JPH07157803A - Water atomized iron powder for powder metallurgy and production thereof - Google Patents
Water atomized iron powder for powder metallurgy and production thereofInfo
- Publication number
- JPH07157803A JPH07157803A JP6103918A JP10391894A JPH07157803A JP H07157803 A JPH07157803 A JP H07157803A JP 6103918 A JP6103918 A JP 6103918A JP 10391894 A JP10391894 A JP 10391894A JP H07157803 A JPH07157803 A JP H07157803A
- Authority
- JP
- Japan
- Prior art keywords
- less
- powder
- iron powder
- water
- powder metallurgy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 155
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000012298 atmosphere Substances 0.000 claims abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 28
- 239000001301 oxygen Substances 0.000 claims abstract description 28
- 238000005245 sintering Methods 0.000 claims abstract description 27
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 26
- 239000010959 steel Substances 0.000 claims abstract description 26
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 19
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 18
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 18
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 17
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 16
- 238000009692 water atomization Methods 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims description 94
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 22
- 239000000203 mixture Substances 0.000 abstract description 22
- 238000001035 drying Methods 0.000 abstract description 10
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 39
- 230000000052 comparative effect Effects 0.000 description 34
- 238000000137 annealing Methods 0.000 description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 238000000465 moulding Methods 0.000 description 12
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 238000011946 reduction process Methods 0.000 description 10
- 238000007670 refining Methods 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 238000005507 spraying Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000000314 lubricant Substances 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000004513 sizing Methods 0.000 description 5
- 238000009849 vacuum degassing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 4
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- -1 C: 0.01 wt% or less Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水を用いた噴霧法によ
り製造されるいわゆる水アトマイズ粉末冶金用鉄粉およ
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called water atomized iron powder for powder metallurgy produced by a spraying method using water and a method for producing the same.
【0002】[0002]
【従来の技術】一般に水アトマイズ鉄粉の製造工程は、
所望の組成を得るべく調整された溶鋼を高圧の水で噴霧
するアトマイズ工程、アトマイズ工程による急冷組織を
焼鈍軟化し、粒子表面の酸化被膜を還元除去する焼鈍軟
化・還元工程、当該焼鈍軟化・還元工程により凝集した
粉末を解砕粉化する解砕工程よりなり、この製造工程を
守る限り、コストダウンに限界がある。2. Description of the Related Art Generally, the manufacturing process of water atomized iron powder is
Atomizing process of spraying molten steel adjusted to obtain the desired composition with high-pressure water, annealing softening and quenching structure by the atomizing process, annealing softening / reduction process of reducing and removing oxide film on the particle surface, the annealing softening / reduction It consists of a crushing step of crushing the powder agglomerated by the steps, and there is a limit to cost reduction as long as this manufacturing step is protected.
【0003】この鉄粉を用いて焼結部品を製造する場合
には、さらに鉄粉に潤滑剤や添加合金成分粉末を加えて
加圧成形する工程、成形体を高温中で焼結する工程、さ
らに寸法を調整するサイジング工程からなっており、全
体としての工程はさらに長くなる。これらの工程におい
て、コストダウンを図ることが、たとえば自動車部品の
製造コスト削減のために必要であり、そのための多くの
努力が図られてきている。In the case of producing a sintered part using this iron powder, a step of further adding a lubricant or additive alloy component powder to the iron powder and press-molding, a step of sintering the compact at a high temperature, Further, it comprises a sizing process for adjusting the dimensions, and the whole process becomes longer. In these steps, it is necessary to reduce the cost, for example, to reduce the manufacturing cost of automobile parts, and many efforts have been made for that purpose.
【0004】しかしながら根本的なコストダウンを図る
には、工程を基本的に省略することが必要となる。とく
に焼鈍軟化・還元工程を省略することは、工程の短縮、
設備費、労務費および諸用役費の低減などコストダウン
効果が大きい。しかし、焼鈍軟化・還元工程を省略する
と、水アトマイズ・乾燥のままでは、通常、急冷組織に
より鉄粉が硬く成形しがたくなり、また、焼結素材たる
鉄粉中に相当量の酸素を持ち込んで焼結部品、焼結製品
の特性を損ない、一般に酸素は焼結部品にとって有害と
考えられているのでこの工程省略は行われていなかっ
た。However, in order to fundamentally reduce the cost, it is necessary to basically omit the steps. In particular, omitting the annealing softening / reduction process shortens the process,
Greatly reduces costs by reducing equipment costs, labor costs, and utility costs. However, if the annealing softening / reduction step is omitted, the iron powder is usually hard to form due to the quenching structure when it is water-atomized and dried, and a considerable amount of oxygen is brought into the iron powder that is the sintering material. Therefore, this process was not omitted because oxygen impairs the properties of the sintered parts and the sintered products, and oxygen is generally considered to be harmful to the sintered parts.
【0005】たとえば、特開昭51-20760号公報には、溶
鋼の溶製に転炉や真空脱炭装置を用いた鉄粉製造方法が
開示されているが、水アトマイズ・乾燥後に粉末の焼鈍
・還元工程を含んでいる。また特公昭56-45963号公報に
は、焼鈍・還元工程を経たいわゆる仕上げ粉に、焼鈍・
還元工程を経ないアトマイズ生鉄粉を混合することによ
り鉄粉の特性を改善する方法が開示されている。この発
明においては、積極的に焼鈍・還元工程を経ないアトマ
イズ生鉄粉の使用を試みているものの、焼鈍・還元工程
を経ないアトマイズ生鉄粉単味では所定の特性が得られ
ていないことが示されている。For example, Japanese Patent Application Laid-Open No. 51-20760 discloses a method for producing iron powder using a converter or a vacuum decarburizer for smelting molten steel, but the powder is annealed after water atomizing and drying. -Includes a reduction process. In addition, Japanese Patent Publication No. 56-45963 discloses that a so-called finishing powder that has undergone an annealing / reduction process,
A method for improving the characteristics of iron powder by mixing atomized raw iron powder that has not been subjected to a reduction step is disclosed. In this invention, although positively trying to use the atomized raw iron powder that does not go through the annealing / reduction process, the predetermined characteristics are not obtained with the atomized raw iron powder that does not go through the annealing / reduction process. It is shown.
【0006】また、特開昭63-157804 号公報には、噴霧
水にアルコールなどを添加することにより、噴霧時の酸
化と浸炭を極力抑え、アトマイズ鉄粉の製造工程の簡略
化を試みているが、得られた鉄粉の酸素量は低いものの
C 量は0.01% 以上を含み、水アトマイズによる冷却速度
では容易に焼きが入るため、このままで金型成形でき
ず、焼鈍軟化工程が不可欠である。Further, in Japanese Patent Laid-Open No. 63-157804, an attempt is made to simplify the manufacturing process of atomized iron powder by adding alcohol or the like to spray water to suppress oxidation and carburization during spraying as much as possible. However, although the obtained iron powder has a low oxygen content,
Since the C content is 0.01% or more, and quenching easily occurs at the cooling rate by water atomization, it is impossible to mold as it is, and the annealing softening process is essential.
【0007】一方、鉄粉を用いて焼結部品を製造する工
程において、製造工程における寸法変化を一定、あるい
は極力小さくすることが必要である。とくにサイジング
によらずに寸法精度を確保できれば工程省略に結びつ
き、コストダウンにつながるのでサイジング工程省略の
ための努力が行われている。たとえば、特公昭56-12304
号公報には、粉末粒度分布から寸法精度を高める技術
が、特公平3-142342号公報には粉末の形状から焼結時の
寸法変化を予測制御する技術などが開示・提案されてい
る。On the other hand, in the process of manufacturing a sintered part using iron powder, it is necessary to make the dimensional change constant or as small as possible in the manufacturing process. In particular, if the dimensional accuracy can be ensured without depending on the sizing, the process can be omitted and the cost can be reduced. Therefore, efforts are being made to omit the sizing process. For example, Japanese Examined Japanese Patent Sho 56-12304
Japanese Patent Publication No. 3-142342 discloses and proposes a technique for improving dimensional accuracy from a particle size distribution of powder, and Japanese Patent Publication No. 3-142342 a technique for predicting and controlling a dimensional change during sintering from the shape of powder.
【0008】しかし、粉末冶金用鉄粉は、Cu粉、黒鉛粉
の他潤滑剤などの添加が行われるが、容器入替えのため
の移送操作、あるいは輸送などにより、添加したCu粉、
黒鉛粉が偏析し、成分のばらつきが発生しやすい。この
ため、これらの要因に起因して焼結時の寸法変化は変動
しやすく、変動を修正するために後処理としてのサイジ
ング工程が不可欠であった。[0008] However, the iron powder for powder metallurgy is added with Cu powder, graphite powder, and other lubricants. However, the Cu powder added by a transfer operation for container replacement or transportation,
Graphite powder tends to segregate, and the composition tends to vary. Therefore, due to these factors, the dimensional change during sintering tends to fluctuate, and a sizing step as a post-treatment was indispensable to correct the fluctuation.
【0009】[0009]
【発明が解決しようとする課題】本発明の目的は、第1
に、このような従来技術の欠点に鑑み、鉄粉の製造工程
を省略し、安価な粉末冶金用水アトマイズ鉄粉を供給す
る技術を提供することにある。本発明の第2の目的は、
圧縮性を確保しながら鉄粉製造のコストダウンを図るこ
とにある。また、第3の目的は、原料粉末製造コストを
引き下げるとともに、焼結時の寸法変化の安定した、と
くに黒鉛含有量のばらつきに対して焼結後の寸法ばらつ
きの小さな粉末冶金用水アトマイズ鉄粉を提供すること
にある。SUMMARY OF THE INVENTION The first object of the present invention is to:
In view of such drawbacks of the conventional technique, it is an object of the present invention to provide a technique for omitting the iron powder manufacturing process and supplying an inexpensive water atomized iron powder for powder metallurgy. The second object of the present invention is to
The purpose is to reduce the cost of iron powder production while ensuring compressibility. A third object of the present invention is to reduce the manufacturing cost of the raw material powder and to provide a water atomized iron powder for powder metallurgy in which the dimensional change during sintering is stable, and in particular the dimensional variation after sintering is small with respect to the variation in the graphite content. To provide.
【0010】[0010]
【課題を解決するための手段】本発明は、水を用いて噴
霧され、乾燥された状態で、粒子断面の硬さがHv80〜25
0 であり、かつ、粒子表面が焼結雰囲気で還元可能な酸
化物で覆われており、酸素含有量が1.0wt%以下である粉
末冶金用水アトマイズ鉄粉である。また、上記鉄粉は、
粒子断面形状の周囲長の2乗を断面積と4πの積で除し
た値で表される粒子断面形状係数が2.5 以下の粒子を個
数で10% 以上含む粒子径75μm以上106 μm未満の粒子
を10〜30wt% 有し、かつ45μm未満の粒子を20wt%以上
含む粉末冶金用水アトマイズ鉄粉である。According to the present invention, the hardness of the particle cross section is Hv80 to 25 when sprayed with water and dried.
The water atomized iron powder for powder metallurgy has a particle size of 0, the surface of the particles is covered with a reducible oxide in a sintering atmosphere, and the oxygen content is 1.0 wt% or less. In addition, the iron powder,
Particles with a particle cross-sectional shape factor of 2.5 or less expressed by the square of the perimeter of the particle cross-section divided by the product of the cross-sectional area and 4π, including 10% or more by number of particles A water atomized iron powder for powder metallurgy having 10 to 30 wt% and containing 20 wt% or more of particles of less than 45 μm.
【0011】また、上記鉄粉は、酸素の他に不純物とし
て、C:0.01wt% 以下、Mn:0.30wt%以下、Ni:0.30wt%以
下、Cr:0.30wt%以下、P とS の合計:0.05wt%以下を含
み、残部は実質的に鉄からなる粉末冶金用水アトマイズ
鉄粉である。また、上記鉄粉は、さらにMo:5.0wt% 以
下、Nb:0.20wt%以下を含有する粉末冶金用水アトマイズ
鉄粉である。In addition to oxygen, the iron powder contains impurities such as C: 0.01 wt% or less, Mn: 0.30 wt% or less, Ni: 0.30 wt% or less, Cr: 0.30 wt% or less, and the total of P and S. : 0.05 wt% or less, and the balance is water atomized iron powder for powder metallurgy, which is substantially iron. The iron powder is a powder metallurgical water atomized iron powder further containing Mo: 5.0 wt% or less and Nb: 0.20 wt% or less.
【0012】また、上記鉄粉のいずれかにおいて、鉄よ
り酸化しやすい元素( 以下易酸化性元素と記す) をさら
に含有し、該易酸化性元素の20% 以上が酸化されて焼結
雰囲気で還元不可能な酸化物となって粒子表面を覆って
いる粉末冶金用水アトマイズ鉄粉である。また、上記易
酸化性元素として Si:0.01 〜0.1wt%、Al:0.003〜0.05wt% 、V:0.008 〜0.
5wt% Ti:0.003〜0.1wt%、Zr:0.008〜0.1wt% の1種または2種以上を含む粉末冶金用水アトマイズ鉄
粉である。Further, in any of the above iron powders, an element that is more easily oxidized than iron (hereinafter referred to as an easily oxidizable element) is further contained, and 20% or more of the easily oxidizable element is oxidized and is oxidized in a sintering atmosphere. It is a water atomized iron powder for powder metallurgy that forms an irreducible oxide and covers the particle surface. Further, as the easily oxidizable element, Si: 0.01 to 0.1 wt%, Al: 0.003 to 0.05 wt%, V: 0.008 to 0.
A water atomized iron powder for powder metallurgy containing one or more of 5 wt% Ti: 0.003 to 0.1 wt% and Zr: 0.008 to 0.1 wt%.
【0013】また、上記の易酸化性元素の合計量は0.00
3 〜0.5wt%である粉末冶金用水アトマイズ鉄粉である。
また、本発明は、C:0.01wt% 以下、Mn:0.30wt%以下、N
i:0.30wt%以下、Cr:0.30wt%以下、P とS の合計:0.050w
t% 以下、残部は鉄からなる溶鋼を圧力4 〜20MPa の水
ジェットを用いて噴霧後、乾燥を行い、そのまま粉末冶
金用に供することを特徴とする粉末冶金用水アトマイズ
鉄粉の製造方法である。The total amount of the above oxidizable elements is 0.00
Water atomized iron powder for powder metallurgy with 3 to 0.5 wt%.
Further, the present invention, C: 0.01 wt% or less, Mn: 0.30 wt% or less, N
i: 0.30wt% or less, Cr: 0.30wt% or less, total of P and S: 0.050w
A manufacturing method of water atomized iron powder for powder metallurgy, characterized in that molten steel made of iron is sprayed using a water jet with a pressure of 4 to 20 MPa and then dried, and then directly used for powder metallurgy. .
【0014】また、本発明は、Mo:5.0wt% 以下、Nb:0.2
0wt%以下、およびC:0.01wt% 以下、Mn:0.30wt%以下、N
i:0.30wt%以下、Cr:0.30wt%以下、P とS の合計:0.050w
t% 以下、残部は鉄からなる溶鋼を圧力4 〜20MPa の水
ジェットを用いて噴霧後、乾燥を行い、そのまま粉末冶
金用に供することを特徴とする粉末冶金用水アトマイズ
鉄粉の製造方法である。In the present invention, Mo: 5.0 wt% or less, Nb: 0.2
0 wt% or less, C: 0.01 wt% or less, Mn: 0.30 wt% or less, N
i: 0.30wt% or less, Cr: 0.30wt% or less, total of P and S: 0.050w
A manufacturing method of water atomized iron powder for powder metallurgy, characterized in that molten steel made of iron is sprayed using a water jet with a pressure of 4 to 20 MPa and then dried, and then directly used for powder metallurgy. .
【0015】また、上記の粉末冶金用水アトマイズ鉄粉
の製造方法において規定された成分の他にさらに易酸化
性元素を総量で0.003 〜0.5wt%含有する溶鋼を用いる粉
末冶金用水アトマイズ鉄粉の製造方法である。また、上
記の製造方法において、易酸化性元素はSi、Ti、V 、A
l、Zrから選択される1種または2種以上である粉末冶
金用水アトマイズ鉄粉の製造方法である。Production of water atomized iron powder for powder metallurgy using molten steel containing 0.003 to 0.5 wt% in total of easily oxidizable elements in addition to the components specified in the above method for producing water atomized iron powder for powder metallurgy. Is the way. Further, in the above manufacturing method, the easily oxidizable element is Si, Ti, V, or A.
A method for producing a water atomized iron powder for powder metallurgy, which is one or more selected from l and Zr.
【0016】また、上記の粉末冶金用水アトマイズ鉄粉
の製造方法において、噴霧雰囲気の酸素濃度を5.0vol%
以下とし、水アトマイズにより得られた鉄粉を非酸化性
雰囲気またはH2雰囲気中または真空中にてそれぞれ100
〜300 ℃の温度で乾燥処理をすることからなる粉末冶金
用水アトマイズ鉄粉の製造方法である。In the above method for producing water atomized iron powder for powder metallurgy, the oxygen concentration in the atomizing atmosphere is 5.0 vol%.
The iron powder obtained by water atomization is 100% in a non-oxidizing atmosphere, an H 2 atmosphere, or a vacuum.
A method for producing water atomized iron powder for powder metallurgy, which comprises performing a drying treatment at a temperature of up to 300 ° C.
【0017】[0017]
【作用】本発明は、従来の技術を検討し、一定条件下で
は軟化焼鈍・還元工程が必ずしも必要でないことを見出
し、この発見をもとに完成されたものである。従来、軟
化焼鈍・還元工程が行われていた理由は二つある。一つ
は、水アトマイズされた状態の生鉄粉は硬度が高く、そ
のままでは圧縮性が劣り、粉末冶金用としては使用でき
ないので、焼鈍により、水アトマイズされたとき生じた
焼入れ組織を軟化することにあった。The present invention has been completed on the basis of this finding by studying the conventional techniques and finding that the softening annealing / reduction step is not necessarily required under certain conditions. Conventionally, there are two reasons that the softening annealing / reduction process is performed. One is that the raw iron powder in the water atomized state has high hardness and is inferior in compressibility as it is and cannot be used for powder metallurgy, so it is necessary to soften the quenched structure generated when water atomized by annealing. There was
【0018】なお、圧縮性とは、ある一定の成形圧力で
成形したときに得られる圧粉密度のことをいい、粉末冶
金分野ではよく用いられる圧粉体特性の評価指数であ
り、これが大なるほど良い。もう一つは、水アトマイズ
された状態では、鉄粉粒子がFeO などの硬い酸化被膜で
覆われ、そのままでは成形性の悪化、焼結体強度の低下
が起こるとされ、硬い酸化被膜の除去が必要とされてい
た。ここで成形性とは、ラトラー値で示される圧粉体強
度のことであり、圧縮性と同様に粉末冶金分野で常用さ
れる圧粉体特性評価指数である。ちなみにラトラー値は
小さい方が好ましい。The compressibility means the green compact density obtained when compacted at a certain constant molding pressure, which is an evaluation index of the green compact characteristics often used in the field of powder metallurgy. good. Another is that iron powder particles are covered with a hard oxide film such as FeO in the water atomized state, and if it is left as it is, the moldability deteriorates and the strength of the sintered body decreases, so that the hard oxide film can be removed. Was needed. Here, the formability is the green compact strength indicated by the ratler value, and is a green compact property evaluation index that is commonly used in the field of powder metallurgy, like the compressibility. Incidentally, it is preferable that the Ratler value is small.
【0019】しかし、本発明者らの研究結果によれば、
以下に示す条件を満たせば圧縮性、成形性、焼結性とも
十分満足できるものが得られることが分かった。すなわ
ち、まず、水アトマイズ生鉄粉の状態で圧縮性を確保す
るには粒子の硬さを低くすれば良いことが分かった。た
とえば、C:0.007wt%、Mn:0.005wt% 、Ni:0.03wt%、Cr:
0.017wt% 、Si:0.008wt% 、P:0.003wt%、S:0.002wt%で
残部が実質的にFeからなる生鉄粉のビッカース硬さはHv
(100) で107 と低い。この粉末に潤滑剤としてステアリ
ン酸亜鉛粉末を1.0wt%添加混合した後、金型で5t/cm2
の成形圧力で成形することにより、6.81g/cm3 と優れた
値の圧粉密度が得られ、粒子断面硬さ、圧粉密度のいず
れの特性も従来技術による軟化焼鈍・還元を経た鉄粉と
同様の優れた値が得られた。However, according to the research results of the present inventors,
It has been found that if the following conditions are satisfied, a material having satisfactory compressibility, moldability, and sinterability can be obtained. That is, first, it was found that in order to secure the compressibility in the state of the water atomized raw iron powder, the hardness of the particles should be lowered. For example, C: 0.007wt%, Mn: 0.005wt%, Ni: 0.03wt%, Cr:
Vickers hardness of Hv is 0.017wt%, Si: 0.008wt%, P: 0.003wt%, S: 0.002wt% and the balance is substantially Fe.
(100) is as low as 107. Add 1.0 wt% zinc stearate powder as a lubricant to this powder, and mix with a mold to obtain 5 t / cm 2
By molding in the molding pressure, green density is obtained of excellent value of 6.81 g / cm 3, the particle cross-section hardness, iron powder which has undergone any of the characteristics of the softening annealing and reduction according to the prior art green density The same excellent value was obtained.
【0020】硬度と圧縮性との関係を調査したところ、
鉄粉粒子の断面硬さがHv250 において十分な圧粉密度を
持った圧粉体が得られることが分かった。粒子断面硬さ
は低ければ低いほど圧縮性に対して好影響を与える。し
かし、Hv80未満を工業的に達成しようとすれば、いたず
らに溶湯の精錬コストを上昇させ実用的でない。したが
って、本発明では鉄粉粒子断面硬さをHv80〜250 とす
る。好ましい硬度はHv120 〜250 である。When the relationship between hardness and compressibility was investigated,
It was found that when the cross-section hardness of the iron powder particles was Hv250, a green compact with a sufficient green compact density was obtained. The lower the particle cross-section hardness, the better the impact on the compressibility. However, attempting to industrially achieve a Hv value of less than 80 unnecessarily increases the refining cost of the molten metal and is not practical. Therefore, in the present invention, the hardness of iron powder particles in cross section is set to Hv80 to 250. The preferred hardness is Hv 120-250.
【0021】このような鉄粉粒子断面硬さは鉄粉中のC
等の成分を極力低下させることにより得られる。たとえ
ば図1に示すように、鉄粉中のC 量を下げれば硬度は低
下し、還元・焼鈍した仕上げ鉄粉のそれに近づく。硬度
との関係で溶鋼成分の影響を調査した結果は以下の通り
である。C 含有量が0.01wt% 以下ならば水アトマイズに
よっても焼入れ組織が現れないが、C 含有量が0.01wt%
を超えると、粉末の硬さが上昇するからである。さらに
好ましくは、C 含有量は0.005wt%以下である。The cross-sectional hardness of such iron powder particles is C in the iron powder.
It can be obtained by reducing the components such as For example, as shown in Fig. 1, if the C content in the iron powder is reduced, the hardness decreases and approaches that of the finished and annealed iron powder. The results of investigating the influence of molten steel composition in relation to hardness are as follows. If the C content is 0.01 wt% or less, the quenched structure does not appear even with water atomization, but the C content is 0.01 wt%
If it exceeds, the hardness of the powder will increase. More preferably, the C content is 0.005 wt% or less.
【0022】Mn、Ni、Crは圧縮性に及ぼす影響が大き
く、C 含有量が0.01wt% 以下の範囲でMnを0.40wt% 以
下、Niを0.40wt% 以下、Crを0.40wt% 以下の範囲で変化
させて水アトマイズし、噴霧、乾燥後の生鉄粉の硬さを
測定した結果、Mn、Ni、Crいずれも0.30wt% を超えると
生鉄粉硬さHv(100) が250 を超え、金型中でのプレス成
形が困難となり、かつ十分な圧粉密度が得られない。し
たがって本発明では、Mn、Ni、Cr量はそれぞれ0.30wt%
以下とする。これら元素は、0.1wt%以下とするのが好ま
しいが、製鋼技術との関係でいたずらに低下させること
はコスト増につながる。Mn, Ni, and Cr have a great influence on the compressibility, and when the C content is 0.01 wt% or less, Mn is 0.40 wt% or less, Ni is 0.40 wt% or less, and Cr is 0.40 wt% or less. The hardness of raw iron powder after spraying and drying was measured by water atomization by changing the value with the results, and when the hardness of Mn, Ni, and Cr exceeded 0.30 wt%, the hardness Hv (100) of raw iron powder exceeded 250. However, press molding in a mold becomes difficult, and a sufficient green compact density cannot be obtained. Therefore, in the present invention, the amount of Mn, Ni, Cr is 0.30 wt%
Below. It is preferable that the content of these elements be 0.1 wt% or less, but if they are unnecessarily lowered due to the steelmaking technology, the cost will increase.
【0023】P 、S はできるだけ低減することが望まし
いが、合計で0.05wt% 以下ならば悪影響がない。酸素
(O) は従来その存在はきびしく制限され、そのため還元
工程によって除去されていた。しかし本発明者らの知見
したところでは一定範囲を超えなければOの存在はなん
ら焼結にあたり害を与えないことが判明した。すなわ
ち、O 量が1.0wt%を超えなければ鉄粉の圧縮性、成形性
が低下しないのである。この場合O は一般的にFeO の形
で存在し、上記範囲ならば焼結工程における還元雰囲気
でFeに還元され、かつ焼結工程上、特にトラブルももた
らさないので許容されるのである。この酸素の存在を許
容するところに、本発明の一つの特徴がある。なお、上
記工程で還元される酸化物としての酸素含有量は0.5wt%
以下とするのが特に成形性の面で好ましい。It is desirable to reduce P and S as much as possible, but if the total amount is 0.05 wt% or less, there is no adverse effect. oxygen
The presence of (O) has traditionally been severely limited and therefore removed by the reduction process. However, according to the knowledge of the present inventors, it was found that the presence of O does not cause any harm in sintering unless it exceeds a certain range. That is, unless the O content exceeds 1.0 wt%, the compressibility and moldability of the iron powder do not deteriorate. In this case, O is generally present in the form of FeO, and within the above range, it is acceptable because it is reduced to Fe in the reducing atmosphere in the sintering process and causes no particular trouble in the sintering process. One of the features of the present invention is that the oxygen is allowed to exist. The oxygen content as an oxide reduced in the above step is 0.5 wt%
The following is particularly preferable in terms of moldability.
【0024】水アトマイズ・乾燥後の酸素量を1.0wt%以
下とするには、水アトマイズ時の雰囲気の酸素量を5vol
% 以下とする必要がある。また水アトマイズ後の乾燥に
は、乾燥雰囲気をH2、N2または真空など非酸化性の雰囲
気とする必要がある。本発明においては、鉄粉組成とし
てさらに、Moまたは/およびNbが好適に添加される。と
もに鉄粉の圧縮性の向上に役立つからである。To reduce the amount of oxygen after water atomizing and drying to 1.0 wt% or less, the amount of oxygen in the atmosphere during water atomizing should be 5 vol.
Must be less than or equal to%. Further, for drying after water atomization, it is necessary to set the drying atmosphere to a non-oxidizing atmosphere such as H 2 , N 2 or vacuum. In the present invention, Mo or / and Nb are preferably added as an iron powder composition. This is because they both help improve the compressibility of iron powder.
【0025】Mo量については、含有量0.05〜5.0wt%の間
では圧縮性が良くなり、さらに焼結を促進させ、焼結体
強度を向上させる。ただし、5.0wt%を超えると圧縮性が
急激に低下するので好ましくない。同様にNbについて
も、0.005 〜0.2wt%添加すると圧縮性がよくなる。しか
し0.2wt%を超えて添加すると、圧縮性が急激に低下す
る。Regarding the amount of Mo, when the content is 0.05 to 5.0 wt%, the compressibility is improved, the sintering is further promoted, and the strength of the sintered body is improved. However, if it exceeds 5.0 wt%, the compressibility is drastically reduced, which is not preferable. Similarly, with respect to Nb, addition of 0.005 to 0.2 wt% improves the compressibility. However, if added in excess of 0.2 wt%, the compressibility will drop sharply.
【0026】本発明においては、基本的には鉄粉粒子の
硬度と酸素含有量によって満足な焼結用鉄粉を得ること
ができるが、水アトマイズされた状態では、一部焼入れ
組織の生成、急冷による歪みの導入などにより一般の焼
鈍軟化・還元工程を経た鉄粉の硬さ( Hv:80 〜100)程度
より硬い。そのためより良い圧縮性を与えるには鉄粉を
構成する粒子の形状に配慮を払うことが好ましい。In the present invention, basically, a satisfactory iron powder for sintering can be obtained depending on the hardness and oxygen content of the iron powder particles, but in the water atomized state, a partially quenched structure is generated, Harder than the hardness (Hv: 80-100) of iron powder that has undergone the general annealing softening / reduction process due to the introduction of strain due to rapid cooling. Therefore, in order to give better compressibility, it is preferable to pay attention to the shape of the particles forming the iron powder.
【0027】本発明においては粒子形状を粒子形状係数
を用いて表す。形状係数は、粒子断面形状の周囲長さの
2乗を断面積と4πの積で除した値で表され、断面が真
円のとき1となる。本発明者らの実験結果によれば、た
とえば粒子径75μm以上106 μm未満の粒度を選んで、
その粒度を構成する粒子が粒子断面形状係数2.5 以下の
粒子を個数で10% 以上含むと、粒子断面硬さがHv200 を
超える場合でもFe-1.0wt% 固体潤滑剤の配合で、5t/cm
2 の成形圧力で圧粉密度6.70g/cm3 以上を得ることがで
きる。圧粉密度を高くするために比較的丸い粒子が必要
であることは従来考えられなかったことである。In the present invention, the particle shape is expressed using a particle shape coefficient. The shape factor is represented by a value obtained by dividing the square of the peripheral length of the particle cross-sectional shape by the product of the cross-sectional area and 4π, and becomes 1 when the cross-section is a perfect circle. According to the experimental results of the present inventors, for example, selecting a particle size of 75 μm or more and less than 106 μm,
If the particles constituting the particle size include particles with a particle cross-sectional shape factor of 2.5 or less by 10% or more in number, even if the particle cross-sectional hardness exceeds Hv200, the composition of Fe-1.0wt% solid lubricant is 5t / cm.
With a molding pressure of 2 , a powder density of 6.70 g / cm 3 or more can be obtained. It was previously unthinkable that relatively round particles were required to increase the green density.
【0028】ここで、粒子径75μm以上106 μm未満の
粒度の粒子で代表させて粒子形状を調べたのは、圧縮性
に対して75μm以上の粗粉の寄与が大きいのと、微粉を
除いた75μm以上106 μm未満の粒度では、粉末冶金に
おける通常の篩い分けをしたときに最も重量が多くなる
からである。このような粒子径75μm以上106 μm未満
の粒子は10〜30wt% 必要である。その理由は、10wt% 未
満では圧縮性が悪くなり、30wt% を超えると強度が低下
するからである。Here, the particle shape was typified by particles having a particle size of 75 μm or more and less than 106 μm, and the reason why the coarse powder having a particle size of 75 μm or more makes a large contribution to the compressibility and the fine powder was excluded. This is because the particle size of 75 μm or more and less than 106 μm causes the largest weight when performing normal sieving in powder metallurgy. Such particles having a particle diameter of 75 μm or more and less than 106 μm are required to be 10 to 30 wt%. The reason is that if it is less than 10 wt%, the compressibility becomes poor, and if it exceeds 30 wt%, the strength decreases.
【0029】一方、粒子形状が丸くなると一般的に焼結
体強度が低下しやすい。この問題は、45μm未満(-325
メッシュ) の微粉粒子を20wt% 以上存在させることによ
って解決される。たとえば、Fe-2.0wt% Cu-0.8wt% 黒鉛
に固体潤滑剤を配合し、圧粉成形後、1130℃で20分、N2
雰囲気中で焼結して得られた焼結密度6.80g/cm3 の焼結
体において引張強さ250N/mm2以上を得ることができる。
しかし、45μm未満(-325 メッシュ) の粒子が50wt% を
超えると圧縮性が低下するので好ましくない。On the other hand, if the particle shape is round, the strength of the sintered body generally tends to decrease. This problem is less than 45 μm (-325
The problem can be solved by making fine particles of (mesh) present in an amount of 20 wt% or more. For example, Fe-2.0wt% Cu-0.8wt% graphite is mixed with solid lubricant, and after compaction molding, at 1130 ℃ for 20 minutes, N 2
A tensile strength of 250 N / mm 2 or more can be obtained in a sintered body having a sintering density of 6.80 g / cm 3 obtained by sintering in an atmosphere.
However, if the particle size of less than 45 μm (−325 mesh) exceeds 50 wt%, the compressibility is deteriorated, which is not preferable.
【0030】このように粒子径75μm以上106 μm未満
の粒子の形状と45μm未満(-325 メッシュ) の粒子量で
もって、本発明の生鉄粉の圧粉密度および焼結体強度が
制御可能となる。このような粒子形状および粒度分布は
溶鋼の噴霧水ジェットの圧力が4MPa以上20MPa 以下で、
水と溶鋼の比が5〜15の範囲で得られる。水圧が20MPa
を超えると、水のエネルギーが大きくなり、溶鋼を過度
に微粉砕するため、冷却速度が大きくなり、得られる粒
子は不規則な形状になりやすい。すなわち、上述したよ
うな圧縮性を向上する球状粒子が得られない。一方、水
圧4MPa未満では、水のエネルギーが小さいので、溶鋼を
微細に粉砕し得ない。すなわち、強度を確保するための
微粉量が不足する。Thus, it is possible to control the green compact density and sintered body strength of the raw iron powder of the present invention by the shape of particles having a particle size of 75 μm or more and less than 106 μm and the amount of particles less than 45 μm (-325 mesh). Become. Such a particle shape and particle size distribution shows that when the pressure of the water spray of molten steel is 4 MPa or more and 20 MPa or less,
A water to molten steel ratio of 5 to 15 is obtained. Water pressure is 20MPa
When it exceeds, the energy of water becomes large and the molten steel is pulverized excessively, so that the cooling rate becomes large and the obtained particles are likely to have an irregular shape. That is, spherical particles that improve the compressibility as described above cannot be obtained. On the other hand, if the water pressure is less than 4 MPa, the energy of water is small, and therefore molten steel cannot be finely pulverized. That is, the amount of fine powder for ensuring strength is insufficient.
【0031】水アトマイズ後の生鉄粉の乾燥は通常の水
アトマイズ鉄粉製造時と同様に100〜300 ℃の範囲で、
非酸化性の雰囲気で行うのが好ましい。ところで、鉄粉
を使用して焼結体を製造する際には、寸法精度の向上が
要求される。この問題について、本発明者らが研究した
ところ、焼結工程における雰囲気下で還元されない酸化
物を一定量鉄粉粒子の表面に存在させることにより顕著
に焼結部品の寸法精度が向上することが判明した。Drying of the raw iron powder after the water atomizing is carried out in the range of 100 to 300 ° C. in the same manner as in the usual water atomizing iron powder production.
It is preferably performed in a non-oxidizing atmosphere. By the way, when manufacturing a sintered body using iron powder, improvement in dimensional accuracy is required. The inventors of the present invention have studied this problem and found that the presence of a certain amount of oxide that is not reduced in the atmosphere of the sintering process on the surface of the iron powder particles significantly improves the dimensional accuracy of the sintered part. found.
【0032】すなわち、溶鋼中に易酸化性元素( Si、A
l、V 、Ti、Zr) を添加すると、噴霧中の酸化によるFeO
の生成が抑制され、これら易酸化性元素の酸化物が表
面に生成した特有の表面構造をもった鉄粉が得られるこ
とが分かった。これは、溶鋼を噴霧する際に噴霧雰囲気
の酸素量を多少低下させても、残留する僅かの酸素によ
り鉄粉中の各易酸化性元素が選択酸化され、鉄粉表面に
酸化膜が形成され保護膜として働くためと考えられる。That is, in the molten steel, easily oxidizable elements (Si, A
(l, V, Ti, Zr), the FeO due to oxidation during atomization
It has been found that the generation of iron is suppressed, and an iron powder having a unique surface structure in which oxides of these easily oxidizable elements are generated on the surface can be obtained. This is because even if the amount of oxygen in the spray atmosphere is slightly reduced when spraying molten steel, each oxidizable element in the iron powder is selectively oxidized by the slight amount of residual oxygen, and an oxide film is formed on the surface of the iron powder. It is considered that it works as a protective film.
【0033】この易酸化性元素の酸化物を鉄粉表面に存
在させておくことによる寸法精度改善の理由について
は、まだ明確に解明されたわけではないが、次のように
考えられる。すなわち、鉄粉表面に上記酸化物が存在す
ると、焼結の際の添加黒鉛からの鉄粉粒子中へのC の拡
散により、鉄粉中へ侵入・拡散するC 量が、添加黒鉛量
や粒度変化にかかわらずほぼ一定に保持され、その結
果、いわゆるCu膨張量も安定することによると考えられ
る。The reason why the dimensional accuracy is improved by allowing the oxide of the easily oxidizable element to exist on the surface of the iron powder has not been clarified yet, but it is considered as follows. In other words, if the above oxides are present on the surface of iron powder, the amount of C that penetrates and diffuses into the iron powder due to the diffusion of C from the added graphite into the iron powder particles during sintering will increase the amount of added graphite and the particle size. It is considered that it is kept almost constant regardless of the change, and as a result, the so-called Cu expansion amount is also stabilized.
【0034】これにより、黒鉛粉のばらつきに対して敏
感であるFe-Cu-C 系の寸法変化のばらつきを小さく抑え
ることができる。この易酸化性元素の添加は、同時にFe
O として存在する酸素の低減をもたらし、これにより鉄
粉の成形性の一層の向上を図ることができる。一例とし
て図2に溶鋼の溶存Al量とアトマイズ生鉄粉のO 含有量
の関係を示す。As a result, it is possible to suppress variations in dimensional changes of the Fe-Cu-C system, which are sensitive to variations in graphite powder. At the same time, the addition of this easily oxidizable element
Oxygen existing as O 2 is reduced, whereby the formability of the iron powder can be further improved. As an example, FIG. 2 shows the relationship between the dissolved Al content of molten steel and the O 2 content of atomized raw iron powder.
【0035】ここに、易酸化性元素は代表的には、Si、
Al、V 、Ti、Zrであり、これらの単独添加または複合添
加いずれも可能である。なお、各元素単独添加の場合に
おける好適範囲はそれぞれ次の通りである。 Si:0.01 〜0.1wt%、Al:0.003〜0.05wt% 、V:0.008 〜0.
5wt% Ti:0.003〜0.1wt%、Zr:0.008〜0.1wt% 易酸化性元素の添加量は、添加する場合には、それらの
合計量を0.003wt%以上0.5wt%以下とするのが良い。これ
ら易酸化性元素が下限値未満では酸素含有量を低減する
効果が実質的になく、一方、上限値を超えるとかえって
O 含有量が増加し急激な焼結強度の低下が起こるからで
ある。Here, the oxidizable element is typically Si,
Al, V 2, Ti, and Zr, which can be added alone or in combination. The preferred ranges in the case of adding each element alone are as follows. Si: 0.01-0.1wt%, Al: 0.003-0.05wt%, V: 0.008-0.
5 wt% Ti: 0.003 to 0.1 wt%, Zr: 0.008 to 0.1 wt% When the oxidizable elements are added, the total amount of them is preferably 0.003 wt% or more and 0.5 wt% or less. . If these easily oxidizable elements are less than the lower limit, there is substantially no effect of reducing the oxygen content, while if they exceed the upper limit,
This is because the O 2 content increases and the sintering strength rapidly decreases.
【0036】なお、以上のような寸法精度の向上の効果
を得るには、含有する易酸化性元素の酸化割合が20% 以
上であることが必要である。20% 未満では、添加黒鉛量
のばらつきに対する焼結時の寸法変化の変動幅を減少す
る効果が少ないためである。しかし、この場合において
も成形性を維持するため、鉄粉中のO 含有量は1.0%wt以
下、好ましくは0.5wt%以下に制限される。In order to obtain the effect of improving the dimensional accuracy as described above, it is necessary that the oxidation ratio of the easily oxidizable element contained is 20% or more. This is because if it is less than 20%, the effect of reducing the fluctuation range of the dimensional change during sintering with respect to the variation in the amount of added graphite is small. However, even in this case, in order to maintain the formability, the O 2 content in the iron powder is limited to 1.0% wt or less, preferably 0.5 wt% or less.
【0037】以上のように易酸化性元素 (Si、Al、V 、
Ti、Zr) を溶鋼に添加して鉄粉表面に適当な酸化膜を生
成させるためには、雰囲気の酸素( O2) 濃度が5vol% 以
下の非酸化性ガス中で水により噴霧して、水素、窒素、
あるいは真空中にて、それぞれ100 〜300 ℃で乾燥す
る。As described above, easily oxidizable elements (Si, Al, V,
(Ti, Zr) is added to molten steel to form an appropriate oxide film on the surface of iron powder, the oxygen (O 2 ) concentration in the atmosphere is sprayed with water in a non-oxidizing gas of 5 vol% or less, Hydrogen, nitrogen,
Alternatively, it is dried at 100 to 300 ° C in vacuum.
【0038】[0038]
( 実施例1、比較例1)転炉で溶鋼を精錬し、真空脱炭
装置を用いて脱炭することによりC:0.002wt%、Mn:0.002
wt% 、Ni:0.006wt% 、Cr:0.013wt% 、Si:0.005wt% 、P:
0.002wt%、S:0.002wt%の溶湯を溶製した。この溶湯を7.
5MPaの水圧と水/ 溶鋼比10の条件で水アトマイズした。
得られた粉末をN2雰囲気中で125 ℃で乾燥した後、焼鈍
・還元を施すことなく1000μm以下に分級した。(Example 1, Comparative Example 1) C: 0.002 wt%, Mn: 0.002 by refining molten steel in a converter and decarburizing with a vacuum decarburizer
wt%, Ni: 0.006wt%, Cr: 0.013wt%, Si: 0.005wt%, P:
A melt of 0.002 wt% and S: 0.002 wt% was melted. Add this melt to 7.
Water atomization was performed under the conditions of a water pressure of 5 MPa and a water / molten steel ratio of 10.
The obtained powder was dried at 125 ° C. in an N 2 atmosphere, and then classified to 1000 μm or less without annealing / reduction.
【0039】粉末硬さは荷重100gのビッカース硬さで粉
末断面を測定した。粒子断面形状係数は画像処理装置を
用いて測定した。圧粉密度は鉄粉にステアリン酸亜鉛を
1.0wt%添加混合し、5t/cm2 の圧力で直径11.3mmのタブ
レットを成形して測定した。焼結体強度は鉄粉、Cu粉、
黒鉛粉および固体潤滑剤の混合粉を成形後、1130℃で20
分間、プロパン変成ガス雰囲気中で焼結して得られた焼
結密度6.80g/cm3 、Fe-2.0%Cu-0.8%C 組成において、引
張強さで測定した。The powder hardness was measured by Vickers hardness with a load of 100 g to measure the powder cross section. The particle cross-sectional shape factor was measured using an image processing device. Dense density is iron powder with zinc stearate
1.0 wt% was added and mixed, and a tablet having a diameter of 11.3 mm was formed at a pressure of 5 t / cm 2 and measured. Sintered body strength is iron powder, Cu powder,
After molding the mixed powder of graphite powder and solid lubricant,
The tensile strength was measured at a sintered density of 6.80 g / cm 3 and an Fe-2.0% Cu-0.8% C composition obtained by sintering in a propane-modified gas atmosphere for 1 minute.
【0040】比較例1は市販の還元焼鈍済の粉末冶金用
水アトマイズ鉄粉を用いて同じ処理を施したものであ
る。表1に鉄粉の化学組成、表2に粉末硬さと焼結体強
度などを示す。実施例1に用いたアトマイズ鉄粉の粒度
分布は、45μm未満:26.3 wt%、63μm未満〜45μm:1
3.5 wt% 、75μm未満〜63μm:4.7wt% 、106 μm未満
〜75μm:15.6 wt% 、150 μm未満〜106 μm:15.1 wt
% 、180 μm未満〜150μm:7.0wt% 、250 μm未満〜1
80 μm:9.7wt% 、1000μm未満〜250 μm:8.2wt% の
構成である。In Comparative Example 1, the same treatment was carried out using a commercially available water-atomized iron powder for powder metallurgy that had been subjected to reduction annealing. Table 1 shows the chemical composition of the iron powder, and Table 2 shows the powder hardness and the strength of the sintered body. The particle size distribution of the atomized iron powder used in Example 1 is less than 45 μm: 26.3 wt%, less than 63 μm to 45 μm: 1.
3.5 wt%, less than 75 μm to 63 μm: 4.7 wt%, less than 106 μm to 75 μm: 15.6 wt%, less than 150 μm to 106 μm: 15.1 wt
%, Less than 180 μm to 150 μm: 7.0 wt%, less than 250 μm to 1
The composition is 80 μm: 9.7 wt% and less than 1000 μm to 250 μm: 8.2 wt%.
【0041】[0041]
【表1】 [Table 1]
【0042】[0042]
【表2】 [Table 2]
【0043】実施例1は焼鈍、還元を施していないにも
かかわらず、粉末硬さ、圧粉密度、焼結体特性とも比較
例1の従来鉄粉とほぼ同等の特性が得られた。 (実施例2〜12、比較例2〜9)転炉または電気炉で精
錬後、真空脱ガス装置を用いて、C:0.002 〜0.032wt%、
Mn:0.38wt%以下、Ni:0.41wt%以下、Cr:0.42wt%以下、S
i:0.005〜0.020wt%、P:0.001 〜0.025wt%、S:0.002 〜
0.03wt% の溶湯を溶製した。この溶湯を3 〜25MPaの水
圧と水/ 溶鋼比10の条件で水アトマイズした。得られた
粉末を比較例7を除いてN2雰囲気中で125 ℃で乾燥し
た。比較例7は大気中で125 ℃で乾燥した。いずれの生
鉄粉も焼鈍・還元を施すことなく1000μm以下に分級し
た。Although the example 1 was not annealed or reduced, the powder hardness, the green compact density and the properties of the sintered body were almost the same as those of the conventional iron powder of the comparative example 1. (Examples 2 to 12, Comparative Examples 2 to 9) After refining in a converter or an electric furnace, using a vacuum degassing device, C: 0.002 to 0.032 wt%,
Mn: 0.38 wt% or less, Ni: 0.41 wt% or less, Cr: 0.42 wt% or less, S
i: 0.005-0.020wt%, P: 0.001-0.025wt%, S: 0.002-
A 0.03 wt% molten metal was melted. This molten metal was water atomized under the conditions of a water pressure of 3 to 25 MPa and a water / molten steel ratio of 10. The obtained powder was dried at 125 ° C. in a N 2 atmosphere except for Comparative Example 7. Comparative Example 7 was dried in air at 125 ° C. All raw iron powders were classified to 1000 μm or less without being annealed or reduced.
【0044】粒子硬さ、生鉄粉の粒子断面の形状係数、
圧粉密度、焼結体強度は実施例1と同一の方法で測定し
た。表3に実施例2〜12および比較例2〜9について生
鉄粉の化学組成、表4に粉末硬さ、噴霧水圧、粒径75〜
106 μm未満の粒子の比率( wt% ) とそのうち形状係数
2.5 以下の個数比率、粒径45μm未満(-325 メッシュ)
の比率、および仕上げ還元なしの圧粉密度と焼結体強度
を示した。Particle hardness, shape factor of particle cross section of raw iron powder,
The green compact density and the sintered body strength were measured by the same methods as in Example 1. Table 3 shows the chemical composition of raw iron powder for Examples 2 to 12 and Comparative Examples 2 to 9, and Table 4 shows powder hardness, spray water pressure, particle size 75 to
Ratio of particles less than 106 μm (wt%) and shape factor
Number ratio of 2.5 or less, particle size less than 45 μm (-325 mesh)
And the green density and the sintered body strength without finish reduction.
【0045】[0045]
【表3】 [Table 3]
【0046】[0046]
【表4】 [Table 4]
【0047】実施例2〜12はいずれも実用的な圧粉密
度、焼結体強度を示したが、比較例2〜7は生鉄粉組成
が適正範囲を超えるため、粒子硬さがHv(100)250以上と
なり、5t/cm2 の成形圧力で6.70g/cm3 以上の圧粉密度
は得られなかった。比較例8は噴霧圧力が適正範囲を超
えるため、粒径75〜106 μm未満の粒子のうち形状係数
2.5 以下の比率が10% 以下となり、5t/cm2 の成形圧力
で6.70g/cm3 以上の圧粉密度は得られなかった。比較例
9は噴霧圧力が適正範囲に満たないため、45μm未満の
粒子が20wt% 以下となり、6.80g/cm3 の焼結体密度にお
いて300N/mm2の焼結体強度は得られなかった。 (実施例13〜25、比較例10〜19)転炉または電気炉で精
錬後、真空脱ガス装置を用いて、C:0.002 〜0.03wt% 、
Mn:0.4wt% 以下、Ni:0.4wt% 以下、Cr:0.4wt% 以下、S
i:0.006〜0.02wt% 、P:0.007 〜0.025wt%、S:0.002 〜
0.03wt% 、Mo:6.0wt% 以下、Nb:0.3wt% 以下の溶湯を溶
製した。この溶湯を3 〜25MPa の水圧と水/ 溶鋼比10の
条件で水アトマイズした。得られた粉末は比較例19を除
いてN2雰囲気中で125 ℃で乾燥した。比較例19は大気中
で125 ℃で乾燥した。いずれの生鉄粉も焼鈍・還元を施
すことなく1000μm以下に分級した。In each of Examples 2 to 12, practical green compact density and sintered body strength were shown, but in Comparative Examples 2 to 7, since the composition of the raw iron powder exceeds the proper range, the particle hardness is Hv ( 100) 250 or more, and a compacting density of 6.70 g / cm 3 or more was not obtained at a molding pressure of 5 t / cm 2 . In Comparative Example 8, since the spray pressure exceeds the proper range, the shape factor among particles having a particle size of 75 to less than 106 μm is used.
A ratio of 2.5 or less was 10% or less, and a compacting density of 6.70 g / cm 3 or more could not be obtained at a molding pressure of 5 t / cm 2 . In Comparative Example 9, since the spraying pressure was below the proper range, the particles of less than 45 μm became 20 wt% or less, and the sintered body strength of 300 N / mm 2 could not be obtained at the sintered body density of 6.80 g / cm 3 . (Examples 13 to 25, Comparative Examples 10 to 19) After refining in a converter or an electric furnace, using a vacuum degassing device, C: 0.002 to 0.03 wt%,
Mn: 0.4 wt% or less, Ni: 0.4 wt% or less, Cr: 0.4 wt% or less, S
i: 0.006-0.02wt%, P: 0.007-0.025wt%, S: 0.002-
A molten metal containing 0.03 wt%, Mo: 6.0 wt% or less, and Nb: 0.3 wt% or less was melted. This molten metal was water atomized under the conditions of a water pressure of 3 to 25 MPa and a water / molten steel ratio of 10. The obtained powder was dried at 125 ° C. in an N 2 atmosphere except for Comparative Example 19. Comparative Example 19 was dried in air at 125 ° C. All raw iron powders were classified to 1000 μm or less without being annealed or reduced.
【0048】粒子硬さ、生鉄粉の粒子断面の形状係数、
圧粉密度、焼結体強度は実施例1 と同一の方法で測定し
た。表5、表6に実施例13〜25、比較例10〜19について
生鉄粉の化学組成、粉末硬さ、噴霧圧力、粒径75〜106
μm未満の粒子の比率( wt% ) とそのうち形状係数2.5
以下の粒子個数の比率、45μm未満の粒子の比率、圧粉
密度と焼結体強度を示した。Particle hardness, shape factor of particle cross section of raw iron powder,
The green compact density and the sintered body strength were measured by the same methods as in Example 1. In Tables 5 and 6, for Examples 13 to 25 and Comparative Examples 10 to 19, the chemical composition of the raw iron powder, the hardness of the powder, the spray pressure, and the particle size of 75 to 106.
Ratio of particles less than μm (wt%) and shape factor of 2.5
The following ratios of the number of particles, ratios of particles less than 45 μm, green density and sintered body strength are shown.
【0049】[0049]
【表5】 [Table 5]
【0050】[0050]
【表6】 [Table 6]
【0051】実施例13〜25はいずれも実用的な圧粉密
度、焼結体強度を示したが、比較例10〜16は生鉄粉組成
が適正範囲を超えるため、粒子硬さが250 以上になり、
5t/cm 2 の成形圧力で6.70g/cm3 以上の圧粉密度は得ら
れなかった。比較例17は噴霧圧力が適正範囲を超えるた
め、粒径75〜106 μm未満の粒子のうち形状係数2.5 以
下の比率が10% 以下となり、5t/cm2 の成形圧力で6.70
g/cm3 以上の圧粉密度が得られなかった。比較例18は噴
霧圧力が適正範囲に満たないため、45μm未満の粒子が
20wt% 以下となり、6.80g/cm3 の焼結体密度において30
0N/mm2の焼結体強度は得られなかった。比較例19は乾燥
条件が不適当で生鉄粉酸素量が適正範囲を超えるため、
300N/mm2の焼結体強度が得られなかった。 (実施例26〜30、比較例20〜22)転炉または電気炉で精
錬後、真空脱ガス装置を用いて、C:0.01wt% 以下、Mn:
0.1wt% 以下、Ni:0.1wt% 以下、Cr:0.1wt% 以下、Si:0.
02wt%以下、P:0.02wt% 以下、S:0.02wt% 以下、Al:0.1w
t% 以下の溶湯を溶製した。この溶湯を12MPa の水圧と
水/ 溶鋼比10の条件で水アトマイズした。得られた粉末
をN2雰囲気中で125℃で乾燥した。いずれの生鉄粉も焼
鈍・還元を施すことなく250 μm以下に分級した。All Examples 13 to 25 are practically compacted.
Degree, and the strength of the sintered body were shown.
Exceeds the proper range, the particle hardness becomes 250 or more,
5t / cm 2 6.70 g / cm at molding pressure3The above green density is obtained
I couldn't. In Comparative Example 17, the spray pressure exceeded the proper range.
Therefore, a shape factor of 2.5 or more among particles with a particle size of 75 to less than 106 μm
Lower ratio is 10% or less, 5t / cm2 6.70 at molding pressure
g / cm3The above green compact density was not obtained. Comparative Example 18 is a jet
Since the fog pressure does not reach the proper range, particles smaller than 45 μm
20wt% or less, 6.80g / cm3At a sintered body density of 30
0 N / mm2No sintered body strength was obtained. Comparative Example 19 is dry
Since the conditions are inappropriate and the amount of raw iron powder oxygen exceeds the proper range,
300 N / mm2No sintered body strength was obtained. (Examples 26 to 30, Comparative Examples 20 to 22) Refining in a converter or electric furnace
After smelting, using a vacuum degasser, C: 0.01 wt% or less, Mn:
0.1 wt% or less, Ni: 0.1 wt% or less, Cr: 0.1 wt% or less, Si: 0.
02wt% or less, P: 0.02wt% or less, S: 0.02wt% or less, Al: 0.1w
A melt of t% or less was melted. This molten metal with a water pressure of 12 MPa
Water was atomized under the condition of a water / molten steel ratio of 10. The powder obtained
To N2It was dried at 125 ° C in the atmosphere. Any raw iron powder is baked
Classified to 250 μm or less without blunting or reducing.
【0052】粒子硬さ、75〜106 μm未満の粒子の比
率、そのうち形状係数が2.5 以下の粒子の比率、鉄粉化
学組成、圧粉密度、ラトラー値、引張強さ、衝撃値を表
7に示す。実施例26〜30はいずれもAlを適正量含むため
酸素量が0.4wt%以下となっており、その結果、6.7g/cm3
以上の圧粉密度、400N/mm2以上の焼結体強度および1.5%
以下のラトラー値を示した。比較例20、22は圧粉密度は
6.78g/cm3 以上ではあるが、Al量の適正範囲を超えるた
め、ラトラー値が1.5%以上となり成形性が低下してい
る。また、比較例21では硬度が250 を超えるため圧粉密
度は6.5g/cm3以下になっている。Table 7 shows the particle hardness, the ratio of particles of 75 to less than 106 μm, the ratio of particles having a shape factor of 2.5 or less, the chemical composition of iron powder, the green density, the ratler value, the tensile strength and the impact value. Show. In each of Examples 26 to 30, the oxygen amount was 0.4 wt% or less because it contained an appropriate amount of Al, and as a result, 6.7 g / cm 3
More green density, 400 N / mm 2 or more sintered body strength and 1.5%
The following Ratler values are shown. Comparative Examples 20 and 22 have a green density
Although it is 6.78 g / cm 3 or more, since the amount of Al exceeds the appropriate range, the ratler value is 1.5% or more and the formability is deteriorated. Further, in Comparative Example 21, the hardness exceeds 250, so the green density is 6.5 g / cm 3 or less.
【0053】[0053]
【表7】 [Table 7]
【0054】(実施例31〜37、比較例23〜26)転炉また
は電気炉で精錬後、真空脱ガス装置を用いて、C:0.01wt
% 以下、Mn:0.1wt% 以下、Ni:0.1wt% 以下、Cr:0.1wt%
以下、P:0.02wt% 以下、S:0.02wt% 以下、Si+Ti+Zr:0.2
4wt%以下の溶湯を溶製した。この溶湯を13MPa の水圧で
水アトマイズした。得られた粉末をN2雰囲気中で125 ℃
で乾燥した。いずれの生鉄粉も焼鈍・還元を施すことな
く250 μm以下に分級した。(Examples 31 to 37, Comparative Examples 23 to 26) After refining in a converter or an electric furnace, C: 0.01 wt% was obtained using a vacuum degassing device.
% Or less, Mn: 0.1 wt% or less, Ni: 0.1 wt% or less, Cr: 0.1 wt%
Below, P: 0.02wt% or less, S: 0.02wt% or less, Si + Ti + Zr: 0.2
A molten metal of 4 wt% or less was melted. This molten metal was water atomized at a water pressure of 13 MPa. The obtained powder is heated at 125 ° C in N 2 atmosphere.
Dried in. All raw iron powders were classified to 250 μm or less without annealing or reduction.
【0055】溶鋼とアトマイズ生鉄粉の化学組成とアト
マイズ条件を表8に、粒子硬さ、75〜106 μm未満の粒
子の比率、そのうち形状係数が2.5 以下の粒子の比率、
圧粉密度、ラトラー値、引張強さ、衝撃値を表9に示
す。実施例31〜37はいずれもSi、Ti、Zrいずれかを適正
量含むため酸素量が0.5wt%以下となっており、その結
果、400N/mm2以上の焼結体強度および1.5%以下のラトラ
ー値を示した。比較例23はSi、Ti、Zr量が適正範囲下限
未満のためラトラー値が1.5%以上と成形性が低下してい
る。比較例24は粒子硬度が250 を超えるため圧粉密度は
6.5g/cm3以下になっている。またSi、Ti量が適正範囲を
超える比較例25および比較例26は焼結体強度が低下して
いる。The chemical composition and atomizing conditions of molten steel and atomized raw iron powder are shown in Table 8, particle hardness, the ratio of particles having a particle size of 75 to less than 106 μm, and the ratio of particles having a shape factor of 2.5 or less,
Table 9 shows the green density, ratler value, tensile strength, and impact value. In Examples 31 to 37, the oxygen content is 0.5 wt% or less because all of Si, Ti, and Zr are contained in appropriate amounts, and as a result, the sintered body strength of 400 N / mm 2 or more and 1.5% or less. The Ratler value is shown. In Comparative Example 23, since the amounts of Si, Ti, and Zr are less than the lower limit of the appropriate range, the ratler value is 1.5% or more, and the formability is deteriorated. In Comparative Example 24, the particle hardness exceeds 250, so the green density is
It is less than 6.5g / cm 3 . Further, in Comparative Examples 25 and 26 in which the amounts of Si and Ti exceed the proper ranges, the strength of the sintered body is lowered.
【0056】[0056]
【表8】 [Table 8]
【0057】[0057]
【表9】 [Table 9]
【0058】(実施例38、比較例27)転炉で溶鋼を精錬
し、真空脱炭装置を用いて脱炭することにより、C:0.00
4wt%、Mn:0.03wt%、Ni:0.005wt% 、Cr:0.01wt%、Si:0.0
06wt% 、P:0.008wt%、S:0.006wt%、Al:0.004wt% の溶湯
を溶製し、水圧13MPa の水ジェットで酸素濃度0.5 %のN
2雰囲気で水アトマイズした。得られた粉末をH2雰囲気
中で180 ℃で乾燥した後、焼鈍・還元を施すことなく25
0 μm以下に分級した。(Example 38, Comparative Example 27) C: 0.00 was obtained by refining molten steel in a converter and decarburizing it using a vacuum decarburizing apparatus.
4wt%, Mn: 0.03wt%, Ni: 0.005wt%, Cr: 0.01wt%, Si: 0.0
A melt of 06wt%, P: 0.008wt%, S: 0.006wt%, Al: 0.004wt% was melted and a water jet with a water pressure of 13MPa produced an N concentration of 0.5% N.
Water atomized in 2 atmospheres. After drying the obtained powder at 180 ° C in an H 2 atmosphere, it is heated at 25 ° C without annealing or reduction.
It was classified to 0 μm or less.
【0059】圧粉密度は生鉄粉にステアリン酸亜鉛を1.
0wt%添加混合し、5t/cm2 の圧力で直径11.3mmのタブレ
ットに成形して測定した。焼結体強度は生鉄粉、Cu粉、
黒鉛粉および潤滑剤としてのステアリン酸亜鉛の混合粉
をJSPM標準引張試験片に成形後、1130℃で20分間プロパ
ン変成ガス雰囲気中で焼結して得られた焼結体(圧粉密
度6.86g/cm3 、組成Fe-2.0%Cu-0.8%Gr) において、引張
強さを測定した。Fe-2.0%Cu-0.8%GrとFe-2.0%Cu-1.0%Gr
の2 水準の黒鉛量について焼結時の寸法変化を調べ、そ
れぞれの焼結寸法変化の差を「寸法変化変動幅」とし
た。このときの試料形状は、外径60φ、内径25φ、高さ
10mmのリング形状、圧粉密度6.8g/cm3とし、1130℃プロ
パン変成ガス雰囲気中で20分焼結した。The compacted density is 1. If zinc stearate is added to raw iron powder.
0 wt% was added and mixed, and the mixture was molded into tablets having a diameter of 11.3 mm at a pressure of 5 t / cm 2 and measured. Sintered body strength is raw iron powder, Cu powder,
A mixture of graphite powder and zinc stearate as a lubricant was molded into a JSPM standard tensile test piece and then sintered at 1130 ℃ for 20 minutes in a propane metamorphic gas atmosphere (compacted powder density 6.86g). / cm 3 , composition Fe-2.0% Cu-0.8% Gr), the tensile strength was measured. Fe-2.0% Cu-0.8% Gr and Fe-2.0% Cu-1.0% Gr
The dimensional change during sintering was examined for the two levels of graphite, and the difference between the dimensional changes in sintering was defined as the “dimensional change fluctuation range”. The sample shape at this time is 60φ in outer diameter, 25φ in inner diameter, and height.
The ring shape was 10 mm, the green density was 6.8 g / cm 3, and sintering was performed at 1130 ° C. in a propane metamorphic gas atmosphere for 20 minutes.
【0060】比較例27は市販の還元焼鈍済の粉末冶金用
水アトマイズ鉄粉を用いて同じ処理を施したものであ
る。表10に鉄粉の化学組成、易酸化性元素の酸化割合、
表11に粒子断面硬さ、75〜106 μm未満の粒子の比率、
そのうち形状係数が2.5 以下の粒子の比率、圧粉密度と
焼結体強度および寸法変動幅を示す。実施例38は焼鈍、
還元を施していないにもかかわらず、圧粉密度は比較例
27の従来鉄粉とほぼ同等であるばかりでなく、寸法変化
変動幅は比較例27より優れている。In Comparative Example 27, the same treatment was performed using a commercially available water-atomized iron powder for powder metallurgy that had been subjected to reduction annealing. Table 10 shows the chemical composition of iron powder, the oxidation ratio of easily oxidizable elements,
Table 11 shows the particle cross-section hardness, the ratio of particles less than 75 to 106 μm,
Among them, the ratio of particles with a shape factor of 2.5 or less, the green compact density, the sintered body strength, and the dimensional fluctuation range are shown. Example 38 is annealed,
Although not subjected to reduction, the green density is comparative
Not only is it almost the same as the conventional iron powder of No. 27, but the variation width of dimensional change is superior to that of Comparative Example 27.
【0061】[0061]
【表10】 [Table 10]
【0062】[0062]
【表11】 [Table 11]
【0063】(実施例39〜53、比較例28〜31)転炉または
電気炉で精錬後、真空脱ガス装置を用いて、C:0.01wt%
以下、Mn:0.1wt% 以下、Ni:0.1wt% 以下、Cr:0.1wt% 以
下、P:0.02wt% 以下、S:0.02wt% 以下、Si+Al+Ti+V:1.0
wt% 以下の溶湯を溶製した。この溶湯を100kgf/cm2の水
圧で酸素濃度10% 以下のN2雰囲気中で水アトマイズし
た。得られた生鉄粉をH2、N2、真空中で100 〜300 ℃で
乾燥した後、焼鈍・還元を施すことなく250 μm以下に
分級した。(Examples 39 to 53, Comparative Examples 28 to 31) After refining in a converter or an electric furnace, C: 0.01 wt% was obtained using a vacuum degassing device.
Below, Mn: 0.1wt% or less, Ni: 0.1wt% or less, Cr: 0.1wt% or less, P: 0.02wt% or less, S: 0.02wt% or less, Si + Al + Ti + V: 1.0
Melt of less than wt% was melted. This molten metal was water atomized at a water pressure of 100 kgf / cm 2 in a N 2 atmosphere with an oxygen concentration of 10% or less. The obtained raw iron powder was dried in H 2 and N 2 at 100 to 300 ° C. in vacuum, and then classified to 250 μm or less without annealing and reduction.
【0064】圧粉密度、焼結体強度、焼結体寸法変化変
動幅は実施例38と同一の方法で測定した。表12に実施例
39〜53および比較例28〜31について生鉄粉の化学組成、
易酸化性元素の酸化割合、粒子断面硬さ、75〜106 μm
未満の粒子の比率、そのうち形状係数が2.5 以下の粒子
の比率、圧粉密度、焼結体強度および寸法変化変動幅を
示した。The green compact density, the strength of the sintered body, and the variation range of the dimensional change of the sintered body were measured by the same method as in Example 38. Examples in Table 12
39-53 and Comparative Examples 28-31 chemical composition of raw iron powder,
Oxidation ratio of easily oxidizable elements, particle cross-section hardness, 75-106 μm
The ratio of particles having a shape factor of less than 2.5, the ratio of particles having a shape factor of 2.5 or less, the compact density, the strength of the sintered body, and the dimensional change fluctuation range are shown.
【0065】[0065]
【表12】 [Table 12]
【0066】実施例39〜51はいずれも実用的な圧粉密
度、焼結体強度を示した。さらに、寸法変化変動幅が0.
1%以下の良好な寸法精度を示した。実施例52ではSi+Al+
Ti+V量が、実施例53では易酸化性元素の酸化割合がそれ
ぞれ適正範囲外であったので寸法変化変動幅が大きかっ
たが、圧縮性、焼結体強度は実用的な値を示した。All of Examples 39 to 51 showed practical green compact density and sintered body strength. Furthermore, the dimensional change fluctuation range is 0.
It showed a good dimensional accuracy of 1% or less. In Example 52, Si + Al +
Ti + V amount, in Example 53, the oxidization ratio of the oxidizable element was out of the appropriate range, so the dimensional change fluctuation range was large, but the compressibility, the sintered body strength showed a practical value. .
【0067】これに対し、比較例では圧粉密度6.7g/cm3
以上の圧縮性が得られるものの、Si、Al、Ti、V 量がそ
れぞれ適正範囲を超えるため、焼結体強度は低いものし
か得られていない。 (実施例54〜69、比較例32〜38)転炉または電気炉で精錬
後、真空脱ガス装置を用いて、C:0.022wt%以下、Mn:0.3
wt% 以下、Ni:0.3wt% 以下、Cr:0.3wt% 以下、P:0.003
〜0.02wt% 、S:0.002〜0.015wt%、Mo:4.0wt% 以下、Nb:
0.3wt% 以下、Si+ Al+Ti+V+Zr: 0.7wt%以下の溶湯を溶
製した。この溶湯を酸素濃度8% 以下の窒素雰囲気中で
水圧8〜16MPaの水により噴霧して水素、窒素あるいは
真空中で130 〜280 ℃で乾燥した。いずれの生鉄粉も焼
鈍・還元を施すことなく250 μm以下に分級した。On the other hand, in the comparative example, the green compact density is 6.7 g / cm 3.
Although the above compressibility can be obtained, only the strength of the sintered body is low because the amounts of Si, Al, Ti, and V each exceed the proper range. (Examples 54-69, Comparative Examples 32-38) After refining in a converter or an electric furnace, using a vacuum degassing device, C: 0.022 wt% or less, Mn: 0.3
wt% or less, Ni: 0.3 wt% or less, Cr: 0.3 wt% or less, P: 0.003
~ 0.02wt%, S: 0.002-0.015wt%, Mo: 4.0wt% or less, Nb:
A melt containing 0.3 wt% or less and Si + Al + Ti + V + Zr: 0.7 wt% or less was melted. This molten metal was sprayed with water having a water pressure of 8 to 16 MPa in a nitrogen atmosphere having an oxygen concentration of 8% or less and dried at 130 to 280 ° C. in hydrogen, nitrogen or vacuum. All raw iron powders were classified to 250 μm or less without annealing or reduction.
【0068】圧粉密度、焼結体強度、焼結体寸法変化変
動幅は実施例37と同一の方法で測定した。表13に実施例
54〜69および比較例32〜38について生鉄粉の化学組成、
表14に噴霧条件、乾燥条件、易酸化性元素の酸化割合、
粉末硬さ、粒径75〜106 μm未満の粒子の比率、そのう
ち形状係数2.5 以下の比率、45μm未満の比率、および
仕上げ還元なしの圧粉密度と焼結体強度および寸法変化
変動幅を示した。The green compact density, the strength of the sintered body, and the variation range of the dimensional change of the sintered body were measured in the same manner as in Example 37. Table 13 Examples
54-69 and the chemical composition of raw iron powder for Comparative Examples 32-38,
Table 14 spraying conditions, drying conditions, oxidation ratio of easily oxidizable elements,
The powder hardness, the ratio of particles having a particle size of 75 to less than 106 μm, of which the shape factor is 2.5 or less, the ratio of less than 45 μm, and the green compact density without finish reduction and the sintered body strength and dimensional change fluctuation range are shown. .
【0069】[0069]
【表13】 [Table 13]
【0070】[0070]
【表14】 [Table 14]
【0071】実施例54〜69はいずれも実用的な圧粉密
度、焼結体強度を示した。さらに、実施例54〜66は寸法
変化変動幅が0.1%以下の良好な寸法精度を示した。これ
に対し、比較例では、発明の適正範囲を超えるため、圧
粉密度あるいは焼結体強度は低いものしか得られなかっ
た。Examples 54 to 69 all showed practical green compact density and sintered body strength. Further, Examples 54 to 66 showed good dimensional accuracy with a dimensional change fluctuation range of 0.1% or less. On the other hand, in the comparative example, only the powder compact density or the sintered body strength was low because it exceeded the appropriate range of the invention.
【0072】[0072]
【発明の効果】本発明の粉末冶金用鉄粉は、従来の粉末
冶金用水アトマイズ鉄粉に比べ、水噴霧後の焼鈍・還元
工程がなく、生鉄粉状態で金型成形が可能となる。ま
た、本発明の粉末冶金用鉄粉は、従来の粉末冶金用鉄粉
に比べ、Cu、黒鉛添加で焼結したときに、黒鉛添加量の
ばらつきに対する焼結寸法変化の変動が小さく、結果的
に寸法精度の優れた焼結体の製造ができるため、サイジ
ング工程の省略が可能となる。これらのため、本発明の
鉄粉を用いることにより焼結部品の製造工程が短縮さ
れ、焼結部品の特性を損なうことなく焼結部品の製造コ
ストの削減が可能となり、焼結部品の製造を経済的に行
えるようになる。INDUSTRIAL APPLICABILITY The iron powder for powder metallurgy of the present invention does not require an annealing / reduction process after water spraying as compared with the conventional water atomized iron powder for powder metallurgy and can be molded in a raw iron powder state. Further, the iron powder for powder metallurgy of the present invention, compared with the iron powder for conventional powder metallurgy, Cu, when sintered with graphite addition, the variation of the sintering dimensional change due to the variation of the graphite addition amount is small, resulting Since a sintered body having excellent dimensional accuracy can be manufactured, the sizing step can be omitted. For these reasons, by using the iron powder of the present invention, the manufacturing process of the sintered part can be shortened, and the manufacturing cost of the sintered part can be reduced without impairing the characteristics of the sintered part. You can do it economically.
【図1】アトマイズ生鉄粉の硬度と鉄粉中のC 含有量の
関係を示す特性図である。FIG. 1 is a characteristic diagram showing the relationship between the hardness of atomized raw iron powder and the C content in the iron powder.
【図2】鉄粉中酸素含有量とAl含有量の関係を示す特性
図である。FIG. 2 is a characteristic diagram showing a relationship between oxygen content and iron content in iron powder.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新田 稔 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 樋口 和男 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 牧野 来世志 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 前田 義昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 駒村 宏一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minor Nitta, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Kazuo Higuchi, 1 Kawasaki-cho, Chuo-ku, Chiba Address Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Makino Raiseshi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Works (72) Inventor Yoshiaki Maeda Kawasaki-cho, Chuo-ku, Chiba City No. 1 Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Koichi Komamura No. 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Kawasaki Steel Co., Ltd. Chiba Works
Claims (12)
で、粒子断面の硬さがHv80〜250 であり、かつ、粒子表
面が焼結雰囲気で還元可能な酸化物で覆われており、酸
素含有量が1.0 重量%(以下wt% と記す)以下である粉
末冶金用水アトマイズ鉄粉。1. A particle having a particle cross-section hardness of Hv80 to 250 when sprayed with water and dried, and the particle surface is covered with a reducible oxide in a sintering atmosphere, Water atomized iron powder for powder metallurgy having an oxygen content of 1.0 wt% (hereinafter referred to as wt%) or less.
長の2乗を断面積と4πの積で除した値で表される粒子
形状係数が2.5 以下の粒子を個数で10% 以上含む粒子径
75〜106 μm 未満の粒子を10〜30wt% と45μm 未満の粒
子を20wt% 以上含む粉末冶金用水アトマイズ鉄粉。2. The particle according to claim 1, which has a particle shape factor of 2.5 or less expressed by a value obtained by dividing the square of the perimeter of the particle cross-sectional shape by the product of the cross-sectional area and 4π, and 10% or more in number. Diameter
Water atomized iron powder for powder metallurgy containing 10 to 30 wt% of particles less than 75 to 106 μm and 20 wt% or more of particles less than 45 μm.
不純物として、C:0.01wt% 以下、Mn:0.30wt%以下、Ni:
0.30wt%以下、Cr:0.30wt%以下、P とS の合計:0.05wt%
以下を含み、残部は実質的に鉄からなる粉末冶金用水ア
トマイズ鉄粉。3. The impurity according to claim 1 or 2, wherein C: 0.01 wt% or less, Mn: 0.30 wt% or less, Ni:
0.30wt% or less, Cr: 0.30wt% or less, sum of P and S: 0.05wt%
Water atomized iron powder for powder metallurgy, including the following, with the balance being essentially iron.
下、Nb:0.20wt%以下を含有する粉末冶金用水アトマイズ
鉄粉。4. The water atomized iron powder for powder metallurgy according to claim 3, further containing Mo: 5.0 wt% or less and Nb: 0.20 wt% or less.
り酸化しやすい元素( 以下易酸化性元素と記す) をさら
に含有し、該易酸化性元素の20% 以上が酸化されて焼結
雰囲気で還元不可能な酸化物となって粒子表面を覆って
いる粉末冶金用水アトマイズ鉄粉。5. The sintered body according to claim 1, further comprising an element that is more easily oxidized than iron (hereinafter referred to as an easily oxidizable element), and 20% or more of the easily oxidizable element is oxidized. Water atomized iron powder for powder metallurgy that forms an irreducible oxide in the atmosphere and covers the particle surface.
5wt% Ti:0.003〜0.1wt%、Zr:0.008〜0.1wt% の1種または2種以上を含む粉末冶金用水アトマイズ鉄
粉。6. The oxidizable element according to claim 5, wherein Si: 0.01-0.1 wt%, Al: 0.003-0.05 wt%, V: 0.008-0.
Water atomized iron powder for powder metallurgy containing one or more of 5 wt% Ti: 0.003 to 0.1 wt% and Zr: 0.008 to 0.1 wt%.
量は0.003 〜0.5wt%である粉末冶金用水アトマイズ鉄
粉。7. The water atomized iron powder for powder metallurgy according to claim 6, wherein the total amount of easily oxidizable elements is 0.003 to 0.5 wt%.
0.30wt%以下、Cr:0.30wt%以下、P とS の合計:0.050wt%
以下、残部は鉄からなる溶鋼を圧力4 〜20MPa の水ジ
ェットを用いて噴霧後、乾燥を行い、そのまま粉末冶金
用に供することを特徴とする粉末冶金用水アトマイズ鉄
粉の製造方法。8. C: 0.01 wt% or less, Mn: 0.30 wt% or less, Ni:
0.30wt% or less, Cr: 0.30wt% or less, total of P and S: 0.050wt%
Hereinafter, a method for producing a water atomized iron powder for powder metallurgy, characterized in that molten steel consisting of iron as the balance is sprayed using a water jet having a pressure of 4 to 20 MPa, dried and then used as it is for powder metallurgy.
びC:0.01wt% 以下、Mn:0.30wt%以下、Ni:0.30wt%以下、
Cr:0.30wt%以下、P とS の合計:0.050wt% 以下、残部は
鉄からなる溶鋼を圧力4 〜20MPa の水ジェットを用いて
噴霧後、乾燥を行い、そのまま粉末冶金用に供すること
を特徴とする粉末冶金用水アトマイズ鉄粉の製造方法。9. Mo: 5.0 wt% or less, Nb: 0.20 wt% or less, and C: 0.01 wt% or less, Mn: 0.30 wt% or less, Ni: 0.30 wt% or less,
Cr: 0.30 wt% or less, total of P and S: 0.050 wt% or less, the balance is iron molten steel is sprayed using a water jet with a pressure of 4 to 20 MPa, dried, and then directly used for powder metallurgy. A method for producing a water atomized iron powder for powder metallurgy.
された成分の他にさらに易酸化性元素を総量で0.003 〜
0.5wt%含有する溶鋼を用いる粉末冶金用水アトマイズ鉄
粉の製造方法。10. In addition to the components defined in claim 8 or claim 9, a total amount of easily oxidizable elements is 0.003 to.
A method for producing a water atomized iron powder for powder metallurgy using molten steel containing 0.5 wt%.
Si、Ti、V 、Al、Zrから選択される1種または2種以上
である粉末冶金用水アトマイズ鉄粉の製造方法。11. The easily oxidizable element according to claim 10,
A method for producing a water atomized iron powder for powder metallurgy, which is one or more selected from Si, Ti, V 2, Al and Zr.
イズ鉄粉の製造方法において、噴霧雰囲気の酸素濃度を
5.0vol% 以下とし、水アトマイズにより得られた鉄粉を
非酸化性雰囲気またはH2雰囲気中または真空中にてそれ
ぞれ100 〜300 ℃の温度で乾燥処理をすることからなる
粉末冶金用水アトマイズ鉄粉の製造方法。12. The method for producing a water atomized iron powder for powder metallurgy according to claim 11, wherein the oxygen concentration in the atomizing atmosphere is adjusted.
Water atomized iron powder for powder metallurgy, which is 5.0 vol% or less, and the iron powder obtained by water atomization is dried at a temperature of 100 to 300 ° C in a non-oxidizing atmosphere, an H 2 atmosphere, or a vacuum, respectively. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10391894A JP3957331B2 (en) | 1993-05-18 | 1994-05-18 | Method for producing water atomized iron powder for powder metallurgy |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11552393 | 1993-05-18 | ||
JP19617093 | 1993-08-06 | ||
JP5-196170 | 1993-10-14 | ||
JP25680793 | 1993-10-14 | ||
JP5-115523 | 1993-10-14 | ||
JP5-256807 | 1993-10-14 | ||
JP10391894A JP3957331B2 (en) | 1993-05-18 | 1994-05-18 | Method for producing water atomized iron powder for powder metallurgy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07157803A true JPH07157803A (en) | 1995-06-20 |
JP3957331B2 JP3957331B2 (en) | 2007-08-15 |
Family
ID=27469166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10391894A Expired - Lifetime JP3957331B2 (en) | 1993-05-18 | 1994-05-18 | Method for producing water atomized iron powder for powder metallurgy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3957331B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6638335B2 (en) | 2001-04-20 | 2003-10-28 | Kawasaki Steel Corporation | Highly compressible iron powder |
JP2004082106A (en) * | 2002-06-26 | 2004-03-18 | Kobe Steel Ltd | Iron-based cleaning powder |
JP2008189993A (en) * | 2007-02-05 | 2008-08-21 | Hitachi Powdered Metals Co Ltd | Granulated powder for die compaction, its manufacturing method, and method for manufacturing sintered part using the granulated powder |
CN100425377C (en) * | 2002-09-10 | 2008-10-15 | 昭荣化学工业株式会社 | Method for mfg. metal powder |
JP2010010673A (en) * | 2008-05-30 | 2010-01-14 | Hitachi Ltd | Soft magnetic powders for magnetic compact, and magnetic compact using the same soft magnetic powders |
JP2012520942A (en) * | 2009-03-20 | 2012-09-10 | ホガナス アクチボラグ (パブル) | Iron vanadium powder alloy |
WO2019111833A1 (en) * | 2017-12-05 | 2019-06-13 | Jfeスチール株式会社 | Steel alloy powder |
JP2019147997A (en) * | 2018-02-28 | 2019-09-05 | 株式会社神戸製鋼所 | Iron powder for powder metallurgy |
CN111906322A (en) * | 2020-08-10 | 2020-11-10 | 莱芜钢铁集团粉末冶金有限公司 | Preparation method of water atomized iron powder with low apparent density |
CN114147216A (en) * | 2021-09-30 | 2022-03-08 | 钢铁研究总院 | Method for adding low-boiling-point easily-oxidized metal elements into steel product and printing device |
CN114799186A (en) * | 2022-05-09 | 2022-07-29 | 杭州屹通新材料股份有限公司 | Method and control device for regulating and controlling atomization water pressure based on water atomization molten steel temperature |
-
1994
- 1994-05-18 JP JP10391894A patent/JP3957331B2/en not_active Expired - Lifetime
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE45647E1 (en) | 2001-04-20 | 2015-08-11 | Jfe Steel Corporation | Highly compressible iron powder |
US6638335B2 (en) | 2001-04-20 | 2003-10-28 | Kawasaki Steel Corporation | Highly compressible iron powder |
JP2004082106A (en) * | 2002-06-26 | 2004-03-18 | Kobe Steel Ltd | Iron-based cleaning powder |
CN100425377C (en) * | 2002-09-10 | 2008-10-15 | 昭荣化学工业株式会社 | Method for mfg. metal powder |
JP2008189993A (en) * | 2007-02-05 | 2008-08-21 | Hitachi Powdered Metals Co Ltd | Granulated powder for die compaction, its manufacturing method, and method for manufacturing sintered part using the granulated powder |
JP2010010673A (en) * | 2008-05-30 | 2010-01-14 | Hitachi Ltd | Soft magnetic powders for magnetic compact, and magnetic compact using the same soft magnetic powders |
JP2012520942A (en) * | 2009-03-20 | 2012-09-10 | ホガナス アクチボラグ (パブル) | Iron vanadium powder alloy |
KR20200088466A (en) * | 2017-12-05 | 2020-07-22 | 제이에프이 스틸 가부시키가이샤 | Alloy steel powder |
WO2019111833A1 (en) * | 2017-12-05 | 2019-06-13 | Jfeスチール株式会社 | Steel alloy powder |
US11441212B2 (en) | 2017-12-05 | 2022-09-13 | Jfe Steel Corporation | Alloyed steel powder |
JPWO2019111833A1 (en) * | 2017-12-05 | 2019-12-12 | Jfeスチール株式会社 | Alloy steel powder |
JP2019147997A (en) * | 2018-02-28 | 2019-09-05 | 株式会社神戸製鋼所 | Iron powder for powder metallurgy |
KR20200121858A (en) * | 2018-02-28 | 2020-10-26 | 가부시키가이샤 고베 세이코쇼 | Iron powder for powder metallurgy |
EP3760343A4 (en) * | 2018-02-28 | 2021-11-24 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Iron powder for powder metallurgy |
WO2019167722A1 (en) * | 2018-02-28 | 2019-09-06 | 株式会社神戸製鋼所 | Iron powder for powder metallurgy |
CN111906322A (en) * | 2020-08-10 | 2020-11-10 | 莱芜钢铁集团粉末冶金有限公司 | Preparation method of water atomized iron powder with low apparent density |
CN114147216A (en) * | 2021-09-30 | 2022-03-08 | 钢铁研究总院 | Method for adding low-boiling-point easily-oxidized metal elements into steel product and printing device |
CN114799186A (en) * | 2022-05-09 | 2022-07-29 | 杭州屹通新材料股份有限公司 | Method and control device for regulating and controlling atomization water pressure based on water atomization molten steel temperature |
Also Published As
Publication number | Publication date |
---|---|
JP3957331B2 (en) | 2007-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100249006B1 (en) | Water spray iron powder for powder plating and its manufacturing method | |
EP2659014B1 (en) | Iron based powders for powder injection molding | |
JP3957331B2 (en) | Method for producing water atomized iron powder for powder metallurgy | |
JP3177482B2 (en) | Low alloy steel powder for sinter hardening | |
JP3273789B2 (en) | Iron powder and mixed powder for powder metallurgy and method for producing iron powder | |
JP3258765B2 (en) | Manufacturing method of high-strength iron-based sintered body | |
JPH10504353A (en) | Iron-based powder containing chromium, molybdenum and manganese | |
JP6690781B2 (en) | Alloy steel powder | |
JP3272886B2 (en) | Alloy steel powder for high strength sintered body and method for producing high strength sintered body | |
JPH0849047A (en) | Alloy steel powder for powder metallurgy | |
JPS6318001A (en) | Alloy steel powder for powder metallurgy | |
JP3517505B2 (en) | Raw material powder for sintered wear resistant material | |
JP3351844B2 (en) | Alloy steel powder for iron-based sintered material and method for producing the same | |
JPH08209202A (en) | Alloy steel powder for high strength sintered material excellent in machinability | |
EP3778963B1 (en) | Alloyed steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy | |
JP4715358B2 (en) | Alloy steel powder for powder metallurgy | |
JP3347773B2 (en) | Pure iron powder mixture for powder metallurgy | |
JPH0717923B2 (en) | Low alloy iron powder for sintering and method for producing the same | |
JPH0459362B2 (en) | ||
JP3938944B2 (en) | Method for producing water atomized iron powder for powder metallurgy | |
JPH07138602A (en) | Low alloy steel powder for powder metallurgy | |
JPH0745682B2 (en) | Alloy steel powder for powder metallurgy | |
JP2003147405A (en) | Alloy steel powder for iron sintering heat treatment material | |
WO2023157386A1 (en) | Iron-based mixed powder for powder metallurgy, and iron-based sintered body | |
JPH07138694A (en) | Production of low alloy steel powder for powder metallurgy and ferrous sintered parts with high dimensional accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070508 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140518 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |