Nothing Special   »   [go: up one dir, main page]

JPH04262239A - Quantitative analysis method using ftir - Google Patents

Quantitative analysis method using ftir

Info

Publication number
JPH04262239A
JPH04262239A JP3044167A JP4416791A JPH04262239A JP H04262239 A JPH04262239 A JP H04262239A JP 3044167 A JP3044167 A JP 3044167A JP 4416791 A JP4416791 A JP 4416791A JP H04262239 A JPH04262239 A JP H04262239A
Authority
JP
Japan
Prior art keywords
concentration
range
component
computation
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3044167A
Other languages
Japanese (ja)
Other versions
JP3004748B2 (en
Inventor
Ko Inoue
香 井上
Yutaka Yamagishi
豊 山岸
Masayuki Adachi
正之 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP4416791A priority Critical patent/JP3004748B2/en
Priority to DE4203588A priority patent/DE4203588C2/en
Priority to US07/836,786 priority patent/US5305076A/en
Publication of JPH04262239A publication Critical patent/JPH04262239A/en
Application granted granted Critical
Publication of JP3004748B2 publication Critical patent/JP3004748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To analyze even a component to be measured having high concentration with the minimum detecting sensitivity being maintained at a constant level and to make it possible to perform continuous analysis even for a samples to be measured whose concentration change is large by automatically switching the groups of wave-number points used for the concentration computation of the component in response to the magnitude of the concentration of the component to be measured. CONSTITUTION:The group of wave-number points used for concentration computation corresponding to the concentration range based on the spectrum data obtained from a Fourier- transformation infrared spectrophotometer is used, and operation is performed. Whether the computed value can be outputted or not is compared with a threshold value. When the concentration range which is set by the computed value is judged as adequate, the computed value is outputted as the computed value of the concentration. When the range is not adequate, the concentration range is changed and set at the adequate value. The operation is performed again based on the absorbance of the group of the wave-number points for the corresponding concentration computation. These computation, judgment and change of range are all performed with computers automatically. Only the result of the concentration computation based on the group of the wave-number points for the most adequate concentration computation is always outputted in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、測定試料に対して赤外
光を照射し、そのとき得られる吸収スペクトル中の複数
の指定された波数ポイントにおける吸光度に基づいて測
定試料中に含まれる成分の濃度を分析するFTIR(フ
ーリエ変換赤外分光計)を用いた定量分析方法に関する
[Industrial Application Field] The present invention irradiates a measurement sample with infrared light and determines the components contained in the measurement sample based on the absorbance at a plurality of designated wave number points in the absorption spectrum obtained at that time. This invention relates to a quantitative analysis method using FTIR (Fourier transform infrared spectrometer) to analyze the concentration of .

【0002】0002

【従来の技術】上記FTIRは、例えば図1に示すよう
に構成されている。すなわち、この図において、1は分
析部、2はこの分析部1の出力であるインターフェログ
ラムを処理するデータ処理部である。分析部1は平行な
赤外光を発するように構成された赤外光源3と、ビーム
スプリッタ4,固定ミラー5,図外の駆動機構によって
例えばX−Y方向に平行移動する可動ミラー6からなる
干渉機構7と、測定試料などを収容し、干渉機構7を介
して赤外光源3からの赤外光が照射されるセル8と、半
導体検出器9とから構成されている。そして、データ処
理部2は例えばコンピュータよりなり、インターフェロ
グラムを加算平均し、その加算平均出力を高速でフーリ
エ変換し、さらに、このフーリエ変換出力に基づいて測
定対象成分に関するスペクトル演算を行うように構成さ
れている。
2. Description of the Related Art The above-mentioned FTIR is configured as shown in FIG. 1, for example. That is, in this figure, 1 is an analysis section, and 2 is a data processing section that processes the interferogram output from this analysis section 1. The analysis section 1 consists of an infrared light source 3 configured to emit parallel infrared light, a beam splitter 4, a fixed mirror 5, and a movable mirror 6 that is moved in parallel in, for example, the X-Y direction by a drive mechanism not shown. It is composed of an interference mechanism 7, a cell 8 that accommodates a measurement sample and the like and is irradiated with infrared light from the infrared light source 3 via the interference mechanism 7, and a semiconductor detector 9. The data processing unit 2 is composed of, for example, a computer, and is configured to average the interferograms, perform Fourier transform on the average output at high speed, and perform spectral calculation regarding the component to be measured based on this Fourier transform output. It is configured.

【0003】このように構成されたFTIRにおいては
、次のようにして定量分析することができる。すなわち
、セル8に比較試料または測定試料をそれぞれ収容して
赤外光源3からの赤外光をセル8に照射し、比較試料ま
たは測定試料のインターフェログラムを測定する。これ
らのインターフェログラムをデータ処理部2において、
それぞれフーリエ変換してパワースペクトルを得た後、
比較試料のパワースペクトルに対する測定試料のパワー
スペクトルの比を求め、これを吸光度スケールに変換す
ることにより吸収スペクトルを得た後、この吸収スペク
トル中の複数の波数ポイントにおける吸光度に基づいて
測定試料中に含まれる成分(単成分または多成分)を定
量分析するのである。
[0003] With the FTIR configured as described above, quantitative analysis can be performed as follows. That is, a comparison sample or a measurement sample is accommodated in the cell 8, and the cell 8 is irradiated with infrared light from the infrared light source 3, and the interferogram of the comparison sample or measurement sample is measured. These interferograms are processed in the data processing unit 2,
After Fourier transforming each to obtain the power spectrum,
After obtaining the absorption spectrum by calculating the ratio of the power spectrum of the measurement sample to the power spectrum of the comparison sample and converting this to an absorbance scale, the ratio of the power spectrum of the measurement sample to the power spectrum of the comparison sample is obtained. The components (single component or multiple components) contained in the product are quantitatively analyzed.

【0004】上記定量分析方法として、例えば本願出願
人に係る平成2年6月28日付けの特許出願(特願平2
−171038号)があり、その概要は、吸収スペクト
ル中の複数の波数ポイントにおける局所的ピーク値と局
所的バレー値との差である相対吸光度の和を求め、この
和に基づいて各成分の濃度を各別に得ると云うものであ
り、FTIRによれば、吸収スペクトルにおける波数ポ
イント群を適宜選ぶことにより測定試料中の単一の成分
を、あるいは、多成分を定量分析することができる。
As the above-mentioned quantitative analysis method, for example, a patent application filed on June 28, 1990 (Japanese Patent Application No.
-171038), the outline of which is to calculate the sum of relative absorbances, which are the differences between local peak values and local valley values, at multiple wavenumber points in the absorption spectrum, and then calculate the concentration of each component based on this sum. According to FTIR, a single component or multiple components in a measurement sample can be quantitatively analyzed by appropriately selecting a group of wavenumber points in an absorption spectrum.

【0005】[0005]

【発明が解決しようとする課題】ところで、FTIRを
用いて測定試料中の成分を定量分析する場合、ある濃度
計算用の波数ポイント群から精度よく濃度計算できる濃
度範囲は比較的狭い。つまり、低濃度対応の濃度計算用
の波数ポイント群では高濃度に対して正しい分析値が得
られず、高濃度対応のものでは最小検出感度が落ちて低
濃度が検出できない。すなわち、例えば濃度レンジが0
〜 100 ppm用でFS(フルスケール)1%ゼロ
ノイズであれば2 ppm程度まで検出できるが、濃度
レンジが0〜1000 ppm用の場合、FS1%のゼ
ロノイズであっても20 ppm程度の濃度がなければ
検出できない。これは、フルスケールに対するゼロノイ
ズのレベルは濃度レンジによってそれほど変わらない場
合が多いので、高濃度用ではノイズの絶対値は大きくな
ってしまうからである。
By the way, when quantitatively analyzing components in a measurement sample using FTIR, the concentration range in which the concentration can be calculated accurately from a certain group of wave number points for concentration calculation is relatively narrow. In other words, the wave number point group for concentration calculation that corresponds to low concentrations cannot obtain correct analysis values for high concentrations, and the wave number point group that corresponds to high concentrations has a lower minimum detection sensitivity and cannot detect low concentrations. That is, for example, if the concentration range is 0
~100 ppm and FS (full scale) 1% zero noise can detect up to about 2 ppm, but when the concentration range is 0 to 1000 ppm, even with FS 1% zero noise, there must be a concentration of about 20 ppm. cannot be detected. This is because the level of zero noise relative to full scale often does not change much depending on the concentration range, so the absolute value of noise becomes large for high concentrations.

【0006】また、同時多成分分析、例えば図4(A)
に示すように、2つの測定対象成分A,Bを同時に分析
する場合において、一方の測定対象成分Aの濃度がその
測定限界LA を超えて高濃度になると、図4(B)に
示すように、測定対象成分Aの濃度計算値は勿論のこと
、測定限界LB を超えない低濃度の他方の測定対象成
分Bの濃度計算値も不正確になってしまうことがある。 従って、自動車からの排ガスなどのように、その構成成
分の濃度が急激に変化するような測定試料の連続測定に
おいては、精度の高い分析を行えないことがあった。
[0006] Simultaneous multi-component analysis, for example, Fig. 4(A)
As shown in Figure 4(B), when two target components A and B are analyzed simultaneously, if the concentration of one target component A exceeds its measurement limit LA, as shown in Figure 4(B). Not only the calculated concentration of the component to be measured A, but also the calculated concentration of the other component to be measured B, which has a low concentration that does not exceed the measurement limit LB, may become inaccurate. Therefore, highly accurate analysis may not be possible in continuous measurements of measurement samples whose constituent components change rapidly in concentration, such as exhaust gas from automobiles.

【0007】本発明は、上述の事柄に留意してなされた
もので、その目的とするところは、測定対象成分の濃度
が急激に変化するような測定試料であっても、精度よく
連続分析することができる定量分析方法を提供すること
にある。
The present invention has been made with the above-mentioned considerations in mind, and its purpose is to continuously analyze measurement samples with high accuracy even in cases where the concentration of the component to be measured changes rapidly. The objective is to provide a quantitative analysis method that can

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、本発明に係るFTIRを用いた定量分析方法において
は、測定対象成分の複数の濃度レンジにそれぞれ対応す
る複数種の濃度計算用の波数ポイント群を予め指定して
おき、分析時に、先ず、前記複数種の濃度計算用波数ポ
イント群のうち設定されている濃度レンジに対応するも
のを用いて濃度計算を行い、その計算結果をあるしきい
値と比較し、その結果濃度レンジが不適切と判断される
場合には、より適切な濃度レンジに設定変更して対応す
る濃度計算用の波数ポイント群を用いて各測定対象成分
の濃度を再計算し出力している。
[Means for Solving the Problem] In order to achieve the above object, in the quantitative analysis method using FTIR according to the present invention, a plurality of wave numbers for concentration calculation corresponding to a plurality of concentration ranges of the component to be measured are provided. A point group is specified in advance, and at the time of analysis, concentration calculation is first performed using the wave number point group of the plurality of types for concentration calculation that corresponds to the set concentration range, and the calculation result is If the concentration range is determined to be inappropriate after comparing it with the threshold value, change the setting to a more appropriate concentration range and calculate the concentration of each component to be measured using the corresponding wave number point group for concentration calculation. It is recalculated and output.

【0009】[0009]

【作用】上記方法によれば、最小検出感度を一定に保持
したままで、高濃度の測定対象成分の分析も可能となり
、広い濃度範囲にわたって精度よく連続分析できる。
[Operation] According to the above method, it is possible to analyze a component to be measured at a high concentration while maintaining a constant minimum detection sensitivity, and it is possible to perform continuous analysis with high accuracy over a wide concentration range.

【0010】0010

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0011】本発明に係るFTIRを用いた定量分析方
法が従来の方法と大きく異なる点は、ある測定対象成分
について、その濃度計算用の波数ポイント群の指定を希
望する濃度レンジに応じて複数種(例えば0〜 100
 ppm用、0〜1000 ppm用、0〜1%用など
)用意する。そして、測定開始時には、これらの波数ポ
イント群のうちある特定のもの(これは予め設定されて
いても、あるいは、そのとき設定するようにしてもよい
)を用いて濃度計算する。そして、その計算値が予め設
定されたあるしきい値と比較して適切でなければ、その
値に応じてより適切な濃度範囲に対応する濃度計算用の
波数ポイント群を用いて再計算を行う。そして、2回目
以降は原則として、先ず、前回と同一の波数ポイント群
を用いて濃度計算を行い、その計算値によっては、上述
と同様に濃度計算用の波数ポイント群を変更して再計算
する。
The major difference between the quantitative analysis method using FTIR according to the present invention and conventional methods is that for a given component to be measured, multiple types of wave number point groups for concentration calculation can be specified depending on the desired concentration range. (e.g. 0-100
ppm, 0-1000 ppm, 0-1%, etc.). Then, at the start of measurement, concentration is calculated using a specific one of these wave number point groups (this may be set in advance or may be set at that time). If the calculated value is not appropriate when compared with a preset threshold, recalculation is performed using a group of wavenumber points for concentration calculation that corresponds to a more appropriate concentration range according to that value. . Then, from the second time onwards, as a general rule, the concentration is calculated using the same wave number point group as the previous time, and depending on the calculated value, the wave number point group for concentration calculation is changed and recalculated in the same way as above. .

【0012】図2は、このことを表したフローチャート
で、FTIR干渉計から得られるスペクトルデータ(ス
テップS1)に基づいて、設定されている濃度レンジに
対応する濃度計算用の波数ポイント群を用いて演算を行
う(ステップS2)。そして、このときの計算値がその
まま出力できるか否かをしきい値と比較し(ステップS
3)、そのまま出力できる場合、つまり、計算値より設
定されていた濃度レンジが適切であったと判断される場
合(ステップS3においてYES)、前記計算値を濃度
計算値として出力し(ステップS4)、そうでない場合
(ステップS3においてNO)、濃度レンジをより適切
なものに設定変更して(ステップS5)対応する濃度計
算用の波数ポイント群の吸光度から再度演算を行うので
ある(ステップS2)。これらの計算・判断・レンジ変
更は全てコンピュータ2内で自動的に行われる。このよ
うにして、常に最も適切な濃度計算用の波数ポイント群
より濃度計算された結果のみを出力するのである。
FIG. 2 is a flowchart showing this. Based on the spectrum data obtained from the FTIR interferometer (step S1), a group of wave number points for concentration calculation corresponding to the set concentration range is used. Calculation is performed (step S2). Then, it is compared with a threshold value to see whether the calculated value at this time can be output as is (step S
3), if it can be output as is, that is, if it is determined that the concentration range set based on the calculated value is appropriate (YES in step S3), output the calculated value as a calculated concentration value (step S4), If not (NO in step S3), the concentration range is changed to a more appropriate setting (step S5) and calculation is performed again from the absorbance of the corresponding wave number point group for concentration calculation (step S2). All of these calculations, judgments, and range changes are automatically performed within the computer 2. In this way, only the concentration calculation results from the most appropriate group of wave number points for concentration calculation are always output.

【0013】前記計算値としきい値と比較する場合、高
濃度対応から低濃度対応へのレンジ切換えのしきい値と
、低濃度対応から高濃度対応へのレンジ切換えのしきい
値に差をつけるのが好ましい。このようにすることによ
り、切換え時のバラツキを抑えることができる。
When comparing the calculated value with the threshold value, a difference is made between the threshold value for changing the range from high concentration to low concentration and the threshold value for changing the range from low concentration to high concentration. is preferable. By doing this, variations in switching can be suppressed.

【0014】これを、2成分A,Bを同時に連続分析す
る場合について説明すると、今、図3に示すように濃度
が変化する2つの成分A,Bがあるものとし、2段階、
つまり、濃度レンジが低濃度、高濃度のいずれかによっ
て自動切換えするものとし、成分A,Bの濃度レンジの
組み合わせに対応する波数ポイント群4種類を表1のよ
うに決める。
[0014] To explain this in the case where two components A and B are simultaneously and continuously analyzed, it is assumed that there are two components A and B whose concentrations change as shown in FIG.
That is, assuming that the concentration range is automatically switched depending on either low concentration or high concentration, four types of wave number point groups corresponding to the combination of concentration ranges of components A and B are determined as shown in Table 1.

【0015】[0015]

【表1】[Table 1]

【0016】測定試料中の成分A,Bの濃度が図3に示
すように変化し、そして、成分Aの低濃度から高濃度へ
のしきい値、高濃度から低濃度へのしきい値をそれぞれ
Ua ,Da (但し、Ua >Da )とし、また、
成分Bの低濃度から高濃度へのしきい値、高濃度から低
濃度へのしきい値をそれぞれUb ,Db (但し、U
b >Db )とすると、  その切換えは時間T1 
,T2 ,T3 で生ずる。従って、この例においては
、時間T0 〜T1 は波数ポイント群ll、時間T1
 〜T2 は波数ポイント群hl、時間T2 〜T3 
は波数ポイント群hh、時間T3 〜は波数ポイント群
lhでそれぞれ計算された濃度値が出力される。
The concentrations of components A and B in the measurement sample change as shown in FIG. 3, and the threshold values for component A from low to high concentration and from high to low concentration are Ua and Da (however, Ua > Da), respectively, and
The threshold value from low concentration to high concentration and the threshold value from high concentration to low concentration of component B are respectively Ub and Db (however, U
b > Db), the switching takes time T1
, T2 and T3. Therefore, in this example, the time T0 to T1 is the wave number point group ll, and the time T1
~T2 is the wave number point group hl, time T2 ~T3
The density values calculated in the wave number point group hh are output, and the density values calculated in the wave number point group lh are output at times T3 to T3.

【0017】なお、本発明方法は、前述の特願平2−1
70138号に記載された手法のみに適用されるもので
はなく、他の手法に適用してもよいことは云うまでもな
い。
[0017] The method of the present invention is disclosed in the above-mentioned Japanese Patent Application No. 2-1
It goes without saying that this method is not only applicable to the method described in No. 70138, but may also be applied to other methods.

【0018】[0018]

【発明の効果】以上説明したように、本発明においては
、スペクトルデータを基にして成分濃度を計算するのに
用いる波数ポイント群を、測定試料に含まれる測定対象
成分の濃度の高い低いで切り換えるようにしているので
、最小検出感度を一定に保持したままで高濃度の測定対
象成分も精度よく測定することができる。そして、前記
切換えは自動で行われるので、測定対象成分の濃度変化
が大きい測定試料であっても連続分析が可能である。 また、前記濃度変化が小さいときは再計算はあまり行わ
れないから、時間的ロスが少ないといった利点がある。
[Effects of the Invention] As explained above, in the present invention, the wavenumber point group used to calculate component concentration based on spectral data is switched depending on the concentration of the component to be measured contained in the measurement sample. As a result, even high-concentration target components can be accurately measured while keeping the minimum detection sensitivity constant. Since the switching is performed automatically, continuous analysis is possible even for a measurement sample in which the concentration of the component to be measured changes significantly. Further, when the concentration change is small, recalculation is not performed much, so there is an advantage that there is little time loss.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法を実施するための装置の一例を概略
的に示す図である。
FIG. 1 schematically shows an example of a device for carrying out the method of the invention.

【図2】本発明方法の動作の流れを示すフローチャート
である。
FIG. 2 is a flowchart showing the operation flow of the method of the present invention.

【図3】出力波形の一例を示す図である。FIG. 3 is a diagram showing an example of an output waveform.

【図4】従来技術を説明するための図で、図4(A)は
、実際の濃度変化を表す波形図、図4(B)は、濃度計
算値の出力変化を表す波形図である。
4A and 4B are diagrams for explaining the prior art, in which FIG. 4A is a waveform diagram representing an actual concentration change, and FIG. 4B is a waveform diagram representing an output change of a calculated concentration value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  測定試料に対して赤外光を照射し、そ
のとき得られる吸収スペクトル中の複数の指定された波
数ポイントにおける吸光度に基づいて測定試料中に含ま
れる成分の濃度を分析するFTIRを用いた定量分析方
法において、測定対象成分の複数の濃度レンジにそれぞ
れ対応する複数種の濃度計算用の波数ポイント群を予め
指定しておき、分析時に、先ず、前記複数種の濃度計算
用波数ポイント群のうち設定されている濃度レンジに対
応するものを用いて濃度計算を行い、その計算結果をあ
るしきい値と比較し、その結果濃度レンジが不適切と判
断される場合には、より適切な濃度レンジに設定変更し
て対応する濃度計算用の波数ポイント群を用いて各測定
対象成分の濃度を再計算し出力することを特徴とするF
TIRを用いた定量分析方法。
Claim 1: FTIR that irradiates a measurement sample with infrared light and analyzes the concentration of components contained in the measurement sample based on the absorbance at a plurality of designated wave number points in the absorption spectrum obtained at that time. In a quantitative analysis method using Concentration calculations are performed using points that correspond to the set concentration range, and the calculation results are compared with a certain threshold. If the concentration range is determined to be inappropriate, the F characterized by changing the setting to an appropriate concentration range and recalculating and outputting the concentration of each component to be measured using the corresponding wave number point group for concentration calculation.
Quantitative analysis method using TIR.
JP4416791A 1991-02-16 1991-02-16 Quantitative analysis method using Fourier transform infrared spectrometer Expired - Fee Related JP3004748B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4416791A JP3004748B2 (en) 1991-02-16 1991-02-16 Quantitative analysis method using Fourier transform infrared spectrometer
DE4203588A DE4203588C2 (en) 1991-02-16 1992-02-07 Quantitative spectral analysis method
US07/836,786 US5305076A (en) 1991-02-16 1992-02-14 Quantitative analytical method and apparatus for spectrometric analysis using wave number data points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4416791A JP3004748B2 (en) 1991-02-16 1991-02-16 Quantitative analysis method using Fourier transform infrared spectrometer

Publications (2)

Publication Number Publication Date
JPH04262239A true JPH04262239A (en) 1992-09-17
JP3004748B2 JP3004748B2 (en) 2000-01-31

Family

ID=12684036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4416791A Expired - Fee Related JP3004748B2 (en) 1991-02-16 1991-02-16 Quantitative analysis method using Fourier transform infrared spectrometer

Country Status (1)

Country Link
JP (1) JP3004748B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082049A (en) * 2000-09-06 2002-03-22 Seiko Epson Corp Method of measuring greenhouse-effect gas using infrared absorption spectroscope
JP2005265861A (en) * 2005-06-13 2005-09-29 Seiko Epson Corp Greenhouse effect gas measuring method using infrared absorbing spectroscope
JP2005265860A (en) * 2005-06-13 2005-09-29 Seiko Epson Corp Greenhouse effect gas measuring method using infrared absorbing spectroscope
JP2010151624A (en) * 2008-12-25 2010-07-08 Toyota Motor Corp Gas analyzer using ftir method and program used therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082049A (en) * 2000-09-06 2002-03-22 Seiko Epson Corp Method of measuring greenhouse-effect gas using infrared absorption spectroscope
JP2005265861A (en) * 2005-06-13 2005-09-29 Seiko Epson Corp Greenhouse effect gas measuring method using infrared absorbing spectroscope
JP2005265860A (en) * 2005-06-13 2005-09-29 Seiko Epson Corp Greenhouse effect gas measuring method using infrared absorbing spectroscope
JP2010151624A (en) * 2008-12-25 2010-07-08 Toyota Motor Corp Gas analyzer using ftir method and program used therefor

Also Published As

Publication number Publication date
JP3004748B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
EP0954744B1 (en) Calibration method for spectrographic analyzing instruments
EP0521358A2 (en) Absorbance analyzer and data processing method for chromatograph
JP4079404B2 (en) Multi-component gas analysis method by FTIR method
EP3425355B1 (en) Fourier transform infrared spectrophotometer
JP3098768B2 (en) Spectrophotometer and its photometric method
US5305076A (en) Quantitative analytical method and apparatus for spectrometric analysis using wave number data points
JP2000346801A5 (en)
GB2561879A (en) Spectroscopic analysis
JPH04262239A (en) Quantitative analysis method using ftir
JP3004750B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JP2926277B2 (en) Multi-component quantitative analysis method using FTIR
JP3004747B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JP2008522171A (en) Spectrophotometer
JP3020626B2 (en) Engine exhaust gas analyzer using Fourier transform infrared spectrometer
JP2649667B2 (en) Multi-component analysis method in spectroscopic analysis
JPH0414298B2 (en)
JPH09101259A (en) Method for determining components using spectrophotometer
JPH04148830A (en) Multiple-component determining method in spectrochemical analysis
JP3099898B2 (en) Multi-component quantitative analysis method using FTIR
JPH0750042B2 (en) State analysis method in spectrum analyzer
JPH02290537A (en) Method for estimating eating taste value by near infrared ray
CN118169110B (en) Spectral analysis method, sample component analysis method and device, equipment and medium
JPH0727703A (en) Quantitative analysis of multiple component substance
WO2024127968A1 (en) Analysis device, machine learning device, calculation device, analysis method, and analysis program
JP2772374B2 (en) Fourier transform infrared spectrometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees