Nothing Special   »   [go: up one dir, main page]

JP5768932B2 - 放射線撮影装置 - Google Patents

放射線撮影装置 Download PDF

Info

Publication number
JP5768932B2
JP5768932B2 JP2014505799A JP2014505799A JP5768932B2 JP 5768932 B2 JP5768932 B2 JP 5768932B2 JP 2014505799 A JP2014505799 A JP 2014505799A JP 2014505799 A JP2014505799 A JP 2014505799A JP 5768932 B2 JP5768932 B2 JP 5768932B2
Authority
JP
Japan
Prior art keywords
foil
radiation
grid
integrated value
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014505799A
Other languages
English (en)
Other versions
JPWO2013140445A1 (ja
Inventor
及川 四郎
四郎 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014505799A priority Critical patent/JP5768932B2/ja
Publication of JPWO2013140445A1 publication Critical patent/JPWO2013140445A1/ja
Application granted granted Critical
Publication of JP5768932B2 publication Critical patent/JP5768932B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5282Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to scatter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5252Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data removing objects from field of view, e.g. removing patient table from a CT image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Description

この発明は、放射線画像を得る放射線撮影装置に係り、特に、放射線グリッドを用いて散乱放射線を除去する技術に関する。
従来の放射線撮影装置では、被検体からの散乱放射線がフラットパネル型放射線検出器(放射線検出手段)に入射するのを防止するために、散乱放射線を除去する放射線グリッドを備えている。放射線グリッドは、散乱放射線を吸収するグリッド箔と放射線を透過する中間層とを交互に並べて構成されている。グリッド箔は、鉛などのようにX線に代表される放射線を吸収する物質で形成され、中間層は、アルミニウムや有機物質などのようにX線に代表される放射線を透過させる中間物質で形成されている。ただし、中間層を放射線が通過する際に、散乱放射線以外の放射線(直接放射線)も中間物質によって吸収されてしまう。そこで、中間層を空隙にすることで、散乱放射線以外の放射線(直接放射線)を確実に透過させるエアグリッドが、放射線グリッドとして近年用いられている。
ところで、直接放射線がグリッド箔によって遮られる部分では、グリッド箔による箔影が放射線画像に映り込む。そこで、箔影に起因した偽像を除去する偽像除去処理法が本出願人から提案されている(例えば、特許文献1、2参照)。
国際公開第WO2010−064287号 特開2011−167334号公報
しかしながら、エアグリッドでは上述した中間層が空隙となっている関係で、グリッド箔のねじれやたわみによる偽像が生じやすい。また、フラットパネル型放射線検出器(FPD: Flat Panel Detector)で得られた放射線画像を構成する各々の画素に同期して(例えば4画素毎に同期して)グリッド箔が配置されたエアグリッドで偽像除去処理をこれまで行っていたが、グリッド箔を集束距離配置で非同期な場合にも適切な偽像除去処理が可能なことが望まれる。言い換えると、多様なFPDの画素サイズに対応し個々に同期したサイズのエアグリッドをそれぞれ製作するのは非現実的である。
この発明は、このような事情に鑑みてなされたものであって、多様なサイズの放射線グリッドや放射線検出手段に対応してグリッド箔のねじれやたわみを考慮して箔影を除去することができる放射線撮影装置を提供することを目的とする。
この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、この発明の放射線撮影装置(前者の発明の放射線撮影装置)は、放射線画像を得る放射線撮影装置であって、放射線を照射する放射線源と、照射された放射線を検出する放射線検出手段と、その放射線検出手段の検出側に設けられ、散乱放射線を吸収するグリッド箔を並べて構成された放射線グリッドとを備え、さらに、前記放射線撮影装置は、前記グリッド箔による箔影が画素を跨っている箇所において、当該箇所を、前記放射線源,前記放射線検出手段および前記放射線グリッドの相互の幾何学的な位置関係に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める積算値算出手段と、被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段とを備え、さらに、前記放射線撮影装置は、前記グリッド箔による箔影が画素を跨っている箇所において、前記グリッド箔のたわみに関する定数であるたわみ定数を求めるたわみ定数算出手段を備え、前記積算値算出手段と前記たわみ定数算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とするものである。
また、前者の発明の放射線撮影装置とは別の後者の発明の放射線撮影装置は、放射線画像を得る放射線撮影装置であって、放射線を照射する放射線源と、照射された放射線を検出する放射線検出手段と、その放射線検出手段の検出側に設けられ、散乱放射線を吸収するグリッド箔を並べて構成された放射線グリッドとを備え、さらに、前記放射線撮影装置は、前記グリッド箔による箔影が画素を跨っている箇所において、当該箇所を、前記放射線源,前記放射線検出手段および前記放射線グリッドの相互の幾何学的な位置関係に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める積算値算出手段と、被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段とを備え、さらに、前記放射線撮影装置は、前記グリッド箔のねじれに関する定数であるねじれ定数を求めるねじれ定数算出手段を備え、前記積算値算出手段と前記ねじれ定数算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とするものである。
これらの前者および後者の発明の放射線撮影装置によれば、放射線源,放射線検出手段および放射線グリッドの他に、グリッド箔による箔影が画素を跨っている箇所において、当該箇所を、放射線源,放射線検出手段および放射線グリッドの相互の幾何学的な位置関係に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める積算値算出手段を備えている。そして、被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段を備え、上述した積算値算出手段と上述した撮影像収集手段とに基づいてグリッド箔による箔影を除去して放射線画像を最終的に得る。グリッド箔のねじれやたわみによりグリッド箔による箔影が画素を跨っていたとしても、当該箇所を、放射線源,放射線検出手段および放射線グリッドの相互の幾何学的な位置関係(すなわちジオメトリー(geometry))に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める。したがって、放射線グリッドや放射線検出手段のサイズが変わったとしても当該跨り積算値に基づいて箔影を除去することになる。その結果、多様なサイズの放射線グリッドや放射線検出手段に対応してグリッド箔のねじれやたわみを考慮して箔影を除去することができる。なお、個々のグリッド箔のねじれやたわみにより箔影が必ずしも当該画素を跨っている、あるいは覆っているとは限らない。箔影が跨っているであろうと思われる箇所での画素をジオメトリーから認定し、箔影の跨りの状況によらずに一様に当該箇所における跨り積算値を求めるということに留意されたい。
前者の発明の放射線撮影装置において、グリッド箔による箔影が画素を跨っている箇所において、グリッド箔のたわみに関する定数であるたわみ定数を求めるたわみ定数算出手段を備え、積算値算出手段とたわみ定数算出手段と撮影像収集手段とに基づいてグリッド箔による箔影を除去して放射線画像を最終的に得るたわみを数値化したたわみ定数をも用いてグリッド箔による箔影を除去することにより、グリッド箔のたわみをより一層考慮して箔影をより一層精密に除去することができる。
後者の発明の放射線撮影装置において、グリッド箔のねじれに関する定数であるねじれ定数を求めるねじれ定数算出手段を備え、積算値算出手段とねじれ定数算出手段と撮影像収集手段とに基づいてグリッド箔による箔影を除去して放射線画像を最終的に得るねじれを数値化したねじれ定数をも用いてグリッド箔による箔影を除去することにより、グリッド箔のねじれをより一層考慮して箔影をより一層精密に除去することができる。また、前者の発明の放射線撮影装置(たわみ定数算出手段を備えた放射線撮影装置)および後者の発明の放射線撮影装置’(ねじれ定数算出手段を備えた放射線撮影装置)を組み合わせてもよい。すなわち、積算値算出手段とたわみ定数算出手段とねじれ定数算出手段と撮影像収集手段とに基づいてグリッド箔による箔影を除去して放射線画像を最終的に得てもよい。
これらの発明の放射線撮影装置において、箔影の幅と画素サイズとに基づく所定倍率を、被検体のない状態で検出された放射線検出信号に基づく基準校正データの跨り積算値に乗じる積算値乗算手段を備えるのが好ましい。所定倍率を基準校正データの跨り積算値に乗じることにより、多様なサイズの放射線グリッドや放射線検出手段に応じて箔影を除去した放射線画像を求めることができる。したがって、各々の放射線検出手段、あるいはジオメトリーに応じて放射線グリッドを製作せずとも1つの放射線グリッドを用いて適切な偽像除去処理を行うことが可能となる。
前者および後者の発明に係る放射線撮影装置によれば、グリッド箔による箔影が画素を跨っている箇所において、当該箇所を、放射線源,放射線検出手段および放射線グリッドの相互の幾何学的な位置関係に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める積算値算出手段を備えている。グリッド箔のねじれやたわみによりグリッド箔による箔影が画素を跨っていたとしても、当該箇所をジオメトリーに基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める。したがって、放射線グリッドや放射線検出手段のサイズが変わったとしても当該跨り積算値に基づいて箔影を除去することになる。その結果、多様なサイズの放射線グリッドや放射線検出手段に対応してグリッド箔のねじれやたわみを考慮して箔影を除去することができる。
前者の発明の放射線撮影装置において、たわみを数値化したたわみ定数をも用いてグリッド箔による箔影を除去することにより、グリッド箔のたわみをより一層考慮して箔影をより一層精密に除去することができる。
後者の発明の放射線撮影装置において、ねじれを数値化したねじれ定数をも用いてグリッド箔による箔影を除去することにより、グリッド箔のねじれをより一層考慮して箔影をより一層精密に除去することができる。
実施例に係るX線撮影装置の概略構成図およびブロック図である。 フラットパネル型X線検出器(FPD)の検出面の模式図である。 X線グリッドの概略図である。 実施例に係る具体的な画像処理部のブロック図である。 たわみ定数を求めるときの位置関係を示す概略図である。 たわみ定数を実際の撮影に適用するときの概略図である。 ねじれ定数を求めるときの位置関係を示す概略図である。 ねじれ定数を実際の撮影に適用するときの概略図である。 たわみ定数の算出を模式的に示した概略図である。 基準校正データの跨り積算値のプロファイルの模式図である。 所定倍率を基準校正データの跨り積算値に乗じるときの説明に供する模式図である。
以下、図面を参照してこの発明の実施例を説明する。図1は、実施例に係るX線撮影装置の概略構成図およびブロック図であり、図2は、フラットパネル型X線検出器(FPD)の検出面の模式図であり、図3は、X線グリッドの概略図である。本実施例では、放射線としてX線を例に採って説明するとともに、放射線撮影装置として、例えば心臓血管の診断に用いられる装置(CVS: cardiovascular systems)に実施するためのCアームを備えたX線撮影装置を例に採って説明する。また、放射線グリッドとして、X線管の焦点を結ぶ射線に沿ってグリッド箔を配置した集束グリッドで、中間層を空隙としたエアグリッドを例に採って説明する。
本実施例に係るX線撮影装置は、図1に示すように、被検体Mを載置した天板1と、X線を照射するX線管2と、照射されたX線を検出するフラットパネル型X線検出器(以下、「FPD」と略記する)3と、そのFPD3の検出側に設けられ、散乱X線を吸収するグリッド箔4a(図3などを参照)を並べて構成されたX線グリッド4とを備えている。X線管2は、この発明における放射線源に相当し、フラットパネル型X線検出器(FPD)3は、この発明における放射線検出手段に相当し、X線グリッド4は、この発明における放射線グリッドに相当する。
この他に、X線撮影装置は、一端でX線管2を保持し、他端でFPD3をX線グリッド4とともに保持するCアーム5を備えている。図1では、Cアーム5は、被検体Mの体軸方向に湾曲状に形成されている。Cアーム5は、Cアーム5自身に沿って被検体Mの体軸と直交する回転中心軸の軸心周りに回転することで、Cアーム5に保持されたX線管2,FPD3およびX線グリッド4も同方向に回転することが可能である。さらに、Cアーム5は体軸と直交する回転中心軸の軸心周りに回転することで、X線管2,FPD3およびX線グリッド4も同方向に回転することが可能である。
具体的には、Cアーム5は、床面に固定配置された基台6に、支柱7およびアーム保持部8を介して保持される。基台6に対して支柱7は、鉛直軸の軸心周りに回転可能で、この回転により支柱7に保持されたCアーム5ごとX線管2,FPD3およびX線グリッド4も同方向に回転することが可能である。また、支柱7に対してアーム保持部8を被検体Mの体軸の軸心周りに回転可能に保持することで、アーム保持部8に保持されたCアーム5ごとX線管2,FPD3およびX線グリッド4も同方向に回転することができる。また、アーム保持部8に対してCアーム5を回転中心軸の軸心周りに回転可能に保持することで、CアームごとX線管2,FPD3およびX線グリッド4も同方向に回転することができる。
さらに、FPD3を、X線管2とFPD3とを結ぶX線の照射軸に沿って接近・離反させる、あるいは照射軸と直交する集束ライン方向に接近・離反させるように構成してもよい。また、X線管2,FPD3およびX線グリッド4の位置関係が一定である筈の条件でも、Cアーム5の回転などにより、X線管2,FPD3およびX線グリッド4の位置関係にズレが生じる場合がある(後述の焦点横ズレ量=Xf)。
さらに、X線撮影装置は、FPD3で検出されたX線検出信号に基づいて各種の画像処理を行う画像処理部11と、X線撮影に先だって得られた基準校正データや、画像処理部11で得られた各画像などのデータを書き込んで記憶するメモリ部12と、データや命令を入力する入力部13と、画像処理部11で得られた画像を表示する表示部14と、これらを統括制御するコントローラ15とを備えている。その他にも、高電圧を発生して管電流や管電圧をX線管2に与える高電圧発生部などを備えているが、この発明の特徴部分あるいは特徴部分に関連する構成でないので、図示を省略する。
メモリ部12は、コントローラ15を介して、基準校正データや、画像処理部11で得られた各画像などのデータを書き込んで記憶し、適宜必要に応じて読み出して、コントローラ15を介して、これらのデータを表示部14に送り込んで表示する。メモリ部12は、ROM(Read-only Memory)やRAM(Random-Access Memory)やハードディスクなどに代表される記憶媒体で構成されている。
入力部13は、オペレータが入力したデータや命令をコントローラ15に送り込む。入力部13は、マウスやキーボードやジョイスティックやトラックボールやタッチパネルなどに代表されるポインティングデバイスで構成されている。表示部14は、モニタで構成されている。
上述の画像処理部11やコントローラ15は、中央演算処理装置(CPU)などで構成されている。画像処理部11で得られた各画像などのデータを、コントローラ15を介して、メモリ部12に書き込んで記憶、あるいは表示部14に送り込んで表示する。画像処理部11の具体的な構成については詳しく後述する。
FPD3は、図2に示すように、その検出面にはX線に有感な複数の検出素子dを2次元マトリックス状に配列して構成されている。検出素子dは、被検体Mを透過したX線をX線検出信号(電気信号)に変換して一旦蓄積して、その蓄積されたX線検出信号を読み出すことで、X線を検出する。各々の検出素子dでそれぞれ検出されたX線検出信号を、X線検出信号に応じた画素値に変換して、検出素子dの位置にそれぞれ対応した画素にその画素値を割り当てることでX線画像を出力して、画像処理部11にX線画像を送り込む。
X線グリッド4は、図3に示すように、散乱X線を吸収するグリッド箔4aとX線を透過させる中間層4bとを交互に並べて構成されている。グリッド箔4a,中間層4bを覆うグリッドカバー4cは、X線の入射面および逆側の面からグリッド箔4a,中間層4bを挟み込む。グリッド箔4aの図示を明確にするために、グリッドカバー4cについては二点鎖線で図示し、その他のX線グリッド4の構成(グリッド箔4aを支持する機構等)については図示を省略する。グリッド箔4aは、この発明におけるグリッド箔に相当する。
また、図3に示すように各々のグリッド箔4aをFPD3の検出面に対して平行に配置してX線グリッド4を配置している。なお、本実施例では中間層4bは空隙となっており、X線グリッド4はエアグリッドでもある。グリッド箔4aについては、鉛などのようにX線に代表される放射線を吸収する物質であれば、特に限定されない。また、本実施例では、X線管2(図1を参照)の焦点を結ぶ射線に沿ってグリッド箔4aを配置した集束グリッドであるが、図3では図示の便宜上、各々のグリッド箔4aを平行配置としている。
図3に示すように各々の画素サイズをΔXとすると、本実施例ではわかり易くするために各々の画素に同期してグリッド箔4aが配置されている。つまりグリッド箔4aのひずみ(たわみおよびねじれ)情報を収集する図5および図7では4画素毎に同期してグリッド箔4aが配置されている。したがって、X線をグリッド箔4aが吸収することによりFPD3に箔影が生じて、箔影がX線画像に映り込むが、各々の画素に同期して箔影が映り込むようにグリッド箔4aが配置される。
次に、画像処理部および一連の画像処理のフローについて、図4〜図11を参照して説明する。図4は、実施例に係る具体的な画像処理部のブロック図であり、図5は、たわみ定数を求めるときの位置関係を示す概略図であり、図6は、たわみ定数を実際の撮影に適用するときの概略図であり、図7は、ねじれ定数を求めるときの位置関係を示す概略図であり、図8は、ねじれ定数を実際の撮影に適用するときの概略図であり、図9は、たわみ定数の算出を模式的に示した概略図であり、図10は、基準校正データの跨り積算値のプロファイルの模式図であり、図11は、所定倍率を基準校正データの跨り積算値に乗じるときの説明に供する模式図である。
画像処理部4は、図4に示すように、校正データ収集部31と撮影像収集部32と第1積算値算出部33と積算値乗算部34と対応校正像算出部35と箔影整列像生成部36と低域通過型フィルタ(以下、「LPF」と略記する)37と第2積算値算出部38と偽像除去処理用箔影像生成部39と偽像除去処理済像生成部40とを備えている。また、校正データ収集部31は、たわみ定数算出部31aとねじれ定数算出部31bとを備えている。たわみ定数算出部31aは、この発明におけるたわみ定数算出手段に相当し、ねじれ定数算出部31bは、この発明におけるねじれ定数算出手段に相当し、撮影像収集部32は、この発明における撮影像収集手段に相当し、第1積算値算出部33および第2積算値算出部38は、この発明における積算値算出手段に相当し、積算値乗算部34は、この発明における積算値乗算手段に相当する。
ここで、ホームポジション(HP: Home Position)とは、グリッド箔4aにたわみやねじれがなく理想的な場合の箔傾きの集束位置であって、図5〜図8に示すようにFPD3やX線グリッド4の中心線上に位置し、X線グリッド4からfの距離に位置する焦点位置HPを指す。なお、SIDは、X線管2の焦点位置からFPD3に垂線を下ろしたときに、当該垂線方向の焦点位置からFPD3までの距離(SID: Source Image Distance)であり、fはホームポジションHPとX線グリッド4の中心面との距離(集束距離)である。
図5〜図8に示すように、ホームポジションHPの座標を(0,0)とする。図6や図8に示すように、X線管2(図1を参照)の焦点横ズレ量(FPD3やX線グリッド4の設置面方向に沿ったホームポジションHPからの焦点ズレ量)をXfとし、焦点縦ズレ量(垂線方向に沿ったホームポジションHPからの焦点ズレ量)をdrとすると、実際の撮影焦点の座標は(Xf,dr)となる。また、FPD3やX線グリッド4の中心線に基準となるグリッド箔4aが位置するとしたときに、当該グリッド箔4aがグリッド着脱等によりずれたときにそのズレ量をXgとする。
焦点縦ズレ量drはX線撮影装置の使用状況として設定されるので装置から読み取れる量であり既知である。また、実際の撮影時の焦点横ズレ量Xfやグリッドズレ量Xgについても、マーカー処理や箔影による相関処理などにより既知であることを前提として、以下を説明する。
校正データ収集部31は、出荷前の基準校正データを収集する。詳細には、たわみ定数算出部31aは、たわみ定数を算出し、ねじれ定数算出部31bは、ねじれ定数情報を持つ基準校正データを算出する。
撮影像収集部32は、図4に示すように、実際の撮影像をIとしたときに、被検体M(図1を参照)のある状態で検出されたX線検出信号に基づいて実際の撮影像を収集する。実際の撮影時には、図6や図8に示すように各々の画素サイズはΔX´であって、FPD3の検出面・X線グリッド4の中心面間の距離はG´である。また、X線撮影に先だって基準校正データを、図5や図7に示すように収集する時(例えばX線グリッド4の出荷前)の各々画素サイズをΔX、FPD3の検出面・X線グリッド4の中心面間の距離をGとしたときには、必ずしもΔX=ΔX´,G=G´である必要はない。ΔX≠ΔX´,G≠G´であっても構わない。言い換えれば、課題でも述べたように多様なサイズのX線グリッドやFPDに対応して、以下の画像処理を適用することができる。撮影像収集部32で収集された実際の撮影像Iを箔影整列像生成部36に送り込む。
たわみ定数算出部31aは、図4に示すように、たわみ定数をδtとしたときに、グリッド箔4aによる箔影が画素を跨っている箇所において、グリッド箔4aのたわみに関する定数であるたわみ定数δtを求める。具体的には図5に示すようなレイアウトの校正データ収集装置で、被検体のない状態でX線グリッド4の設置面に沿って所定間隔(例えば20μm程度)にX線グリッド4を動かして、跨り位置画素の信号強度を収集することにより、たわみ定数δtを求める。なお、ねじれ定数δθ情報を持つ基準校正データを求めるときには図7に示すようなレイアウトの校正データ収集装置を用いる。
基準校正データを収集する場合には、被検体のない状態で、図7に示すようにホームポジションHPから集束ラインLcに沿って所定間隔(例えば1mm程度)に焦点を動かして、FPD3によって各々の焦点位置毎のX線画像を基準校正データとして収集する。このとき、実際の撮影で用いられるX線撮影装置とは別の装置で、位置関係のズレが生じにくい校正データ収集装置を用いて基準校正データを収集する。もちろん、各々の撮影毎に焦点ズレが生じにくいタイプのX線撮影装置を用いた場合には、同じX線撮影装置を用いて基準校正データを収集してもよい。
図5の説明に戻って、ホームポジションHPにX線管2(図1を参照)の焦点を設定した状態で、上述したようにX線グリッド4の設置面に沿って所定間隔にX線グリッド4を動かして、X線検出信号をそれぞれ収集する。基準となるグリッド箔4aをn番目の第n箔、対象となるグリッド箔4aをn番目の第n箔とする。このとき、対象となる第n箔による箔影を跨いだ複数の画素におけるX線検出信号の各信号強度を、跨り位置画素の信号強度としてそれぞれ収集する。なお、図5〜図8では、基準となる第n箔を当該中心線上に位置するグリッド箔4aとしたが、例えば端部にあるグリッド箔4aを基準となる箔とするなど特に限定されない。
図5の場合には、箔影が2画素間に跨っているとして説明すると、対象となる第n箔による箔影を跨いだ2画素の信号強度を、図9(b)に示すように、跨り位置画素の信号強度としてそれぞれ収集する。図9(b)では、X線グリッド4の移動量を横軸にとり、信号強度を縦軸にとっている。
もし、グリッド箔4aにたわみがない場合には、箔影の中央を2画素間の境界が跨ぐと仮定すると、跨り位置画素の信号強度が互いに交差する位置が2画素間の境界に位置する筈である。しかし、実際にはグリッド箔4aにたわみが生じていることに起因して、図9(b)に示すように2画素間の境界(点線で図示)から偏移した位置で、跨り位置画素の信号強度が互いに交差する。この交差位置と2画素間の境界との偏移を、たわみ定数(図9(a)も参照)δtとして定義する。なお、図9(a)は画素上に第n箔による箔影がたわんだ状態で投影されているときの模式図である。このたわみ定数δtを、各画素行,各グリッド箔4a毎にそれぞれ求める。なお、ここで述べるたわみ定数,以降で述べるねじれ定数とも箔毎に異なることはもちろん、箔走行方向(行)位置毎にも変化するが、本実施例では固定行位置での扱いとして説明している。
このようにして、たわみ定数算出部31aは、図4に示すようにたわみ定数δtを求める。たわみ定数算出部31aで求められたたわみ定数δtを、第1積算値算出部33や第2積算値算出部38に送り込む。
たわみ定数δtを実際の撮影に適用するときには、図6に示すようにKnを求め、さらにDnを求めることにより、実際の撮影時の箔影画素を同定する。図6や図8では、実際の撮影時にずれたX線グリッド4(撮影時グリッド配置)を二点鎖線で示して、実線で示した計算時のX線グリッド4(計算時グリッド配置)と区別して図示する。実際の撮影焦点(Xf,dr)からグリッドズレ量Xg分だけシフトした焦点を計算焦点とすると、図6や図8に示すように計算焦点の座標は(Xf−Xg,dr)となる。
計算時グリッド配置において対象となる第n箔と、(FPD3やX線グリッド4の)中心線との距離をKnとすると、下記(1)式に基づいて、距離Kn(すなわち第n箔の中心線からの位置)を求めることができる。
Kn=(n−n)・P+δt …(1)
ここで、Pは理想箔ピッチであり、Pは既知である。たわみ定数δtも既に求まっている。したがって、上記(1)式の右辺は既知であるので、距離Knを求めることができる。
計算焦点(Xf−Xg,dr)からの射線のうち、計算時グリッド配置の第n箔を通ってFPD3に投影された位置と、中心線との距離をDnとすると、下記(2)式の幾何学的な位置関係に基づいて、距離Dnを求めることができる。
Dn=Kn−{(Xf−Xg−Kn)・G´/(f+dr)} …(2)
上述したように、fはホームポジションHPとX線グリッド4の中心面との距離(集束距離)であり、fは既知である。焦点縦ズレ量drや、FPD3の検出面・X線グリッド4の中心面間の距離G´は既知であり、各ズレ量Xf,Xgは上述したように既知であることを前提としている。第n箔の中心線からの位置である距離Knも上記(1)式で既に求まっている。したがって、上記(2)式の右辺は既知であるので、距離Dnを求めることができる。
次に、上記(2)式で求められた距離Dnと、実際の撮影時の画素サイズΔX´とを用いて、グリッド箔4aによる箔影が画素を跨っている箇所として箔影画素を同定する。具体的には距離Dnから画素サイズΔX´を除算して、その除算結果Dn/ΔX´の整数部から箔影画素が、またその小数部から詳細な跨り位置が同定される。箔影がないと仮定したときの信号強度から、同定された箔影画素での信号強度を減算することで、撮影時の第n箔の跨り積算値を求める。これを各画素行,各グリッド箔4a毎にそれぞれ求めることで、後述する基準校正データの跨り積算値を第1積算値算出部33が求め、後述する実際の撮影像に基づく箔影強調像の跨り積算値を第2積算値算出部38が求めることができる。
第1積算値算出部33は、図4に示すように、グリッド箔4aによる箔影が画素を跨っている箇所において、当該箇所を、X線管2,FPD3およびX線グリッド4(いずれも図1を参照)の相互の幾何学的な位置関係(すなわちジオメトリー(geometry))に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める。同じく第2積算値算出部38は、当該箇所をジオメトリーに基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める。跨り積算値は、後述する基準校正データの跨り積算値と、後述する実際の撮影像に基づく箔影強調像の跨り積算値との両方があり、上述したように、第1積算値算出部33が基準校正データの跨り積算値を求め、第2積算値算出部38が箔影強調像の跨り積算値を求める。
なお、上述したように、個々のグリッド箔4aのねじれやたわみにより箔影が必ずしも当該画素を跨っている、あるいは覆っているとは限らない。ねじれやたわみ状況によっては、1画素すら覆っておらずに別の画素(例えば隣接画素)を箔影が覆っている可能性もある。その場合には、箔影が跨っているであろうと思われる箇所での画素を、X線管2,FPD3およびX線グリッド4の相互の幾何学的な位置関係(すなわちジオメトリー)から認定し、箔影の跨りの状況によらずに一様に当該箇所における跨り積算値を求める。
第1積算値算出部33の算出による基準校正データの跨り積算値について詳しく説明する。基準校正データの跨り積算値のプロファイルを、図10に示すように求める。図10では、焦点移動量を横軸にとり、箔影がないと仮定したときの信号強度を分母にして第n箔の跨り積算値を分子にした比率を縦軸にとることで、第n箔の跨り積算値のプロファイルを作成する。
もし、グリッド箔4aにねじれがない場合には、図10の点線に示すようなプロファイルとなる。しかし、実際にはグリッド箔4aにねじれが生じていることに起因して、図10の実線に示すようなプロファイルとなる。そこで、ねじれ定数算出部31bはねじれ定数を求める。
ねじれ定数算出部31bは、図4に示すように、ねじれ定数をδθとしたときに、グリッド箔4aのねじれに関する定数であるねじれ定数δθを求める。上述したようにねじれ定数δθを求めるときには、図5と同じ図7に示す校正データ収集装置を用いる。
図7に示すように、第n箔の理想角度からねじれ角度δθでねじれているときには、ホームポジションHPからの射線のうち、対象となる第n箔を通る射線とねじれ角度δθをなす射線を定義する。この定義された射線と集束ラインLcとが交わった焦点(図7では白抜きの方形:「□」で表記)でのデータに基づく跨り積算値のプロファイルが、図10の実線に示すようなプロファイルとなる。したがって、グリッド箔4aがねじれた状態でデータを収集して、それに基づくプロファイル(図10の実線)を作成すれば、図10の点線に示すような第n理想箔のプロファイルからの焦点移動量のズレを検出することができる。このときのズレは、sin(δθ)に比例した量(図10では「∝sin(δθ)で表記」)であるので、ねじれ定数δθを直接的に求めることも可能であるが、演算量を軽減させるためにsin(δθ)毎の跨り積算値を記憶する。
これをねじれ定数δθ情報を持つ基準校正データと呼ぶ。なお、図7の各マークと図8の各マークと図10の各マークとは統一(例えば、射線と集束ラインLcとが交わった焦点□は図7,図8および図10でそれぞれ対応)している。
このようにして、ねじれ定数算出部31bは、図4に示すようにねじれ定数δθ(基準校正データ)を求める。ねじれ定数算出部31bで求められたねじれ定数δθ(基準校正データ)を、第1積算値算出部33に送り込む。
ねじれ定数δθ(基準校正データ)を実際の撮影に適用するときには、図8に示すようにKnを求め、さらにDnを求めることにより、集束ラインLcとの交点(図8では黒の方形:「■」で表記)を求める。この交点は、基準校正データを収集したときの焦点位置に必ずしも一致するとは限らないので、互いに隣接した2つの焦点位置での跨り積算値から例えば重み付け補正などにより線形補間することで対応校正像の第n跨り積算値を求める。したがって、焦点位置の中点に位置するときには互いに隣接した2つの焦点位置での跨り積算値をそれぞれ同じ重み付けで行って線形補間すればよい。なお、KnやDnの算出方法については、図6で述べたので説明を省略する。なお、集束ラインLcとの交点(図8の■)がプロファイルのピーク位置に位置する場合には、両側から外挿補間を行えばよい。
このように、たわみ定数算出部31aで求められたたわみ定数δt,およびねじれ定数算出部31bで求められたねじれ定数δθ(基準校正データ)を用いて、第1積算値算出部33は基準校正データの跨り積算値を求める。上述したように、箔影がないと仮定したときの基準校正データにおける信号強度から、同定された基準校正データにおける箔影画素での信号強度を減算することで、基準校正データの第n箔の跨り積算値を求める。このとき、たわみ定数δtを反映した箔位置で計算しているので、基準校正データの跨り積算値を正確に求めることができる。
このようにして、第1積算値算出部33は、図4に示すように基準校正データの跨り積算値を求める。第1積算値算出部33で求められた基準校正データの跨り積算値を、積算値乗算部34や対応校正像算出部35に送り込む。
積算値乗算部34は、図4に示すように、箔影の幅と画素サイズとに基づく所定倍率を基準校正データの跨り積算値に乗じる。上述したように、基準校正データ収集時の画素サイズΔXと、実際の撮影時の画素サイズΔX´とは必ずしも等しくない。図11では、簡略化のために箔影の幅をW(図11(b)を参照)と一定にする。また、ΔX=150μm(=0.15mm),ΔX´=200μm(=0.2mm),W=0.034 mmとすると、図11(a)に示すように跨り積算値のプロファイルのピーク値は、基準校正データ収集時には0.77(=(ΔX−W)/ΔX=(0.2-0.034)/0.2)となり、実際の撮影時には0.83(=(ΔX´−W)/ΔX´=(0.15-0.034)/0.15)となる。なお、図7の各マークと図8の各マークと図10の各マークと図11(a)の各マークとは統一(例えば、射線と集束ラインLcとが交わった焦点□は図7,図8,図10および図11(a)でそれぞれ対応、集束ラインLcとの交点■は図8および図11(a)でそれぞれ対応)している。
このようにして、積算値乗算部34は、図4に示すように倍率(ここでは0.83/0.77)を基準校正データの跨り積算値に乗じる。積算値乗算部34で乗算された基準校正データの跨り積算値を、対応校正像算出部35に送り込む。
対応校正像算出部35は、積算値乗算部34で乗算された基準校正データの跨り積算値に基づいて、実際の撮影焦点からグリッドズレ量Xg(図6や図8を参照)分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求める。
図6や図8でも述べたように、実際の撮影焦点(Xf,dr)からグリッドズレ量Xg分シフトした計算焦点の座標は(Xf−Xg,dr)となる。このとき、計算焦点(Xf−Xg,dr)からの射線のうち、第n箔を通る射線と集束ラインLc(図67や図8を参照)との交点(図8では黒の方形:「■」で表記)での基準校正データを用いれば、そのときの対応校正像を求めることができる。なお、当該射線と集束ラインLcとが交わった交点が、基準校正データを収集したときの焦点位置に一致する場合には、当該焦点位置での基準校正データ(X線画像)をそのまま対応校正像とすればよい。
ただし、当該射線と集束ラインLcとが交わった交点は、基準校正データを収集したときの焦点位置に必ずしも一致するとは限らない。その場合には、当該射線と集束ラインLcとが交わった交点に最も近接している(すなわち互いに隣接した)2つの焦点位置での基準校正データ(X線画像)をそれぞれ用いて重み付け補正を行えば対応校正像を求めることができる。例えば、近接している一方の焦点位置での基準校正データとそのときの重み関数の積と、他方の焦点位置での基準校正データとそのときの重み関数の積とを合計した画素値(X線検出信号の値)を各画素に応じて割り当てれば、対応校正像を求めることができる。
このようにして、対応校正像算出部35は、図4に示すように対応校正像を求める。なお、基準校正データの跨り積算値が第1積算値算出部33で既に得られているので、対応校正像における積算値(上述した対応校正像の第n跨り積算値)をCsumとすると、対応校正像における積算値Csumを偽像除去処理用箔影像生成部39に送り込む。
箔影整列像生成部36は、図4に示すように箔影整列像をGとしたときに、グリッド箔4aを並設した方向(図3では横方向)に撮影像Iをスライド移動することで箔影が整列した撮影像である箔影整列像Gを生成する。上述したグリッドズレ量Xgを用いて被検体の情報ごと撮影像Iをスライド移動すれば、箔影整列像Gを生成することができる。
なお、より精密な箔影整列像Gを生成する場合には、各画素行でのシフト量(グリッドズレ量Xg)を求めて、各画素行毎に撮影像Iをスライド移動すれば、精密な箔影整列像Gを生成することができる。なお、グリッド箔4aの延在方向(図3では縦方向)に対するシフト量(ズレ量)は残っているが、かかるシフト量は僅かであるので無視することができる。
このようにして、箔影整列像生成部36は、図4に示すように箔影整列像Gを生成する。箔影整列像生成部36で生成された箔影整列像Gを、LPF37や偽像除去処理済像生成部40に送り込む。
LPF37は、図4に示すように、箔影強調像をEとしたときに、箔影整列像Gに対して箔影を強調して被検体M(図1を参照)の情報を除去した箔影強調像Eを生成するために、グリッド箔4aの延在方向(図3では縦方向)に対して低域領域を通過させる。LPF37で生成された箔影強調像Eを、第2積算値算出部38に送り込む。
第2積算値算出部38は、図4に示すように箔影強調像Eの跨り積算値をEsumとしたときに、積算値Esumを求める。積算値Esumを偽像除去処理用箔影像生成部39に送り込む。
偽像除去処理用箔影像生成部39は、図4に示すように、偽像除去処理用箔影像をCorとしたときに、積算値Esum,Csumに基づいて、箔影に起因した偽像を除去する偽像除去処理用箔影像Corを生成することができる(Cor=E・Csum/Esum)。
このようにして、偽像除去処理用箔影像生成部39は、図4に示すように偽像除去処理用箔影像Corを生成する。偽像除去処理用箔影像生成部39で生成された偽像除去処理用箔影像Corを、偽像除去処理済像生成部40に送り込む。
偽像除去処理済像生成部40は、図4に示すように、箔影を除去したことにより最終的に得られるX線画像をIafterとしたときに、偽像除去処理用箔影像Corに基づいて、グリッド箔4aによる箔影を除去した偽像除去処理済像を生成する。そして、その偽像除去処理済像生成部40で生成された偽像除去処理済像をX線画像Iafterとして最終的に得る。各画素毎に、箔影整列像Gから偽像除去処理用箔影像Corを除算することでX線画像Iafterを得ることができる(Iafter=G/Cor)。
なお、エアグリッドの場合には中間層が空隙である関係で、箔影の跨る画素と跨らない画素とのコントラストが強く偽像が目立ちやすい。上述した画像処理部および一連の画像処理のフローをエアグリッドに適用することにより発明の課題を解決することができる。
本実施例に係るX線撮影装置によれば、X線管2,FPD3およびX線グリッド4の他に、グリッド箔4aによる箔影が画素を跨っている箇所において、当該箇所を、X線管2,FPD3およびX線グリッド4の相互の幾何学的な位置関係に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める第1積算値算出部33および第2積算値算出部38を備えている。そして、被検体Mのある状態で検出されたX線検出信号に基づいて実際の撮影像を収集する撮影像収集部32を備え、上述した第1/第2積算値算出部33,38と上述した撮影像収集部32とに基づいてグリッド箔4aによる箔影を除去してX線画像を最終的に得る。グリッド箔4aのねじれやたわみによりグリッド箔4aによる箔影が画素を跨っていたとしても、当該箇所を、X線管2,FPD3およびX線グリッド4の相互の幾何学的な位置関係(すなわちジオメトリー)に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める。したがって、X線グリッド4やFPD3のサイズが変わったとしても当該跨り積算値に基づいて箔影を除去することになる。その結果、多様なサイズのX線グリッド4やFPD3に対応してグリッド箔4aのねじれやたわみを考慮して箔影を除去することができる。
また、本実施例では、グリッド箔4aによる箔影が画素を跨っている箇所において、グリッド箔4aのたわみに関する定数であるたわみ定数を求めるたわみ定数算出部31aを備え、第1/第2積算値算出部33,38とたわみ定数算出部31aと撮影像収集部32とに基づいてグリッド箔4aによる箔影を除去してX線画像を最終的に得るのが好ましい。たわみを数値化したたわみ定数をも用いてグリッド箔4aによる箔影を除去することにより、グリッド箔4aのたわみをより一層考慮して箔影をより一層精密に除去することができる。
また、本実施例では、グリッド箔4aのねじれに関する定数であるねじれ定数を求めるねじれ定数算出部31bを備え、第1/第2積算値算出部33,38とねじれ定数算出部31bと撮影像収集部32とに基づいてグリッド箔4aによる箔影を除去してX線画像を最終的に得るのが好ましい。ねじれを数値化したねじれ定数をも用いてグリッド箔4aによる箔影を除去することにより、グリッド箔4aのねじれをより一層考慮して箔影をより一層精密に除去することができる。
また、本実施例では、箔影の幅と画素サイズとに基づく所定倍率を、被検体のない状態で検出されたX線検出信号に基づく基準校正データの跨り積算値に乗じる積算値乗算部34を備えるのが好ましい。所定倍率を基準校正データの跨り積算値に乗じることにより、多様なサイズのX線グリッド4やFPD3に応じて箔影を除去したX線画像を求めることができる。したがって、各々のFPD、あるいはジオメトリーに応じてX線グリッドを製作せずとも1つのX線グリッドを用いて適切な偽像除去処理を行うことが可能となる。
この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
(1)上述した実施例では、放射線としてX線を例に採って説明したが、X線以外の放射線(例えばγ線など)に適用してもよい。
(2)上述した実施例では、X線撮影装置は、CVS装置に実施するためのCアームを備えた装置であったが、これに限定されない。例えば、工業用等に用いられる非破壊検査装置のように被検体(この場合には検査の対象物が被検体)をベルト上に運搬させて撮影を行う構造であってもよいし、医用等に用いられるX線CT装置などのような構造であってもよい。
(3)上述した実施例では、放射線グリッドとしてエアグリッドを採用したが、これに限定されない。空隙の他に、アルミニウムや有機物質などのようにX線に代表される放射線を透過させる中間物質で構成されたグリッドでもよい。また、クロスグリッドでもよい。なお、クロスグリッドの場合には、一方向のみにグリッド箔が延在したエアグリッドのときよりも、グリッドズレは生じにくいが、もちろん適用することができる。この場合には、ズレの方向を一方向から二方向にそれぞれ拡張して求めればよい。
(4)上述した実施例では、集束グリッドであったが、平行配置されたグリッドにも適用することができる。
(5)上述した実施例では、校正データ収集時のFPD3の画素(図5や図7のΔXを参照)に対して同期なグリッド(同期型グリッド)について述べたが、非同期型グリッドに適用してもよい。また、エアグリッド以外のグリッドの場合には、1つの画素に複数のグリッド箔が並設される構造のグリッドに適用してもよい。
(6)上述した実施例では、たわみやねじれを数値化したたわみ定数やねじれ定数をそれぞれ求めるために、たわみ定数算出手段(実施例ではたわみ定数算出部31a)やねじれ定数算出手段(実施例ではねじれ定数算出部31b)を備えたが、たわみやねじれの影響が少なければ、ジオメトリーに基づいて跨り積算値を求める積算値算出手段(実施例では第1/第2積算値算出部33,38)のみを備えてもよい。
(7)上述した実施例では、箔影の幅と画素サイズとに基づく所定倍率を基準校正データの跨り積算値に乗じたが、同じサイズのX線グリッド4やFPD3、あるいは同じジオメトリーであれば、必ずしも所定倍率を基準校正データの跨り積算値に乗じる必要はない。
(8)上述した実施例では、跨り積算値は、基準校正データや箔影強調像に関するデータであったが、これに限定されない。例えば、撮影像に関する跨り積算値を求めてもよい。
2 … X線管
3 … フラットパネル型X線検出器(FPD)
4 … X線グリッド
4a … グリッド箔
31a … たわみ定数算出部
31b … ねじれ定数算出部
32 … 撮影像収集部
33 … 第1積算値算出部
34 … 積算値乗算部
38 … 第2積算値算出部
M … 被検体

Claims (5)

  1. 放射線画像を得る放射線撮影装置であって、
    放射線を照射する放射線源と、
    照射された放射線を検出する放射線検出手段と、
    その放射線検出手段の検出側に設けられ、散乱放射線を吸収するグリッド箔を並べて構成された放射線グリッドと
    を備え、
    さらに、前記放射線撮影装置は、
    前記グリッド箔による箔影が画素を跨っている箇所において、当該箇所を、前記放射線源,前記放射線検出手段および前記放射線グリッドの相互の幾何学的な位置関係に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める積算値算出手段と、
    被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段と
    を備え、
    さらに、前記放射線撮影装置は、
    前記グリッド箔による箔影が画素を跨っている箇所において、前記グリッド箔のたわみに関する定数であるたわみ定数を求めるたわみ定数算出手段を備え、
    前記積算値算出手段と前記たわみ定数算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とする放射線撮影装置。
  2. 請求項1に記載の放射線撮影装置において、
    前記グリッド箔のねじれに関する定数であるねじれ定数を求めるねじれ定数算出手段を備え、
    前記積算値算出手段と前記たわみ定数算出手段と前記ねじれ定数算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とする放射線撮影装置。
  3. 請求項1または請求項2に記載の放射線撮影装置において、
    前記箔影の幅と画素サイズとに基づく所定倍率を、被検体のない状態で検出された放射線検出信号に基づく基準校正データの前記跨り積算値に乗じる積算値乗算手段を備えることを特徴とする放射線撮影装置。
  4. 放射線画像を得る放射線撮影装置であって、
    放射線を照射する放射線源と、
    照射された放射線を検出する放射線検出手段と、
    その放射線検出手段の検出側に設けられ、散乱放射線を吸収するグリッド箔を並べて構成された放射線グリッドと
    を備え、
    さらに、前記放射線撮影装置は、
    前記グリッド箔による箔影が画素を跨っている箇所において、当該箇所を、前記放射線源,前記放射線検出手段および前記放射線グリッドの相互の幾何学的な位置関係に基づいて同定して、同定された当該箇所における箔影による跨り積算値を求める積算値算出手段と、
    被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段と
    を備え、
    さらに、前記放射線撮影装置は、
    前記グリッド箔のねじれに関する定数であるねじれ定数を求めるねじれ定数算出手段を備え、
    前記積算値算出手段と前記ねじれ定数算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とする放射線撮影装置。
  5. 請求項4に記載の放射線撮影装置において、
    前記箔影の幅と画素サイズとに基づく所定倍率を、被検体のない状態で検出された放射
    線検出信号に基づく基準校正データの前記跨り積算値に乗じる積算値乗算手段を備えることを特徴とする放射線撮影装置。
JP2014505799A 2012-03-21 2012-03-21 放射線撮影装置 Active JP5768932B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014505799A JP5768932B2 (ja) 2012-03-21 2012-03-21 放射線撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/001953 WO2013140445A1 (ja) 2012-03-21 2012-03-21 放射線撮影装置
JP2014505799A JP5768932B2 (ja) 2012-03-21 2012-03-21 放射線撮影装置

Publications (2)

Publication Number Publication Date
JPWO2013140445A1 JPWO2013140445A1 (ja) 2015-08-03
JP5768932B2 true JP5768932B2 (ja) 2015-08-26

Family

ID=49221951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014505799A Active JP5768932B2 (ja) 2012-03-21 2012-03-21 放射線撮影装置

Country Status (4)

Country Link
US (1) US9480452B2 (ja)
JP (1) JP5768932B2 (ja)
CN (1) CN104203106B (ja)
WO (1) WO2013140445A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160374636A1 (en) * 2015-06-29 2016-12-29 Shimadzu Corporation Radiographic device
JP6456854B2 (ja) * 2016-01-12 2019-01-23 株式会社日立製作所 放射線撮像装置
JP2018038500A (ja) * 2016-09-06 2018-03-15 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152002A (ja) * 2003-11-20 2005-06-16 Shimadzu Corp X線透視撮影装置
JP4651412B2 (ja) * 2005-03-03 2011-03-16 株式会社日立メディコ X線画像診断装置
US7627084B2 (en) * 2007-03-30 2009-12-01 General Electric Compnay Image acquisition and processing chain for dual-energy radiography using a portable flat panel detector
JP4853591B2 (ja) 2008-12-01 2012-01-11 株式会社島津製作所 放射線撮像装置
JP5136478B2 (ja) * 2009-03-17 2013-02-06 株式会社島津製作所 放射線撮影装置
US8559754B2 (en) 2009-05-22 2013-10-15 Shimadzu Corporation Method of removing foil shadows of a synchronous grid, and a radiographic apparatus using the same
JP5407774B2 (ja) * 2009-11-10 2014-02-05 株式会社島津製作所 放射線撮影装置
JP5526775B2 (ja) * 2009-12-29 2014-06-18 株式会社島津製作所 放射線撮像装置
JP5375655B2 (ja) * 2010-02-18 2013-12-25 株式会社島津製作所 放射線撮影装置
JP5482640B2 (ja) * 2010-12-13 2014-05-07 株式会社島津製作所 同期型グリッドの箔影除去方法及びそれを用いた放射線撮影装置

Also Published As

Publication number Publication date
CN104203106B (zh) 2016-09-14
WO2013140445A1 (ja) 2013-09-26
CN104203106A (zh) 2014-12-10
US9480452B2 (en) 2016-11-01
JPWO2013140445A1 (ja) 2015-08-03
US20150030128A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5475737B2 (ja) 放射線撮影装置及び画像処理方法
JP6187298B2 (ja) X線撮影システム及び画像処理方法
JP5407774B2 (ja) 放射線撮影装置
JP5375655B2 (ja) 放射線撮影装置
JP2012200567A (ja) 放射線撮影システム及び放射線撮影方法
JP5783987B2 (ja) 放射線撮影装置
JP2012090945A (ja) 放射線検出装置、放射線撮影装置、放射線撮影システム
WO2010092615A1 (ja) 放射線撮像装置
JP5526775B2 (ja) 放射線撮像装置
JP5768932B2 (ja) 放射線撮影装置
WO2012169426A1 (ja) 放射線撮影システム
JP5282645B2 (ja) 放射線撮影装置
JP2003052680A (ja) X線撮影装置
JP5928043B2 (ja) 放射線撮影装置
WO2012169427A1 (ja) 放射線撮影システム
JP5206426B2 (ja) 放射線撮像装置
JP5939163B2 (ja) 放射線撮影装置
JP6365746B2 (ja) 画像処理装置、x線撮影システム及び画像処理方法
WO2012147749A1 (ja) 放射線撮影システム及び放射線撮影方法
US20160374636A1 (en) Radiographic device
US20180348148A1 (en) X-ray talbot capturing apparatus
WO2013051647A1 (ja) 放射線撮影装置及び画像処理方法
JP2012228369A (ja) 放射線撮影システム及び放射線撮影方法
WO2012057045A1 (ja) 放射線撮影装置、放射線撮影システム
JP2014113168A (ja) 放射線撮影システム及び放射線撮影方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R151 Written notification of patent or utility model registration

Ref document number: 5768932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151