Nothing Special   »   [go: up one dir, main page]

JPH09251839A - Manufacture of plasma display panel - Google Patents

Manufacture of plasma display panel

Info

Publication number
JPH09251839A
JPH09251839A JP5455796A JP5455796A JPH09251839A JP H09251839 A JPH09251839 A JP H09251839A JP 5455796 A JP5455796 A JP 5455796A JP 5455796 A JP5455796 A JP 5455796A JP H09251839 A JPH09251839 A JP H09251839A
Authority
JP
Japan
Prior art keywords
furnace
glass substrates
sealing
glass substrate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5455796A
Other languages
Japanese (ja)
Other versions
JP3554432B2 (en
Inventor
Tadashi Seki
忠 関
Kinya Kisoda
欣弥 木曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP05455796A priority Critical patent/JP3554432B2/en
Publication of JPH09251839A publication Critical patent/JPH09251839A/en
Application granted granted Critical
Publication of JP3554432B2 publication Critical patent/JP3554432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide manufacture of a plasma display panel with its high productivity capable of performing degas of the panel inside for a short time. SOLUTION: A surface glass board A and a back face glass B are superimposed so that the electrodes thereof are opposite and perpendicular to each other with a prescribed interval. These superimposed glass boards A and B are positioned in a furnace 10, and the inside of the furnace 10 is vacuum- evacuated under a prescribed temperature. The temperature in the furnace 10 is raised to a sealing temperature, and both glass boards A and B are sealed. After sealing the glass boards, the interior of the furnace 10 is cooled, and both glass boards are cooled. After the completion of cooling, electric discharge gas is supplied from a chip tube 21 mounted on either of the glass boards and is sealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプラズマディスプレ
イパネルの製造方法に関するものである。
The present invention relates to a method for manufacturing a plasma display panel.

【0002】[0002]

【従来の技術】プラズマディスプレイパネルの製造方法
として種々の方法が提案されているが、そのうち代表的
なものとして下記のものがある。すなわち、まず、表面
ガラス基板と背面ガラス基板との各対向面に電極等を設
けるとともに表面ガラス基板の外側部に貫通孔を設け、
かつ、このガラス基板の表面に前記貫通孔と連通するよ
うに給排気用ガラス管であるチップ管を取り付ける。そ
して、前記両ガラス基板の少なくとも一方の対向面であ
って前記貫通孔より外側に低融点ガラス等の封着剤を塗
布する。その後、両ガラス基板の電極を対向かつ直交す
るように重ねてクリップ等拘束治具で両者を固定し、封
着炉で封着剤を加熱溶融することにより前記両ガラス基
板を封着一体化してパネルとする。
2. Description of the Related Art Various methods have been proposed for manufacturing a plasma display panel, of which the following are typical ones. That is, first, an electrode or the like is provided on each of the facing surfaces of the front glass substrate and the back glass substrate, and a through hole is provided on the outer portion of the front glass substrate,
A chip tube, which is a glass tube for air supply and exhaust, is attached to the surface of the glass substrate so as to communicate with the through hole. Then, a sealing agent such as low-melting glass is applied to at least one of the opposing surfaces of the two glass substrates and outside the through hole. After that, the electrodes of both glass substrates are overlapped so as to face each other and are orthogonal to each other, and both are fixed by a restraint jig such as a clip, and the both glass substrates are sealed and integrated by heating and melting the sealing agent in a sealing furnace. The panel.

【0003】つぎに、前記封着一体化したパネルのチッ
プ管に給排気管を接続するとともに、この給排気管を放
電ガス用ボンベと真空ポンプとに切換可能に連通し、排
気炉に装入して前記パネルを加熱するとともに各パネル
内部を真空ポンプで所定真空度に真空排気して脱ガスを
行なう。その後、パネル内部に放電ガス、たとえば、ネ
オン(Ne)、アルゴン(Ar)あるいはキセノン(X
e)、またはこれらの混合ガスを400〜600Tor
r程度まで封入する。前記封入作業が終われば、パネル
を排気炉から抽出し、前記チップ管を封じ切って所定の
プラズマディスプレイパネルとするものである。
[0003] Next, a supply / exhaust pipe is connected to the chip pipe of the panel integrated with the sealing, and the supply / exhaust pipe is connected to a discharge gas cylinder and a vacuum pump so as to be switchable, and is charged into an exhaust furnace. Then, the panels are heated and the inside of each panel is evacuated to a predetermined degree of vacuum by a vacuum pump to perform degassing. After that, a discharge gas such as neon (Ne), argon (Ar) or xenon (X
e), or mixed gas of these is 400 to 600 Tor
Enclose up to r. When the enclosing work is completed, the panel is extracted from the exhaust furnace and the chip tube is completely sealed to obtain a predetermined plasma display panel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来方法においては、両ガラス基板の封着処理後、パネル
内部の真空排気に引続き、放電ガスの封入作業を行なう
が、前記パネル内部は、実質的に両ガラス基板の合わせ
面で形成される100〜200μmの非常に狭い隙間で
あり、かつ、この隙間(空間)には100〜200μm
未満の隔壁が存在するため、脱ガスのための排気に非常
に時間を要して生産性が非常に悪いとともに、排気が不
十分となってパネル内部の放電ガス純度が低くなるとい
う課題を有していた。したがって、本発明の第1の目的
は、パネル内部の排気(脱ガス)を短時間で行なえるプ
ラズマディスプレイの製造方法を提供することである。
また、前記従来方法では、チップ管が必要であるととも
にこのチップ管を精度よく表面ガラス基板に取り付けな
ければならない。さらに、表面ガラス基板と背面ガラス
基板とを固定する拘束治具および前記チップ管を真空ポ
ンプ等に接続する給排気管をも必要とする。つまり、前
記方法では多くの部材を必要とするばかりかそれら部材
の取り付け、接続等に多くの時間を必要とする。したが
って、本発明の第2の目的は、パネル内部の排気および
パネル内部への放電ガスの封入を極めて容易に、しかも
短時間で行なうことにより前記課題を解決するプラズマ
ディスプレイの製造方法を提供することである。
However, in the above-mentioned conventional method, after the sealing treatment of both glass substrates, the discharge gas is enclosed following the evacuation of the inside of the panel, but the inside of the panel is substantially Is a very narrow gap of 100 to 200 μm formed on the mating surfaces of both glass substrates, and this gap (space) is 100 to 200 μm.
Since there is a partition wall of less than, there is a problem that it takes a very long time to exhaust gas for degassing and productivity is very poor, and exhaust gas is insufficient and the purity of the discharge gas inside the panel becomes low. Was. Therefore, a first object of the present invention is to provide a method of manufacturing a plasma display, which can exhaust (degas) the inside of the panel in a short time.
Further, in the above-mentioned conventional method, a chip tube is required and the chip tube must be attached to the surface glass substrate with high accuracy. Further, a restraint jig for fixing the front glass substrate and the rear glass substrate and a supply / exhaust pipe for connecting the chip pipe to a vacuum pump or the like are also required. That is, in the above method, not only a large number of members are required, but also a lot of time is required for mounting and connecting those members. Therefore, a second object of the present invention is to provide a method of manufacturing a plasma display, which solves the above problems by exhausting the inside of the panel and enclosing the discharge gas inside the panel very easily and in a short time. Is.

【0005】[0005]

【課題を解決するための手段】本発明にかかるプラズマ
ディスプレイパネルの製造方法は、前記目的を達成する
ために、請求項1の発明では、表面ガラス基板と背面ガ
ラス基板とを所定間隔をもってその電極が対向かつ直交
するように重ね合わせる工程と、この重ね合わせたガラ
ス基板を炉内に位置させて当該炉内を所定温度下で真空
排気する工程と、当該炉内を封着温度まで昇温して両ガ
ラス基板を封着する工程と、ガラス基板封着後に炉内を
冷却して両ガラス基板を冷却する工程と、冷却完了後に
前記いずれかのガラス基板に取り付けたチップ管から放
電ガスを供給して封入する工程とからなるものである。
請求項2の発明では、表面ガラス基板と背面ガラス基板
とを所定間隔をもってその電極が対向かつ直交するよう
に重ね合わせる工程と、この重ね合わせたガラス基板を
炉内に位置させて当該炉内を所定温度下での真空排気に
引続き、不活性雰囲気中で加熱する工程と、当該炉内を
封着温度まで昇温して両ガラス基板を封着する工程と、
ガラス基板封着後に炉内を冷却して両ガラス基板を冷却
する工程と、ガラス基板間の空間を前記いずれからのガ
ラス基板に取り付けたチップ管から真空排気する工程
と、前記空間内に前記チップ管から放電ガスを供給して
封入する工程とからなるものである。請求項3の発明で
は、表面ガラス基板と背面ガラス基板とを所定間隔をも
ってその電極が対向かつ直交するように重ね合わせる工
程と、この重ね合わせたガラス基板を密閉炉内に位置さ
せて炉内空間を真空排気して前記ガラス基板間の空気を
排気する工程と、放電ガスを前記炉内空間に供給するこ
とで前記ガラス基板間に放電ガスを介在させる工程と、
前記炉内を所定温度まで昇温することにより前記ガラス
基板の外周に設けた封着剤により両ガラス基板を封着す
る工程とからなるものである。請求項4の発明では、前
記請求項3において、炉内圧をガラス基板間に封入した
放電ガスの圧力より高くすることにより封着時のガラス
基板への加圧を行なうものである。
In order to achieve the above object, the method of manufacturing a plasma display panel according to the present invention is characterized in that, in the invention of claim 1, the surface glass substrate and the rear glass substrate are provided with electrodes at a predetermined interval. Are placed so that they face each other and are orthogonal to each other, a step of placing the stacked glass substrates in the furnace and evacuating the furnace at a predetermined temperature, and raising the temperature of the furnace to the sealing temperature. And sealing both glass substrates together, cooling the inside of the furnace by cooling the glass substrates after sealing the glass substrates, and supplying the discharge gas from the chip tube attached to one of the glass substrates after cooling is completed. And then encapsulating.
In the invention of claim 2, a step of stacking a front glass substrate and a back glass substrate so that their electrodes are opposed and orthogonal to each other at a predetermined interval, and positioning the stacked glass substrates in a furnace, Following vacuum evacuation at a predetermined temperature, a step of heating in an inert atmosphere, a step of raising the temperature in the furnace to a sealing temperature and sealing both glass substrates,
After sealing the glass substrates, cooling the inside of the furnace to cool both glass substrates; evacuating the space between the glass substrates from the chip tube attached to the glass substrate from any of the above; The process comprises supplying a discharge gas from a tube and sealing the discharge gas. According to the third aspect of the present invention, a step of stacking the front glass substrate and the rear glass substrate so that their electrodes face each other and are orthogonal to each other at a predetermined interval, and the stacked glass substrates are positioned in a closed furnace to form a furnace space. A step of evacuating the glass substrate to exhaust air between the glass substrates, and a step of interposing a discharge gas between the glass substrates by supplying a discharge gas into the furnace space,
And heating the inside of the furnace to a predetermined temperature to seal both glass substrates with a sealing agent provided on the outer periphery of the glass substrates. According to a fourth aspect of the invention, in the third aspect, the pressure in the glass substrate at the time of sealing is performed by making the furnace internal pressure higher than the pressure of the discharge gas sealed between the glass substrates.

【0006】[0006]

【発明の実施の形態】つぎに、本発明の実施の第1形態
について説明する。まず、従来同様、対向面に電極およ
び隔壁を設けた表面ガラス基板Aと背面ガラス基板Bと
を密閉炉T内に設置された載置機構1に取り付けて密閉
炉T内に位置させる。前記載置機構1は、図2に示すよ
うに、4本(図では手前の2本のみが現われている)の
スライドガイド2に所定間隔にて複数の背面ガラス基板
用セッタ3が固定されており、また、各背面ガラス基板
用セッタ3の上方には表面ガラス基板用セッタ4がスラ
イドガイド2に摺動自在に装着され、かつ、各表面ガラ
ス基板用セッタ4は駆動ロッド5に前記背面ガラス基板
用セッタ3と同一間隔で固定され、駆動ロッド5ととも
に上下動可能となっている。一方、前記駆動ロッド5は
ベローズ真空シール装置6を介して炉本体10の天井部
を貫通し、モータ7で回転するボールネジ機構8により
上下動するようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a first embodiment of the present invention will be described. First, as in the conventional case, the front glass substrate A and the rear glass substrate B, which have electrodes and partition walls provided on the opposite surfaces, are attached to the mounting mechanism 1 installed in the closed furnace T and positioned in the closed furnace T. As shown in FIG. 2, the placement mechanism 1 has a plurality of rear glass substrate setters 3 fixed to four slide guides 2 (only the two front ones are shown in the figure) at predetermined intervals. Further, a setter 4 for front surface glass substrate is slidably mounted on the slide guide 2 above each setter 3 for rear surface glass substrate, and each setter 4 for front surface glass substrate is connected to the drive rod 5 by the rear glass. It is fixed at the same interval as the substrate setter 3 and can move up and down together with the drive rod 5. On the other hand, the drive rod 5 penetrates the ceiling portion of the furnace body 10 via a bellows vacuum seal device 6 and is vertically moved by a ball screw mechanism 8 rotated by a motor 7.

【0007】また、炉本体10の下部は配管11によっ
て図示しない真空排気装置と切換弁V1を介して接続す
るとともに、炉内には配管12が炉本体10の下部を貫
通して設けてあり、この配管12は放電ガスボンベ、た
とえば、ネオン(Ne)、アルゴン(Ar)、あるいは
キセノン(Xe)のボンベ13に切換弁V2を介して接
続されている。また、前記配管12の炉内側には複数の
分岐管12aが設けてある。
The lower part of the furnace body 10 is connected to a vacuum exhaust device (not shown) via a switching valve V 1 by a pipe 11, and a pipe 12 is provided in the furnace so as to penetrate the lower part of the furnace body 10. The pipe 12 is connected to a discharge gas cylinder, for example, a cylinder 13 of neon (Ne), argon (Ar), or xenon (Xe) via a switching valve V 2 . Further, a plurality of branch pipes 12a are provided inside the furnace of the pipe 12.

【0008】密閉炉Tは前記構成からなるため、密閉炉
Tの装入扉(図示せず)を開き(図1の状態)、前記背
面ガラス基板Bの前記対向面の外周部に結晶性低融点ガ
ラス等の封着剤20を塗布し、この背面ガラス基板Bを
対向面を上方にして前記載置機構1の背面ガラス基板用
セッタ3に取り付ける。一方、表面ガラス基板Aはその
対向面を下方にして表面ガラス基板用セッタ4に装着す
る。
Since the closed furnace T has the above-mentioned structure, the charging door (not shown) of the closed furnace T is opened (the state shown in FIG. 1), and the low crystallinity is formed on the outer peripheral portion of the opposite surface of the rear glass substrate B. A sealing agent 20 such as a melting point glass is applied, and the rear glass substrate B is attached to the rear glass substrate setter 3 of the mounting mechanism 1 with the facing surface facing upward. On the other hand, the front glass substrate A is mounted on the front glass substrate setter 4 with its facing surface facing downward.

【0009】なお、前記背面ガラス基板Bの封着剤20
の塗布部分より内方で装入扉側には、従来のものと同様
貫通孔が設けられ、この貫通孔を介して前記対向面に連
通するチップ管21が前記封着剤20より溶融温度の高
い封着剤によりあらかじめ取り付けてあり、また、この
チップ管21は背面ガラス基板用セッタ3を貫通してい
る。
Incidentally, the sealing agent 20 for the rear glass substrate B
A through hole is provided on the charging door side inward of the coated portion, as in the conventional case, and the chip tube 21 communicating with the facing surface through the through hole has a melting temperature higher than that of the sealing agent 20. The tip tube 21 is attached in advance with a high sealing agent, and the chip tube 21 penetrates the rear glass substrate setter 3.

【0010】つぎに、前述のようにして両ガラス基板
A,Bを載置機構1に取り付けると、チップ管21を配
管12の各分岐管12aに接続し、前記モータ7を駆動
して両ガラス基板A,B間に所定の隙間x(0.1〜
0.2mm)が形成されるようにセットする。その後、
装入扉を閉じて、図示しないヒータにより炉内を300
〜400℃に加熱するとともに、切換弁V1を開として
真空排気装置により炉内を排気し、同時に両ガラス基板
A,Bの脱ガスを行なう。なお、前記切換弁V2は閉で
ある。この場合、炉の昇温速度は5〜15℃/min、
排気は10-6〜10-7Torr程度である。また、前記
脱ガスをさらに確実に行なうために、両ガラス基板A,
Bを300〜400℃程度の封着剤軟化点付近まで昇温
し、その後、一定時間均熱保持してもよい。
Next, when both glass substrates A and B are attached to the mounting mechanism 1 as described above, the chip pipe 21 is connected to each branch pipe 12a of the pipe 12, and the motor 7 is driven to drive both glass substrates. A predetermined gap x (0.1 to 0.1) between the substrates A and B
0.2 mm) is formed. afterwards,
Close the charging door, and use a heater (not shown) to
While heating to ˜400 ° C., the switching valve V 1 is opened and the inside of the furnace is evacuated by the vacuum exhaust device, and at the same time, both glass substrates A and B are degassed. The switching valve V 2 is closed. In this case, the heating rate of the furnace is 5 to 15 ° C./min,
The exhaust gas is about 10 −6 to 10 −7 Torr. In order to perform the degassing more reliably, both glass substrates A,
B may be heated to about 300 to 400 ° C. near the softening point of the sealing agent, and then kept soak for a certain period of time.

【0011】前記のようにして、炉内を所定真空度とし
炉内排気と両ガラス基板A,Bからの脱ガスが完了する
と、炉内をさらに加熱して封着剤20の溶融温度である
400〜500℃に上昇させ、モータ7を駆動して駆動
ロッド5を下降させて表面ガラス基板Aを背面ガラス基
板B上に圧着させ、この圧着工程において両ガラス基板
A,Bを封着してパネルとする。前述のようにして、封
着工程が完了すると、炉内にN2ガス等の不活性ガスを
供給し、1〜10℃/minの冷却速度でガラス基板
A,Bの冷却を行なう。
When the inside of the furnace is evacuated to a predetermined degree of vacuum and the degassing from both glass substrates A and B is completed as described above, the inside of the furnace is further heated to the melting temperature of the sealing agent 20. The temperature is raised to 400 to 500 ° C., the motor 7 is driven to lower the drive rod 5, and the front glass substrate A is pressure-bonded onto the rear glass substrate B. In this pressure bonding step, both glass substrates A and B are sealed. The panel. When the sealing step is completed as described above, an inert gas such as N 2 gas is supplied into the furnace to cool the glass substrates A and B at a cooling rate of 1 to 10 ° C./min.

【0012】前記冷却工程完了後、切換弁V1を閉とす
るとともに切換弁V2を開として配管12、チップ管2
1から各パネル内に放電ガスを規定圧力(400〜76
0Torr)封入する。この場合、パネル内は真空とな
っているため、放電ガスの封入も極めて短時間で行なわ
れる(図4)。前記パネル内への放電ガスの封入が完了
すると、密閉炉Tの装入扉を開き、チップ管21をバー
ナ等で溶融しつつ管径を絞り、封じ止って所定のプラズ
マディスプレイパネルとし、各パネルを炉外に取り出す
ものである。
After the completion of the cooling step, the switching valve V 1 is closed and the switching valve V 2 is opened to open the pipe 12 and the tip pipe 2.
1 to the discharge gas in each panel at a specified pressure (400 to 76
0 Torr) Enclose. In this case, since the inside of the panel is in a vacuum, the discharge gas is enclosed in an extremely short time (FIG. 4). When the charging of the discharge gas into the panel is completed, the charging door of the closed furnace T is opened, the chip tube 21 is melted by a burner or the like to reduce the tube diameter, and sealed to form a predetermined plasma display panel. Is taken out of the furnace.

【0013】なお、図1に示すように、前記配管12に
切換弁V3を介して真空排気装置(図示せず)に接続し
ておき、放電ガスの封入に先立ち、前記封着工程後の冷
却期間中あるいは冷却完了後、パネル内をさらに真空排
気し、その後、切換弁V2,V3を切換えて放電ガスを供
給してもよい。このようにすると、パネル内の封入放電
ガスをより純度の高いものとすることができる。
As shown in FIG. 1, the pipe 12 is connected to an evacuation device (not shown) via a switching valve V 3 , and before the discharge gas is filled, after the sealing step. During the cooling period or after the cooling is completed, the inside of the panel may be further evacuated to vacuum, and then the switching valves V 2 and V 3 may be switched to supply the discharge gas. By doing so, the enclosed discharge gas in the panel can be made more highly pure.

【0014】つぎに、実施の第2形態について説明す
る。前記実施の第1形態においては、ガラス基板A,B
の脱ガス処理と排気処理とを同時に行なう場合を示した
が、前記脱ガス処理と排気処理とを別工程で行なうよう
にしてもよい。この場合、図1に示すように、配管11
に切換弁V4を介してN2ガス等の不活性ガスボンベ14
を接続しておき、前述同様、各ガラス基板A,Bを密閉
炉T内に装入し、炉内を真空排気装置により真空排気し
ながらガラス基板A,Bを加熱して脱ガスを行なう。そ
の後、切換弁V1を閉、切換弁V4を開として炉内にN2
ガス等を大気圧近傍まで供給して、前述と同様、ガラス
基板A,Bを封着してパネルとする。そして、冷却期間
中あるいは冷却完了後、切換弁V3を開として真空排気
装置によりパネル内を真空排気し、その後、切換弁
2,V3を切換えて放電ガスをパネル内に封入するもの
である。
Next, a second embodiment will be described. In the first embodiment, the glass substrates A and B
Although the case where the degassing process and the exhausting process are performed at the same time is shown, the degassing process and the exhausting process may be performed in separate steps. In this case, as shown in FIG.
To the inert gas cylinder 14 such as N 2 gas via the switching valve V 4.
In the same manner as described above, the glass substrates A and B are charged into the closed furnace T, and the glass substrates A and B are heated while the inside of the furnace is evacuated by a vacuum evacuation device to degas. After that, the switching valve V 1 is closed, the switching valve V 4 is opened, and N 2 is fed into the furnace.
A gas or the like is supplied to the vicinity of the atmospheric pressure, and the glass substrates A and B are sealed to form a panel as described above. During the cooling period or after the cooling is completed, the switching valve V 3 is opened to evacuate the inside of the panel by the vacuum exhaust device, and then the switching valves V 2 and V 3 are switched to fill the discharge gas into the panel. is there.

【0015】なお、前記各実施の形態においては、チッ
プ管21を予め背面ガラス基板Bに取り付けて炉内に装
入する場合について説明したが、チップ管21は表面ガ
ラス基板Aに設けてもよく、また、チップ管21とガラ
ス基板A,Bとの取り付けは、チップ管21とガラス基
板A,Bとの取り付け部に封着剤20を組込んでおき、
ガラス基板A,Bの封着工程の加熱時に同時に封着して
もよい。さらに、ガラス基板A,B、封着剤20等を予
め封着温度より低い温度で加熱して乾燥、仮焼成しても
よい。この場合、アウトガスが減少して炉内の汚染を軽
減し、炉内雰囲気の純度を向上させることができるとと
もに封着の安定性が向上する。
In each of the above-described embodiments, the case where the tip tube 21 is attached to the rear glass substrate B in advance and charged into the furnace has been described, but the tip tube 21 may be provided on the front glass substrate A. Further, the attachment of the chip tube 21 and the glass substrates A and B to the chip tube 21 and the glass substrates A and B is carried out by incorporating the sealing agent 20 into the attachment portion.
The glass substrates A and B may be simultaneously sealed at the time of heating in the sealing process. Further, the glass substrates A and B, the sealing agent 20 and the like may be heated in advance at a temperature lower than the sealing temperature, dried, and calcined. In this case, outgas is reduced to reduce contamination in the furnace, the purity of the atmosphere in the furnace can be improved, and the stability of sealing is improved.

【0016】つぎに、実施の第3形態について説明す
る。前記実施の第1形態と同様に、炉内を所定真空度と
し炉内排気と両ガラス基板A,Bからの脱ガスが完了す
ると、炉内をさらに加熱して封着剤20の溶融温度であ
る400〜500℃に上昇させ、その間あるいはその後
の均熱中に、切換弁V1を閉、切換弁V4を開として放電
ガスボンベ15からたとえばネオンガス等の放電ガスを
炉内に導入する。そして、放電ガスの炉内導入と両ガラ
ス基板A,Bの加熱が完了すると、前述と同様表面ガラ
ス基板Aを背面ガラス基板B上に圧着させ、この圧着工
程において両ガラス基板A,Bを加圧してパネル化する
と同時に放電ガスを封入する。この場合においては、チ
ップ管21および配管12等は不要である。
Next, a third embodiment will be described. Similar to the first embodiment, when the inside of the furnace is set to a predetermined degree of vacuum and the exhaust of the inside of the furnace and the degassing from both glass substrates A and B are completed, the inside of the furnace is further heated to the melting temperature of the sealing agent 20. The temperature is raised to a certain temperature of 400 to 500 ° C., and during or after soaking, the switching valve V 1 is closed and the switching valve V 4 is opened to introduce a discharge gas such as neon gas into the furnace from the discharge gas cylinder 15. Then, when the introduction of the discharge gas into the furnace and the heating of both glass substrates A and B are completed, the front surface glass substrate A is pressure-bonded onto the rear glass substrate B in the same manner as described above, and both glass substrates A and B are applied in this pressure bonding step. At the same time, it is pressed into a panel and the discharge gas is enclosed. In this case, the tip pipe 21, the pipe 12 and the like are unnecessary.

【0017】なお、放電ガスは温度が高いため、最終仕
上圧力(常温時圧力)より高圧、たとえば450℃の温
度においては常温時圧力の約2.4倍の圧力とするのが
好ましい(図5)。前記のようにしてパネル内に放電ガ
スを封入すれば、1〜10℃/minの冷却速度で冷却
する。
Since the discharge gas has a high temperature, it is preferable to set the pressure higher than the final finishing pressure (pressure at room temperature), for example, at a temperature of 450 ° C., about 2.4 times the pressure at room temperature (FIG. 5). ). If the discharge gas is enclosed in the panel as described above, the panel is cooled at a cooling rate of 1 to 10 ° C./min.

【0018】また、前記実施の第3形態において、図3
に示すように両ガラス基板A,Bを封着剤20より高温
で融解する支持材片22、たとえば混合物組成を若干変
化させた低融点ガラス等で支持し、封着工程(400〜
500℃)で支持材片22を融解させて両ガラス基板
A,Bを封着してパネルとした後、炉内圧力をパネル内
の圧力より高い圧力として両ガラス基板A,Bを押圧す
ると同時に放電ガスをパネル内に封入してもよい。この
場合、載置機構1における各背面ガラス基板用セッタ3
は単にスライドガイド2に摺動自在に取り付ける必要が
ある。さらに、前記実施の各形態ではバッチ処理で説明
したが、マッフル内にガラス基板を位置させ、このマッ
フルを炉内で連続的あるいは間欠的に搬送して処理する
ようにしてもよい。
In addition, in the third embodiment, as shown in FIG.
As shown in FIG. 2, both glass substrates A and B are supported by a support material piece 22 that melts at a higher temperature than the sealing agent 20, for example, a low melting point glass having a slightly changed composition, and the sealing step (400 to
After the support material piece 22 is melted at 500 ° C. and both glass substrates A and B are sealed to form a panel, the furnace pressure is set higher than the pressure in the panel to press both glass substrates A and B at the same time. The discharge gas may be enclosed in the panel. In this case, each back glass substrate setter 3 in the mounting mechanism 1
Need only be slidably attached to the slide guide 2. Further, in each of the above-described embodiments, the batch processing has been described, but the glass substrate may be positioned in the muffle and the muffle may be continuously or intermittently transported in the furnace for processing.

【0019】[0019]

【発明の効果】以上の説明で明らかなように、請求項
1,2の発明によれば、表面ガラス基板と背面ガラス基
板とは、封着に先立って所定隙間をもって所定温度下で
全体を加熱することにより脱ガスを図るため、脱ガス時
間が短く、かつ、確実に行なうことができ、生産性をそ
れだけ向上させることができる。また、請求項3の発明
によれば、ガラス基板間の排気・放電ガスの封入は、炉
内圧力制御と炉内雰囲気の変更により行ない、かつ、ガ
ラス基板間の排気・放電ガスの封入も狭い間隙を通して
行なうものでないため、排気時間、放電ガス封入時間は
短く生産効率を極めて高くすることができるばかりかチ
ップ管を不要とすることができ、安価であるという効果
を奏する。さらに、請求項4の発明のように、両ガラス
基板の封着を炉内圧とガラス基板間圧力との圧力差によ
り行なうと、圧着力が均一となり、ガラス基板間の隙間
を容易に規定値内とすることができる。また、いずれの
発明においても、処理炉は1炉で済むため、それだけ設
備費も安価である。
As is apparent from the above description, according to the first and second aspects of the invention, the front glass substrate and the rear glass substrate are entirely heated at a predetermined temperature with a predetermined gap prior to sealing. By doing so, degassing is achieved, so degassing time can be shortened and reliable, and productivity can be improved accordingly. According to the invention of claim 3, the exhaust / discharge gas is sealed between the glass substrates by controlling the pressure in the furnace and changing the atmosphere in the furnace, and the exhaust / discharge gas is sealed between the glass substrates narrowly. Since it is not carried out through a gap, the exhaust time and the discharge gas charging time are short, and not only the production efficiency can be made extremely high, but also the tip tube is not required, and there is an effect that it is inexpensive. Further, when the both glass substrates are sealed by the pressure difference between the furnace pressure and the pressure between the glass substrates as in the invention of claim 4, the pressure bonding force becomes uniform and the gap between the glass substrates is easily within the specified value. Can be Further, in any of the inventions, since only one processing furnace is required, the equipment cost is correspondingly low.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に使用する密閉炉の断面図。FIG. 1 is a sectional view of a closed furnace used in the present invention.

【図2】 図1の載置機構の説明図。2 is an explanatory view of the mounting mechanism of FIG. 1. FIG.

【図3】 ガラス基板の他の封着前の状態を示す図。FIG. 3 is a view showing another state before sealing the glass substrate.

【図4】 本発明の各工程、炉内温度、炉内圧力、パネ
ル内圧力との関係を示すグラフ。
FIG. 4 is a graph showing the relationship among each step, furnace temperature, furnace pressure, and panel pressure of the present invention.

【図5】 本発明の各工程、炉内温度、炉内圧力との関
係を示すグラフ。
FIG. 5 is a graph showing the relationship between each step of the present invention, furnace temperature, and furnace pressure.

【符号の説明】[Explanation of symbols]

1…載置機構、10…炉本体、13,15…放電ガスボ
ンベ、20…封着剤、21…チップ管、22…支持材
片、A…表面ガラス基板、B…背面ガラス基板、T…密
閉炉。
DESCRIPTION OF SYMBOLS 1 ... Mounting mechanism, 10 ... Furnace main body, 13, 15 ... Discharge gas cylinder, 20 ... Sealing agent, 21 ... Chip tube, 22 ... Support material piece, A ... Surface glass substrate, B ... Rear glass substrate, T ... Sealing Furnace.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年12月2日[Submission date] December 2, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】本発明にかかるプラズマ
ディスプレイパネルの製造方法は、前記目的を達成する
ために、請求項1の発明では、表面ガラス基板と背面ガ
ラス基板とを所定間隔をもってその電極が対向かつ直交
するように重ね合わせる工程と、この重ね合わせたガラ
ス基板を炉内に位置させて当該炉内を所定温度下で真空
排気する工程と、当該炉内を封着温度まで昇温して両ガ
ラス基板を封着する工程と、ガラス基板封着後に炉内を
冷却して両ガラス基板を冷却する工程と、冷却完了後に
前記いずれかのガラス基板に取り付けたチップ管から放
電ガスを供給して封入する工程とからなるものである。
請求項2の発明では、表面ガラス基板と背面ガラス基板
とを所定間隔をもってその電極が対向かつ直交するよう
に重ね合わせる工程と、この重ね合わせたガラス基板を
炉内に位置させて当該炉内を所定温度下での真空排気に
引続き、不活性雰囲気中で加熱する工程と、当該炉内を
封着温度まで昇温して両ガラス基板を封着する工程と、
ガラス基板封着後に炉内を冷却して両ガラス基板を冷却
する工程と、ガラス基板間の空間を前記いずれかのガラ
ス基板に取り付けたチップ管から真空排気する工程と、
前記空間内に前記チップ管から放電ガスを供給して封入
する工程とからなるものである。請求項3の発明では、
表面ガラス基板と背面ガラス基板とを所定間隔をもって
その電極が対向かつ直交するように重ね合わせる工程
と、この重ね合わせたガラス基板を密閉炉内に位置させ
て炉内空間を真空排気して前記ガラス基板間の空気を排
気する工程と、放電ガスを前記炉内空間に供給すること
で前記ガラス基板間に放電ガスを介在させる工程と、前
記炉内を所定温度まで昇温することにより前記ガラス基
板の外周に設けた封着剤により両ガラス基板を封着する
工程とからなるものである。請求項4の発明では、前記
請求項3において、炉内圧をガラス基板間に封入した放
電ガスの圧力より高くすることにより封着時のガラス基
板への加圧を行なうものである。
In order to achieve the above object, the method of manufacturing a plasma display panel according to the present invention is characterized in that, in the invention of claim 1, the surface glass substrate and the rear glass substrate are provided with electrodes at a predetermined interval. Are placed so that they face each other and are orthogonal to each other, a step of placing the stacked glass substrates in the furnace and evacuating the furnace at a predetermined temperature, and raising the temperature of the furnace to the sealing temperature. And sealing both glass substrates together, cooling the inside of the furnace by cooling the glass substrates after sealing the glass substrates, and supplying the discharge gas from the chip tube attached to one of the glass substrates after cooling is completed. And then encapsulating.
In the invention of claim 2, a step of stacking a front glass substrate and a back glass substrate so that their electrodes are opposed and orthogonal to each other at a predetermined interval, and positioning the stacked glass substrates in a furnace, Following vacuum evacuation at a predetermined temperature, a step of heating in an inert atmosphere, a step of raising the temperature in the furnace to a sealing temperature and sealing both glass substrates,
A step of cooling the inside of the furnace to cool both glass substrates after sealing the glass substrates, and a step of evacuating the space between the glass substrates from the chip tube attached to one of the glass substrates,
And a process of supplying a discharge gas from the tip tube to fill the space. In the invention of claim 3,
The step of stacking the front glass substrate and the back glass substrate so that their electrodes are opposed and orthogonal to each other at a predetermined interval, and the stacked glass substrates are positioned in a closed furnace to evacuate the furnace space to evacuate the glass. A step of exhausting air between the substrates; a step of interposing the discharge gas between the glass substrates by supplying a discharge gas into the furnace space; and a step of raising the temperature in the furnace to a predetermined temperature. And a step of sealing both glass substrates with a sealing agent provided on the outer periphery of the. According to a fourth aspect of the present invention, in the third aspect, the pressure in the glass substrate at the time of sealing is performed by making the furnace internal pressure higher than the pressure of the discharge gas sealed between the glass substrates.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面ガラス基板と背面ガラス基板とを所
定間隔をもってその電極が対向かつ直交するように重ね
合わせる工程と、この重ね合わせたガラス基板を炉内に
位置させて当該炉内を所定温度下で真空排気する工程
と、当該炉内を封着温度まで昇温して両ガラス基板を封
着する工程と、ガラス基板封着後に炉内を冷却して両ガ
ラス基板を冷却する工程と、冷却完了後に前記いずれか
のガラス基板に取り付けたチップ管から放電ガスを供給
して封入する工程とからなることを特徴とするプラズマ
ディスプレイパネルの製造方法。
1. A step of stacking a front glass substrate and a rear glass substrate so that their electrodes are opposed and orthogonal to each other at a predetermined interval, and placing the stacked glass substrates in a furnace to set a predetermined temperature in the furnace. A step of evacuating below, a step of heating the inside of the furnace to a sealing temperature to seal both glass substrates, a step of cooling the inside of the furnace after sealing the glass substrates to cool both glass substrates, A method for manufacturing a plasma display panel, which comprises a step of supplying a discharge gas from a chip tube attached to any one of the glass substrates and sealing the discharge gas after completion of cooling.
【請求項2】 表面ガラス基板と背面ガラス基板とを所
定間隔をもってその電極が対向かつ直交するように重ね
合わせる工程と、この重ね合わせたガラス基板を炉内に
位置させて当該炉内を所定温度下での真空排気に引続
き、不活性雰囲気中で加熱する工程と、当該炉内を封着
温度まで昇温して両ガラス基板を封着する工程と、ガラ
ス基板封着後に炉内を冷却して両ガラス基板を冷却する
工程と、ガラス基板間の空間を前記いずれからのガラス
基板に取り付けたチップ管から真空排気する工程と、前
記空間内に前記チップ管から放電ガスを供給して封入す
る工程とからなることを特徴とするプラズマディスプレ
イパネルの製造方法。
2. A step of stacking a front glass substrate and a back glass substrate so that their electrodes face each other and are orthogonal to each other at a predetermined interval, and placing the stacked glass substrates in a furnace to set a predetermined temperature in the furnace. Following vacuum evacuation below, heating in an inert atmosphere, heating the furnace to the sealing temperature to seal both glass substrates, and cooling the furnace after sealing the glass substrates. Cooling both glass substrates, evacuating the space between the glass substrates from the chip tube attached to the glass substrate from any of the above, and supplying discharge gas from the chip tube into the space and sealing it. A method of manufacturing a plasma display panel, comprising the steps of:
【請求項3】 表面ガラス基板と背面ガラス基板とを所
定間隔をもってその電極が対向かつ直交するように重ね
合わせる工程と、この重ね合わせたガラス基板を密閉炉
内に位置させて炉内空間を真空排気して前記ガラス基板
間の空気を排気する工程と、放電ガスを前記炉内空間に
供給することで前記ガラス基板間に放電ガスを介在させ
る工程と、前記炉内を所定温度まで昇温することにより
前記ガラス基板の外周に設けた封着剤により両ガラス基
板を封着する工程とからなることを特徴とするプラズマ
ディスプレイパネルの製造方法。
3. A step of stacking a front glass substrate and a back glass substrate so that their electrodes face each other and are orthogonal to each other at a predetermined interval, and placing the stacked glass substrates in a closed furnace to vacuum the space in the furnace. Evacuating to exhaust the air between the glass substrates, supplying discharge gas into the furnace space to interpose the discharge gas between the glass substrates, and raising the temperature in the furnace to a predetermined temperature. Thus, the method for producing a plasma display panel, comprising the step of sealing both glass substrates with a sealing agent provided on the outer periphery of the glass substrate.
【請求項4】 炉内圧をガラス基板間に封入した放電ガ
スの圧力より高くすることにより封着時のガラス基板へ
の加圧を行なうことを特徴とする前記請求項3に記載の
プラズマディスプレイパネルの製造方法。
4. The plasma display panel according to claim 3, wherein the pressure in the glass substrate at the time of sealing is performed by making the internal pressure of the furnace higher than the pressure of the discharge gas sealed between the glass substrates. Manufacturing method.
JP05455796A 1996-01-11 1996-03-12 Method for manufacturing plasma display panel Expired - Fee Related JP3554432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05455796A JP3554432B2 (en) 1996-01-11 1996-03-12 Method for manufacturing plasma display panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP314996 1996-01-11
JP8-3149 1996-01-11
JP05455796A JP3554432B2 (en) 1996-01-11 1996-03-12 Method for manufacturing plasma display panel

Publications (2)

Publication Number Publication Date
JPH09251839A true JPH09251839A (en) 1997-09-22
JP3554432B2 JP3554432B2 (en) 2004-08-18

Family

ID=26336663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05455796A Expired - Fee Related JP3554432B2 (en) 1996-01-11 1996-03-12 Method for manufacturing plasma display panel

Country Status (1)

Country Link
JP (1) JP3554432B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990043617A (en) * 1997-11-29 1999-06-15 김영남 Manufacturing Method of Plasma Display Device
WO2000072351A1 (en) * 1999-05-20 2000-11-30 Matsushita Electric Industrial Co., Ltd. Method of producing gas discharge panel
KR100309275B1 (en) * 1998-09-15 2001-12-17 구자홍 PDP manufacturing method and PDP gas injection and exhaust machine
US6332821B1 (en) * 1998-12-15 2001-12-25 Samsung Sdi Co., Ltd. Method for fabricating plasma display device
JP2002140987A (en) * 2000-08-24 2002-05-17 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2002245941A (en) * 2001-02-13 2002-08-30 Nec Corp Manufacturing method of plasma display panel
JP2002358884A (en) * 2001-05-30 2002-12-13 Matsushita Electric Ind Co Ltd Manufacturing method of vacuum vessel and manufacturing method of image display device
JP2003068201A (en) * 1998-09-14 2003-03-07 Matsushita Electric Ind Co Ltd Manufacturing method and sealing device for gas discharge panel
US6809476B2 (en) 2000-11-29 2004-10-26 Lg Electronics Inc. Plasma display panel and method for fabricating the same
US6827623B2 (en) 1998-06-29 2004-12-07 Fujitsu Limited Manufacturing method of plasma display panels
US6848964B1 (en) 1998-09-14 2005-02-01 Matsushita Electric Industrial Co., Ltd. Sealing method and apparatus for manufacturing high-performance gas discharge panel
JP2005216830A (en) * 2004-02-02 2005-08-11 Pioneer Electronic Corp Sealing and evacuating device of plasma display panel, and method of manufacturing plasma display panel and plasma display device
US6984159B1 (en) 1998-06-15 2006-01-10 Matsushita Electric Industrial Co., Ltd. Plasma display panel with superior light-emitting characteristics, and method and apparatus for producing the plasma display panel
KR100707055B1 (en) * 1998-09-14 2007-04-13 마츠시타 덴끼 산교 가부시키가이샤 Gas discharge panel production method and exhaust pipe sealing off apparatus
WO2009011468A1 (en) * 2007-07-13 2009-01-22 World Tech Co., Ltd. Manufacturing method for plain shape neon sign device without gas injection pipe
US7629746B2 (en) 2002-11-26 2009-12-08 Samsung Sdi Co., Ltd. Plasma display panel having sealing structure for reducing noise
JP2012104228A (en) * 2010-11-05 2012-05-31 Panasonic Corp Method for manufacturing image display device
CN107993910A (en) * 2017-12-28 2018-05-04 宜昌华耀科技有限公司 A kind of ultraviolet tube sealed in unit and packaging technology

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990043617A (en) * 1997-11-29 1999-06-15 김영남 Manufacturing Method of Plasma Display Device
US7422502B2 (en) 1998-06-15 2008-09-09 Matsushita Electric Industrial Co., Ltd. Plasma display panel with superior light-emitting characteristics, and method and apparatus for producing the plasma display panel
US7131879B2 (en) 1998-06-15 2006-11-07 Matsushita Electric Industrial Co., Ltd. Plasma display panel with superior light-emitting characteristics, and method and apparatus for producing the plasma display panel
US7172482B2 (en) 1998-06-15 2007-02-06 Matsushita Electric Industrial Co., Ltd. Plasma display panel with superior light-emitting characteristics, and method and apparatus for producing the plasma display panel
US7315120B2 (en) 1998-06-15 2008-01-01 Matsushita Electic Industrial Co., Ltd. Plasma display panel with superior light-emitting characteristics, and method and apparatus for producing the plasma display panel
US7040944B2 (en) 1998-06-15 2006-05-09 Matsushita Electric Industrial Co., Ltd. Plasma display panel with superior light-emitting characteristics, and method and apparatus for producing the plasma display panel
US6984159B1 (en) 1998-06-15 2006-01-10 Matsushita Electric Industrial Co., Ltd. Plasma display panel with superior light-emitting characteristics, and method and apparatus for producing the plasma display panel
US6827623B2 (en) 1998-06-29 2004-12-07 Fujitsu Limited Manufacturing method of plasma display panels
KR100585244B1 (en) * 1998-06-29 2006-06-01 가부시끼가이샤 히다치 세이사꾸쇼 Manufacturing method of plasma display panels
KR100707055B1 (en) * 1998-09-14 2007-04-13 마츠시타 덴끼 산교 가부시키가이샤 Gas discharge panel production method and exhaust pipe sealing off apparatus
US6848964B1 (en) 1998-09-14 2005-02-01 Matsushita Electric Industrial Co., Ltd. Sealing method and apparatus for manufacturing high-performance gas discharge panel
JP2003068201A (en) * 1998-09-14 2003-03-07 Matsushita Electric Ind Co Ltd Manufacturing method and sealing device for gas discharge panel
JP4579487B2 (en) * 1998-09-14 2010-11-10 パナソニック株式会社 Method for manufacturing gas discharge panel
US7125306B2 (en) 1998-09-14 2006-10-24 Matsushita Electric Industrial Co., Ltd. Sealing method and apparatus for manufacturing high-performance gas discharge panel
KR100309275B1 (en) * 1998-09-15 2001-12-17 구자홍 PDP manufacturing method and PDP gas injection and exhaust machine
US6332821B1 (en) * 1998-12-15 2001-12-25 Samsung Sdi Co., Ltd. Method for fabricating plasma display device
WO2000072351A1 (en) * 1999-05-20 2000-11-30 Matsushita Electric Industrial Co., Ltd. Method of producing gas discharge panel
JP2002140987A (en) * 2000-08-24 2002-05-17 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
US6809476B2 (en) 2000-11-29 2004-10-26 Lg Electronics Inc. Plasma display panel and method for fabricating the same
JP2002245941A (en) * 2001-02-13 2002-08-30 Nec Corp Manufacturing method of plasma display panel
US6796868B2 (en) 2001-02-13 2004-09-28 Nec Corporation Method for manufacturing plasma display panel
JP2002358884A (en) * 2001-05-30 2002-12-13 Matsushita Electric Ind Co Ltd Manufacturing method of vacuum vessel and manufacturing method of image display device
JP4674415B2 (en) * 2001-05-30 2011-04-20 パナソニック株式会社 Vacuum container manufacturing method and image display device manufacturing method
US7629746B2 (en) 2002-11-26 2009-12-08 Samsung Sdi Co., Ltd. Plasma display panel having sealing structure for reducing noise
JP2005216830A (en) * 2004-02-02 2005-08-11 Pioneer Electronic Corp Sealing and evacuating device of plasma display panel, and method of manufacturing plasma display panel and plasma display device
JP4570367B2 (en) * 2004-02-02 2010-10-27 パナソニック株式会社 Method for manufacturing plasma display panel
WO2009011468A1 (en) * 2007-07-13 2009-01-22 World Tech Co., Ltd. Manufacturing method for plain shape neon sign device without gas injection pipe
JP2012104228A (en) * 2010-11-05 2012-05-31 Panasonic Corp Method for manufacturing image display device
CN107993910A (en) * 2017-12-28 2018-05-04 宜昌华耀科技有限公司 A kind of ultraviolet tube sealed in unit and packaging technology
CN107993910B (en) * 2017-12-28 2024-02-06 宜昌华耀科技有限公司 Ultraviolet tube packaging equipment and packaging technology

Also Published As

Publication number Publication date
JP3554432B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
JPH09251839A (en) Manufacture of plasma display panel
US6827623B2 (en) Manufacturing method of plasma display panels
JP2002515392A (en) Seal material and method for forming seal material
JPH1179768A (en) Treatment of glass panel
KR100406840B1 (en) Plasma display panel manufacturing apparatus and manufacturing method
JP4180189B2 (en) Plasma display device manufacturing method and rear panel
US5499939A (en) Evacuation apparatus
KR100394060B1 (en) Exhausting method and apparatus for flat display pannel
JPS6171533A (en) Method of manufacturing display tube
JPH10326572A (en) Manufacture of plasma display panel
JP3618177B2 (en) Method for manufacturing plasma display panel
JP3422175B2 (en) Method of manufacturing gas discharge panel
US7261610B2 (en) Method for producing a gas discharge vessel at superatmospheric pressure
JP3841172B2 (en) Method for manufacturing plasma display panel
KR100599412B1 (en) Method for manufacturing plasma display panel
JPH11306983A (en) Manufacture of plasma display panel
KR100313109B1 (en) Manufacturing method for plasma display panel
KR100575131B1 (en) Method for manufacturing plasma display panel
KR100575129B1 (en) Method for manufacturing plasma display panel
KR100502697B1 (en) a vacuum ventilation method for fabricating Plasma Display Panel
JP2002056777A (en) Vacuum airtight processing method inside electronic component
KR20010083316A (en) Method for injecting the plasma discharge gas into the apparatus of plasma display panel
JPH0845428A (en) Manufacture of exhaust tube-less type flat fluorescent lamp
KR20000051012A (en) Method and apparatus for sealing of plasma display panel
JPH0340336A (en) Manufacture of electric discharge vessel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees