JPH07138694A - Production of low alloy steel powder for powder metallurgy and ferrous sintered parts with high dimensional accuracy - Google Patents
Production of low alloy steel powder for powder metallurgy and ferrous sintered parts with high dimensional accuracyInfo
- Publication number
- JPH07138694A JPH07138694A JP28523593A JP28523593A JPH07138694A JP H07138694 A JPH07138694 A JP H07138694A JP 28523593 A JP28523593 A JP 28523593A JP 28523593 A JP28523593 A JP 28523593A JP H07138694 A JPH07138694 A JP H07138694A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- low alloy
- alloy steel
- steel powder
- dimensional accuracy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、粉末冶金用の低合金鋼
粉に関し、特に適量のNbを含有させることによって焼
結時の寸法変化を可及的に少なくし、寸法精度の高い焼
結成形体が得られる様に改質された粉末冶金用低合金鋼
粉、および該鋼粉を用いた高寸法精度の焼結部品の製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low alloy steel powder for powder metallurgy, and in particular, by containing an appropriate amount of Nb, the dimensional change at the time of sintering can be reduced as much as possible, and the sinterability with high dimensional accuracy can be obtained. The present invention relates to a low alloy steel powder for powder metallurgy modified so as to obtain a shaped body, and a method for producing a sintered component with high dimensional accuracy using the steel powder.
【0002】[0002]
【従来の技術】粉末冶金用鋼粉を用いた焼結部品を製造
するに当たっては、鋼粉に黒鉛粉や潤滑剤を混合し、更
には必要により合金粉末を混合してから圧粉成形し、こ
の成形体を1100〜1250℃に加熱し焼結させる方
法が一般的に採用されている。しかしながら、低合金鋼
粉の種類によっては圧粉成形後の焼結工程で寸法変化を
起こし、所定の寸法精度が得られなくなることもしばし
ば経験され、この様な場合は、焼結後に切削等の機械加
工や再圧加工等を行なわなければならず、加工コストが
高くなる。2. Description of the Related Art In producing a sintered part using steel powder for powder metallurgy, graphite powder and a lubricant are mixed with steel powder, and further alloy powder is mixed if necessary, and then powder compacting is performed. A method in which this molded body is heated to 1100 to 1250 ° C. and sintered is generally adopted. However, depending on the type of low alloy steel powder, it is often experienced that dimensional changes occur in the sintering process after compacting, and the prescribed dimensional accuracy cannot be obtained. Machining, re-pressing, etc. must be performed, which increases the processing cost.
【0003】焼結時の寸法変化に及ぼす影響としては、
鋼粉の化学成分や粒度分布、圧粉成形体の密度、焼結温
度、ヒートパターン、焼結雰囲気等が挙げられ、これら
が相互に関連し合って寸法変化を生じると考えられてい
る。たとえば鋼粉中の酸素量や微細粉の量が寸法変化に
強く影響を与えるという報告があり、寸法精度を高める
ためこれらの含有量を低減する方法が試みられている。
また合金成分としてCu粉末を添加すると焼結時に膨張
傾向を示し、一方Ni粉末を添加すると収縮傾向を示す
ことが確認されており、こうした現象を利用し、Cu粉
末とNi粉末を適当な比率で含有させることによって寸
法精度を高める方法も実施されている。The influence on the dimensional change during sintering is as follows.
The chemical composition and particle size distribution of the steel powder, the density of the green compact, the sintering temperature, the heat pattern, the sintering atmosphere and the like are mentioned, and it is considered that these are related to each other and cause a dimensional change. For example, it has been reported that the amount of oxygen and the amount of fine powder in steel powder have a strong influence on dimensional changes, and methods have been attempted to reduce the content thereof in order to improve dimensional accuracy.
Further, it has been confirmed that when Cu powder is added as an alloy component, it tends to expand at the time of sintering, while when Ni powder is added, it tends to shrink, and by utilizing such a phenomenon, Cu powder and Ni powder are mixed at an appropriate ratio. A method of increasing the dimensional accuracy by including it is also practiced.
【0004】しかしながら焼結部品の製造に当たって
は、寸法精度だけでなく焼結製品として求められる様々
の物性、たとえば引張り強さ、硬さ、疲労強度、衝撃強
度、耐摩耗性等があり、これらの特性と寸法精度を同時
に満足することは容易でない。また合金粉末を添加した
ものでは、圧粉成形体の密度によって寸法変化量が変わ
ってくるという難点も指摘される。However, in the production of sintered parts, not only dimensional accuracy but also various physical properties required for a sintered product, such as tensile strength, hardness, fatigue strength, impact strength, and abrasion resistance, are present. It is not easy to satisfy both characteristics and dimensional accuracy at the same time. In addition, it is pointed out that the amount of dimensional change varies depending on the density of the powder compact when the alloy powder is added.
【0005】一方、たとえば自動車業界においても高級
化、低騒音化が進むにつれて寸法精度の高い焼結部品の
需要が高まっており、こうした要望に沿うべく多段プレ
ス等の圧粉成形技術も向上してきているが、それでも複
雑な形状のものでは均一な密度の圧粉成形体を得ること
は容易でない。圧粉成形体を焼結するときの一般的傾向
として、圧粉成形体密度が低いものの焼結時の収縮量は
大きく、逆に密度が高いものの焼結時の収縮量は小さい
という傾向があり、従って、同一の圧粉成形体であって
もその内部で密度に差があると、部分的に収縮量に差が
生じて寸法精度が低下するばかりでなく形状に歪ができ
ることもあり、焼結後の機械加工や再加工処理が必要と
なる。On the other hand, for example, in the automobile industry as well, the demand for sintered parts with high dimensional accuracy is increasing with the progress of higher quality and lower noise, and the powder compacting technology such as multi-stage press has been improved to meet such demand. However, even if it has a complicated shape, it is not easy to obtain a green compact having a uniform density. As a general tendency when sintering a green compact, there is a tendency that although the green compact has a low density, the amount of shrinkage during sintering is large, and conversely, the density is high, but the amount of shrinkage during sintering is small. Therefore, even if the same green compact has a difference in density inside, the difference in shrinkage amount partially causes the dimensional accuracy to deteriorate and the shape may be distorted. Machining and reprocessing after binding are required.
【0006】そこで、こうした焼結時の寸法変化に由来
する問題を軽減するための他の方策として、寸法変化挙
動において相互に正・負の傾向を示す2種以上の鋼粉を
適正な比率で混合使用し、それにより焼結時の寸法変化
量を少なくする方法も実施されているが、この場合も、
焼結製品に求められる前述の様な物性と寸法精度の要求
を同時に満足させることはむずかしい。Therefore, as another measure for reducing the problem caused by the dimensional change at the time of sintering, two or more kinds of steel powders having mutually positive and negative tendencies in the dimensional change behavior at an appropriate ratio. A method of mixing and using it to reduce the amount of dimensional change during sintering has also been implemented, but in this case as well,
It is difficult to simultaneously satisfy the above-mentioned physical properties and dimensional accuracy requirements for sintered products.
【0007】[0007]
【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、圧粉
成形後における焼結時の寸法変化量が少なく、圧粉成形
体内で密度にばらつきがある場合であっても、形状歪が
なく寸法精度の高い焼結成形体を与える様な粉末冶金用
低合金鋼粉および該低合金鋼粉を用いた高寸法精度の焼
結成形体を提供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to reduce the amount of dimensional change during sintering after compaction molding and to compact powder compaction. Low alloy steel powder for powder metallurgy and a high dimensional accuracy sintering process using the low alloy steel powder that gives a sintered compact with high dimensional accuracy without shape distortion even if the density varies within the body. It is intended to provide a feature.
【0008】[0008]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る粉末冶金用低合金鋼粉の構成は、
全体組成が、重量比でNb:0.02〜0.15%を含
有すると共に、Ni:0.1〜2.0%、Cr:0.4
〜2.0%およびMo:0.1〜3.0%よりなる群か
ら選択される少なくとも1種の元素を含み、残部が鉄お
よび不可避不純物からなる粉末の少なくとも表面に、4
0μm以下のNb酸化物が存在するものであるところに
特徴を有するものである。The composition of the low alloy steel powder for powder metallurgy according to the present invention, which has been able to solve the above problems, is as follows.
The overall composition contains Nb: 0.02 to 0.15% by weight, Ni: 0.1 to 2.0%, Cr: 0.4.
.About.2.0% and Mo: 0.1 to 3.0%, and at least one element selected from the group consisting of, and the balance consisting of iron and unavoidable impurities.
It is characterized by the presence of Nb oxide of 0 μm or less.
【0009】そして、この粉末冶金用低合金鋼粉に黒鉛
を混合し、該混合物を所定形状に圧粉して得られる成形
体を、非酸化性雰囲気下で、炭素が鉄素地に固溶すると
共に40μm以下のNb炭化物を形成する温度・時間で
焼結すると、寸法精度の高い鉄系焼結部品を得ることが
できる。Then, carbon is solid-dissolved in the iron matrix in a non-oxidizing atmosphere in a compact obtained by mixing graphite with the low alloy steel powder for powder metallurgy and pressing the mixture into a predetermined shape. Along with this, sintering at a temperature / time for forming Nb carbide of 40 μm or less makes it possible to obtain an iron-based sintered component with high dimensional accuracy.
【0010】[0010]
【作用】上記の様に本発明では、粉末冶金用低合金鋼基
体に特定量のNbを含有せしめたところに最大の特徴を
有するものであり、このNbは、酸素、窒素、炭素との
結合力が高く、それらとの共存下で容易にNb化合物を
生成する。As described above, the present invention has the greatest feature in that a low alloy steel base for powder metallurgy contains a specific amount of Nb, which is bound to oxygen, nitrogen and carbon. It has high power and easily forms Nb compounds in the coexistence with them.
【0011】従って、適量のNbを含有させた低合金鋼
粉の製造工程等で酸素に触れると、該低合金鋼粉表面の
NbがNb酸化物に変わるが、このNb酸化物は通常の
焼結による還元ガス雰囲気では容易に還元されないの
で、当該Nb含有低合金鋼粉の表面にNb酸化物が存在
することになり、該Nb酸化物の存在により焼結面積が
減少し、焼結時の寸法収縮が著しく抑えられ、複雑な形
状でしかも圧粉成形体内で密度にばらつきがある場合で
あっても、形状歪みを生じることなく寸法精度の高い焼
結製品を得ることができる。Therefore, when oxygen is exposed in the manufacturing process of the low alloy steel powder containing an appropriate amount of Nb, Nb on the surface of the low alloy steel powder changes into Nb oxide, which is usually burnt. Since it is not easily reduced in a reducing gas atmosphere due to binding, Nb oxide is present on the surface of the Nb-containing low alloy steel powder, and the presence of the Nb oxide reduces the sintered area, resulting in It is possible to obtain a sintered product with high dimensional accuracy without causing shape distortion even when the dimensional shrinkage is significantly suppressed and the density has a complicated shape and the density varies within the powder compact.
【0012】また低合金鋼粉の圧粉成形・焼結に当たっ
ては、該低合金鋼粉と共に黒鉛粉等の炭素源や潤滑剤を
混合してから圧粉成形し、次いでアンモニア分解ガス等
の雰囲気下で焼結が行なわれるが、焼結工程では該鋼粉
中のNbが炭化物や窒化物を形成し、上記と同様に焼結
面積の減少によって寸法収縮を抑えると共に、これらの
Nb化合物やNbは焼結体内における結晶粒の粗大化を
抑制して機械的強度を高める作用も発揮する。In compacting / sintering the low alloy steel powder, a carbon source such as graphite powder or a lubricant is mixed with the low alloy steel powder and compacted, and then an atmosphere of ammonia decomposition gas or the like is produced. Sintering is carried out under the following conditions. In the sintering step, Nb in the steel powder forms carbides and nitrides, and the dimensional shrinkage is suppressed by reducing the sintered area in the same manner as described above. Also has the effect of suppressing coarsening of crystal grains in the sintered body and increasing the mechanical strength.
【0013】こうしたNbの添加効果を有効に発揮させ
るには、低合金鋼基体中に少なくとも0.02%以上の
Nbを含有させなければならず、これ未満では、特にN
b化合物の生成によってもたらされる上記焼結寸法変化
低減効果が十分に発揮されず、本発明で意図する目的を
達成できない。しかしNb量が多くなり過ぎると粗大な
Nb化合物が生成して焼結体の物性、殊に引張り強さに
悪影響が表われてくるので、0.15%以下に抑えなけ
ればならない。上記Nbの添加効果を有効に発揮させる
うえでより好ましいNb含有率は0.03〜0.10
%、更に好ましくは0.03〜0.07%の範囲であ
る。In order to effectively exert such Nb addition effect, it is necessary to contain at least 0.02% or more of Nb in the low alloy steel base.
The effect of reducing the sintering dimensional change brought about by the formation of the compound b is not sufficiently exerted, and the purpose intended in the present invention cannot be achieved. However, if the amount of Nb is too large, a coarse Nb compound is formed and the physical properties of the sintered body, particularly the tensile strength, are adversely affected, so the content must be suppressed to 0.15% or less. A more preferable Nb content is 0.03 to 0.10 for effectively exhibiting the above Nb addition effect.
%, And more preferably 0.03 to 0.07%.
【0014】上記の様に本発明では、粉末冶金用低合金
鋼基体中に特定量のNbを含有させ、特に焼結時の寸法
変化量を抑えて寸法精度を高めるところに特徴を有する
ものであるが、この場合、低合金鋼の成分として以下に
示す如く適量のNi、CrあるいはMoを適量含有させ
ることにより、焼結体の物性を一段と高めることができ
る。As described above, the present invention is characterized in that a specific amount of Nb is contained in the low alloy steel base for powder metallurgy, and in particular, the dimensional change during sintering is suppressed to improve the dimensional accuracy. However, in this case, the physical properties of the sintered body can be further improved by adding an appropriate amount of Ni, Cr or Mo as a component of the low alloy steel as shown below.
【0015】Ni:0.1〜2.0% Niは焼結体の靭性を高める作用があり、その効果は
0.1%以上含有させることによって有効に発揮される
が、過剰に添加すると鋼粉が硬質化して圧粉成形時の圧
縮性が低下するので2.0%以下に抑えなければならな
い。Ni: 0.1 to 2.0% Ni has the effect of increasing the toughness of the sintered body, and the effect is effectively exhibited by containing 0.1% or more, but if added in excess, steel Since the powder becomes hard and the compressibility at the time of powder compaction decreases, it must be suppressed to 2.0% or less.
【0016】Cr:0.4〜2.0% Crは焼入れ性を高めて焼結体の強度向上に寄与する元
素であり、その効果は0.4%以上の添加で有効に発揮
される。しかしそれらの効果は2.0%でほぼ飽和し、
それ以上含有させると焼結時の寸法変化量が大きくなる
傾向が生じてくるので、2.0%以下に抑えなければな
らない。Cr: 0.4 to 2.0% Cr is an element that enhances the hardenability and contributes to the improvement of the strength of the sintered body, and its effect is effectively exhibited by adding 0.4% or more. However, those effects are almost saturated at 2.0%,
If it is contained more than that amount, the amount of dimensional change at the time of sintering tends to increase, so it must be suppressed to 2.0% or less.
【0017】Mo:0.1〜3.0% Moも焼入れ性を高め焼結体の強度を向上させるうえで
有効に作用し、その効果は1.0%以上含有させること
によって有効に発揮される。しかしその効果は約3.0
%で飽和し、それ以上含有させると焼結時の寸法変化量
が大きくなる傾向が表われてくるので、3.0%を上限
とする。Mo: 0.1 to 3.0% Mo also acts effectively in enhancing the hardenability and the strength of the sintered body, and the effect is effectively exhibited by containing 1.0% or more. It But the effect is about 3.0
%, And if contained more than that, the amount of dimensional change during sintering tends to increase, so 3.0% is made the upper limit.
【0018】尚、本発明に係る鋼粉中に含まれる不可避
不純物としては、C,Si,Mn,P,S,O,N等、
通常の鋼材と同様の元素が挙げられるが、C含有量が多
過ぎると、粉末が硬くなって圧粉成形時の圧縮性が悪く
なるので0.02%以下、より好ましくは0.01%以
下に抑えるのがよい。Siは鋼粉製造用の原料、および
溶湯の脱酸用として添加されるものであるが、含有量が
多くなると矢張り粉末が硬くなるので、0.1%以下、
より好ましくは0.05%以下にすることが望まれる。The unavoidable impurities contained in the steel powder according to the present invention include C, Si, Mn, P, S, O, N, etc.
The same elements as in ordinary steel materials can be mentioned, but if the C content is too high, the powder becomes hard and the compressibility during powder compaction deteriorates, so 0.02% or less, more preferably 0.01% or less. It is good to keep Si is added as a raw material for steel powder production and for deoxidizing molten metal, but if the content is high, the arrow-tight powder becomes hard, so 0.1% or less,
More preferably, it is desired to be 0.05% or less.
【0019】Mnも同様に溶湯の性質を調整する元素と
して含まれるものであり、アトマイズ法によって作られ
る通常の鋼粉には通常0.8%程度含まれている。ま
た、Mnは焼入れ性を高める作用もあるが、粉末の圧縮
性を考慮すると0.3%以下に抑えることが望ましい。
その他の不純物であるPは0.01%程度以下、Sは
0.01%程度以下が好ましい。Similarly, Mn is also contained as an element for adjusting the properties of the molten metal, and usually 0.8% is contained in ordinary steel powder produced by the atomizing method. Further, Mn also has an effect of enhancing hardenability, but considering the compressibility of the powder, it is desirable to suppress it to 0.3% or less.
Other impurities, P, is preferably about 0.01% or less, and S is about 0.01% or less.
【0020】OおよびNは、主に粉末製造時に混入して
くるものであり、これらはNb,Cr,Fe等の金属酸
化物または金属窒化物として存在する。この内Oは0.
2%前後含有され、少なくとも粉末の表面部にNbの酸
化物を形成して前述した様な作用を発揮する。しかし、
粉末が酸化されたときと同様にO含有量があまり多くな
ると、焼結ガスの露点に悪影響を及ぼして、焼結寸法変
化を不安定にする恐れが生じてくる。また、Nは通常
0.03%程度含有されているが、N含有量が多すぎる
と、硬く脆化するので好ましくない。O and N are mainly mixed in during powder production, and these exist as metal oxides or metal nitrides of Nb, Cr, Fe and the like. Of these, O is 0.
It is contained in an amount of about 2% and forms the oxide of Nb on at least the surface portion of the powder to exhibit the above-described action. But,
When the O content is too high as in the case where the powder is oxidized, the dew point of the sintering gas is adversely affected, and the dimensional change in sintering may become unstable. Further, N is usually contained in an amount of about 0.03%, but if the N content is too large, it becomes hard and brittle, which is not preferable.
【0021】本発明の粉末冶金用低合金鋼粉は、上記成
分組成の要件を満たす様に溶湯を調整し、アトマイズ法
により完全合金化された粉末を得る方法、或いは添加元
素またはその合金粉末および鉄粉とを混合し、それを加
熱して冶金的に付着させた拡散付着型の鋼粉とする方法
等により製作できる。しかし、焼結時の寸法変化をより
小さくするには、Nbが均一に分布したものが好まし
く、こうした意味からすると完全合金型の粉体とするの
が望ましい。粒径は特に制限的でないが、歩留まり、取
扱性や粉末成形性、焼結性等の観点から好ましいのは平
均粒子径で50〜100μm、より好ましくは50〜8
0μmであって、最大粒径は250μm以下である。The low alloy steel powder for powder metallurgy of the present invention is a method of preparing a completely alloyed powder by an atomizing method by adjusting the molten metal so as to satisfy the requirements of the above component composition, or an additive element or its alloy powder and It can be manufactured by a method of mixing with iron powder and heating it to form diffusion-adhesion-type steel powder which is metallurgically adhered. However, in order to further reduce the dimensional change during sintering, it is preferable that Nb is evenly distributed. From this point of view, it is desirable to use a perfect alloy type powder. The particle size is not particularly limited, but from the viewpoint of yield, handleability, powder moldability, sinterability, etc., the average particle size is preferably 50 to 100 μm, more preferably 50 to 8 μm.
It is 0 μm and the maximum particle size is 250 μm or less.
【0022】上記の低合金鋼粉を用いた焼結成形体の製
造は、通常の方法に従って行なえばよく、たとえば該低
合金鋼粉を黒鉛粉等の炭素源やステアリン酸亜鉛等の成
形潤滑剤と均一に混合してから400〜800MPa程
度で所定形状に圧粉成形し、次いでアンモニア分解ガス
等の非酸化性雰囲気中で1100〜1250℃程度に加
熱処理することにより焼結させる。このとき、本発明に
係る低合金鋼粉を使用すると、前述の如く粉末表面部に
Nb酸化物が存在し、又、Nb炭化物もしくはNb窒化
物が生成して、それらNb化合物の存在による焼結面積
の減少効果によって寸法変化量が抑えられ、圧粉成形体
内または個々の圧粉成形体に若干の密度ばらつきがある
場合であっても高い寸法精度の焼結成形体を得ることが
でき、焼結後寸法調整の為の機械加工や再加圧加工等を
行わなくとも実質的にそのままで製品化することができ
る。The above-mentioned low alloy steel powder may be produced by a conventional method, for example, by using the low alloy steel powder as a carbon source such as graphite powder and a forming lubricant such as zinc stearate. After being uniformly mixed, the powder is compacted into a predetermined shape at about 400 to 800 MPa, and then heat-treated at about 1100 to 1250 ° C. in a non-oxidizing atmosphere such as an ammonia decomposition gas to sinter. At this time, when the low alloy steel powder according to the present invention is used, Nb oxides are present on the powder surface portion as described above, and Nb carbides or Nb nitrides are produced, and sintering is caused by the presence of these Nb compounds. Due to the area reduction effect, the amount of dimensional change is suppressed, and it is possible to obtain a sintered compact with high dimensional accuracy even if there is a slight density variation in the compact or in the individual compacts. It is possible to commercialize the product substantially as it is without performing mechanical processing or re-pressurizing processing for adjusting the post-dimension.
【0023】又、上記低合金鋼粉を用いた焼結体の熱処
理品について、鋼粉中に添加されたNbの存在形態やそ
のサイズ等と焼結時の寸法精度や物性を調べたところ、
Nbは主に炭化物の形態で存在しており、一部は酸化物
および微量の窒化物の状態で認められる。又、Nb化合
物の最大粒子径が40μm以下の場合に優れた寸法精度
と物性を示すことが確認された。このNb化合物の最大
粒子径は、Nb含有率と密接に関係しており、Nb含有
量が少ないと小さく、Nb含有量の増加と共に大きくな
り、Nb含有量が前記の規定範囲の上限0.15%を超
える場合は、焼結体中のNb化合物サイズの最大粒径が
40μmを超える粗粒のものとなり、この焼結体は引張
り強さの低いものとなり、本発明の目的にそぐわなくな
ることが確認された。従って本発明における焼結体は、
Nbの含有量が0.02〜0.15%であって、焼結体
の表面もしくは任意断面に40μm以下のNb化合物が
存在する点で、従来の焼結低合金鋼焼結成形体と区別す
ることができる。Further, regarding the heat-treated product of the sintered body using the low alloy steel powder, the existence form and size of Nb added to the steel powder, and the dimensional accuracy and physical properties at the time of sintering were examined,
Nb exists mainly in the form of carbides, and some are found in the state of oxides and trace amounts of nitrides. It was also confirmed that when the maximum particle size of the Nb compound was 40 μm or less, excellent dimensional accuracy and physical properties were exhibited. The maximum particle size of this Nb compound is closely related to the Nb content, and it is small when the Nb content is small, and becomes large as the Nb content increases, and the Nb content is the upper limit of 0.15 of the specified range. %, The maximum particle size of the Nb compound size in the sintered body is more than 40 μm, and the sintered body has a low tensile strength, which may defeat the purpose of the present invention. confirmed. Therefore, the sintered body of the present invention,
The content of Nb is 0.02 to 0.15%, and it is distinguished from the conventional sintered low alloy steel sintered compact in that the Nb compound of 40 μm or less exists on the surface or arbitrary cross section of the sintered compact. be able to.
【0024】なお、本発明に係る方法で製作された焼結
体の組織は、炭素源の添加量および焼結時の冷却速度に
よって異なるが、パーライトとフェライト、或いはベイ
ナイト組織を呈し、熱処理体では通常はマルテンサイト
組織を呈している。The structure of the sintered body produced by the method according to the present invention varies depending on the amount of the carbon source added and the cooling rate during sintering, but exhibits a pearlite and ferrite or bainite structure. It usually has a martensite structure.
【0025】[0025]
【実施例】以下、実施例を参照しつつ本発明の構成およ
び作用効果をより具体的に説明するが、本発明はもとよ
り下記実施例によって制限を受けるものではなく、前・
後記の趣旨に適合し得る範囲で変更して実施することも
可能であり、それらはいずれも本発明の技術的範囲に包
含される。EXAMPLES The constitution and effects of the present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples, and
Modifications can be made within a range that is compatible with the gist of the description below, and all of them are included in the technical scope of the present invention.
【0026】実施例 表1に示す組成の粉末冶金用低合金鋼粉(平均粒径50
〜70μm)に、黒鉛粉0.6%とステアリン酸亜鉛
0.75%を加えて均一に混合し、圧粉して外径30m
m、内径20mm、全長10mmの成形体を得た。この
とき、成形体の密度が6.7g/cm3 ,6.9g/c
m3 ,7.1g/cm3 となる様に成形圧力を調整し
た。Example Low alloy steel powder for powder metallurgy (average particle size 50) having the composition shown in Table 1
To 70 μm), 0.6% of graphite powder and 0.75% of zinc stearate are added and uniformly mixed, and pressed to an outer diameter of 30 m.
m, an inner diameter of 20 mm, and a total length of 10 mm were obtained. At this time, the density of the molded body was 6.7 g / cm 3 , 6.9 g / c.
The molding pressure was adjusted so that m 3 was 7.1 g / cm 3 .
【0027】なお、鋼粉No.1〜6は、Ni,Cr,M
oを含みNbの含有量が異なる低合金鋼粉である。ま
た、鋼粉No.7〜9は従来から使用されている比較用の
粉末であり、鋼粉No.7は3%Crアトマイズ合金鉄
粉、鋼粉No.8はNi−Mo系拡散合金鉄粉、鋼粉No.
9はアトマイズ鉄粉である。Steel powder Nos. 1 to 6 are Ni, Cr, and M.
It is a low alloy steel powder containing O and having different Nb contents. Further, steel powder Nos. 7 to 9 are conventionally used for comparison, steel powder No. 7 is 3% Cr atomized alloy iron powder, and steel powder No. 8 is Ni-Mo type diffusion alloy iron. Powder, steel powder No.
9 is atomized iron powder.
【0028】得られた各圧粉成形体の外径寸法を正確に
測定した後、アンモニア分解ガス雰囲気中、温度125
0℃で60分間加熱して焼結し、焼結後の外径寸法を測
定して寸法変化率を求めた。寸法変化率は、日本粉末冶
金工業会規格JPMA P12−1992の計算方法に
準拠して測定し、その寸法変化率をY、圧粉体密度をX
とし、最小自乗法により[Y=AX+B]で表わされる
Aの値を求め、該Aの絶対値α(=|A|)、即ち寸法
変化への影響係数を求めた。又、上記と同様にして各混
合粉末を金型で圧粉し、密度が7.2g/cm3 、寸法
が内径10mm、外径60mm、全長10mmの成形体
とした後、前記と同じ条件で焼結し、JPMAで定める
引張試験片に機械加工した後、850℃の油焼入れ、1
80℃の焼戻し処理を行なったものについて、引張試験
を行なった。結果を表2に示す。After accurately measuring the outer diameter dimension of each of the obtained green compacts, the temperature was set to 125 at the atmosphere of ammonia decomposition gas.
Sintering was performed by heating at 0 ° C. for 60 minutes, and the outer diameter dimension after sintering was measured to obtain the dimensional change rate. The dimensional change rate is measured according to the calculation method of Japan Powder Metallurgy Association Standard JPMA P12-1992, and the dimensional change rate is Y and the green compact density is X.
Then, the value of A represented by [Y = AX + B] was obtained by the method of least squares, and the absolute value α (= | A |) of A, that is, the influence coefficient to the dimensional change was obtained. Also, after pressing each mixed powder in a mold in the same manner as described above to obtain a molded body having a density of 7.2 g / cm 3 , a size of 10 mm inner diameter, an outer diameter of 60 mm and a total length of 10 mm, the same conditions as above Sintered and machined into tensile test pieces specified by JPMA, then oil-hardened at 850 ° C, 1
A tensile test was performed on the material that was tempered at 80 ° C. The results are shown in Table 2.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】表1および表2から明らかである様に、本
発明の規定要件を満たすNo.1〜4の低合金鋼粉を用い
たものは、影響係数αがいずれも0.4以下であって優
れた寸法精度を有していることが分かる。これらに対し
No.5の比較鋼粉は、Nbが含まれていない為、影響係
数αが高い値を示しており、寸法精度を満足し得ないも
のであることが分かる。又、No.6はNbが規定範囲を
超える比較例であり、影響係数αは非常に小さな値が得
られているが、引張り強さが低い。これらNo.1〜6に
おけるNb含有量と影響係数αおよび引張り強さとの関
係を図1および図2に示す。このグラフから明らかであ
る様に、一応の合格レベルと判断される影響係数αが
0.4以下を満足するには、Nbを0.02%以上含有
させるべきであり、又、引張り強さの低下を防止するに
はNbを0.15%を超えない様にすべきであることが
分かる。As is clear from Tables 1 and 2, in the case of using the low alloy steel powder Nos. 1 to 4 satisfying the requirements of the present invention, the influence coefficient α is 0.4 or less. It can be seen that it has excellent dimensional accuracy. On the other hand, the comparative steel powder of No. 5 does not contain Nb, so that the influence coefficient α shows a high value, and it can be seen that the dimensional accuracy cannot be satisfied. Further, No. 6 is a comparative example in which Nb exceeds the specified range, and although the influence coefficient α has a very small value, the tensile strength is low. The relationship between the Nb content and the coefficient of influence α and the tensile strength in Nos. 1 to 6 is shown in FIGS. 1 and 2. As is apparent from this graph, Nb should be contained in an amount of 0.02% or more and the tensile strength of It can be seen that Nb should not exceed 0.15% to prevent the decrease.
【0032】一方、比較用No.7,8は、ある程度の引
張り強さを示しているが、影響係数αが高い値を示して
おり、No.9の純鉄粉のものは、影響係数αが小さく寸
法精度に優れたものであるが、引張り強さにおいて非常
に低い値を示している。On the other hand, the comparative Nos. 7 and 8 show tensile strength to some extent, but the influence coefficient α shows a high value, and the pure iron powder of No. 9 has an influence coefficient α. Is small and excellent in dimensional accuracy, but shows a very low value in tensile strength.
【0033】次に、表3はNo.1〜4の本発明鋼粉とN
o.5,6の比較鋼粉を用いて製作された熱処理体の引張
り試験後の破断面におけるNb化合物サイズと断面組織
からみた結晶粒度を示したものである。Nb化合物サイ
ズは、破断面をEPMA面分析して、その最大粒径を求
めたもので、一例としてNo.3の本発明鋼粉を用いた試
料の破断面SEM像を図3に、Nbの面分析写真を図4
に示す。破断面にNbが存在し、この試料のNb最大粒
径は40μmであることを示している。又、結晶粒度
は、熱処理品の研磨断面をGh液(ピクリン酸+ドデシ
ルベンゼンスルホン酸ソーダ+水)で腐蝕し、顕微鏡で
観察した結果を結晶粒度No.で表したものである。Next, Table 3 shows the steel powders of the present invention Nos. 1 to 4 and N.
3 shows the Nb compound size in the fracture surface after the tensile test of the heat-treated body manufactured using the comparative steel powders of o.5 and 6 and the crystal grain size as seen from the sectional structure. The Nb compound size was obtained by analyzing the EPMA surface of the fracture surface and determining the maximum grain size. As an example, the fracture surface SEM image of the sample using the steel powder of the present invention of No. 3 is shown in FIG. Figure 4 is a surface analysis photograph
Shown in. It is shown that Nb is present in the fracture surface and the maximum Nb particle size of this sample is 40 μm. The crystal grain size is the crystal grain size No. of the result of microscopic observation of the polished cross section of the heat-treated product, which was corroded with Gh liquid (picric acid + sodium dodecylbenzenesulfonate + water).
【0034】表3から明らかである様に、Nb含有量が
増加するにつれて、Nb化合物の最大粒径は大きくな
り、結晶粒度は、Nbの含有によって微細化し、微細化
効果はNb量0.07%を超えるあたりで飽和してい
る。As is apparent from Table 3, the maximum grain size of the Nb compound increases as the Nb content increases, and the grain size becomes finer due to the Nb content, and the grain refining effect is 0.07. It is saturated when it exceeds%.
【0035】[0035]
【表3】 [Table 3]
【0036】次にNo.4の本発明鋼粉を用いた焼結体
を、電解液としてアセチルアセトン1%およびテトラメ
チルアンモニウムクロライド1%とのメタノール溶液を
使用し、電圧0〜100mVで電解抽出した後、残渣を
0.2μmのフィルターで分離して、その残渣をX線分
析を行なった。結果は図5に示す通りであり、検出され
るスペクトルはNbとCであり、この焼結体にはNb炭
化物が生成していることが分かる。Next, a sintered body using the steel powder of the present invention No. 4 was electrolytically extracted at a voltage of 0 to 100 mV using a methanol solution of 1% acetylacetone and 1% tetramethylammonium chloride as an electrolytic solution. After that, the residue was separated with a 0.2 μm filter, and the residue was subjected to X-ray analysis. The results are shown in FIG. 5, the detected spectra are Nb and C, and it can be seen that Nb carbide is generated in this sintered body.
【0037】一方、No.4の本発明鋼粉を、篩目開き1
50μmと180μmの篩で粒度調整して180μm篩
を通過し150μm篩上となった粉末を採取し、この粉
末の表面をEPMA線分析したところ、図6に示す如く
Nbと酸素の信号波形はほぼ一致しており、鋼粉表面に
Nb酸化物が生成されていることが確認された。On the other hand, the steel powder of the present invention No. 4 was sieved with a sieve opening 1
The particle size was adjusted with 50 μm and 180 μm sieves, the powder that passed through the 180 μm sieve and became on the 150 μm sieve was collected, and the surface of this powder was analyzed by EPMA. The signal waveforms of Nb and oxygen were almost as shown in FIG. It is confirmed that the Nb oxide is generated on the surface of the steel powder.
【0038】[0038]
【発明の効果】本発明は以上の様に構成されており、粉
末冶金用低合金鋼基体中に適量のNbを含有させること
によって、焼結時の寸法変化を抑えることができ、特に
圧粉成形体内で密度にバラツキがある場合でも、歪を生
じることなく寸法精度の高い焼結部品を得ることができ
る。EFFECTS OF THE INVENTION The present invention is configured as described above, and by containing an appropriate amount of Nb in a low alloy steel base for powder metallurgy, it is possible to suppress dimensional change during sintering, Even if there is a variation in density within the molded body, it is possible to obtain a sintered component with high dimensional accuracy without causing distortion.
【図面の簡単な説明】[Brief description of drawings]
【図1】Nb含有率と焼結時における寸法変化の影響係
数αの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the Nb content and the influence coefficient α of dimensional change during sintering.
【図2】Nb含有率と熱処理体の引張り強さの関係を示
すグラフである。FIG. 2 is a graph showing the relationship between the Nb content and the tensile strength of heat-treated bodies.
【図3】実施例で得た熱処理体の破断面の金属組織を示
す図面代用顕微鏡写真である。FIG. 3 is a drawing-substitute micrograph showing a metal structure of a fracture surface of a heat-treated body obtained in an example.
【図4】実施例で得た熱処理体の破断面のEPMA面分
析結果を示す図面代用写真である。FIG. 4 is a drawing-substituting photograph showing an EPMA surface analysis result of a fracture surface of a heat-treated body obtained in an example.
【図5】実施例で得た焼結体を電解抽出した残渣のX線
回析チャートである。FIG. 5 is an X-ray diffraction chart of the residue obtained by electrolytically extracting the sintered body obtained in the example.
【図6】実施例で得た低合金鋼粉表面のSEM像を示す
写真とEPMA分析チャートである。FIG. 6 is a photograph and an EPMA analysis chart showing an SEM image of the surface of the low alloy steel powder obtained in the example.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 正昭 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 石井 啓 千葉県松戸市稔台520番地 日立粉末冶金 株式会社内 (72)発明者 筒井 唯之 千葉県松戸市稔台520番地 日立粉末冶金 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaaki Sato Inventor Masaaki Sato 2-3-1, Niihama, Arai-cho, Takasago, Hyogo Pref., Takasago Works, Kobe Steel, Ltd. (72) Kei Ishii, 520 Minorita, Matsudo-shi, Chiba Hitachi Powder Inside the Metallurgical Co., Ltd. (72) Inventor, Yuiyuki Tsutsui, 520 Minorita, Matsudo City, Chiba Prefecture Inside Hitachi Powdered Metals Co., Ltd.
Claims (2)
0.15%を含有すると共に、Ni:0.1〜2.0
%、Cr:0.4〜2.0%およびMo:0.1〜3.
0%よりなる群から選択される少なくとも1種の元素を
含み、残部が鉄および不可避不純物からなる粉末の少な
くとも表面に、40μm以下のNb酸化物が存在するこ
とを特徴とする粉末冶金用低合金鋼粉。1. The total composition is Nb: 0.02 by weight.
0.15% and Ni: 0.1-2.0
%, Cr: 0.4-2.0% and Mo: 0.1-3.
A low alloy for powder metallurgy, characterized in that at least the surface of a powder containing at least one element selected from the group consisting of 0% and the balance consisting of iron and unavoidable impurities has an Nb oxide of 40 μm or less. Steel powder.
鋼粉に黒鉛を混合し、該混合物を所定形状に圧粉して得
られる成形体を、非酸化性雰囲気下に、炭素が鉄素地に
固溶すると共に40μm以下のNb炭化物を形成する温
度・時間で焼結することを特徴とする、高寸法精度を有
する鉄系焼結部品の製造方法。2. A molded body obtained by mixing graphite with the low alloy steel powder for powder metallurgy according to claim 1, and pressing the mixture into a predetermined shape to obtain a carbon powder in a non-oxidizing atmosphere. A method for producing an iron-based sintered component having high dimensional accuracy, which comprises sintering at a temperature and for a time to form a solid solution in an iron matrix and form Nb carbide of 40 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28523593A JPH07138694A (en) | 1993-11-15 | 1993-11-15 | Production of low alloy steel powder for powder metallurgy and ferrous sintered parts with high dimensional accuracy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28523593A JPH07138694A (en) | 1993-11-15 | 1993-11-15 | Production of low alloy steel powder for powder metallurgy and ferrous sintered parts with high dimensional accuracy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07138694A true JPH07138694A (en) | 1995-05-30 |
Family
ID=17688870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28523593A Pending JPH07138694A (en) | 1993-11-15 | 1993-11-15 | Production of low alloy steel powder for powder metallurgy and ferrous sintered parts with high dimensional accuracy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07138694A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102534349A (en) * | 2010-12-16 | 2012-07-04 | 杰富意钢铁株式会社 | Alloy steel powder for powder metallurgy, iron-based sintering material and manufacturing method thereof |
JP2016035106A (en) * | 2010-05-19 | 2016-03-17 | ヘガナーズ・コーポレーション | Compositions and methods for improved dimensional control in ferrous powder metallurgy applications |
-
1993
- 1993-11-15 JP JP28523593A patent/JPH07138694A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016035106A (en) * | 2010-05-19 | 2016-03-17 | ヘガナーズ・コーポレーション | Compositions and methods for improved dimensional control in ferrous powder metallurgy applications |
CN102534349A (en) * | 2010-12-16 | 2012-07-04 | 杰富意钢铁株式会社 | Alloy steel powder for powder metallurgy, iron-based sintering material and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4439591B2 (en) | Stainless steel powder and products made by powder metallurgy from the powder | |
KR100249006B1 (en) | Water spray iron powder for powder plating and its manufacturing method | |
KR101382304B1 (en) | Process for production of sintered compact by powder metallurgy | |
KR20170080668A (en) | Alloy steel powder for powder metallurgy, and sintered body | |
JPH04231404A (en) | Method for powder metallurgy by means of optimized two-times press-two-times sintering | |
JP3273789B2 (en) | Iron powder and mixed powder for powder metallurgy and method for producing iron powder | |
US7384446B2 (en) | Mixed powder for powder metallurgy | |
EP0812925A1 (en) | Low alloy steel powders for sinterhardening | |
JP4201830B2 (en) | Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body | |
JPH07157803A (en) | Water atomized iron powder for powder metallurgy and production thereof | |
EP0200691B1 (en) | Iron-based powder mixture for a sintered alloy | |
JP6690781B2 (en) | Alloy steel powder | |
JP3517505B2 (en) | Raw material powder for sintered wear resistant material | |
JPH07138694A (en) | Production of low alloy steel powder for powder metallurgy and ferrous sintered parts with high dimensional accuracy | |
JPS6318001A (en) | Alloy steel powder for powder metallurgy | |
JPH08921B2 (en) | Pure iron powder for powder metallurgy with excellent compressibility and magnetic properties | |
KR102533137B1 (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
JPH1096001A (en) | Production of partially diffused alloyed steel powder | |
JP2704064B2 (en) | Iron-based powder for sintering and method for producing the same | |
JP4615191B2 (en) | Method for producing iron-based sintered body | |
JPS61295302A (en) | Low-alloy iron powder for sintering | |
JP4715358B2 (en) | Alloy steel powder for powder metallurgy | |
EP1323840B1 (en) | Iron base mixed powder for high strength sintered parts | |
KR20200128158A (en) | Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy | |
JP2007169736A (en) | Alloy steel powder for powder metallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030805 |