Nothing Special   »   [go: up one dir, main page]

JPH0717923B2 - Low alloy iron powder for sintering and method for producing the same - Google Patents

Low alloy iron powder for sintering and method for producing the same

Info

Publication number
JPH0717923B2
JPH0717923B2 JP59261473A JP26147384A JPH0717923B2 JP H0717923 B2 JPH0717923 B2 JP H0717923B2 JP 59261473 A JP59261473 A JP 59261473A JP 26147384 A JP26147384 A JP 26147384A JP H0717923 B2 JPH0717923 B2 JP H0717923B2
Authority
JP
Japan
Prior art keywords
powder
sintering
iron powder
low alloy
alloy iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59261473A
Other languages
Japanese (ja)
Other versions
JPS61139601A (en
Inventor
義孝 高橋
明 真鍋
俊太郎 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59261473A priority Critical patent/JPH0717923B2/en
Publication of JPS61139601A publication Critical patent/JPS61139601A/en
Publication of JPH0717923B2 publication Critical patent/JPH0717923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は構造用機械部品等に適用する高密度高強度焼結
材の原材料である焼結用低合金鉄粉末に関するものであ
る。
TECHNICAL FIELD The present invention relates to a low alloy iron powder for sintering which is a raw material of a high density and high strength sintered material applied to structural machine parts and the like.

(従来の技術) 一般に、構造用機械部品等の材料として多用されている
鉄系焼結材料の高強度化が要望されている。この要望に
対し合金化,高密度化及び均質化等の種々の強化方法に
より強制的に優れた焼結材料の開発が行なわれている。
(Prior Art) Generally, there is a demand for higher strength of an iron-based sintered material that is widely used as a material for structural machine parts and the like. To meet this demand, various excellent strengthening methods such as alloying, densification and homogenization have been forcibly developed for excellent sintered materials.

例えば合金化により材料の高強度化を達成する方法(以
下合金化強化方法という)としては、銅(Cu),ニッケ
ル(Ni),マンガン(Mn)及びクロム(Cr)等の合金元
素の粉末を個々に鉄粉末に混合する混合法や、前記強化
元素(Cu,Ni,Mn,Cr等)を予め合金化したプレアロイ粉
末を用いる予備合金化法等が用いられている。
For example, as a method for achieving high strength of a material by alloying (hereinafter referred to as alloying strengthening method), powders of alloying elements such as copper (Cu), nickel (Ni), manganese (Mn) and chromium (Cr) are used. A mixing method of individually mixing with iron powder, a prealloying method using a prealloyed powder in which the above-mentioned strengthening elements (Cu, Ni, Mn, Cr, etc.) are alloyed in advance are used.

また、高密度化強化方法としては、2press-2sinter法や
焼結鍛造法(P/F)等が行なわれている。
In addition, as a method for strengthening the densification, the 2press-2sinter method and the sintering forging method (P / F) are used.

さらに、均質化強化方法としては焼結材料を焼結する際
に高温焼結を行なう均質化法が行なわれている。
Further, as a homogenizing and strengthening method, a homogenizing method in which high temperature sintering is performed when sintering a sintered material is performed.

上記以外のものでは構造用機械部品の空孔を球状化する
球状化法等の強化策が知られている。
In addition to the above, strengthening measures such as a spheroidizing method for spheroidizing the pores of structural machine parts are known.

しかしながら上記各種の強化方法はいずれも焼結材料の
強化に効果をもたらしているものの、何れも何らかの問
題点を含んでいる。
However, although all of the above-mentioned various strengthening methods bring about an effect of strengthening the sintered material, all of them have some problems.

すなわち、高密度化強化方法としての2press-2sinter法
や焼結鍛造法(P/F)等においては、製造工程を変更し
たり追加したりして圧縮等の強加工を施すことにより構
造用機械部品等の高密度化を達成しているので、強加工
を行なう際の雰囲気管理,温度設定等の管理的工程が増
加して製造工程が繁雑となり、このため製造コストが大
幅に上昇するという問題を有していた。
That is, in the 2press-2sinter method and the sintering forging method (P / F), etc., which are densification strengthening methods, the structural machine is manufactured by changing or adding the manufacturing process and performing strong processing such as compression. Since high density of parts etc. has been achieved, the management process such as atmosphere control and temperature setting during strong processing is increased and the manufacturing process becomes complicated, resulting in a significant increase in manufacturing cost. Had.

また、合金化強化方法のうち混合法においては、添加し
た合金元素を鉄(Fe)中に充分に拡散させるのに長時間
を要するという問題があり、また活性金属であるクロム
(Cr)やマンガン(Mn)等は焼結雰囲気を厳密にコント
ロールしないと酸化をおこし、拡散を妨げられるという
問題があった。
In addition, the mixing method among the alloying strengthening methods has a problem that it takes a long time to sufficiently diffuse the added alloying elements into iron (Fe), and the active metals such as chromium (Cr) and manganese are involved. (Mn) and the like have a problem that if the sintering atmosphere is not strictly controlled, they will oxidize and hinder their diffusion.

さらに、予備合金化法においても、合金化により粉末の
硬度が増して圧縮成形性が低下し、従って構造用機械部
品等の高密度化を阻止していた。
Further, even in the prealloying method, the hardness of the powder is increased by the alloying and the compression moldability is deteriorated, so that the densification of structural mechanical parts and the like is prevented.

ところで、前述した従来の予備合金化法における圧縮成
形性低下の問題を解消するために種々の提案がなされて
おり、例えば「低合金粉末鉄の製法」(特公昭49−9649
号公報参照)において、合金元素を特殊還元法によって
鉄粉末の表面に付着させて圧縮成形性の改善を図るよう
にすることが提案されている。
By the way, various proposals have been made in order to solve the problem of reduction in compression moldability in the above-described conventional prealloying method, for example, "Production method of low alloy powder iron" (Japanese Patent Publication No. 49-9649).
(See Japanese Patent Laid-Open Publication), it is proposed that an alloying element is attached to the surface of iron powder by a special reduction method to improve compression moldability.

(発明が解決しようとする問題点) しかしながら上記従来の製法によって得られた焼結用低
合金粉末鉄では、圧縮成形性の向上は達成したものの粉
末自体の価格は通常の低合金鋼粉に比べて相当に割高と
なっており、製造コストが高くなってしまうという問題
点を有していた。
(Problems to be solved by the invention) However, with the low alloy powder iron for sintering obtained by the above conventional manufacturing method, although the improvement of the compression moldability was achieved, the price of the powder itself was lower than that of the ordinary low alloy steel powder. However, there is a problem that the manufacturing cost becomes high.

また、従来の低合金鉄粉末では焼結体、特に熱処理後の
焼結体の引張り強度が充分とはいえず、このため構造用
機械部品をこの焼結体により構成したときに該部品の劣
化を招くという問題点も有していた。
In addition, the conventional low alloy iron powder does not have sufficient tensile strength in the sintered body, especially the sintered body after the heat treatment, and therefore, when the structural machine part is constructed of this sintered body, the deterioration of the part It also had the problem of causing

本発明は上記事情に鑑みてその問題点を克服するために
なされたものであり、低コストで焼入性,圧縮成形性に
優れると共に焼結を行なって機械部品としたときに高い
強度を有する焼結用低合金鉄粉末を提供することを目的
としている。
The present invention has been made in order to overcome the above problems in view of the above circumstances, and has excellent hardenability and compression moldability at low cost, and has high strength when machined by sintering. It is intended to provide a low alloy iron powder for sintering.

(問題点を解決するための手段) 上記目的を達成するための本発明の特徴は、鉄(Fe)と
予備合金化されたモリブデン(Mo)、クロム(Cr)、炭
素(C)を含み、かつ表面にニッケル(Ni)を拡散状態
で存在させた焼結用合金鉄粉末であって、重量比で、Mo
を0.2〜1.4%,Niを0.5〜4%,Crを0.1〜0.3%,Cを0.05
%以下,酸素(O)を0.3%以下及び不可避不純物を2
%以下それぞれ含有し、残部が実質的にFeよりなること
にある。
(Means for Solving the Problems) The features of the present invention for achieving the above object include molybdenum (Mo), chromium (Cr), and carbon (C) pre-alloyed with iron (Fe), And a ferro-alloy powder for sintering, in which nickel (Ni) is present in a diffused state on the surface, in a weight ratio of Mo
0.2 to 1.4%, Ni 0.5 to 4%, Cr 0.1 to 0.3%, C 0.05
% Or less, oxygen (O) 0.3% or less and unavoidable impurities 2
% Or less, and the balance consists essentially of Fe.

さらに、上記組成の焼結用低合金鉄粉末を製造するため
にNiを除く他の成分を含む低合金鉄粉末を製造する第1
工程と、前記粉末にニッケル(Ni)又はニッケル酸化物
を粉末で混合する第2工程と、還元性を有する不活性の
真空又は保護雰囲気中に800〜1050℃で20分以上還元処
理する第3工程と、前記還元された混合物を粉末化処理
する第4工程とからなることも特徴としている。
Further, in order to produce a low alloy iron powder for sintering having the above composition, a low alloy iron powder containing other components other than Ni is produced.
Step, second step of mixing the powder with nickel (Ni) or nickel oxide in powder, and third step of reduction treatment at 800-1050 ° C for 20 minutes or more in an inert vacuum or protective atmosphere having reducing property It is also characterized by comprising a step and a fourth step of pulverizing the reduced mixture.

(限定理由及び作用) 本発明は各種の合金元素の添加による圧縮成形性への寄
与率の関係,合金元素と焼入性との関係,合金元素と焼
結体の機械的強度特性の関係,及び合金元素とその添加
法による焼結体の機械的強度特性との関係等の各種の相
関関係を詳細に検討し、その結果得られた知見を基に発
明されたものである。
(Reason for Limitation and Action) The present invention relates to the relationship of the contribution ratio to the compression moldability by the addition of various alloy elements, the relationship between the alloy element and the hardenability, the relationship between the alloy element and the mechanical strength characteristics of the sintered body, The present invention was invented on the basis of the knowledge obtained as a result of detailed investigation of various correlations such as the relationship between the alloying element and the mechanical strength characteristics of the sintered body by the addition method thereof.

前記特徴を有する本発明に係る焼結用低合金鉄粉末及び
その製造方法において、モリブデン(Mo)は鉄(Fe)に
固溶して粉末及び焼結体を強化することを目的として添
加するものである。しかし、重量比で0.2%未満では効
果が少なく、1.4%を超えると強化性能を向上させるも
のの粉末を固溶硬化させて粉末の圧縮成形性を低下させ
るので、0.2〜1.4%含ませることとした。
In the low alloy iron powder for sintering and the manufacturing method thereof according to the present invention having the above characteristics, molybdenum (Mo) is added for the purpose of forming a solid solution with iron (Fe) to strengthen the powder and the sintered body. Is. However, if the weight ratio is less than 0.2%, the effect is small, and if it exceeds 1.4%, the strengthening performance is improved, but the solid solution hardening of the powder reduces the compression moldability of the powder, so it was decided to include 0.2 to 1.4%. .

次にクロム(Cr)を添加するのは、クロム(Cr)が焼入
性向上のための元素であるからである。しかし、重量比
で0.1%未満では焼入性向上効果が充分に得られず、ま
た0.3%を超えると粉末を著しく硬化させて圧縮成形性
の低下を招くので、0.1〜0.3%とした。
Next, chromium (Cr) is added because chromium (Cr) is an element for improving the hardenability. However, if the weight ratio is less than 0.1%, the effect of improving the hardenability is not sufficiently obtained, and if it exceeds 0.3%, the powder is significantly hardened and the compression moldability is deteriorated, so the content was made 0.1 to 0.3%.

ニッケル(Ni)は熱処理性及び靱性を向上させるための
元素であるが、重量比で0.5%未満では効果が期待でき
ず4%で前記効果が充分に達成されてこれ以上の添加は
原料コストを増加させるだけなので、ただし、このNiは
その存在状態によっては圧縮成形性を悪化させるので、
これを拡散状態で表面に存在させるようにした。
Nickel (Ni) is an element for improving heat-treatability and toughness, but if the weight ratio is less than 0.5%, no effect can be expected, and the above effect is sufficiently achieved at 4%, and further addition reduces the raw material cost. However, since Ni only deteriorates the compression moldability depending on the existing state,
This was made to exist on the surface in a diffused state.

また、酸素(O)は粉末の圧縮成形性を低下させ、焼結
体として形成する際にも悪影響を及ぼすため重量比で0.
3%以下にすることが必要である。
Oxygen (O) deteriorates the compression moldability of the powder and adversely affects the formation as a sintered body, so that the weight ratio is 0.
It should be 3% or less.

さらに炭素(C)も粉末の圧縮成形性を低下させるの
で、重量比で0.05%以下にする必要がある。
Further, since carbon (C) also deteriorates the compression moldability of the powder, it is necessary to set the weight ratio to 0.05% or less.

以上が、本発明に係る焼結用低合金鉄粉末の組成の限定
理由であり、また前記組成を有する該鉄粉末の製造方法
において、第1工程ではモリブデン(Mo)とクロム(C
r)とをプレアロイ化して添加しているので強度の向上
を図ることができる。
The above are the reasons for limiting the composition of the low alloy iron powder for sintering according to the present invention, and in the method for producing the iron powder having the above composition, in the first step, molybdenum (Mo) and chromium (C
Since r) and r) are added in the form of prealloy, the strength can be improved.

次に第2工程においては、前記プレアロイ粉末にニッケ
ル(Ni)又はニッケル酸化物を粉末によつて混合するよ
うにしている。ここで、ニッケル(Ni)を第1工程の如
くプレアロイ化しないのはニッケル(Ni)はプレアロイ
化すると強度特性が余り向上せず、また、圧縮成形性も
低下してしまうからである。従って粉末によって混合す
ることにより強度性,靱性の向上と圧縮成形性の維持を
図っている。
Next, in the second step, nickel (Ni) or nickel oxide is mixed with the prealloy powder by powder. Here, the reason why nickel (Ni) is not prealloyed as in the first step is that when nickel (Ni) is prealloyed, the strength characteristics are not improved so much and the compression moldability is also deteriorated. Therefore, by mixing with powder, the strength and toughness are improved and the compression moldability is maintained.

さらに第3工程において前記混合粉末を800〜1050℃で
還元処理するので前記混合粉末中の酸素(O)を除去し
酸化を抑制することになる。ここで、800℃以上とする
のは還元処理がうまく行なわれず、1050℃を超えると混
合粉末が焼結してしまうので800〜1050℃に温度を設定
した。
Further, in the third step, the mixed powder is subjected to reduction treatment at 800 to 1050 ° C., so that oxygen (O) in the mixed powder is removed and oxidation is suppressed. Here, if the temperature is set to 800 ° C. or higher, the reduction treatment is not performed well, and if the temperature exceeds 1050 ° C., the mixed powder will be sintered, so the temperature was set to 800 to 1050 ° C.

最後に第4工程において、ケーキ状の粉末となった前記
混合物を粉砕機により粉末化して焼結用材料として低合
金粉末を得ることができる。
Finally, in the fourth step, the mixture that has become a cake-like powder can be pulverized by a pulverizer to obtain a low alloy powder as a sintering material.

以上のようにして圧縮成形性,熱処理性,靱性に優れた
焼結用低合金鉄粉末を提供することができ、前記の過程
を経て得られた該鉄粉末を焼結して得られた焼結体は機
械的強度特性に優れたものとなる。
As described above, it is possible to provide a low-alloy iron powder for sintering which is excellent in compression moldability, heat treatment property, and toughness, and is obtained by sintering the iron powder obtained through the above process. The bonded body has excellent mechanical strength characteristics.

(実施例) 以下、本発明の実施例を比較例と対比して説明する。
尚、表には本発明の実施例と比較例に用いた焼結用低合
金鉄粉末の製造方法と最終粉末の化学成分とを各欄に記
載している。
(Example) Hereinafter, an example of the present invention will be described in comparison with a comparative example.
In the table, the manufacturing method of the low alloy iron powder for sintering and the chemical composition of the final powder used in Examples and Comparative Examples of the present invention are described in each column.

実施例1 まず、第1工程として原料粉末をアトマイズ法により噴
霧して製造する。この原料粉末の組成は鉄(Fe)中に重
量比でモリブデン(Mo)を0.4%.クロム(Cr)を0.16
%,炭素(C)を0.12%及び酸素(O)を0.5%であ
る。
Example 1 First, as a first step, a raw material powder is sprayed by an atomizing method to be manufactured. The composition of this raw material powder is 0.4% by weight of molybdenum (Mo) in iron (Fe). Chromium (Cr) 0.16
%, Carbon (C) 0.12% and oxygen (O) 0.5%.

次に第2工程において前記原料粉末に重量比で1.5%の
ニッケル粉末を混合する。このニッケル粉末は次のもの
である。ニッケルテトラカルボニル(Ni(CO)4)を約200
℃に加熱するとニッケル化合物(ニッケルカルボニル)
と一酸化炭素(CO)とに分解する。このとき生じるニッ
ケルカルボニルの煤状の細粉を平均粒径2.9μm程度に
分級して粉末添加するものとする。
Next, in the second step, the raw material powder is mixed with 1.5% by weight of nickel powder. This nickel powder is as follows. About 200 parts of nickel tetracarbonyl (Ni (CO) 4 )
Nickel compound (nickel carbonyl) when heated to ℃
And carbon monoxide (CO). The soot-like fine powder of nickel carbonyl generated at this time is classified to have an average particle size of about 2.9 μm, and the powder is added.

次に第3工程では分解アンモニアガス(3H2+N2)の雰囲
気中において950℃で90分加熱すると低合金鉄粉末中の
酸素(O)が水素(H)と反応して還元が行なわれる。
還元処理された鉄粉末は徐冷される。この第3工程では
還元処理を行なうと共に第1工程でのプレアロイ粉末の
表面にニッケルの粉末を充分に拡散させることもでき
る。
Next, in the third step, heating in an atmosphere of decomposed ammonia gas (3H 2 + N 2 ) at 950 ° C. for 90 minutes causes oxygen (O) in the low alloy iron powder to react with hydrogen (H) for reduction. .
The reduction-treated iron powder is gradually cooled. In the third step, reduction treatment can be performed, and the nickel powder can be sufficiently diffused on the surface of the pre-alloyed powder in the first step.

最後に、第4工程において前記加熱,冷却されてケーキ
状となった粉末を粉砕機によって粉化して焼結に供する
低合金鉄粉末を得た。
Finally, in the fourth step, the cake-like powder that was heated and cooled was pulverized by a pulverizer to obtain a low alloy iron powder to be sintered.

以上のように製造された低合金鉄粉末の組成は重量比で
モリブデン(Mo)0.39%,クロム(Cr)0.15%.ニッケ
ル(Ni)1.4%.炭素(C)0.02%及び酸素(O)0.1
%,残部鉄(Fe)である。
The composition of the low alloy iron powder manufactured as described above is 0.39% by weight of molybdenum (Mo) and 0.15% of chromium (Cr). Nickel (Ni) 1.4%. Carbon (C) 0.02% and oxygen (O) 0.1
%, Balance iron (Fe).

実施例2 まず、第1工程として実施例1と同様にアトマイズ法に
よりプレアロイ化した原料粉末を製造した。この組成は
重量比でモリブデン(Mo)を0.8%.クロム(Cr)を0.2
1%,炭素(C)を0.11%,酸素(O)を0.6%,残部鉄
(Fe)である。
Example 2 First, as the first step, as in Example 1, a prealloyed raw material powder was produced by the atomizing method. This composition contains 0.8% by weight of molybdenum (Mo). Chromium (Cr) 0.2
1%, carbon (C) 0.11%, oxygen (O) 0.6%, balance iron (Fe).

次に、第2工程では、前記低合金鉄粉末に対し重量比で
1.9%の酸化ニッケル(NiO)粉末(平均粒径1.8μmに
分級)を添加して混合した。
Next, in the second step, the weight ratio to the low alloy iron powder is
1.9% nickel oxide (NiO) powder (classified to an average particle size of 1.8 μm) was added and mixed.

次に、第3工程では、前記混合粉を分解アンモニアガス
(3H2+N2)中にて950℃で90分加熱して還元処理し、徐
冷してケーキ状の粉末を得た。
Next, in a third step, the mixed powder was heated in 950 ° C. for 90 minutes in decomposed ammonia gas (3H 2 + N 2 ) for reduction treatment, and gradually cooled to obtain a cake-like powder.

最後に、第4工程として前記ケーキ状粉末を粉砕機によ
り粉化して焼結用低合金鉄粉末を得た。
Finally, as a fourth step, the cake-like powder was pulverized by a pulverizer to obtain a low alloy iron powder for sintering.

上述の各工程を経て製造された低合金鉄粉末を化学分析
したところ、粉末の組成は鉄(Fe)中に重量比でモリブ
デン(Mo)0.75%,クロム(Cr)0.19%,ニッケル(N
i)1.4%,炭素(C)0.02%及び酸素(O)0.1%であ
った。
The chemical analysis of the low alloy iron powder produced through the above-mentioned processes showed that the composition of the powder was iron (Fe) in a weight ratio of molybdenum (Mo) 0.75%, chromium (Cr) 0.19%, nickel (N).
i) 1.4%, carbon (C) 0.02% and oxygen (O) 0.1%.

比較例1 アトマイズ法により製造された市販の低合金鋼粉(アト
マイズ粉)を試験に供するものとし、この粉末を化学分
析したところ、重量比でモリブデン(Mo)0.45%,ニッ
ケル(Ni)1.8%,マンガン(Mn)0.17%,残部が鉄(F
e)の組成を有することがわかった。マンガン(Mn)含
有で本発明と異なっている。
Comparative Example 1 Commercially available low alloy steel powder (atomized powder) produced by the atomization method was used for the test, and when this powder was chemically analyzed, molybdenum (Mo) 0.45% and nickel (Ni) 1.8% were obtained by weight ratio. , Manganese (Mn) 0.17%, balance iron (F)
It was found to have the composition of e). It differs from the present invention in that it contains manganese (Mn).

比較例2 本発明に係る低合金鉄粉末と同じ製造方法により、原料
粉末に含有する合金元素と混合する合金元素とを本願と
異らせて製造した。
Comparative Example 2 By the same manufacturing method as for the low alloy iron powder according to the present invention, the alloy elements contained in the raw material powder and the alloy elements mixed were manufactured differently from those of the present application.

すなわち、第1工程では、アトマイズ法により低合金鉄
粉末を噴霧して製造する。この粉末は鉄(Fe)中に重量
比でニッケル(Ni)1.6%,炭素(C)0.08%及び酸素
(O)0.3%を含むものであった。
That is, in the first step, the low alloy iron powder is sprayed and produced by the atomizing method. The powder contained iron (Fe) containing nickel (Ni) 1.6%, carbon (C) 0.08% and oxygen (O) 0.3% by weight.

次に、第2工程において前記組成の低合金鉄粉末に重量
比で0.4%のモリブデン(Mo)粉末(平均粒径1.2μm)
及び0.27%の中炭素フェロクロム粉末(JIS規格FCrM3の
−350ナッシュ粉)を添加して混合する。
Next, in the second step, 0.4% by weight of molybdenum (Mo) powder is added to the low alloy iron powder having the above composition (average particle size 1.2 μm).
Add 0.27% medium carbon ferrochrome powder (JIS standard FC r M3 -350 Nash powder) and mix.

次に第3工程では前記混合粉末を分解アンモニアガス
(3H2+N2)の雰囲気において950℃で90分加熱し、その
後徐冷してケーキ状粉末を得た。
Next, in the third step, the mixed powder was heated at 950 ° C. for 90 minutes in an atmosphere of decomposed ammonia gas (3H 2 + N 2 ) and then slowly cooled to obtain a cake-like powder.

最後に、第4工程として前記ケーキ状粉末を粉砕機によ
り粉化して最終粉末を得た。
Finally, as the fourth step, the cake-like powder was pulverized with a pulverizer to obtain a final powder.

前述の製造工程を経て製造された焼結用低合金鉄粉末を
化学分析したところ前掲の表にも記載されているように
鉄(Fe)中に重量比でモリブデン(Mo)0.4%,クロム
(Cr)0.17%,ニッケル(Ni)1.4%,炭素(C)0.03
%,酸素(O)0.2%の組成を有する粉末であることが
確認された。尚、この分析値は本発明の構成要件とした
各元素の含有値を充しているが、製造過程は全く異なる
ものである。
A chemical analysis of the low alloy iron powder for sintering produced through the above-described production process was performed. As shown in the table above, iron (Fe) contained 0.4% by weight of molybdenum (Mo), chromium ( Cr) 0.17%, nickel (Ni) 1.4%, carbon (C) 0.03
%, And oxygen (O) 0.2% was confirmed to be a powder. This analysis value satisfies the content value of each element as the constituent requirement of the present invention, but the manufacturing process is completely different.

以上のような製造工程において夫々製造された焼結用低
合金鉄粉末を用いて、これらの粉末の引張強度を測定す
るため、同一の製造条件により試験片を製作した。以下
試験片の製作過程を説明する。
Using the low-alloy iron powder for sintering that was manufactured in each of the above manufacturing processes, test pieces were manufactured under the same manufacturing conditions in order to measure the tensile strength of these powders. The manufacturing process of the test piece will be described below.

まず、実施例及び比較例の低合金鉄粉末に対し重量比で
0.6%の黒鉛粉と、0.8%の潤滑用ステアリン酸亜鉛粉と
を添加し、これをV型混合機により30分間混合した。こ
の混合粉末を用いて成形体密度7.0g/cm3の引張試験片
(JSPM標準2−64)を圧粉成形した。
First, the weight ratio to the low alloy iron powders of Examples and Comparative Examples
0.6% graphite powder and 0.8% zinc stearate powder for lubrication were added and mixed with a V-type mixer for 30 minutes. Using this mixed powder, a tensile test piece (JSPM standard 2-64) having a compact density of 7.0 g / cm 3 was compacted.

次いで前記引張試験片を焼結炉において1200℃で40分で
焼結(雰囲気は分解アンモニアガス)を行ない、焼結体
引張試験片を製造した。この焼結体引張試験片を用いて
引張試験を行なった。引張試験は常温において引張速度
2mm/minの条件で行ない、その結果を第1図の棒グラフ
に夫々示してある。
Then, the tensile test piece was sintered in a sintering furnace at 1200 ° C. for 40 minutes (atmosphere of decomposed ammonia gas) to produce a sintered tensile test piece. A tensile test was performed using this sintered body tensile test piece. Tensile test at normal temperature
The results are shown in the bar graphs of FIG. 1 under the conditions of 2 mm / min.

さらに、前述した焼結体引張試験片の熱処理後の引張強
度を測定するために、該焼結体に焼入焼戻しを施した。
焼入は真空熱処理を用い、880℃で30分間加熱後、油焼
入を行ない、焼戻しは大気中において180℃で60分間加
熱した。この熱処理後の引張試験片に対し上述と同一条
件、すなわち常温において引張速度2mm/minで引張試験
を施し、その結果を第2図の棒グラフに夫々示した。
Further, in order to measure the tensile strength of the above-described sintered body tensile test piece after heat treatment, the sintered body was quenched and tempered.
For quenching, a vacuum heat treatment was used. After heating at 880 ° C for 30 minutes, oil quenching was performed, and for tempering, heating was performed at 180 ° C for 60 minutes in the atmosphere. The tensile test pieces after the heat treatment were subjected to a tensile test at the same rate as described above, that is, at a normal temperature at a tensile rate of 2 mm / min, and the results are shown in the bar graphs of FIG.

以上のように行なった引張強度試験の結果について説明
する。
The results of the tensile strength test conducted as described above will be described.

まず、第1図に示す焼結体における引張強さは、実施例
1で62kgf/mm2,実施例2で65kgf/mm2の測定値を夫々示
し、比較例1の47kgf/mm2,比較例2の50kgf/mm2に比べ
て抜群の性能であった。実施例2が実施例1よりも3kg/
mm2の強度を示したのは強化元素であるモリブデン(M
o)を倍近く含んでいるためである。
First, the tensile strength in the sintered body shown in FIG. 1, the embodiment 1 in 62kgf / mm 2, Example 2 shows respectively the measured values of 65kgf / mm 2, 47kgf / mm 2 Comparative Example 1, Comparative The performance was outstanding compared to 50 kgf / mm 2 in Example 2. Example 2 is 3 kg / more than Example 1.
The strength of mm 2 is molybdenum (M
This is because it contains nearly double.

次に第2図を用いて熱処理後の引張強さを説明する。本
発明に係る低合金鉄粉末を用いて形成した試験片では実
施例1が137kgf/mm2,実施例2が142kgf/mm2といずれも
高い引張強度を示し、比較例1の103kgf/mm2,比較例2
の98kgf/mm2に比べて性能の良いことがわかる。尚、こ
こでも実施例2の測定値の方が優れているが、これは前
述の理由の他に、熱処理性及び靱性に優れた元素である
ニッケル(Ni)を若干多量に混合したからである。
Next, the tensile strength after heat treatment will be described with reference to FIG. Example 1 is a test piece formed by using a low-alloy iron powder according to the present invention is 137kgf / mm 2, Example 2 showed a high tensile strength both as 142kgf / mm 2, in Comparative Example 1 103kgf / mm 2 , Comparative Example 2
It can be seen that the performance is better than that of 98 kgf / mm 2 . Here, the measured value of Example 2 is also superior, because nickel (Ni), which is an element excellent in heat treatability and toughness, is mixed in a slightly large amount in addition to the above-mentioned reason. .

(発明の効果) 以上縷々説明したように、本発明に係る焼結用低合金鉄
粉末及びその製造方法によれば以下のような効果を奏す
る。
(Effects of the Invention) As described above, the low alloy iron powder for sintering and the manufacturing method thereof according to the present invention have the following effects.

重量比で、モリブデン(Mo)0.2〜1.4%,ニッケル(N
j)0.5〜4%,クロム(Cr)0.1〜0.3%,炭素(C)0.
05%以下,酸素(O)を0.3%以下及び不可避不純物2
%以下,残部実質的に鉄(Fe)よりなる焼結用低合金鉄
粉末を提供し、しかもこの合金鉄粉末では、モリブデン
(Mo)、クロム(Cr)、炭素(C)を予備合金化により
含有させ、かつニッケル(Ni)を拡散状態で表面に存在
させたので、焼結体を製造する場合に良好な圧縮成形性
及び優れた焼入性を示し、得られる焼結体の強度及び靱
性が著しく向上する。また、本発明の方法では、予備合
金鉄粉末にニッケル粉末を混合し、所定の条件で還元処
理するので、表面へのニッケルの拡散は充分となり、前
記した焼結用低合金鉄粉末を安定して得ることができ
る。また、原料コスト的にも余り高価な強化金属元素を
用いず、製造方法に工夫を凝しているのでコストの低減
に資するものがある。
By weight ratio, molybdenum (Mo) 0.2 to 1.4%, nickel (N
j) 0.5 to 4%, chromium (Cr) 0.1 to 0.3%, carbon (C) 0.
05% or less, oxygen (O) 0.3% or less and inevitable impurities 2
% Or less, and the remainder is a low alloy iron powder for sintering which consists essentially of iron (Fe). Moreover, in this alloy iron powder, molybdenum (Mo), chromium (Cr) and carbon (C) are pre-alloyed. Since it is contained and nickel (Ni) is present on the surface in a diffused state, it exhibits good compression moldability and excellent hardenability when producing a sintered body, and the strength and toughness of the obtained sintered body. Is significantly improved. Further, in the method of the present invention, the nickel powder is mixed with the prealloyed iron powder and the reduction treatment is performed under predetermined conditions, so that the diffusion of nickel to the surface is sufficient and the low alloyed iron powder for sintering is stabilized. Can be obtained. Further, since the reinforcing metal element, which is too expensive in terms of raw material cost, is not used and the manufacturing method is carefully devised, there is a thing that contributes to cost reduction.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図は本発明に係る焼結用低合金鉄粉末及び
その製造方法の機械的強度特性を説明するものであり、
第1図は本発明に係る低合金鉄粉末により製造した焼結
体引張試験片の引張強さを示す特性図,第2図は該焼結
体引張試験片に熱処理を施した後の引張強さを示す特性
図である。
FIG. 1 and FIG. 2 are for explaining the mechanical strength characteristics of the low alloy iron powder for sintering and the manufacturing method thereof according to the present invention,
FIG. 1 is a characteristic diagram showing the tensile strength of a sintered body tensile test piece manufactured by the low alloy iron powder according to the present invention, and FIG. 2 is a tensile strength after heat treatment of the sintered body tensile test piece. FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉄(Fe)と予備合金化されたモリブデン
(Mo)、クロム(Cr)、炭素(C)を含み、かつ表面に
ニッケル(Ni)を拡散状態で存在させた焼結用低合金鉄
粉末であって、重量比で、Moを0.2〜1.4%,Niを0.5〜4
%,Crを0.1〜0.3%,Cを0.05%以下,酸素(O)を0.3%
以下及び不可避不純物を2%以下それぞれ含有し、残部
が実質的にFeよりなることを特徴とする焼結用低合金鉄
粉末。
1. A low sintering powder which contains molybdenum (Mo), chromium (Cr) and carbon (C) pre-alloyed with iron (Fe) and has nickel (Ni) present on the surface in a diffused state. Alloyed iron powder with a weight ratio of 0.2-1.4% Mo and 0.5-4 Ni.
%, Cr 0.1-0.3%, C 0.05% or less, oxygen (O) 0.3%
A low-alloy iron powder for sintering, containing the following and unavoidable impurities in an amount of 2% or less, and the balance substantially consisting of Fe.
【請求項2】重量比で、Moを0.2〜1.4%,Niを0.5〜4
%,Crを0.1〜0.3%,Cを0.05%以下,Oを0.3%以下及び不
可避不純物を2%以下それぞれ含有し、残部が実質的に
Feよりなる焼結用低合金鉄粉末を製造する方法であっ
て、Niを除く他の成分を含む低合金鉄粉末を製造する第
1工程と、前記粉末にNi又はNi酸化物を粉末で混合する
第2工程と、前記混合粉末を800〜1050℃で20分以上還
元処理する第3工程と、前記還元処理物を再び粉末化処
理する第4工程とからなることを特徴とする焼結用低合
金鉄粉末の製造方法。
2. A weight ratio of Mo is 0.2 to 1.4% and Ni is 0.5 to 4
%, Cr 0.1-0.3%, C 0.05% or less, O 0.3% or less and unavoidable impurities 2% or less, respectively, and the balance is substantially
A method for producing a low alloy iron powder for sintering comprising Fe, comprising a first step of producing a low alloy iron powder containing other components except Ni, and mixing the powder with Ni or a Ni oxide. For sintering, which comprises a second step of: reducing the mixed powder at 800 to 1,050 ° C. for 20 minutes or more; and a fourth step of pulverizing the reduced product again. Method for producing low alloy iron powder.
JP59261473A 1984-12-11 1984-12-11 Low alloy iron powder for sintering and method for producing the same Expired - Lifetime JPH0717923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261473A JPH0717923B2 (en) 1984-12-11 1984-12-11 Low alloy iron powder for sintering and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261473A JPH0717923B2 (en) 1984-12-11 1984-12-11 Low alloy iron powder for sintering and method for producing the same

Publications (2)

Publication Number Publication Date
JPS61139601A JPS61139601A (en) 1986-06-26
JPH0717923B2 true JPH0717923B2 (en) 1995-03-01

Family

ID=17362388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261473A Expired - Lifetime JPH0717923B2 (en) 1984-12-11 1984-12-11 Low alloy iron powder for sintering and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0717923B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686603B2 (en) * 1986-09-29 1994-11-02 川崎製鉄株式会社 Evaluation method of the degree of compounding of Fe-Ni compound steel powder
DE3853000T2 (en) * 1987-09-30 1995-06-01 Kawasaki Steel Co COMPOSED ALLOY STEEL POWDER AND Sintered Alloy Steel.
JPH0645801B2 (en) * 1989-04-17 1994-06-15 川崎製鉄株式会社 Finishing heat treatment method for Cr alloy steel powder
TWI482865B (en) * 2009-05-22 2015-05-01 胡格納斯股份有限公司 High strength low alloyed sintered steel
JP2017507251A (en) * 2014-01-27 2017-03-16 ロバルマ, ソシエダッド アノニマRovalma, S.A. Centrifugal spraying of iron alloys

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266974A (en) 1978-10-30 1981-05-12 Kawasaki Steel Corporation Alloy steel powder having excellent compressibility, moldability and heat-treatment property

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266974A (en) 1978-10-30 1981-05-12 Kawasaki Steel Corporation Alloy steel powder having excellent compressibility, moldability and heat-treatment property

Also Published As

Publication number Publication date
JPS61139601A (en) 1986-06-26

Similar Documents

Publication Publication Date Title
JP3177482B2 (en) Low alloy steel powder for sinter hardening
US5605559A (en) Alloy steel powders, sintered bodies and method
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JP3446322B2 (en) Alloy steel powder for powder metallurgy
JPH07157803A (en) Water atomized iron powder for powder metallurgy and production thereof
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JP4069506B2 (en) Alloy steel powder and mixed powder for high strength sintered parts
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JP3663929B2 (en) Mixed powder for high strength sintered parts
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
JP3517505B2 (en) Raw material powder for sintered wear resistant material
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JPH08209202A (en) Alloy steel powder for high strength sintered material excellent in machinability
US20090142220A1 (en) Sinter-hardening powder and their sintered compacts
JPH0751721B2 (en) Low alloy iron powder for sintering
JP4093070B2 (en) Alloy steel powder
EP1323840B1 (en) Iron base mixed powder for high strength sintered parts
JPH0772282B2 (en) High compressibility Cr alloy steel powder and method for producing high strength sintered material using the same
JPS61183444A (en) High strength sintered alloy and its manufacture
JPH0459362B2 (en)
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPH11229001A (en) Production of high strength sintered parts
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
JPH0568522B2 (en)