Nothing Special   »   [go: up one dir, main page]

JPH0459362B2 - - Google Patents

Info

Publication number
JPH0459362B2
JPH0459362B2 JP23690684A JP23690684A JPH0459362B2 JP H0459362 B2 JPH0459362 B2 JP H0459362B2 JP 23690684 A JP23690684 A JP 23690684A JP 23690684 A JP23690684 A JP 23690684A JP H0459362 B2 JPH0459362 B2 JP H0459362B2
Authority
JP
Japan
Prior art keywords
powder
molybdenum
tensile strength
low
compression moldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23690684A
Other languages
Japanese (ja)
Other versions
JPS61117202A (en
Inventor
Yoshitaka Takahashi
Akira Manabe
Shuntaro Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP23690684A priority Critical patent/JPS61117202A/en
Publication of JPS61117202A publication Critical patent/JPS61117202A/en
Publication of JPH0459362B2 publication Critical patent/JPH0459362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は構造用機械部品等に適用する高密度高
強度焼結材料である焼結用低合金鉄粉末に関する
ものである。 (従来の技術) 一般に、機械構成材料として多用されている鉄
系焼結材料の高強度化が要望され、これに対して
合金化,高密度化及び均質化等の種々の強化方法
により強度的に優れた焼結材料の開発が行なわれ
ている。 例えば合金化により材料の高強度化を達成する
方法(以下合金化強化方法という)としては、銅
(Cu),ニツケル(Ni),マンガン(Mn)及びク
ロム(Cr)等の合金元素粉末を個々に鉄粉末に
混合する混合法や、前記強化元素(Cu,Ni,
Mn,Cr等)を予め合金化したプレアロイ粉末を
用いる予備合金化法等が用いられている。 また、高密度化強化方法としては、2press−
2sinter法や焼結鍛造法(P/F)等が行なわれ
ている。 さらに、均質化強化方法としては焼結材料を焼
結する際に高温焼結を行なう均質化法が行なわれ
ている。 上記以外のものでは構造用機械部品の空孔を球
状化する球状化法等の強化策が知られている。 しかしながら上記各種の強化法はいずれも焼結
材料の強化に効果をもたらしているものの、いず
れの方法も何らかの問題点を含んでいる。 すなわち、高密度化強化方法としての2press−
2sinter法や焼結鍛造法(P/F)等においては、
製造工程を変更したり追加したりして圧縮等の強
加工を施すことにより構造用機械部品等の高密度
化を達成しているので、強加工を行なう際の雰囲
気管理,温度設定等の管理的工程が増加して製造
工程が繁雑となり、このため製造コストが大幅に
上昇するという問題を有していた。 また、合金化強化法のうち混合法においては、
添加した合金元素を鉄(Fe)中に充分に拡散さ
せるのに長時間を必要とするという問題があり、
また活性金属であるクロム(Cr)やマンガン
(Mn)等は焼結雰囲気を厳密にコントロールし
ないと酸化をおこし、拡散を妨げられるという問
題があつた。 さらに、予備合金化法においても、合金化によ
り粉末の硬度が増して圧縮成形性が低下し、従つ
て構造用機械部品の高密度化を阻止していた。 ところで、従来前記予備合金化法における圧縮
成形性の低下の問題を解消するために種々の提案
がなされており、例えば「低合金粉末鉄の製法」
(特公昭45−9649号公報)においては、合金元素
を特殊還元法によつて鉄粉末の表面に付着させて
圧縮成形性の改善を図るようにすることが提案さ
れている。 (発明が解決しようとする問題点) しかしながら上記従来の低合金粉末鉄の製法で
は、では、圧縮成形性の向上は達成したものの粉
末自体の価格は通常市販されている低合金鋼粉に
比べて相当に割高となつており、製造コストに占
める原料コスト占有率が高く、構造用機械部品を
焼結材料によつて成形する際の大きな障害となつ
ていた。 (問題点を解決するための手段) 本発明は上記実情に鑑みてその問題点を克服す
べくなされたものであり、低価格すなわち原料コ
ストを低くすると共に焼入性及び圧縮成形性に優
れた焼結用低合金鉄粉末を提供することを目的と
している。 上記目的を達成するための本発明の特徴は、低
合金鉄粉末中に重量百分率でモリブデン(Mo)
を0.2〜2.0%,炭素(C)を0.05%以下,酸素
(O)を0.2%以下夫々含有すると共に珪素(Si),
クロム(Cr),銅(Cu)及びニツケル(Ni)の
総含有量を0.2%以下に抑え、不可避不純物を含
む残部が実質的に鉄(Fe)よりなることにある。 (作用) 上記のように構成した本発明に係る焼結用低合
金鉄粉末において、モリブデン(Mo)を鉄
(Fe)粉末中に含有せしめたのは、モリブデン
(Mo)は予備合金化すると圧縮成形性を失わず、
また焼入性も充分に確保することができるからで
ある。但しモリブデン(Mo)は0.2%未満では熱
処理後の機械的特性が低下してしまい、また2.0
%を超えると逆に圧縮成形性が低下し、かつ熱処
理後の強度もMoを添加した割には向上しないと
いう傾向があるからである。 さらに珪素(Si),クロム(Cr),銅(Cu)
及びニツケル(Ni)の金属元素を総含有量で0.2
%以下に限定したのは、前記各金属元素には夫々
圧縮成形性を低下させる作用があるからである。
不可避不純物としては他にP,S,Mn等があ
る。 また、炭素(C)は0.05%,酸素は0.2%を
夫々超えると合金の圧縮成形性を著しく悪化させ
るため夫々上記重量百分率に抑え、圧縮成形性の
向上のために有効に作用している。 以上のように鉄(Fe)粉末中に上記重量百分
率の金属元素を含有せしめたので、圧縮成形性を
高くすると共に焼入性にも優れた焼結用低合金粉
末を低コストで提供することができる。 (実施例) 以下、本発明の実施例を比較例と対比しつつ説
明する。 実施例 1 溶解炉にて目標成分に調整した溶湯を作り、こ
の溶湯をタンデイツシユより流出させた後、この
流出した溶湯に高圧水を噴霧して作用させ粉末化
する(以下水噴霧法という)。前記水噴霧法によ
り形成した粉末を分解アンモニア雰囲気中で900
℃×60分の還元処理を施した後粉砕し、その後
80meshの篩で分級し、−80mesh粉を得た。この
粉末の組成については第1表の該当欄に示すよう
に、鉄(Fe)とモリブデン(Mo)0.3%,酸素
(O)0.08%,炭素(C)0.02%,珪素(Si)+ク
ロム(Cr)+銅(Cu)+ニツケル(Ni)0.2%以下
の各種重量百分率となつている。 上記−80mesh粉に対し圧縮成形性の数値を得
るために試験を行なうこととし、JSPM標準1−
64(金属粉の圧縮性試験法)に準拠して試験を実
施した。成形を行なう際の成形圧力を1平方セン
チメートル当り3t,5t,7tとしてこの3水準につ
いての試験を行なつた結果、第2表に示すように
夫々6.22g/cm3,6.87g/cm3,7.21g/cm3となつ
ており、また、7t/cm2の成形圧力における成形体
密度を第1図に示している。 次に、熱処理後の引張り強さを測定するために
JSPM2−64の金属焼結体の引張試験片を用い引
張試験を行なつた。この引張試験片は、第1表に
示す粉末に対し黒鉛粉0.5%及び潤滑剤0.8%を加
えて混合した後、約7.0g/cm3の成形体密度とな
るよう成形した後、分解アンモニア雰囲気中で
1200℃×40分の焼結を行ない、この焼結体に対し
870℃×30分の熱処理を施し、焼割れ及び熱ひず
みを防止するため油による焼入液に浸潤させて冷
却し、170℃×90分の焼戻しを行なつたものであ
る。尚引張試験は2mm/minのクロスヘツドスピ
ードで実施した。この結果が、第2図に示してあ
り、本実施例においては97Kgf/mm2の強度が得ら
れた。 尚、第1表は実施例2乃至4及び比較例1乃至
4の粉末の組成をも併せて示しており、第2表に
は各条件における成形圧力に対する上記各例の成
形体密度をも示している。また、第1図は実施例
1ばかりでなく上記各例の成形圧力7t/cm2におけ
る成形体密度の特性をグラフにより示すことと
し、第2図には熱処理後の各例の引張強さを比較
したグラフも併せて示すこととする。 実施例 2 水噴霧法により形成した粉末を前記実施例1
(Field of Industrial Application) The present invention relates to a low-alloy iron powder for sintering, which is a high-density, high-strength sintered material that is applied to structural machine parts and the like. (Prior art) In general, there is a desire to increase the strength of iron-based sintered materials, which are often used as machine component materials, and in response to this, various strengthening methods such as alloying, densification, and homogenization are used to increase the strength. Sintered materials with excellent properties are being developed. For example, as a method of achieving high strength of materials by alloying (hereinafter referred to as alloying strengthening method), powders of alloying elements such as copper (Cu), nickel (Ni), manganese (Mn), and chromium (Cr) are individually In addition, there are mixing methods in which iron powder is mixed with
A pre-alloying method using a pre-alloyed powder that is pre-alloyed with Mn, Cr, etc.) is used. In addition, as a method for strengthening densification, 2press−
2sinter method, sinter forging method (P/F), etc. are used. Furthermore, as a homogenization strengthening method, a homogenization method is used in which high temperature sintering is performed when sintering a sintered material. In addition to the above, strengthening measures such as the spheroidization method, which spheroidizes the pores of structural mechanical parts, are known. However, although all of the above-mentioned various strengthening methods are effective in strengthening the sintered material, each method includes some problems. In other words, 2press− as a densification strengthening method
In the 2sinter method, sinter forging method (P/F), etc.
High density of structural mechanical parts, etc. is achieved by changing or adding to the manufacturing process and performing strong processing such as compression, so it is necessary to manage atmosphere management, temperature settings, etc. when performing strong processing. This has led to the problem that the number of steps has increased, making the manufacturing process complicated, and thus manufacturing costs have increased significantly. In addition, in the mixed method among alloying strengthening methods,
There is a problem in that it takes a long time to sufficiently diffuse the added alloying elements into iron (Fe).
Additionally, active metals such as chromium (Cr) and manganese (Mn) have the problem of oxidizing and preventing diffusion unless the sintering atmosphere is strictly controlled. Furthermore, even in the prealloying method, alloying increases the hardness of the powder and reduces compression moldability, thus preventing higher density of structural mechanical parts. By the way, various proposals have been made to solve the problem of deterioration in compression formability in the prealloying method, such as "method for producing low alloy powdered iron".
(Japanese Patent Publication No. 45-9649) proposes to improve compression moldability by attaching alloying elements to the surface of iron powder by a special reduction method. (Problems to be Solved by the Invention) However, although the above-mentioned conventional method for manufacturing low-alloy powder iron has improved compression formability, the price of the powder itself is lower than that of commercially available low-alloy steel powder. It is quite expensive, and raw material costs account for a high proportion of the manufacturing cost, which has been a major obstacle when forming structural mechanical parts using sintered materials. (Means for Solving the Problems) The present invention has been made in view of the above-mentioned circumstances to overcome the problems. The purpose is to provide low alloy iron powder for sintering. A feature of the present invention for achieving the above object is that molybdenum (Mo) is contained in the low alloy iron powder in a weight percentage.
Contains 0.2 to 2.0% of carbon (C), 0.05% or less of carbon (C), and 0.2% or less of oxygen (O), as well as silicon (Si),
The total content of chromium (Cr), copper (Cu), and nickel (Ni) is suppressed to 0.2% or less, and the remainder, which includes unavoidable impurities, is substantially composed of iron (Fe). (Function) In the low-alloy iron powder for sintering according to the present invention configured as described above, molybdenum (Mo) is contained in the iron (Fe) powder because molybdenum (Mo) is compressed when prealloyed. Without losing moldability,
This is also because sufficient hardenability can be ensured. However, if molybdenum (Mo) is less than 0.2%, the mechanical properties after heat treatment will deteriorate;
%, compression moldability tends to deteriorate and strength after heat treatment tends not to improve in spite of the addition of Mo. Furthermore, silicon (Si), chromium (Cr), copper (Cu)
and nickel (Ni) with a total content of 0.2
% or less because each of the metal elements has the effect of lowering compression moldability.
Other unavoidable impurities include P, S, Mn, etc. Further, if carbon (C) exceeds 0.05% and oxygen exceeds 0.2%, the compression moldability of the alloy will be significantly deteriorated, so the respective weight percentages are suppressed to the above-mentioned weight percentages, which work effectively to improve the compression moldability. As described above, since the metal element is contained in the iron (Fe) powder at the above weight percentage, it is possible to provide a low-alloy powder for sintering that has high compression moldability and excellent hardenability at a low cost. Can be done. (Example) Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 A molten metal adjusted to a target composition is prepared in a melting furnace, and after this molten metal is flowed out from a tundish, high-pressure water is sprayed onto the flowed out molten metal to make it powder (hereinafter referred to as water spray method). The powder formed by the water spray method was heated at 900 °C in an atmosphere of decomposed ammonia.
After reduction treatment for 60 minutes at °C, pulverize, and then
It was classified using an 80mesh sieve to obtain -80mesh powder. The composition of this powder is as shown in the relevant column of Table 1: iron (Fe) and molybdenum (Mo) 0.3%, oxygen (O) 0.08%, carbon (C) 0.02%, silicon (Si) + chromium ( Cr) + copper (Cu) + nickel (Ni) in various weight percentages of 0.2% or less. We decided to conduct a test to obtain the compression moldability value for the above-mentioned -80mesh powder.
The test was conducted in accordance with 64 (Metal Powder Compressibility Test Method). Tests were conducted on these three levels using molding pressures of 3t, 5t, and 7t per square centimeter, and the results were 6.22g/cm 3 , 6.87g/cm 3 , and 7.21g, respectively, as shown in Table 2. g/cm 3 , and the density of the compact at a molding pressure of 7 t/cm 2 is shown in FIG. Next, to measure the tensile strength after heat treatment
A tensile test was conducted using a tensile test piece of sintered metal JSPM2-64. This tensile test piece was prepared by mixing the powder shown in Table 1 with 0.5% graphite powder and 0.8% lubricant, and then molding the mixture to a compact density of approximately 7.0 g/cm 3 in a decomposed ammonia atmosphere. Inside
This sintered body was sintered at 1200℃ for 40 minutes.
It was heat treated at 870°C for 30 minutes, cooled by soaking in an oil quenching fluid to prevent quench cracking and thermal distortion, and then tempered at 170°C for 90 minutes. The tensile test was conducted at a crosshead speed of 2 mm/min. The results are shown in FIG. 2, and in this example, a strength of 97 Kgf/mm 2 was obtained. Table 1 also shows the compositions of the powders of Examples 2 to 4 and Comparative Examples 1 to 4, and Table 2 also shows the compact density of each of the above examples against the molding pressure under each condition. ing. In addition, Figure 1 graphically shows the characteristics of the compact density at a molding pressure of 7t/cm 2 not only for Example 1 but also for each of the above examples, and Figure 2 shows the tensile strength of each example after heat treatment. A comparison graph is also shown. Example 2 A powder formed by a water spray method was used in Example 1.

【表】【table】

【表】【table】

【表】 と同様に環元処理及び分級処理して、重量百分率
でモリブデン(Mo)を0.6%,酸素(O)を0.08
%,炭素(C)を0.02%,珪素(Si)+クロム
(Cr)+銅(Cu)+ニツケル(Ni)を0.2%以下
夫々含有する低合金鉄粉末を得た。前記組成の低
合金鉄粉末に対し圧縮成形性及び引張強さの試験
を行なつた。その結果は圧縮成形性が第2表に示
すように3t/cm2,5t/cm2,7t/cm2の成形圧力にお
いて夫々6.20g/cm3,6.85g/cm3,7.19g/cm3
成形体密度であり、熱処理後の試験片の引張強さ
は第2図に示すように105Kgf/mm2であつた。 実施例 3 上記2例と同様に水噴霧法により形成した粉末
に環元処理及び分級処理を施し、鉄(Fe)中重
量百分率でモリブデン(Mo)を1.0%,酸素
(O)を0.07%,炭素(C)を0.01%,珪素(Si)
+クロム(Cr)+銅(Cu)+ニツケル(Ni)を0.2
%以下夫々含有する低合金鉄粉末を得た。この低
合金鉄粉末に対し圧縮成形性及び引張強さを調べ
るため実施例1,2と同一条件及び同一方法で試
験を行なつた。その結果7t/cm2のとき7.17g/cm3
の成形体密度と110Kgf/mm2の引張り強さを示し
た。 実施例 4 前記実施例1乃至3と同様に水噴霧法により形
成した粉末に還元処理及び分級処理を施し、鉄
(Fe)中に重量百分率でモリブデン(Mo)を1.5
%,酸素(O)を0.08%,炭素(C)を0.02%,
珪素(Si)+クロム(Cr)+銅(Cu)+ニツケル
(Ni)を0.2%以下夫々含有する低合金鉄粉末を得
た。この低合金鉄粉末を用いて上記実施例1乃至
3と同様に圧縮成形性と引張り強さの試験を行な
い、夫々7t/cm2において7.14g/cm3の成形体密度
と112Kgf/mm2の引張り強さの値を得た。 比較例 1 比較例1は代表的な市販の低合金鉄粉末であ
り、油噴霧法により製造されたものである。油噴
霧法は、噴霧媒として油を用いるため、粉化時の
酸化が抑制でき、酸素(O)+炭素(C)の低い
粉末が生成されるので圧縮性に優れるが、粉末か
らの油分の除去にコストがかかる。この粉末を化
学分析したところ、鉄(Fe)中に重量百分率で
モリブデン(Mo)を0.23%,クロム(Cr)を
0.95%,マンガン(Mn)を0.76%含有している
ことが分つた。この比較例1について前記各実施
例と同様の条件で試験を行なつた結果、圧縮成形
性では7t/cm2において7.15g/cm3を示すも、熱処
理後の試験片の引張り強さでは各実施例の何れに
も及ばなかつた。 比較例 2 比較例2は水噴霧法により形成された市販の低
合金粉末であり、その組成は第1表に示すように
重量百分率でモリブデン(Mo)を0.52%,マン
ガン(Mn)を0.16%,ニツケル(Ni)を1.79%
夫々含有している。強化元素であるニツケル
(Ni)及びマンガン(Mn)の総量が1.95%と各
例中で最も多いため圧縮成形性を示す成形体密度
ではは程高い数値を示していないが、熱処理品の
引張り強さでは103Kgf/mm2と比較例中最も引張
り強くなつている。 比較例 3 本例は、モリブデン(Mo)と銅(Cu)とを予
備合金化した合金鉄粉末を用いており、鉄(Fe)
に対する割合は重量百分率でモリブデン(Mo)
を0.6%,銅(Cu)を0.4%,珪素(Si)を0.01%,
炭素(C)を0.01%,酸素(O)を0.08%夫々含
有した低合金鉄粉末である。この低合金鉄粉末を
用い、上記各例と同様、圧縮成形性及び引張り強
度の試験を行なつたところ、銅(Cu)の添加に
より圧縮成形性の著しい低下を示した。また、引
張り強さでも何れの実施例にも及ばないことが分
つた。 比較例 4 比較例4は低合金鉄粉末の組成を鉄(Fe)に
対し重量百分率で、モリブデン(Mo)を0.6%,
クロム(Cr)を0.5%,マンガン(Mn)を0.13
%,酸素(O)を0.12%,炭素(C)を0.01%含
有したものを用いている。この低合金鉄粉末を圧
縮成形性及び引張り強度試験に供したところ、モ
リブデン(Mo)とクロム(Cr)を加えたので比
較例3と同様に引張り強さでは第2図に示すよう
に比較例2及び各実施例に近い数値を示したが、
圧縮成形性を示す成形体密度においては第2表及
び第1図に示すように余り高い数値を示さず、圧
縮成形性が著しく低いことが分つた。 比較例 5〜8 比較例5〜8は、第1表に示すように、上記実
施例3と類似の基本組成に対して、それぞれ低モ
リブデン(比較例5)、高モリブデン(比較例
6)、高酸素(比較例7)、高炭素(比較例8)と
したもので、前記各実施例と同様に水噴霧法によ
り形成した粉末に還元処理及び分級処理を施して
製造し、それぞれを上記各実施例と同様にJSPM
標準1−64及びJSPM標準2−64に従う圧縮成形
性及び引張り強度試験に供した。第2表に示す圧
縮成形性試験の結果及び第2図に示す引張り試験
の結果より、各実施例に比して、低モリブデン
(Mo)の比較例5は圧縮成形性は良好であるも
のの、引張り強さが小さく、高モリブデン
(Mo)の比較例6は引張り強さが大きいものの、
圧縮成形性に劣り、高酸素(O)の比較例7は圧
縮成形性、引張り強さ共に劣り、高炭素(C)の
比較例8は圧縮成形性、引張り強さ共に著しく劣
り、何れも満足する性能が得られないことが分つ
た。 以上の結果より、本発明に係る焼結用低合金鉄
粉末を用いて構造的機械部品を形成しても圧縮成
形性に優れ、また、機械的特性としての引張り強
さも備えているので、市販の高価な焼結用低合金
鉄粉末を原料として用いたものと比べても遜色が
ないばかりか含有量を好適なものとすることによ
り、市販のものより好結果を挙げることができる
ことが判明した。 (発明の効果) 以上詳細に説明したように、本発明に係る焼結
用低合金鉄粉末によれば、以下のような効果を奏
する。 実質的に鉄(Fe)よりなる粉末中に重量百分
率でモリブデン(Mo)を0.2〜2.0%,炭素(C)
0.05%以下,酸素(O)0.2%以下夫々含有する
と共に珪素(Si),クロム(Cr),銅(Cu)及び
ニツケル(Ni)の総含有量を0.2%以下に抑えた
ので、機械構成部品の原材料として用いた場合、
同一成形圧力での圧縮性に極めて優れると共に成
形部品化した場合の強度についても優れた特性を
示し、しかも水噴霧法という低廉な製造方法によ
り製造することができるので製造コストにおける
原料占有率を少なくするような安価な焼結用低合
金鉄粉末を提供することができる。
[Table] After carrying out ring treatment and classification in the same manner as in [Table], molybdenum (Mo) was 0.6% and oxygen (O) was 0.08% by weight.
%, carbon (C) by 0.02%, and silicon (Si) + chromium (Cr) + copper (Cu) + nickel (Ni) by 0.2% or less, respectively. Compression moldability and tensile strength tests were conducted on the low alloy iron powder having the above composition. As shown in Table 2, the compression moldability was 6.20 g/cm 3 , 6.85 g/cm 3 , and 7.19 g/cm 3 at molding pressures of 3 t/cm 2 , 5 t/cm 2 , and 7 t/cm 2 , respectively. The tensile strength of the test piece after heat treatment was 105 Kgf/mm 2 as shown in FIG. 2. Example 3 Powder formed by the water spray method in the same manner as in the above two examples was subjected to ring treatment and classification treatment, and the weight percentage of molybdenum (Mo) in iron (Fe) was 1.0%, oxygen (O) was 0.07%, 0.01% carbon (C), silicon (Si)
+ Chromium (Cr) + Copper (Cu) + Nickel (Ni) by 0.2
% or less of each was obtained. A test was conducted under the same conditions and method as in Examples 1 and 2 to examine the compression moldability and tensile strength of this low alloy iron powder. The result is 7.17g/cm 3 at 7t/cm 2
The compact density was 110 Kgf/mm 2 and the tensile strength was 110 Kgf/mm 2 . Example 4 Similar to Examples 1 to 3, the powder formed by the water spray method was subjected to reduction treatment and classification treatment, and molybdenum (Mo) was added to iron (Fe) at a weight percentage of 1.5.
%, oxygen (O) 0.08%, carbon (C) 0.02%,
A low alloy iron powder containing 0.2% or less of silicon (Si), chromium (Cr), copper (Cu), and nickel (Ni) was obtained. Using this low alloy iron powder, compression moldability and tensile strength tests were conducted in the same manner as in Examples 1 to 3 above, and the compact density was 7.14 g/cm 3 at 7 t/cm 2 and 112 Kgf/mm 2 respectively. Tensile strength values were obtained. Comparative Example 1 Comparative Example 1 is a typical commercially available low-alloy iron powder produced by an oil spray method. The oil spray method uses oil as the spray medium, which suppresses oxidation during powdering and produces powder with low oxygen (O) + carbon (C) content, which has excellent compressibility. Removal is costly. Chemical analysis of this powder revealed that it contained 0.23% molybdenum (Mo) and chromium (Cr) in iron (Fe).
It was found that it contained 0.95% manganese (Mn) and 0.76% manganese (Mn). As a result of testing Comparative Example 1 under the same conditions as in each of the examples above, the compression moldability was 7.15 g/cm 3 at 7t/cm 2 , but the tensile strength of the test piece after heat treatment was 7.15 g/cm 3 . It was not as good as any of the examples. Comparative Example 2 Comparative Example 2 is a commercially available low alloy powder formed by a water spray method, and its composition is as shown in Table 1, with a weight percentage of 0.52% molybdenum (Mo) and 0.16% manganese (Mn). , 1.79% Nickel (Ni)
Contains each. The total amount of reinforcing elements nickel (Ni) and manganese (Mn) is 1.95%, which is the highest in each example, so the density of the compact, which indicates compression moldability, does not show a very high value, but the tensile strength of the heat-treated product It has the highest tensile strength of 103 Kgf/mm 2 among the comparative examples. Comparative Example 3 This example uses a ferroalloy powder prepared by pre-alloying molybdenum (Mo) and copper (Cu).
Molybdenum (Mo) is expressed as a percentage by weight.
0.6%, copper (Cu) 0.4%, silicon (Si) 0.01%,
It is a low alloy iron powder containing 0.01% carbon (C) and 0.08% oxygen (O). Using this low alloy iron powder, compression moldability and tensile strength tests were conducted in the same manner as in the above examples, and it was found that the addition of copper (Cu) significantly reduced the compression moldability. It was also found that the tensile strength was not as good as any of the examples. Comparative Example 4 In Comparative Example 4, the composition of the low alloy iron powder is expressed as a weight percentage of iron (Fe), and molybdenum (Mo) is 0.6%,
0.5% chromium (Cr), 0.13% manganese (Mn)
%, containing 0.12% oxygen (O) and 0.01% carbon (C). When this low-alloy iron powder was subjected to compression moldability and tensile strength tests, it was found that because molybdenum (Mo) and chromium (Cr) were added, the tensile strength of the comparative example was similar to that of comparative example 3, as shown in Figure 2. 2 and each example, but
As shown in Table 2 and FIG. 1, the density of the compact, which indicates compression moldability, was not very high, indicating that the compression moldability was extremely low. Comparative Examples 5 to 8 As shown in Table 1, Comparative Examples 5 to 8 have a basic composition similar to that of Example 3, but have low molybdenum (Comparative Example 5), high molybdenum (Comparative Example 6), and High oxygen (Comparative Example 7) and high carbon (Comparative Example 8) were produced by subjecting the powder formed by the water spray method to reduction treatment and classification treatment in the same manner as in each of the above Examples. JSPM as in the example
It was subjected to compression moldability and tensile strength tests according to Standard 1-64 and JSPM Standard 2-64. From the results of the compression moldability test shown in Table 2 and the results of the tensile test shown in FIG. 2, it can be seen that although Comparative Example 5 with low molybdenum (Mo) has better compression moldability than each of the Examples, Comparative Example 6 with high molybdenum (Mo) has low tensile strength and high tensile strength, but
Compression moldability is poor, and Comparative Example 7 with high oxygen (O) is inferior in both compression moldability and tensile strength, and Comparative Example 8 with high carbon (C) is significantly inferior in compression moldability and tensile strength, both of which are satisfactory. It turned out that it was not possible to obtain the desired performance. From the above results, even when structural mechanical parts are formed using the low alloy iron powder for sintering according to the present invention, it has excellent compression moldability and also has tensile strength as a mechanical property, so it can be commercially available. It has been found that not only is it comparable to those using expensive low-alloy iron powder for sintering as a raw material, but by adjusting the content to a suitable level, it is possible to achieve better results than commercially available products. . (Effects of the Invention) As described above in detail, the low alloy iron powder for sintering according to the present invention provides the following effects. 0.2 to 2.0% by weight of molybdenum (Mo) and carbon (C) in a powder consisting essentially of iron (Fe)
Machine component parts contain 0.05% or less, oxygen (O) 0.2% or less, and the total content of silicon (Si), chromium (Cr), copper (Cu), and nickel (Ni) is suppressed to 0.2% or less. When used as a raw material for
It has excellent compressibility at the same molding pressure and also has excellent strength when made into molded parts.Moreover, it can be manufactured using an inexpensive manufacturing method called water spraying, reducing the proportion of raw materials in manufacturing costs. It is possible to provide an inexpensive low-alloy iron powder for sintering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る焼結用低合金
鉄粉末を説明するためのもので、第1図は成形圧
力7t/cm2における成形体密度,第2図は引張試験
片による引張強さを夫々実施例1乃至4,比較例
1乃至4について測定した特性図である。
Figures 1 and 2 are for explaining the low-alloy iron powder for sintering according to the present invention. FIG. 4 is a characteristic diagram of tensile strength measured for Examples 1 to 4 and Comparative Examples 1 to 4, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 重量百分率で、モリブデン(Mo)を0.2〜
2.0%,炭素(C)を0.05%以下,酸素(O)を
0.2%以下夫々含有すると共に珪素(Si),クロム
(Cr),銅(Cu)及びニツケル(Ni)の総含有量
を0.2%以下に抑え、不可避不純分を含む残部が
実質的に鉄(Fe)よりなることを特徴とする焼
結用低合金鉄粉末。
1 Molybdenum (Mo) in weight percentage from 0.2 to
2.0%, carbon (C) 0.05% or less, oxygen (O)
The total content of silicon (Si), chromium (Cr), copper (Cu), and nickel (Ni) is suppressed to 0.2% or less, and the remainder containing unavoidable impurities is substantially iron (Fe). ) Low alloy iron powder for sintering.
JP23690684A 1984-11-10 1984-11-10 Low alloy iron powder for sintering Granted JPS61117202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23690684A JPS61117202A (en) 1984-11-10 1984-11-10 Low alloy iron powder for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23690684A JPS61117202A (en) 1984-11-10 1984-11-10 Low alloy iron powder for sintering

Publications (2)

Publication Number Publication Date
JPS61117202A JPS61117202A (en) 1986-06-04
JPH0459362B2 true JPH0459362B2 (en) 1992-09-22

Family

ID=17007502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23690684A Granted JPS61117202A (en) 1984-11-10 1984-11-10 Low alloy iron powder for sintering

Country Status (1)

Country Link
JP (1) JPS61117202A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080712B1 (en) * 1990-05-16 1996-10-29 Hoeganaes Corp Optimized double press-double sinter powder metallurgy method
JP2563520Y2 (en) * 1991-03-29 1998-02-25 スズキ株式会社 Body structure of sliding door car
CN105088077A (en) * 2015-08-20 2015-11-25 无锡贺邦金属制品有限公司 Chromium alloy stamping part
CN105087998A (en) * 2015-08-20 2015-11-25 无锡贺邦金属制品有限公司 Copper alloy die casting

Also Published As

Publication number Publication date
JPS61117202A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
CA2762207C (en) High strength low alloyed sintered steel
TWI467031B (en) Iron vanadium powder alloy
US7341689B2 (en) Pre-alloyed iron based powder
US4954171A (en) Composite alloy steel powder and sintered alloy steel
KR20010052151A (en) Steel powder for the preparation of sintered products
JP2015108195A (en) Low alloy steel powder
US5876481A (en) Low alloy steel powders for sinterhardening
KR100263283B1 (en) Iron-based powder containing chromium, molybdenium and manganese
JP3446322B2 (en) Alloy steel powder for powder metallurgy
JPH07157803A (en) Water atomized iron powder for powder metallurgy and production thereof
US4561893A (en) Alloy steel powder for high strength sintered parts
EP0946324B1 (en) Production of nickel-containing strengthened sintered ferritic stainless steels
JPH0459362B2 (en)
JPS6318001A (en) Alloy steel powder for powder metallurgy
JPS61295302A (en) Low-alloy iron powder for sintering
EP3950174A1 (en) Iron-based mixed powder for powder metallurgy, and iron-base sintered body
JPWO2019188833A1 (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JPH08218101A (en) Steel powdery mixture for powder metallurgy and material for sintering containing the same
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JPH0459361B2 (en)
JPH01123002A (en) Alloy steel powder for high strength sintered parts
JPS61139602A (en) Manufacture of low-alloy iron powder
JPH0619081B2 (en) Low alloy steel powder for sintering and method for producing the same
JPS62177148A (en) Production of high-strength sintered member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term