Nothing Special   »   [go: up one dir, main page]

JPWO2016158518A1 - 電気音響変換器 - Google Patents

電気音響変換器 Download PDF

Info

Publication number
JPWO2016158518A1
JPWO2016158518A1 JP2017509579A JP2017509579A JPWO2016158518A1 JP WO2016158518 A1 JPWO2016158518 A1 JP WO2016158518A1 JP 2017509579 A JP2017509579 A JP 2017509579A JP 2017509579 A JP2017509579 A JP 2017509579A JP WO2016158518 A1 JPWO2016158518 A1 JP WO2016158518A1
Authority
JP
Japan
Prior art keywords
electroacoustic
conversion film
electroacoustic transducer
film
electroacoustic conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017509579A
Other languages
English (en)
Inventor
三好 哲
哲 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2016158518A1 publication Critical patent/JPWO2016158518A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/143Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means characterised by the use of a piezoelectric or magneto-strictive transducer
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/146Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a membrane, e.g. a drum; Pick-up means for vibrating surfaces, e.g. housing of an instrument
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/24Tensioning by means acting directly on free portions of diaphragm or cone
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • H10N30/2048Membrane type having non-planar shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/886Additional mechanical prestressing means, e.g. springs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/525Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage
    • G10H2220/531Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage made of piezoelectric film
    • G10H2220/535Piezoelectric polymer transducers, e.g. made of stretched and poled polyvinylidene difluoride [PVDF] sheets in which the molecular chains of vinylidene fluoride CH2-CF2 have been oriented in a preferential direction
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/525Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage
    • G10H2220/541Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage using piezoceramics, e.g. lead titanate [PbTiO3], zinc oxide [Zn2 O3], lithium niobate [LiNbO3], sodium tungstate [NaWO3], bismuth ferrite [BiFeO3]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • H04R17/025Microphones using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/01Transducers used as a loudspeaker to generate sound aswell as a microphone to detect sound
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/15Transducers incorporated in visual displaying devices, e.g. televisions, computer displays, laptops

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

広い周波数帯域で、高音質かつ十分な音量で再生可能な無指向性の電気音響変換器を少ない部品点数で提供する。常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体、および、高分子複合圧電体の両面に積層された2つの薄膜電極を有する電気音響変換フィルムと、電気音響変換フィルムが湾曲するように、電気音響変換フィルムの一方の主面に密着して配置される弾性支持体とを有する電気音響変換ユニットを2つ以上有し、2つ以上の電気音響変換ユニットが、電気音響変換フィルムを外側に向けて、多面体の一部の面、若しくは全ての面を構成するように配置される。【選択図】図1

Description

本発明は、スピーカなどの音響デバイス等に用いられる電気音響変換器に関する。
音には「広がる性質」と「直進する性質」がある。周波数が低い帯域の音(低音)は広がる傾向が強くなり、周波数が高い帯域の音(高音)は直進する傾向が強くなる。そのため、通常のコーン型スピーカの場合、低音はスピーカの周りに広がるが、高音はスピーカ正面の音圧が高くなる一方、横方向や後方の音圧は低くなる。
そのため、このように周波数帯域ごとに指向性の異なる、指向性を有するスピーカでは、スピーカの軸上(真正面)と軸上を外れたところでは、周波数のバランスが変わり音色が変化して、音質が低下してしまうという問題があった。
そこで、スピーカから出た音がスピーカの周り360度に同じ様に拡がり、聴取位置によって周波数のバランスが変化せず、どの位置に対しても高音質な音を再生可能な無指向性スピーカを実現する構成として、スピーカユニットを背中合わせに配置した構成や、スピーカユニットを多数個、放射状に取り付けた構成が考えられている。
しかしながら、非特許文献1に記載されるように、従来のコーンスピーカを用いて、スピーカユニットを背中合わせに配置した構成としても、横方向で高い周波数帯域の音圧レベルは低くなり、加えて、正面や斜め方向の周波数特性が乱れてしまう。これは、2つのスピーカユニットの距離が離れているため、それぞれから出た音が聴取者(マイク)に届くタイミングにズレが生じ、位相がずれるためである。また、コーンスピーカを多数個、放射状に取り付けた構成としても、各スピーカユニットの振動板間の距離差があるため、それぞれのスピーカユニットから出た音が届くタイミング(位相)がずれて、周波数特性が乱れてしまうので、聴取位置によって周波数のバランスが変わって音色が変化してしまう。
また、コーンスピーカの場合には、低域を再生するためにはエンクロージャにはある程度の容積が要求されるが、スピーカユニットを多数個使うと、その分、磁気回路に場所を取られるため、エンクロージャの実質的な容積が不足して低域の再生が困難になってしまう。一方、エンクロージャの容積を確保するため、エンクロージャを大きくすると、振動板間の距離がさらに離れてしまうため、周波数特性の乱れがさらに大きくなってしまう。
このように、従来のコーンスピーカを用いた場合には、振動板間の距離差によって、音波の到達タイミングがずれるため、聴取位置によって周波数バランスが変わって、音色が変化してしまう。
これに対して、非特許文献1では、薄型のスピーカであるHVT(Horizontal-Vertical Transforming)方式のスピーカを背中合わせに配置した構成が開示されている。薄型のスピーカを用いることで、振動板間の距離差を縮めると共に、エンクロージャ容積を確保して、高音質な無指向性スピーカが得られると記載されている。
HVT方式のスピーカとは、駆動源(マグネットやボイスコイル)を振動板の側面に配置し、リンク機構を介して振動板を増幅させる構成を有するものである。このような構成により、駆動源と振動板の双方において、振幅方向に十分なクリアランスを確保できるため、薄型化しつつ、より低い最低共振周波数のスピーカユニットとすることができる。
このような薄型のスピーカを2枚背中合わせに配置することで、2つの振動板の間の距離を小さくでき、それぞれから出た音が聴取者に到達するタイミングにズレがほとんど生じず、無指向性放射パターンを持つスピーカの設計が容易になると記載されている。
日経テクノロジーオンライン "スピーカを約1/3に薄くできる技術"(URL:http://techon.nikkeibp.co.jp/article/FEATURE/20130128/262631/)
しかしながら、HVT方式のスピーカは、周波数が低い帯域(低域)に比べて、周波数が中間の帯域(中域)、および、周波数が高い帯域(高域)の音圧レベルが低いという問題があった。また、駆動源と振動板との間にリンク機構を介して振動板を駆動するため、部品点数が非常に多くなり、生産性が低く、製造コストが高くなるという問題があった。
発明の目的は、このような従来技術の問題点を解決することにあり、広い周波数帯域で、高音質かつ十分な音量で再生可能な無指向性の電気音響変換器を少ない部品点数で提供することにある。
本発明者は、上記課題を解決すべき鋭意検討した結果、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体、および、高分子複合圧電体の両面に積層された2つの薄膜電極を有する電気音響変換フィルムと、電気音響変換フィルムが湾曲するように、電気音響変換フィルムの一方の主面に密着して配置される弾性支持体とを有する電気音響変換ユニットを2つ以上有し、2つ以上の電気音響変換ユニットが、電気音響変換フィルムを外側に向けて、多面体の一部の面、若しくは全ての面を構成するように配置されることにより、広い周波数帯域で、高音質かつ十分な音量で再生可能な無指向性の電気音響変換器を少ない部品点数で実現できることを見出し、本発明を完成させた。
すなわち、本発明は、以下の構成の電気音響変換器を提供する。
(1)常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体、および、高分子複合圧電体の両面に積層された2つの薄膜電極を有する電気音響変換フィルムと、電気音響変換フィルムが湾曲するように、電気音響変換フィルムの一方の主面に密着して配置される弾性支持体とを有する電気音響変換ユニットを2つ以上有し、
2つ以上の電気音響変換ユニットが、電気音響変換フィルムを外側に向けて、多面体の一部の面、若しくは全ての面を構成するように配置される電気音響変換器。
(2) 弾性支持体が粘弾性を有する粘弾性支持体である(1)に記載の電気音響変換器。
(3) 電気音響変換フィルムの湾曲部が、中心から周辺部に向かって緩やかに曲率が変化している(1)または(2)に記載の電気音響変換器。
(4) 多面体が、正多面体、半正多面体、或いは準正多面体のいずれかひとつに属する(1)〜(3)のいずれかに記載の電気音響変換器。
(5) 電気音響変換フィルムの主面に垂直な方向から見た際の、電気音響変換フィルムの湾曲部の形状が正多角形である(1)〜(4)のいずれかに記載の電気音響変換器。
(6) 多面体の一部の面にコーン型スピーカユニットが放射面を外側に向けて備わっている(1)〜(5)のいずれかに記載の電気音響変換器。
(7) 電気音響変換フィルムの動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10〜30GPa、50℃において1〜10GPaである(1)〜(6)のいずれかに記載の電気音響変換器。
(8) 高分子材料の周波数1Hzでのガラス転移温度が0〜50℃である(1)〜(7)のいずれかに記載の電気音響変換器。
(9) 高分子材料の動的粘弾性測定による周波数1Hzでの損失正接Tanδが0.5以上となる極大値が0〜50℃の温度範囲に存在する(1)〜(8)のいずれかに記載の電気音響変換器。
(10) 高分子材料が、シアノエチル基を有するものである(1)〜(9)のいずれかに記載の電気音響変換器。
(11) 高分子材料が、シアノエチル化ポリビニルアルコールである(1)〜(10)のいずれかに記載の電気音響変換器。
このような本発明の電気音響変換器によれば、広い周波数帯域で高音質かつ十分な音量で再生可能な無指向性の電気音響変換器を少ない部品点数で提供できる。
本発明の電気音響変換器の一例を模式的に示す斜視図である。 図1AのB−B線断面図である。 本発明の電気音響変換器を構成する電気音響変換ユニットの1つを模式的に示す正面図である。 図2AのB−B線断面図である。 本発明の電気音響変換器の他の一例を概念的に示す断面図である。 本発明の電気音響変換フィルムの一例を概念的に示す断面図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 音圧レベルの測定方法を説明するための概略斜視図である。 音圧レベルの測定に用いた本発明の電気音響変換器の他の一例を概念的に示す斜視図である。 音圧レベルの測定に用いた参考例の電気音響変換器を概念的に示す斜視図である。 音圧レベルの測定に用いた電気音響変換器を概念的に示す斜視図である。 周波数と音圧レベルとの関係を表すグラフである。 周波数と音圧レベルとの関係を表すグラフである。 周波数と音圧レベルとの関係を表すグラフである。 周波数と音圧レベルとの関係を表すグラフである。 測定方向と音圧レベルとの関係を表すグラフである。 測定方向と音圧レベルとの関係を表すグラフである。 測定方向と音圧レベルとの関係を表すグラフである。 従来の電気音響変換器の一例を模式的に表す図である。 従来の電気音響変換器の一例を模式的に表す図である。 従来の電気音響変換器の一例を模式的に表す図である。 測定方向と音圧レベルとの関係を表すグラフである。 測定方向と音圧レベルとの関係を表すグラフである。 測定方向と音圧レベルとの関係を表すグラフである。 周波数と音圧レベルとの関係を表すグラフである。 周波数と音圧レベルとの関係を表すグラフである。 周波数と音圧レベルとの関係を表すグラフである。 周波数と音圧レベルとの関係を表すグラフである。 測定方向と音圧レベルとの関係を表すグラフである。
以下、本発明の電気音響変換器について、添付の図面に示される好適実施態様を基に、詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
図1Aに、本発明の電気音響変換器の一例を模式的に表す斜視図を示し、図1Bに、図1AのB−B線断面図を示す。
図1Aおよび図1Bに示すように、電気音響変換器100は、6つの電気音響変換ユニット40を有し、6つの電気音響変換ユニット40が、電気音響変換フィルム10側の面を外側に向けて正六面体(立方体)を構成するように配置されたものである。
したがって、図示例の電気音響変換器100を構成する電気音響変換ユニット40は、電気音響変換フィルム側の面の形状が正四角形状(正方形状)である。
このような電気音響変換器100は、スピーカ、マイクロフォン、および、ギター等の楽器に用いられるピックアップなどの各種の音響デバイスとして利用されるものであり、変換フィルム10に電気信号を入力して電気信号に応じた振動により音を再生したり、音、すなわち、空気の振動を受けることで生じる変換フィルム10の振動を電気信号に変換するために利用されるものである。
まず、電気音響変換ユニット40について、図2Aおよび図2Bを用いて説明する。
図2Aは、電気音響変換ユニット40を概念的に示す正面図であり、図2Bは、図2AのB−B線断面図である。
電気音響変換ユニット40は、電気音響変換フィルム(以下、「変換フィルム」ともいう)10を振動板として用いるものである。
電気音響変換ユニット40は、変換フィルム10への電圧印加によって、変換フィルム10が面内方向に伸長すると、この伸長分を吸収するために、変換フィルム10は、上方(音の放射方向)に移動し、逆に、変換フィルム10への電圧印加によって、変換フィルム10が面内方向に収縮すると、この収縮分を吸収するために、変換フィルム10は、下方(ケース42側)に移動する。電気音響変換ユニット40は、この変換フィルム10の伸縮の繰り返しによる振動により、振動(音)と電気信号とを変換するものである。
電気音響変換ユニット40は、変換フィルム10と、ケース42と、粘弾性支持体46と、押圧部材48とを有して構成される。
変換フィルム10は、圧電性を有し、電界の状態に応じて主面が伸縮する圧電フィルムであって、湾曲した状態で保持されることで、フィルム面に沿った伸縮運動をフィルム面に垂直な方向の振動に変換して、電気信号を音に変換するものである。
ここで、本発明の電気音響変換ユニット40に用いられる変換フィルム10は、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体、および、高分子複合圧電体の両面に積層された2つの薄膜電極を有する変換フィルムである。
変換フィルム10については後に詳述する。
ケース42は、押圧部材48と共に、変換フィルム10および粘弾性支持体46を保持する保持部材であり、プラスチックや金属、或いは木材等で形成される、一面が開放する箱型の筐体である。図に示すように、ケース42は薄型の六面体形状で、最大面の一方が開放面である。また、開放部は正四角形状である。ケース42は、内部に粘弾性支持体46を収容する。
粘弾性支持体46は、適度な粘性と弾性を有し、変換フィルム10を湾曲した状態で保持すると共に、変換フィルム10のどの場所でも一定の機械的バイアスを与えることによって、変換フィルム10の伸縮運動を無駄なく前後運動(変換フィルムの面に垂直な方向の運動)に変換させるためのものである。
図示例において、粘弾性支持体46は、ケース42の底面とほぼ同等の底面形状を有する四角柱状である。また、粘弾性支持体46の高さは、ケース42の深さよりも大きい。
粘弾性支持体46の材料としては、適度な粘性と弾性を有し、かつ、圧電フィルムの振動を妨げず、好適に変形するものであれば、特に限定はない。一例として、羊毛のフェルト、レーヨンやPETを含んだ羊毛のフェルトなどの不織布、グラスウール、或いはポリウレタンなどの発泡材料(発泡プラスチック)、ポリエステルウール、紙を複数枚重ねたもの、磁性流体、塗料等が例示される。
粘弾性支持体46の比重には、特に限定はなく、粘弾性支持体の種類に応じて、適宜、選択すればよい。一例として、粘弾性支持体としてフェルトを用いた場合には、比重は、50〜500kg/m3が好ましく、100〜300kg/m3がより好ましい。また、粘弾性支持体としてグラスウールを用いた場合には、比重は、10〜100kg/m3が好ましい。
押圧部材48は、変換フィルム10を粘弾性支持体46に押圧した状態で支持するためのものであり、プラスチックや金属、或いは木材等で形成される、中央に開口部48aを有する正四角形状の板状部材である。押圧部材48は、ケース42の開放面と同様の形状を有し、また、開口部48aの形状は、ケース42の開放部と同様の正四角形状である。
電気音響変換ユニット40においては、ケース42の中に粘弾性支持体46を収容して、変換フィルム10によってケース42および粘弾性支持体46を覆い、変換フィルム10の周辺を押圧部材48によってケース42の開放面に接した状態で、押圧部材48をケース42に固定して、構成される。
なお、ケース42への押圧部材48の固定方法には、特に限定はなく、ビスやボルトナットを用いる方法、固定用の治具を用いる方法等、公知の方法が、各種、利用可能である。
この電気音響変換ユニット40においては、粘弾性支持体46は、高さ(厚さ)がケース42の内面の高さよりも厚い。すなわち、変換フィルム10および押圧部材48が固定される前の状態では、粘弾性支持体46は、ケース42の上面よりも突出した状態となっている。
そのため、電気音響変換ユニット40では、粘弾性支持体46の周辺部に近くなるほど、粘弾性支持体46が変換フィルム10によって下方に押圧されて厚さが薄くなった状態で、保持される。すなわち、変換フィルム10の主面の少なくとも一部が湾曲した状態で保持される。これにより、変換フィルム10の少なくとも一部に湾曲部が形成される。電気音響変換ユニット40において、この湾曲部が振動面となる。なお、以下の説明では、湾曲部を振動面ともいう。
この際、変換フィルム10の面方向において、粘弾性支持体46の全面を押圧して、全面的に厚さが薄くなるようにするのが好ましい。すなわち、変換フィルム10の全面が粘弾性支持体46により押圧されて支持されるのが好ましい。
また、このように形成された湾曲部は、中心から周辺部に向かって緩やかに曲率が変化しているのが好ましい。これにより、共振周波数を分散させ、より広帯域化できる。
また、電気音響変換ユニット40において、粘弾性支持体46は押圧部材48に近づくほど厚さ方向に圧縮された状態になるが、静的粘弾性効果(応力緩和)によって、変換フィルム10のどの場所でも機械的バイアスを一定に保つことができる。これにより、変換フィルム10の伸縮運動が無駄なく前後運動へと変換されるため、薄型、かつ、十分な音量が得られ、音響特性に優れる平面状の電気音響変換ユニット40を得ることができる。
このような構成の電気音響変換ユニット40において、変換フィルム10の、押圧部材48の開口部48aに対応する領域が実際に振動する湾曲部となる。すなわち、押圧部材48は、湾曲部を規定する部位である。
なお、電気音響変換ユニット40の変換フィルム10側の面に対する、湾曲部の大きさには特に限定はないが、80%以上であるのが好ましく、90%〜98%であるのがより好ましい。圧電性を有する変換フィルムを用いる電気音響変換ユニットは、一般的に振動板が円形状を有するコーンスピーカに比べて、ユニット全体の大きさに対する振動板の相対的な大きさを大きくし易く、例えば、正多角形の電気音響変換ユニットを複数、近接配置して多面体を構成する場合、隣り合う振動板同士の間隔が非常に狭くできるため、放射インピーダンスが大幅に上昇し、特に周波数が低い帯域(低域)において、ユニット枚数以上の音圧増幅効果が期待できる。尚、このとき多面体は密閉構造とし、空気の逃げ道を塞ぐことが重要である。
また、上記観点から、押圧部材48の縁部の幅は、20mm以下が好ましく、1mm〜10mmが好ましい。
また、電気音響変換ユニット40の変換フィルム10側の面と、湾曲部とは相似であるのが好ましい。すなわち、押圧部材48の外形と開口部48aの形状は相似であるのが好ましい。
なお、電気音響変換ユニット40において、変換フィルム10による粘弾性支持体46の押圧力には、特に限定はないが面圧が低い位置における面圧で0.005〜1.0MPa、特に0.02〜0.2MPa程度とするのが好ましい。
電気音響変換ユニット40に組み込んだ変換フィルム10の高低差、図示例では、押圧部材48の底面に対して最も近い所と最も遠い所との距離にも、特に限定はないが、薄型の平面スピーカが得られる、変換フィルム10の十分な上下運動が可能になる等の点で、1〜50mm、特に5〜20mm程度とするのが好ましい。
加えて、粘弾性支持体46の厚さにも、特に限定は無いが、押圧される前の厚さが、1〜100mm、特に10〜50mmであるのが好ましい。
また、図示例においては、粘弾性を有する粘弾性支持体46を利用する構成としたが、これに限定はされず、少なくとも弾性を有する弾性支持体を利用する構成であればよい。
例えば、粘弾性支持体46に代えて、弾性を有する弾性支持体を有する構成としてもよい。
弾性支持体としては、天然ゴムや各種合成ゴムが例示される。
また、ケース42と変換フィルム10との間には、Oリング等を介在させてもよい。このような構成を有することにより、ダンパ効果を持たせることができ、変換フィルム10の振動がケース42に伝達されることを防止して、より優れた音響特性を得ることができる。
また、変換フィルム10自体を予め凸状あるいは凹状に成型してもよい。その際、変換フィルム10全体を凸状あるいは凹状に成型してもよく、変換フィルムの一部を凸部(凹部)に成型してもよい。凸部の成型方法としては特に限定はなく、種々の公知の樹脂フィルムの加工方法が利用可能である。例えば、真空加圧成型法、エンボス加工等の形成方法により、凸部を形成することができる。
また、図2Aおよび図2Bに示す例では、押圧部材48を用いて、変換フィルム10を粘弾性支持体46に押圧して支持する構成としたが、これに限定はされず、例えば、ケース42の開口面よりも大きい変換フィルム10を用いて、変換フィルムの端部をケース42の裏面側で固定する構成としてもよい。すなわち、ケース42とケース42内に配置された粘弾性支持体46とを、ケース42の開口面よりも大きい変換フィルム10で覆い、変換フィルム10の端部をケース42の裏面側に引張ることで、変換フィルム10を粘弾性支持体46に押圧して張力を付与して湾曲させ、変換フィルムの端部をケース42の裏面側で固定してもよい。
次に、電気音響変換器100について説明する。
図1Aおよび図1Bに示す電気音響変換器100は、上述の電気音響変換ユニット(以下、「変換ユニット」ともいう)40を6つ有し、6つの変換ユニット40それぞれの変換フィルム10側の面を外側に向けて正六面体(立方体)を構成するように配置されたものである。
具体的には、図に示すように、電気音響変換器100において、6つの変換ユニット40は、同じ形状および大きさを有し、1つの変換ユニット40において、変換フィルム10側の面の各辺に、他の変換ユニット40の一辺を一致させて、かつ、変換フィルム10側の面同士のなす角が90°となるように変換ユニット40を配置したものである。
なお、以下の説明において、変換ユニットの形状とは、変換ユニットの変換フィルム側の面の形状である。
また、変換ユニット40同士の固定方法には、特に限定はなく、ビスやボルトナットを用いる方法、固定用の治具を用いる方法等、公知の方法が、各種、利用可能である。
前述のとおり、従来、無指向性の電気音響変換器として、薄型のスピーカであるHVT(Horizontal-Vertical Transforming)方式のスピーカを背中合わせに配置した構成が提案されている。
このHVT方式のスピーカは、駆動源(マグネットやボイスコイル)を振動板の側面に配置し、リンク機構を介して振動板を増幅させる構成を有するもので、この構成により、駆動源と振動板の双方において、振幅方向に十分なクリアランスを確保でき薄型化できる。
このような薄型のスピーカ2つを背中合わせに配置することで、2つの振動板の間の距離を小さくでき、それぞれから出た音が聴取者に到達するタイミングにズレがほとんど生じず、無指向性放射パターンを持つスピーカの設計が容易になる。
しかしながら、HVT方式のスピーカは、低域に比べて、中域および高域の音圧レベルが低いという問題があった。また、駆動源と振動板との間にリンク機構を介して振動板を駆動するため、部品点数が非常に多くなり、生産性が低く、製造コストが高くなるという問題があった。
これに対して、本発明は、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体、および、高分子複合圧電体の両面に積層された2つの薄膜電極を有する電気音響変換フィルムと、電気音響変換フィルムが湾曲するように、電気音響変換フィルムの一方の主面に密着して配置される弾性支持体とを有する電気音響変換ユニットを複数有し、複数の電気音響変換ユニットが、電気音響変換フィルムを外側に向けて、多面体の一部の面、もしくは全ての面を構成する。
本発明の電気音響変換器は、このように電気音響変換ユニットを近接配置して多面体を構成することで、放射インピーダンスが大幅に上昇し、特に周波数が低い帯域(低域)において、ユニットの枚数以上の音圧増幅効果を得ることが可能になる。
ここで、放射インピーダンスZとは振動板の速度V(=振動板表面の変位速度)を入力とし、振動板が気体を押すことによって生じる反作用力Fを出力とするインピーダンスである。すなわち、F=Z×Vで定義される量である。これは、機械的振動が音波に変換される効率を表す量であり、スピーカの特性を論じるに当たって重要な値である。放射インピーダンスは振動板表面での音圧に表面積を掛けた量であるが、本発明の電気音響変換器においては、電気音響変換ユニットの面積と振動板(湾曲部)の面積がほぼ同じにできるため、隣接する振動板同士の間隔が非常に狭く、シームレスな音場を形成でき、従来のコーンスピーカを複数配置した場合に比べて、放射インピーダンスを効果的に上昇できるのみならず、振動板間の距離差によって音波の到達タイミングがずれることも少ないため、より好適な無指向性が得られる。
さらに、本発明の電気音響変換器においては、各電気音響変換ユニット毎に独立したエンクロージャを有しているため、複数配置したからといってエンクロージャの容積が不足することなく、低域の再生が困難になることもない。
さらに、HVT方式のスピーカの場合は、振動板の側面に駆動源(マグネットやボイス・コイル)が存在するため、HVT方式のスピーカを用いて正六面体等の多面体を構成しても、振動板同士の間隔が大きくなるため、放射インピーダンスを効果的に上昇させるのは難しく、また360°の無指向性を実現するのは難しかった。
一方、本発明の電気音響変換器においては、実質、振動板のみで正六面体(立方体)等の多面体を構成することができるため、放射インピーダンスの大幅な上昇がもたらす低域の増幅効果も手伝い、360°全方向に広帯域で高音質な音が放射可能になり、スピーカを設置した部屋全体をリスニングポイントとし、包みこむような音響空間を創造することができる。
ここで、図1Aに示す例では、6つの変換ユニットが正六面体を構成するように配置したが、これに限定はされず、複数の変換ユニットにより構成する多面体は、正四面体、正八面体、正十二面体等の正多面体や、切頂四面体、切頂六面体、切頂八面体、切頂十二面体、切頂二十面体等の半正多面体や、立方八面体、二十・十二面体等の準正多面体などであってもよい。
また、複数の変換ユニットにより構成する多面体を、正多面体、半正多面体、あるいは、準正多面体とする場合には、変換ユニットの形状は、正多角形となる。したがって、変換ユニットの湾曲部(振動面)の形状も変換ユニットの形状に相似した正多角形とするのが好ましい。
また、図示例においては、正六面体のすべての面を変換ユニットで構成するように、6つの変換ユニットを配置する構成としたが、これに限定はされず、多面体の一部の面を変換ユニットで構成すればよい。
例えば、後述する図7Aに示すように、4つの変換ユニット40を有し、4つの変換ユニット40を変換フィルム10(湾曲部)の一辺の延在方向を一致させて、かつ、この一辺に垂直な断面において、各変換ユニット40の湾曲部が略正方形状を形成して、かつ、各湾曲部が異なる方向を向くように配列し、4つの変換ユニット40で囲まれる空間の2つの開口部に、この開口部と略同じ大きさの蓋部材210を配置して正六面体としたものであってもよい。
なお、多面体の一部の面を構成する変換ユニットの数は、多面体の面の数の20%以上が好ましく、50%以上がより好ましい。
また、多面体の一部の面が変換ユニットで構成される場合には、変換ユニットは互いに隣接して配置されるのが好ましく、更に、中心対称性をもって配置されることも好ましい。こうすることで、各変換ユニットは多面体(筐体)中心で点を結び、理想的な点音源再生となって無指向性に寄与する。
また、多面体の一部の面にコーン型スピーカユニットが放射面を外側に向けて配置される構成としてもよい。
例えば、図3に示す電気音響変換器110は、5つの変換ユニット40と、1つのコーン型スピーカユニット112を有し、これらのユニットが正六面体を構成するように配置されたものである。
このような構成の場合には、コーン型スピーカユニット112として、低域を好適に再生可能な、いわゆるサブウーハー用のユニットを用いるのが好ましい。これにより、多面体(筐体)の内部空洞をエンクロージャとして有効活用できるため、低域の再生に優れたサブウーハーが実現できる。
次に、本発明の電気音響変換器に用いられる電気音響変換フィルムについて説明する。
図4は、変換フィルム10の一例を概念的に示す断面図である。
図4に示すように、変換フィルム10は、圧電性を有するシート状物である圧電体層12と、圧電体層12の一方の面に積層される下部薄膜電極14と、下部薄膜電極14上に積層される下部保護層18と、圧電体層12の他方の面に積層される上部薄膜電極16と、上部薄膜電極16上に積層される上部保護層20とを有する。
変換フィルム10において、高分子複合圧電体である圧電体層12は、図4に概念的に示すような、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス24中に、圧電体粒子26を均一に分散してなる高分子複合圧電体からなるものである。なお、本明細書において、「常温」とは、0〜50℃程度の温度域を指す。
また、後述するが、圧電体層12は、好ましくは、分極処理されている。
変換フィルム10は、フレキシブルディスプレイ用のスピーカなど、フレキシブル性を有するスピーカ等に好適に用いられる。ここで、フレキシブル性を有するスピーカに用いられる高分子複合圧電体(圧電体層12)は、次の用件を具備したものであるのが好ましい。
(i) 可撓性
例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
(ii) 音質
スピーカは、20Hz〜20kHzのオーディオ帯域の周波数で圧電体粒子を振動させ、その振動エネルギーによって振動板(高分子複合圧電体)全体が一体となって振動することで音が再生される。従って、振動エネルギーの伝達効率を高めるために高分子複合圧電体には適度な硬さが求められる。また、スピーカの周波数特性が平滑であれば、曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくなる。従って、高分子複合圧電体の損失正接は適度に大きいことが求められる。
以上をまとめると、フレキシブル性を有するスピーカに用いる高分子複合圧電体は、20Hz〜20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。
一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下とともに大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
高分子複合圧電体(圧電体層12)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz〜20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移温度が常温、すなわち、0〜50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
常温で粘弾性を有する高分子材料としては、公知の各種のものが利用可能である。好ましくは、常温、すなわち0〜50℃において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上有る高分子材料を用いる。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックス/圧電体粒子界面の応力集中が緩和され、高い可撓性が期待できる。
また、高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下、であることが好ましい。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz〜20kHzの音響振動に対しては硬く振る舞うことができる。
また、高分子材料は、比誘電率が25℃において10以上有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、高分子マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
このような条件を満たす高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン−ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が例示される。また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。なかでも、シアノエチル基を有する材料を用いることが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
なお、これらの高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。
このような常温で粘弾性を有する高分子材料を用いる粘弾性マトリックス24は、必要に応じて、複数の高分子材料を併用してもよい。
すなわち、粘弾性マトリックス24には、誘電特性や機械特性の調整等を目的として、シアノエチル化PVA等の粘弾性材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、ポリフッ化ビニリデン−トリフルオロエチレン共重合体及びポリフッ化ビニリデン−テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン−酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロース及びシアノエチルソルビトール等のシアノ基あるいはシアノエチル基を有するポリマー、ニトリルゴムやクロロプレンゴム等の合成ゴム等が例示される。
中でも、シアノエチル基を有する高分子材料は、好適に利用される。
また、圧電体層12の粘弾性マトリックス24において、シアノエチル化PVA等の常温で粘弾性を有する材料に加えて添加される誘電性ポリマーは、1種に限定はされず、複数種を添加してもよい。
また、誘電性ポリマー以外にも、ガラス転移点Tgを調整する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテン、イソブチレン、等の熱可塑性樹脂や、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、マイカ、等の熱硬化性樹脂を添加しても良い。
更に、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、石油樹脂、等の粘着付与剤を添加しても良い。
圧電体層12の粘弾性マトリックス24において、シアノエチル化PVA等の粘弾性材料以外のポリマーを添加する際の添加量には、特に限定は無いが、粘弾性マトリックス24に占める割合で30重量%以下とするのが好ましい。
これにより、粘弾性マトリックス24における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子26や電極層との密着性向上等の点で好ましい結果を得ることができる。
圧電体粒子26は、ペロブスカイト型或いはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
圧電体粒子26を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
このような圧電体粒子26の粒径は、変換フィルム10のサイズや用途に応じて、適宜、選択すれば良いが、本発明者の検討によれば、1〜10μmが好ましい。
圧電体粒子26の粒径を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
なお、図4においては、圧電体層12中の圧電体粒子26は、粘弾性マトリックス24中に、均一にかつ規則性を持って分散されているが、本発明は、これに限定はされない。
すなわち、圧電体層12中の圧電体粒子26は、好ましくは均一に分散されていれば、粘弾性マトリックス24中に不規則に分散されていてもよい。
変換フィルム10において、圧電体層12中における粘弾性マトリックス24と圧電体粒子26との量比は、変換フィルム10の面方向の大きさや厚さ、変換フィルム10の用途、変換フィルム10に要求される特性等に応じて、適宜、設定すればよい。
ここで、本発明者の検討によれば、圧電体層12中における圧電体粒子26の体積分率は、30〜70%が好ましく、特に、50%以上とするのが好ましく、従って、50〜70%とするのが、より好ましい。
粘弾性マトリックス24と圧電体粒子26との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
また、変換フィルム10において、圧電体層12の厚さにも、特に限定はなく、変換フィルム10のサイズ、変換フィルム10の用途、変換フィルム10に要求される特性等に応じて、適宜、設定すればよい。
ここで、本発明者の検討によれば、圧電体層12の厚さは、10〜300μmが好ましく、20〜200μmがより好ましく、特に、30〜100μmが好ましい。
圧電体層12の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
なお、圧電体層12は、分極処理(ポーリング)されているのが好ましいのは、前述のとおりである。分極処理に関しては、後に詳述する。
図4に示すように、本発明の変換フィルム10は、このような圧電体層12の一面に、下部薄膜電極14を形成し、その上に下部保護層18を形成し、圧電体層12の他方の面に、上部薄膜電極16を形成し、その上に上部保護層20を形成してなる構成を有する。ここで、上部薄膜電極16と下部薄膜電極14とが電極対を形成する。
なお、変換フィルム10は、これらの層に加えて、例えば、上部薄膜電極16、および、下部薄膜電極14からの電極の引出しを行う電極引出し部や、圧電体層12が露出する領域を覆って、ショート等を防止する絶縁層等を有していてもよい。
すなわち、変換フィルム10は、圧電体層12の両面を電極対、すなわち、上部薄膜電極16および下部薄膜電極14で挟持し、この積層体を、上部保護層20および下部保護層18で挟持してなる構成を有する。
このように、上部薄膜電極16および下部薄膜電極14で挾持された領域は、印加された電圧に応じて駆動される。
変換フィルム10において、上部保護層20および下部保護層18は、圧電体層12に適度な剛性と機械的強度を付与する役目を担っている。すなわち、本発明の変換フィルム10において、粘弾性マトリックス24と圧電体粒子26とからなる圧電体層12は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。変換フィルム10は、それを補うために上部保護層20および下部保護層18が設けられる。
上部保護層20および下部保護層18には、特に限定はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルムが好適に例示される。中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂が好適に利用される。
上部保護層20および下部保護層18の厚さにも、特に、限定は無い。また、上部保護層20および下部保護層18の厚さは、基本的に同じであるが、異なってもよい。
ここで、上部保護層20および下部保護層18の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれるため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、上部保護層20および下部保護層18は、薄いほど有利である。
本発明者の検討によれば、上部保護層20および下部保護層18の厚さが、圧電体層12の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
例えば、圧電体層12の厚さが50μmで上部保護層20および下部保護層18がPETからなる場合、上部保護層20および下部保護層18の厚さは、100μm以下が好ましく、50μm以下がより好ましく、中でも25μm以下とするのが好ましい。
変換フィルム10において、圧電体層12と上部保護層20との間には上部薄膜電極(以下、上部電極とも言う)16が、圧電体層12と下部保護層18との間には下部薄膜電極(以下、下部電極とも言う)14が、それぞれ形成される。
上部電極16および下部電極14は、変換フィルム10(圧電体層12)に電界を印加するために設けられる。
本発明において、上部電極16および下部電極14の形成材料には、特に、限定はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、クロムおよびモリブデン等や、これらの合金、酸化インジウムスズ等が例示される。中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズのいずれかは、好適に例示される。
また、上部電極16および下部電極14の形成方法にも、特に限定はなく、真空蒸着やスパッタリング等の気相堆積法(真空成膜法)やめっきによる成膜や、上記材料で形成された箔を貼着する方法等、公知の方法が、各種、利用可能である。
中でも特に、変換フィルム10の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅やアルミニウムの薄膜は、上部電極16および下部電極14として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。
上部電極16および下部電極14の厚さには、特に、限定は無い。また、上部電極16および下部電極14の厚さは、基本的に同じであるが、異なってもよい。
ここで、前述の上部保護層20および下部保護層18と同様に、上部電極16および下部電極14の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれるため、上部電極16および下部電極14は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
ここで、本発明者の検討によれば、上部電極16および下部電極14の厚さとヤング率との積が、上部保護層20および下部保護層18の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
例えば、上部保護層20および下部保護層18がPET(ヤング率:約6.2GPa)で、上部電極16および下部電極14が銅(ヤング率:約130GPa)からなる組み合わせの場合、上部保護層20および下部保護層18の厚さが25μmだとすると、上部電極16および下部電極14の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。
前述のように、変換フィルム10は、常温で粘弾性を有する粘弾性マトリックス24に圧電体粒子26を分散してなる圧電体層12を、上部電極16および下部電極14で挟持し、さらに、この積層体を、上部保護層20および下部保護層18を挟持してなる構成を有する。
このような変換フィルム10は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)が0.1以上となる極大値が常温に存在するのが好ましい。
これにより、変換フィルム10が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
変換フィルム10は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10〜30GPa、50℃において1〜10GPaであるのが好ましい。
これにより、常温で変換フィルム10が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz〜20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
また、変換フィルム10は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×106〜2.0×106(1.0E+06〜2.0E+06)N/m、50℃において1.0×105〜1.0×106(1.0E+05〜1.0E+06)N/mであるのが好ましい。
これにより、変換フィルム10が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
さらに、変換フィルム10は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が、0.05以上であるのが好ましい。
これにより、変換フィルム10を用いたスピーカの周波数特性が平滑になり、スピーカの曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくできる。
以下、図5A〜図5Eを参照して、変換フィルム10の製造方法の一例を説明する。
まず、図5Aに示すように、下部保護層18の上に下部電極14が形成されたシート状物11aを準備する。このシート状物11aは、下部保護層18の表面に、真空蒸着、スパッタリング、めっき等によって下部電極14として銅薄膜等を形成して、作製すればよい。
下部保護層18が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの下部保護層18を用いても良い。尚、セパレータとしては、厚さ25〜100μmのPET等を用いることができる。なお、セパレータは、薄膜電極および保護層の熱圧着後、側面絶縁層や、第2の保護層等を形成する直前に、取り除けばよい。
一方で、有機溶媒に、シアノエチル化PVA等の常温で粘弾性を有する高分子材料(以下、粘弾性材料とも言う)を溶解し、さらに、PZT粒子等の圧電体粒子26を添加し、攪拌して分散してなる塗料を調製する。有機溶媒には、特に限定はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン、シクロヘキサノン等の各種の有機溶媒が利用可能である。
前述のシート状物11aを準備し、かつ、塗料を調製したら、この塗料をシート状物にキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図5Bに示すように、下部保護層18の上に下部電極14を有し、下部電極14の上に圧電体層12を形成してなる積層体11bを作製する。
この塗料のキャスティング方法には、特に、限定はなく、スライドコータやドクターナイフ等の公知の方法(塗布装置)が、全て、利用可能である。
あるいは、粘弾性材料がシアノエチル化PVAのように加熱溶融可能な物であれば、粘弾性材料を加熱溶融して、これに圧電体粒子26を添加/分散してなる溶融物を作製し、押し出し成形等によって、図5Aに示すシート状物11aの上にシート状に押し出し、冷却することにより、図5Bに示すような、下部保護層18の上に下部電極14を有し、下部電極14の上に圧電体層12を形成してなる積層体11bを作製してもよい。
なお、前述のように、変換フィルム10において、粘弾性マトリックス24には、シアノエチル化PVA等の粘弾性材料以外にも、PVDF等の高分子圧電材料を添加しても良い。
粘弾性マトリックス24に、これらの高分子圧電材料を添加する際には、上記塗料に添加する高分子圧電材料を溶解すればよい。あるいは、上記加熱溶融した粘弾性材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
下部保護層18の上に下部電極14を有し、下部電極14の上に圧電体層12を形成してなる積層体11bを作製したら、好ましくは、圧電体層12の分極処理(ポーリング)を行う。
圧電体層12の分極処理の方法には、特に限定はなく、公知の方法が利用可能である。好ましい分極処理の方法として、図5Cおよび図5Dに示す方法が例示される。
この方法では、図5Cおよび図5Dに示すように、積層体11bの圧電体層12の上面12aの上に、間隔gを例えば1mm開けて、この上面12aに沿って移動可能な棒状あるいはワイヤー状のコロナ電極30を設ける。そして、このコロナ電極30と下部電極14とを直流電源32に接続する。
さらに、積層体11bを加熱保持する加熱手段、例えば、ホットプレートを用意する。
その上で、圧電体層12を、加熱手段によって、例えば、温度100℃に加熱保持した状態で、直流電源32から下部電極14とコロナ電極30との間に、数kV、例えば、6kVの直流電圧を印加してコロナ放電を生じさせる。さらに、間隔gを維持した状態で、圧電体層12の上面12aに沿って、コロナ電極30を移動(走査)して、圧電体層12の分極処理を行う。
このようなコロナ放電を利用する分極処理(以下、便宜的に、コロナポーリング処理とも言う)において、コロナ電極30の移動は、公知の棒状物の移動手段を用いればよい。
また、コロナポーリング処理では、コロナ電極30を移動する方法にも、限定はされない。すなわち、コロナ電極30を固定し、積層体11bを移動させる移動機構を設け、この積層体11bを移動させて分極処理をしてもよい。この積層体11bの移動も、公知のシート状物の移動手段を用いればよい。
さらに、コロナ電極30の数は、1本に限定はされず、複数本のコロナ電極30を用いて、コロナポーリング処理を行ってもよい。
また、分極処理は、コロナポーリング処理に限定はされず、分極処理を行う対象に、直接、直流電界を印加する、通常の電界ポーリングも利用可能である。但し、この通常の電界ポーリングを行う場合には、分極処理の前に、上部電極16を形成する必要が有る。
なお、この分極処理の前に、圧電体層12の表面を加熱ローラ等を用いて平滑化する、カレンダー処理を施してもよい。このカレンダー処理を施すことで、後述する熱圧着工程がスムーズに行える。
このようにして積層体11bの圧電体層12の分極処理を行う一方で、上部保護層20の上に上部電極16が形成されたシート状物11cを、準備する。このシート状物11cは、上部保護層20の表面に、真空蒸着、スパッタリング、めっき等によって上部電極16として銅薄膜等を形成して、作製すればよい。
次いで、図5Eに示すように、上部電極16を圧電体層12に向けて、シート状物11cを、圧電体層12の分極処理を終了した積層体11bに積層する。
さらに、この積層体11bとシート状物11cとの積層体を、上部保護層20と下部保護層18とを挟持するようにして、加熱プレス装置や加熱ローラ対等で熱圧着して、変換フィルム10を作製する。
以上、本発明の電気音響変換器について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。
[実施例1]
前述の図5A〜図5Eに示す方法によって、図4に示す変換フィルム10を作製した。
まず、下記の組成比で、シアノエチル化PVA(CR−V 信越化学工業社製)をジメチルホルムアミド(DMF)に溶解した。その後、この溶液に、PZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で分散させて、圧電体層12を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・30質量部
・DMF・・・・・・・・・・・・・・70質量部
なお、PZT粒子は、市販のPZT原料粉を1000〜1200℃で焼結した後、これを平均粒径5μmになるように解砕および分級処理したものを用いた。
一方、厚さ4μmのPETフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなるシート状物11aおよび11cを用意した。すなわち、本例においては、上部電極16および下部電極14は、厚さ0.1mの銅蒸着薄膜であり、上部保護層20および下部保護層18は厚さ4μmのPETフィルムとなる。
なお、プロセス中、良好なハンドリングを得るために、PETフィルムには厚さ50μmのセパレータ(仮支持体 PET)付きのものを用い、薄膜電極および保護層の熱圧着後に、各保護層のセパレータを取り除いた。
このシート状物11aの下部電極14(銅蒸着薄膜)の上に、スライドコータを用いて、先に調製した圧電体層12を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が40μmになるように、塗布した。
次いで、シート状物11aの上に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでDMFを蒸発させた。これにより、PET製の下部保護層18の上に銅製の下部電極14を有し、その上に、厚さが40μmの圧電体層12(圧電層)を形成してなる積層体11bを作製した。
この積層体11bの圧電体層12を、図5Cおよび図5Dに示す前述のコロナポーリングによって、分極処理した。なお、分極処理は、圧電体層12の温度を100℃として、下部電極14とコロナ電極30との間に6kVの直流電圧を印加してコロナ放電を生じさせて、行った。
分極処理を行った積層体11bの上に、上部電極16(銅薄膜側)を圧電体層12に向けてシート状物11cを積層した。
次いで、積層体11bとシート状物11cとの積層体を、ラミネータ装置を用いて120℃で熱圧着することで、圧電体層12と上部電極16および下部電極14とを接着して変換フィルム10を作製した。
作製した変換フィルム10を、ケース42に組み込んで変換ユニット40を作製した。
ここで、変換ユニット40の湾曲部の大きさは、170mm×170mmとした。
ケース42は、一面が開放した箱型の容器で、外寸180mm×180mm、開放面の大きさ170mm×170mm、深さ4mmのアルミ製の矩形容器を用いた。
また、ケース42内には、粘弾性支持体46を配置した。粘弾性支持体46は、組立前の高さ25mm、密度32kg/m3のグラスウールとした。
また、押圧部材48は、開口部aの大きさ170mm×170mm、厚さ6mmのアルミ製の板状部材を用いた。すなわち、押圧部材48の縁部の幅は5mmとした。
変換フィルム10を粘弾性支持体46およびケース42の開口部を覆うように配置して押圧部材48により周辺部を固定し、粘弾性支持体46により変換フィルム10に適度な張力と曲率を付与した。
このような変換ユニット40を6つ準備し、6つの変換ユニット40それぞれの変換フィルム10側の面を外側に向けて正六面体(立方体)を構成するように配置して互いに固定して、電気音響変換器100を作製した。
[実施例2]
図7Aに示す電気音響変換器120ように、4つの変換ユニット40を有し、各変換ユニット40は、変換フィルム10(湾曲部)の一辺の延在方向を一致させて、かつ、この一辺に垂直な断面において、各変換ユニット40の湾曲部が略正方形状を形成して、かつ、各湾曲部が異なる方向を向くように配列し、4つの変換ユニット40で囲まれる空間の2つの開口部に、この開口部と略同じ大きさの蓋部材120を配置した。したがって、4つの変換ユニット40に囲まれた空間は略密閉される。
蓋部材120は、厚さ6mmのアルミ板からなる板状部材とした。
すなわち、4つの変換ユニット40は、1つの変換ユニット40を基準にして、他の変換ユニットの音の放射方向がそれぞれ、90°、180°、および、270°異なる方向となるように配置されている。
[参考例1]
図7Bに示すように、蓋部材を有さない以外は、実施例2と同様にした。
すなわち、図7Bに示す電気音響変換器202は、4つの変換ユニット40を有し、各変換ユニット40は、変換フィルム10(振動面)の一辺の延在方向を一致させて、かつ、この一辺に垂直な断面において、各変換ユニット40の振動面が略正方形状を形成して、かつ、各振動面が異なる方向を向くように配列して構成される。
また、4つの変換ユニット40に囲まれた空間は図中上下面側で外部と連通している。
[比較例1]
図8に示すように、1つの変換ユニット40を有する構成とした以外は実施例1と同様にした。
[評価]
<周波数特性>
作製した電気音響変換器の音圧レベル−周波数特性を、定電流型パワーアンプを用いたサイン波スイープ測定によって測定した。なお、計測用マイクロフォンは、1つの変換ユニットの中心の正面50cmの位置に配置した。また、電気音響変換器は、空中に吊るした状態で測定を行った。
この音圧レベル−周波数特性の測定結果のグラフを図9に示す。
図9に示すように、実施例1および2と、比較例1とを比較すると、中域および高域では、音圧レベルは同等であるが、低域で実施例1および2の音圧レベルが高くなり、広帯域化しているのがわかる。
特に、約70Hz〜300Hzの低域では、変換ユニットを1つ有する比較例1に対して、実施例1は、音圧レベルが最大で約10倍(+20dB)向上している。すなわち、実施例1では、変換ユニットの数を6つに、比較例1の6倍にしたものであるが、音圧レベルは10倍に向上している。
これは、変換ユニット40を立方体形状に隣接配置して構成することで、放射インピーダンスが大幅に上昇し、ユニットの数以上の音圧増幅効果を得ることが可能になるためである。
また、実施例2と参考例1とは、いずれも変換ユニットを4つ有するものであるが、実施例2の方が、低域の音圧レベルが高くなっている。
具体的には、低域において、参考例1は比較例1に対して、最大で約4倍(+12dB)向上している。すなわち、変換ユニットの数に対応して音圧レベルが高くなっていると言える。
これに対して、実施例2では、比較例1の約6倍(+約15dB)となっており、この対比からも、複数の変換ユニットで多面体を構成することにより、放射インピーダンスが大幅に上昇し、ユニットの数以上の音圧増幅効果を得ることが可能になることがわかる。
尚、参考例1においてのみ、600Hz付近での音圧レベルの上昇が見られるが、これは多面体(筐体)の内部空間に出入りする空気の共振によるものである。このことからも、実施例2においては上下に蓋をして密閉空間にしたことが、空気の逃げ道を塞ぎ、放射インピーダンスの上昇に寄与したことは明らかである。
次に、実施例1、2および比較例1について、スピーカを回転させて、マイクPの配置位置(角度)を変更して、音圧レベル−周波数特性を測定した。
具体的には、図6に示すように、基準となる1つの変換ユニットが、鉛直方向に平行になるように電気音響変換器を空中に吊るして設置し、基準の変換ユニットの変換フィルムの正面の位置を0°とし、鉛直方向を軸として、30°、60°、90°、および、180°の角度の位置それぞれにマイクPが配置されるようにスピーカユニットを回転して、音圧レベル−周波数特性を測定した。
実施例1の測定結果を図10Aに示し、実施例2の測定結果を図10Bに示し、比較例1の測定結果を図10Cに示す。
図10Cに示すように、比較例1は、変換ユニット1つであるので、変換ユニットの正面(0°)位置での音圧レベルに対して、正面以外の位置では、音圧レベルが大きく低下しているのがわかる。特に、指向性の高い高域での音圧レベルの低下が大きいことがわかる。
これに対して、図10Aおよび図10Bに示すように、実施例1および実施例2は、90°の位置、および、180°の位置の場合も、他の変換ユニットの正面位置となるため、0°位置での音圧レベルと同等になる。また、30°の位置、および、60°の位置でも、高域での音圧レベルの低下が少ないことがわかる。したがって、無指向性のスピーカとして利用することが可能であることがわかる。
ところで、非特許文献1に開示されるように、図12Aに示すような、1つのスピーカユニット502をエンクロージャ504に取り付けた電気音響変換器500、図12Bに示すような、2つのスピーカユニット502を互いに湾曲部が反対方向を向くようにエンクロージャに取り付けた電気音響変換器510(背面対向配置)、および、図12Cに示すような、正十二面体のエンクロージャの各面にスピーカユニットを取り付けた電気音響変換器520(多面体スピーカ)それぞれについて、ある1つのスピーカを正面(0°)として、上記と同様に、マイクPの配置位置を変更して、音圧レベルを測定した結果は、図13A〜図13Cに示すとおりである。
なお、図13A〜図13Cにおいて、100Hzの場合を網線で示し、500Hzの場合を破線で示し、1kHzの場合を実線で示し、2kHzの場合を点線で示し、5kHzの場合を二点鎖線で示し、10kHzの場合を一点鎖線で示す。
図13A〜図13Cに示すように、ダイナミック型の電気音響変換器であっても、背面対向配置や多面体スピーカなどにすることで、1つのスピーカユニットの電気音響変換器に比べて、正面以外の方向の中域高域の音圧レベルが、向上しているものの、測定位置(角度)によって音圧レベルが変化し、波状の波形を示している。このため、聴取位置で低域、中域および高域の音圧レベルのバランスが変わって、音色が変わってしまうため、無指向性スピーカの実現は難しい。
これは、スピーカユニット(振動板)同士の間隔が大きいため、各スピーカユニットから出た音の位相がずれるためである。また、図13Cから、ダイナミック型の電気音響変換器を複数用いて、多面体スピーカを構成した場合には、低域(100Hz)の音圧レベルが顕著に落ち込んでいることがわかる。これは、スピーカユニットを複数個用いると、磁気回路に場所を取られるため、エンクロージャの実質的な容積が不足したためであると考えられる。
また、非特許文献1に開示されるように、HVT方式のスピーカを背中合わせに配置した構成の場合には、2つの振動板の間の距離を小さくできるため、それぞれから出た音がマイクに到達するタイミングにズレがほとんど生じず、無指向性に近いスピーカとすることができるものの、横方向において高域の音圧レベルが低下しており、十分な無指向性を有するものとはならない。
これに対して、実施例1および2、ならびに、比較例1について、ある1つのスピーカを正面(0°)として、上記と同様に、マイクPの配置位置を変更して、音圧レベルを測定した結果を図11A〜図11Cに示す。
なお、図11A〜図11Cにおいて、100Hzの場合を網線で示し、500Hzの場合を破線で示し、1kHzの場合を実線で示し、2kHzの場合を点線で示し、5kHzの場合を二点鎖線で示し、10kHzの場合を一点鎖線で示す。
本発明の電気音響変換器は、非常に薄く、振動板(湾曲部)の面積を筐体部の大きさとほぼ同じ大きさとすることができるため、複数の変換ユニットで多面体を構成した場合に、振動板の距離を近くでき、変換ユニット同士のつなぎ目が自然である。そのため、図11Aおよび図11Bに示すように、各変換ユニットから出た音は、どの方向に伝わる音も、ほぼ同位相で振動する。
そのため、どの方向でも均一な音圧レベルが得られ、また、低域、中域および高域の音圧レベルのバランスも変わらないので、水平方向(長辺に垂直な方向)において、理想的な無指向性が得られることが分かる。
なお、比較例1では、図11Cに示すように、正面以外の位置では、角度によって、音圧レベルが変化しており、その変化の傾向が周波数帯域によって異なるため、位置によって、周波数のバランスが変わり音色が変化してしまうことがわかる。
[実施例3、4および比較例2]
湾曲部の大きさを200mm×200mmとし、ケースの外寸を240mm×240mmとした以外はそれぞれ、実施例1、2および比較例1と同様にして電気音響変換器を作製した。
すなわち、押圧部材の縁部の幅は、20mmである。
[評価]
<周波数特性>
実施例3、4および比較例2の電気音響変換器について、上記の周波数特性の測定と同様にして、音圧レベル−周波数特性を測定した。
正面における音圧レベル−周波数特性の測定結果の比較のグラフを図14に示す。
また、実施例3および比較例2について、マイクPの配置位置(角度)を変更して、音圧レベル−周波数特性を測定した結果を図15Aおよび図15Bに示す。
図14、図15Aおよび図15Bに示すように、実施例3および4と、比較例2とを比較すると、中域では、音圧レベルは同等であるが、低域で実施例3および4の音圧レベルが高くなり、広帯域化しているのがわかる。
[実施例5]
多面体の1つの面の変換ユニットを、コーン型スピーカユニットに変更した以外は、実施例3と同様にして、図3に示すような電気音響変換器を作製した。
コーン型スピーカユニットとして、フォスター電機株式会社製のサブウーハーからスピーカユニット(径:130mm)を取り出して用いた。
[評価]
<周波数特性>
実施例5の電気音響変換器について、コーン型スピーカユニットを駆動した場合(サブウーハーON)と、駆動しなかった場合(サブウーハーOFF)の音圧レベル−周波数特性を、上記の周波数特性の測定と同様にして、測定した。
音圧レベル−周波数特性の測定結果の比較のグラフを図16に示す。
また、実施例5のサブウーハーONの場合について、ある1つのスピーカを正面(0°)として、上記と同様に、マイクPの配置位置を変更して、音圧レベルを測定した結果を図17に示す。
図16から、サブウーハーONの場合は、サブウーハーOFFの場合に比較して低域の音圧レベルが向上して、低域から広域までの音圧レベルをより均一化することができることがわかる。
このように、多面体の一部の面に、電気音響変換器の音圧レベルが低い周波数帯域の音を再生できるコーン型スピーカユニットを配置することで、広い周波数帯域で音圧レベルをより均一化することができる。
また、多面体の一部の面に、サブウーハー(コーン型スピーカユニット)を配置することで、多面体の内部空洞をエンクロージャとして有効活用したサブウーハーを実現でき、また、各変換ユニットおよびサブウーハーが多面体の中心で点を結び、理想的な点音源再生とみなせるので、図17に示すように、どの方向でもより均一な音圧レベルが得られ、また、低域、中域および高域の音圧レベルのバランスも変わらず、より理想的な無指向性が得られることが分かる。
以上の結果より、本発明の効果は、明らかである。
10 電気音響変換フィルム
11a、11c シート状物
11b 積層体
12 圧電体層
14 下部薄膜電極
16 上部薄膜電極
18 下部保護層
20 上部保護層
24 粘弾性マトリックス
26 圧電体粒子
30 コロナ電極
32 直流電源
40 電気音響変換ユニット
42 ケース
46 粘弾性支持体
48 押圧部材
48a 開口部
100、110、120、202 電気音響変換器
112 コーン型スピーカユニット
122 蓋部材

Claims (11)

  1. 常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体、および、前記高分子複合圧電体の両面に積層された2つの薄膜電極を有する電気音響変換フィルムと、前記電気音響変換フィルムが湾曲するように、前記電気音響変換フィルムの一方の主面に密着して配置される弾性支持体とを有する電気音響変換ユニットを2つ以上有し、
    2つ以上の前記電気音響変換ユニットが、前記電気音響変換フィルムを外側に向けて、多面体の一部の面、若しくは全ての面を構成するように配置されることを特徴とする電気音響変換器。
  2. 前記弾性支持体が粘弾性を有する粘弾性支持体である請求項1に記載の電気音響変換器。
  3. 前記電気音響変換フィルムの湾曲部が、中心から周辺部に向かって緩やかに曲率が変化している請求項1または2に記載の電気音響変換器。
  4. 前記多面体が、正多面体、半正多面体、或いは準正多面体のいずれかひとつに属する請求項1〜3のいずれか1項に記載の電気音響変換器。
  5. 前記電気音響変換フィルムの主面に垂直な方向から見た際の、前記電気音響変換フィルムの湾曲部の形状が正多角形である請求項1〜4のいずれか1項に記載の電気音響変換器。
  6. 前記多面体の一部の面にコーン型スピーカユニットが放射面を外側に向けて備わっている請求項1〜5のいずれか1項に記載の電気音響変換器。
  7. 前記電気音響変換フィルムの動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10〜30GPa、50℃において1〜10GPaである請求項1〜6のいずれか1項に記載の電気音響変換器。
  8. 前記高分子材料の周波数1Hzでのガラス転移温度が0〜50℃である請求項1〜7のいずれか1項に記載の電気音響変換器。
  9. 前記高分子材料の動的粘弾性測定による周波数1Hzでの損失正接Tanδが0.5以上となる極大値が0〜50℃の温度範囲に存在する請求項1〜8のいずれか1項に記載の電気音響変換器。
  10. 前記高分子材料が、シアノエチル基を有するものである請求項1〜9のいずれか1項に記載の電気音響変換器。
  11. 前記高分子材料が、シアノエチル化ポリビニルアルコールである請求項1〜10のいずれか1項に記載の電気音響変換器。
JP2017509579A 2015-03-27 2016-03-18 電気音響変換器 Pending JPWO2016158518A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015066436 2015-03-27
JP2015066436 2015-03-27
PCT/JP2016/058800 WO2016158518A1 (ja) 2015-03-27 2016-03-18 電気音響変換器

Publications (1)

Publication Number Publication Date
JPWO2016158518A1 true JPWO2016158518A1 (ja) 2017-11-24

Family

ID=57004970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017509579A Pending JPWO2016158518A1 (ja) 2015-03-27 2016-03-18 電気音響変換器

Country Status (3)

Country Link
US (1) US10284935B2 (ja)
JP (1) JPWO2016158518A1 (ja)
WO (1) WO2016158518A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594429B2 (en) 2014-03-27 2017-03-14 Apple Inc. Adjusting the level of acoustic and haptic output in haptic devices
WO2016002677A1 (ja) * 2014-06-30 2016-01-07 富士フイルム株式会社 電気音響変換フィルムおよびデジタルスピーカ
US10585480B1 (en) 2016-05-10 2020-03-10 Apple Inc. Electronic device with an input device having a haptic engine
US10649529B1 (en) 2016-06-28 2020-05-12 Apple Inc. Modification of user-perceived feedback of an input device using acoustic or haptic output
US10372214B1 (en) 2016-09-07 2019-08-06 Apple Inc. Adaptable user-selectable input area in an electronic device
US10437359B1 (en) 2017-02-28 2019-10-08 Apple Inc. Stylus with external magnetic influence
KR102391311B1 (ko) * 2017-07-07 2022-04-26 엘지디스플레이 주식회사 필름 스피커 및 이를 포함하는 표시 장치
US10768747B2 (en) 2017-08-31 2020-09-08 Apple Inc. Haptic realignment cues for touch-input displays
US11054932B2 (en) 2017-09-06 2021-07-06 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US10556252B2 (en) 2017-09-20 2020-02-11 Apple Inc. Electronic device having a tuned resonance haptic actuation system
US10768738B1 (en) 2017-09-27 2020-09-08 Apple Inc. Electronic device having a haptic actuator with magnetic augmentation
US9987567B1 (en) * 2017-09-29 2018-06-05 NextLeaf Solutions Ltd. Cannabinoid extraction process and system
US10942571B2 (en) 2018-06-29 2021-03-09 Apple Inc. Laptop computing device with discrete haptic regions
US10936071B2 (en) 2018-08-30 2021-03-02 Apple Inc. Wearable electronic device with haptic rotatable input
US10613678B1 (en) 2018-09-17 2020-04-07 Apple Inc. Input device with haptic feedback
US10966007B1 (en) 2018-09-25 2021-03-30 Apple Inc. Haptic output system
KR20220100013A (ko) 2019-12-18 2022-07-14 후지필름 가부시키가이샤 압전 필름
CN113329113B (zh) * 2020-02-28 2022-12-06 华为技术有限公司 终端保护壳及音频播放系统
WO2021225075A1 (ja) * 2020-05-08 2021-11-11 富士フイルム株式会社 高分子圧電フィルム
US11024135B1 (en) 2020-06-17 2021-06-01 Apple Inc. Portable electronic device having a haptic button assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341493A (ja) * 1997-06-05 1998-12-22 Takeshi Fujita 広指向特性拡声装置
JP2014014063A (ja) * 2011-09-30 2014-01-23 Fujifilm Corp 電気音響変換フィルム、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3838742B2 (ja) 1997-06-09 2006-10-25 松下電器産業株式会社 スピーカ
JP2004297148A (ja) * 2003-03-25 2004-10-21 Takenaka Komuten Co Ltd 音響縮尺模型実験用小型スピーカ
JP5249901B2 (ja) * 2009-10-15 2013-07-31 ホシデン株式会社 コンデンサマイクロホン
EP2685717A4 (en) * 2011-03-09 2014-08-27 Toshiba Kk METHOD FOR CODING VIDEO IMAGES AND METHOD FOR DECODING VIDEO IMAGES
JP6005093B2 (ja) 2013-03-28 2016-10-12 富士フイルム株式会社 電気音響変換フィルム、電気音響変換器、フレキシブルディスプレイおよびプロジェクター用スクリーン
JP6005089B2 (ja) 2013-03-29 2016-10-12 富士フイルム株式会社 電気音響変換フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341493A (ja) * 1997-06-05 1998-12-22 Takeshi Fujita 広指向特性拡声装置
JP2014014063A (ja) * 2011-09-30 2014-01-23 Fujifilm Corp 電気音響変換フィルム、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー

Also Published As

Publication number Publication date
US10284935B2 (en) 2019-05-07
WO2016158518A1 (ja) 2016-10-06
US20180014096A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2016158518A1 (ja) 電気音響変換器
JP6005093B2 (ja) 電気音響変換フィルム、電気音響変換器、フレキシブルディスプレイおよびプロジェクター用スクリーン
JP6071932B2 (ja) 電気音響変換フィルム
JP6297204B2 (ja) 高分子複合圧電体、電気音響変換フィルムおよび電気音響変換器
JP6196400B2 (ja) 電気音響変換フィルム
JP6383882B2 (ja) 電気音響変換器
WO2014157684A1 (ja) スピーカシステム
JP2016015354A (ja) 電気音響変換フィルムおよび電気音響変換フィルムの導通方法
JP6216884B2 (ja) 電気音響変換フィルムおよびデジタルスピーカ
WO2016017632A1 (ja) 電気音響変換フィルムおよび電気音響変換器
JP6505845B2 (ja) 電気音響変換フィルム
JP6495866B2 (ja) スピーカーユニット
JP6216885B2 (ja) 電気音響変換フィルムおよびデジタルスピーカ
JP6193194B2 (ja) 電気音響変換フィルムおよび電気音響変換器
WO2016136522A1 (ja) 構造体および電気音響変換器
JP2019216461A (ja) 電気音響変換器、および、電気音響変換システム
JP6450014B2 (ja) 電気音響変換フィルム、電気音響変換フィルムの製造方法および電気音響変換器
JP6297223B2 (ja) 電気音響変換フィルムおよび電気音響変換器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120