, 금속 나노와이어(예, 은 나노와이어) 및 금속 산화막의 조합에 기반한 복합 투명 도전체는, 복합 투명 도전체의 최종 적용에 따라, 1-108Ω/□ 범위의 면저항을 갖는다. 더욱 전형적으로, 면저항은 10Ω/□ 내지 1000Ω/□, 100Ω/□ 내지 750Ω/□, 50Ω/□ 내지 200Ω/□, 100Ω/□ 내지 500Ω/□, 또는 100Ω/□ 내지 250Ω/□, 또는 10Ω/□ 내지 200Ω/□, 10Ω/□ 내지 50Ω/□, 또는 1Ω/□ 내지 10Ω/□의 범위에 있다.
바람직일 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 금속 산화막의 조합에 기반한 복합 투명 도전체는 85%보다 높은 광 투과율 및 1000Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 금속 산화막의 조합에 기반한 복합 투명 도전체는 95%보다 높은 광 투과율 및 500Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 금속 산화막의 조합에 기반한 복합 투명 도전체는 90%보다 높은 광 투과율 및 100Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 금속 산화막의 조합에 기반한 복합 투명 도전체는 85%보다 높은 광 투과율 및 50Ω/□보다 작은 면저항을 갖는다.
4. 2차 도전성 매질로서 도전성 폴리머 막
또 다른 실시예들에서, 복합 투명 도전체는 2차 도전성 매질과 결합된 복수의 금속 나노와이어를 포함하는 바, 여기서 2차 도전성 매질은 연속적인 폴리머 막이다.
특정 폴리머는 연속적인 중첩 궤도(overlapping orbitals)의 공액 백본(conjugated backbone) 전체에 걸쳐 전자적 비편재화(delocalization) 때문에 도전성이다. 예를 들어, 교번하는 단일 및 이중 탄소-탄소 결합(bonds)으로 형성된 폴리머는 전자가 점유할 수 있는 중첩하는 p 궤도의 연속적인 경로를 제공할 수 있다.
유기 도전성 폴리머의 흔한 종류는 폴리(아세틸렌), 폴리(피롤), 폴리(티오펜), 폴리(아닐린), 폴리(플루오렌), 폴리(3-알킬티오펜), PEDOT로도 알려진 폴리(3,4-에틸렌디옥시티오펜), 폴리테트라티아풀발렌, 폴리나프탈렌, 폴리파라페닐 렌, 폴리(파라페닐렌 황화물) 및 폴리(파라페닐렌 비닐렌)을 포함하며 이에 한정된다.
도전성 폴리머 막 단독은 전형적으로 표시장치에서 투명 도전체로서 가능하기에 충분할 정도로 도전성이지 않거나 물리적으로 강건하지 않지만, 도전성 폴리머 막은 금속 나노와이어와 결합되거나 금속 나노와이어로 도핑되어 복합 투명 도전체를 형성할 수 있다. 상기 복합 투명 도전체는 주 전류 운반 매질로서 금속 나노와이어를 그리고 전기장을 고르게 하는 충전체(filler)로서 도전성 폴리머 막에 의존할 수 있다. 또한, 금속 나노와이어는 또한 도전성 폴리머 막의 기계적 특성을 보강 및 강화할 수 있다.
광학적으로, 도전성 폴리머 막은 또한 복합 막의 흡수 특성을 조절할 수 있다.
도 7A는 기판(110)(예, 유리)상의 도전성 폴리머 막(204) 및 도전성 폴리머 막(204)의 상부상에 위치한 나노와이어 막(220)을 포함하는 복합 막(200)을 도시한다.
도 7B는 나노와이어에 기반한 막 및 도전성 폴리머 막의 다른 배열을 갖는 복합 막(230)을 도시한다. 도시된 바와 같이, 나노와이어 막(220)은 기판(110) 상에 먼저 퇴적된다. 도전성 폴리머 막(104)은 나노와이어 막(220)의 상부 상에 퇴적된다. 도 6A에서와 같이, 나노와이어(224)는 반드시 도전성 네트워크 자체를 형성하는 것은 아니다. 그럼에도 불구하고, 평면내(in-plane) 도전성은 나노와이어 및 그 위의 도전성 폴리머 막(204)의 결합에 의해 복합 막(230)에서 수립될 수 있다.
다른 실시예에서, 금속 나노와이어가 기판상에 먼저 퇴적되어 도전성 네트워크를 형성한다. 도전성 폴리머 막은 상기 금속 나노와이어 네트워크를 전극으로 사용하여 인시투(in situ)로 형성될 수 있다. 인시투로 형성될 수 있는 적절한 도전성 폴리머의 예는 폴리피롤이다. 더 구체적으로, 나노와이어에 기반한 도전성 네트워크를 전극(즉, 애노드)으로 사용하여, 피롤 단량체(pyrrole monomers)가 전기화학적으로 중합하고 도전성 네트워크상에 코팅을 형성할 수 있다. 도전성 폴리머 막은 또한 당업계에서 공지의 방법에 따라 산화제의 존재하에서 화학적으로 형성될 수 있다. 생성된 복합 투명 도전체는 도전성 폴리머 막에 매몰된 나노와이어로 특징지어진다.
전형적으로, 금속 나노와이어(예, 은 나노와이어) 및 도전성 폴리머 막의 조합에 기반한 복합 투명 도전체는 (대기를 기준으로 사용하여) 적어도 50%, 적어도 60%, 적어도 70%, 또는 적어도 80%, 또는 적어도 85%, 또는 적어도 90%, 또는 적어도 95%의 광 투과율을 갖는다.
전형적으로, 금속 나노와이어(예, 은 나노와이어) 및 도전성 폴리머 막의 조합에 기반한 복합 투명 도전체는, 복합 투명 도전체의 최종 적용에 따라, 1-108 Ω/□ 범위의 면저항을 갖는다. 더욱 전형적으로, 면저항은 10 Ω/□ 내지 1000Ω/□, 100Ω/□ 내지 750Ω/□, 50Ω/□ 내지 200Ω/□, 100Ω/□ 내지 500Ω/□, 또는 100Ω/□ 내지 250Ω/□, 또는 10Ω/□ 내지 200Ω/□, 10Ω/□ 내지 50Ω/□, 또는 1Ω/□ 내지 10Ω/□의 범위에 있다.
바람직일 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 도전성 폴리머 막의 조합에 기반한 복합 투명 도전체는 85%보다 높은 광 투과율 및 1000Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 도전성 폴리머 막의 조합에 기반한 복합 투명 도전체는 95%보다 높은 광 투과율 및 500Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 도전성 폴리머 막의 조합에 기반한 복합 투명 도전체는 90%보다 높은 광 투과율 및 100Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 도전성 폴리머 막의 조합에 기반한 복합 투명 도전체는 85%보다 높은 광 투과율 및 50Ω/□ 보다 작은 면저항을 갖는다.
전기적 및 광학적 특성
본원에서 논의된 바와 같이, 복합 투명 도전체에서 결합된 도전성 매질들은 예상되지 않는 기여 또는 개별 도전성 매질의 합보다 강화된 특성을 제공한다. 복합 투명 도전체의 이러한 상승적인 향상은 더 균일한 전위(전원에 연결되었을 때), 더 높은 도전성, 더 나은 내구성, 더 높은 명암비 등을 포함하나, 이에 한정되지 않는다.
전형적으로, 금속 나노와이어(예, 은 나노와이어) 및 2차 도전성 매질의 조합에 기반한 복합 투명 도전체는 (대기를 기준으로 사용하여) 적어도 50%, 적어도 60%, 적어도 70%, 또는 적어도 80%, 또는 적어도 85%, 또는 적어도 90%, 또는 적어도 95%의 광 투과율을 갖는다. 헤이즈(haze)는 광 산란(light scattering)의 지표 이다. 그것은 입사 광으로부터 분리되고 투과 동안 산란되는 광의 양(quantity)의 백분율을 뜻한다(즉, 투과 헤이즈). 주로 매질의 특성인 광 투과성과 다르게, 헤이즈는 흔히 제품 문제이고 전형적으로는 표면 거칠기 및 매질 내의 매몰된 입자들 또는 구성적 이질성에 의해 야기된다. 다양일 실시예들에서, 투명 도전체의 헤이즈는 10% 이하, 8% 이하, 5% 이하, 3% 이하, 또는 1% 이하이다.
전형적으로, 금속 나노와이어(예, 은 나노와이어) 및 2차 도전성 매질의 조합에 기반한 복합 투명 도전체는, 복합 투명 도전체의 최종 적용에 따라, 1-10/□ 범위의 면저항을 갖는다. 더욱 전형적으로, 면저항은 10Ω/□ 내지 1000Ω/□, 100Ω/□ 내지 750Ω/□, 50Ω/□ 내지 200Ω/□, 100Ω/□ 내지 500Ω/□, 또는 100Ω/□ 내지 250Ω/□, 또는 10Ω/□ 내지 200Ω/□, 10Ω/□ 내지 50Ω/□, 또는 1Ω/□ 내지 10Ω/□의 범위에 있다.
바람직일 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 2차 도전성 매질의 조합에 기반한 복합 투명 도전체는 85%보다 높은 광 투과율 및 1000Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 2차 도전성 매질의 조합에 기반한 복합 투명 도전체는 95%보다 높은 광 투과율 및 500Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 2차 도전성 매질의 조합에 기반한 복합 투명 도전체는 90%보다 높은 광 투과율 및 100Ω/□보다 작은 면저항을 갖는다. 다른 실시예들에서, 금속 나노와이어(예, 은 나노와이어) 및 2차 도전성 매질의 조합에 기반한 복 합 투명 도전체는 85%보다 높은 광 투과율 및 50Ω/□보다 작은 면저항을 갖는다.
본원에 개시된 복합 투명 도전체는 평판 표시장치에서 전극으로서 적합한 전기적 및 광학적 특성을 가질 수 있다. 평판 표시장치에 있어서 투명 전극의 전형적인 면저항 범위는 87%(유리가 기준으로 사용될 때) 또는 95%(대기를 기준으로 사용할 때)보다 높은 층의 투과율을 가지면서 약 10-100Ω/□ 이다.
또한, 전극으로 사용될 때, 복합 투명 도전체는 액정 표시장치(LCD)에서 특히 바람직한 균일한 전기장을 제공한다. 도 8은 LCD 셋업(250)을 개략적으로 도시하는데, 여기서 픽셀 전극(254) 및 상대전극(260)은 약 3-5 ㎛ 이격되며 '셀 갭(cell gap)'이라고도 불린다. 액정 셀(270)은 두 개의 전극 사이에 위치한다. 간단히 말해서, LCD는 셀에 갇힌 액정 분자가 두 개의 전극 사이에서 생성된 인가된 전기장에 반응하여 그들의 배열을 변경할 때 작동된다.
바람직한 레벨의 도전성 및 광 투과율에서, 나노와이어로만 형성된 투명 도전체 전극을 사용하면, 나노와이어 사이의 공간은 액정 셀 캡(즉, '셀 갭')에 상당할 수 있다. 따라서, 셀 내의 액정 분자들 모두가 동일한 전기장(크기 및 방향 모두)에 의해 구동되지 못해, 셀의 광학적 특성에서 바람직하지 않은 국부적인 불균일성을 야기할 가능성이 있다.
그러나 복합 투명 도전체를 전극으로 채택하면, 나노와이어 사이의 공간을 효과적으로 감소시키거나 제거한다. 전형적으로, 나노와이어 사이의 메쉬 크기는 액정 셀 갭의 1/5 미만이어야 한다. 더 전형적으로, 메쉬 크기는 셀 갭의 1/10 또는 1/100 미만이어야 한다. 2차 도전성 매질의 존재는 액정 셀을 가로질러 균일한 전기장이 인가되도록 하여, 액정 분자의 균일한 배향 및 따라서 균질의 광학적 응답을 가져온다.
도시된 바와 같이, LCD 셀에서 전극이 나노와이어만을 포함하면, 셀 갭의 1/5 - 1/100의 메쉬크기를 제공하기 위한 표면 충전 레벨은 높은 헤이즈 및 낮은 명암비를 포함하여 빈약한 광학적 특성을 초래할 것이다. 그러나, 복합 투명 도전체가 전극으로서 사용될 경우, 1차 도전성 매질의 금속 나노와이어(또는 금속 나노튜브)는 셀 갭 차수의 메쉬 크기를 유지할 수 있으며, 2차 도전성 매질이 메쉬 크기를 셀 갭의 약 1/5 - 1/100로 효과적으로 감소시키거나, 연속적인 도전막의 경우, 메쉬 크기를 제거한다. 생성된 LCD 셀은 전극의 광학적 특성이 개선됨에 따라 개선된 셀 성능을 갖게 될 것이다.
따라서, 일 실시예는 액정셀을 제공하는데, 이 액정셀은, 제1 전극 및 제2 전극을 포함하고, 여기서 상기 제1 전극과 제2 전극 사이의 수직 거리가 셀 갭을 정의하고, 상기 제1 전극은 1차 도전성 매질 및 2차 도전성 매질을 포함하는 복합 투명 도전체이고, 상기 1차 도전성 매질은 상기 셀 갭의 차수의 메쉬 크기를 갖는 금속 나노와이어 또는 금속 나노튜브이고, 상기 2차 도전성 매질은 연속적인 도정성 막 또는 상기 셀 갭의 약 1/5 내지 1/100의 메쉬 크기를 갖는 나노구조체의 도전성 네트워크이다.
전형적으로, 상기 셀 갭은 약 3-5 ㎛ 이다. 특정 실시예들에서, 상기 나노구조체의 도전성 네트워크는 셀 갭의 약 1/5 내지 1/10 또는 셀 갭의 약 1/10 내지 1/100의 메쉬 크기를 갖는다.
상술한 복합 투명 도전체는 모두 액정 셀에서 제1 전극으로서 사용될 수 있다. 예를 들어, 다양일 실시예들에서, 1차 도전성 매질은 금속 나노와이어(예, 은 나노와이어) 또는 금속 나노튜브(예, 금 나노튜브)일 수 있다. 바람직일 실시예들에서, 금속 나노와이어 또는 금속 나노튜브는 직경이 20-80nm(나노튜브의 경우, 외경)이고 길이가 5-30㎛ 이다.
2차 도전성 매질은 탄소 나노튜브의 도전성 네트워크, 1차 도전성 매질의 금속 나노와이어와 상이한 금속 나노와이어, 또는 1차 도전성 매질의 금속 나노튜브와 상이한 금속 나노튜브를 포함할 수 있다.
또는, 2차 도전성 매질은 금속 산화막(예, ITO 막) 또는 도전성 폴리머 막(예, PEDOT 막)과 같은 연속적인 도전성 막일 수 있다.
또 다른 실시예에서, 제2 전극은 또한 본원에 기재된 바와 같은 복합 투명 도전체일 수 있다.
특정 실시예들에서, 제1 전극은 80-95%의 광 투과율을 갖는다.
논의된 바와 같이, 복합 투명 도전체는 금속 나노와이어와 전형적으로 결합되는 바람직하지 않은 산란 레벨을 감소시키도록 설계될 수 있다. 2차 도전성 매질이 전류를 운반하기 때문에, 주어진 도전성을 달성하는데 더 적은 수의 나노와이어가 요구된다. 또한, 본원에 개시된 2차 도전성 매질은 전형적으로 무-반사, 저-반사이거나 또는 작은 산란 단면을 갖는 나노구조체를 포함하며, 그 결과, 더 적은 수의 나노와이어가 존재하기 때문에 전체 산란이 감소된다.
추가 층들(Additional Layers)
또 다른 실시예에서, 오버코트(overcoat) 불활성 층이 퇴적되어 복합 투명 도전체를 안정화시키고 보호할 수 있다. 오버코트는 또한 눈부심 방지(anti-glare) 및 반사방지(anti-reflective) 특성과 같은 바람직한 광학적 특성을 제공할 수 있는데, 이들은 나노입자의 반사를 추가적으로 감소시키는 기능을 한다.
따라서, 오버코트는 하드 코트, 반사 방지층, 보호막, 장벽층 등의 하나 이상일 수 있는데, 이들은 모두 미국 출원번호 11/871,767 및 11/504,822호에서 광번위하게 논의된다.
적절한 하드 코트의 예는 폴리아크릴, 에폭시, 폴리우레탄, 폴리실란, 실리콘(silicones), 폴리(실리코-아크릴) 등과 같은 합성 폴리머를 포함한다. 적절한 눈부심 방지 재료들은 당해 기술 분야에서 잘 알려져 있으며, 이들은 실록산(siloxanes), 폴리스틸렌/PMMA 혼합물, 래커(lacquer)(예, 부틸 아세테이트/니트로셀룰로오스/왁스/알키드 수지), 폴리티오펜(polythiophenes), 폴리피롤(polypyrroles), 폴리우레탄(polyurethane), 니트로셀룰로오스(nitrocellulose), 및 아크릴레이트(acrylates)를 포함하나, 이에 한정되는 것은 아니며, 이들 모두는 콜로이드 또는 건식(fumed) 실리카와 같은 광 확산 재료를 포함할 수 있다. 보호막의 예들은, 폴리에스테르, 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트, 폴리메틸 메타크릴레이트(PMMA), 아크릴 수지, 폴리카보네이트(PC), 폴리스틸렌, 트리아세테이트(TAC), 폴리비닐 알콜, 폴리염화비닐, 폴리염화비닐리덴(polyvinylidene chloride), 폴리에틸렌, 에틸렌-비닐 아세테이트 공중합체, 폴 리비닐 부티랄(polyvinyl butyral), 메탈 이온-교차결합 에틸렌-메타크릴산 공중합체(metal ion-crosslinked ethylene-methacrylic acid copolymers), 폴리우레탄, 셀로판, 폴리올레핀 등을 포함하나, 이에 한정되지 않으며, 특히 바람직하게는 PET, PC, PMMA, 또는 TAC이다.
패터닝
본원에 개시된 복합 투명 도전체는 그들의 최종 사용에 따라 패터닝될 수 있다. 당해 분야에서 공지된 모든 방법 및 미국 특허출원번호 11/504,822 및 11/871,767호에 개시된 패터닝 방법이 복합 투명 도전체를 패터닝 하는데 사용될 수 있다.
복합 투명 도전체의 적용
본원에 개시된 복합 투명 도전체는, 현재 금속 산화막(예, ITO)을 사용하는 모든 장치를 포함하여, 폭넓은 다양한 장치들에서의 투명 전극, 편광자(polarizer), 컬러 필터와 같은 기능막으로서 사용될 수 있다. 도 7은 하우징(258) 내에 복합 투명 도전체(254)를 포함하는 장치(250)를 개략적으로 도시한다. 복합 투명 도전체는 1차 도전성 매질(즉, 복수의 금속 나노와이어) 및 2차 도전성 매질(즉, 연속적인 도전성 막)의 상술한 배열 또는 조합 중 어느 하나일 수 있다.
적절한 장치의 예들은, LCD, 플라즈마 표시 패널(PDP)과 같은 평판 표시장 치, 컬러 평판 표시장치용 컬러 필터상의 코팅, 터치 스크린, 전자기 간섭, 전자기 차폐, 기능성 글래스들(예, 전기변색 창(electrochromic windows)), EL 램프 및 광전지를 포함하는 광전 소자 등을 포함한다. 또한, 본원에서 투명 도전체들은 가요성 표시장치들 및 터치 스크린들과 같은 가요성 장치들에서 사용될 수 있다. 미국 출원번호 11/871,767호를 참조할 수 있다.
실시예들
실시예 1
은 나노와이어의 합성
은 나노와이어는 폴리(비닐 피롤리돈)(PVP)의 존재하에 에틸렌 글리콜에 용해된 질산은(silver nitrate)의 환원에 의해 합성되었다. 이 방법은 예를 들어 Y. Sun, B. Gates, B. Mayers, & Y. Xia, "Crystalline silver nanowires by soft solution processing", Nanolett,(2002), 2(2) 165-168 에 개시되었다.
균일한 은 나노와이어는 원심분리 또는 공지된 방법에 의해 선택적으로 분리될 수 있다.
또는, 균일한 은 나노와이어는 상기 반응 혼합물에 적절한 이온 첨가물(예, 염화 테트라부틸암모늄(tetrabutylammonium chloride))을 첨가함으로써 직접 합성될 수 있다. 이렇게 제조된 은 나노와이어는 크기 선택의 별도 단계없이 바로 사용될 수 있다. 이 합성은 본원의 양수인인 캄브리오스 테크놀로지즈 코포레이션 이름하에 미국 가출원번호 60/815,627호에 더 상세히 개시되어 있으며, 이는 전체로서 여기에 포함된다.
다음 예들에서, 폭 70nm 내지 80nm 및 길이 약 8 ㎛ - 25㎛의 은 나노와이어가 사용되었다. 전형적으로, 더 나은 광학적 특성(높은 투과율 및 낮은 헤이즈)이 더 높은 종횡비의 (즉, 더 길고 더 얇은) 와이어로 달성될 수 있다.
실시예 2
복합 투명 도전체의 제조
금속 나노와이어가 기판 또는 ITO 막 및 도전성 폴리머 막과 같은 연속적인 도전성 막 상에 퇴적되기 전에 잉크 조성물(ink composition)로 형성될 수 있다.
ITO 막이 기판상에 바로 스퍼터링 된 후 나노와이어 층이 퇴적될 수 있다. 또한, 나노와이어 층이 먼저 기판상에 퇴적된 후, 나노와이어 층상에 바로 ITO 막이 스퍼터링될 수 있다.
2차 도전성 매질이 탄소 나노튜브을 포함할 경우, 탄소 나노튜브는 공동-퇴적(co-deposition)을 위해 금속 나노와이어와 함께 동일한 잉크 조성물로 형성될 수 있다. 또는, 탄소 나노튜브는 금속 나노와이어의 퇴적 전후의 연속적 퇴적을 위해 별도 잉크 조성물로 형성될 수 있다.
전형적으로, 잉크 조성물은 나노구조체의 분산(dispersion) 및/또는 기판상에서의 나노구조체의 고정을 돕는 작용물(agents)을 포함한다. 이러한 작용물들은 계면활성제, 점도조절제 등을 포함한다. 잉크 조성물 형성의 상세한 기재는 미국 특허 출원번호 11/504,822호에서 찾을 수 있는데, 이것은 전체로서 본원에 참고문 헌으로 포함된다.
금속 나노와이어 퇴적을 위한 전형적인 잉크 조성물은 중량으로, 0.0025% 내지 0.1% 계면활성제(예, Zonyl®FSO-100의 경우, 바람직한 범위는 0.0025% 내지 0.05%), 0.02% 내지 4% 점도 조절제(예, 히드록시프로필 메틸 셀룰로오스 혹은 HPMC의 경우, 바람직한 범위는 0.02% 내지 0.5%), 94.5% 내지 99.0% 용매 및 0.05% 내지 1.4% 금속 나노와이어를 포함한다. 적합한 계면활성제의 대표적 예들은 Zonyl®FSN, Zonyl?FSO, Zonyl®FSH, Triton(x100, x114, x45), Dynol(604, 607), n-Dodecyl b-D-maltoside 및 Novek을 포함한다. 적합한 점도 조절제의 예들은 히드록시프로필 메틸 셀룰로오스(HPMC), 메틸 셀룰로오스, 크산탄 검(xanthan gum), 폴리비닐 알콜, 카르복시 메틸 셀룰루오스, 히드록시 에틸 셀루로오스를 포함한다. 적합한 용매의 예들은 물 및 이소프로판올을 포함한다.
잉크 조성물은 나노와이어의 바람직한 농도에 기반하여 조성될 수 있는데, 이는 기판상에 형성되는 최종 도전성 막의 충전 밀도의 지표이다.
기판은 나노와이어가 퇴적되는 모든 물질이 될 수 있다. 기판은 단단하거나(rigid) 가요성(flexible) 일 수 있다. 바람직하게는, 기판은 또한 광학적으로 깨끗한데, 즉, 물질의 광 투과율이 가시 영역(400 nm - 700 nm)에서 적어도 80% 이다.
단단한 기판의 예들은 유리, 폴리카보네이트, 아크릴 등을 포함한다. 특히, 무알칼리 유리(예, 붕규산염), 저 알칼리 유리 및 제로-팽창 유리-세라믹과 같은 특수유리가 사용될 수 있다. 특수 유리는 액정 표시장치(LCD)를 포함하여 얇은 패널 표시장치 시스템에 특히 적합하다.
적합한 가요성 기판들은 폴레에스테르(예, 폴리에틸렌 테레프탈레이트(PET), 폴리에스테르 나프탈레이트, 및 폴리카보네이트), 폴리올레핀(예, 선형, 분지형(branched), 및 환형 폴리올레핀), 폴리비닐(예, 폴리염화비닐, 폴리염화비닐리덴, 폴리비닐 아세탈, 폴리스틸렌, 폴리아크릴레이트 등), 셀룰로오스 에스테르 염기(예, 셀룰로오스 트리아세테이트, 셀룰로오스 아세테이트), 폴리에테르설폰과 같은 폴리설폰, 폴리이미드, 실리콘 및 다른 종래의 폴리머 막들을 포함하나, 이에 한정되지는 않는다.
잉크 조성물은 예를 들어 미국 특허 출원번호 11/504,822호에 개시된 방법에 따라 기판상에 퇴적될 수 있다.
특정 예로서, 은 나노와이어의 수성 분산, 즉 잉크 조성물이 먼저 조성되었다. 은 나노와이어는 폭이 약 35nm 내지 45nm이고 길이가 약 10㎛이었다. 잉크 조성물은, 중량으로, 0.2% 은 나노와이어, 0.4% HPMC 및 0.025% Triton x100을 포함한다. 그 후, 잉크는 유리 상에서 60초 동안 500 rpm의 속도로 스핀 코팅된 후, 50 ℃에서 90초 그리고 180℃에서 90초 동안 후 베이킹(post-baking)되었다. 코팅된 막은 96%(유리를 기준으로 사용할 때)의 투과율 및 3.3%의 헤이즈를 갖고 약 20오옴/스퀘어의 비저항을 갖고 있었다.
당업자가 이해하는 바와 같이, 다른 퇴적 기술, 예들 들어, 좁은 채널, 다이 플로우, 경사 상의 플로우에 의해 계측되는 퇴적 흐름, 슬릿 코팅(slit coating), 그라비어 코팅(gravure coating), 마이크로그라비어 코팅(microgravure coating), 비이드 코팅(bead coating), 딥 코팅(dip coating), 슬롯 다이 코팅(slot die coating) 등이 채택될 수 있다. 인쇄 기술이 또한 잉크 조성물을 패턴이 있거나 패턴 없이 기판 상에 직접 인쇄하도록 사용될 수 있다. 예를 들어, 잉크젯(inkjet), 플렉소 인쇄(flexoprinting) 및 스크린 인쇄가 채택될 수 있다.
유체의 점성 및 전단 거동(shear behavior) 뿐만 아니라 나노와이어들 사이의 상호작용이 퇴적된 나노와이어들의 분포 및 상호 연결성(interconnectivity)에 영향을 줄 수 있다는 것이 또한 이해된다.
실시예 3
투명 도전체의 광학적 및 전기적 특성의 평가
본원에 개시된 방법에 따라 제조된 복합 투명 도전체는 그들의 광학적 및 전기적 특성을 수립하기 위해 평가되었다.
광 투과성 데이타는 ASTM D1003에서의 방법에 따라 수득되었다. 헤이즈는 BYK 가드너 헤이즈-가드 플러스(BYK Gardner Haze-gard Plus)를 사용하여 측정되었다. 표면 비저항은 Fluke 175 True RMS Mulltimeter 또는 비접촉(contactless) 저항계(resistance meter), Delcom model 717B 컨덕턴스 모니터를 사용하여 측정되었다. 더 전형적인 장치는 저항 측적용 4 포인트 프로브(point probe)(예, Keithley Instruments)이다.
또한, 나노와이어들의 상호 연결성 및 기판의 영역 덮힘은 광학 현미경 또는 주사 전자 현미경을 통해 관찰될 수 있다.
실시예 4
복합 투명 도전체의 비저항 평가
ITO 막이 먼저 유리 기판 상에 스퍼터링되었다. ITO 막은 약 250Ω/□ 이었다. 은 나노와이어 막이 ITO 막 상에 코팅되었다. 은 나노와이어 막은 면저항이 약 300-500Ω/□의 도전성 막을 제조하는 잉크 조성물에 기반하였다.
복합 투명 도전체가 한 쌍의 병렬 저항기로서만 취급된다면, 면저항은 약 135-170Ω/□의 예상치를 갖게 될 것이다. 그러나, 생성된 복합 막은 예상치보다 약 100% 이상 도전성인 50-80Ω/□ 범위의 면저항을 보였다. 따라서, 결합된 도전성 매질들은 개별 도전성 매질의 단순히 부가된 효과보다 더 우수한 도전성을 보였다.
위의 모든 미국 특허들, 미국 특허출원 공개본들, 미국 특허 출원들, 외국 특허들, 외국 특허 출원들 및 본 명세서 및/또는 출원 데이터 시트에서 열거된 비특허 공개본들은 그들 전체로서 참고문헌으로 본 명세서에 포함된다.
상술한 것으로부터, 본 발명의 특정 실시예들이 이해를 돕기 위해 여기에서 설명되었으나, 본 발명의 사상 및 범위를 벗어남이 없이 다양한 변형들이 이뤄질 수 있다는 것을 알 수 있을 것이다. 따라서, 이후의 청구항들에 의한 것 이외에는 본 발명이 제한되지 않는다.

Claims (57)

  1. 제1의 복수의 금속 나노와이어 또는 금속 나노튜브를 포함하는 1차 도전성 매질; 및
    상기 1차 도전성 매질에 결합된 2차 도전성 매질을 포함하고,
    상기 2차 도전성 매질은 복수의 제2 유형의 나노구조체를 포함하고,
    상기 1차 도전성 매질 및 상기 2차 도전성 매질은 서로 물리적으로 접촉하는 복합 투명 도전체.
  2. 청구항 1에 있어서, 층 구조를 가지며, 상기 1차 도전성 매질은 상기 2차 도전성 매질의 상부 상에 위치하는 복합 투명 도전체.
  3. 청구항 1에 있어서, 층 구조를 가지며, 상기 1차 도전성 매질은 상기 2차 도전성 매질의 아래에 위치하는 복합 투명 도전체.
  4. 청구항 1에 있어서, 상기 1차 도전성 매질의 복수의 금속 나노와이어 또는 금속 나노튜브 및 2차 도전성 매질의 제2 유형의 나노구조체들은 통합된 복합 투명 도전체.
  5. 청구항 1에 있어서, 상기 1차 도전성 매질 및 2차 도전성 매질은 전기적으로 결합된 복합 투명 도전체.
  6. 청구항 1에 있어서, 85%보다 높은 광 투과율 및 1000Ω/□보다 작은 면저항을 갖는 복합 투명 도전체.
  7. 청구항 1에 있어서, 상기 금속 나노와이어는 은 나노와이어인 복합 투명 도전체.
  8. 청구항 1에 있어서, 상기 2차 도전성 매질은 상기 제2 유형의 나노구조체의 도전성 네트워크를 포함하는 복합 투명 도전체.
  9. 청구항 8에 있어서, 상기 제2 유형의 나노구조체의 도전성 네트워크는 탄소 나노튜브를 포함하는 복합 투명 도전체.
  10. 청구항 9에 있어서, 상기 금속 나노와이어는 탄소 나노튜브의 상기 도전성 네트워크의 상부 상에 위치하는 복합 투명 도전체.
  11. 청구항 9에 있어서, 탄소 나노튜브의 상기 도전성 네트워크는 상기 금속 나노와이어 층의 상부 상에 위치하는 복합 투명 도전체.
  12. 청구항 9에 있어서, 상기 탄소 나노튜브 및 상기 금속 나노와이어는 단일의 도전성 네트위크 내에 통합되는 복합 투명 도전체.
  13. 청구항 8에 있어서, 제3 유형의 도전성 나노구조체를 더 포함하는 복합 투명 도전체.
  14. 청구항 13에 있어서, 상기 제3 유형의 도전성 나노구조체는 금속 나노입자, 금속 산화물 나노입자, 금속 나노와이어, 카본 블랙 또는 이들의 조합인 복합 투명 도전체.
  15. 청구항 8에 있어서, 상기 금속 나노와이어는 은 나노와이어인 복합 투명 도전체.
  16. 청구항 8에 있어서, 85%보다 높은 광 투과율 및 1000Ω/□보다 작은 면저항을 갖는 복합 투명 도전체.
  17. 청구항 8에 있어서, 상기 제2 유형의 나노구조체의 도전성 네트워크는 금속 나노튜브를 포함하는 복합 투명 도전체.
  18. 청구항 8에 있어서, 금속 나노튜브는 금 나노튜브인 복합 투명 도전체.
  19. 청구항 8에 있어서, 상기 제2 유형의 나노구조체의 도전성 네트워크는 나노 입자를 포함하는 복합 투명 도전체.
  20. 청구항 19에 있어서, 상기 나노입자는 금속 나노입자, 금속 산화물 나노입자, 카본 블랙, 그래핀 시트 또는 이들의 조합인 복합 투명 도전체.
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 제1 전극; 및
    제2 전극을 포함하고,
    상기 제1 전극 및 제2 전극 사이의 수직 거리가 셀 갭을 정의하고,
    상기 제1 전극은 1차 도전성 매질 및 2차 도전성 매질을 포함하는 복합 투명 도전체이고, 상기 1차 도전성 매질은 상기 셀 갭의 차수의 메쉬 크기를 갖는 금속 나노와이어 또는 금속 나노튜브를 포함하고,
    상기 2차 도전성 매질은 상기 셀 갭의 1/5 내지 1/100의 메쉬 크기를 갖는 나노구조체의 도전성 네트워크인 액정 표시장치 셀.
  43. 청구항 42에 있어서, 나노구조체의 상기 도전성 네크워크는 상기 셀 갭의 1/5 내지 1/10의 메쉬 크기를 갖는 액정 표시장치 셀.
  44. 청구항 42에 있어서, 나노구조체의 상기 도전성 네트워크는 상기 셀 갭의 1/10 내지 1/100의 메쉬 크기를 갖는 액정 표시장치 셀.
  45. 청구항 42에 있어서, 나노구조체의 상기 도전성 네트워크는 탄소 나노튜브인 액정 표시장치 셀.
  46. 청구항 42에 있어서, 나노구조체의 상기 도전성 네트워크는 상기 1차 도전성 매질의 금속 나노와이어와 상이한 금속 나노와이어인 액정 표시장치 셀.
  47. 청구항 42에 있어서, 나노구조체의 상기 도전성 네트워크는 상기 1차 도전성 매질의 상기 금속 나노튜브와 상이한 금속 나노튜브인 액정 표시장치 셀.
  48. 삭제
  49. 삭제
  50. 청구항 42에 있어서, 상기 1차 도전성 매질은 은 나노와이어를 포함하는 액정 표시장치 셀.
  51. 청구항 42에 있어서, 상기 1차 도전성 매질은 금 나노튜브를 포함하는 액정 표시장치 셀.
  52. 청구항 42에 있어서, 상기 셀 갭은 3-5 ㎛ 사이인 액정 표시장치 셀.
  53. 청구항 42에 있어서, 상기 2차 전극은 복합 투명 도전체인 액정 표시장치 셀.
  54. 청구항 42에 있어서, 상기 1차 전극은 80-95%의 광 투과율을 갖는 액정 표시장치 셀.
  55. 청구항 42에 있어서, 상기 제1 전극은 직경 20-80nm 및 길이 5-30㎛인 금속 나노와이어를 포함하는 액정 표시장치 셀.
  56. 청구항 1의 복합 투명 도전체를 포함하는 장치.
  57. 청구항 56에 있어서, 상기 장치는 평판 표시 장치, 터치 스크린, 전자기 차폐, 전자기 간섭 장치, 전계 발광 장치 및 광전지인 장치.
KR1020097024079A 2007-04-20 2008-04-18 복합 투명 도전체 및 그 제조 방법 KR101456838B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US91323107P 2007-04-20 2007-04-20
US60/913,231 2007-04-20
PCT/US2008/060937 WO2008131304A1 (en) 2007-04-20 2008-04-18 Composite transparent conductors and methods of forming the same

Publications (2)

Publication Number Publication Date
KR20100017128A KR20100017128A (ko) 2010-02-16
KR101456838B1 true KR101456838B1 (ko) 2014-11-04

Family

ID=39620244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097024079A KR101456838B1 (ko) 2007-04-20 2008-04-18 복합 투명 도전체 및 그 제조 방법

Country Status (9)

Country Link
US (4) US20090321364A1 (ko)
EP (2) EP2477229B1 (ko)
JP (2) JP6098860B2 (ko)
KR (1) KR101456838B1 (ko)
CN (2) CN103777417B (ko)
HK (1) HK1134860A1 (ko)
SG (1) SG156218A1 (ko)
TW (2) TWI556456B (ko)
WO (1) WO2008131304A1 (ko)

Families Citing this family (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363891B1 (en) 2005-08-12 2015-02-25 Cambrios Technologies Corporation Patterned nanowires-based transparent conductors
US8454721B2 (en) 2006-06-21 2013-06-04 Cambrios Technologies Corporation Methods of controlling nanostructure formations and shapes
EP3595016A1 (en) * 2006-10-12 2020-01-15 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and method of making them
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
CN101910263B (zh) 2007-05-29 2013-11-13 伊诺瓦动力公司 具有粒子的表面以及相关方法
KR20090023803A (ko) * 2007-09-03 2009-03-06 삼성전자주식회사 액정 표시 패널 및 이의 제조 방법
JP5221088B2 (ja) * 2007-09-12 2013-06-26 株式会社クラレ 透明導電膜およびその製造方法
US8815126B2 (en) * 2008-02-26 2014-08-26 Cambrios Technologies Corporation Method and composition for screen printing of conductive features
US20110281070A1 (en) * 2008-08-21 2011-11-17 Innova Dynamics, Inc. Structures with surface-embedded additives and related manufacturing methods
CN102186643B (zh) 2008-08-21 2014-05-21 因诺瓦动力学股份有限公司 增强的表面、涂层及相关方法
KR20100029633A (ko) * 2008-09-08 2010-03-17 삼성전자주식회사 능동형 반투과 소자를 구비하는 디스플레이 장치
JP5306760B2 (ja) * 2008-09-30 2013-10-02 富士フイルム株式会社 透明導電体、タッチパネル、及び太陽電池パネル
JP5189449B2 (ja) * 2008-09-30 2013-04-24 富士フイルム株式会社 金属ナノワイヤー含有組成物、及び透明導電体
JP2010087105A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 太陽電池
KR20100045675A (ko) 2008-10-24 2010-05-04 삼성전자주식회사 표시 장치
US20100101829A1 (en) * 2008-10-24 2010-04-29 Steven Verhaverbeke Magnetic nanowires for tco replacement
US20100101832A1 (en) * 2008-10-24 2010-04-29 Applied Materials, Inc. Compound magnetic nanowires for tco replacement
US20100101830A1 (en) * 2008-10-24 2010-04-29 Applied Materials, Inc. Magnetic nanoparticles for tco replacement
US20110180133A1 (en) * 2008-10-24 2011-07-28 Applied Materials, Inc. Enhanced Silicon-TCO Interface in Thin Film Silicon Solar Cells Using Nickel Nanowires
WO2010082429A1 (ja) 2009-01-16 2010-07-22 コニカミノルタホールディングス株式会社 パターン電極の製造方法及びパターン電極
US20120075519A1 (en) * 2009-03-18 2012-03-29 Artificial Muscle, Inc. Wafer level optical system
JP5625256B2 (ja) * 2009-04-02 2014-11-19 コニカミノルタ株式会社 透明電極、透明電極の製造方法及び有機エレクトロルミネッセンス素子
JP5584991B2 (ja) * 2009-04-02 2014-09-10 コニカミノルタ株式会社 透明電極、透明電極の製造方法、および有機エレクトロルミネッセンス素子
CN102387880B (zh) 2009-04-10 2014-07-02 住友化学株式会社 金属复合体及其组合物
KR101009442B1 (ko) * 2009-04-15 2011-01-19 한국과학기술연구원 전도성 구조체를 이용한 전도성필름 제조방법 및 전도성필름
GB0908300D0 (en) 2009-05-14 2009-06-24 Dupont Teijin Films Us Ltd Polyester films
CN101963681B (zh) * 2009-07-24 2012-06-20 清华大学 偏光元件
SG178525A1 (en) * 2009-08-24 2012-03-29 Cambrios Technologies Corp Purification of metal nanostructures for improved haze in transparent conductors made from the same
SG186652A1 (en) * 2009-08-25 2013-01-30 Cambrios Technologies Corp Methods for controlling metal nanostructures morphology
JP5391932B2 (ja) * 2009-08-31 2014-01-15 コニカミノルタ株式会社 透明電極、透明電極の製造方法、および有機エレクトロルミネッセンス素子
TWI420540B (zh) 2009-09-14 2013-12-21 Ind Tech Res Inst 藉由光能或熱能成形之導電材料、導電材料之製備方法以及導電組合物
KR101587124B1 (ko) * 2009-09-23 2016-01-21 삼성디스플레이 주식회사 액정 표시 장치
US8917377B2 (en) 2009-10-22 2014-12-23 Samsung Electronics Co., Ltd. Active lenses, stereoscopic image display apparatuses including active lenses and methods of operating the same
KR101632315B1 (ko) * 2009-10-22 2016-06-21 삼성전자주식회사 능동 렌즈 및 이를 채용한 입체 영상 디스플레이 장치
KR101611422B1 (ko) * 2009-11-17 2016-04-12 삼성전자주식회사 그래핀과 나노구조체의 복합 구조체 및 그 제조방법
WO2011065213A1 (ja) * 2009-11-27 2011-06-03 コニカミノルタホールディングス株式会社 分散液、透明電極、および有機エレクトロルミネッセンス素子
SG183092A1 (en) * 2009-12-04 2012-09-27 Cambrios Technologies Corp Nanostructure-based transparent conductors having increased haze and devices comprising the same
KR101904912B1 (ko) 2010-01-15 2018-10-08 씨에이엠 홀딩 코포레이션 저헤이즈 투명 도전체
EP2528855A1 (en) 2010-01-25 2012-12-05 The Board of Regents of the Leland Stanford Junior University Fullerene-doped nanostructures and methods therefor
US8524525B2 (en) * 2010-01-25 2013-09-03 The Board Of Trustees Of The Leland Stanford Junior University Joined nanostructures and methods therefor
US9534124B2 (en) * 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
US8518472B2 (en) * 2010-03-04 2013-08-27 Guardian Industries Corp. Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
US9023217B2 (en) 2010-03-23 2015-05-05 Cambrios Technologies Corporation Etch patterning of nanostructure transparent conductors
EP2418033B1 (en) * 2010-04-06 2020-05-06 Sumitomo Chemical Company, Limited Metal complex and composition containing same
KR20130109090A (ko) 2010-06-11 2013-10-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 힘 측정을 갖는 포지셔널 터치 센서
TWI416544B (zh) * 2010-06-23 2013-11-21 Nat Univ Tsing Hua 複合電極及其製作方法、矽太陽能電池電極及矽太陽能電池
US10306758B2 (en) * 2010-07-16 2019-05-28 Atmel Corporation Enhanced conductors
FR2962852A1 (fr) * 2010-07-19 2012-01-20 Saint Gobain Electrode transparente pour cellule photovoltaique a haut rendement
KR101119269B1 (ko) * 2010-07-26 2012-03-16 삼성전기주식회사 터치패널용 투명도전막 및 그 제조방법
KR101489161B1 (ko) * 2010-07-30 2015-02-06 주식회사 잉크테크 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막
US9112166B2 (en) 2010-07-30 2015-08-18 The Board Of Trustees Of The Leland Stanford Junior Univerity Conductive films
KR101658154B1 (ko) * 2010-07-30 2016-10-04 엘지디스플레이 주식회사 광전소자 및 그의 제조방법
EP2601688B1 (en) 2010-08-07 2020-01-22 Tpk Holding Co., Ltd Device components with surface-embedded additives and related manufacturing methods
US20120061625A1 (en) * 2010-09-09 2012-03-15 Eckert Karissa L Transparent conductive films, compositions, articles, and methods
US9281415B2 (en) 2010-09-10 2016-03-08 The Board Of Trustees Of The Leland Stanford Junior University Pressure sensing apparatuses and methods
CN103109391B (zh) * 2010-09-24 2016-07-20 加利福尼亚大学董事会 纳米线-聚合物复合材料电极
JP5664119B2 (ja) * 2010-10-25 2015-02-04 ソニー株式会社 透明導電膜、透明導電膜の製造方法、光電変換装置および電子機器
KR20120044545A (ko) * 2010-10-28 2012-05-08 삼성엘이디 주식회사 반도체 발광 소자
US20120111614A1 (en) * 2010-11-10 2012-05-10 Free James J Integrated composite structure and electrical circuit utilizing carbon fiber as structural materials and as electric conductor
GB201019212D0 (en) 2010-11-12 2010-12-29 Dupont Teijin Films Us Ltd Polyester film
US20120138913A1 (en) * 2010-12-07 2012-06-07 Rhodia Operations Electrically conductive nanostructures, method for making such nanostructures, electrically conductive polumer films containing such nanostructures, and electronic devices containing such films
WO2012083082A1 (en) 2010-12-15 2012-06-21 Sun Chemical Corporation Printable etchant compositions for etching silver nanoware-based transparent, conductive film
US8763525B2 (en) * 2010-12-15 2014-07-01 Carestream Health, Inc. Gravure printing of transparent conductive films containing networks of metal nanoparticles
CN110256984A (zh) * 2010-12-15 2019-09-20 康达利恩股份公司 形成uv-可固化导电组合物的方法和由此形成的组合物
EP2465966A1 (en) * 2010-12-15 2012-06-20 Innovation & Infinity Global Corp. Transparent conductive structure and method of making the same
CN102569432B (zh) * 2010-12-17 2014-12-10 国家纳米科学中心 一种透明电极材料及其制备方法
KR20120071149A (ko) * 2010-12-22 2012-07-02 엘지전자 주식회사 박막 태양전지 모듈 및 그 제조 방법
US20120273455A1 (en) * 2011-04-29 2012-11-01 Clean Energy Labs, Llc Methods for aligned transfer of thin membranes to substrates
US9575598B2 (en) 2010-12-27 2017-02-21 Tsinghua University Inputting fingertip sleeve
JP2012146430A (ja) * 2011-01-11 2012-08-02 Innovation & Infinity Global Corp 混合ナノ粒子を利用した透明導電構造及びその製造方法
KR101795419B1 (ko) * 2011-01-26 2017-11-13 주식회사 잉크테크 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막
US20120196053A1 (en) * 2011-01-28 2012-08-02 Coull Richard Methods for creating an electrically conductive transparent structure
WO2012112818A2 (en) * 2011-02-16 2012-08-23 The Regents Of The University Of California Interpenetrating networks of crystalline carbon and nano-scale electroactive materials
WO2012114552A1 (ja) 2011-02-23 2012-08-30 ソニー株式会社 透明導電膜、情報入力装置、および電子機器
US20120217453A1 (en) 2011-02-28 2012-08-30 Nthdegree Technologies Worldwide Inc. Metallic Nanofiber Ink, Substantially Transparent Conductor, and Fabrication Method
US10494720B2 (en) 2011-02-28 2019-12-03 Nthdegree Technologies Worldwide Inc Metallic nanofiber ink, substantially transparent conductor, and fabrication method
US20140008747A1 (en) * 2011-03-29 2014-01-09 Sumitomo Chemical Company, Limited Method of producing organic photoelectric conversion device
CN103477399B (zh) * 2011-04-07 2016-07-06 日本写真印刷株式会社 具备以石墨烯为主成分的透明导电膜的转印片及其制造方法、透明导电物
EP2697684B1 (en) 2011-04-15 2015-05-20 3M Innovative Properties Company Transparent electrode for electronic displays
CN102201549B (zh) * 2011-04-18 2013-08-14 电子科技大学 一种柔性发光器件用基板及其制备方法
CN102208547B (zh) * 2011-04-18 2013-11-20 电子科技大学 一种柔性光电子器件用基板及其制备方法
CN102195006A (zh) * 2011-04-26 2011-09-21 福州大学 基于azo/石墨烯/azo结构的柔性电极及其制备
US9175183B2 (en) * 2011-05-23 2015-11-03 Carestream Health, Inc. Transparent conductive films, methods, and articles
US8974900B2 (en) * 2011-05-23 2015-03-10 Carestream Health, Inc. Transparent conductive film with hardcoat layer
TWI427644B (zh) * 2011-06-13 2014-02-21 Univ Nat Yunlin Sci & Tech 透明導電膜結構之製造方法
JP5866492B2 (ja) * 2011-06-14 2016-02-17 パナソニックIpマネジメント株式会社 太陽電池およびその製造方法
WO2013003638A2 (en) * 2011-06-28 2013-01-03 Arjun Daniel Srinivas Transparent conductors incorporating additives and related manufacturing methods
EP2726217B1 (en) * 2011-07-01 2017-11-22 CAM Holding Corporation Anisotropy reduction in coating of conductive films
KR101327069B1 (ko) * 2011-07-28 2013-11-07 엘지이노텍 주식회사 전극 구조체 및 전극 제조 방법
US20140267107A1 (en) 2013-03-15 2014-09-18 Sinovia Technologies Photoactive Transparent Conductive Films
US20130039806A1 (en) * 2011-08-12 2013-02-14 Jeffrey Blinn Nanowire purification methods, compositions, and articles
CN104040642B (zh) * 2011-08-24 2016-11-16 宸鸿科技控股有限公司 图案化透明导体和相关制备方法
US9341913B2 (en) * 2011-08-26 2016-05-17 The Regents Of The University Of California Nanostructured transparent conducting oxide electrochromic device
KR20130030903A (ko) * 2011-09-20 2013-03-28 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP5583097B2 (ja) * 2011-09-27 2014-09-03 株式会社東芝 透明電極積層体
JP5646424B2 (ja) * 2011-09-27 2014-12-24 株式会社東芝 透明電極積層体
KR101331112B1 (ko) 2011-09-28 2013-11-19 (주)바이오니아 탄소나노튜브 및 금속산화물으로 이루어진 나노복합체 및 이의 제조방법
JP6195836B2 (ja) 2011-10-13 2017-09-13 シーエーエム ホールディング コーポレーション 光学スタック、及びプロセス
US9560754B2 (en) 2011-10-13 2017-01-31 The Johns Hopkins University Solution processed nanoparticle-nanowire composite film as a transparent conductor for opto-electronic devices
JP6058689B2 (ja) * 2011-12-05 2017-01-11 フィリップス ライティング ホールディング ビー ヴィ 照明システム
WO2013086139A1 (en) * 2011-12-07 2013-06-13 Duke University Synthesis of cupronickel nanowires and their application in transparent conducting films
KR20130070729A (ko) * 2011-12-20 2013-06-28 제일모직주식회사 메탈나노와이어 및 탄소나노튜브를 포함하는 적층형 투명전극.
WO2013095971A1 (en) 2011-12-21 2013-06-27 3M Innovative Properties Company Laser patterning of silver nanowire - based transparent electrically conducting coatings
EP2795628B1 (en) 2011-12-22 2020-02-19 3M Innovative Properties Company Electrically conductive article with high optical transmission
WO2013096350A1 (en) 2011-12-22 2013-06-27 3M Innovative Properties Company Carbon coated articles and methods for making the same
CN103213350B (zh) * 2012-01-18 2015-07-08 国家纳米科学中心 一种透明导电薄膜及其制备方法
US9917255B2 (en) * 2012-02-03 2018-03-13 Northwestern University Methods of making composite of graphene oxide and nanostructures
US9524806B2 (en) * 2012-02-07 2016-12-20 Purdue Research Foundation Hybrid transparent conducting materials
GB201203511D0 (en) * 2012-02-29 2012-04-11 Ibm Position sensing apparatus
KR101324281B1 (ko) * 2012-03-15 2013-11-01 인하대학교 산학협력단 고유연성을 가지는 산화 그라핀/은 나노와이어 하이브리드를 기반으로 하는 투명전도성 필름
DE102012102319A1 (de) 2012-03-20 2013-09-26 Rent A Scientist Gmbh Nichtlineare Nanodrähte
US9490048B2 (en) 2012-03-29 2016-11-08 Cam Holding Corporation Electrical contacts in layered structures
JP2013211212A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 積層電極とその製造方法およびそれ用いた光電変換素子
JP5836866B2 (ja) 2012-03-30 2015-12-24 株式会社東芝 炭素電極とその製造方法およびそれを用いた光電変換素子
US10483104B2 (en) 2012-03-30 2019-11-19 Kabushiki Kaisha Toshiba Method for producing stacked electrode and method for producing photoelectric conversion device
TW201342102A (zh) * 2012-04-06 2013-10-16 Cambrios Technologies Corp 減少光學堆疊之漫反射之系統及方法
FR2989485B1 (fr) * 2012-04-11 2016-02-05 Commissariat Energie Atomique Capteur tactile et procede de fabrication d'un tel capteur
CN102616033A (zh) * 2012-04-13 2012-08-01 中国科学院苏州纳米技术与纳米仿生研究所 一种快速制备高透光性导电图案的方法
WO2013161996A2 (ja) 2012-04-26 2013-10-31 国立大学法人大阪大学 透明導電性インク及び透明導電パターン形成方法
KR101388682B1 (ko) * 2012-04-30 2014-04-24 한국교통대학교산학협력단 은 나노와이어 및 그라핀을 이용한 하이브리드 전극 및 이의 제조방법
TWI450821B (zh) * 2012-05-03 2014-09-01 Taiwan Textile Res Inst 具可撓性的透明電極及其製造方法
US20130309613A1 (en) * 2012-05-16 2013-11-21 Corning Incorporated Liquid Based Films
US9086523B2 (en) * 2012-05-29 2015-07-21 The Boeing Company Nanotube signal transmission system
US9655252B2 (en) * 2012-06-01 2017-05-16 Suzhou Nuofei Nano Science And Technology Co., Ltd. Low haze transparent conductive electrodes and method of making the same
US20140014171A1 (en) 2012-06-15 2014-01-16 Purdue Research Foundation High optical transparent two-dimensional electronic conducting system and process for generating same
US9920207B2 (en) 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
TWI585032B (zh) * 2012-06-28 2017-06-01 無限科技全球公司 用於製造奈米結構的方法
WO2014015284A1 (en) 2012-07-20 2014-01-23 The Regents Of The University Of California High efficiency organic light emitting devices
KR101431705B1 (ko) * 2012-08-29 2014-08-20 (주)탑나노시스 나노와이어-탄소나노튜브 하이브리드 필름 및 이의 제조 방법
US20140060726A1 (en) * 2012-09-05 2014-03-06 Bluestone Global Tech Limited Methods for transferring graphene films and the like between substrates
BR112015006873A2 (pt) 2012-09-27 2017-07-04 Rhodia Operations processo para produzir nanoestruturas de prata e copolímero útil em tal processo
KR20140046923A (ko) 2012-10-11 2014-04-21 제일모직주식회사 투명 도전체, 이를 제조하기 위한 조성물 및 이를 포함하는 광학표시 장치
KR20140058895A (ko) * 2012-11-07 2014-05-15 삼성정밀화학 주식회사 전도성 고분자를 포함하는 복합체 전극 및 그 제조 방법
KR101991964B1 (ko) * 2012-11-07 2019-06-21 삼성에스디아이 주식회사 코어-쉘 구조를 갖는 나노와이어의 제조방법
KR101714286B1 (ko) * 2012-11-08 2017-03-08 알프스 덴키 가부시키가이샤 도전체 및 그 제조 방법
KR101486636B1 (ko) * 2012-12-06 2015-01-29 세종대학교산학협력단 광투과 복합필름 및 이의 제조방법
CN104838449B (zh) 2012-12-07 2018-06-15 3M创新有限公司 导电制品
CN103151394A (zh) * 2012-12-14 2013-06-12 广东志成冠军集团有限公司 薄膜太阳能电池及其制作方法
CN103078036B (zh) * 2013-01-17 2015-11-18 北京工业大学 基于石墨烯薄膜的透明电极的制备方法
KR101364531B1 (ko) * 2013-01-21 2014-02-19 덕산하이메탈(주) 나노 물질층을 포함하는 투명 전극 및 그 제조 방법
JP2016511913A (ja) 2013-01-22 2016-04-21 カンブリオス テクノロジーズ コーポレイション Esd保護のための高熱安定性を有するナノ構造透明導体
US9717144B2 (en) 2013-02-20 2017-07-25 Tokyo Institute Of Technology Electroconductive nanowire network, and electroconductive substrate and transparent electrode using same, and method for manufacturing electroconductive nanowire network, electroconductive substrate, and transparent electrode
DE102013002855A1 (de) 2013-02-20 2014-08-21 Heraeus Precious Metals Gmbh & Co. Kg Formulierungen aus gewaschenen Silberdrähten und PEDOT
US10468152B2 (en) * 2013-02-21 2019-11-05 Global Graphene Group, Inc. Highly conducting and transparent film and process for producing same
US9530531B2 (en) * 2013-02-21 2016-12-27 Nanotek Instruments, Inc. Process for producing highly conducting and transparent films from graphene oxide-metal nanowire hybrid materials
US10020807B2 (en) 2013-02-26 2018-07-10 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks
JP2014165094A (ja) * 2013-02-27 2014-09-08 Nippon Zeon Co Ltd 導電性フィルム、タッチパネル、太陽電池用電極、および太陽電池
US8871296B2 (en) * 2013-03-14 2014-10-28 Nanotek Instruments, Inc. Method for producing conducting and transparent films from combined graphene and conductive nano filaments
US20140272199A1 (en) * 2013-03-14 2014-09-18 Yi-Jun Lin Ultrasonic spray coating of conducting and transparent films from combined graphene and conductive nano filaments
US20140262443A1 (en) * 2013-03-14 2014-09-18 Cambrios Technologies Corporation Hybrid patterned nanostructure transparent conductors
JP5450863B2 (ja) * 2013-03-27 2014-03-26 富士フイルム株式会社 導電層形成用分散物及び透明導電体
JP6147542B2 (ja) * 2013-04-01 2017-06-14 株式会社東芝 透明導電フィルムおよび電気素子
US9368248B2 (en) 2013-04-05 2016-06-14 Nuovo Film, Inc. Transparent conductive electrodes comprising metal nanowires, their structure design, and method of making such structures
US9477128B2 (en) * 2013-04-19 2016-10-25 Board Of Regents, The University Of Texas System Graphene/metal nanowire hybrid transparent conductive films
CN104168009B (zh) * 2013-05-17 2018-03-23 光宝电子(广州)有限公司 发光型触控开关装置及发光型触控开关模组
CN103242630B (zh) * 2013-05-20 2015-05-06 嘉兴学院 一种聚对苯二甲酸乙二酯(pet)基电磁屏蔽复合材料及其制备方法
CN105378854B (zh) 2013-07-08 2017-12-22 东洋纺株式会社 导电浆料
TW201502653A (zh) * 2013-07-10 2015-01-16 Hon Hai Prec Ind Co Ltd 液晶顯示裝置
KR20150019820A (ko) * 2013-08-16 2015-02-25 일진엘이디(주) 나노와이어를 이용한 질화물 반도체 발광소자
CN103426991A (zh) * 2013-08-23 2013-12-04 厦门大学 金属纳米丝透明欧姆电极的压印方法
JP6308737B2 (ja) 2013-08-26 2018-04-11 デクセリアルズ株式会社 金属ナノワイヤー、分散液、透明導電膜、情報入力装置、及び、電子機器
KR101524069B1 (ko) * 2013-09-16 2015-06-10 덕산하이메탈(주) 나노 물질층을 포함하는 적층형 투명 전극
US9663400B2 (en) 2013-11-08 2017-05-30 Corning Incorporated Scratch-resistant liquid based coatings for glass
KR102065110B1 (ko) 2013-11-12 2020-02-11 삼성전자주식회사 플렉서블 그래핀 스위칭 소자
US11274223B2 (en) * 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US9674947B2 (en) * 2013-12-04 2017-06-06 Samsung Sdi Co., Ltd. Transparent conductor, method for preparing the same, and optical display including the same
KR101514325B1 (ko) * 2013-12-10 2015-04-22 국립대학법인 울산과학기술대학교 산학협력단 전기 방사 방법을 이용한 투명 전극의 제조 방법
KR102162426B1 (ko) * 2013-12-11 2020-10-07 삼성디스플레이 주식회사 터치 패널 및 이의 제조 방법
WO2015090395A1 (de) * 2013-12-19 2015-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparente nanodrahtelektrode mit funktionaler organischer schicht
US10884311B2 (en) 2013-12-24 2021-01-05 View, Inc. Obscuring bus bars in electrochromic glass structures
CN110058471A (zh) 2013-12-24 2019-07-26 唯景公司 遮掩电致变色玻璃结构中的汇流条
US11906868B2 (en) 2013-12-24 2024-02-20 View, Inc. Obscuring bus bars in electrochromic glass structures
JP6327870B2 (ja) 2014-01-29 2018-05-23 デクセリアルズ株式会社 金属ナノワイヤー、透明導電膜及びその製造方法、分散液、情報入力装置、並びに、電子機器
JP6383807B2 (ja) * 2014-01-31 2018-08-29 シーエーエム ホールディング コーポレーション 金属ナノ構造体再結合層を含むタンデム型有機光起電力装置
KR20160117429A (ko) * 2014-01-31 2016-10-10 니폰 제온 가부시키가이샤 투명 도전막, 색소 증감 태양전지용 광전극 및 터치패널, 및 색소 증감 태양전지
JP6441576B2 (ja) 2014-02-03 2018-12-19 デクセリアルズ株式会社 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器
KR101586902B1 (ko) 2014-04-09 2016-01-19 인트리 주식회사 나노구조의 패턴을 구비한 광투과성 도전체 및 그 제조방법
US11343911B1 (en) 2014-04-11 2022-05-24 C3 Nano, Inc. Formable transparent conductive films with metal nanowires
GB2526311B (en) * 2014-05-20 2019-06-19 M Solv Ltd Manufacturing a conductive nanowire layer
CN104009141B (zh) * 2014-05-24 2017-10-13 北京工业大学 碳纳米管银纳米线复合电流扩展层发光二极管及其制作方法
JP2016027464A (ja) * 2014-05-30 2016-02-18 株式会社半導体エネルギー研究所 入力装置、情報処理装置
CN104020887A (zh) * 2014-05-30 2014-09-03 南昌欧菲光科技有限公司 触摸屏
TWI486969B (zh) * 2014-06-11 2015-06-01 Nat Univ Tsing Hua 複合導電材料的製作方法及其導電薄膜
KR101536526B1 (ko) * 2014-06-17 2015-07-15 한양대학교 산학협력단 미세 구조체를 갖는 기판 및 그 제조 방법
US9801287B2 (en) 2014-07-09 2017-10-24 Cam Holding Corporation Electrical contacts in layered structures
EP2977993A1 (en) 2014-07-25 2016-01-27 Heraeus Deutschland GmbH & Co. KG Formulations comprising metal nanowires and pedot
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
AU2015299748A1 (en) * 2014-08-07 2017-03-09 Flinders Partners Pty Ltd Transparent electrode materials and methods for forming same
US9927667B2 (en) 2014-08-11 2018-03-27 Sci Engineered Materials, Inc. Display having a transparent conductive oxide layer comprising metal doped zinc oxide applied by sputtering
US11111396B2 (en) * 2014-10-17 2021-09-07 C3 Nano, Inc. Transparent films with control of light hue using nanoscale colorants
CN104505149A (zh) * 2014-11-19 2015-04-08 东北师范大学 一种叠层透明电极及其制备方法
JP6369788B2 (ja) 2014-11-27 2018-08-08 パナソニックIpマネジメント株式会社 エレクトロニクス用構造体
CN105304209B (zh) * 2014-11-27 2017-02-22 中国科学院金属研究所 一种在彩色滤光片上制备透明导电薄膜的方法
CN104393194A (zh) * 2014-12-10 2015-03-04 京东方科技集团股份有限公司 一种柔性电极、其制作方法、电子皮肤及柔性显示装置
CN107251160A (zh) * 2014-12-16 2017-10-13 索尔维公司 包含金属纳米线的透明导体及其形成方法
CN104503162A (zh) * 2014-12-24 2015-04-08 深圳市华星光电技术有限公司 具有触控功能的显示面板及其制造方法和复合电极
KR20160084715A (ko) * 2015-01-06 2016-07-14 연세대학교 산학협력단 투명전극 및 그의 제조방법
WO2016114278A1 (ja) * 2015-01-14 2016-07-21 東洋紡株式会社 導電性膜
CN104681645B (zh) * 2015-01-23 2016-09-21 华南师范大学 一种基于金属网格和金属纳米线制备复合透明导电电极的方法
KR102320382B1 (ko) 2015-01-28 2021-11-02 삼성디스플레이 주식회사 전자 장치
KR102347960B1 (ko) 2015-02-03 2022-01-05 삼성전자주식회사 도전체 및 그 제조 방법
TWI564071B (zh) * 2015-02-09 2017-01-01 國立中山大學 結合材料粒子於石墨烯-半導體基材表面之光化學方法及半導體結構
KR101881195B1 (ko) * 2015-04-01 2018-07-23 성균관대학교산학협력단 나노 복합체를 이용한 변형률 감지센서 및 이의 제조방법
KR101701603B1 (ko) * 2015-04-09 2017-02-02 희성전자 주식회사 전기 방사 장치 및 이를 이용한 투명 전극의 제조 방법
KR101689740B1 (ko) * 2015-04-09 2016-12-26 울산과학기술원 드럼 컬렉터를 이용한 전기 방사 장치 및 이를 이용한 투명 전극의 제조 방법
KR101701601B1 (ko) * 2015-04-09 2017-02-02 희성전자 주식회사 자기장을 이용한 전기 방사 장치 및 이를 이용한 투명 전극의 제조 방법
KR101676760B1 (ko) * 2015-04-09 2016-11-16 울산과학기술원 전기장을 이용한 전기 방사 장치 및 이를 이용한 투명 전극의 제조 방법
KR102335116B1 (ko) * 2015-04-13 2021-12-03 삼성디스플레이 주식회사 터치 스크린 패널 및 이의 제조 방법
CN107615399A (zh) * 2015-04-21 2018-01-19 峡谷科技股份有限公司 透明导电膜
EP3294543B1 (en) * 2015-05-05 2023-10-18 Nano-C, Inc. Carbon nanotube based hybrid films for mechanical reinforcement of multilayered, transparent-conductive, laminar stacks
US10081020B2 (en) 2015-06-12 2018-09-25 Dow Global Technologies Llc Hydrothermal method for manufacturing filtered silver nanowires
US10376898B2 (en) 2015-06-12 2019-08-13 Dow Global Technologies Llc Method for manufacturing high aspect ratio silver nanowires
CN105118836B (zh) * 2015-07-29 2019-04-05 京东方科技集团股份有限公司 具有导电平坦层的阵列基板及其制备方法
KR20170018718A (ko) * 2015-08-10 2017-02-20 삼성전자주식회사 비정질 합금을 이용한 투명 전극 및 그 제조 방법
WO2017034870A1 (en) 2015-08-21 2017-03-02 3M Innovative Properties Company Transparent conductors including metal traces and methods of making same
CN105093638A (zh) * 2015-09-02 2015-11-25 深圳市华科创智技术有限公司 Pdlc智能膜的制备方法及pdlc智能膜
EP3159897A1 (en) 2015-10-20 2017-04-26 Solvay SA Composition for forming transparent conductor and transparentconductor made therefrom
CN105810305B (zh) * 2015-10-23 2017-11-24 苏州汉纳材料科技有限公司 柔性CNTs/金属纳米线复合透明导电膜、其制备方法与应用
CN106611627A (zh) * 2015-10-23 2017-05-03 苏州汉纳材料科技有限公司 高质量碳纳米管透明导电膜及其制备方法与应用
KR102581899B1 (ko) * 2015-11-04 2023-09-21 삼성전자주식회사 투명 전극 및 이를 포함하는 소자
US10147512B2 (en) 2015-12-09 2018-12-04 C3Nano Inc. Methods for synthesizing silver nanoplates and noble metal coated silver nanoplates and their use in transparent films for control of light hue
US9857930B2 (en) 2015-12-16 2018-01-02 3M Innovative Properties Company Transparent conductive component with interconnect circuit tab comprising cured organic polymeric material
CN105575477B (zh) * 2016-01-27 2017-11-28 深圳先进技术研究院 一种提高银纳米线柔性透明导电膜导电性的方法
ES2632247B1 (es) * 2016-03-11 2020-06-03 Garcia Guerrero Jorge Cable inteligente de fibra óptica y fibras de nanotubos de carbono
CN108602119B (zh) * 2016-03-14 2020-09-01 尤尼吉可株式会社 纳米线及其制造方法、纳米线分散液以及透明导电膜
KR102004025B1 (ko) * 2016-03-15 2019-07-25 삼성에스디아이 주식회사 투명 도전체 및 이를 포함하는 디스플레이 장치
CN107293591B (zh) * 2016-04-11 2020-03-31 华邦电子股份有限公司 印刷线路、薄膜晶体管及其制造方法
US20180004318A1 (en) * 2016-07-01 2018-01-04 Khaled Ahmed Flexible sensor
CN106205876A (zh) * 2016-08-31 2016-12-07 福建农林大学 一种柔性纤维素基透明导电材料的制备方法
KR20180044618A (ko) * 2016-10-24 2018-05-03 현대자동차주식회사 투명 전극 필름 및 이를 포함하는 터치 패널
CN106526991A (zh) * 2016-12-02 2017-03-22 深圳市华星光电技术有限公司 电极制作方法及液晶显示面板
EP3340253A1 (en) 2016-12-22 2018-06-27 Solvay SA Uv-resistant electrode assembly
EP3340252A1 (en) 2016-12-22 2018-06-27 Solvay SA Electrode assembly
CN108630708A (zh) 2017-03-15 2018-10-09 京东方科技集团股份有限公司 导电基板及其制作方法、显示装置
CN108621753A (zh) * 2017-03-24 2018-10-09 凯姆控股有限公司 平面加热结构
JP6978227B2 (ja) * 2017-05-31 2021-12-08 日東電工株式会社 調光フィルム
CN111093492B (zh) * 2017-09-05 2023-01-03 首尔大学校产学协力团 生物电极及其形成方法
JP6782211B2 (ja) * 2017-09-08 2020-11-11 株式会社東芝 透明電極、それを用いた素子、および素子の製造方法
KR101987387B1 (ko) * 2017-09-27 2019-06-10 한국화학연구원 광소결 전도성 전극 및 이의 제조방법
CN109822996A (zh) * 2017-11-23 2019-05-31 宸美(厦门)光电有限公司 电控变色车用玻璃
CN108336191B (zh) * 2017-12-08 2019-08-02 华灿光电(苏州)有限公司 一种发光二极管芯片及制备方法
DE102018200659B4 (de) * 2018-01-16 2020-11-05 Continental Automotive Gmbh Mehrfachschichtanordnung für eine flächig ausgestaltete schaltbare Verglasung, Verglasung und Fahrzeug
CN112088410B (zh) * 2018-03-09 2023-08-08 大日本印刷株式会社 导电性膜、传感器、触控面板和图像显示装置
KR102003427B1 (ko) * 2018-03-28 2019-07-24 전북대학교산학협력단 섬유기반 접힘 투명 전극을 이용한 유연 액정 필름 및 이의 제조방법
CN108717944B (zh) 2018-05-30 2021-01-08 京东方科技集团股份有限公司 导电膜及其制备方法及显示装置
CN110676341B (zh) * 2018-07-03 2021-06-25 清华大学 半导体结构、光电器件、光探测器及光探测仪
CN108598288A (zh) * 2018-07-10 2018-09-28 上海大学 一种复合多功能oled电极及其制备方法
CN108693597A (zh) * 2018-08-01 2018-10-23 京东方科技集团股份有限公司 导光结构及其制造方法、背光模组、液晶显示装置
TWI684519B (zh) * 2018-08-20 2020-02-11 郭明智 複合導電材料
KR101996833B1 (ko) * 2018-09-21 2019-10-01 현대자동차 주식회사 투명 전극 필름 및 이를 포함하는 터치 패널
EP3967114A1 (en) 2019-05-06 2022-03-16 3M Innovative Properties Company Patterned conductive article
CN110083279A (zh) * 2019-05-07 2019-08-02 业成科技(成都)有限公司 透明导电材料、触控结构及触控装置
CN110333793B (zh) * 2019-05-09 2022-12-09 业成科技(成都)有限公司 可挠触控结构
CN110201440B (zh) * 2019-05-23 2023-04-21 中色科技股份有限公司 一种板式过滤机换纸涨缩轴涨缩方法
CN110429202A (zh) 2019-07-18 2019-11-08 武汉华星光电半导体显示技术有限公司 一种柔性oled显示面板、制作方法及智能穿戴设备
CN111112862A (zh) * 2019-12-16 2020-05-08 顾氏纳米科技(浙江)有限公司 一种化学焊接银纳米线的方法
US11947233B2 (en) * 2019-12-30 2024-04-02 Sage Electrochromics, Inc. Controlled randomization of electrochromic ablation patterns
CN111416058B (zh) * 2020-04-03 2024-04-19 苏州星烁纳米科技有限公司 一种导电薄膜、显示装置和显示装置的制作方法
CN113650373B (zh) * 2020-05-12 2023-09-08 京东方科技集团股份有限公司 一种触控层及其制备方法,以及触控装置
JPWO2022038900A1 (ko) * 2020-08-19 2022-02-24
CN114171241A (zh) * 2020-12-22 2022-03-11 苏州星烁纳米科技有限公司 一种导电结构及其制备方法、由其制备的电子设备
CN114694877B (zh) * 2020-12-28 2024-09-24 乐凯华光印刷科技有限公司 一种纳米银线复合透明导电膜
JPWO2022163024A1 (ko) * 2021-01-26 2022-08-04
JP2022122545A (ja) * 2021-02-10 2022-08-23 日東電工株式会社 透明導電性フィルム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238503A (ja) 2003-02-06 2004-08-26 Mitsubishi Materials Corp 金属ナノ繊維含有組成物およびその用途
KR20060056861A (ko) * 2004-11-22 2006-05-25 가부시키가이샤후지쿠라 전극, 광전 변환 소자 및 색소 증감 태양 전지
US20060257638A1 (en) 2003-01-30 2006-11-16 Glatkowski Paul J Articles with dispersed conductive coatings
WO2007022226A2 (en) * 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors

Family Cites Families (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2426318A (en) * 1945-11-15 1947-08-26 Stanolind Oil & Gas Co Inhibiting corrosion
US3164308A (en) 1961-02-28 1965-01-05 Marcovitch Isaac Containers for liquified fuel gas
EP0100670B1 (en) 1982-07-30 1986-12-03 Mishima Paper Co. Ltd Conductive film for packaging
FR2537898A1 (fr) * 1982-12-21 1984-06-22 Univ Paris Procede de reduction de composes metalliques par les polyols, et poudres metalliques obtenues par ce procede
EP0132565B2 (en) 1983-08-01 1998-11-25 AlliedSignal Inc. Oriented film laminates of polyamides and ethylene vinyl alcohol
US4523976A (en) * 1984-07-02 1985-06-18 Motorola, Inc. Method for forming semiconductor devices
US4780371A (en) 1986-02-24 1988-10-25 International Business Machines Corporation Electrically conductive composition and use thereof
JPS63229061A (ja) * 1987-03-18 1988-09-22 テルモ株式会社 膜型人工肺とその製造方法
ATE74923T1 (de) * 1987-04-03 1992-05-15 Ciba Geigy Ag Antistatische und elektrisch leitende polymere und formmassen.
JP2547765B2 (ja) * 1987-04-07 1996-10-23 株式会社日立製作所 電子機器用電磁波シ−ルド構造体
US5292784A (en) 1989-05-23 1994-03-08 Ganns Financial Group, Inc., Dba Glare Tech Industries Incorporated Anti-glare coating for reflective-transmissive surfaces and method
US5063125A (en) 1989-12-29 1991-11-05 Xerox Corporation Electrically conductive layer for electrical devices
US5716663A (en) 1990-02-09 1998-02-10 Toranaga Technologies Multilayer printed circuit
CA2038785C (en) 1990-03-27 1998-09-29 Atsushi Oyamatsu Magneto-optical recording medium
US5225244A (en) * 1990-12-17 1993-07-06 Allied-Signal Inc. Polymeric anti-reflection coatings and coated articles
US5165985A (en) * 1991-06-28 1992-11-24 Minnesota Mining And Manufacturing Company Method of making a flexible, transparent film for electrostatic shielding
US5198267A (en) * 1991-09-20 1993-03-30 Allied-Signal Inc. Fluoropolymer blend anti-reflection coatings and coated articles
US5270364A (en) 1991-09-24 1993-12-14 Chomerics, Inc. Corrosion resistant metallic fillers and compositions containing same
CA2125663C (en) * 1991-12-16 1998-11-24 Peter G. Ibbotson Vision clear formulation
EP0554220A1 (de) 1992-01-29 1993-08-04 Ciba-Geigy Ag Charge-Transfer Komplexe mit Ferrocenen, deren Herstellung und deren Verwendung
ES2097481T3 (es) 1992-07-15 1997-04-01 Ciba Geigy Ag Material recubierto, obtencion y usos del mismo.
EP0588759A1 (de) * 1992-08-20 1994-03-23 Ciba-Geigy Ag Dithiopentacenderivate, deren Herstellung und deren Verwendung als Elektronenakzeptoren in Charge-Transfer Komplexen
US5518810A (en) * 1993-06-30 1996-05-21 Mitsubishi Materials Corporation Infrared ray cutoff material and infrared cutoff powder use for same
US5415815A (en) 1993-07-14 1995-05-16 Bruno; Art Film for glare reduction
US5460701A (en) 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
EP0653763A1 (en) 1993-11-17 1995-05-17 SOPHIA SYSTEMS Co., Ltd. Ultraviolet hardenable, solventless conductive polymeric material
US5759230A (en) 1995-11-30 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Nanostructured metallic powders and films via an alcoholic solvent process
US5897945A (en) 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
JP2984595B2 (ja) 1996-03-01 1999-11-29 キヤノン株式会社 光起電力素子
IT1282387B1 (it) 1996-04-30 1998-03-20 Videocolor Spa Rivestimento antistatico,antiabbagliante,per una superficie a riflessione-trasmissione
US5820957A (en) 1996-05-06 1998-10-13 Minnesota Mining And Manufacturing Company Anti-reflective films and methods
JPH1017325A (ja) 1996-07-03 1998-01-20 Sumitomo Metal Mining Co Ltd 酸化インジウム粉末及びその製造方法
JPH1046382A (ja) 1996-07-26 1998-02-17 Mitsubishi Materials Corp 微細金属繊維の製造方法及び該繊維を用いた導電性塗料
US5851507A (en) 1996-09-03 1998-12-22 Nanomaterials Research Corporation Integrated thermal process for the continuous synthesis of nanoscale powders
US5905000A (en) 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
US5952040A (en) 1996-10-11 1999-09-14 Nanomaterials Research Corporation Passive electronic components from nano-precision engineered materials
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US6344271B1 (en) 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
US5788738A (en) 1996-09-03 1998-08-04 Nanomaterials Research Corporation Method of producing nanoscale powders by quenching of vapors
US5719016A (en) 1996-11-12 1998-02-17 Eastman Kodak Company Imaging elements comprising an electrically conductive layer containing acicular metal-containing particles
US5731119A (en) 1996-11-12 1998-03-24 Eastman Kodak Company Imaging element comprising an electrically conductive layer containing acicular metal oxide particles and a transparent magnetic recording layer
JP3398587B2 (ja) 1996-12-10 2003-04-21 タキロン株式会社 成形可能な制電性樹脂成形品
US6379745B1 (en) 1997-02-20 2002-04-30 Parelec, Inc. Low temperature method and compositions for producing electrical conductors
US6001163A (en) 1997-04-17 1999-12-14 Sdc Coatings, Inc. Composition for providing an abrasion resistant coating on a substrate
US6045925A (en) 1997-08-05 2000-04-04 Kansas State University Research Foundation Encapsulated nanometer magnetic particles
TW505685B (en) 1997-09-05 2002-10-11 Mitsubishi Materials Corp Transparent conductive film and composition for forming same
US6514453B2 (en) 1997-10-21 2003-02-04 Nanoproducts Corporation Thermal sensors prepared from nanostructureed powders
JP2972702B2 (ja) 1998-03-17 1999-11-08 静岡日本電気株式会社 ペン入力型携帯情報端末機
US5867945A (en) 1998-06-04 1999-02-09 Scafidi; Stephen J. Self-cleaning gutter
US6416818B1 (en) 1998-08-17 2002-07-09 Nanophase Technologies Corporation Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor
US6294401B1 (en) 1998-08-19 2001-09-25 Massachusetts Institute Of Technology Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same
US6241451B1 (en) 1998-09-08 2001-06-05 Knight Manufacturing Corp. Distributor apparatus for spreading materials
US6541539B1 (en) 1998-11-04 2003-04-01 President And Fellows Of Harvard College Hierarchically ordered porous oxides
US6855202B2 (en) 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US6274412B1 (en) 1998-12-21 2001-08-14 Parelec, Inc. Material and method for printing high conductivity electrical conductors and other components on thin film transistor arrays
US6265466B1 (en) 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
JP3909791B2 (ja) 1999-04-19 2007-04-25 共同印刷株式会社 透明導電膜の転写方法
US6342097B1 (en) 1999-04-23 2002-01-29 Sdc Coatings, Inc. Composition for providing an abrasion resistant coating on a substrate with a matched refractive index and controlled tintability
US6881604B2 (en) 1999-05-25 2005-04-19 Forskarpatent I Uppsala Ab Method for manufacturing nanostructured thin film electrodes
AU6203400A (en) 1999-06-30 2001-01-31 Penn State Research Foundation, The Electrofluidic assembly of devices and components for micro- and nano-scale integration
ATE481745T1 (de) 1999-07-02 2010-10-15 Harvard College Nanoskopischen draht enthaltende anordnung, logische felder und verfahren zu deren herstellung
JP4358936B2 (ja) * 1999-07-15 2009-11-04 株式会社半導体エネルギー研究所 表示装置、ゴーグル型表示装置、表示装置の作製方法及びゴーグル型表示装置の作製方法
JP3882419B2 (ja) 1999-09-20 2007-02-14 旭硝子株式会社 導電膜形成用塗布液およびその用途
ATE459488T1 (de) 1999-09-28 2010-03-15 Kyodo Printing Co Ltd Übertragungskörper und verwendungsverfahren
JP4966462B2 (ja) 1999-10-20 2012-07-04 チバ ホールディング インコーポレーテッド 光開始剤配合剤
JP2002083518A (ja) 1999-11-25 2002-03-22 Sumitomo Metal Mining Co Ltd 透明導電性基材とその製造方法並びにこの透明導電性基材が適用された表示装置、および透明導電層形成用塗液とその製造方法
NL1016815C2 (nl) 1999-12-15 2002-05-14 Ciba Sc Holding Ag Oximester-fotoinitiatoren.
WO2001044132A1 (fr) 1999-12-17 2001-06-21 Asahi Glass Company, Limited Composition de dispersion de particules ultrafines, composition de couche de liaison intercouche pour verre feuillete, couche de liaison intercouche, et verre feuillete
JP2001205600A (ja) 2000-01-27 2001-07-31 Canon Inc 微細構造体及びその製造方法
WO2001070873A2 (en) 2000-03-22 2001-09-27 University Of Massachusetts Nanocylinder arrays
FR2807052B1 (fr) 2000-04-03 2003-08-15 Clariant France Sa Compositions silico-acryliques, leur procede de preparation et leur utilisation
US6773823B2 (en) 2000-04-07 2004-08-10 University Of New Orleans Research And Technology Foundation, Inc. Sequential synthesis of core-shell nanoparticles using reverse micelles
JP2001291431A (ja) 2000-04-10 2001-10-19 Jsr Corp 異方導電性シート用組成物、異方導電性シート、その製造方法および異方導電性シートを用いた接点構造
JP4077596B2 (ja) 2000-05-31 2008-04-16 中島工業株式会社 低反射層を有する転写材及びこれを用いた成型品の製造方法
ES2269428T3 (es) 2000-06-30 2007-04-01 Ngimat Co. Revestimientos de polimeros.
JP4788852B2 (ja) 2000-07-25 2011-10-05 住友金属鉱山株式会社 透明導電性基材とその製造方法およびこの製造方法に用いられる透明コート層形成用塗布液と透明導電性基材が適用された表示装置
AU2001284919B2 (en) 2000-08-15 2005-12-22 Hammerhead Design And Development, Inc. Gastric access port
AU2002220566B8 (en) 2000-09-25 2007-09-13 Chemetall Gmbh Method for pretreating and coating metal surfaces, prior to forming, with a paint-like coating and use of substrates so coated
GB0025016D0 (en) 2000-10-12 2000-11-29 Micromass Ltd Method nad apparatus for mass spectrometry
EP1209694B1 (en) 2000-11-21 2007-07-25 Nissan Chemical Industries Ltd. Electro-conductive oxide particle and process for its production
BR0115944A (pt) 2000-12-04 2003-12-23 Ciba Sc Holding Ag Sais de Ènio e o uso destes como ácidos latentes
EP2233605B1 (en) 2000-12-12 2012-09-26 Konica Corporation Optical film comprising an anti-reflection layer
US6744425B2 (en) 2000-12-26 2004-06-01 Bridgestone Corporation Transparent electroconductive film
US6444495B1 (en) 2001-01-11 2002-09-03 Honeywell International, Inc. Dielectric films for narrow gap-fill applications
JP3560333B2 (ja) 2001-03-08 2004-09-02 独立行政法人 科学技術振興機構 金属ナノワイヤー及びその製造方法
EP1392500A1 (en) 2001-03-26 2004-03-03 Eikos, Inc. Coatings containing carbon nanotubes
CA2442985C (en) 2001-03-30 2016-05-31 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP2002322558A (ja) 2001-04-25 2002-11-08 Konica Corp 薄膜形成方法、光学フィルム、偏光板及び画像表示装置
US7147687B2 (en) 2001-05-25 2006-12-12 Nanosphere, Inc. Non-alloying core shell nanoparticles
WO2002096262A2 (en) 2001-05-25 2002-12-05 Northwestern University Non-alloying core shell nanoparticles
US6697881B2 (en) 2001-05-29 2004-02-24 Hewlett-Packard Development Company, L.P. Method and system for efficient format, read, write, and initial copy processing involving sparse logical units
US20030148380A1 (en) 2001-06-05 2003-08-07 Belcher Angela M. Molecular recognition of materials
US20050164515A9 (en) 2001-06-05 2005-07-28 Belcher Angela M. Biological control of nanoparticle nucleation, shape and crystal phase
EP1409574A4 (en) 2001-06-08 2006-02-15 Eikos Inc NANOCOMPOSITE DIELECTRICS
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
EP1444701A4 (en) 2001-07-27 2005-01-12 Eikos Inc CONFORMAL COATINGS CONTAINING CARBON NANOTUBES
US6934001B2 (en) 2001-08-13 2005-08-23 Sharp Laboratories Of America, Inc. Structure and method for supporting a flexible substrate
KR100438408B1 (ko) 2001-08-16 2004-07-02 한국과학기술원 금속간의 치환 반응을 이용한 코어-쉘 구조 및 혼합된합금 구조의 금속 나노 입자의 제조 방법과 그 응용
JP2004042012A (ja) * 2001-10-26 2004-02-12 Nec Corp 分離装置、分析システム、分離方法および分離装置の製造方法
ITTO20020033A1 (it) 2002-01-11 2003-07-11 Fiat Ricerche Dispositivo elettro-luminescente.
WO2003068674A1 (fr) 2002-02-15 2003-08-21 Japan Science And Technology Agency Structure de fils nanometriques en metal noble et leur procede de production
EP1339082A1 (en) 2002-02-25 2003-08-27 Asahi Glass Company Ltd. Impact-resistant film for flat display panel, and flat display panel
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US6946410B2 (en) 2002-04-05 2005-09-20 E. I. Du Pont De Nemours And Company Method for providing nano-structures of uniform length
WO2004034421A2 (en) 2002-05-10 2004-04-22 The Trustees Of Columbia University In The City Of New York Method for electric field assisted deposition of films of nanoparticles
TWI360098B (en) * 2002-05-17 2012-03-11 Semiconductor Energy Lab Display apparatus and driving method thereof
CN100341629C (zh) * 2002-05-21 2007-10-10 艾考斯公司 使碳纳米管涂层形成图案的方法和碳纳米管布线
ES2336779T3 (es) 2002-06-13 2010-04-16 Cima Nano Tech Israel Ltd. Un metodo para la produccion de nano revestimientos y revestimientos de nano polvo conductores y transparentes.
JP3606855B2 (ja) * 2002-06-28 2005-01-05 ドン ウン インターナショナル カンパニー リミテッド 炭素ナノ粒子の製造方法
JP3842177B2 (ja) 2002-07-03 2006-11-08 独立行政法人科学技術振興機構 貴金属ナノチューブ及びその製造方法
JP2004035962A (ja) 2002-07-04 2004-02-05 Toyota Motor Corp 金属ナノチューブの製造法
JP2004055298A (ja) 2002-07-18 2004-02-19 Catalysts & Chem Ind Co Ltd 透明導電性被膜形成用塗布液、および透明導電性被膜付基材、表示装置
JP4134313B2 (ja) 2002-07-24 2008-08-20 Dowaエレクトロニクス株式会社 導電性粉末の製造方法
JP4266732B2 (ja) 2002-08-30 2009-05-20 キヤノン株式会社 積層型回折光学素子
WO2004035612A2 (en) 2002-09-04 2004-04-29 Board Of Regents, University Of Texas System Composition, method and use of bi-functional biomaterials
US7572393B2 (en) * 2002-09-05 2009-08-11 Nanosys Inc. Organic species that facilitate charge transfer to or from nanostructures
AU2003268487A1 (en) 2002-09-05 2004-03-29 Nanosys, Inc. Nanocomposites
AU2003279708A1 (en) * 2002-09-05 2004-03-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
JP4134314B2 (ja) 2002-09-13 2008-08-20 Dowaエレクトロニクス株式会社 導電性粉末の製造方法
US20050064508A1 (en) 2003-09-22 2005-03-24 Semzyme Peptide mediated synthesis of metallic and magnetic materials
US7135728B2 (en) 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7051945B2 (en) 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7560160B2 (en) 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
US6949931B2 (en) 2002-11-26 2005-09-27 Honeywell International Inc. Nanotube sensor
JP3972093B2 (ja) 2002-12-04 2007-09-05 独立行政法人物質・材料研究機構 β−Ga2O3ナノウイスカーとその製造方法
AU2003296368A1 (en) * 2002-12-06 2004-06-30 Arthur, David J Optically transparent nanostructured electrical conductors
JP4341005B2 (ja) 2002-12-17 2009-10-07 三菱マテリアル株式会社 金属ナノワイヤー含有組成物および電磁波遮蔽フィルター
JP2004196981A (ja) 2002-12-19 2004-07-15 Toyobo Co Ltd 表面導電性樹脂成形体
US6975067B2 (en) 2002-12-19 2005-12-13 3M Innovative Properties Company Organic electroluminescent device and encapsulation method
KR100502821B1 (ko) 2002-12-26 2005-07-22 이호영 구리산화물 또는 구리 나노와이어로 이루어진 전자방출팁의 저온 형성 방법 및 이 방법에 의해 제조된 전자방출팁을 포함하는 디스플레이 장치 또는 광원
JP2007112133A (ja) 2003-01-30 2007-05-10 Takiron Co Ltd 導電性成形体
JP2004230690A (ja) 2003-01-30 2004-08-19 Takiron Co Ltd 制電性透明樹脂板
JP4471346B2 (ja) 2003-01-31 2010-06-02 タキロン株式会社 電磁波シールド体
JP2004241228A (ja) * 2003-02-05 2004-08-26 Toin Gakuen プラスチックフィルム電極及びそれを用いた光電池
JP2004253326A (ja) 2003-02-21 2004-09-09 Toyobo Co Ltd 導電性フイルム
JP2004256702A (ja) 2003-02-26 2004-09-16 Toyobo Co Ltd 導電性塗料
US7029514B1 (en) 2003-03-17 2006-04-18 University Of Rochester Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom
US6916842B2 (en) 2003-03-24 2005-07-12 E. I. Du Pont De Nemours And Company Production of 5-methyl-n-(methyl aryl)-2-pyrrolidone, 5-methyl-n-(methyl cycloalkyl)-2-pyrrolidone and 5-methyl-n-alkyl-2-pyrrolidone by reductive amination of levulinic acid esters with cyano compounds
US20070003472A1 (en) * 2003-03-24 2007-01-04 Tolt Zhidan L Electron emitting composite based on regulated nano-structures and a cold electron source using the composite
US6936761B2 (en) 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
CN1442872A (zh) * 2003-04-17 2003-09-17 上海交通大学 多层纳米透明导电膜及其制备方法
CN100458471C (zh) * 2003-04-28 2009-02-04 多喜兰株式会社 电磁屏蔽光漫射板
TWI250202B (en) 2003-05-13 2006-03-01 Eternal Chemical Co Ltd Process and slurry for chemical mechanical polishing
US7033416B2 (en) 2003-05-22 2006-04-25 The United States Of America As Represented By The Secretary Of The Navy Low temperature synthesis of metallic nanoparticles
EP1631992A2 (en) * 2003-06-12 2006-03-08 Patterning Technologies Limited Transparent conducting structures and methods of production thereof
US7507436B2 (en) 2003-07-04 2009-03-24 Nitto Denko Corporation Electroconductive cellulose-based film, a method of producing the same, an anti-reflection film, an optical element, and an image display
CN1863954B (zh) 2003-08-04 2013-07-31 纳米系统公司 制备纳米线复合体的系统和方法及由此得到的电子衬底
EP2189232A1 (en) 2003-09-05 2010-05-26 Mitsubishi Materials Corporation Metal microparticle, composition containing the same and process for producing metal microparticle
US7416993B2 (en) 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
US7062848B2 (en) 2003-09-18 2006-06-20 Hewlett-Packard Development Company, L.P. Printable compositions having anisometric nanostructures for use in printed electronics
US7067328B2 (en) 2003-09-25 2006-06-27 Nanosys, Inc. Methods, devices and compositions for depositing and orienting nanostructures
JP2005103723A (ja) 2003-10-01 2005-04-21 National Institute Of Advanced Industrial & Technology 金属ナノワイヤーの単結晶化方法及び装置
US6982206B1 (en) 2003-10-02 2006-01-03 Lsi Logic Corporation Mechanism for improving the structural integrity of low-k films
KR100570206B1 (ko) 2003-10-15 2006-04-12 주식회사 하이닉스반도체 유기 반사방지막용 광 흡수제 중합체 및 이의 제조 방법과상기 중합체를 포함하는 유기 반사 방지막 조성물
CN101300026A (zh) 2003-10-15 2008-11-05 得克萨斯系统大学评议会 电子、光、磁、半导体和生物技术应用中作为支架的多功能生物材料
KR100570634B1 (ko) 2003-10-16 2006-04-12 한국전자통신연구원 탄소나노튜브와 금속분말 혼성 복합에 의해 제조된 전자파차폐재
WO2005040460A1 (ja) 2003-10-24 2005-05-06 Kyoto University 金属ナノチューブ製造装置および金属ナノチューブの製造方法
US6896739B1 (en) 2003-12-03 2005-05-24 For Your Ease Only, Inc. Anti-tarnish aqueous treatment
EP1541528A1 (en) * 2003-12-08 2005-06-15 Institut Jozef Stefan Quasi-one-dimensional polymers based on the metal-chalcogen-halogen system
JP2005181392A (ja) 2003-12-16 2005-07-07 Canon Inc 光学系
JP4807933B2 (ja) * 2003-12-17 2011-11-02 株式会社アルバック 透明導電膜の形成方法及び透明電極
US20070158642A1 (en) 2003-12-19 2007-07-12 Regents Of The University Of California Active electronic devices with nanowire composite components
TWI243004B (en) 2003-12-31 2005-11-01 Ind Tech Res Inst Method for manufacturing low-temperature highly conductive layer and its structure
US7923109B2 (en) 2004-01-05 2011-04-12 Board Of Regents, The University Of Texas System Inorganic nanowires
US20050165120A1 (en) 2004-01-22 2005-07-28 Ashavani Kumar Process for phase transfer of hydrophobic nanoparticles
US7381579B2 (en) * 2004-02-26 2008-06-03 Samsung Sdi Co., Ltd. Donor sheet, method of manufacturing the same, method of manufacturing TFT using the donor sheet, and method of manufacturing flat panel display device using the donor sheet
KR100708644B1 (ko) 2004-02-26 2007-04-17 삼성에스디아이 주식회사 박막 트랜지스터, 이를 구비한 평판 표시장치, 박막트랜지스터의 제조방법, 평판 표시장치의 제조방법, 및도너 시트의 제조방법
JP2005239481A (ja) 2004-02-26 2005-09-08 Nagoya Institute Of Technology 金属内包カーボンナノチューブ凝集体、その製造方法、金属内包カーボンナノチューブ、金属ナノワイヤおよびその製造方法
JP2005277405A (ja) 2004-02-27 2005-10-06 Takiron Co Ltd 画像表示装置用透光性ノイズ防止成形体
JP2005302695A (ja) * 2004-03-18 2005-10-27 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2005311330A (ja) 2004-03-22 2005-11-04 Takiron Co Ltd 電波吸収体
JP2005281357A (ja) 2004-03-29 2005-10-13 Koyo Sangyo Co Ltd 導電性塗料
JP2005335054A (ja) 2004-04-27 2005-12-08 Japan Science & Technology Agency 金属ナノワイヤー及びその製造方法
JP4491776B2 (ja) 2004-04-28 2010-06-30 三菱マテリアル株式会社 導電性ペースト等の製造方法
JP4524745B2 (ja) 2004-04-28 2010-08-18 三菱マテリアル株式会社 金属ナノワイヤー含有導電性材料およびその用途
JP2006049843A (ja) 2004-06-29 2006-02-16 Takiron Co Ltd 画像表示装置用制電性成形体
TWI348405B (en) 2004-07-08 2011-09-11 Mitsubishi Materials Corp Method for manufacturing metallic fine particles, metallic fine particles manufactured thereby, and composition, optical absorber and applied product including the same
US7255796B2 (en) 2004-07-08 2007-08-14 General Electric Company Method of preventing hydrogen sulfide odor generation in an aqueous medium
JP2006035771A (ja) 2004-07-29 2006-02-09 Takiron Co Ltd 導電層転写シート
JP2006035773A (ja) 2004-07-29 2006-02-09 Takiron Co Ltd 粘接着性導電成形体
JP4257429B2 (ja) 2004-09-13 2009-04-22 国立大学法人東北大学 原子の拡散を制御することによる金属ナノワイヤの製造方法およびこの方法により製造する金属ナノワイヤ
TWI417905B (zh) * 2004-09-13 2013-12-01 Sumitomo Metal Mining Co A transparent conductive film and a method for manufacturing the same, and a transparent conductive substrate and a light-emitting device
JP4372653B2 (ja) 2004-09-30 2009-11-25 住友大阪セメント株式会社 棒状導電性錫含有酸化インジウム微粉末の製造方法
US20060070559A1 (en) 2004-09-30 2006-04-06 Incredible Technologies, Inc. Unitary currency/credit card unit
JP4372654B2 (ja) 2004-09-30 2009-11-25 住友大阪セメント株式会社 棒状導電性錫含有酸化インジウム微粉末の製造方法
US7270694B2 (en) 2004-10-05 2007-09-18 Xerox Corporation Stabilized silver nanoparticles and their use
US7345307B2 (en) 2004-10-12 2008-03-18 Nanosys, Inc. Fully integrated organic layered processes for making plastic electronics based on conductive polymers and semiconductor nanowires
JP2006111675A (ja) 2004-10-13 2006-04-27 Mitsubishi Materials Corp 金属ナノロッド配向組成物およびその用途
JP2006128233A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 半導体材料および電界効果トランジスタとそれらの製造方法
JP2006133528A (ja) 2004-11-05 2006-05-25 Takiron Co Ltd 制電性光拡散シート
US7349045B2 (en) 2004-11-24 2008-03-25 Chunghwa Picture Tubes, Ltd. Displacement-designed color filter structure and method of forming the same
US7879525B2 (en) 2004-12-03 2011-02-01 Tokyo Ohka Kogyo Co., Ltd. Chemically amplified photoresist composition, laminated product, and connection element
JP4665499B2 (ja) 2004-12-10 2011-04-06 三菱マテリアル株式会社 金属微粒子とその製造方法とその含有組成物ならびにその用途
JP2006171336A (ja) 2004-12-15 2006-06-29 Takiron Co Ltd 画像表示用透明電極体および画像表示装置
TWI246103B (en) * 2004-12-22 2005-12-21 Powertip Technology Corp Carbon nanotube substrate structure and the manufacturing method thereof
US20070153362A1 (en) 2004-12-27 2007-07-05 Regents Of The University Of California Fabric having nanostructured thin-film networks
JP2008076416A (ja) 2004-12-27 2008-04-03 Sharp Corp 表示パネルの駆動装置、表示パネル及びそれを備えた表示装置並びに表示パネルの駆動方法
US20060172282A1 (en) * 2005-01-31 2006-08-03 Naik Rajesh R Peptide templates for nanoparticle synthesis obtained through PCR-driven phage display method
JP4821951B2 (ja) 2005-02-23 2011-11-24 三菱マテリアル株式会社 ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途
WO2006091823A2 (en) * 2005-02-25 2006-08-31 The Regents Of The University Of California Electronic devices with carbon nanotube components
JP2006239790A (ja) 2005-03-01 2006-09-14 Tohoku Univ 金属ナノワイヤ作製法および金属ナノワイヤ
US7489432B2 (en) 2005-03-25 2009-02-10 Ricoh Company, Ltd. Electrochromic display device and display apparatus
JP2006272876A (ja) 2005-03-30 2006-10-12 Takiron Co Ltd 導電体
JP2006310353A (ja) 2005-04-26 2006-11-09 Takiron Co Ltd 電波吸収体
US7902639B2 (en) 2005-05-13 2011-03-08 Siluria Technologies, Inc. Printable electric circuits, electronic components and method of forming the same
KR100686796B1 (ko) 2005-05-17 2007-02-26 삼성에스디아이 주식회사 전자파 차단층을 구비한 전지 외장재 및 이를 이용한파우치형 이차 전지
KR100720101B1 (ko) * 2005-08-09 2007-05-18 삼성전자주식회사 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법
JP4974332B2 (ja) 2005-09-07 2012-07-11 一般財団法人電力中央研究所 ナノ構造体およびその製造方法
US7341944B2 (en) 2005-09-15 2008-03-11 Honda Motor Co., Ltd Methods for synthesis of metal nanowires
JP2007091859A (ja) 2005-09-28 2007-04-12 Koyo Sangyo Co Ltd 導電性塗料
JP2007105822A (ja) 2005-10-12 2007-04-26 National Institute For Materials Science 原子スケール金属ワイヤもしくは金属ナノクラスター、およびこれらの製造方法
GB2434692A (en) * 2005-12-29 2007-08-01 Univ Surrey Photovoltaic or electroluminescent devices with active region comprising a composite polymer and carbon nanotube material.
US7507449B2 (en) * 2006-05-30 2009-03-24 Industrial Technology Research Institute Displays with low driving voltage and anisotropic particles
EP2140482A2 (en) * 2006-06-12 2010-01-06 Matthew R. Robinson Thin-film devices fromed from solid particles
US7630041B2 (en) * 2006-06-23 2009-12-08 Tsinghua University Liquid crystal cell assembly for liquid crystal display
WO2008127313A2 (en) * 2006-11-17 2008-10-23 The Regents Of The University Of California Electrically conducting and optically transparent nanowire networks
JP2009057518A (ja) * 2007-09-03 2009-03-19 Institute Of Physical & Chemical Research 異方性フィルムおよび異方性フィルムの製造方法
EP2353188A4 (en) * 2008-10-30 2015-04-08 Hak Fei Poon HYBRID, TRANSPARENT, CONDUCTIVE ELECTRODES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257638A1 (en) 2003-01-30 2006-11-16 Glatkowski Paul J Articles with dispersed conductive coatings
JP2004238503A (ja) 2003-02-06 2004-08-26 Mitsubishi Materials Corp 金属ナノ繊維含有組成物およびその用途
KR20060056861A (ko) * 2004-11-22 2006-05-25 가부시키가이샤후지쿠라 전극, 광전 변환 소자 및 색소 증감 태양 전지
WO2007022226A2 (en) * 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors

Also Published As

Publication number Publication date
US20080259262A1 (en) 2008-10-23
EP2477229A2 (en) 2012-07-18
CN101689568A (zh) 2010-03-31
KR20100017128A (ko) 2010-02-16
TW201543701A (zh) 2015-11-16
JP6098860B2 (ja) 2017-03-22
TW200924203A (en) 2009-06-01
US20090321364A1 (en) 2009-12-31
SG156218A1 (ko) 2009-11-26
EP2477229A3 (en) 2012-09-19
EP2147466B1 (en) 2014-03-12
CN101689568B (zh) 2014-02-26
JP2010525526A (ja) 2010-07-22
HK1134860A1 (en) 2010-05-14
EP2147466A1 (en) 2010-01-27
US10244637B2 (en) 2019-03-26
TWI556456B (zh) 2016-11-01
EP2477229B1 (en) 2021-06-23
JP6181698B2 (ja) 2017-08-16
WO2008131304A1 (en) 2008-10-30
EP2147466B9 (en) 2014-07-16
US11224130B2 (en) 2022-01-11
TWI487125B (zh) 2015-06-01
JP2015135831A (ja) 2015-07-27
CN103777417B (zh) 2017-01-18
US8018563B2 (en) 2011-09-13
US20120033367A1 (en) 2012-02-09
US20190191569A1 (en) 2019-06-20
CN103777417A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
KR101456838B1 (ko) 복합 투명 도전체 및 그 제조 방법
JP6180468B2 (ja) 層状透明導電体を形成するための流体分散体、及び層状透明導電体の製造方法
JP6924789B2 (ja) パターン化された透明導電体の製造方法
US8174667B2 (en) Nanowire-based transparent conductors and applications thereof
US20100307792A1 (en) Reliable and durable conductive films comprising metal nanostructures
US20130001478A1 (en) Reliable and durable conductive films comprising metal nanostructures
KR101545219B1 (ko) 나노와이어 기반의 투명 도전체 및 그의 응용
KR20130127781A (ko) 투명 전극 및 이를 포함하는 전자 재료
KR101442458B1 (ko) 투명 전극 및 이를 포함하는 전자 재료

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant
J204 Request for invalidation trial [patent]
J301 Trial decision

Free format text: TRIAL NUMBER: 2015100000309; TRIAL DECISION FOR INVALIDATION REQUESTED 20150202

Effective date: 20160819

FPAY Annual fee payment

Payment date: 20180808

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190918

Year of fee payment: 6