JP4093070B2 - Alloy steel powder - Google Patents
Alloy steel powder Download PDFInfo
- Publication number
- JP4093070B2 JP4093070B2 JP2003019747A JP2003019747A JP4093070B2 JP 4093070 B2 JP4093070 B2 JP 4093070B2 JP 2003019747 A JP2003019747 A JP 2003019747A JP 2003019747 A JP2003019747 A JP 2003019747A JP 4093070 B2 JP4093070 B2 JP 4093070B2
- Authority
- JP
- Japan
- Prior art keywords
- steel powder
- mass
- alloy steel
- powder
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims description 48
- 229910000851 Alloy steel Inorganic materials 0.000 title claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 22
- 239000010959 steel Substances 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 238000009472 formulation Methods 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 description 18
- 239000000956 alloy Substances 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000005245 sintering Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000009692 water atomization Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical group [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、面圧疲労特性に優れた鉄系焼結熱処理材料の製造に用いる原料としての合金鋼粉、すなわち、各種焼結部品の中でも、 特に高い面圧疲労特性が要求される部品の製造に供して好適な合金鋼粉に関するものである。
【0002】
【従来の技術】
自動車のギヤなど、 高強度や高面圧疲労特性が要求される鉄系部品を粉末冶金法で製造する場合、強度および疲労特性の向上のためには、合金元素を添加し、さらに浸炭処理や浸窒処理を施すとともに、その後に焼入れ、 焼戻し処理が施される。
【0003】
純鉄粉中に合金成分を固溶させて合金鋼粉を製造する予合金鋼粉では、合金成分を多く含有させると、鋼粉の圧縮性が損なわれることが多く、その場合に高い焼結密度が得られなくなり、 結果的に疲労特性の向上が望めない。
この点、例えば特許文献1では、純鉄粉にNi、Cu、Moなどの合金成分粉末を拡散付着すること(以下、“部分合金化”と称する。)によって上述の問題の解決を図っている。
【0004】
しかしながら、上記の方法にて製造された部分合金化鋼粉は、圧縮性には優れるものの、異種金属粉を混粉後加熱することにより拡散を生じさせて部分的に合金化するだけなので、成分的に完全に均一なものが得られる予合金鋼粉に比べると、焼結体の組織の均一性が低く、 合金成分濃度の低い部分や、Ni濃度のオーステナイト相が疲労破壊の起点となり、疲労特性低下の原因となる。
【0005】
このように、上記した部分合金化鋼粉では圧縮性が高く、焼結体の強度の向上は図り得るものの、面圧疲労特性の点では十分とは言い難かった。
そこで、これらの欠点を解消するために、合金成分の一部を予合金化するとともに、残りの合金成分を部分合金化して配合することが提案されている(特許文献2,3参照)。特許文献2では、Fe‐0.1 〜1.0wt%Mo予合金鋼粉の表面にNi:2.5wt%以下および/またはCu:2.0wt%以下の粉末を拡散付着させてなる粉末が開示されている。また、特許文献3では、Ni:0.25〜0.5wt%、Mo:0.25〜1.0wt%、不純物としてのMnおよびCrそれぞれ0.3wt%以下、残部Feからなる鉄合金粉の表面に、組成全体に対しCu:1〜3wt% および/またはMo:1.0wt%以下をなす金属粉、あるいはさらに黒鉛粉末:0.4 〜1.2wt%を配合してなる粉末冶金用合金粉末が開示されている。
【0006】
【特許文献1】
特公昭45−9649号公報
【特許文献2】
特開昭59−215401号公報
【特許文献3】
特開昭63−137102号公報
【0007】
【発明が解決しようとする課題】
しかし、上記特許文献2,3に開示された合金鋼粉では、面圧疲労強度を考慮した合金設計がなされていなかった。
そこで、本発明は、面圧疲労特性が良好な焼結材料を従来に比して経済的に得ることができる、面圧疲労特性に優れた焼結部品の製造に用いる原料としての合金鋼粉を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく合金成分の添加方法について鋭意研究を重ねた結果、合金成分の一部を予合金化するとともに残りの合金成分を部分合金化して配合する合金鋼粉で、合金成分、 合金量を最適化することが初期の目的を達成する上で極めて有効であるとの知見を得た。
【0009】
すなわち、本発明は、面圧疲労特性に優れた焼結部品の製造に用いる原料としての合金鋼粉であって、Mo:0.5 〜2.0mass%、好ましくはMo:1.0 mass% 超〜2.0mass%を含有し残部Feおよび不可避的不純物からなる予合金鋼粉の表面に、前記合金鋼粉全量に対するmass%でCu:0.1 〜0.8mass%を拡散付着配合してなることを特徴とする合金鋼粉である。
【0010】
【発明の実施の形態】
本発明に係る合金鋼粉は上述の構成を有するものであるが、本発明においてそのように粉末組成を限定した理由についてさらに詳述する。
本発明では、合金元素としてMo、Cuを選択する。MoおよびCuはRXガス(炭化水素変成ガス)のような弱酸化性雰囲気での焼結を行っても酸化することがなく、 効率良く強度の向上が可能となる。予合金鋼粉を得るには、 所定量の合金元素を予合金した溶鋼を溶製し、水アトマイズすることにより、予合金化したMo含有合金鋼粉とする。水アトマイズは、通常公知の装置および方法を用いて行えばよく、特に限定する必要はない。
【0011】
鋼粉は、水アトマイズ後、常法に従い、仕上還元処理、 粉砕を施されるのは言うまでもない。
はじめに予合金鋼粉の組成の限定理由について説明する。
Mo:0.5 〜2.0mass%
Moは、固溶強化、 焼入性向上により基地強度を向上させる元素である。しかし、Moが0.5mass%未満では焼入性を向上させる効果が充分ではなく、一方、Moを2.0mass%を超えて含有させると鋼粉粒子が硬化し、 著しく圧縮性が低下し得られる密度が低下するため面圧疲労特性が低下する。このため、Moは0.5 〜2.0mass%の範囲に限定した。なお、より高い面圧疲労強度を得るには、Moを1.0mass%超〜2.0mass%の範囲で含有することが好ましい(図2参照)。
【0012】
次に、 拡散付着配合する組成の限定理由について説明する。
Cu:0.1 〜0.8mass%
Cuの少量の配合は本発明の重要な特徴である。
Cuは、焼結時に液相が生成し、 液相焼結により焼結ネック部の強度を向上させ、また、鉄中に拡散し、 固溶強化、 焼入性強化の元素でもあることが知られている。しかし、従来の特許文献2所載の実施例(第3表)あるいは特許文献3所載の特許請求の範囲のように、Cuを0.8mass%超の範囲にまで配合すると、面圧疲労特性が低下してしまうことが判明した。この理由は明らかではないが、Cu液相生成量が多くなりすぎると、Cu膨張が生じて密度を低下させてしまうことと、焼結ネック部を脆化させてしまうことによるものと推定される。また、Cuが0.1mass%未満では面圧疲労特性を向上させる効果が充分ではなかった(図1参照)。このため、Cuは0.1 〜0.8mass%の範囲に限定した。
【0013】
上述したような合金鋼粉を成形、焼結することにより、その焼結体の熱処理における寸法精度を向上させることができ、また得られた焼結・熱処理体の面圧疲労特性は極めて良好である。
なお、ここでいう成形、 焼結とは、一般に粉末冶金部品を製造する方法を意味し、例えば、室温あるいは100 〜 150℃で4〜10t/cm2( ≒392 〜981MPa )の圧力による圧粉成形後、1100〜1300℃におけるN2 、AXまたはRXガス中での焼結が好適である。また必要に応じて、成形に先立ち黒鉛を強度向上を目的として添加することもでき、その添加による含有量は0. 1〜1.0mass%が好適である。
【0014】
【実施例】
次のような焼結・熱処理体の製造および面圧疲労特性調査実験を行った。
Mo、Cuを、表1に示す含有量になるように、それぞれ予合金成分、部分合金成分として添加してなる合金鋼粉に、黒鉛を0.5mass%、ステアリン酸リチウムを0.8mass%の含有量となるように添加し、混合したのち、成形圧力686MPa、成形温度 130℃の条件で、外径:60mm、高さ:6mmの成形体を作製した。これらの成形体を対象に、RXガス雰囲気中、1130℃、 20分間の条件で焼結を行い、 次いで 900℃の温度で60分間の浸炭処理(カーボンポテンシャル0.9mass%C)に続いて油焼入れを行ったのち、 180℃の温度で60分間の焼戻し処理を行った。
【0015】
このようにして得られた焼結・熱処理体について、6球式面圧疲労試験による疲労強度(面圧耐久疲れ強さ)を調べた。
この実験において、Cu部分合金化鋼粉は、ベース粉末(Mo予合金鋼粉)にCu粉を所定量混合したものを水素ガス中にて 900℃、60分間の加熱処理後、解砕・分級して得たものである。
【0016】
実験結果を表1に併記する。また、面圧耐久疲れ強さとCu量、Mo量との関係をそれぞれプロットして図1、図2に示す。表1および図1、 図2より明らかなように、本発明によって、面圧疲労特性に優れた焼結・熱処理体を得ることができた。
【0017】
【表1】
【0018】
【発明の効果】
本発明の合金鋼粉は、焼結・ 熱処理材において、面圧疲労特性に優れ、例えば自動車のカムギアのような高疲労特性を要求される焼結部品を低コストで製造可能な原料鋼粉として偉効を奏する。
【図面の簡単な説明】
【図1】鋼粉のCu量と成形・焼結体の面圧耐久疲れ強さの関係を示す図である。
【図2】鋼粉のMo量と成形・焼結体の面圧耐久疲れ強さの関係を示す図である。
【符号の説明】
1 請求項1の請求範囲
2 請求項2の請求範囲[0001]
BACKGROUND OF THE INVENTION
The present invention, as a raw material which are use in the manufacture of high iron-based sintered heat treated material surface fatigue properties alloy steel powder, i.e., among the various sintered parts, the parts, especially high surface pressure fatigue characteristics are required those of preferred alloys steel powder and subjected to production.
[0002]
[Prior art]
When manufacturing ferrous parts that require high strength and high surface pressure fatigue properties, such as automobile gear, by powder metallurgy, alloy elements are added to improve strength and fatigue properties, and carburizing treatment and Nitrogen treatment is performed, followed by quenching and tempering.
[0003]
In pre-alloyed steel powder that produces alloy steel powder by dissolving alloy components in pure iron powder, if a large amount of alloy components are contained, the compressibility of steel powder is often impaired, and in that case high sintering is required. Density cannot be obtained, and as a result, improvement in fatigue properties cannot be expected.
In this respect, for example, in
[0004]
However, although the partially alloyed steel powder produced by the above method is excellent in compressibility, it is only partially alloyed by causing diffusion by heating after mixing the dissimilar metal powder. Compared with pre-alloyed steel powders that can be obtained completely uniform, the structure of the sintered body is less uniform, and the part with low alloy component concentration and the austenite phase with Ni concentration become the starting point of fatigue failure. It causes the characteristic deterioration.
[0005]
Thus, although the above-mentioned partially alloyed steel powder has high compressibility and can improve the strength of the sintered body, it has not been sufficient in terms of surface pressure fatigue characteristics.
Therefore, in order to eliminate these drawbacks, it has been proposed to pre-alloy part of the alloy components and to mix the remaining alloy components by partial alloying (see
[0006]
[Patent Document 1]
Japanese Patent Publication No. 45-9649 [Patent Document 2]
JP 59-215401 A [Patent Document 3]
JP-A-63-137102 [0007]
[Problems to be solved by the invention]
However, the alloy steel powders disclosed in
Accordingly, the present invention can be obtained economically surface fatigue properties than a good sintered material to the conventional alloy steel as raw material are use in the manufacture of sintered components having excellent surface fatigue properties The purpose is to provide powder.
[0008]
[Means for Solving the Problems]
As a result of earnest research on the addition method of alloy components to achieve the above object, the present inventors have pre-alloyed a part of the alloy component and partially alloyed the remaining alloy component to mix the alloy steel powder. Thus, we have found that optimizing the alloy composition and the alloy amount is extremely effective in achieving the initial objectives.
[0009]
That is, the present invention is an alloy steel powder as a raw material used for the production of a sintered part having excellent surface pressure fatigue characteristics, Mo: 0.5 to 2.0 mass%, preferably Mo: 1.0 mass% Cu: 0.1 to 0.8 mass % is diffusion-bonded and blended in a mass% with respect to the total amount of the alloyed steel powder on the surface of the prealloyed steel powder containing ultra-2.0 mass% and remaining Fe and inevitable impurities. it is alloy steel powder you characterized by comprising.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Although the alloy steel powder according to the present invention has the above-described configuration, the reason why the powder composition is so limited in the present invention will be described in detail.
In the present invention, Mo and Cu are selected as alloy elements. Mo and Cu do not oxidize even when sintered in a weak oxidizing atmosphere such as RX gas (hydrocarbon modified gas), and the strength can be improved efficiently. In order to obtain prealloyed steel powder, molten steel prealloyed with a predetermined amount of alloying elements is melted and water atomized to obtain prealloyed Mo-containing alloyed steel powder. Water atomization may be performed using a generally known apparatus and method, and is not particularly limited.
[0011]
Needless to say, the steel powder is subjected to finish reduction treatment and pulverization according to a conventional method after water atomization.
First, the reasons for limiting the composition of the prealloyed steel powder will be described.
Mo: 0.5 to 2.0 mass%
Mo is an element that improves the base strength by strengthening solid solution and improving hardenability. However, if Mo is less than 0.5 mass%, the effect of improving hardenability is not sufficient, whereas if Mo is contained in excess of 2.0 mass%, the steel powder particles are hardened and the density at which the compressibility can be significantly reduced is obtained. As a result, the surface pressure fatigue characteristics deteriorate. For this reason, Mo was limited to the range of 0.5 to 2.0 mass%. In addition, in order to obtain higher surface pressure fatigue strength, it is preferable to contain Mo in the range of more than 1.0 mass% to 2.0 mass% (see FIG. 2).
[0012]
Next, the reason for limiting the composition for diffusion adhesion will be described.
Cu: 0.1 to 0.8 mass%
A small amount of Cu is an important feature of the present invention.
It is known that Cu generates a liquid phase during sintering, improves the strength of the sintering neck by liquid phase sintering, and also diffuses into iron and is a solid solution strengthening and hardenability strengthening element. It has been. However, when Cu is compounded to a range exceeding 0.8 mass% as in the examples of the conventional patent document 2 (Table 3) or the claims of the patent document 3, the surface pressure fatigue characteristics are reduced. It turns out that it falls. The reason for this is not clear, but if the amount of Cu liquid phase generated becomes too large, it is estimated that Cu expansion occurs and the density is lowered, and the sintered neck is made brittle. . Moreover, if Cu was less than 0.1 mass%, the effect of improving the surface pressure fatigue characteristics was not sufficient (see FIG. 1). For this reason, Cu was limited to the range of 0.1 to 0.8 mass%.
[0013]
By molding and sintering the alloy steel powder as described above, the dimensional accuracy in the heat treatment of the sintered body can be improved, and the surface fatigue resistance characteristics of the obtained sintered / heat treated body are extremely good. is there.
The molding and sintering referred to here generally means a method for producing a powder metallurgy part. For example, compacting with a pressure of 4 to 10 t / cm 2 (≈392 to 981 MPa) at room temperature or 100 to 150 ° C. After molding, sintering in N 2 , AX or RX gas at 1100-1300 ° C. is preferred. If necessary, graphite can be added prior to molding for the purpose of improving the strength, and the content by addition is preferably 0.1 to 1.0 mass%.
[0014]
【Example】
The following sintered and heat-treated bodies were manufactured and surface pressure fatigue characteristics were investigated.
Alloy steel powder with Mo and Cu added as pre-alloy components and partial alloy components so as to have the contents shown in Table 1, 0.5 mass% graphite and 0.8 mass% lithium stearate After mixing and mixing, a molded body having an outer diameter of 60 mm and a height of 6 mm was produced under the conditions of a molding pressure of 686 MPa and a molding temperature of 130 ° C. These compacts were sintered in RX gas atmosphere at 1130 ° C for 20 minutes, then carburized at 900 ° C for 60 minutes (carbon potential 0.9 mass% C), followed by oil quenching. After that, a tempering treatment was performed at a temperature of 180 ° C. for 60 minutes.
[0015]
The sintered / heat-treated body thus obtained was examined for fatigue strength (surface pressure durability fatigue strength) by a 6-ball surface pressure fatigue test.
In this experiment, Cu partially alloyed steel powder is a base powder (Mo prealloyed steel powder) mixed with a predetermined amount of Cu powder in hydrogen gas at 900 ° C for 60 minutes, then crushed and classified It was obtained.
[0016]
The experimental results are also shown in Table 1. Moreover, the relationship between surface pressure endurance fatigue strength, Cu amount, and Mo amount is plotted and shown in FIGS. As is clear from Table 1, FIG. 1 and FIG. 2, a sintered / heat treated body excellent in surface pressure fatigue characteristics could be obtained by the present invention.
[0017]
[Table 1]
[0018]
【The invention's effect】
The alloy steel powder of the present invention has excellent surface fatigue resistance in sintered and heat-treated materials, for example, as raw steel powder that can be manufactured at low cost for sintered parts that require high fatigue characteristics such as automobile cam gears. A great effect.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of Cu in steel powder and the surface pressure endurance fatigue strength of a molded / sintered body.
FIG. 2 is a graph showing the relationship between the Mo amount of steel powder and the surface pressure endurance fatigue strength of a molded / sintered body.
[Explanation of symbols]
1 Claim 2 of
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003019747A JP4093070B2 (en) | 2003-01-29 | 2003-01-29 | Alloy steel powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003019747A JP4093070B2 (en) | 2003-01-29 | 2003-01-29 | Alloy steel powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004232004A JP2004232004A (en) | 2004-08-19 |
JP4093070B2 true JP4093070B2 (en) | 2008-05-28 |
Family
ID=32949545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003019747A Expired - Lifetime JP4093070B2 (en) | 2003-01-29 | 2003-01-29 | Alloy steel powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4093070B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107000053A (en) * | 2014-12-12 | 2017-08-01 | 杰富意钢铁株式会社 | Powder used in metallurgy iron(-)base powder and sintering forging part |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6227903B2 (en) * | 2013-06-07 | 2017-11-08 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy and method for producing iron-based sintered body |
JP6222189B2 (en) * | 2014-12-05 | 2017-11-01 | Jfeスチール株式会社 | Alloy steel powder and sintered body for powder metallurgy |
US20180193911A1 (en) * | 2015-09-11 | 2018-07-12 | Jfe Steel Corporation | Method of producing mixed powder for powder metallurgy, method of producing sintered body, and sintered body |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215401A (en) * | 1983-05-19 | 1984-12-05 | Kawasaki Steel Corp | Alloy steel powder for powder metallurgy and its production |
JPH0681001A (en) * | 1992-09-02 | 1994-03-22 | Kawasaki Steel Corp | Alloy steel powder |
US6068813A (en) * | 1999-05-26 | 2000-05-30 | Hoeganaes Corporation | Method of making powder metallurgical compositions |
-
2003
- 2003-01-29 JP JP2003019747A patent/JP4093070B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107000053A (en) * | 2014-12-12 | 2017-08-01 | 杰富意钢铁株式会社 | Powder used in metallurgy iron(-)base powder and sintering forging part |
CN107000053B (en) * | 2014-12-12 | 2019-05-07 | 杰富意钢铁株式会社 | Powder used in metallurgy iron(-)base powder and sintering forging component |
US10774403B2 (en) | 2014-12-12 | 2020-09-15 | Jfe Steel Corporation | Iron-based alloy powder for powder metallurgy, and sinter-forged member |
Also Published As
Publication number | Publication date |
---|---|
JP2004232004A (en) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6394768B2 (en) | Alloy steel powder and sintered body for powder metallurgy | |
JP4183346B2 (en) | Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same | |
JP5671526B2 (en) | High strength low alloy sintered steel | |
JP5389577B2 (en) | Method for producing sintered body by powder metallurgy | |
WO2017043094A1 (en) | Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact | |
JP3177482B2 (en) | Low alloy steel powder for sinter hardening | |
JP2011094187A (en) | Method for producing high strength iron based sintered compact | |
JP5125158B2 (en) | Alloy steel powder for powder metallurgy | |
JP4093070B2 (en) | Alloy steel powder | |
JP4060092B2 (en) | Alloy steel powder for powder metallurgy and sintered body thereof | |
JP3663929B2 (en) | Mixed powder for high strength sintered parts | |
JP5929084B2 (en) | Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same | |
JP6528899B2 (en) | Method of manufacturing mixed powder and sintered body for powder metallurgy | |
JP3351844B2 (en) | Alloy steel powder for iron-based sintered material and method for producing the same | |
EP1323840B1 (en) | Iron base mixed powder for high strength sintered parts | |
JP2003147405A (en) | Alloy steel powder for iron sintering heat treatment material | |
WO2018143088A1 (en) | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body | |
JP2012126972A (en) | Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same | |
WO2023157386A1 (en) | Iron-based mixed powder for powder metallurgy, and iron-based sintered body | |
JP4151654B2 (en) | Mixed powder for high strength sintered parts | |
JPH0745682B2 (en) | Alloy steel powder for powder metallurgy | |
JP2000282103A (en) | Iron-base powder mixture for high strength sintered parts | |
JPH0694562B2 (en) | Method for producing composite alloy steel powder and sintered alloy steel | |
JP2012126971A (en) | Alloy steel powder for powder metallurgy, iron-based sintered material, and method for producing the same | |
JP2010255082A (en) | Iron-based sintered alloy and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4093070 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140314 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |