JPS62201304A - Measuring method for film thickness - Google Patents
Measuring method for film thicknessInfo
- Publication number
- JPS62201304A JPS62201304A JP4455386A JP4455386A JPS62201304A JP S62201304 A JPS62201304 A JP S62201304A JP 4455386 A JP4455386 A JP 4455386A JP 4455386 A JP4455386 A JP 4455386A JP S62201304 A JPS62201304 A JP S62201304A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- film thickness
- data
- phase
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 8
- 238000005259 measurement Methods 0.000 claims abstract description 9
- 230000003595 spectral effect Effects 0.000 claims description 6
- 238000000691 measurement method Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 17
- 239000000523 sample Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
(利用分野)
本発明は薄い膜、特に半導体装造工程でのシリコン上の
酸化膜の様にミクロンメータ以下の119厚測定方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Application) The present invention relates to a method for measuring the thickness of thin films, particularly micrometers or less, such as oxide films on silicon in semiconductor manufacturing processes.
本発明で利用している基本的な膜厚算出の311定原理
について第1図を用いて以下説明する。The basic 311 constant principle for film thickness calculation used in the present invention will be explained below with reference to FIG.
媒質の屈折率を入射側からnl 、n2.n3とし、い
ま測定しようとするnり厚をdとする。使用波長(真空
中での波長入0)の各々の入射角をOL、02.03と
する。この時の振巾反射率γは次のようになる。〔参考
:M、Born andE、Wolf著、”Pr1n
ciples of 0ptics”3rd e
dition、PERGAMON PRESS、62L
tlここでγ12は媒質lと2の境界でのフレネルの反
射係数で、γ23は媒質2と3の境界での)である、実
i測定可能な量は、反射強度すなわちR=lγ12 (
通常反射率と呼ぶ)であり1次のようになる。The refractive index of the medium is nl, n2 . Let n3 be the thickness to be measured now and be d. The incident angle of each wavelength used (wavelength incidence in vacuum is 0) is OL, 02.03. The amplitude reflectance γ at this time is as follows. [Reference: M. Born and E. Wolf, “Pr1n
ciples of 0ptics”3rd e
dition, PERGAMON PRESS, 62L
tl, where γ12 is the Fresnel reflection coefficient at the boundary between mediums l and 2, and γ23 is at the boundary between mediums 2 and 3), and the measurable quantity is the reflection intensity, that is, R=lγ12 (
(usually called reflectance) and is of first order.
(2)式よりIl!2厚dは次のようになる。From formula (2), Il! 2 The thickness d is as follows.
−=−=−−−(3) ここでNは整数である。−=−=−−−(3) Here N is an integer.
使用波長入0を変化させた時の反射率Rとdは第1図(
b)及び(C)のようになる。従って各波長での膜厚d
の平均値dAVを膜厚とすることにより、再現性の良い
高精度な測定ができる。The reflectance R and d when changing the wavelength input 0 used are shown in Figure 1 (
b) and (C). Therefore, the film thickness d at each wavelength
By setting the film thickness to the average value dAV, highly accurate measurement with good reproducibility can be performed.
第2図は本発明の一実施例で、システムのブロック図で
ある。分光器lで分光された光を試料ステージ21ニに
置かれた試料面にファイバープローブ3で照明し試料面
から反射した光を再びファイバープローブ3で受は分光
器l内に設”けられた光電変換検出器11Bにより電気
信号に変換する。コントローラ4により分光器lの波長
設定、試料ステージ2の移動をコントロールすると共に
、前記分光器lの光電変換検出器11Bの電気信号をデ
ジタル信号に変換し、そして試料ステージ2の位置を確
認する。更にIIAは分光器l内のファイバープローブ
3への投光量を検出する投光?検出器である。コンピュ
ータ5は前記コントローラ4を制御すると共にコントロ
ーラ4から得られる前記ディジタル信号を受けとり、反
射率Rを求め前記(3)式から膜厚dを計算する。その
結果をCRT8やフロッピーディスクドライブ9やプリ
ンター10に出力する。操作パネル6とフルキーボード
7によりコンピュータ5に屈折率等の条件を指定したり
、分光器1の波長、試料ステージ2の移動量を指示する
と共に測定開始等の指令を行う。FIG. 2 is a block diagram of a system according to an embodiment of the present invention. The fiber probe 3 illuminates the light separated by the spectrometer 1 onto the sample surface placed on the sample stage 21, and the fiber probe 3 receives the light reflected from the sample surface again. The photoelectric conversion detector 11B converts it into an electric signal.The controller 4 controls the wavelength setting of the spectrometer l and the movement of the sample stage 2, and converts the electric signal of the photoelectric conversion detector 11B of the spectrometer l into a digital signal. Then, the position of the sample stage 2 is confirmed.Furthermore, IIA is a light emitting detector that detects the amount of light emitted to the fiber probe 3 in the spectrometer 1.A computer 5 controls the controller 4 and It receives the digital signal obtained from , calculates the reflectance R, and calculates the film thickness d from the equation (3).The results are output to the CRT 8, floppy disk drive 9, and printer 10.Operation panel 6 and full keyboard 7 The computer 5 specifies conditions such as the refractive index, the wavelength of the spectrometer 1, the amount of movement of the sample stage 2, and commands to start measurement.
操作パネル6は通常よく使用する条件で測定させる場合
で、更にオペレータが誤操作しないよう必要最小限にキ
ーをもっている。The operation panel 6 is used for measurements under commonly used conditions, and has the minimum number of keys required to prevent the operator from operating the device erroneously.
(2)式より反射率Rは、2β=2πの周期比例する。From equation (2), the reflectance R is proportional to the period of 2β=2π.
すなわち反射率Rはに=2n2d・cos θ2の周期
関数となり、波数等間隔でピークを有することになる0
本実施例の膜厚の計算では、この波数を用いて計算を行
う。In other words, the reflectance R is a periodic function of =2n2d・cos θ2, and has peaks at equal wavenumber intervals.
In calculating the film thickness in this embodiment, calculation is performed using this wave number.
ところで膜厚測定の為にある波数間の分光反射率を知る
必要がありそのために、波数を変化させて等波数間隔ご
との反射率をJll定する必要がある。その際にW+1
定誤差を生ずる大きな要因の一部として次の様なものが
ある。By the way, in order to measure the film thickness, it is necessary to know the spectral reflectance between certain wave numbers, and therefore it is necessary to change the wave number and determine the reflectance for each equal wave number interval. At that time, W+1
Some of the major factors that cause fixed errors are as follows.
(1)光量を検出するために光量を電気信号に変換、増
幅、量子化するが、その際に生ずる電気的ノイズ。(1) Electrical noise that occurs when converting, amplifying, and quantizing the amount of light into an electrical signal in order to detect the amount of light.
゛(2)投光量及び反射光量を測定する装置や、試料が
振動することにより生ずる光量変化。(2) Changes in light intensity caused by equipment that measures the amount of projected light and reflected light, or by vibration of the sample.
この様な誤差を含むデータを用いて膜厚計算を行った場
合、計算された膜厚にも誤差が含まれ、また計算過程に
おいて反射率が極値をとる波数を求める際に誤った点を
極値として判断してしまう可能性がある。If film thickness calculations are performed using data that includes such errors, the calculated film thickness will also include errors, and during the calculation process, it may be possible to find an incorrect point when determining the wave number at which the reflectance takes an extreme value. There is a possibility that it will be judged as an extreme value.
これらの誤差を取り除く方法としてA/D変換を行う前
に必要な周波数以上をカットするアナログフィルタを用
いる方法があるがこの方法ではデータの周波数成分が波
数のスキャン速度に依存するため、スキャン速度によっ
てフィルタのカットオフ周波数を変更する必要があり、
又−回のA11l定は一定速度でスキャンしなければな
らないという問題があった。すなわち、同じ反射率をと
ってもスキャン速度が倍になれば。One way to remove these errors is to use an analog filter that cuts frequencies above the required frequency before performing A/D conversion, but in this method, the frequency components of the data depend on the wave number scanning speed, so You need to change the cutoff frequency of the filter,
In addition, there was a problem in that the A111 constant had to be scanned at a constant speed. In other words, even if the reflectance is the same, the scanning speed is doubled.
スキャン時間は半分になり、その周波数成分は倍になっ
てしまう。又−回の測定の途中でスキャン速度が変わる
とその周波数成分は速い所は高く遅い所は低くなってし
まう。The scan time is halved and the frequency components are doubled. Furthermore, if the scanning speed changes during the measurement, the frequency components will be higher at faster speeds and lower at slower speeds.
またその他の方法としては複数回測定してその平均を用
いる方法もあるが、この方法では測定時間がかかること
、又スキャン時に発生する振動の様な測定と同期して起
こる誤差を取り除くことができないという問題があった
。Another method is to measure multiple times and use the average, but this method takes time to measure and cannot eliminate errors that occur in synchronization with measurements, such as vibrations that occur during scanning. There was a problem.
(発明が解決しようとする問題点)
本発明は前述の問題点を除去して測定誤差の少ない反射
率alll装定を提供することを目的とするものである
。(Problems to be Solved by the Invention) It is an object of the present invention to eliminate the above-mentioned problems and provide an all-reflectance setup with less measurement error.
(問題点の解決手段)
本発明では前述の問題解決のためにディジタルフィルタ
が主として装備される。ディジタルフィルタはフィルタ
部と位相補正部から成る。(Means for Solving Problems) The present invention mainly includes a digital filter in order to solve the above-mentioned problems. The digital filter consists of a filter section and a phase correction section.
さらにフィルタを通すと位相遅れが生ずるのでこれを補
正しなくてはならないが一般に位相遅れは周波数に対し
て正確に直線とはならないため、対象となる信号の周波
数が分からない場合やその信号がさまざまな周波数成分
を含んでいる場合には正確な補正はできない。しかし膜
のついた試料の分光反射率では、極く低い周波数にある
特定周波数の乗ったものと見なせるのでその特定周波数
成分を検出しそれに従ってその特定周波数成分を検出し
、その周波数について位相の遅れ量を求め、修正するこ
とによりほぼ正確な補正が可能となる。反射率測定では
、位相ずれは、波数のずれとなるので膜厚の計算に用い
る波数は実際に測定した点とはずれるが、膜厚計′f1
北は全く問題ない。Furthermore, when passing through a filter, a phase lag occurs, which must be corrected, but generally the phase lag is not exactly linear with respect to the frequency, so there are cases where the frequency of the target signal is unknown or the signal varies. Accurate correction cannot be made if the signal contains frequency components. However, in the spectral reflectance of a sample with a film, it can be considered that a specific frequency is superimposed on an extremely low frequency. By determining the amount and correcting it, almost accurate correction becomes possible. In reflectance measurement, the phase shift is a wave number shift, so the wave number used to calculate the film thickness differs from the actual measured point, but the film thickness meter 'f1
There is no problem in the north.
(構成及び作用の説明〉
第3図は未発明の1実施例である投光量及び反射光穴は
検出器11A、11Bでそれぞれ電気信号に変えられ、
増幅器12A、12Bによって増幅されたのちA/D変
換器に入力される。波数スキャナ13はあらかじめ設定
された波数間をスキャンして試料に単色光を照射し、等
波数間隔ごとにA/D変換器13A、13Bに変換のタ
イミングパルスを送る。波長スキャナ13からのタイミ
ングパルスに従って精子化され、数値化された各々のデ
ータ列はCPUに取り込まれ15で反射率x (i)が
計算され。(Description of structure and function) FIG. 3 shows an uninvented embodiment in which the amount of light projected and the reflected light hole are converted into electrical signals by detectors 11A and 11B, respectively.
After being amplified by amplifiers 12A and 12B, it is input to an A/D converter. The wave number scanner 13 scans between preset wave numbers to irradiate the sample with monochromatic light, and sends conversion timing pulses to the A/D converters 13A and 13B at equal wave number intervals. Each data string that has been spermized and digitized according to a timing pulse from the wavelength scanner 13 is taken into the CPU, and the reflectance x (i) is calculated at 15 .
16はディジタルフィルタを通り高次成分を除去される
。16 passes through a digital filter to remove high-order components.
次に17の周波数検出でデータの大よその周波数を検出
しそれに従って18の位相補正でデータの位相遅れが補
正される。そのデータを用いて19で膜厚が計算される
。Next, the approximate frequency of the data is detected in the frequency detection step 17, and the phase delay of the data is corrected in accordance with the detected frequency in the phase correction step 18. Using the data, the film thickness is calculated in step 19.
が計算され、反射:Bxのデータ列x (1) 〜x
(n)が算出される。K(+)は反射率の補正イ+Qで
定数である。この様子を第4図(A)に示す。is calculated, reflection: Bx data string x (1) ~x
(n) is calculated. K(+) is a reflectance correction i+Q and is a constant. This situation is shown in FIG. 4(A).
データ列x(1)〜x(n)を所定の周波数似トを除去
するディジタルフィルタ16に印加することにより新た
な反射率データ列y(1)〜y (n)が得られる。こ
れを第4図(B)に示す。ここで所定の周波数は理想的
な分光反射率から得られる最高周波数に設定するのが好
ましい。なぜならそれ以北の周波数成分は、ノイズと見
なせる為である。第4図(B)に示される如くフィルタ
通過のデータ列y (1)〜y (n)は第4図(A)
のx (1) 〜x (n)に比べて丸みを帯び即ち高
次のノイズ成分が除去されたデータとなり計′J′1誤
差が少なくなることが分る。New reflectance data sequences y(1) to y(n) are obtained by applying the data sequences x(1) to x(n) to a digital filter 16 that removes frequencies similar to a predetermined frequency. This is shown in FIG. 4(B). Here, the predetermined frequency is preferably set to the highest frequency obtained from an ideal spectral reflectance. This is because frequency components north of that point can be considered noise. As shown in Figure 4 (B), the data string y (1) to y (n) passing through the filter is shown in Figure 4 (A).
It can be seen that compared to x (1) to x (n), the data is rounded, that is, high-order noise components have been removed, and the total 'J'1 error is reduced.
さらにこのデータ列y(1)〜y (n)の位相を補正
するため周波数検出部17に印加し、l17i述の如く
特定周波数成分を検出し、その周波数について位相dれ
量を算出し1位相補正部18で位相が補正される。例え
ば算出された遅れj、I=Pの分だけ補正した様子を第
4図(C)に示す。Furthermore, in order to correct the phase of this data string y(1) to y(n), it is applied to the frequency detection unit 17, and as described in 17i, a specific frequency component is detected, and the amount of phase d is calculated for that frequency. The phase is corrected in the correction section 18. For example, FIG. 4C shows how the calculated delay j, I=P, is corrected.
ディジタルフィルタの例として2次のバターワース(B
utter Worth)フィルタを用いた場合の計
算式を示す。An example of a digital filter is the second-order Butterworth (B
The calculation formula when using the Utter Worth) filter is shown below.
このフィルタの伝lt関aH(S)は
(Wc:カットオフ各周波数、S:jW)で表わされる
。x (n) 、 y (n)をそれぞれn番目の入
力データ、出力データとすると。The transmission function aH(S) of this filter is expressed as (Wc: each cutoff frequency, S: jW). Let x (n) and y (n) be the nth input data and output data, respectively.
(4)式をZ変換し整理して逆Z変換を行うことにより
次式が得られる。The following equation is obtained by Z-transforming and rearranging equation (4) and performing inverse Z-transformation.
A= 1 +、/’7waC+W、1(2B=2−W、
c2−2
C= 1−、/TWac+WaC2(5)[)=Wa(
2
(5)式により出力データ列y(n)が得られる。(5
)式によって得られるデータ列v (n)は位相遅れを
含んでいるため、これを補正しなくてはならない。A= 1 +, /'7waC+W, 1 (2B=2-W,
c2-2 C= 1-, /TWac+WaC2(5)[)=Wa(
2 The output data string y(n) is obtained by equation (5). (5
) Since the data sequence v (n) obtained by the equation includes a phase delay, this must be corrected.
(4)式(7)H(S) ヲZ変換り、 z=ejw
ヲ代入してその虚部と実部の比の逆nE接を取ること
により求まり、その式は
となる。ここでのWは信号の角周波数で17の周波数検
出で求められた値が入る。θは角度で表わされるのでこ
れを波数に変換する必要がある。波数8れDWは
θ(W)
DW=−(7)
により求まる。(4) Equation (7) H(S) ヲZ transformation, z=ejw
It can be found by substituting wo and taking the inverse nE tangent of the ratio of the imaginary part to the real part, and the formula is as follows. W here is the angular frequency of the signal, and the value obtained by frequency detection in step 17 is entered. Since θ is expressed as an angle, it is necessary to convert it into a wave number. The wave number 8 DW is found by θ(W) DW=-(7).
以Hの処理が周波数1位相検出部17で行なわれる。The following processes are performed by the frequency 1 phase detection section 17.
(効果)
本発明によれば膜厚測定装置の分光反射特定′A11定
において、量子化された反射率をディジタルフィルタを
通し、その周波数に従った位相補正を施すことにより、
反射率データ上の高次のノイズを波数スキャノン速度に
依らずに取り除くことかでき、同時にデータの周波数に
従って位相を補正するため正確な膜厚計算が可能である
。(Effects) According to the present invention, in the spectral reflection specification 'A11 constant of the film thickness measuring device, by passing the quantized reflectance through a digital filter and performing phase correction according to its frequency,
High-order noise on reflectance data can be removed without depending on the wavenumber scan cannon speed, and at the same time, accurate film thickness calculations are possible because the phase is corrected according to the frequency of the data.
第1図(a)、(b)、(c)は本発明に用いる膜厚計
算の原理を説明する図、第2図は本発明の一例の全体ブ
ロック図、第3図はその一部詳細ブロック図、第4図は
その動作説明のためのデータ図である。
11A、IIBはそれぞれ投光部及び受光が検出用ディ
テクタ、14A、14BはA/D変換器、15は反射率
計算部、16はディジタルフィルタ部、17は周波数成
分検出部、18は位相補正部、19は膜厚計算部を示す
。
町 λ
混入
■λFigures 1 (a), (b), and (c) are diagrams explaining the principle of film thickness calculation used in the present invention, Figure 2 is an overall block diagram of an example of the present invention, and Figure 3 is a partial detail thereof. The block diagram and FIG. 4 are data diagrams for explaining its operation. 11A and IIB are light emitting parts and light receiving detectors, respectively, 14A and 14B are A/D converters, 15 is a reflectance calculation part, 16 is a digital filter part, 17 is a frequency component detection part, and 18 is a phase correction part. , 19 indicates a film thickness calculation section. Town λ Mixed ■λ
Claims (1)
装置において、分光反射率測定データから所定の周波数
以上を除去することにより高次のノイズ成分を取り除い
た後に膜厚を計算することを特徴とする膜厚測定方法。 2、前記高次のノイズ成分を取り除いたデータからおよ
その周波数を検出し、それに従い位相補正を行うことを
特徴とする特許請求の範囲第1項に記載の膜厚測定方法
。[Claims] 1. In an apparatus for measuring the film thickness on a sample from the spectral reflectance of the sample, after removing high-order noise components by removing frequencies above a predetermined frequency from the spectral reflectance measurement data. A film thickness measurement method characterized by calculating film thickness. 2. The film thickness measuring method according to claim 1, wherein an approximate frequency is detected from the data from which the high-order noise components have been removed, and phase correction is performed accordingly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4455386A JPS62201304A (en) | 1986-02-28 | 1986-02-28 | Measuring method for film thickness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4455386A JPS62201304A (en) | 1986-02-28 | 1986-02-28 | Measuring method for film thickness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62201304A true JPS62201304A (en) | 1987-09-05 |
Family
ID=12694690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4455386A Pending JPS62201304A (en) | 1986-02-28 | 1986-02-28 | Measuring method for film thickness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62201304A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05505044A (en) * | 1990-12-21 | 1993-07-29 | イーストマン コダック カンパニー | teachable camera |
US5756938A (en) * | 1990-01-25 | 1998-05-26 | Ishida Scales Mfg. Co., Ltd. | Weight measuring apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56153207A (en) * | 1980-04-28 | 1981-11-27 | Ricoh Co Ltd | Measuring device for film thickness |
JPS5890856A (en) * | 1981-11-26 | 1983-05-30 | Toshiba Corp | Sampling phase synchronizing circuit |
JPS6073407A (en) * | 1983-09-30 | 1985-04-25 | Nippon Soken Inc | Film thickness monitor |
JPS60220615A (en) * | 1984-04-17 | 1985-11-05 | Yokogawa Hokushin Electric Corp | Digital filter |
-
1986
- 1986-02-28 JP JP4455386A patent/JPS62201304A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56153207A (en) * | 1980-04-28 | 1981-11-27 | Ricoh Co Ltd | Measuring device for film thickness |
JPS5890856A (en) * | 1981-11-26 | 1983-05-30 | Toshiba Corp | Sampling phase synchronizing circuit |
JPS6073407A (en) * | 1983-09-30 | 1985-04-25 | Nippon Soken Inc | Film thickness monitor |
JPS60220615A (en) * | 1984-04-17 | 1985-11-05 | Yokogawa Hokushin Electric Corp | Digital filter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5756938A (en) * | 1990-01-25 | 1998-05-26 | Ishida Scales Mfg. Co., Ltd. | Weight measuring apparatus |
JPH05505044A (en) * | 1990-12-21 | 1993-07-29 | イーストマン コダック カンパニー | teachable camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5490462B2 (en) | Film thickness measuring device | |
KR100354852B1 (en) | How to obtain information | |
JP2004536314A5 (en) | ||
KR20040071146A (en) | Method and apparatus for measuring stress in semiconductor wafers | |
JP3337734B2 (en) | Infrared ellipsometer | |
JP4868477B2 (en) | Apparatus for processing the output signal of a Michelson type interferometer used in Fourier transform spectroscopy and a method for processing the output signal of a Michelson type interferometer | |
US20210190590A1 (en) | Interferometer movable mirror position measurement apparatus and fourier transform infrared spectroscopy | |
JPS6071966A (en) | Digital spectrum analyzer | |
JP3098768B2 (en) | Spectrophotometer and its photometric method | |
JP2008500523A (en) | Apparatus and method for evaluating dimensional characteristics of cylindrical object | |
JPH06230047A (en) | Frequency spectrum analyzer | |
JPH07260432A (en) | Apparatus for measuring dimensions of wafer notch | |
JPS62201304A (en) | Measuring method for film thickness | |
CN116299110A (en) | Time domain calibration method for double-exponential waveform electromagnetic pulse measurement | |
JPS6344106A (en) | Film thickness measuring method | |
JP3138314B2 (en) | Asynchronous calibration circuit and frequency detection circuit | |
JP4080763B2 (en) | Fiber Bragg Grating Element Reflected Light Wavelength Measurement Processing Equipment | |
JPH04268439A (en) | Quantitative analysis using ftir | |
SU1538047A1 (en) | Method of measuring roughness of surface | |
JP3057943B2 (en) | Film thickness measuring device | |
RU2104495C1 (en) | Process of measurement of physical quantities | |
JPH04262239A (en) | Quantitative analysis method using ftir | |
US6686578B2 (en) | Apparatus for sweep synchronization measurement of optical wavelength sensitivity characteristics and method of correcting optical wavelength sensitivity thereof | |
JPH10293143A (en) | Fft lock-in amplifier | |
JP3228132B2 (en) | Ultrasonic flaw detection method |