Nothing Special   »   [go: up one dir, main page]

WO2013051647A1 - 放射線撮影装置及び画像処理方法 - Google Patents

放射線撮影装置及び画像処理方法 Download PDF

Info

Publication number
WO2013051647A1
WO2013051647A1 PCT/JP2012/075789 JP2012075789W WO2013051647A1 WO 2013051647 A1 WO2013051647 A1 WO 2013051647A1 JP 2012075789 W JP2012075789 W JP 2012075789W WO 2013051647 A1 WO2013051647 A1 WO 2013051647A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
trend
subject
grating
radiation
Prior art date
Application number
PCT/JP2012/075789
Other languages
English (en)
French (fr)
Inventor
拓司 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013051647A1 publication Critical patent/WO2013051647A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise

Definitions

  • the present invention relates to a radiation imaging apparatus and an image processing method for detecting an image based on a phase change of radiation by a subject.
  • Radiation such as X-rays
  • X-rays has a characteristic that it is absorbed and attenuated depending on the weight (atomic number) of the elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.
  • the first diffraction grating is disposed behind the subject as viewed from the X-ray source, and the second diffraction grating is disposed at a position separated from the first diffraction grating by the Talbot distance.
  • An X-ray image detector is arranged behind.
  • the Talbot distance is the distance at which the X-rays that have passed through the first diffraction grating form a self-image (striped image) of the first diffraction grating due to the Talbot effect, and the grating pitch of the first diffraction grating and the X-ray wavelength Depends on and.
  • This self-image is modulated by refraction caused by the phase change of X-rays in the subject. By detecting this modulation amount, the phase change of the X-ray is imaged.
  • the fringe scanning method is known as a method for detecting the modulation amount.
  • the second diffraction grating is scanned with respect to the first diffraction grating in a direction parallel to the plane of the first diffraction grating and perpendicular to the grating line direction of the first diffraction grating.
  • X-rays are radiated from the X-ray source at each scanning position while being translated (scanned) at a pitch, and the X-ray image passing through the subject and the first and second diffraction gratings is imaged by the X-ray image detector. Is the method.
  • noise is superimposed on the phase differential image, resulting in image unevenness, which may hinder the observation of the subject.
  • Noise occurs due to various causes depending on the shooting conditions, such as the placement error of each grid or radiation source, the temperature environment at the time of shooting, etc., but if the shooting conditions such as the placement error and temperature environment are almost the same Regardless of the presence or absence of the subject, it appears as noise in the same manner. For this reason, it can be obtained by imaging the subject by subtracting the phase differential image obtained by imaging in the same environment and without the subject from the phase differential image obtained by imaging the subject. It is known to remove noise components from the phase differential image (see WO 2004/058070, JP 2011-045655 A).
  • the radiation imaging apparatus of the present invention includes a radiation source, a radiation detector, a phase differential image generation unit, and a noise removal unit.
  • the radiation source emits radiation toward the subject.
  • the radiation detector detects radiation emitted from a radiation source and generates image data.
  • the phase differential image generation unit generates a phase differential image based on the grating unit arranged between the radiation source and the radiation detector and the image data obtained by the radiation detector.
  • the noise removing unit remains when an unwrap processing unit that performs unwrap processing on the phase differential image and an offset image that represents offset noise when there is no subject are subtracted from the subject image that is the phase differential image after unwrap processing. To remove the trend.
  • the noise removal unit preferably includes an offset noise removal unit, a trend detection unit, and a trend removal unit.
  • the offset noise removing unit removes the offset noise by subtracting the offset image from the subject image.
  • the trend detection unit detects the trend based on the subject image from which the offset noise has been removed.
  • the trend removal unit subtracts and removes the trend detected by the trend detection unit from the subject image.
  • the trend detection unit extracts a pixel value of the subject image from which the offset noise has been removed along a predetermined direction, and detects a predetermined direction component of the trend. Then, the trend removing unit generates a trend component image in which a predetermined direction component of the trend is arranged along a direction perpendicular to the predetermined direction, and subtracts the trend component image from the subject image, thereby detecting the trend from the subject image. A predetermined direction component is removed. In this way, it is preferable that the trend detection unit and the trend removal unit detect and remove trend components in two directions, ie, a first direction that is a predetermined direction and a second direction that is perpendicular to the predetermined direction.
  • the subject image has a rectangular shape, and the first direction and the second direction are preferably a horizontal direction or a vertical direction along one side of the square.
  • the trend detection unit may detect a trend component based on at least the pixel value of the unexposed region where there is no subject among the extracted pixel values of the subject image.
  • the trend detection unit extracts the pixel value of the subject image along the first direction or the second direction, and then smoothes at least the subject region where the subject is present, whereby the first direction component of the trend or the second direction A direction component may be extracted.
  • the trend detection unit extracts the pixel value of the subject image along the first direction or the second direction, and then interpolates and extracts the data of the subject region where the subject is present based on the data of the missing region. It is preferable to extract the first direction component or the second direction component of the trend by inserting or fitting.
  • the trend detection unit detects a first direction component or a second direction component of the trend for a plurality of rows or columns along the first direction or the second direction, and the first direction component or the first direction in each row or each column. Data obtained by averaging the two direction components may be detected as the first direction component or the second direction component.
  • the trend detection unit preferably sets at least one of the first direction and the second direction to a direction not passing through the subject.
  • the absorption differential image generation unit generates a first absorption image from the image data obtained when there is no subject, generates a second absorption image from the image data obtained when there is a subject, and generates the second absorption image as the first absorption image. It is preferable to generate an absorption differential image by differentiating the third absorption image obtained by dividing by one absorption image.
  • the pixel selected by the trend detection unit is a pixel in a blank area where there is no subject.
  • the grating unit generates a second periodic pattern image by partially shielding the first periodic pattern image and a first grating that generates a first periodic pattern image by passing radiation from a radiation source. It is preferable that the radiation image detector includes the second grating and generates the image data by detecting the second periodic pattern image.
  • the grating unit includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets the plurality of scanning positions.
  • the radiological image detector has a second periodic pattern at each scanning position. It is preferable that an image is detected to generate image data, and the phase differential image generation unit generates a phase differential image based on a plurality of image data generated by the radiation image detector.
  • the moving direction of the first lattice or the second lattice is a direction perpendicular to the lattice line.
  • the moving direction of the first grating or the second grating may be a direction inclined with respect to the grating line.
  • the phase differential image generation unit may generate a phase differential image based on single image data obtained by the radiation detector.
  • the first grating is an absorption grating, and it is preferable to generate the first periodic pattern image by geometrically optically projecting the incident radiation.
  • the first grating may be an absorption type grating or a phase type grating, and may generate a first periodic pattern image by causing a Talbot effect to incident radiation.
  • the second grating 22 is also an absorption-type grating, and includes a plurality of X-ray absorbing portions 22a and X-ray transmitting portions 22b that are extended in the Y direction and arranged alternately in the X direction, like the first grating 21. ing.
  • the X-ray absorbing portions 21a and 22a are formed of a material having X-ray absorption properties such as gold (Au) and platinum (Pt).
  • the X-ray transmissive portions 21b and 22b are formed of a material having X-ray permeability such as silicon (Si) or resin or a gap.
  • the X-ray image detector 13 detects the G2 image and generates image data.
  • the memory 14 temporarily stores the image data read from the X-ray image detector 13.
  • the image processing unit 15 generates a phase differential image based on the image data stored in the memory 14, and generates a phase contrast image based on the phase differential image.
  • the image recording unit 16 records a phase differential image and a phase contrast image.
  • the scanning mechanism 23 intermittently moves the second grating 22 in the X direction, and sequentially changes the relative position of the second grating 22 with respect to the first grating 21.
  • the scanning mechanism 23 includes a piezoelectric actuator or an electrostatic actuator, and is driven based on the control of the imaging control unit 17 so as to detect an X-ray image at each scanning position (position after each intermittent movement).
  • the X-ray image detector 13 detects an X-ray image while the intermittent movement of the second grating 22 is stopped, and image data of the X-ray image is stored in the memory 14. Instead of moving the second grating 22 intermittently, the second grating 22 may be moved continuously, and an X-ray image may be detected every time it moves a predetermined distance.
  • X-rays irradiated from the X-ray source 11 are cone beams having the X-ray focal point 11a as a light emitting point.
  • lattice 21 is comprised so that the Talbot effect may not arise and the X-rays which passed X-ray transmissive part 21b may be projected geometrically.
  • the width of the X-ray transmission part 21b in the X direction is set to a value sufficiently larger than the peak wavelength of X-rays irradiated from the X-ray source 11, and most of the X-rays are diffracted by the X-ray transmission part 21b. It is realized by not doing.
  • the X-ray is displaced in the X direction by an amount corresponding to the refraction angle ⁇ (x).
  • This amount of displacement ⁇ x is approximately expressed by equation (4) based on the small X-ray refraction angle ⁇ (x).
  • the unwrap processing unit 41 sets a plurality of starting points for pixels located at the end of each row or each column of the phase differential image, and follows a predetermined path (for example, a straight path along the row or column) from a certain starting point.
  • the unwrap processing is performed, and then the unwrap processing of the starting point adjacent to the starting point where the unwrapping processing is performed is performed, and the unwrap processing is performed along the route from the adjacent starting point in order while changing the starting point and the route. By repeating, the whole phase differential image is unwrapped.
  • the trend detection unit 47 When the trend detection unit 47 generates the horizontal component of the trend 72 in each row by extracting and smoothing the pixel value ⁇ of each row as described above, the trend detection unit 47 averages the horizontal component of the trend in each row (hereinafter, referred to as “trend”). Horizontal direction trend data). The trend detection unit 47 detects the horizontal trend data as a horizontal component of the trend 72 and inputs it to the trend removal unit 48 together with the phase differential image 71.
  • the subject H is partially projected in the central portion of the phase differential image 71.
  • the X-ray imaging apparatus 10 can detect and remove the trend 72 suitably. This is because, when each direction component of the trend 72 is detected and removed, data obtained by averaging each direction component of the trend 72 detected for each row (column) is detected as each direction component of the trend 72. This is because it is difficult to be affected by the presence of H.
  • the subject H is composed of bone parts 20a and 20b and soft tissue 20c, and the upper left area of the phase differential image 71 is substantially occupied by the bone part 20a, and the lower right area is substantially occupied by the bone part 20b. A portion between the bone portions 20a and 20b is the soft tissue 20c, and an example in which the phase differential image 71 does not have a blank region is shown.
  • the vertical component and the horizontal component are detected and removed separately.
  • the trend 72 can be detected and removed, It is not restricted to an aspect.
  • the first direction component of the trend 72 and the second direction are defined as an oblique direction inclined by a predetermined angle with respect to the vertical and horizontal sides of the phase differential image 71 as a first direction and a direction perpendicular to the first direction as a second direction. Components may be detected and removed. Also in this case, the phase differential image 83 from which the trend 72 is removed can be obtained as in the first embodiment described above.
  • each direction of the trend 72 is detected regardless of the presence or absence of the subject H by smoothing the extracted pixel value ⁇ when the vertical and horizontal direction components of the trend 72 are detected.
  • the trend 72 is detected based on the data on the missing areas (for example, areas E2a and E2b in FIG. 14).
  • Each direction component may be detected.
  • the method of calculating the data of the removed subject region portion is arbitrary. Data that simply connects the boundary point between the subject region and the missing region (for example, the boundary point between the region E1 and the regions E2a and E2b in FIG.
  • the trend 72 has a tendency to increase (decrease) linearly in the phase differential image 71.
  • the trend 86 shown in FIG. May have periodic features.
  • the X-ray imaging apparatus 10 can suitably detect and remove the trend.
  • a curve using a trigonometric function or the like is used. It is necessary to perform interpolation, extrapolation, fitting, etc.
  • the index 92 is provided at the center of the detection surface 13a.
  • the index 92 may be provided so as to be biased in any direction, up, down, left, or right with respect to the detection surface 13a.
  • the trend detection unit 47 extracts the pixel value ⁇ of the phase differential image 71 for each row, and then smoothes the extracted pixel value ⁇ to detect the lateral component of the trend 72. Further, the horizontal component of the trend in each row is averaged to detect one horizontal trend data, but the smoothing of the extracted pixel value ⁇ may be omitted. That is, the trend detection unit 47 may average the extracted pixel values ⁇ themselves to obtain horizontal trend data without smoothing the pixel values ⁇ extracted for each row. This is effective when the signal of the subject H becomes dull and the data becomes almost trend only by averaging the pixel values between the rows.
  • smoothing or averaging may be omitted as described above, or both smoothing and averaging may be omitted. The same applies to each embodiment described later.
  • the trend detection unit 47 when the trend detection unit 47 detects horizontal trend data or vertical trend data, the trend detection unit 47 does not consider the size of the pixel value ⁇ . It is preferable to compare the pixel value ⁇ of the row (or column) with a predetermined threshold value, and based on the magnitude relationship, only the portion where the pixel value ⁇ is in the predetermined range is used for detecting trend data in each direction.
  • the pseudo-absorber 96 since the pseudo-absorber 96 is not arranged, the pixel region where the pixel value ⁇ is saturated and the metal portion of the fixing jig of the subject H are reflected and the pixel value is extremely small (for example, approximately 0).
  • the pixel value ⁇ (phase differential value) is not a normal value. For this reason, if trend data is detected in consideration of even pixel values ⁇ in a region where these pixel values ⁇ are extremely large or regions where pixel values ⁇ are extremely small, they are detected by being affected by these inappropriate values. Trend data may be incorrect.
  • a first threshold value that determines the lower limit of the pixel value ⁇ to be used and a second threshold value that determines the upper limit of the pixel value ⁇ to be used are determined in advance, and the trend detection unit 47 extracts the pixel value ⁇ of each row or each column. It is preferable that the trend data in each direction is detected using only data in a range that falls within the range from the first threshold value to the second threshold value.
  • the X-ray imaging apparatus of the second embodiment includes an absorption differential image generation unit 101 in the image processing unit 100.
  • the absorption differential image generation unit 101 acquires M main captured image data 52 obtained by fringe scanning, and averages them to generate an absorption image.
  • the absorption image is an image in which the X-ray absorption rate (transmittance) of the subject H is expressed as contrast.
  • each of the actual captured image data 52 stripes by the first grating 21 and the second grating 22 are projected, and the stripes move according to the scanning position “k” of the second grating 22. If M pieces of actual captured image data 52 are compared in the order of photographing, they are moved by one cycle. For this reason, when the M actual captured image data 52 are averaged, the fringes by the first grating 21 and the second grating 22 are averaged to form a substantially uniform background, and thus there is no fringe in the absorption image. Only the image of the subject H is projected.
  • the absorption differential image generation unit 101 generates an absorption differential image by differentiating the absorption image. Differentiation of the absorption image can be performed, for example, by taking a difference from an image shifted by one pixel in a predetermined direction (direction of differentiation).
  • the absorption differential image generated by the absorption differential image generation unit 101 in this manner is input to the trend detection unit 102 and used when the trend 72 is detected.
  • the direction which differentiates an absorption image is arbitrary, for example, it is preferable to carry out to the X direction (refer FIG. 1) perpendicular
  • the trend detection unit 102 detects each direction component of the trend 72 from the phase differential image from which the offset noise has been removed, as with the trend detection unit 47 of the first embodiment, but the trend detection unit 102 refers to the absorption differential image. Meanwhile, each direction component of the trend 72 is detected.
  • the captured screen is 103 and the subject H is in the center of the captured screen 103.
  • the subject H is spherical.
  • a solid line 105a is displayed when there is no offset noise.
  • the pixel value is flat in the portion of the unexposed region 104, and a curve or the like corresponding to the X-ray absorption rate is formed in the portion of the subject H.
  • the pixel value changes in the background region 104 reflecting the offset noise. Further, the curve shape also changes in the portion of the subject H due to the offset noise. However, the boundary position between the subject H and the blank area 104 is not changed by the offset noise.
  • the trend detection unit 102 detects the horizontal direction component of the trend 72 using the data of the area E2a and the area E2b corresponding to the blank area 104 as described above. Specifically, first, at least two pixels are selected from the region E2a or the region E2b where the pixel value is flat in the absorption differential image. Here, the pixel A1 with the region E2a and the pixel A2 with the region E2b are selected, but two points may be selected from either the region E2a or the region E2b. Further, three or more pixels may be selected, and if there are three or more regions where the change in the pixel value is flat corresponding to the blank region 104, one point may be selected from each region.
  • the horizontal direction component of the trend 72 is detected by the trend detection unit 102, the same applies to the case where the vertical direction component of the trend 72 is detected.
  • the aspect which removes the trend 72 from a phase differential image using the detected trend component 107 in the trend removal part 48 is the same as that of 1st Embodiment mentioned above.
  • the absorption differential image generation unit 101 generates an absorption differential image from the actual captured image data 52, but the absorption differential image is preferably generated as follows. First, the absorption differential image generation unit 101 generates a first absorption image from the pre-photographed image data 51 at the time of pre-photographing, and stores it in the offset image storage unit 42, for example. Next, at the time of actual imaging, the absorption differential image 101 generates a second absorption image from the actual captured image data 52. Then, a third absorption image is generated by dividing the second absorption image by the first absorption image, and an absorption differential image to be input to the trend detecting unit 102 is generated by differentiating the third absorption image.
  • the trend can be removed even in the subject H as in the second embodiment. Further, as is clear from the fact that the pixels in the subject H can be used, even when the subject H is present in the entire imaging range 10, the trend is detected by the same method as in the second embodiment described above. Can do.
  • the noise removing unit 43 is configured by a trend removing unit 121 (first noise removing unit) and an offset removing unit 122 (second noise removing unit).
  • the trend removing unit 121 When the phase differential image that has been subjected to the unwrap processing is input from the unwrap processing unit 41, the trend removing unit 121 performs Fourier transform on the phase differential image to remove low-frequency components that are equal to or lower than a predetermined frequency. Thereafter, inverse Fourier transform is performed to generate a phase differential image from which low frequency components are removed. In the case of pre-shooting, the trend removing unit 121 stores the phase differential image from which the low frequency component has been removed in the offset image storage unit 42 as an offset image. In the case of actual photographing, the trend removing unit 121 inputs a phase differential image from which low frequency components are removed to the offset removing unit 122.
  • the offset removing unit 122 acquires an offset image from the offset image storage unit 42 when a phase differential image from which low frequency components are removed is input during the main photographing. Then, the offset noise is removed from the phase differential image by subtracting the offset image from the phase differential image obtained by the actual photographing.
  • the X-ray imaging apparatus configured as described above performs pre-imaging as shown in FIG.
  • a shooting instruction input standby state is set (step S51).
  • the X-ray source 11 performs X at each scanning position “k” while the second grating 22 is intermittently moved by a predetermined scanning pitch by the scanning mechanism 23.
  • the G2 image is detected by the beam irradiation and the X-ray image detector 13 (step S52).
  • M pieces of pre-captured image data 51 are generated and stored in the memory 14.
  • step S 53 a phase differential image is generated from the pre-captured image data 51 by the phase differential image generation unit 40 (step S 53) and unwrapped by the unwrap processing unit 41. Processing is performed (step S54).
  • the unwrapped phase differential image is input to the trend removing unit 121, subjected to Fourier transform (step S55), low frequency components equal to or lower than a predetermined frequency are removed (step S56), and inverse Fourier transform is performed. Is given. Thereby, the inputted phase differential image becomes a phase differential image from which a predetermined low frequency component is removed.
  • the phase differential image from which the low frequency component has been removed is stored in the offset image storage unit 42 as an offset image, and pre-imaging is completed.
  • the main shooting mode is selected as the shooting mode using the operation unit 18a (step S70).
  • a shooting instruction standby state is set (step S71).
  • stripe scanning is performed (step S72), and M main captured image data 52 are stored in the memory 14.
  • the captured image data 52 is read out by the image processing unit 15, a phase differential image is generated by the phase differential image generation unit 40 (step S73), and unwrap processing is performed by the unwrap processing unit 41 (step S74).
  • the unwrapped phase differential image is input to the trend removing unit 121, subjected to Fourier transform (step S75), low frequency components equal to or lower than a predetermined frequency are removed (step S76), and inverse Fourier transform is performed. Is given.
  • the inputted phase differential image becomes a phase differential image from which a predetermined low frequency component is removed.
  • the phase differential image from which the low-frequency component has been removed is input to the offset removing unit 122, and the offset noise is further removed by subtracting the offset image (step S77).
  • the phase differential image from which the offset noise has been removed is recorded in the image recording unit 16.
  • phase contrast image generation unit 44 generates a phase contrast image from the phase differential image from which the offset noise has been removed, and records it in the image recording unit 16 (step S78).
  • the phase differential image and phase contrast image generated in this way are displayed on the monitor 18b (step S79).
  • the phase differential image generated from the pre-captured image data 51 and the main captured image data 52 is Fourier transformed to remove a predetermined low frequency component
  • the low frequency component of offset noise is removed from the phase differential image.
  • the offset noise at the time of pre-photographing and that at the time of main photographing do not completely match, the trend remains when the offset image is subtracted. For this reason, as described above, no trend occurs when the difference between the phase differential image and the offset image from which the low-frequency component, which is mainly offset noise, is previously removed is taken.
  • offset noise also has high frequency components.
  • a pixel defect in the X-ray detector 13 generates high-frequency offset noise.
  • an offset image is acquired and the phase differential image low-frequency component generated at the time of actual imaging. Is subtracted from the offset image.
  • high-frequency offset noise is also removed.
  • the offset noise may be removed by removing low frequency components from the phase differential image obtained by the actual photographing. Thereby, a phase differential image in which neither offset noise nor trend remains can be obtained.
  • the subject H is disposed between the X-ray source 11 and the first lattice 21.
  • the subject H is disposed between the first lattice 21 and the second lattice. It may be arranged between the two.
  • the second grating 22 is moved at the time of fringe scanning.
  • the first grating 21 is oriented in a direction perpendicular to the grating lines or inclined. It may be moved in the direction of
  • the X-ray source 11 that emits cone-beam X-rays emitted from the X-ray source 11 is used.
  • X-rays that emit parallel-beam X-rays are used. It is also possible to use a source.
  • the X-rays emitted from the X-ray source 11 are incident on the first grating 21, and the X-ray source 11 has a single focal point.
  • the X focus may be dispersed by providing a multi-slit (source grid) described in WO 2006/131235 or the like immediately after the exit side of the X-ray source 11.
  • the grid line direction of the multi slit is the Y direction.
  • the lattice lines (lattice grooves) of the multi-slit 150 extend in the Y direction and are parallel to at least one of the first and second lattices 21 and 22.
  • the lattice pitch p 0 in the X direction of the multi slit 150 needs to satisfy Expression (10).
  • the distance L 0 is a distance in the Z direction from the multi slit 150 to the first grating 21.
  • the position of the multi-slit 150 becomes the position of the X-ray focal point, and thus the distance L 1 in the above embodiment is replaced with the distance L 0 .
  • the first and second gratings are used in addition to performing the fringe scanning by moving the first grating 21 or the second grating 22 while the multi-slit 150 is fixed. It is possible to perform fringe scanning by moving the multi slit 150 while 21 and 22 are fixed.
  • the multi slit 150 may be intermittently moved in the X direction using a value (p 0 / M) obtained by dividing the pitch p 0 of the multi slit 150 by M described above as a scanning pitch.
  • the first grating 21 projects the incident X-ray geometrically, but the first grating 21 is known as disclosed in WO 2004/058070 and the like. May be configured to generate the Talbot effect.
  • a small-focus X-ray light source or a multi-slit 150 may be used so as to enhance the spatial coherence of X-rays.
  • the first grating 21 may be a phase grating instead of the absorption grating.
  • the phase type grating is configured by replacing the X-ray absorption part of the absorption type grating with an X-ray phase forming part.
  • the X-ray phase forming part is formed of a material (air, resin, etc.) having a predetermined refractive index difference with respect to the adjacent X-ray transmitting part.
  • the phase-type grating there are known a phase grating that transmits incident X-rays with a phase modulation of ⁇ / 2 and a grating that transmits incident X-rays with a phase modulation of ⁇ / 2.
  • the self-image (G1 image) of the first grating 21 is generated at a position away from the first grating 21 by the Talbot distance Z m downstream in the Z direction.
  • the distance L 2 from the first grid 21 to the second grid 22 is required to be Talbot distance Z m.
  • Talbot distance Z m is dependent on the beam shape of the structure and the X-ray of the first grating 21.
  • the first grating 21 is absorption grating, if X-rays emitted from the X-ray source 11 is a cone beam shape, Talbot distance Z m is represented by the formula (11).
  • “m” is a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy the expression (1) (however, when the multi slit 150 is used, the distance L 1 is replaced with the distance L 0 ).
  • the Talbot distance Z m is And represented by equation (12).
  • “m” is “0” or a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy the expression (1) (however, when the multi slit 150 is used, the distance L 1 is replaced with the distance L 0 ).
  • the Talbot distance Z m is expressed by the equation It is represented by (13).
  • “m” is “0” or a positive integer.
  • “m” is “0” or a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy Expression (14) ( However, in the case of using the multi-slit 150, the distance L 1 is replaced by a distance L 0).
  • the first grating 21 is absorption grating, if X-rays emitted from the X-ray source 11 is a parallel beam shape, Talbot distance Z m is represented by the formula (15).
  • “m” is a positive integer.
  • the Talbot distance Z m is And represented by equation (16).
  • “m” is “0” or a positive integer.
  • the Talbot distance Z m It is represented by (17).
  • “m” is “0” or a positive integer.
  • the grating portion 12 is provided with the two gratings of the first and second gratings 21 and 22.
  • the second grating 22 is omitted and the first grating 21 is omitted. It is also possible to use only.
  • the second grating 22 can be omitted and only the first grating 21 can be provided.
  • This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges and a charge collection electrode that collects electric charges converted in the conversion layer.
  • the charge collection electrode includes a plurality of linear electrode groups.
  • One linear electrode group is obtained by electrically connecting linear electrodes arranged at a constant period, and is arranged so that the phases thereof are different from those of other linear electrode groups.
  • This linear electrode group functions as the second grating 22, and the presence of a plurality of linear electrode groups allows detection of a plurality of G2 images having different phases in one imaging. Therefore, in this configuration, the scanning mechanism 23 can be omitted.
  • the single image data obtained by the X-ray image detector 13 is divided into groups of pixel rows (pixels arranged in the X direction) having different phases from each other with respect to the moire fringes, and a plurality of divided image data is obtained.
  • a phase differential image is generated in the same procedure as the above-described fringe scanning method, assuming that the images are based on a plurality of different G2 images by fringe scanning.
  • the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in single image data.
  • the scanning mechanism 23 is omitted, and the phase differential image is obtained based on the single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22.
  • a Fourier transform method described in WO2010 / 050484 is known. This Fourier transform method obtains a Fourier spectrum by performing a Fourier transform on the single image data, separates a spectrum corresponding to a carrier frequency (a spectrum carrying phase information) from the Fourier spectrum, and then reverses the spectrum.
  • This is a method of generating a phase differential image by performing Fourier transform.
  • the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in a single image data, as in the case of the pixel division method.
  • the present invention can be applied to an industrial radiography apparatus and the like in addition to a radiography apparatus for medical diagnosis.
  • a radiography apparatus for medical diagnosis In addition to X-rays, gamma rays or the like can be used as radiation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

ノイズがない精細な位相微分画像を得る。 X線撮影装置(10)は、X線源(11)、X線検出器(13)、格子部(12)、位相微分画像生成部(40)、アンラップ処理部(41)、ノイズ除去部(43)を備える。X線源(11)は、被検体に向けて放射線を射出する。X線検出器(13)は、X線源から射出されたX線を検出して画像データを生成する。格子部(12)は、X線源とX線検出器との間に配置される。位相微分画像生成部(40)は、X線検出器により得られた画像データ(51,52)に基づいて位相微分画像を生成する。アンラップ処理部(41)は、位相微分画像にアンラップ処理を施す。ノイズ除去部(43)は、被検体Hがない場合のオフセットノイズを表すオフセット画像を、被検体Hを撮影して得られる被検体画像から減算したときに、被検体画像に残存するノイズであるトレンドを被検体画像から除去する。

Description

放射線撮影装置及び画像処理方法
 本発明は、被検体による放射線の位相変化に基づく画像を検出する放射線撮影装置及び画像処理方法に関する。
 放射線、例えばX線は、物質を構成する元素の重さ(原子番号)と物質の密度及び厚さとに依存して吸収されて減衰するという特性を有する。この特性に着目し、医療診断や非破壊検査等の分野において、被検体の内部を透視するためのプローブとしてX線が利用されている。
 一般的なX線撮影装置では、X線を放射するX線源と、X線を検出するX線画像検出器との間に被検体を配置して、被検体を透過したX線の撮影を行う。この場合、X線源からX線画像検出器に向けて放射されたX線は、被検体を透過する際に吸収されて減衰した後、X線画像検出器に入射する。そして、被検体によるX線の強度変化に基づく画像がX線画像検出器により検出される。
 X線吸収能は、原子番号が小さい元素ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線の強度変化が小さく、画像に十分なコントラストが得られない等の問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線吸収能の差が小さいため、コントラストが得られにくい。
 このような問題を背景に、被検体によるX線の強度変化に代えて、被検体によるX線の位相変化に基づいた画像を得るX線位相イメージングの研究が近年盛んに行われている。X線位相イメージングは、被検体に入射したX線の位相変化が強度変化より大きいことに基づき、X線の位相変化を画像化する方法であり、X線吸収能が低い被検体に対しても高コントラストの画像を得ることができる。X線位相イメージングの一種として、2枚の回折格子とX線画像検出器とを用いてX線タルボ干渉計を構成することにより、X線の位相変化を検出するX線撮影装置が知られている(例えば、WO2004/058070参照)。
 このX線撮影装置は、X線源から見て被検体の背後に第1の回折格子を配置し、第1の回折格子からタルボ距離だけ離れた位置に第2の回折格子を配置し、その背後にX線画像検出器を配置したものである。タルボ距離は、第1の回折格子を通過したX線が、タルボ効果によって第1の回折格子の自己像(縞画像)を形成する距離であり、第1の回折格子の格子ピッチとX線波長とに依存する。この自己像は、被検体でのX線の位相変化で屈折が生じることにより変調される。この変調量を検出することにより、X線の位相変化が画像化される。
 上記変調量の検出方法として縞走査法が知られている。縞走査法とは、第1の回折格子に対して第2の回折格子を、第1の回折格子の面に平行でかつ第1の回折格子の格子線方向に垂直な方向に、所定の走査ピッチで並進移動(走査)させながら、各走査位置において、X線源からX線を放射し、被検体、第1及び第2の回折格子を通過したX線をX線画像検出器により撮影する方法である。このX線画像検出器により得られる各画素の画素値に対し、上記走査による変化を表す信号(強度変調信号)について位相ズレ量(被検体が存在しない場合の初期位置からの位相差)を算出することにより、上記変調量に関連する画像が得られる。この画像は、被検体の屈折率を反映した画像であり、X線の位相変化(位相シフト)の微分量に対応するため、位相微分画像と呼ばれる。
 WO2004/058070に示されているように、上記位相ズレ量は、複素数の偏角を抽出する関数(arg[…])や、逆正接関数(tan-1[…])を用いて算出される。このため、位相微分画像は、上記関数の値域(-πから+π、または、-π/2から+π/2)に畳み込まれた(ラップされた)値により表現される。このようにラップされた位相微分画像には、値域の上限から下限に変化する箇所、または下限から上限に変化する箇所で不連続点が生じることがあるため、この不連続点をなくして連続化するようにアンラップ処理を行うことが知られている(例えば、特開2011-045655号公報参照)。
 アンラップ処理は、画像内の所定位置を起点とし、該起点から所定の経路に沿って順に行われる。この経路中に上記不連続点が検出されると、この不連続点以降のデータに、上記関数の値域に相当する値が一律に加算または減算される。これにより、不連続点がなくなり、データが連続化する。
 また、位相微分画像にはノイズが重畳され、画像ムラが生じ、被検体の観察の妨げになることがある。ノイズは、例えば、各格子や線源等の配置誤差や撮影時の温度環境等、撮影時状況による様々な原因によって生じるが、配置誤差や温度環境等の撮影時の状況がほぼ同じであれば、被検体の有無に関わらず、同じ態様のノイズとして現れる。このため、被検体を撮影して得られた位相微分画像から、ほぼ同環境で被検体のない状態で撮影して得られた位相微分画像を減算することにより、被検体を撮影して得られた位相微分画像からノイズ成分を除去することが知られている(WO2004/058070,特開2011-045655号公報参照)。
 従来は撮影環境によって発生するノイズ成分の除去についてのみ対策が取られていた。しかしながら、被検体を撮影して得られた位相微分画像から、被検体のない状態で撮影して得られた位相微分画像を減算した後にも、被写体の像とは関連しないノイズ成分(以下、トレンドという)が残存してしまうことが実験によってわかった。このトレンドは、撮影のたびに変化する点が、前述の被検体のない状態で撮影した位相微分画像の減算により除去されるノイズ成分と異なる。
 本発明は放射線撮影装置にほぼ固有のノイズ成分とともに、撮影のたびに変化するノイズ成分とを除去することができる放射線撮影装置及び画像処理方法を提供することを目的とする。
 本発明の放射線撮影装置は、放射線源と、放射線検出器と、位相微分画像生成部と、ノイズ除去部と、を備える。放射線源は、被検体に向けて放射線を射出する。放射線検出器は、放射線源から射出された放射線を検出して画像データを生成する。位相微分画像生成部は、放射線源と放射線検出器との間に配置された格子部と、放射線検出器により得られた画像データに基づいて、位相微分画像を生成する。ノイズ除去部は、位相微分画像にアンラップ処理を施すアンラップ処理部と、アンラップ処理後の位相微分画像である被検体画像から、被検体がない場合のオフセットノイズを表すオフセット画像を減算した際に残存するトレンドを除去する。
 ノイズ除去部は、オフセットノイズ除去部と、トレンド検出部と、トレンド除去部と、を備えることが好ましい。オフセットノイズ除去部は、被検体画像からオフセット画像を減算することにより、オフセットノイズを除去する。トレンド検出部は、オフセットノイズが除去された被検体画像に基づいて前記トレンドを検出する。トレンド除去部は、トレンド検出部により検出されたトレンドを、被検体画像から減算して除去する。
 トレンド検出部は、所定方向に沿ってオフセットノイズが除去された被検体画像の画素値を抽出し、トレンドの所定方向成分を検出する。そして、トレンド除去部は、トレンドの所定方向成分を所定方向に垂直な方向に沿って並べたトレンド成分画像を生成し、トレンド成分画像を被検体画像から減算することにより、被検体画像からトレンドの所定方向成分を除去する。このようにして、トレンド検出部及びトレンド除去部は、所定方向である第1方向と所定方向に垂直な第2方向の2方向についてトレンドの成分を検出及び除去することが好ましい。被検体画像は四角形をしており、第1方向及び第2方向は、前記四角形の一辺に沿った横方向または縦方向であることが好ましい。
 トレンド検出部は、抽出した被検体画像の画素値のうち、少なくとも被検体がない素抜け領域の画素値に基づいてトレンドの成分を検出するようにしても良い。
 トレンド検出部は、第1方向または第2方向に沿って被検体画像の画素値を抽出した後、少なくとも被検体がある被検体領域を平滑化することにより、トレンドの第1方向成分または第2方向成分を抽出するようにしても良い。
 さらに、トレンド検出部は、第1方向または第2方向に沿って被検体画像の画素値を抽出した後、素抜け領域のデータに基づいて、被検体がある被検体領域のデータを補間,外挿,またはフィッティングすることにより、トレンドの第1方向成分または第2方向成分を抽出することが好ましい。
 また、トレンド検出部は、第1方向または第2方向に沿って複数の行または列について、トレンドの第1方向成分または第2方向成分を検出し、各行または各列における第1方向成分または第2方向成分を平均化したデータを、第1方向成分または第2方向成分として検出しても良い。
 トレンド検出部は、第1方向と前記第2方向の少なくとも一方を、被検体を通らない方向に設定することが好ましい。また、被検体の配置を指定し、位相微分画像に被検体がない素抜け領域が生じるように被検体の配置を指定する指標を備えても良い。
 放射線検出器により得られた画像データに基づいて、放射線の吸収率を表す吸収画像を生成し、吸収画像を微分して吸収微分画像を生成する吸収微分画像生成部を備える場合、トレンド検出部は、吸収微分画像において周辺の画素と画素値がほぼ等しい画素を複数選出し、選出した複数の画素に各々対応する位置にある位相微分画像の画素の画素値に基づいて、トレンドを検出するようにしても良い。
 吸収微分画像生成部は、被写体がない場合に得られた画像データから第1吸収画像を、被写体がある場合に得られた画像データから第2吸収画像をそれぞれ生成し、第2吸収画像を第1吸収画像で割って得られる第3吸収画像を微分することにより、吸収微分画像を生成することが好ましい。また、トレンド検出部が選出する画素は、被検体がない素抜け領域の画素であることが好ましい。
 格子部は、放射線源からの放射線を通過させて第1の周期パターン像を生成する第1の格子と、第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2の格子と有し、放射線画像検出器は、第2の周期パターン像を検出して画像データを生成することが好ましい。
 格子部は、第1の格子または第2の格子を所定の走査ピッチで移動させ、複数の走査位置に順に設定する走査機構を備え、放射線画像検出器は、各走査位置で第2の周期パターン像を検出して画像データを生成し、位相微分画像生成部は、放射線画像検出器により生成される複数の画像データに基づいて位相微分画像を生成することが好ましい。
 第1の格子または第2の格子の移動方向は、格子線に直交する方向である。第1の格子または第2の格子の移動方向は、格子線に対して傾斜する方向でも良い。
 位相微分画像生成部は、前記放射線検出器により得られる単一の画像データに基づいて位相微分画像を生成しても良い。
 第1の格子は、吸収型格子であり、入射した放射線を幾何光学的に投影することにより第1の周期パターン像を生成することが好ましい。第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ効果を生じさせて第1の周期パターン像を生成するものでも良い。
 放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットを備えることが好ましい。
 本発明の画像処理方法は、オフセット画像生成ステップと、被検体画像生成ステップと、ノイズ除去ステップと、を備える。オフセット画像生成ステップでは、放射線源と放射線検出器との間に格子部を配置して被検体のない状態で撮影を行うことにより得られる画像データに基づいて、被検体の有無によらず位相微分画像に重畳されるオフセットノイズが写し出された位相微分画像であるオフセット画像を生成する。被検体画像生成ステップでは、放射線源と放射線検出器との間に格子部を配置して被検体の撮影を行うことにより得られる画像データに基づいて、位相微分画像である被検体画像を生成する。ノイズ除去ステップでは、被検体画像からオフセット画像を減算したときに被検体画像に残存するノイズであるトレンドを被検体画像から除去する。
 本発明によれば、放射線撮影装置にほぼ固有のノイズ成分(オフセットノイズ)とともに、撮影のたびに変化するノイズ成分(トレンド)も除去して、精細な位相微分画像を得ることができる。
X線撮影装置を示すブロック図である。 X線画像検出器の構成を示す模式図である。 第1及び第2の格子の構成を説明する説明図である。 強度変調信号を示すグラフである。 画像処理部の構成を示すブロック図である。 アンラップ処理の態様を示す説明図である。 プレ撮影時の処理を示すフローチャートである。 本撮影時の処理を示すフローチャートである。 プレ撮影画像データにモアレが生じる様子を示す説明図である。 モアレが位相微分画像中にノイズとして現れる態様を示す説明図である。 オフセットノイズの態様を示す説明図である。 本撮影時に生成される各種画像の態様を示す説明図である。 オフセット画像の減算によりトレンドが残存する態様を示す説明図である。 トレンドの横方向成分を検出する態様を示す説明図である。 横方向トレンド画像の例を示す説明図である。 トレンドの横方向成分を除去する様子を示す説明図である。 トレンドの縦方向成分を検出する態様を示す説明図である。 縦方向トレンド画像の例を示す説明図である。 トレンドの縦方向成分を除去する様子を示す説明図である。 全体に被検体が写し出された位相微分画像の例を示す図である。 周期的な特徴を有するトレンドを示す説明図である。 被検体の配置を制限するための指標の例を示す図である。 素抜け領域に擬似吸収体を設ける例を示す説明図である。 第2実施形態の画像処理部を示すブロック図である。 第2実施形態のトレンド検出方法を示す説明図である。 第3実施形態のノイズ除去部の態様を示すブロック図である。 第3実施形態の画像処理を示すフローチャートである。 第3実施形態の本撮影の画像処理を示すフローチャートである。 マルチスリットを有するX線撮影装置を説明する説明図である。
[第1実施形態]
 図1において、X線撮影装置10は、X線源11、格子部12、X線画像検出器13、メモリ14、画像処理部15、画像記録部16、撮影制御部17、コンソール18、及びシステム制御部19を備える。X線源11は、例えば、回転陽極型のX線管と、X線の照射野を制限するコリメータとを有し、撮影制御部17の制御に基づき、被検体Hに向けてX線を放射する。
 格子部12は、第1の格子21、第2の格子22、及び走査機構23を備える。第1及び第2の格子21,22は、X線照射方向であるZ方向に関してX線源11に対向配置されている。X線源11と第1の格子21との間には、被検体Hが配置される。X線画像検出器13は、例えば、半導体回路を用いたフラットパネル検出器であり、第2の格子22の背後に、検出面13aがZ方向に直交するように配置されている。
 第1の格子21は、Z方向と直交して配置された吸収型格子であり、その格子面にY方向に延伸された複数のX線吸収部21a及びX線透過部21bを備えている。各X線吸収部21a及びX線透過部21bは、X方向に交互に配列されており、縞状のパターンを形成している。第2の格子22も吸収型格子であり、第1の格子21と同様にY方向に延伸され、かつX方向に交互に配列された複数のX線吸収部22a及びX線透過部22bを備えている。X線吸収部21a,22aは、金(Au)、白金(Pt)等のX線吸収性を有する材料により形成されている。X線透過部21b,22bは、シリコン(Si)や樹脂等のX線透過性を有する材料や空隙により形成されている。
 第1の格子21は、X線源11から放射されたX線を部分的に通過させて第1の周期パターン像(以下、G1像という)を生成する。第2の格子22は、第1の格子21により生成されたG1像を部分的に透過させて第2の周期パターン像(以下、G2像という)を生成する。被検体Hが配置されていない場合において、G1像は、第2の格子22の格子パターンとほぼ一致する。
 X線画像検出器13は、G2像を検出して画像データを生成する。メモリ14は、X線画像検出器13から読み出された画像データを一時的に記憶する。画像処理部15は、メモリ14に記憶された画像データに基づいて位相微分画像を生成し、この位相微分画像に基づいて位相コントラスト画像を生成する。画像記録部16は、位相微分画像と位相コントラスト画像とを記録する。
 走査機構23は、第2の格子22をX方向に間欠的に移動させ、第1の格子21に対する第2の格子22の相対位置を順次に変更する。走査機構23は、圧電アクチュエータや静電アクチュエータにより構成され、各走査位置(各間欠移動後の位置)でX線画像を検出するように、撮影制御部17の制御に基づいて駆動される。X線画像検出器13は、第2の格子22の間欠移動の停止中にX線画像を検出し、このX線画像の画像データがメモリ14に記憶される。なお、第2格子22を間欠的に移動させるかわりに、第2格子22を連続的に移動させ、所定距離移動する毎にX線画像を検出しても良い。
 コンソール18は、操作部18a及びモニタ18bを備えている。操作部18aは、キーボードやマウス等により構成され、X線源11の管電圧、管電流、照射時間等の撮影条件の設定や、本撮影またはプレ撮影のモード選択、撮影実行指示等の操作入力を可能とする。本撮影とは、X線源11と第1の格子21との間に被検体Hを配置した状態で行う撮影モードである。プレ撮影とは、X線源11と第1の格子21との間に被検体Hを配置せずに行う撮影モードである。プレ撮影は、第1及び第2の格子21,22の製造誤差や配置誤差等により生じるバックグランド成分をオフセット画像として取得するために行われる。
 モニタ18bは、撮影条件等の撮影情報や、画像記録部16に記録された位相微分画像及び位相コントラスト画像の表示を行う。システム制御部19は、操作部18aから入力される信号に応じて各部を統括的に制御する。
 図2において、X線画像検出器13は、入射X線により半導体膜(図示せず)に生じた電荷を収集する画素電極31と、画素電極31によって収集された電荷を読み出すためのTFT(Thin Film Transistor)32とを備えた画素部30が2次元状に多数配列されたものである。半導体膜は、例えば、アモルファスセレンにより形成されている。
 また、X線画像検出器13は、ゲート走査線33、走査回路34、信号線35、及び読み出し回路36を備える。ゲート走査線33は、画素部30の行ごとに設けられている。走査回路34は、TFT32をオン/オフするための走査信号を各ゲート走査線33に付与する。信号線35は、画素部30の列ごとに設けられている。読み出し回路36は、各信号線35を介して画素部30から電荷を読み出し、画像データに変換して出力する。各画素部30の詳細な層構成については、例えば、特開2002-26300号公報に記載されている層構成と同様である。
 読み出し回路36は、積分アンプ、A/D変換器、補正回路(いずれも図示せず)等を備える。積分アンプは、各画素部30から信号線35を介して出力された電荷を積分して画像信号を生成する。A/D変換器は、積分アンプにより生成された画像信号を、デジタル形式の画像データに変換する。補正回路は、画像データに対して、暗電流補正、ゲイン補正、リニアリティ補正等を行う。この補正後の画像データがメモリ14に記憶される。
 X線画像検出器13は、入射X線を半導体膜で直接電荷に変換する直接変換型に限られず、ヨウ化セシウム(CsI)やガドリウムオキシサルファイド(GOS)等のシンチレータで入射X線を可視光に変換し、可視光をフォトダイオードで電荷に変換する間接変換型であってもよい。さらに、X線画像検出器13を、シンチレータとCMOSセンサを組み合わせて構成してもよい。
 図3において、X線源11から照射されるX線は、X線焦点11aを発光点としたコーンビームである。第1の格子21は、タルボ効果が生じず、X線透過部21bを通過したX線を幾何光学的に投影するように構成される。具体的には、X方向へのX線透過部21bの幅を、X線源11から照射されるX線のピーク波長より十分大きな値とし、X線の大部分がX線透過部21bで回折しないようにすることで実現される。X線源11の回転陽極としてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は約0.4Åである。この場合には、X線透過部21bの幅を1~10μm程度とすればよい。
 これにより、G1像は、第1の格子21からZ方向下流への距離に依らず、常に第1の格子21の自己像となる。G1像は、X線焦点11aからZ方向下流への距離に比例して拡大される。
 第2の格子22の格子ピッチpは、前述のように、第2の格子22の格子パターンが第2の格子22の位置におけるG1像に一致するように設定されている。具体的には、第2の格子22の格子ピッチpは、第1の格子21の格子ピッチp、X線焦点11aと第1の格子21との間の距離L、第1の格子21と第2の格子22との間の距離Lと、式(1)をほぼ満たすように設定されている。以下、X,Y,Z方向の座標を、x,y,zとする。
Figure JPOXMLDOC01-appb-M000001
 G1像は、被検体HでX線に位相変化が生じて屈折することにより変調される。この変調量には、被検体HでのX線の屈折角φ(x)が反映される。同図には、被検体HでのX線の位相変化を表す位相シフト分布Φ(x)に応じて屈折するX線の経路が例示されている。符号X1は、被検体Hが存在しない場合にX線が直進する経路を示し、符号X2は、被検体Hにより屈折したX線の経路を示している。
 位相シフト分布Φ(x)は、X線の波長をλ、被検体Hの屈折率分布をn(x,z)として、式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 屈折角φ(x)は、位相シフト分布Φ(x)と、式(3)の関係にある。
Figure JPOXMLDOC01-appb-M000003
 第2の格子22の位置において、X線は、屈折角φ(x)に応じた量だけX方向に変位する。この変位量Δxは、X線の屈折角φ(x)が微小であることに基づいて、近似的に式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 このように、変位量Δxは、位相シフト分布Φ(x)の微分値に比例する。したがって、変位量Δxを後述する縞走査により検出することにより、位相シフト分布Φ(x)の微分値が得られ、位相微分画像が生成される。
 格子ピッチpをM個に分割した値(p/M)を走査ピッチとしたときに、走査機構23により、この走査ピッチで第2の格子22を間欠移動させる。第2の格子22の間欠移動毎に、X線源11からX線を放射してG2像をX線画像検出器13により撮影する。Mは3以上の整数であり、例えば、M=5であることが好ましい。この第2の格子22の間欠移動と、X線画像検出器13の撮像によって、縞走査が行われる。
 式(1)を僅かに満たさない場合や、第1の格子21と第2の格子22との間にZ方向周りの回転や、XY平面に対する傾斜が僅かに生じている場合には、G2像にはモアレ縞が生じる。このモアレ縞は、第2の格子22の間欠移動に伴って移動し、X方向への移動距離が格子ピッチpに達すると元のモアレ縞に一致する。このモアレ縞の移動を確認することで、第2の格子22の間欠移動量を検証することができる。
 上記縞走査により、X線画像検出器13の各画素部30について、M個の画素値が得られる。図4に示すように、M個の画素値Iは、第2の格子22の走査位置「k」に対して周期的に変化する。走査位置「k」は、第2の格子22の間欠移動中の各停止位置である。走査位置「k」に対する画素値Iの変化を表す信号を強度変調信号と呼ぶ。
 同図中の破線は、被検体Hを配置しない状態で得られる強度変調信号を示している。これに対して、実線は、被検体Hを配置した状態で、被検体Hにより位相ズレ量ψ(x)が生じた強度変調信号を示している。この位相ズレ量ψ(x)は、上記変位量Δxと式(5)の関係にある。
Figure JPOXMLDOC01-appb-M000005
 したがって、各画素部30について、縞走査で得られるM個の画素値Iに基づき、強度変調信号の位相ズレ量ψ(x)を求めることにより、位相微分画像が得られる。
 次に、位相ズレ量ψ(x)の算出方法について説明する。強度変調信号は、一般に式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、Aは入射X線の平均強度を表し、Aは強度変調信号の振幅を表す。「n」は正の整数、「i」は虚数単位である。なお、図4に示すように、強度変調信号が正弦波を描く場合には、n=1である。
 本実施形態では、走査ピッチ(p/M)が一定であるため、式(7)が成立する。
Figure JPOXMLDOC01-appb-M000007
 式(7)を式(6)に適用すると、位相ズレ量ψ(x)は、式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、arg[…]は、複素数の偏角を抽出する関数である。また、位相ズレ量ψ(x)は、逆正接関数を用いて式(9)のように表すことも可能である。
Figure JPOXMLDOC01-appb-M000009
 複素数の偏角は、値域が-πから+πの範囲であるため、式(8)に基づいて位相ズレ量ψ(x)を算出した場合には、位相ズレ量ψ(x)は、-πから+πの範囲に畳み込まれた(ラップされた)値を取る。これに対して、逆正接関数は、通常、値域が-π/2から+π/2の範囲であるため、式(9)に基づいて位相ズレ量ψ(x)を算出した場合には、位相ズレ量ψ(x)は、-π/2から+π/2の範囲に畳み込まれた値を取る。なお、式(9)において、逆正接関数内の分母及び分子の正負を判別することにより、値域を-πから+πとすることができるため、-πから+πの範囲で位相ズレ量ψ(x)を算出することも可能である。
 本実施形態では、各画素部30について算出された位相ズレ量ψ(x)を画素値とするデータを位相微分画像という。なお、位相ズレ量ψ(x)に定数を乗じたり加算したりしたデータで表される画像を位相微分画像としてもよい。以下、位相微分画像の画素値は、幅αを有する所定の値域(例えば0からαの範囲)にラップされているとする。
 図5に示すように、画像処理部15は、位相微分画像生成部40、アンラップ処理部41、オフセット画像記憶部42、ノイズ除去部43、位相コントラスト画像生成部44等を備える。
 位相微分画像生成部40は、プレ撮影の縞走査でX線画像検出器13により得られるM枚分の画像データ(プレ撮影画像データ)51を用い、式(8)または式(9)に基づいて演算を行うことにより、位相微分画像を生成する。同様に、位相微分画像生成部40は、本撮影の縞走査でX線画像検出器13により得られるM枚分の画像データ(本撮影画像データ)52に基づいて位相微分画像を生成する。位相微分画像生成部40で生成された位相微分画像は、アンラップ処理部41に入力される。
 アンラップ処理部41は、位相微分画像生成部40から入力される位相微分画像にアンラップ処理を施す。アンラップ処理は、図6に示すように、所定の経路に沿って、位相微分画像の画素値が所定の値域にラップされていることにより大きく変化(いわゆる位相飛び)する点を不連続点DPとして検出し、検出した不連続点DP以降の画素値に値域の幅αを加算または減算することで不連続点DPをなくし、画素値の変化をほぼ連続化する処理である。不連続点DPの検出は、画素値の変化量が所定量(例えば、α/2)以上である箇所を求めることにより行われる。
 また、アンラップ処理部41は、位相微分画像の各行または各列の端部に位置する画素に起点を複数設定し、ある起点から所定の経路(例えば、行または列に沿った直線経路)に沿ってアンラップ処理を行った後、ここでアンラップ処理を行った起点と隣接する起点のアンラップ処理を行い、隣接する起点から経路に沿ってアンラップ処理を行うという処理を、起点及び経路を変更しながら順に繰り返すことにより、位相微分画像の全体にアンラップ処理を施す。
 アンラップ処理部41は、プレ撮影時には、プレ撮影画像データ51から生成された位相微分画像にアンラップ処理を施すと、これをオフセット画像として、オフセット画像記憶部43に記憶させる。オフセット画像には、第1の格子21や第2の格子22の歪や僅かな位置ずれ(回転や傾斜を含む)、第2の格子22を走査したときに生じる僅かな配置誤差等によって発生するノイズ成分(以下、オフセットノイズという)が写し出される。本撮影時のX線源11の温度環境、撮影回数や被検体との接触状況に応じたX線検出器13の温度環境等がプレ撮影時とほぼ同じであれば、本撮影時に得られる位相微分画像にもオフセット画像に写し出されるオフセットノイズとほぼ同じノイズ成分が重畳される。なお、オフセット画像記憶部43は、新たにプレ撮影を行って新たなオフセット画像が入力された場合には、既に記憶されているオフセット画像を消去した後、新たに入力されたオフセット画像を記憶する。また、本撮影時には、アンラップ処理部41は、本撮影画像データ52から生成された位相微分画像にアンラップ処理を施し、ノイズ除去部43に入力する。
 ノイズ除去部43は、本撮影時に得られた位相微分画像からノイズを除去する。ノイズ除去部43は、オフセット除去部46、トレンド検出部47、トレンド除去部48を備える。
 オフセット除去部46は、本撮影時に得られる位相微分画像からオフセットノイズを除去する。より具体的には、オフセット除去部46は、本撮影時にアンラップ処理部41から位相微分画像が入力されると、オフセット画像記憶部42からオフセット画像を取得する。そして、入力された位相微分画像からオフセット画像を減算することにより、オフセットノイズが除去された位相微分画像を生成する。オフセットノイズが除去された位相微分画像は、トレンド検出部47に入力される。
 トレンド検出部47とトレンド除去部48は、オフセットノイズが除去された位相微分画像から、残存するトレンドを検出して除去するトレンド検出除去手段を構成する。トレンド検出部47は、オフセットノイズが除去された位相微分画像から所定方向のノイズ成分を検出し、トレンド除去部48はトレンド検出部で検出されたトレンドを表すトレンド画像を生成する。そして、トレンド除去部48は、オフセットノイズが除去された位相微分画像からトレンド画像を減算することにより、トレンドが除去された位相微分画像を生成し、位相コントラスト画像生成部44に入力する。
 より具体的には、トレンド検出部47は、位相微分画像が入力されると、位相微分画像の第1方向(例えば、位相微分画像の横方向(X方向))に重畳されたノイズ成分を検出する。トレンド除去部48は、第1方向のノイズ成分を、第1方向に直交する第2方向(例えば、位相微分画像の縦方向(Y方向))に一様に並べた第1トレンド画像を生成し、位相微分画像から減算する。これにより、位相微分画像からトレンドの第1方向成分が除去される。
 次いで、トレンド検出部47は、トレンドの第1方向成分が除去された位相微分画像の第2方向に重畳されたノイズ成分を検出する。そして、トレンド除去部48は、第2方向のノイズ成分を、第1方向に一様に並べた第2トレンド画像を生成し、トレンドの第1方向成分が除去された位相微分画像からさらに減算する。これにより、位相微分画像からトレンドが除去される。
 位相コントラスト画像生成部44は、ノイズ除去部43でオフセットノイズ及びトレンドが除去された位相微分画像をX方向に沿って積分処理することにより、位相シフト分布を表す位相コントラスト画像を生成する。トレンドが除去された位相微分画像と、位相コントラスト画像は、画像記録部16に記録される。
 以下、X線撮影装置10の作用を説明する。X線撮影装置10を用いて被検体Hの撮影を行う場合、図7に示すように、被検体Hの撮影の前に、プレ撮影を行う。操作部18aを用いて撮影モードとしてプレ撮影モードが選択されると(ステップS10)、撮影指示の入力待機状態となる(ステップS11)。その後、操作部18aを用いて撮影指示が入力されると、走査機構23により第2の格子22が所定の走査ピッチずつ並進移動されながら、各走査位置「k」において、X線源11によるX線照射及びX線画像検出器13によるG2像の検出が行われる(ステップS12)。この縞走査の結果、M枚のプレ撮影画像データ51が生成され、メモリ14に格納される。
 プレ撮影画像データ51は、画像処理部15に読み出される。画像処理部15内では、位相微分画像生成部40によってプレ撮影画像データ51から位相微分画像が生成される(ステップS13)。この位相微分画像は、アンラップ処理部41によってアンラップ処理が施された後(ステップS14)、オフセット画像としてオフセット画像記憶部42に記憶される。プレ撮影動作は、以上で終了する。なお、このプレ撮影は、X線撮影装置10の立ち上げ時等に被検体Hを配置しない状態で少なくとも一度行われればよく、本撮影の前に毎回行われる必要はない。また、ここでは本撮影の前に予めオフセット画像を生成しておくためにプレ撮影を行う例を説明したが、本撮影後にオフセット画像を生成するための撮影を行っても良い。
 次に、図8に示すように、被検体Hを配置し、本撮影を行う。本撮影を行う場合、操作部18aを用いて本撮影モードが選択される(ステップS20)。本撮影モードが選択されると、撮影指示の待受状態となる(ステップS21)。操作部18aを用いて撮影指示がなされると、縞走査が行われ(ステップS22)、メモリ14にM枚の本撮影画像データ52が格納される。
 その後、本撮影画像データ52は、画像処理部15に読み出される。画像処理部15内では、位相微分画像生成部40によって本撮影画像データ52から位相微分画像が生成され(ステップS23)、アンラップ処理部41によってアンラップ処理が施される(ステップS24)。
 アンラップ処理が施された位相微分画像はノイズ除去部43に入力される。ノイズ除去部43では、まず、オフセット除去部46において位相微分画像からオフセット画像を減算することにより、オフセットノイズが除去される(ステップS25)。
 次いで、トレンド検出部47によってさらに残存するノイズ成分としてトレンドが検出され(ステップS26)、トレンド除去部48によってトレンドが除去される(ステップS27)。
 なお、図8では、簡単のために、トレンドの検出(ステップS28)とトレンドの除去(ステップ27)をそれぞれ1回行うが、トレンドの検出及び除去は、トレンドが除去されるまで必要に応じて複数回行われるようにして良い。例えば、X線撮影装置10は、トレンドの検出及び除去を少なくとも2回に分けて行う。具体的には、X線撮影装置10は、トレンドのX方向成分を検出及び除去し、その後、トレンドのY方向成分を検出及び除去する。
 こうしてオフセットノイズ及びトレンドが除去された位相微分画像は、画像記録部16に記録される。同時に、位相コントラスト画像生成部44においてオフセットノイズ及びトレンドが除去された位相微分画像に積分処理が施され、位相シフト分布を表す位相コントラスト画像が生成され(ステップS28)、画像記録部16に記録される。その後、オフセットノイズ及びトレンドが除去された位相微分画像や位相コントラスト画像は、モニタ18bに画像表示される(ステップS29)。
 以上のように、X線撮影装置10は、本撮影において生成した位相微分画像からオフセット画像を減算することによりオフセットノイズを除去し、また、オフセットノイズ除去後に残存するノイズ成分であるトレンドをさらに検出し除去する。このため、X線撮影装置10によれば、単にオフセットノイズを除去する場合よりも、よりノイズが低減された精細な位相微分画像を得ることができる。また、精細な位相微分画像が得られるので、位相微分画像に積分処理をして得られる位相コントラスト画像も低ノイズである。
 以下、トレンドの発生原因やトレンドを除去するための処理態様をより具体的に説明する。まず、プレ撮影を行うとプレ撮影画像データ51が得られるが、プレ撮影は被検体Hがない状態で行う撮影であるため、本来であればプレ撮影画像データ51にはほぼ何も写し出されない。しかし、例えば、図9に示すように、プレ撮影画像データ51にモアレ56が発生することがある。モアレ56は、例えば、プレ撮影画像データ51上に破線で示すライン上の画素値Iを抜き出してみれば、X方向に周期的に増減する縞状のノイズである。また、縞走査によるM枚のプレ撮影画像データ51を比較すると、モアレ56は走査位置「k」に応じてX方向に徐々に移動する。
 モアレ56は、第1の格子21や第2の格子22の歪や僅かな位置ずれ(回転や傾斜を含む)、第2の格子22を走査したときに生じる僅かな配置誤差によって発生する。第1の格子21や第2の格子22の歪や僅かな位置ずれは、撮影回数や被検体との接触状況に応じた温度環境によっても変化することがあり、第1の格子21や第2の格子22の温度変化による膨張/収縮により、同様のモアレ56が生じることがある。
 図10に示すように、モアレ56が発生したプレ撮影画像データ51に基づいて位相微分画像57を生成すると、モアレ56は、元のプレ撮影画像データ51上のモアレ周期の例えば1/2倍の周期を持ったノイズ58に変換される。このモアレ56に起因するノイズ58は、値域の幅αを上限/下限とした、いわゆるのこぎり波状である。位相微分画像57にアンラップ処理を施すと、のこぎり波状のノイズ58は、図11に示すように、X方向に画素値ψが単調増加するオフセットノイズ61となってオフセット画像59に重畳される。なお、ノイズ58の周期がモアレ周期の1/2倍となるのは、式(9)で表される値域が-π/2から+π/2の逆正接関数を用いて位相微分画像57を生成した場合である。一方、式(8)で表される値域が-πから+πの偏角抽出関数を用いた場合や、逆正接関数の値域を-πから+πに拡張した場合には、位相微分画像57のノイズ58の周期は、モアレ周期と同一である。
 同様に、図12(A)に示すように、本撮影を行って得られる本撮影画像データ52には、被検体Hが写し出されると同時に、モアレ62が重畳されることがある。このようにモアレ62が発生した本撮影画像データ52に基づいて位相微分画像を生成すると、モアレ62は、図12(B)に示す位相微分画像63のように1/2倍の周期ののこぎり波状のノイズ64となり、さらにアンラップ処理を施すことによって図12(C)に示す位相微分画像65(被検体画像)のようにオフセットノイズ66となる。
 プレ撮影時と本撮影時とで、第1の格子21や第2の格子22の歪や僅かな位置ずれ等がほぼ同じ状態であれば、オフセット画像59上のオフセットノイズ61と、本撮影時に得た位相微分画像65上のオフセットノイズ66は大局的にはほぼ同じ態様の像となっている。このため、位相微分画像65からオフセット画像59を減算すれば、位相微分画像65からオフセットノイズ66が除去される。
 しかし、プレ撮影時と本撮影時とで第1の格子21や第2の格子22の歪や僅かな位置ずれ等が厳密に同じ状態となることは殆どなく、プレ撮影時のモアレ56と本撮影時のモアレ62とを比較すると、周期や画像内での傾き等が若干異なっていることが通常である。したがって、モアレ56,62が反映されたオフセットノイズ61,66には若干の差異がある。このため、図13に示すように、本撮影時に得られた位相微分画像56からオフセット画像59を減算して得られる位相微分画像71には、プレ撮影時のオフセットノイズ61と本撮影時のオフセットノイズ66の差異によるノイズ成分がトレンド72として残存する。図13では、便宜上、オフセットノイズ61,66を示す濃淡と、トレンド72を示す濃淡とが同程度に描いているが、トレンド72は、例えばオフセットノイズ61,66の1/10程度の大きさのノイズ成分である。
 トレンド検出部47及びトレンド除去部48は、以下に説明するように、トレンド72が残存する位相微分画像71からトレンド72を検出し、除去する。
 トレンド検出部47は、オフセット除去部46から位相微分画像71が入力されると、トレンド72の横方向(X方向)成分を検出する。具体的には、図14に示すように、トレンド検出部47は、位相微分画像71の画素値ψを行毎に抽出する。例えば、破線で示す行の画素値ψは、例えば被検体Hがある領域(以下、被検体領域という)E1では被検体Hの構造に応じて画素値ψが変化するが、被検体Hがない領域(以下、素抜け領域という)E2a,E2bでは、トレンド72を反映してほぼ一様に変化する。このため、トレンド検出部47は、抽出した画素値ψを平滑化する。これにより、素抜けの領域E2a,E2bは平滑化前に比べてほぼ変化しないが、被検体領域E1は、平滑化により、破線で示すようにトレンド72の傾向とほぼ一致するデータとなり、行全体として一様に変化するトレンド72の横方向成分となる。
 トレンド検出部47は、上述のように各行の画素値ψを抽出し、平滑化することによって各行におけるトレンド72の横方向成分を生成すると、各行におけるトレンドの横方向成分を平均したデータ(以下、横方向トレンドデータという)を生成する。トレンド検出部47は、この横方向トレンドデータをトレンド72の横方向成分として検出し、位相微分画像71とともにトレンド除去部48に入力する。
 図15に示すように、トレンド除去部48は、トレンド検出部47で検出された横方向トレンドデータ72を縦方向(Y方向)に並べた画像76(以下、横方向トレンド画像という)を生成する。次いで、図16に示すように、元の位相微分画像71から横方向トレンド画像76を減算し、トレンド72の横方向成分を除去した位相微分画像77を生成する。この位相微分画像77には、依然としてトレンド78が重畳されている。トレンド78は、元の位相微分画像71のトレンド72から横方向成分が除去されたものであるから、トレンド72の縦方向(Y方向)成分である。こうしてトレンド72の横方向成分を除去した位相微分画像77を生成すると、トレンド除去部48は生成した位相微分画像77をトレンド検出部47に再び入力する。
 トレンド検出部47は、トレンド除去部48から位相微分画像77が入力されると、位相微分画像77からトレンド78(トレンド72の縦方向成分)を検出する。具体的には、まず、図17に示すように、位相微分画像77の各列の画素値ψを抽出し、各列のトレンド78を検出する。例えば、図17(A)に示すように、「a」列のように素抜け領域の列の画素値ψを抽出すると、抽出した画素値ψはほぼトレンド78そのものである。一方、図17(B)に示すように、「b」列のように被検体H上の列の画素値ψを抽出すると、トレンド78と被写体Hが重畳されているので、抽出した画素値ψはトレンド78を反映した一定の傾向があるが、被検体Hを反映して変化する。
 こうしたことから、トレンド検出部47は、抽出した列上に被写体Hがあるか否かによらず、データを平滑化する。こうして各列の画素値ψを各々平滑化すると、「a」列のように素抜け領域の場合には、平滑化処理の前後でデータの態様はほぼ変化しないが、「b」列のように被検体Hがある列では、被検体Hの情報がほぼ消失(低減)し、一点鎖線で示すようにトレンド78とほぼ同様の傾向を有するデータとなる。
 トレンド検出部47は、このように列毎に検出したトレンド78を全列について平均したデータ(以下、縦方向トレンドデータという)を生成する。トレンド検出部47は、この縦方向トレンドデータを元のトレンド72の縦方向成分として検出し、トレンド除去部48に入力する。
 図18に示すように、トレンド除去部48は、トレンド検出部78から入力された縦方向トレンドデータを横方向に並べた画像(以下、縦方向トレンド画像という)を生成する。次いで、図19に示すように、トレンド除去部48は、位相微分画像77から縦方向トレンド画像81を減算することにより、位相微分画像83を生成する。こうして生成された位相微分画像83は、位相微分画像71からトレンド72の横方向成分と縦方向成分がともに除去されたことにより、トレンドが全て除去された位相微分画像である。
 X線撮影装置10では、こうしてトレンドが全て除去された位相微分画像83を画像記録部16に記録する。また、位相コントラスト画像生成部44では、位相微分画像83から位相コントラスト画像を生成する。
 なお、上述の第1実施形態では、位相微分画像71の中央部分に、部分的に被検体Hが写し出されているが、図20に示すように、位相微分画像71のほぼ全体に被検体Hが写し出されている場合にも、X線撮影装置10は、トレンド72を好適に検出,除去することができる。これは、トレンド72の各方向成分を検出,除去するときに、各行(列)毎に検出したトレンド72の各方向成分を平均化したデータをトレンド72の各方向成分として検出するので、被検体Hがあることによる影響を受け難いからである。図20は、被検体Hが骨部20a,20bと、軟部組織20cとからなり、位相微分画像71の左上領域はほぼ骨部20aに、右下領域はほぼ骨部20bに占められ、これらの骨部20a,20b間は軟部組織20cであり、位相微分画像71に素抜け領域がない例を示している。
 なお、上述の第1実施形態では、オフセットノイズ66の除去後、トレンド72の横方向成分を検出及び除去し、その後、トレンド72の縦方向成分を検出及び除去しているが、トレンド72の検出除去態様はこれに限らない。例えば、先にトレンド72の縦方向成分を検出及び除去した後に、トレンド72の横方向成分を検出及び除去しても良い。
 また、上述の第1実施形態では、トレンド72を検出及び除去するときに、縦方向成分と横方向成分に分けて検出及び除去しているが、トレンド72を検出及び除去することができれば、この態様に限らない。例えば、位相微分画像71の縦横の辺に対して所定角度傾斜した斜め方向を第1方向とし、この第1方向に垂直な方向を第2方向として、トレンド72の第1方向成分及び第2方向成分を検出及び除去しても良い。この場合も、トレンド72を上述の第1実施形態と同様にトレンド72が除去された位相微分画像83を得ることができる。
 さらに、トレンド72を検出及び除去する場合に、位相微分画像71の縦横以外の2方向に分けて検出及び除去するときには、ノイズ除去部43にさらに被検体検出部(図示しない)を設け、被検体Hが写し出された領域を検出し、この被検体Hの領域に方向性がある場合には、被検体Hの領域の方向に沿った方向を第1方向、これに垂直な方向を第2方向としても良い。
 例えば、位相微分画像の斜め45度方向に被検体Hが写し出されている場合に、被検体Hに垂直な斜め135度方向を第1方向とし、被検体Hに沿った斜め45度方向を第2方向とする。こうすると、少なくとも一つの方向(第2方向)において、被検体Hに重ならないようにトレンド72の成分を検出する行が多くなるので、この方向(第2方向)におけるトレンド72の検出精度がより向上する。また、上述の位相微分画像71では、位相微分画像71のほぼ中央に、被検体Hが縦方向に沿って写し出されているが、この場合は、横方向が第1方向であり、縦方向が第2方向である。前述の通り、縦方向の成分を検出する場合(図17参照)は、素抜け領域で縦方向に沿って抽出した画素値ψは、トレンド78そのものであるため、どの列も被検体Hを横切ってしまう横方向成分を検出及び除去する場合よりも、縦方向成分の検出及び除去はより正確である。このようにトレンド成分の検出方向を選択する態様は、トレンド72の各方向成分を検出するときに、被検体Hがある箇所のデータを除いてトレンド72の各方向成分を検出する場合に特に好適である。
 なお、上述の第1実施形態では、トレンド72の縦横の各方向成分を検出する場合に、抽出した画素値ψを平滑化することにより、被検体Hの有無に関わらず、トレンド72の各方向の成分を検出しているが、被検体領域のデータ(例えば、図14における領域E1のデータ)を除き、素抜け領域のデータ(例えば、図14における領域E2a,E2b)に基づいてトレンド72の各方向成分を検出しても良い。このとき、除いた被検体領域部分のデータを算出する方法は任意である。単に被検体領域と素抜け領域の境界点(例えば、図14における領域E1と領域E2a,E2bの境界点)を直線で結ぶデータを算出しても良いし、任意の直線やスプライン、その他曲線等で、補間,外挿,フィッティング等により算出しても良い。また、被検体領域の検出は、被検体領域を検出するための被検体領域検出部をノイズ除去部43に設けておいても良いし、トレンド検出部47で被検体領域を検出するようにしても良い。被検体領域の検出は、例えば、画素値ψの変化量等に基づいて検出することができる。
 なお、上述の第1実施形態では、簡単のために、トレンド72が位相微分画像71内で直線的に増大(減少)する傾向を有する例を説明したが、図21に示すトレンド86のように、周期的な特徴を有することがある。X線撮影装置10はこうした場合にも好適にトレンドを検出,除去することができる。但し、前述のように被検体領域E1のデータを除き、素抜け領域E2a,E2bのデータに基づく補間,外挿,フィッティング等によりトレンドを検出する場合には、三角関数等を用いた曲線を用いて補間,外挿,フィッティング等をする必要がある。
 なお、前述の変形例のように、トレンド72を検出するときに、被検体領域をまたがない素抜け領域だけのデータを用いることができる場合には、トレンド72の検出精度がより向上する。このため、位相微分画像71に素抜け領域ができやすくすることが好ましい。
 位相微分画像71に素抜け領域ができやすくするためには、以下のようにすれば良い。例えば、図22に示すように、第1,第2の格子21,22やX線画像検出器13が収められた筐体91の前面91a(図23参照)に、被検体Hを配置する推奨範囲を示す指標92を設ける。また、指標92の示す推奨範囲は、X線検出器13の検出面13aのサイズよりも小さくしておく。この場合、指標92にしたがって、被検体Hが指標92内に配置されれば、検出面13aと指標92との差分領域が素抜け領域になる。また、被検体Hの大きさが指標92の示す範囲を超える場合であっても、検出面13aと指標92との差分領域に素抜け領域ができやすい。図22では、検出面13aの中央に指標92が設けられているが、指標92は検出面13aに対して上下左右のどの方向に偏って設けても良い。
 また、上述のように、位相微分画像71に素抜け領域ができやすくするために、指標92によって被検体Hの配置を制限する場合には、素抜け領域に被検体Hと同程度のX線吸収率を持つ擬似吸収体を配置しておくことが好ましい。例えば、図23に示すように、素抜け領域F2a,F2bに対応する検出面13aの前面に、擬似吸収体96を配置する。こうすると、素抜け領域F2a,F2bに対応する画素値ψが飽和して、トレンド72の検出ができなくなってしまうことを防止することができる。なお、図23では、X線検出器13内に擬似吸収体96を配置しているが、素抜け領域F2a,F2bに対応する位置に配置されていれば、擬似吸収体96の配置は任意である。また、擬似吸収体96は、例えば第2の格子22とX線検出パネル13の間や第1,第2の格子21,22の間に設けても良い。さらに、筐体92の前面92a(あるいは前面92aの筐体92内部側)に、指標92の外周を取り巻くように擬似吸収体96を配置しても良い。
 なお、上述の第1実施形態では、行毎に位相微分画像の画素値ψを抽出し、各行におけるトレンドの横方向成分を検出し、さらにこれらを平均した横方向トレンドデータを、トレンド72の横方向の成分として検出している。しかし、例えば、ある1行において検出したトレンド72の横方向成分を、位相微分画像全体のトレンド72の横方向成分としても良い。また、位相微分画像の全体ではなく、一部の行で検出したトレンド72の横方向成分を平均化したデータを、トレンド72の横方向成分としても良い。例えば、素抜け領域の行で検出したトレンド72の横方向成分を、位相微分画像全体としてのトレンド72の横方向成分として用いたり、素抜け領域の行で検出したトレンド72の横方向成分だけを平均化したデータを位相微分画像全体としてのトレンド72の横方向成分とすると、被検体領域をまたぐ行において検出したデータを用いる場合よりも、トレンド72の横方向成分の検出精度が向上する。縦方向成分の検出時も同様である。また、前述のように、位相微分画像の辺に非平行な第1方向及び第2方向についてトレンド72の成分を検出する場合も同様である。
 なお、上述の第1実施形態では、トレンド検出部47は、位相微分画像71の画素値ψを行毎に抽出した後、抽出した画素値ψを平滑化してトレンド72の横方向成分を検出し、さらに各行のトレンドの横方向成分を平均化して1つの横方向トレンドデータを検出するが、抽出した画素値ψの平滑化は省略しても良い。すなわち、トレンド検出部47は、行毎に抽出した画素値ψを平滑化せず、抽出した画素値ψそのものを平均化して横方向トレンドデータにしても良い。これは、各行間の画素値の平均化だけで、被写体Hの信号が鈍ってほぼトレンドだけのデータになる場合に有効である。
 また、上述の平滑化のみを行い、各行の横方向成分の平均化を省略しても良い。この場合、例えば、任意の行の画素値ψを平滑化し、この行の平滑化した画素値ψを横方向トレンドデータとしてトレンド除去部48に入力する。これは、画素値ψの平滑化だけで、被写体Hの信号が鈍ってほぼトレンドだけのデータになる場合に有効である。
 さらに、上述の平滑化及び平均化を両方とも省略しても良い。例えば、トレンド検出部47は、位相微分画像71の任意の行の画素値ψを抽出し、その行の画素値ψをそのまま横方向トレンドデータとしてトレンド除去部48に入力しても良い。これは、例えば、被写体Hの信号に比べてトレンド72が大きい場合に有効である。
 もちろん、縦方向トレンドデータを検出する場合も、上述のように平滑化または平均化を省略、あるいは平滑化と平均化を両方とも省略して良い。また、後述の各実施形態においても同様である。
 なお、上述の第1実施形態では、トレンド検出部47が横方向トレンドデータや縦方向トレンドデータを検出する場合に、画素値ψの大きさを考慮していないが、トレンド検出部47は抽出した行(あるいは列)の画素値ψを所定閾値と比較し、その大小関係に基づいて、画素値ψが所定範囲の部分のみを各方向のトレンドデータの検出に利用するようにすることが好ましい。
 例えば、擬似吸収体96が配置されていないために画素値ψが飽和してしまった素抜け領域や、被写体Hの固定治具の金属部分が写り込んで画素値が極端に少ない(例えばほぼ0になる)領域では、画素値ψ(位相微分値)は正常な値ではない。このため、これらの画素値ψが極端に大きい領域または画素値ψが極端に小さい領域の画素値ψまで考慮してトレンドデータを検出すると、これらの不適切な値に影響されて、検出されるトレンドデータが誤った値になってしまう場合がある。したがって、利用する画素値ψの下限を決める第1閾値と、利用する画素値ψの上限を決める第2閾値を予め定め、トレンド検出部47では、各行または各列の画素値ψを抽出した後、第1閾値以上第2閾値以下の範囲に収まる範囲のデータのみを用いて各方向のトレンドデータを検出するようにすることが好ましい。
[第2実施形態]
 なお、前述の第1実施形態では、位相微分画像71から画素値ψを行毎及び列毎に抽出し、平滑化することによって、トレンド72の横方向及び縦方向の成分を検出しているが、トレンド72の各方向成分を検出する態様はこれに限らない。例えば、以下に第2実施形態として説明するようにしてトレンド72の各方向成分を検出しても良い。
 図24に示すように、第2実施形態のX線撮影装置は、画像処理部100に吸収微分画像生成部101を備える。吸収微分画像生成部101は、まず、縞走査によって得られたM枚の本撮影画像データ52を取得し、これらを平均することによって、吸収画像を生成する。吸収画像は、被写体HのX線吸収率(透過率)がコントラストとして表現された画像である。
 各々の本撮影画像データ52には、第1の格子21と第2の格子22による縞が写し出されているが、この縞は第2の格子22の走査位置「k」に応じて移動し、撮影順にM枚の本撮影画像データ52を比較すれば1周期分移動する。このため、M枚の本撮影画像データ52を平均すると、第1の格子21と第2の格子22による縞は平均化されてほぼ一様なバックグラウンドとなるので、吸収画像には縞はなく、被写体Hの像だけが写し出される。
 次に、吸収微分画像生成部101は、吸収画像を微分して吸収微分画像を生成する。吸収画像の微分は、例えば、所定の方向(微分する方向)に1画素ずらした画像との差分を取ることによって行うことができる。こうして吸収微分画像生成部101で生成された吸収微分画像は、トレンド検出部102に入力され、トレンド72の検出時に利用される。なお、吸収画像を微分する方向は任意であるが、例えば、格子線に垂直なX方向(図1参照)に行うことが好ましい。
 トレンド検出部102は、第1実施形態のトレンド検出部47と同様に、オフセットノイズが除去された位相微分画像からトレンド72の各方向成分を検出するが、トレンド検出部102は吸収微分画像を参照しながらトレンド72の各方向成分を検出する。
 図25(A)に示すように、撮影した画面を103とし、被写体Hが撮影画面103の中央にあるとする。また、ここでは簡単のため被写体Hは球形とする。このとき、吸収画像において図25(A)の撮影画面103の中央を横切る一点鎖線に対応する画素値を抽出すると、図25(B)に示すように、オフセットノイズがない場合には実線105aのように、素抜け領域104の部分では画素値は平坦であり、被写体Hの部分ではそのX線吸収率に応じた曲線等になる。一方、オフセットノイズがある場合には、破線105bで示すように、素抜け領域104ではオフセットノイズを反映して画素値が変化する。また、被写体Hの部分においてもオフセットノイズによって曲線形状が変化する。但し、被写体Hと素抜け領域104の境界位置は、オフセットノイズによって変化しない。
 したがって、図25(C)の実線106a(オフセットノイズがない場合)及び破線106b(オフセットノイズがある場合)に示すように、吸収微分画像においては、素抜け領域104に対応する領域E2a及び領域E2bでは、オフセットノイズの有無に関わらず、ほぼ平坦なデータとなる。
 トレンド検出部102は、上述のように素抜け領域104に対応する領域E2a及び領域E2bのデータを利用してトレンド72の横方向成分を検出する。具体的には、まず、吸収微分画像において、画素値が平坦になる領域E2aまたは領域E2bから少なくとも2点の画素を選出する。ここでは、領域E2aのある画素A1と領域E2bのある画素A2を選出したとするが、領域E2aまたは領域E2bの一方から2点を選出しても良い。また、3点以上の画素を選出しても良く、素抜け領域104に対応して画素値の変化が平坦な領域が3以上ある場合には各領域から各々1点を選出しても良い。
 こうして、素抜け領域104に対応する画素A1,A2を選出すると、図25(D)に示すように、トレンド検出部102は、オフセット処理済みの位相微分画像から、吸収微分画像で選出した画素A1,A2に対応する画素(画素A1,A2と同位置にある画素)A1’,A2’の画素値を結ぶ直線を算出することにより、トレンド成分107を検出する。なお、3点以上の画素を選出した場合には、フィッティング等により、トレンド成分107を検出する。
 ここでは、トレンド検出部102によってトレンド72の横方向成分を検出しているが、トレンド72の縦方向成分を検出する場合も同様である。また、トレンド除去部48において、検出したトレンド成分107を用いて位相微分画像からトレンド72を除去する態様は、前述の第1実施形態と同様である。
 位相微分画像の画素値だけを用いる場合、被写体Hの態様等によっては素抜け領域104の明確な特定が難しいことがあるため、前述の第1実施形態のように抽出した画素値を平滑化する等の処理が必要であるが、上述のように、吸収微分画像を用いれば素抜け領域104の画素A1’,A2’を容易に特定可能であり、トレンド72の各方向成分の検出を容易かつ迅速に行うことができる。
 なお、上述の第2実施形態では、吸収微分画像生成部101が本撮影画像データ52から吸収微分画像を生成しているが、吸収微分画像は次のように生成することが好ましい。まず、吸収微分画像生成部101は、プレ撮影時にプレ撮影画像データ51から第1吸収画像を生成し、例えばオフセット画像記憶部42等に記憶しておく。次に、本撮影時には、吸収微分画像101は、本撮影画像データ52から第2吸収画像を生成する。そして、第2吸収画像を第1吸収画像で割ることにより、第3吸収画像を生成し、さらに第3吸収画像を微分することによってトレンド検出部102に入力する吸収微分画像を生成する。こうすると、第1の格子21や第2の格子22の透過率のムラによるノイズ成分が低減されるので、トレンド検出部102で素抜け領域104の特定に用いる吸収微分画像としてより好適な画像となる。
 なお、上述の第2実施形態では、吸収微分画像から素抜け領域104の画素を選出しているが、トレンド検出部102は、素抜け領域104の画素に限らず、吸収微分画像の全体(被検体Hの領域も含む)から、周辺の画素と画素値がほぼ等しい画素を選出すれば良い。上述の第2実施形態では被検体Hを球形とているために、被検体H内部では画素値の変化が平坦になる箇所は殆どないが、通常の被写体の場合、被写体Hの内部においても、画素値の変化が殆どなく、周辺の画素と画素値がほぼ等しい領域が発生することがあるからである。周辺の画素と画素値がほぼ等しい画素であれば、被検体H内部の画素であっても、上述の第2実施形態と同様にトレンドの除去を行うことができる。また、被検体H内の画素を利用可能であることから明らかなように、撮影範囲10の全体に被写体Hがある場合でも、上述の第2実施形態と同様の方法でトレンドの検出を行うことができる。
[第3実施形態]
 なお、上述の第1,第2実施形態では、オフセットノイズ66の除去後にトレンド72を除去しているが、オフセットノイズ66やトレンド72を除去する順序はこれに限らない。次に、図26及び図27を参照して、本発明の第3実施形態について説明する。この第3実施形態では、画像処理装置120が用いられる。なお、前述の第1実施形態と共通の部材等には同じ符号を付して、その説明は省略する。
 図26に示すように、トレンド72を先に除去する場合、ノイズ除去部43は、トレンド除去部121(第1ノイズ除去部)とオフセット除去部122(第2ノイズ除去部)で構成する。
 トレンド除去部121は、アンラップ処理が施された位相微分画像がアンラップ処理部41から入力されると、位相微分画像をフーリエ変換し、所定周波数以下の低周波数成分を除去する。その後、フーリエ逆変換を施し、低周波数成分が除去された位相微分画像を生成する。プレ撮影の場合、トレンド除去部121は、低周波数成分を除去した位相微分画像を、オフセット画像としてオフセット画像記憶部42に記憶する。本撮影の場合、トレンド除去部121は、低周波数成分を除去した位相微分画像をオフセット除去部122に入力する。
 オフセット除去部122は、本撮影時に、低周波数成分を除去した位相微分画像が入力されると、オフセット画像記憶部42からオフセット画像を取得する。そして、本撮影による位相微分画像からオフセット画像を減算することにより、位相微分画像からオフセットノイズを除去する。
 上述のように構成されるX線撮影装置は、図27に示すように、プレ撮影をする。まず、操作部18aを用いて撮影モードとしてプレ撮影モードが選択されると(ステップS50)、撮影指示の入力待機状態となる(ステップS51)。その後、操作部18aを用いて撮影指示が入力されると、走査機構23により第2の格子22が所定の走査ピッチずつ間欠移動されながら、各走査位置「k」において、X線源11によるX線照射及びX線画像検出器13によるG2像の検出が行われる(ステップS52)。この縞走査の結果、M枚のプレ撮影画像データ51が生成され、メモリ14に格納される。そして、プレ撮影画像データ51は、画像処理部15に読み出され、位相微分画像生成部40によってプレ撮影画像データ51から位相微分画像が生成されるとともに(ステップS53)、アンラップ処理部41でアンラップ処理が施される(ステップS54)。
 その後、アンラップ処理が施された位相微分画像は、トレンド除去部121に入力され、フーリエ変換が施され(ステップS55)、所定周波数以下の低周波数成分が除去され(ステップS56)、さらに逆フーリエ変換が施される。これにより、入力された位相微分画像は、所定の低周波数成分が除去された位相微分画像になる。低周波数成分が除去された位相微分画像は、オフセット画像としてオフセット画像記憶部42に記憶され、プレ撮影が完了する。
 図28に示すように、本撮影時には、操作部18aを用いて撮影モードとして本撮影モードが選択される(ステップS70)。本撮影モードが選択されると、撮影指示の待受状態となる(ステップS71)。その後、操作部18aを用いて撮影指示がなされると、縞走査が行われ(ステップS72)、メモリ14にM枚の本撮影画像データ52が格納される。本撮影画像データ52は、画像処理部15に読み出され、位相微分画像生成部40によって位相微分画像が生成されるとともに(ステップS73)、アンラップ処理部41でアンラップ処理が施される(ステップS74)。
 その後、アンラップ処理が施された位相微分画像は、トレンド除去部121に入力され、フーリエ変換が施され(ステップS75)、所定周波数以下の低周波数成分が除去され(ステップS76)、さらに逆フーリエ変換が施される。これにより、入力された位相微分画像は、所定の低周波数成分が除去された位相微分画像になる。低周波数成分が除去された位相微分画像は、オフセット除去部122に入力され、オフセット画像が減算されることにより、さらにオフセットノイズが除去される(ステップS77)。オフセットノイズが除去された位相微分画像は、画像記録部16に記録される。また、位相コントラスト画像生成部44は、オフセットノイズが除去された位相微分画像から位相コントラスト画像を生成し、画像記録部16に記録する(ステップS78)。こうして生成された、位相微分画像や位相コントラスト画像は、モニタ18bに画像表示される(ステップS79)。
 上述のように、プレ撮影画像データ51や本撮影画像データ52から生成した位相微分画像をフーリエ変換し、所定の低周波数成分を除去すると、位相微分画像からオフセットノイズの低周波数成分が除去される。前述のように、トレンドは、プレ撮影時と本撮影時のオフセットノイズが完全に一致しないために、その差分がオフセット画像を減算したときに残存したものである。このため、上述のように、主としてオフセットノイズである低周波成分を予め除去した位相微分画像とオフセット画像の差分を取る場合には、トレンドは発生しない。
 なお、オフセットノイズには高周波成分もある。例えば、X線検出器13の画素欠陥は高周波のオフセットノイズを発生させる。このため、上述の第3実施形態では、単に本撮影時に生成される位相微分画像から低周波成分を除去するだけでなく、オフセット画像も取得し、本撮影時に生成される位相微分画像低周波成分を除去したオフセット画像を減算している。これにより、高周波のオフセットノイズも除去される。X線検出器13に画素欠陥がない場合や、画素欠陥が他の方法(例えば、画素欠陥の位置を予め測定し、本撮影画像データの時点で欠陥画素の画素値を補正する等)で補正される場合には、本撮影による位相微分画像から低周波数成分を除去することにより、オフセットノイズを除去するようにしても良い。これにより、オフセットノイズもトレンドも残存しない位相微分画像を得ることができる。
 なお、上記第1~第3実施形態では、被検体HをX線源11と第1の格子21との間に配置しているが、被検体Hを第1の格子21と第2の格子22との間に配置してもよい。
 また、上記第1~第3実施形態では、縞走査時に第2の格子22を格子線に直交する方向(X方向)に移動させているが、本出願人により特願2011-097090号として出願されているように、第2の格子22を格子線に対して傾斜する方向(XY平面内でX方向及びY方向に直交しない方向)に移動させてもよい。この移動方向は、XY平面内で、かつY方向以外であれば、いずれの方向であってもよい。この場合には、第2の格子22の移動のX方向成分に基づいて、走査位置「k」を設定すればよい。第2の格子22を格子線に対して傾斜する方向に移動させることにより、縞走査の一周期分の走査に要するストローク(移動距離)が長くなるため、移動精度が向上する等の利点がある。
 また、上記第1~第3実施形態では、縞走査時に第2の格子22を移動させているが、第2の格子22に代えて、第1の格子21を格子線に直交する方向または傾斜する方向に移動させてもよい。
 また、上記第1~第3実施形態では、X線源11から射出されるコーンビーム状のX線を射出するX線源11を用いているが、平行ビーム状のX線を射出するX線源を用いることも可能である。この場合には、式(1)に代えて、p=pをほぼ満たすように第1及び第2の格子21,22を構成すればよい。
 また、上記第1~第3実施形態では、X線源11から射出されたX線を第1の格子21に入射させており、X線源11は単一焦点であるが、図29に示すように、X線源11の射出側直後に、WO2006/131235号等に記されたマルチスリット(線源格子)を設けることにより、X焦点を分散化してもよい。マルチスリットの格子線方向はY方向である。これより、高出力のX線源を用いることが可能となり、X線量が向上するため、位相微分画像の画質が向上する。マルチスリット150の格子線(格子溝)は、Y方向に延伸しており、第1及び第2の格子21,22の少なくとも一方の格子線と平行である。この場合、マルチスリット150のX方向への格子ピッチpは、式(10)を満たす必要がある。ここで、距離Lは、マルチスリット150から第1の格子21までのZ方向への距離である。
Figure JPOXMLDOC01-appb-M000010
 このようにマルチスリット150を設けた場合には、マルチスリット150の位置がX線焦点の位置となるため、上記実施形態の距離Lは、距離Lに置き換えられる。
 また、マルチスリットを設けた場合には、マルチスリット150を固定したまま、第1の格子21または第2の格子22を移動させて縞走査を行うことの他に、第1及び第2の格子21,22を固定したまま、マルチスリット150を移動させることにより縞走査を行うことが可能である。この場合、マルチスリット150のピッチpを前述のMで割った値(p/M)を走査ピッチとして、マルチスリット150をX方向に間欠移動させればよい。これにより、第1及び第2の格子21,22に対するマルチスリット150の走査位置kは、k=0,1,2,・・・,M-1と順に変更される。
 また、上記第1~第3実施形態では、第1の格子21が入射X線を幾何光学的に投影しているが、WO2004/058070号等で知られているように、第1の格子21をタルボ効果が生じる構成としてもよい。第1の格子21でタルボ効果を生じさせるためには、X線の空間干渉性を高めるように、小焦点のX線光源を用いるか、マルチスリット150を用いればよい。
 第1の格子21でタルボ効果を生じさせる場合には、第1の格子21を、吸収型格子に代えて、位相型格子とすることも可能である。位相型格子は、吸収型格子のX線吸収部をX線位相形成部に置換することにより構成される。X線位相形成部は、隣接するX線透過部に対して所定の屈折率差を有する材料(空気、樹脂など)により形成される。この位相型格子としては、入射X線にπ/2の位相変調を与えて透過させるものと、入射X線にπの位相変調を与えて透過させるものとが知られている。
 第1の格子21でタルボ効果が生じる場合には、第1の格子21の自己像(G1像)が、第1の格子21からZ方向下流にタルボ距離Zだけ離れた位置に生じるため、第1の格子21から第2の格子22までの距離Lをタルボ距離Zとする必要がある。
 タルボ距離Zは、第1の格子21の構成とX線のビーム形状とに依存する。第1の格子21が吸収型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、式(11)で表される。ここで、「m」は、正の整数である。この場合には、格子ピッチp,pは、式(1)をほぼ満たすように設定される(ただし、マルチスリット150を用いる場合には、距離Lは距離Lに置き換えられる)。
Figure JPOXMLDOC01-appb-M000011
 また、第1の格子21がX線にπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、式(12)で表される。ここで、「m」は、「0」または正の整数である。この場合には、格子ピッチp,pは、式(1)をほぼ満たすように設定される(ただし、マルチスリット150を用いる場合には、距離Lは距離Lに置き換えられる)。
Figure JPOXMLDOC01-appb-M000012
 また、第1の格子21がX線にπの位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、式(13)で表される。ここで、「m」は「0」または正の整数である。ここで、「m」は、「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、式(14)をほぼ満たすように設定される(ただし、マルチスリット150を用いる場合には、距離Lは距離Lに置き換えられる)。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 また、第1の格子21が吸収型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(15)で表される。ここで、「m」は、正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。
Figure JPOXMLDOC01-appb-M000015
 また、第1の格子21がX線にπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(16)で表される。ここで、「m」は、「0」または正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。
Figure JPOXMLDOC01-appb-M000016
 そして、第1の格子21がX線にπの位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(17)で表される。ここで、「m」は、「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、p=p/2の関係をほぼ満たすように設定される。
Figure JPOXMLDOC01-appb-M000017
 また、上記第1~第3実施形態では、格子部12に第1及び第2の格子21,22の2つの格子を設けているが、第2の格子22を省略し、第1の格子21のみとすることも可能である。
 例えば、特開平2009-133823号公報に記されたX線画像検出器を用いることにより、第2の格子22を省略し、第1の格子21のみとすることが可能である。このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器であり、各画素の電荷収集電極が複数の線状電極群を備える。1つの線状電極群は、一定の周期で配列された線状電極を互いに電気的に接続したものであり、他の線状電極群と互いに位相が異なるように配置されている。この線状電極群が第2の格子22として機能し、線状電極群が複数存在することにより、一度の撮影で位相の異なる複数のG2像の検出が行われる。したがって、この構成では、走査機構23を省略することが可能である。
 また、走査機構23を省略し、第1及び第2の格子21,22を介してX線画像検出器13により得られる単一の画像データに基づいて位相微分画像を生成する方法がある。この方法として、本出願人により特願2010-256241号として出願されている画素分割法がある。この画素分割法では、第1の格子21と第2の格子22とを、Z方向の回りに僅かに回転させて、Y方向に周期を有するモアレ縞をG2像に発生させる。X線画像検出器13により得られる単一の画像データを、該モアレ縞に対して互いに位相が異なる画素行(X方向に並ぶ画素)の群に分割し、分割された複数の画像データを、縞走査により互いに異なる複数のG2像に基づくものと見なして、上記縞走査法と同様な手順で位相微分画像を生成する。この画素分割法において、前述の強度変調信号は、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。
 さらに、画素分割法と同様に、走査機構23を省略し、第1及び第2の格子21,22を介してX線画像検出器13により得られる単一の画像データに基づいて位相微分画像を生成する方法として、WO2010/050483号に記載されたフーリエ変換法が知られている。このフーリエ変換法は、上記単一の画像データに対してフーリエ変換を行うことによりフーリエスペクトルを取得し、このフーリエスペクトルからキャリア周波数に対応したスペクトル(位相情報を担うスペクトル)を分離した後、逆フーリエ変換を行なうことにより位相微分画像を生成する方法である。なお、このフーリエ変換法において、前述の強度変調信号は、画素分割法の場合と同様に、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。
 本発明は、医療診断用の放射線撮影装置の他に、工業用の放射線撮影装置等に適用することが可能である。また、放射線は、X線以外に、ガンマ線等を用いることも可能である。

Claims (22)

  1.  被検体に向けて放射線を射出する放射線源と、
     前記放射線源から射出された放射線を検出して画像データを生成する放射線検出器と、
     前記放射線源と前記放射線検出器との間に配置された格子部と、
     前記放射線検出器により得られた画像データに基づいて、位相微分画像を生成する位相微分画像生成部と、
     前記位相微分画像にアンラップ処理を施すアンラップ処理部と、
     前記アンラップ処理後の前記位相微分画像である被検体画像から、前記被検体がない場合のオフセットノイズを表すオフセット画像を減算した際に残存するトレンドを除去するノイズ除去部と、
    を備えることを特徴とする放射線撮影装置。
  2.  前記ノイズ除去部は、
     前記被検体画像から前記オフセット画像を減算することにより、前記オフセットノイズを除去するオフセットノイズ除去部と、
     前記オフセットノイズが除去された前記被検体画像に基づいて前記トレンドを検出するトレンド検出部と、
     前記トレンド検出部により検出された前記トレンドを、前記被検体画像から減算して除去するトレンド除去部と、
    を備えることを特徴とする請求の範囲第1項に記載の放射線撮影装置。
  3.  前記トレンド検出部は、所定方向に沿って前記オフセットノイズが除去された前記被検体画像の画素値を抽出し、前記トレンドの前記所定方向成分を検出し、
     前記トレンド除去部は、前記トレンドの前記所定方向成分を前記所定方向に垂直な方向に沿って並べたトレンド成分画像を生成し、前記トレンド成分画像を前記被検体画像から減算することにより、前記被検体画像から前記トレンドの前記所定方向成分を除去するとともに、
     前記トレンド検出部及び前記トレンド除去部は、前記所定方向である第1方向と前記所定方向に垂直な第2方向の2方向について前記トレンドの成分を検出及び除去することにより、前記被検体画像から前記トレンドを除去することを特徴とする請求の範囲第2項に記載の放射線撮影装置。
  4.  前記被検体画像は四角形をしており、前記第1方向及び前記第2方向は、前記四角形の一辺に沿った横方向または縦方向であることを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  5.  前記トレンド検出部は、抽出した前記被検体画像の画素値のうち、少なくとも前記被検体がない素抜け領域の画素値に基づいて前記トレンドの成分を検出することを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  6.  前記トレンド検出部は、前記第1方向または前記第2方向に沿って前記被検体画像の画素値を抽出した後、少なくとも前記被検体がある被検体領域を平滑化することにより、前記トレンドの前記第1方向成分または前記第2方向成分を抽出することを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  7.  前記トレンド検出部は、前記第1方向または前記第2方向に沿って前記被検体画像の画素値を抽出した後、前記素抜け領域のデータに基づいて、前記被検体がある被検体領域のデータを補間,外挿,またはフィッティングすることにより、前記トレンドの前記第1方向成分または前記第2方向成分を抽出することを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  8.  前記トレンド検出部は、前記第1方向または前記第2方向に沿って複数の行または列について、前記トレンドの前記第1方向成分または前記第2方向成分を検出し、各行または各列における前記第1方向成分または前記第2方向成分を平均化したデータを、前記第1方向成分または前記第2方向成分として検出することを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  9.  前記トレンド検出部は、前記第1方向と前記第2方向の少なくとも一方を、前記被検体を通らない方向に設定することを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  10.  前記被検体の配置を指定し、前記位相微分画像に前記被検体がない素抜け領域が生じるように前記被検体の配置を指定する指標を備えることを特徴とする請求の範囲第1項に記載の放射線撮影装置。
  11.  前記放射線検出器により得られた前記画像データに基づいて、前記放射線の吸収率を表す吸収画像を生成し、前記吸収画像を微分して吸収微分画像を生成する吸収微分画像生成部を備え、
     前記トレンド検出部は、前記吸収微分画像において周辺の画素と画素値がほぼ等しい画素を複数選出し、選出した複数の前記画素に各々対応する位置にある前記位相微分画像の画素の画素値に基づいて、前記トレンドを検出することを特徴とする請求の範囲第2項に記載の放射線撮影装置。
  12.  前記吸収微分画像生成部は、前記被写体がない場合に得られた前記画像データから第1吸収画像を、前記被写体がある場合に得られた前記画像データから第2吸収画像をそれぞれ生成し、前記第2吸収画像を前記第1吸収画像で割って得られる第3吸収画像を微分することにより、前記吸収微分画像を生成することを特徴とする請求の範囲第11項に記載の放射線撮影装置。
  13.  前記トレンド検出部が選出する前記画素は、前記被検体がない素抜け領域の画素であることを特徴とする請求の範囲第11項に記載の放射線撮影装置。
  14.  前記格子部は、放射線源からの放射線を通過させて第1の周期パターン像を生成する第1の格子と、前記第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2の格子と有し、
     前記放射線画像検出器は、前記第2の周期パターン像を検出して画像データを生成することを特徴とする請求の範囲第1項に記載の放射線撮影装置。
  15.  前記格子部は、前記第1の格子または第2の格子を所定の走査ピッチで移動させ、複数の走査位置に順に設定する走査機構を備え、
     前記放射線画像検出器は、前記各走査位置で前記第2の周期パターン像を検出して画像データを生成し、
     前記位相微分画像生成部は、前記放射線画像検出器により生成される複数の画像データに基づいて位相微分画像を生成することを特徴とする請求の範囲第14項に記載の放射線撮影装置。
  16.  前記第1の格子または第2の格子の移動方向は、格子線に直交する方向であることを特徴とする請求の範囲第15項に記載の放射線撮影装置。
  17.  前記第1の格子または第2の格子の移動方向は、格子線に対して傾斜する方向であることを特徴とする請求の範囲第15項に記載の放射線撮影装置。
  18.  前記位相微分画像生成部は、前記放射線検出器により得られる単一の画像データに基づいて前記位相微分画像を生成することを特徴とする請求の範囲第14項に記載の放射線撮影装置。
  19.  前記第1の格子は、吸収型格子であり、入射した放射線を幾何光学的に投影することにより前記第1の周期パターン像を生成することを特徴とする請求の範囲第14項に記載の放射線撮影装置。
  20.  前記第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ効果を生じさせて前記第1の周期パターン像を生成することを特徴とする請求の範囲第14項に記載の放射線撮影装置。
  21.  前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットを備えることを特徴とする請求の範囲第1項に記載の放射線撮影装置。
  22.  放射線源と放射線検出器との間に格子部を配置して被検体のない状態で撮影を行うことにより得られる画像データに基づいて、前記被写体がない場合のオフセットノイズを表すオフセット画像を生成するオフセット画像生成ステップと、
     放射線源と放射線検出器との間に格子部を配置して被検体の撮影を行うことにより得られる画像データに基づいて、被検体画像を生成する被検体画像生成ステップと、
     前記被検体画像から前記オフセット画像を減算したときに前記被検体画像に残存するノイズであるトレンドを前記被検体画像から除去するノイズ除去ステップと、
    を備えることを特徴とする画像処理方法。
PCT/JP2012/075789 2011-10-06 2012-10-04 放射線撮影装置及び画像処理方法 WO2013051647A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-222237 2011-10-06
JP2011222237 2011-10-06
JP2012221899A JP2013090920A (ja) 2011-10-06 2012-10-04 放射線撮影装置及び画像処理方法
JP2012-221899 2012-10-04

Publications (1)

Publication Number Publication Date
WO2013051647A1 true WO2013051647A1 (ja) 2013-04-11

Family

ID=48043800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075789 WO2013051647A1 (ja) 2011-10-06 2012-10-04 放射線撮影装置及び画像処理方法

Country Status (2)

Country Link
JP (1) JP2013090920A (ja)
WO (1) WO2013051647A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199739A (ja) * 2018-10-02 2018-12-20 ロート製薬株式会社 ミノキシジル含有外用組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058070A1 (ja) * 2002-12-26 2004-07-15 Atsushi Momose X線撮像装置および撮像方法
JP2008082869A (ja) * 2006-09-27 2008-04-10 Mitsutoyo Corp 干渉縞解析における位相接続方法
JP2011045655A (ja) * 2009-08-28 2011-03-10 Konica Minolta Medical & Graphic Inc X線撮影装置
WO2012147671A1 (ja) * 2011-04-25 2012-11-01 富士フイルム株式会社 放射線撮影装置及び画像処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058070A1 (ja) * 2002-12-26 2004-07-15 Atsushi Momose X線撮像装置および撮像方法
JP2008082869A (ja) * 2006-09-27 2008-04-10 Mitsutoyo Corp 干渉縞解析における位相接続方法
JP2011045655A (ja) * 2009-08-28 2011-03-10 Konica Minolta Medical & Graphic Inc X線撮影装置
WO2012147671A1 (ja) * 2011-04-25 2012-11-01 富士フイルム株式会社 放射線撮影装置及び画像処理方法

Also Published As

Publication number Publication date
JP2013090920A (ja) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5475737B2 (ja) 放射線撮影装置及び画像処理方法
JP5378335B2 (ja) 放射線撮影システム
JP5731214B2 (ja) 放射線撮影システム及びその画像処理方法
JP5548085B2 (ja) 回折格子の調整方法
JP2012090944A (ja) 放射線撮影システム及び放射線撮影方法
JP2012090945A (ja) 放射線検出装置、放射線撮影装置、放射線撮影システム
JP5783987B2 (ja) 放射線撮影装置
JP2011224329A (ja) 放射線撮影システム及び方法
JP2012200567A (ja) 放射線撮影システム及び放射線撮影方法
JP2015150185A (ja) X線撮影システム及び画像処理方法
JP2011224330A (ja) 放射線撮影システム及びそのオフセット補正方法
JP2011206490A (ja) 放射線撮影システム及び放射線撮影方法
WO2013065502A1 (ja) 放射線撮影方法及び装置
JP2013146537A (ja) 放射線撮影装置及び画像処理方法
WO2013038881A1 (ja) 放射線撮影装置及び画像処理方法
JP2013042788A (ja) 放射線撮影装置及びアンラップ処理方法
WO2013051647A1 (ja) 放射線撮影装置及び画像処理方法
JP5635169B2 (ja) 放射線撮影システム
JP5610480B2 (ja) 放射線画像処理装置及び方法
WO2013099467A1 (ja) 放射線撮影方法及び装置
WO2013088878A1 (ja) 放射線撮影方法及び装置
WO2013027519A1 (ja) 放射線撮影装置及びアンラップ処理方法
JP6365746B2 (ja) 画像処理装置、x線撮影システム及び画像処理方法
WO2013027536A1 (ja) 放射線撮影装置及び放射線撮影方法
WO2012147749A1 (ja) 放射線撮影システム及び放射線撮影方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838217

Country of ref document: EP

Kind code of ref document: A1