Nothing Special   »   [go: up one dir, main page]

JP5536995B2 - 顕微鏡対物レンズおよびレーザー走査型顕微鏡システム - Google Patents

顕微鏡対物レンズおよびレーザー走査型顕微鏡システム Download PDF

Info

Publication number
JP5536995B2
JP5536995B2 JP2008179449A JP2008179449A JP5536995B2 JP 5536995 B2 JP5536995 B2 JP 5536995B2 JP 2008179449 A JP2008179449 A JP 2008179449A JP 2008179449 A JP2008179449 A JP 2008179449A JP 5536995 B2 JP5536995 B2 JP 5536995B2
Authority
JP
Japan
Prior art keywords
lens
lens group
objective lens
microscope objective
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008179449A
Other languages
English (en)
Other versions
JP2010008989A5 (ja
JP2010008989A (ja
Inventor
荘芳 斉藤
英司 横井
健一 日下
修平 堀米
紀行 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39967889&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5536995(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008179449A priority Critical patent/JP5536995B2/ja
Priority to US12/173,111 priority patent/US7869132B2/en
Priority to EP08012853.1A priority patent/EP2017663B1/en
Priority to EP12008381.1A priority patent/EP2573609B1/en
Priority to EP12008380.3A priority patent/EP2573608B1/en
Publication of JP2010008989A publication Critical patent/JP2010008989A/ja
Priority to US12/916,188 priority patent/US8508856B2/en
Priority to US12/916,240 priority patent/US8576482B2/en
Publication of JP2010008989A5 publication Critical patent/JP2010008989A5/ja
Publication of JP5536995B2 publication Critical patent/JP5536995B2/ja
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145119Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged ++--+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/33Immersion oils, or microscope systems or objectives for use with immersion fluids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は顕微鏡対物レンズの技術分野に係り、特に多光子励起レーザー走査型顕微鏡に特化した顕微鏡対物レンズとそれを備えた多光子励起レーザー走査型顕微鏡に関する。
顕微鏡における蛍光観察の手段として、多光子励起を利用した蛍光観察法が知られている。
多光子励起では、吸収波長のほぼ整数倍の波長を持つ光線を同時に蛍光体に照射することにより、本来の吸収波長と同等な励起現象が引き起こされる。この多光子励起現象は非線形現象と呼ばれ、たとえば2光子励起の場合は励起光の強度の2乗に比例した確率で励起現象が起きる。
一方、顕微鏡の対物レンズによる励起光の集光は、焦点面からの距離の2乗に反比例して光密度が低くなる。すなわち、顕微鏡における多光子励起現象は焦点のごく近傍のみに起こり、この部分からのみ蛍光が放射される。
この性質により、通常の共焦点顕微鏡で使われる焦点面以外で起こる蛍光の放射を遮るための検出側の共焦点ピンホールは、多光子励起レーザー走査型顕微鏡においては必要とされない。また、焦点面でのみ励起現象が起きるために、試料内の蛍光の褪色も少なくてすむという利点もある。
また、多光子励起で用いられる励起光は一般に赤外光であり、通常よりも長い波長となる。そして、一般に波長が長い光のほうが散乱しにくいという性質(レイリー散乱)を持つことから、赤外光で励起をした方が生体試料のような散乱性試料では試料のより深くまで到達するという性質を持っている。このことは、通常の可視光では観察することができなかった生体の深部まで観察することが可能になることを意味する。しかも、赤外光は紫外光や可視光よりも光毒性が低いので、生体試料をできる限り傷つけないで観察することができる。
例えばセロトニンという脳内物質は紫外線領域に吸収波長を持つ自家蛍光を持つ。しかしながら、紫外光は脳内の深部にまで到達することができず、また光毒性も強い。このような状況下では多光子励起レーザー走査型顕微鏡は有効に働く。紫外光と赤外光は波長が3倍程度離れているので、3光子励起を行えば赤外光を使ってセロトニンを励起できる。
以上のように多光子励起を利用した蛍光観察は大きなメリットを持っており、現在において顕微鏡観察において非常に有効な手段となっている。
しかし、この多光子励起を利用した顕微鏡観察には技術的な困難が伴う。例えば、多光子励起を起こすには一つの蛍光体に同時に光子を衝突させなければいけない。そのような現象を起こすには非常に高い光子密度を対物レンズの焦点位置に作らなければいけない。つまり、開口数が大きく、かつ適切に収差補正された対物レンズを利用しなければいけない。このとき、励起光は赤外光であるので、赤外光での収差が補正されていることが重要である。
しかも、試料の深部の観察では、試料自身の屈折率による収差が無視できなくなり、蛍光効率が悪化する。それを避けるために試料内の深さに対応した補正環があることが望ましい。
一方、励起光は強力でありながらも、そこから放射される蛍光の光量は微弱である。よって、放射された蛍光は可能な限りロスの少ない方法で検出しなければいけない。そのために対物レンズとしては、レンズの枚数および群数を抑えた構成とし、検出器までの光路も最適化しなければいけない。
さらに、3光子励起のような場合には紫外光を検出しなければいけない。一般的な光学ガラスは紫外光の透過率が低いので、紫外光を通す限られた光学ガラスで対物レンズを構成しなければならない。
しかも、多光子励起顕微鏡ではパッチクランプ法と同時に利用される場合が多いので、対物レンズの先端と試料の間に作業スペースを確保しなければいけない。すなわち、作動距離が長いことと同時に対物レンズの先端部のアクセス角を確保しなければいけない。
また、励起光は赤外光であるが、それによって放射される蛍光は可視光域(や紫外光)である。つまり、検出したい蛍光のほうは試料によるレイリー散乱の影響を受けてしまう。その結果、一点から放射されたものが広がりを持って対物レンズに進入してくる。そのため、散乱した蛍光を無駄なく収集するには対物レンズの視野が広いことが望ましい。
対物レンズの視野を広げると、それに比例して対物レンズの瞳径も大きくなる。仮に、入射瞳径の極めて大きな対物レンズを開発できたとしても、焦点顕微鏡装置の入射レーザービームが対物レンズの入射瞳位置において、その瞳径を満たさなければその性能は発揮されない。その為、対物レンズの瞳径に対して入射ビーム径を略同一にするように、ビーム径を調整する技術が特許文献11に提案されている。この技術によれば、ビームエクスパンダーを用い、共焦点顕微鏡装置によって対物レンズの瞳径にほぼ合わせるようにビーム径を調整することが可能である。しかし、ビーム径の調整は、レーザー偏向手段(2次元走査手段)に入射する前になされているため、最大のビーム径はレーザー偏向手段によって規定されることになる。
これを広げるためには、ガルバノミラー等のレーザー偏向手段の装置サイズを大きくする必要がある。しかし、ガルバノミラーのサイズを大きくすればするほど、試料範囲を走査するための触れ角は大きくなり、走査速度が減少する弊害が生じる。また、瞳位置と共役な位置付近に2枚のガルバノミラーを設け2次元の走査を可能にする共振ガルバノミラーにおいては、2枚のガルバノミラーの干渉を避けるため、間隔を広げる必要がある。そのため、理想的な瞳位置からずれ照明ムラが大きくなる。
従って、共焦点顕微鏡装置のレーザー偏向手段によって定められる最大の入射ビーム径に対し、最適な対物レンズを組み合わせることが重要である。
特開2005−189732号公報 特開2002−31760号公報 US2007/0091454 A1 特開2005−352021号公報 特開2005−43624号公報 特開2005−31507号公報 特開2004−317749号公報 特許第3283499号 特開2003−29157号公報 特開2005−99131号公報 特開2008−040154号公報 光学入門第1版8刷 平成14年3月29日(オプトロニクス社) 細胞 THE CELL 2008年4月20日(ニューサイエンス社)
以上の技術的問題に鑑み、本発明では多光子励起レーザー走査型顕微鏡において、明るい蛍光と高解像の両方を確保することが可能な対物レンズと、多光子励起観察に最適化されたレーザー走査型顕微鏡システムを提供することを課題とする。
本発明の第1の態様は、物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、第3レンズ群と、最も像側の面が像面に凹面を向けた負の屈折力を有する第4レンズ群と、最も物体側の面が標本面に凹面を向けた正の屈折力を有する第5レンズ群からなる液浸系顕微鏡対物レンズおいて、前記第1レンズ群は、最も物体側に配置された正レンズと物体側に凹面を向けたメニスカスレンズとの接合レンズと、メニスカスレンズまたは両凸レンズと、からなり、前記第3レンズ群は、3枚接合レンズからなり、前記第4レンズ群は、2枚接合レンズからなり、以下の条件式を満足する液浸系顕微鏡対物レンズを提供する。
(1) 0.75 < h1/h0 < 1
(2) 0.4 < h2/h1 <0.6
(3) 0.8 < h3/h1 < 1.3
(6) |f2/f3| < 0.6
ただし、h0は対物レンズ全系での最大光線高、h1は前記第4レンズ群の標本側の面のマージナル光線高、h2は前記第4レンズ群の像側の面のマージナル光線高、h3は前記第5レンズ群の像側の面のマージナル光線高、f2は前記第2レンズ群の焦点距離、f3は前記第3レンズ群の焦点距離である。
本発明の第2の態様は、物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、第3レンズ群と、最も像側の面が像面に凹面を向けた負の屈折力を有する第4レンズ群と、最も物体側の面が標本面に凹面を向けた正の屈折力を有する第5レンズ群からなる液浸系顕微鏡対物レンズおいて、前記第1レンズ群は、最も物体側に配置された正レンズと物体側に凹面を向けたメニスカスレンズとの接合レンズと、メニスカスレンズまたは両凸レンズと、からなり、前記第3レンズ群は、3枚接合レンズからなり、前記第4レンズ群は、2枚接合レンズからなり、以下の条件式を満足する液浸系顕微鏡対物レンズを提供する。
(1) 0.75 < h1/h0 < 1
(2) 0.4 < h2/h1 <0.6
(3) 0.8 < h3/h1 < 1.3
(9) Do/f > 10
ただし、h0は対物レンズ全系での最大光線高、h1は前記第4レンズ群の標本側の面のマージナル光線高、h2は前記第4レンズ群の像側の面のマージナル光線高、h3は前記第5レンズ群の像側の面のマージナル光線高、Doは標本面から当該対物レンズの胴付面までの距離、fは全系の焦点距離である。
本発明の第3の態様は、前記第5レンズ群は、物体に凹面を向けた少なくとも1つのメニスカスレンズを含み、以下の条件式を満足する第1または第2の態様に記載の液浸系顕微鏡対物レンズを提供する。
(4) -0.5 < f4/f5 < 0
ただし、f4は前記第4レンズ群の焦点距離、f5は前記第5レンズ群の焦点距離である。
本発明の第4の態様は、前記第3レンズ群は、光軸に沿って前記第1レンズ群及び前記第4レンズ群に対して相対的に移動する第1から第3のいずれか一態様に記載の液浸系顕微鏡対物レンズを提供する。
本発明の第5の態様は、以下の条件式を満足する第1から第4のいずれか一態様に記載の液浸系顕微鏡対物レンズを提供する。
(5) |f/f3| < 0.1
ただし、f3は前記第3レンズ群の焦点距離、fは全系の焦点距離である。
本発明の第6の態様は、下記の条件式を満足する第4または第5の態様に記載の液浸系顕微鏡対物レンズを提供する。
(7) 0.85 < | β3 | < 1.1
ただし、β3は前記第3レンズ群の倍率である。
本発明の第7の態様は、前記第2レンズ群は接合レンズであり、光軸に沿って前記第1レンズ群及び前記第4レンズ群に対して相対的に移動する第1または第2の態様に記載の液浸系顕微鏡対物レンズを提供する。
本発明の第8の態様は、前記第2レンズ群が以下の条件式を満たす第7の態様に記載の液浸系顕微鏡対物レンズを提供する。
(8) 0.1 < f/f2 <0.3
ただし、f2は前記第2レンズ群の焦点距離、fは全系の焦点距離である。
本発明の第9の態様は、前記第2レンズ群及び前記第3レンズ群が移動群として前記第1レンズ群及び前記第4レンズ群に対して相対的に移動するこ第1から第8の何れか一態様に記載の液浸系顕微鏡対物レンズを提供する。
本発明の第10の態様は、以下の条件を満たす第1から第9の何れか一態様に記載の液浸系顕微鏡対物レンズを提供する。
(10) NA×f > 6
ただし、NAは対物レンズの物体側開口数、fは全系の焦点距離である。
本発明の第11の態様は、前記液浸系顕微鏡対物レンズは複数のレンズ群からなり、少なくとも一つのレンズ群が移動群として光軸に沿って前後のレンズ群に対して相対的に移動する第10の態様に記載の液浸系顕微鏡対物レンズを提供する。
以下、上記構成を採用した理由とその効果について説明する。
正屈折力の第1レンズ群によって、球面収差、像面湾曲のバランスをとりながら物体から射出される高開口数の光線の開き角を小さくし、光束を収斂させる。第2レンズ群の弱い正パワーにより球面収差の補正をしながらほぼ平行光束とし、光線高の高い第3レンズ群でコマ収差、球面収差の補正をし、光線高をあまり下げないようにして第4レンズ群につなげ、第4レンズ群の標本側の面の強い正パワーと像側の面の強い負パワーによって光線高を大きく下げ、コマ収差の補正とともに非点収差の補正を行い、第5レンズ群は標本側の面の負パワーによって広波長域に渡って発生するコマ収差のバランスをとりながら像側の正パワーによって発散しようとする光線を平行光線にするとともに同焦距離を保つ役割も果たしている。
高開口数の光線の収差を補正する際に本質的な問題が高次の球面収差及びコマ収差である。3次の球面収差及びコマ収差を横収差で表記すると、それぞれ光線高の3乗,2乗に比例する値となり光線高が高い位置で補正することが有効である。条件式(1)を満たすことによって、最大光線高となる第2レンズ群から第4レンズ群の標本側の面まで光線高が高い状態を保持され高次の球面収差とコマ収差を効率よく補正することができる。
条件式(1)の下限値0.75を下回ると第3レンズ群を透過する光線の高さが低くなり、高次の球面収差とコマ収差が補正しきれない。また、条件式(1)の上限値1を上回ると第4レンズ群で極めて強い正の屈折力で光線を曲げるため、5次以上の球面収差・コマ収差が発生し他の群で補正しきれず、また第4レンズ群の偏心の利きが非常に大きくなってしまう。
条件式(2)の上限値0.6を上回ると第4レンズ群の凹面で発生する負パワーが不足し、ペッツバール和の補正が不十分となると共に非点収差の補正が不足する。条件式(2)の下限値0.4を下回ると第4レンズ群の凹面で発生する負パワーが過剰となり、ペッツバール和の補正が不十分となると共に、高次のコマ収差が発生して軸外の結像性能が劣化する。
条件式(3)の下限値0.8を下回ると第5レンズ群の負屈折力が不足し、広波長域のコマ収差を補正することが困難になる。逆に、条件式(3)の上限値1.3を上回ると第5レンズ群の正レンズで発生する球面収差・コマ収差が極めて大きくなり、他の群で補正することが困難になる。
条件式(4)はガウス面を挟む第4レンズ群と第5レンズ群のパワーのバランスの規定である。条件式(1),(2),(3)を満足するレンズタイプはガウス群に大きな屈折力が集中するため、条件式(4)を満たすことによって収差のバランスをとることが性能上重要となる。
条件式(4)の下限値-0.5を下回ると第4レンズ群の負屈折率が弱くなりペッツバール和の補正が不十分となる。逆に、条件式(4)の上限値0を上回ると第4レンズ群で負屈折力が強くなり、大きなコマ収差が発生することになる。これによって発生した大きなコマ収差を他の群で補正することが困難である。
条件式(5)は、第3レンズ群の対物レンズ全系に対するパワーを規定する条件式である。条件式(5)において上限値0.1を上回ると第3レンズ群のパワーが大きくなり第4レンズ群に入射するマージナル光線の入射角度が小さくなるため、第4レンズ群の負の屈折力が不足することとなり、ペッツバール和の補正が不十分となると共に非点収差の補正が不足する。
条件式(6)は、第2レンズ群との第3レンズ群のパワーバランスを規定する条件式である。条件式(6)において上限値0.6を上回ると第2レンズ群のパワーが弱すぎて球面収差の補正が不足し、第3レンズ群はその不足した球面収差を補正するとコマ収差補正が過剰になり性能のバランスがとれない。
カバーガラスや標本の厚みによって発生する球面収差を補正するためにレンズ群を移動させる技術は数多く示されている。一般にはレンズ群を移動させると対物レンズ全系の焦点位置が変わりピントがずれてしまう。従って特定の深さにある標本を最も良い結像性能で観察するためには、対物レンズの補正環による球面収差の補正と顕微鏡によるピント位置の補正を相互に繰り返す必要があり、非常に煩雑な作業を要する。これらを避けるために、例えば特許文献4のような補正環操作時にピント位置ずれの少ない対物レンズが開示されている。ここでは移動群の球面収差への影響を加味し、移動群の倍率を-1.8以上-1.1以下であることをピント位置ずれの少ない条件としているが、本レンズタイプでは比較的球面収差の補正係数が小さいため、条件式(7)を満たすことが望ましい。条件式(7)において上限値1.1を上回ると標本観察時に移動群を標本側に移動させたときにピント位置が像側に大きくずれピント位置の再調整が必要となる。逆に下限値0.85を下回ると標本観察時に移動群を標本側に移動させたときにピント位置が標本側に大きくずれピント位置の再調整が必要となる。
条件式(8)の上限値0.3を上回ると第2レンズ群の焦点距離が対物レンズ全系に対して小さくなる。すなわち光線高さの高い第2レンズ群において大きなパワーが発生し、光線高を抑えることはできるが、そこで生じる大きな球面収差とコマ収差を他の群で補正しきれなくなる。逆に、条件式(8)の下限値0.1を下回ると第レンズ群のパワーが弱くなり、高線高さが高くなる。そのために第3レンズ群及び第4レンズ群で強い正のパワーをもって光線高さを抑える必要が生じるため、高次の球面収差とコマ収差の影響が大きくなり高次収差性能がとれなくなる。
条件式(9)は、対物レンズの倍率に応じて適切な同焦点距離を規定する条件式である。焦点距離の長い低倍の対物レンズにおいては視野が広いため、平坦性を保つために同焦点距離を伸ばして収差補正する必要があり、条件式(9)の下限値10を下回ると平坦性の確保が難しくなる。
条件式(10)は、対物レンズの倍率に応じて適切な開口数を規定する条件式である。条件式(10)の下限値6を下回ると対物レンズの射出瞳径が小さくなり、広視野を高解像で観察するための十分大きな高開口数が確保されず脳神経に存在するスパインなどの微細な標本構造を解像できないと共に、蛍光観察時の明るさが不十分となる。高開口数を確保したまま倍率を上げると生体を蛍光観察時に発生する散乱光を拾うことができず、明るさが不足しがちである。
本発明によれば、多光子励起レーザー走査型顕微鏡に最適な対物レンズと、それを用いた多光子励起レーザー走査型顕微鏡を提供できる。
すなわち、広視野(低倍)で高開口数でありながら、作動距離も長くて大きなアクセス角を持った赤外光に対して適切に収差補正された顕微鏡対物レンズが提供される。
また、対物レンズとレーザー走査型顕微鏡の多光子励起観察を行うために最適化される。
以下に、本発明実施の形態の顕微鏡対物レンズのレンズデータを示す。記号は、上記の他、NAは開口数、WDは作動距離、βは倍率、fは焦点距離である。実施例1から6は何れも対物レンズからの射出光が平行光束となる無限遠補正型の対物レンズであり、これら単体では結像しない。そこで、例えば後述のレンズデータを有し、図25にレンズ断面図を示す結像レンズと組み合わせて使用される。なお、実施例1から6において、r1、r2…は物体側から順に示した各レンズ面の曲率半径、d1、d2…は物体側から順に示した各レンズの面間隔、nd1、nd2…は物体側から順に示したd線の屈折率、νd1、νd2…は物体側から順に示した各レンズのアッベ数である。
これらの実施例は液浸として水を用いたもので水のd線に対する屈折率1.33422、アッベ数は55.89である。また、本発明による対物レンズは標本の深い部位にも対応している。そのとき標本の光学特性はd線に対する屈折率1.36、アッベ数は58としている。この値は動物の脳のような標本を想定した値となっている。
実施例1は、図1の断面図に示すように、第1レンズ群G1は、平凸レンズと物体側に凹面を向けたメニスカスレンズの接合レンズとメニスカスレンズにより構成される。第2レンズ群G2は像面側に凹面を向けたメニスカスレンズ2枚と凸レンズの3枚接合レンズにより構成される。第3レンズ群G3は像面側に凹面を向けたメニスカスレンズと両凸レンズと物体側に凹面を向けたメニスカスレンズの3枚接合レンズより構成される。第4レンズ群G4は像面側に凹面を向けたメニスカスレンズ2枚の接合レンズより構成される。第5レンズ群G5は物体側に凹面を向けたメニスカスレンズ2枚から構成される。
ここで、第2レンズ群G2は第1レンズ群G1と第3レンズ群G3の間を相対的に移動することによって収差を補正する。
以下に、実施例1のレンズデータを示す。
NA=1.05,WD=1.7293(媒質nd=1.36厚0.3mm時), f=7.1838, β=25
s r d nd vd
1 INF 1.15 1.45852 67.83
2 -5.9903 5.7088 1.7725 49.6
3 -6.8605 0.477
4 -36.5263 3.6 1.56907 71.3
5 -13.6341 1.1825
6 24.2042 4 1.497 81.14
7 126.6562 1.9 1.673 38.15
8 15.1716 9 1.43875 94.93
9 -17.894 0.5919
10 43.9925 1.9 1.673 38.15
11 13.7154 9.6635 1.43875 94.97
12 -12.6287 1.9 1.741 52.64
13 -21.88 0.27
14 10.9415 10.0246 1.497 81.14
15 35.2043 2.1621 1.741 52.64
16 6.0773 5.7728
17 -8.0008 2.2 1.6134 44.27
18 -15.3052 8.2967
19 -18.6412 2.8 1.673 38.15
20 -12.2826 6.3468

(1) h1/h0 = 0.861383
(2) h2/h = 0.517652
(3) h3/h1 = 0.863643
(4) f4/f5 = -0.02914
(4') Ro4/h1 = 1.245826
(5) |f/f3| = 0.066865
(6) |f2/f3| = 0.320606
(8) f/f2 = 0.208557
(9) Do/f = 11.2957
(10) NA×f = 7.54299
(11),(12) | (tanω1)(tanω1+2/h4) - (tanω2)(tanω2+2/h5)| = 0.00179
(13) do+di = 1.77435
(14) | βs | = 5.52344
(15) (n2-n1)/ra = 0.052423
(16) dt1/f = 0.280208
(17) dt2 = 0.477
(18) nd5p = 1.673
(19) νd5p = 38.15
(20) νpa-νna = 27.2075
(21) n1−nw = 0.129
(22) rb/dt3 = 2.08
(23) fs/f = 1.76
(24) dt5 − dt4 = 4.56

上記の構成において、第2レンズ群(r6からr9)を移動させることにより、カバーガラスの有無と標本中の深さに係わる収差と使用波長毎に異なる収差を補正する。
以下では、標本の深さに応じて動かす第2レンズ群の移動量を示す。ここでは、レンズデータ中の面間隔d5とd9が、それぞれ移動群前間隔doと移動群後間隔diに対応している。
媒質(nd=1.36)厚 0mm 0.3mm 1.2mm
WD 2.01296 1.7293 0.87927
移動群前間隔do 1.33569 1.18246 0.70529
移動群後間隔di 0.43866 0.59192 1.06906
do+di 1.77435 1.77438 1.77435
実施例1は対物レンズからの射出光が平行光束となる無限遠補正型の対物レンズであり、後述の図25にレンズ断面図を示す結像レンズと組み合わせて使用される。以下ではこのときの収差図を開示する。ただし、これらの収差図において、(a)は球面収差、(b)は非点収差、(c)は歪曲収差、(d)はコマ収差を示す。これら収差図中のIHは、像高を示す。
図7と図8と図9は実施例1の構成の液浸系顕微鏡対物レンズにおいて標本中の深さがそれぞれ0mmと0.3mmと1.2mm時の可視光収差図である。このとき、標本のd線に対する屈折率は1.36、アッベ数は58とし、標本と対物レンズの先端を満たす水のd線に対する屈折率1.33422、アッベ数は55.89とした。ただし、第2レンズ群の位置は上記表に従う。
実施例2は、図2の断面図に示すように、第1レンズ群G1は、平凸レンズと物体側に凹面を向けたメニスカスレンズの接合レンズとメニスカスレンズにより構成される。第2レンズ群G2は像面側に凹面を向けたメニスカスレンズ2枚と凸レンズの3枚接合レンズにより構成される。第3レンズ群G3は像面側に凹面を向けたメニスカスレンズと両凸レンズと物体側に凹面を向けたメニスカスレンズの3枚接合レンズより構成される。第4レンズ群G4は像面側に凹面を向けたメニスカスレンズ2枚の接合レンズより構成される。第5レンズ群G5は物体側に凹面を向けたメニスカスレンズ2枚から構成される。
ここで、第2レンズ群G2は第1レンズ群G1と第3レンズ群G3の間を相対的に移動することによって収差を補正する。
以下に、実施例2のレンズデータを示す。
NA=1.05,WD=1.716(媒質nd=1.36厚0.3mm時), f=7.16926, β=25
s r d Nd vd
1 INF 1.5 1.45847 67.72
2 -11.7569 5.4888 1.7725 49.6
3 -7.4259 0.3662
4 -36.4575 4.4573 1.56907 71.3
5 -13.4012 0.8091
6 27.4292 3.2954 1.497 81.14
7 382.5801 1.9 1.673 38.15
8 15.1216 9.804 1.43875 94.93
9 -18.4144 0.47
10 35.016 1.9 1.673 38.15
11 13.9356 9.7419 1.43875 94.97
12 -15.0043 1.9 1.741 52.64
13 -28.5245 0.27
14 10.7404 10.7922 1.497 81.14
15 50 2.2 1.7725 49.6
16 5.6752 4.7658
17 -7.713 2.2 1.48749 70.23
18 -9.7277 10.8562
19 -13.0019 3 1.673 38.15
20 -11.2539 -2.7573

(1) h1/h0 = 0.86881013
(2) h2/h = 0.48948784
(3) h3/h1 = 0.83891124
(4) f4/f5 = -0.2659539
(4') Ro4/h1 = 1.19725974
(5) |f/f3| = 0.06339608
(6) |f2/f3| = 0.34358661
(8) f/f2 = 0.18451266
(9) Do/f = 10.4816108
(10) NA×f = 7.527723
(11),(12) | (tanω1)(tanω1+2/h4) - (tanω2)(tanω2+2/h5)| = 0.000709
(13) do+di = 1.27907
(14) | βs | = 8.4403965
(15) (n2-n1)/ra = 0.02671027
(16) dt1/f = 0.27943051
(18) nd5p = 1.673
(19) νd5p = 38.15
(20) νpa-νna = 22.6235
(21) n1−nw = 0.129
(22) rb / dt3 = 3.66
(23) fs/f = 1.62
(24) dt5 - dt4 = 3.99

上記の構成において、第2レンズ群(r6からr9)を移動させることにより、カバーガラスの有無と標本中の深さに係わる収差と使用波長毎に異なる収差を補正する。
以下では、標本の深さに応じて動かす第2レンズ群の移動量を示す。ここでは、レンズデータ中の面間隔d5とd9が、それぞれ移動群前間隔doと移動群後間隔diに対応している。
媒質(nd=1.36)厚 0mm 0.3mm 1.2mm
W.D 2.00331 1.71604 0.86
移動群前間隔do 0.91886 0.80908 0.38398
移動群後間隔di 0.36021 0.46998 0.89508
do+di 1.27907 1.27906 1.27906
実施例2は対物レンズからの射出光が平行光束となる無限遠補正型の対物レンズであり、後述の図25にレンズ断面図を示す結像レンズと組み合わせて使用される。以下ではこのときの収差図を開示する。ただし、これらの収差図において、(a)は球面収差、(b)は非点収差、(c)は歪曲収差、(d)はコマ収差を示す。これら収差図中のIHは、像高を示す。
図10と図11と図12は実施例2の構成の液浸系顕微鏡対物レンズにおいて標本中の深さがそれぞれ0mmと0.3mmと1.2mm時の可視光収差図である。このとき、標本のd線に対する屈折率は1.36、アッベ数は58とし、標本と対物レンズの先端を満たす水のd線に対する屈折率1.33422、アッベ数は55.89とした。ただし、第2レンズ群の位置は上記表に従う。
実施例3は、図3の断面図に示すように、第1レンズ群G1は、物体側に平面を向けた平凸レンズと物体側に凹面を向けたメニスカスレンズの接合レンズと両凸レンズにより構成される。第2レンズ群G2は両凸レンズと物体側に凹面を向けた平凹レンズと平凸レンズより構成される。第3レンズ群G3は像面側に凹面を向けたメニスカスレンズと両凸レンズと物体側に凹面を向けたメニスカスレンズの3枚接合レンズと両凸レンズと両凹レンズの接合レンズより構成される。第4レンズ群G4は物体側に凹面を向けたメニスカスレンズと両凸レンズにより構成される。
ここで、第3レンズ群G3は第2レンズ群G2と第4レンズ群G4の間を相対的に移動することによって収差を補正する。
以下に、実施例3のレンズデータを示す。
NA=1.05, WD=1.7506(媒質nd=1.36厚0.3mm時), f=7.194006, β=25
s r d nd vd
1 INF 0.92 1.45852 67.83
2 -5.2326 6.3714 1.7725 49.6
3 -7.0187 0.8371
4 74.2279 5 1.56907 71.3
5 -17.9499 0.3797
6 33.8822 7.9915 1.497 81.14
7 -13.6493 2.1 1.673 38.15
8 INF 5.3738 1.43875 94.93
9 -19.0013 0.6008
10 54.4017 1.9 1.6134 44.27
11 13.6682 9.8737 1.43875 94.97
12 -11.0022 1.9 1.741 52.64
13 -26.8938 0.9043
14 10.0655 10.2751 1.497 81.14
15 -33.5963 2.1621 1.741 52.64
16 6.1579 4.1814
17 -9.2881 2.2 1.6134 44.27
18 -23.2465 7.1445
19 74.4613 3.8 1.673 38.15
20 -26.9715 -3.124

(1) h1/h0 = 0.804825
(2) h2/h = 0.524671
(3) h3/h1 = 0.924573
(4) f4/f5 = -0.3618
(4') Ro4/h1 = 1.235588
(5) |f/f3| = 0.0028
(6) |f2/f3| = 0.01639
(7) | β3 | = 1.068896
(8) f/f2 = 0.170827
(9) Do/f = 10.14901
(10) NA×f = 7.553706
(11),(12) | (tanω1)(tanω1+2/h4) - (tanω2)(tanω2+2/h5)| = 0.003179
(13) do+di = 1.50515
(14) | βs | = 1.068896
(15) (n2-n1)/ra = 0.060014
(16) dt1/f = 0.284326
(17) dt2 = 0.8371
(18) nd5p = 1.673
(19) νd5p = 38.15
(20) νpa-νna = 25.9835
(21) n1−nw = 0.129
(22) rb/dt3 = 1.96
(23) fs/f = 1.88
(24) dt5 − dt4 = 5.45

上記の構成において、第3レンズ群(r10からr13)を移動させることにより、カバーガラスの有無と標本中の深さに係わる収差と使用波長毎に異なる収差を補正する。
以下では、標本の深さに応じて動かす第3レンズ群の移動量を示す。ここでは、レンズデータ中の面間隔d9とd13が、それぞれ移動群前間隔doと移動群後間隔diに対応している。
媒質(nd=1.36)厚 0mm 0.3mm 1.2mm
WD 2.04544 1.75063 0.86629
移動群前間隔do 0.50057 0.60085 0.91058
移動群後間隔di 1.00458 0.90431 0.59458
do+di 1.50515 1.50516 1.50516
実施例3は対物レンズからの射出光が平行光束となる無限遠補正型の対物レンズであり、後述の図25にレンズ断面図を示す結像レンズと組み合わせて使用される。以下ではこのときの収差図を開示する。ただし、これらの収差図において、(a)は球面収差、(b)は非点収差、(c)は歪曲収差、(d)はコマ収差を示す。これら収差図中のIHは、像高を示す。
図13と図14と図15は実施例3の構成の液浸系顕微鏡対物レンズにおいて標本中の深さがそれぞれ0mmと0.3mmと1.2mm時の可視光収差図である。このとき、標本のd線に対する屈折率は1.36、アッベ数は58とし、標本と対物レンズの先端を満たす水のd線に対する屈折率1.33422、アッベ数は55.89とした。ただし、第3レンズ群の位置は上記表に従う。
実施例4は、図4の断面図に示すように、第1レンズ群G1は、平凸レンズと物体側に凹面を向けたメニスカスレンズの接合レンズとメニスカスレンズにより構成される。第2レンズ群G2は、像面側に凹面を向けたメニスカスレンズ2枚と凸レンズの3枚接合レンズにより構成される。第3レンズ群G3は、像面側に凹面を向けたメニスカスレンズと両凸レンズと物体側に凹面を向けたメニスカスレンズの3枚接合レンズより構成される。第4レンズ群G4は、像面側に凹面を向けたメニスカスレンズ2枚の接合レンズより構成される。第5レンズ群G5は、物体側に凹面を向けたメニスカスレンズ1枚から構成される。
ここで、第2レンズ群G2は第1レンズ群G1と第3レンズ群G3の間を相対的に移動することによって収差を補正する。
以下に、実施例4のレンズデータを示す。
NA=1.05, WD=1.8048(媒質nd=1.36厚0.3mm時), f=7.134036, β=25
s r d nd vd
1 INF 1.5 1.45847 67.72
2 -6.0537 4.4108 1.7725 49.6
3 -6.3534 0.3535
4 -28.0186 3.2799 1.56907 71.3
5 -11.5946 0.8915
6 19.6651 5.2839 1.43875 94.93
7 66.3182 1.9 1.673 38.15
8 13.2047 9.7803 1.43875 94.93
9 -18.7485 0.5098
10 42.8888 1.9 1.741 52.64
11 14.9377 9.5309 1.43875 94.97
12 -13.1562 1.9 1.673 38.15
13 -24.7961 0.2701
14 10.6159 10.2209 1.497 81.14
15 160.6704 2.2 1.741 52.64
16 5.9115 14.8078
17 -10.7329 3 1.673 38.15
18 -9.7731 0.5553

(1) h1/h0 = 0.931453
(2) h2/h = 0.524893
(3) h3/h1 = 0.846295
(4) f4/f5 = -0.46566
(4') Ro4/h1 = 1.179629
(5) |f/f3| = 0.052587
(6) |f2/f3| = 0.253905
(8) f/f2 = 0.207112
(9) Do/f = 10.45963
(10) NA×f = 7.490738
(11),(12) | (tanω1)(tanω1+2/h4) - (tanω2)(tanω2+2/h5)| = 0.000248
(13) do+di = 1.40128
(14) | βs | = 0.25979
(15) (n2-n1)/ra = 0.051874
(18) nd5p = 1.673
(19) νd5p = 38.15
(20) νpa-νna = 28.93125
(21) n1−nw = 0.129
(22) rb/dt3 = 1.02
(23) fs/f = 1.64
(24) dt5 - dt4 = 2.91

上記の構成において、第2レンズ群(r6からr9)を移動させることにより、カバーガラスの有無と標本中の深さに係わる収差と使用波長毎に異なる収差を補正する。
以下では、標本の深さに応じて動かす第2レンズ群の移動量を示す。ここでは、レンズデータ中の面間隔d5とd9が、それぞれ移動群前間隔doと移動群後間隔diに対応している。
媒質(nd=1.36)厚 0mm 0.3mm 1.2mm
WD 1.80484 2.08661 0.96613
移動群前間隔do 0.89149 1.05172 0.31837
移動群後間隔di 0.50979 0.34956 1.08292
do+di 1.40128 1.40128 1.40129
実施例4は対物レンズからの射出光が平行光束となる無限遠補正型の対物レンズであり、後述の図25にレンズ断面図を示す結像レンズと組み合わせて使用される。以下ではこのときの収差図を開示する。ただし、これらの収差図において、(a)は球面収差、(b)は非点収差、(c)は歪曲収差、(d)はコマ収差を示す。これら収差図中のIHは、像高を示す。
図16と図17と図18は実施例4の構成の液浸系顕微鏡対物レンズにおいて標本中の深さがそれぞれ0mmと0.3mmと1.2mm時の可視光収差図である。このとき、標本のd線に対する屈折率は1.36、アッベ数は58とし、標本と対物レンズの先端を満たす水のd線に対する屈折率1.33422、アッベ数は55.89とした。ただし、第2レンズ群の位置は上記表に従う。
実施例5は、図5の断面図に示すように、第1レンズ群G1は、平凸レンズと物体側に凹面を向けたメニスカスレンズとの接合レンズと両凸レンズにより構成される。第2レンズ群G2は両凸レンズと物体側に凹面を向けた平凹レンズと平凹レンズとの3枚接合レンズにより構成される。第3レンズ群G3は像面側に凹面を向けたメニスカスレンズと両凸レンズと物体側に凹面を向けたメニスカスレンズとの3枚接合レンズより構成される。第4レンズ群G4は凸レンズと凹レンズ2枚との接合レンズより構成される。第5レンズ群G5は物体側に凹面を向けたメニスカスレンズと両凸レンズから構成される。
ここで、第3レンズ群G3は第2レンズ群G2と第4レンズ群G4の間を相対的に移動することによって収差を補正する。
以下に、実施例5のレンズデータを示す。
NA=1.05,WD=1.7607(媒質nd=1.36厚0.3mm時), f=7.1930, β=25
s r d nd vd
1 INF 0.92 1.45852 67.83
2 -5.1557 6.3714 1.7725 49.6
3 -7.0345 0.6255
4 75.6448 5 1.56907 71.3
5 -17.8511 0.5476
6 35.866 7.9936 1.497 81.14
7 -13.5584 2.1075 1.673 38.15
8 INF 5.3826 1.43875 94.93
9 -18.9286 0.5958
10 53.4526 1.8974 1.61336 44.49
11 13.6516 9.8713 1.43875 94.97
12 -11.2095 1.9033 1.72916 54.68
13 -26.2738 1.2027
14 10.096 10.2751 1.497 81.14
15 -35.0452 2.1608 1.741 52.64
16 6.1297 4.0132
17 -9.2205 2.2003 1.61336 44.49
18 -23.5 7.2144
19 74.109 3.8 1.673 38.15
20 -27.2713 1.471

(1) h1/h0 = 0.782058484
(2) h2/h = 0.521842174
(3) h3/h1 = 0.914280088
(4) f4/f5 = -0.329806896
(4') Ro4/h1 = 1.223314189
(5) |f/f3| = 0.010885278
(6) |f2/f3| = 0.065545067
(7) | β3 | = 0.871130021
(8) f/f2 = 0.166073182
(9) Do/f = 10.81388957
(10) NA×f = 7.576731872
(11),(12) | (tanω1)(tanω1+2/h4) - (tanω2)(tanω2+2/h5)| = 0.002439
(13) do+di = 1.79854
(14) | βs | = 0.871130021
(15) (n2-n1)/ra = 0.060909285
(16) dt1/f = 0.285708881
(17) dt2 = 0.6255
(18) nd5p = 1.673
(19) νd5p = 38.15
(20) νpa-νna = 25.4925
(21) n1−nw = 0.129
(22) rb/dt3 = 1.64
(23) fs/f = 1.91
(24) dt5 − dt4 = 5.45

上記の構成において、第3レンズ群(r10からr13)を移動させることにより、カバーガラスの有無と標本中の深さに係わる収差と使用波長毎に異なる収差を補正する。
以下では、標本の深さに応じて動かす第3レンズ群の移動量を示す。ここでは、レンズデータ中の面間隔d9とd13が、それぞれ移動群前間隔doと移動群後間隔diに対応している。

媒質(n=1.35784)厚 0mm 0.3mm 1.2mm
WD 2.05514 1.76073 0.87742
移動群前間隔 do 0.46698 0.59583 0.91827
移動群後間隔 di 1.33155 1.20271 0.88026
do+di 1.79853 1.79854 1.79853

実施例5は対物レンズからの射出光が平行光束となる無限遠補正型の対物レンズであり、後述の図25にレンズ断面図を示す結像レンズと組み合わせて使用される。以下ではこのときの収差図を開示する。ただし、これらの収差図において、(a)は球面収差、(b)は非点収差、(c)は歪曲収差、(d)はコマ収差を示す。これら収差図中のIHは、像高を示す。
図19と図20と図21は実施例1の構成の液浸系顕微鏡対物レンズにおいて標本中の深さがそれぞれ0mmと0.3mmと1.2mm時の可視光収差図である。このとき、標本のd線に対する屈折率は1.36、アッベ数は58とし、標本と対物レンズの先端を満たす水のd線に対する屈折率1.33422、アッベ数は55.89とした。ただし、第3レンズ群の位置は上記表に従う。
実施例6は、図6の断面図に示すように、第1レンズ群G1は、平凸レンズと物体側に凹面を向けたメニスカスレンズの接合レンズとメニスカスレンズにより構成される。第2レンズ群G2は両凸レンズと物体側に凹面を向けたメニスカスレンズとメニスカスレンズとの3枚接合レンズにより構成される。第3レンズ群G3は像面側に凹面を向けたメニスカスレンズと両凸レンズと物体側に凹面を向けたメニスカスレンズの3枚接合レンズより構成される。第4レンズ群G4は像面側に凹面を向けたメニスカスレンズ2枚の接合レンズより構成される。第5レンズ群G5は物体側に凹面を向けたメニスカスレンズと両凸レンズから構成される。
ここで、第2レンズ群G2と第3レンズ群G3は第1レンズ群G1と第4レンズ群G4の間を相対的に移動することによって収差を補正する。
以下に、実施例6のレンズデータを示す。
NA=1.06,WD=1.6846(媒質nd=1.36厚0.3mm時), f=7.2041, β=25
s r d nd vd
1 INF 0.92 1.45852 67.83
2 -8.3317 6.3714 1.7725 49.6
3 -8.1014 0.2884
4 -44.2568 5 1.56907 71.3
5 -12.2608 0.9519
6 37.9764 7.8376 1.497 81.14
7 -13.1109 1.6833 1.673 38.15
8 -51.2909 4.5572 1.43875 94.93
9 -18.8909 0.4909
10 50.7843 1.8173 1.61336 44.49
11 15.4861 9.3702 1.43875 94.97
12 -13.2615 1.5 1.72916 54.68
13 -31.4258 0.8997
14 13.0111 10.2751 1.497 81.14
15 42.2409 4.2428 1.741 52.64
16 7.7259 10.5896
17 -12.0786 1.985 1.63775 42.41
18 -24.4346 7.6247
19 73.9503 3.9403 1.738 32.26
20 -57.1062 -2.5

(1) h1/h0 = 0.845668559
(2) h2/h = 0.542324369
(3) h3/h1 = 0.800138675
(4) f4/f5 = -0.22179378
(4') Ro4/h1 = 1.362835501
(5) |f/f3| = 0.01899509
(6) |f2/f3| = 0.101410126
(8) f/f2 = 0.187309599
(9) Do/f = 11.14710447
(10) NA×f = 7.555540563
(11),(12) | (tanω1)(tanω1+2/h4) - (tanω2)(tanω2+2/h5)| = 0.0009571
(13) do+di = 1.8516
(14) | βs | = 2.74815908
(15) (n2-n1)/ra = 0.037690987
(16) dt1/f = 0.274817927
(18) nd5p = 1.72021
(19) νd5p = 32.26
(20) νpa-νna = 25.17225
(21) n1−nw = 0.129
(23) fs/f = 1.97
(24) dt5 − dt4 = 5.45

上記の構成において、第2レンズ群と第3レンズ群(r6からr13)を一体として移動させることにより、カバーガラスの有無と標本中の深さに係わる収差と使用波長毎に異なる収差を補正する。
以下では、標本の深さに応じて動かす第2レンズ群と第3レンズ群の移動量を示す。ここでは、レンズデータ中の面間隔d5とd13によって、それぞれ移動群前間隔doと移動群後間隔diに対応している。
媒質(n=1.35784)厚 0mm 0.3mm 1.2mm
WD 1.97226 1.68462 0.821
移動群前間隔do 1.09052 0.95192 0.54639
移動群後間隔di 0.76921 0.89968 1.307
do+di 1.85973 1.8516 1.85339

実施例6は対物レンズからの射出光が平行光束となる無限遠補正型の対物レンズであり、後述の図25にレンズ断面図を示す結像レンズと組み合わせて使用される。以下ではこのときの収差図を開示する。ただし、これらの収差図において、(a)は球面収差、(b)は非点収差、(c)は歪曲収差、(d)はコマ収差を示す。これら収差図中のIHは、像高を示す。
図22と図23と図24は実施例6の構成の液浸系顕微鏡対物レンズにおいて標本中の深さがそれぞれ0mmと0.3mmと1.2mm時の可視光収差図である。このとき、標本のd線に対する屈折率は1.36、アッベ数は58とし、標本と対物レンズの先端を満たす水のd線に対する屈折率1.33422、アッベ数は55.89とした。ただし、第2レンズ群と第3レンズ群の位置は上記表に従う。

実施例1〜6は何れも対物レンズからの射出光が平行光束となる無限遠補正型の対物レンズであり、これら単体では結像しない。そこで、例えば以下に示すレンズデータを有し、図25にレンズ断面図を示す結像レンズと組み合わせて使用される。なお、r1、r2…は物体側から順に示した各レンズ面の曲率半径、d1、d2…は物体側から順に示した各レンズの面間隔、nd1、nd2…は物体側から順に示したd線の屈折率、νd1、νd2…は物体側から順に示した各レンズのアッベ数である。
R1 = 68.7541 d1 = 7.7321 nd1 = 1.48749 νd1 = 70.21
R2 = -37.5679 d2 = 3.4742 nd2 = 1.8061 νd2 = 40.95
R3 = -102.848 d3 = 0.6973
R4 = 84.3099 d4 = 6.0238 nd3 = 1.834 νd3 = 37.17
R5 = -50.71 d5 = 3.0298 nd4 = 1.6445 νd4 = 40.82
R6 = 40.6619 d6 = 9.0375
この場合、実施例1〜6対物レンズと図25の結像レンズとの間の間隔は50mm〜170mm間の何れの位置でもよいが、図7から図24に示された収差図はこの間隔を120mmとした場合のものである。なお、上記間隔が50mm〜170mmの間で120mm以外の位置においても、同様の収差状況を示す。
図26は、本発明の実施における鏡枠および鏡胴を含めた形態を示している。図26に示された対物レンズの鏡枠の構成は、本発明の実施例1に記載のレンズデータに基づいたレンズ構成を参照して作られている。
図26に示されるように、本発明の対物レンズは、接合レンズあるいは単体レンズごとに鏡枠16A,B,C・・・によって保持される。そして鏡枠16A,B,C・・・が鏡胴17の内部に積層されて配置されることによって、各々のレンズが所定の位置に配置される。さらに、鏡胴16はカバー18によって保護されている。
本発明の実施による顕微鏡対物レンズは、パッチクランプ法のように顕微鏡観察時に標本へのアクセスを伴う検鏡法に好適な形状をしている。すなわち、対物レンズの物体側の先端部は先鋭化され、作業空間が確保されている。なお、いわゆるアクセス角という尺度では、本実施例は34°43’となっている。
さらに、本実施例では先端部を先鋭化するだけでなく、先端部を絶縁体のカバーで覆うことによって、実験器具との干渉を防いでいる。パッチクランプ法では標本内の微弱な電流を検出するために電極を使う。それゆえに、顕微鏡の対物レンズを絶縁することは非常に重要となってくる。通常の顕微鏡の鏡枠および鏡胴は真鍮で作られている。本実施例では、最先端の鏡枠16Aを絶縁体カバー19で覆うことにより、顕微鏡と標本および実験器具を絶縁している。
図27は、本発明の実施における鏡枠および鏡胴を含めた形態を示している。図27に示された対物レンズの鏡枠の構成は、本発明の実施例3に記載のレンズデータに基づいたレンズ構成を参照して作られている。
図27に示されるように、本発明の対物レンズは、接合レンズあるいは単体レンズごとに鏡枠16A,B,C・・・によって保持される。そして鏡枠16A,B,C・・・が鏡胴17の内部に積層されて配置されることによって、各々のレンズが所定の位置に配置される。さらに、鏡胴16はカバー18によって保護されている。
本実施例の顕微鏡対物レンズも物体側の先端部が先鋭化され、絶縁体カバー19で先端部の鏡枠16Aが覆われている。
さらに、実施例3のレンズ構成では、2番目に物体側のレンズ群g2が両凸のレンズである。このことによって、レンズ群g2の縁がレンズ群g1から離れるため、レンズ群g1をよりアクセス角を大きくして保持することができる。その結果、本実施例では単にアクセス角を大きくするだけではなく、絶縁体カバー19とカバー18の接続部付近の作業空間も大きく確保することができている。なお、ここでは実施例3の記載における第1レンズ群G1を、最も物体側のレンズ群g1と2番目に物体側のレンズ群g2とに細分化して説明をした。

以下では本願発明の顕微鏡対物レンズを活用するために好適なレーザー走査型顕微鏡システムの実施の形態を示す。なお、これらのレーザー走査型顕微鏡システムは本願発明の顕微鏡対物レンズに限らず同様な性能を持った顕微鏡対物レンズと共に利用された場合には、本発明の実施と同等の効果を発揮する。
図28は、本願発明の顕微鏡対物レンズを利用した本願発明によるレーザー走査型顕微鏡システムの形態を模式的に示したものである。
不図示のレーザー光源から導入された照明用レーザーはガルバノミラー1によって走査され、瞳投影レンズ2と結像レンズ3によってリレーされ、対物レンズ4に入射される。このとき、レーザーはガルバノミラーの径を満たすようにされ、ガルバノミラー1は入射されたレーザーを90度の角度で反射させながら走査(偏向)を行う。すなわちレーザーの入射方向と反射面との角度は45度となる。
このときガルバノミラーのサイズを6mm×6mmとし、瞳投影レンズの焦点距離を50mm、結像レンズの焦点距離を180mmとすると、ガルバノミラーを射出するビーム径は6×sin45°となり、対物レンズに入射するビーム径は以下のようになる。
ビーム径=(6×sin45°)×ftl/fpl=15.27mm
なお、レーザー偏向手段はガルバノミラーに限らず音響光学素子(AO)や電気光学素子(EO)を使っても構わない。これらの場合は射出されるビーム径を用いて計算を行う。
また、本実施例で利用する対物レンズを実施例1に記載の対物レンズとすると、瞳径は2×NAxf=15.12となり、瞳径とビーム径はほぼ等しい値となる。つまり、本構成はビーム径を有効に利用できるような瞳径となる構成を取っている。
非共焦点検出光路は共焦点光路(1、2、3)とは別の光路となっており、本実施例ではダイクロイックミラー5によって分割され、共焦点光路よりも遠方に配置されている。このとき、ダイクロイックミラー5は挿脱可能に配置され、交換が可能な構成となっている。さらに、非共焦点検出光路は目視観察用接眼部6への光路とミラー7によって切り換え可能になっている。
詳細は後述するが、非共焦点検出光路は第1の瞳投影レンズ8とレーザーカットフィルター9とバリアフィルター10と第2の瞳投影レンズ11と検出器12で主に構成されている。本実施例ではダイクロイックミラー13を使って2チャンネル検出を行う構成を図示している。なお、検出器12は微弱な蛍光を検出するために光電子増倍管であることが望ましい。
第1の瞳投影レンズ8と第2の瞳投影レンズ11は対物レンズ4の瞳を検出器12の検出面に投影し、レーザーカットフィルター9は励起光として用いた赤外光が検出されないように排除し、バリアフィルター10は検出したい波長の光を取捨選択するために用いられる。
図28に示される実施の形態では、さらに広視野照明光学系も含まれている。本実施の形態では、結像レンズ3と瞳投影レンズ2の間にダイクロイックミラー14を配置して、照明導入光学系15によって照明光を導入している。このダイクロイックミラー14は挿脱可能に配置され、広視野照明利用時に適切なものを選択する。本構成によれば外部検出系と共焦点光学系、広視野照明光学系は独立で切替可能なため、試料面を刺激しながらの観察が容易にでき好適である。
図29は、本願発明の顕微鏡対物レンズを利用した本願発明によるレーザー走査型顕微鏡システムの別の形態を模式的に示したものである。実施例9との違いは共焦点検出光路が共焦点光路よりも対物レンズ側に配置された構成にある。
すなわち、対物レンズ4によって集められた蛍光はダイクロイックミラー5によって反射され非共焦点検出光路へと導かれる。そして実施例5と同様に、非共焦点検出光路は第1の瞳投影レンズ8とレーザーカットフィルター9とバリアフィルター10と第2の瞳投影レンズ11と検出器12で主に構成されている。
一方共焦点光路は、ミラー7によって目視観察用接眼部6への光路と切り換えされ、レーザーを対物レンズへ入射する。そして共焦点光路は実施例9と同様に、ガルバノミラー1と瞳投影レンズ2と結像レンズ3および照明導入光学系15とダイクロイックミラー14で構成されている。
ここで図30を使って、実施例7と実施例8に共通して用いられた非共焦点検出光学系の光学的性質について説明する。
図30において、r1は対物レンズの瞳面、r2は対物レンズの胴付き、r3,r4は第1の瞳投影レンズのレンズ面、r5,r6は第2の瞳投影レンズのレンズ面、r7は検出器12の検出面を表している。このとき、それぞれのレンズデータは以下の表に示すとおりである。
s r d nd vd
1 INF 50 1
2 INF 192.2 1
3 90 6 1.48915 70.23
4 -200 197.8 1
5 35 10 1.51825 64.24
6 -50 20 1
7 INF 0 1
同図から読み取れるように、第1の瞳投影レンズ8と第2の瞳投影レンズ12の間は収斂光束となっている。本願発明に係わるレーザー走査型顕微鏡では散乱光を可能な限り多く検出するために対物レンズの視野を大きくすると共に、対物レンズで集められた蛍光を効率よく検出器へと導く工夫をしている。標本上で光軸から離れた場所から集められた蛍光は、対物レンズから角度を持って射出される。すなわち、第1の瞳投影レンズ8は径を大きくしたほうが効率よく蛍光を導くことがでる。また、その後の光束を収斂光束とすることによって検出器に対して好適な照射角度で光線を導けると共に、光学系の大きさを小さくまとめることができる。
しかし一方では、第1の瞳投影レンズ8と第2の瞳投影レンズ12の間にはレーザーカットフィルターやダイクロイックミラーやバリアフィルターなどのフィルター類が配置される。そのために第1の瞳投影レンズ8と第2の瞳投影レンズ12の間は平行光束が理想的である。
この両方を加味した結果、本構成では光線角度は4度となっており、フィルターなどの分光特性は特に影響を受けない収束光線となっている。
また、本実施の形態では検出器の開口数NAeは0.0736と大きくなっており、実質的に蛍光観察範囲を広くしている。
さらに、本実施例において例えば実施例1に記載の対物レンズを組み合わせた場合、条件式(26’)のγem/γexの値は1.55となっており、標本上の蛍光検出範囲がレーザー走査範囲よりも大きくなっていることが解る。ここでは一例として実施例1に記載の対物レンズとの組み合わせを挙げたが、その他の実施例に記載の対物レンズも実質的に等しい瞳径を持っているために、条件式(26’)を満たしていることが容易に確かめられる。
ここで、実施例7と実施例8で利用された瞳投影レンズ2のレンズデータを開示する。以下に示されるレンズデータではガルバノミラー面を第1面として第10面を1次像位置とした表記をしている。つまり、本実施で利用された瞳投影レンズ2は、ガルバノミラーから順に、メニスカスレンズと凸レンズを組み合わせた2枚接合レンズと、凸レンズと凹レンズを組み合わせた2枚接合レンズと、1次像側に凹面を向けたメニスカスレンズによって構成されている。
s r d nd vd
1 INF 55.64 1
2 169.5554 4.6279 1.7859 44.2
3 54.3199 7.5898 1.883 40.76
4 -54.3199 0.8701 1
5 38.8719 8.1452 1.497 81.54
6 -46.855 6.7568 1.78472 25.71
7 22.8518 3.2673 1
8 26.3894 9.2559 1.80518 25.43
9 62.8196 24.2689 1
10 INF
本願発明を充足する対物レンズを実際に開発し、多光子励起観察することによって、その効果を確認した。図32は、生体の中での対物レンズの解像性能を測定するために、試料中に微小な蛍光ビーズを埋め込み、2フォトン顕微鏡に対物レンズを取り付け、標本表面(Z=0μm)から標本深部(Z=1200μm)まで観察深度を変えて取得した画像である。
上の列の画像は本発明を満たす対物レンズ(NA=1.05,倍率β=25X)によって得られたもの、下の列の画像は特開2002−31760号公報に記載のの構成を満たす対物レンズ(NA=0.95,倍率β=20X) によって得られたものである。
実施例9と同様に本実施例のレーザー偏向手段はガルバノミラーを利用し、これによって規定される最大のビーム径(S×ftl/fpl)は15.27mmである。
上列に対応する対物レンズ(NA=1.05,倍率β=25X)の瞳径2xNAxfは15.12mmであるため、(25)式の値は、0.99 となる。
一方、下列に対応する対物レンズ(NA=0.95,倍率β=20X)の瞳径2xNAxfは17.1mmであるため、(25)式の値は、1.12 となる。
図32において、標本の厚みによって発生する球面収差の影響の無い標本表面(Z=0μm)で取得像を比較すると、上列左端で1〜2μmの垂直(Z)方向の解像性能を示しているのに対し、下列左端では、3〜4μm前後と広がっている。つまり、(25)式の上限値を上回ると、ニューロンなどの微細な立体構造体の網目構造が正確に把握できなくなり、さらに微細な1μm前後のスパインの観察が著しく困難になることがわかった。
標本の厚みによって発生する球面収差の影響は、標本表面(Z=0μm)から、観察深度を下げていった画像を比較すれば理解できる。
上列に対応する対物レンズには球面収差補正機構の一例として、球面収差補正手段が備えられており、各観察深度において球面収差が十分補正されている。下列に対応する対物レンズには球面収差補正機構が備えられていない。
上の列を見てみると、観察深度が1200μm(Z=1200um)に到達するまで、垂直(z)方向の解像性能は標本表面(Z=0μm)と変わらない。
一方、下の列を見ると深くなるほど劣化しており、1000μm前後では、5〜8umと標本表面の2倍近くに劣化している。ここまで劣化すると、微細な脳構造を把握することが不可能になる。
さらに、解像性能の劣化は、取得画像の明るさにも大きく影響する。例えば、2光子励起は励起光の強度の2乗に比例した確率で励起現象が発生するため、集光点の励起密度が落ちれば、その2乗に比例して励起確率が落ちるためである。
このように、球面収差補正手段によって標本の表面から深部観察まで良好な解像性能を確保することは、高解像で明るい多光子励起蛍光像取得にとって極めて重要である。
本発明実施の顕微鏡対物レンズの実施例1のレンズ断面図である。 本発明実施の顕微鏡対物レンズの実施例2のレンズ断面図である。 本発明実施の顕微鏡対物レンズの実施例3のレンズ断面図である。 本発明実施の顕微鏡対物レンズの実施例4のレンズ断面図である。 本発明実施の顕微鏡対物レンズの実施例5のレンズ断面図である。 本発明実施の顕微鏡対物レンズの実施例6のレンズ断面図である。 本発明の実施例1の顕微鏡対物レンズにおける標本厚0mm時の収差図である。 本発明の実施例1の顕微鏡対物レンズにおける標本厚0.3mm時の収差図である。 本発明の実施例1の顕微鏡対物レンズにおける標本厚1.2mm時の収差図である。 本発明の実施例2の顕微鏡対物レンズにおける標本厚0mm時の収差図である。 本発明の実施例2の顕微鏡対物レンズにおける標本厚0.3mm時の収差図である。 本発明の実施例2の顕微鏡対物レンズにおける標本厚1.2mm時の収差図である。 本発明の実施例3の顕微鏡対物レンズにおける標本厚0mm時の収差図である。 本発明の実施例3の顕微鏡対物レンズにおける標本厚0.3mm時の収差図である。 本発明の実施例3の顕微鏡対物レンズにおける標本厚1.2mm時の収差図である。 本発明の実施例4の顕微鏡対物レンズにおける標本厚0mm時の収差図である。 本発明の実施例4の顕微鏡対物レンズにおける標本厚0.3mm時の収差図である。 本発明の実施例4の顕微鏡対物レンズにおける標本厚1.2mm時の収差図である。 本発明の実施例5の顕微鏡対物レンズにおける標本厚0mm時の収差図である。 本発明の実施例5の顕微鏡対物レンズにおける標本厚0.3mm時の収差図である。 本発明の実施例5の顕微鏡対物レンズにおける標本厚1.2mm時の収差図である。 本発明の実施例6の顕微鏡対物レンズにおける標本厚0mm時の収差図である。 本発明の実施例6の顕微鏡対物レンズにおける標本厚0.3mm時の収差図である。 本発明の実施例6の顕微鏡対物レンズにおける標本厚1.2mm時の収差図である。 各実施例の顕微鏡対物レンズと組み合わせて用いる結像レンズの断面図である。 本発明の実施例1の顕微鏡対物レンズにおける鏡枠の構成例である。 本発明の実施例3の顕微鏡対物レンズにおける鏡枠の構成例である。 本願発明の顕微鏡対物レンズを利用したレーザー走査型顕微鏡システムの模式図である。 本願発明の顕微鏡対物レンズを利用したレーザー走査型顕微鏡システムの模式図である。 本願発明の実施例に利用する非共焦点検出光学系の瞳追跡光線図である。 本願発明を利用したレーザー走査型顕微鏡システムにおける検出光学系の検出効率を示す模式図である。 本願発明を充足する対物レンズ、及び充足しない対物レンズを用いた多光子励起観察画像である。
符号の説明
G1・・・第1レンズ群
G2・・・第2レンズ群
G3・・・第3レンズ群
G4・・・第4レンズ群
G5・・・第5レンズ群
1・・・ガルバノミラー
2・・・瞳投影レンズ
3・・・結像レンズ
4・・・対物レンズ
5・・・ダイクロイックミラー
6・・・目視観察用接眼部
7・・・ミラー
8・・・第1の瞳投影レンズ
9・・・レーザーカットフィルター
10・・・バリアフィルター
11・・・第2の瞳投影レンズ
12・・・検出器
13・・・ダイクロイックミラー
14・・・ダイクロイックミラー
15・・・照明導入光学系
16・・・鏡枠
17・・・鏡胴
18・・・カバー
19・・・絶縁体カバー
g1・・・最も物体側のレンズ群
g2・・・2番目に物体側のレンズ群

Claims (11)

  1. 物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、第3レンズ群と、最も像側の面が像面に凹面を向けた負の屈折力を有する第4レンズ群と、最も物体側の面が標本面に凹面を向けた正の屈折力を有する第5レンズ群からなる液浸系顕微鏡対物レンズおいて、
    前記第1レンズ群は最も物体側に配置された正レンズと物体側に凹面を向けたメニスカスレンズとの接合レンズと、メニスカスレンズまたは両凸レンズと、からなり、
    前記第3レンズ群は、3枚接合レンズからなり、
    前記第4レンズ群は、2枚接合レンズからなり、
    以下の条件式を満足することを特徴とする液浸系顕微鏡対物レンズ。
    0.75 < h1/h0 < 1
    0.4 < h2/h1 <0.6
    0.8 < h3/h1 < 1.3
    |f2/f3| < 0.6
    ただし、h0は対物レンズ全系での最大光線高、h1は前記第4レンズ群の標本側の面のマージナル光線高、h2は前記第4レンズ群の像側の面のマージナル光線高、h3は前記第5レンズ群の像側の面のマージナル光線高、f2は前記第2レンズ群の焦点距離、f3は前記第3レンズ群の焦点距離である。
  2. 物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、第3レンズ群と、最も像側の面が像面に凹面を向けた負の屈折力を有する第4レンズ群と、最も物体側の面が標本面に凹面を向けた正の屈折力を有する第5レンズ群からなる液浸系顕微鏡対物レンズおいて、
    前記第1レンズ群は最も物体側に配置された正レンズと物体側に凹面を向けたメニスカスレンズとの接合レンズと、メニスカスレンズまたは両凸レンズと、からなり、
    前記第3レンズ群は、3枚接合レンズからなり、
    前記第4レンズ群は、2枚接合レンズからなり、
    以下の条件式を満足することを特徴とする液浸系顕微鏡対物レンズ。
    0.75 < h1/h0 < 1
    0.4 < h2/h1 <0.6
    0.8 < h3/h1 < 1.3
    Do/f > 10
    ただし、h0は対物レンズ全系での最大光線高、h1は前記第4レンズ群の標本側の面のマージナル光線高、h2は前記第4レンズ群の像側の面のマージナル光線高、h3は前記第5レンズ群の像側の面のマージナル光線高、Doは標本面から当該対物レンズの胴付面までの距離、fは全系の焦点距離である。
  3. 記第5レンズ群は、物体に凹面を向けた少なくとも1つのメニスカスレンズを含み、以下の条件式を満足することを特徴とする請求項1または2に記載の液浸系顕微鏡対物レンズ。
    -0.5 < f4/f5 < 0
    ただし、f4は前記第4レンズ群の焦点距離、f5は前記第5レンズ群の焦点距離である。
  4. 前記第3レンズ群は光軸に沿って前記第1レンズ群及び前記第4レンズ群に対して相対的に移動することを特徴とする請求項1から3のいずれか1項に記載の液浸系顕微鏡対物レンズ。
  5. 下の条件式を満足することを特徴とする請求項1から4のいずれか1項に記載の液浸系顕微鏡対物レンズ。
    |f/f3| < 0.1
    だし、f3は前記第3レンズ群の焦点距離、fは全系の焦点距離である。
  6. 記の条件式を満足する請求項または請求項に記載の液浸系顕微鏡対物レンズ。
    0.85 < | β3 | < 1.1
    ただし、β3は前記第3レンズ群の倍率である。
  7. 前記第2レンズ群は接合レンズであり、光軸に沿って前記第1レンズ群及び前記第4レンズ群に対して相対的に移動することを特徴とする請求項1または請求項2に記載の液浸系顕微鏡対物レンズ。
  8. 前記第2レンズ群が以下の条件式を満たすことを特徴とする請求項に記載の液浸系顕微鏡対物レンズ
    0.1 < f/f2 <0.3
    ただし、f2は前記第2レンズ群の焦点距離、fは全系の焦点距離である。
  9. 前記第2レンズ群及び前記第3レンズ群が移動群として前記第1レンズ群及び前記第4レンズ群に対して相対的に移動することを特徴とする請求項1から請求項の何れかに記載の液浸系顕微鏡対物レンズ。
  10. 以下の条件を満たすことを特徴とする請求項1から請求項の何れかに記載の液浸系顕微鏡対物レンズ
    NA×f > 6
    ただし、NAは対物レンズの物体側開口数、fは全系の焦点距離である。
  11. 前記液浸系顕微鏡対物レンズは複数のレンズ群からなり、少なくとも一つのレンズ群が移動群として光軸に沿って前後のレンズ群に対して相対的に移動することを特徴とする請求項10に記載の液浸系顕微鏡対物レンズ。
JP2008179449A 2007-07-17 2008-07-09 顕微鏡対物レンズおよびレーザー走査型顕微鏡システム Active JP5536995B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008179449A JP5536995B2 (ja) 2007-07-17 2008-07-09 顕微鏡対物レンズおよびレーザー走査型顕微鏡システム
US12/173,111 US7869132B2 (en) 2007-07-17 2008-07-15 Immersion microscope objective and laser scanning microscope system using same
EP12008380.3A EP2573608B1 (en) 2007-07-17 2008-07-16 Immersion microscope objective and laser scanning microscope system using the same
EP12008381.1A EP2573609B1 (en) 2007-07-17 2008-07-16 Immersion microscope objective and laser scanning microscope system using the same
EP08012853.1A EP2017663B1 (en) 2007-07-17 2008-07-16 Immersion microscope objective and laser scanning microscope system using the same
US12/916,188 US8508856B2 (en) 2007-07-17 2010-10-29 Immersion microscope objective and laser scanning microscope system using same
US12/916,240 US8576482B2 (en) 2007-07-17 2010-10-29 Laser scanning microscope system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007186369 2007-07-17
JP2007186369 2007-07-17
JP2008138231 2008-05-27
JP2008138231 2008-05-27
JP2008179449A JP5536995B2 (ja) 2007-07-17 2008-07-09 顕微鏡対物レンズおよびレーザー走査型顕微鏡システム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2013061512A Division JP5596810B2 (ja) 2007-07-17 2013-03-25 液浸系顕微鏡対物レンズ、及び、レーザー走査型顕微鏡システム
JP2013061511A Division JP2013152484A (ja) 2007-07-17 2013-03-25 レーザー走査型顕微鏡システム

Publications (3)

Publication Number Publication Date
JP2010008989A JP2010008989A (ja) 2010-01-14
JP2010008989A5 JP2010008989A5 (ja) 2011-08-11
JP5536995B2 true JP5536995B2 (ja) 2014-07-02

Family

ID=39967889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179449A Active JP5536995B2 (ja) 2007-07-17 2008-07-09 顕微鏡対物レンズおよびレーザー走査型顕微鏡システム

Country Status (3)

Country Link
US (3) US7869132B2 (ja)
EP (3) EP2573608B1 (ja)
JP (1) JP5536995B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709790B2 (en) 2013-10-17 2017-07-18 Olympus Corporation Immersion microscope objective and microscope using the same

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309867B2 (ja) * 2008-10-14 2013-10-09 株式会社ニコン 非線形光学顕微鏡及びその調整方法
US8570649B2 (en) * 2009-10-29 2013-10-29 California Institute Of Technology Dual-mode raster point scanning/light sheet illumination microscope
US8634131B2 (en) * 2009-12-14 2014-01-21 Intelligent Imaging Innovations, Inc. Spherical aberration correction for non-descanned applications
WO2012002542A1 (ja) * 2010-07-01 2012-01-05 株式会社ニコン 光学部材および顕微鏡
WO2012027542A2 (en) 2010-08-25 2012-03-01 California Institute Of Technology Simultaneous orthogonal light sheet microscopy and computed optical tomography
JP5926914B2 (ja) * 2010-11-10 2016-05-25 オリンパス株式会社 液浸顕微鏡対物レンズ
JP5730671B2 (ja) * 2011-05-31 2015-06-10 オリンパス株式会社 ズーム結像光学系、及び、それを備えた顕微鏡
JP5839897B2 (ja) * 2011-09-02 2016-01-06 オリンパス株式会社 非線形光学顕微鏡
JP5885537B2 (ja) * 2012-02-28 2016-03-15 オリンパス株式会社 顕微鏡対物レンズ
JP5988629B2 (ja) * 2012-03-14 2016-09-07 オリンパス株式会社 複数の光学ユニットを備えた顕微鏡
JPWO2013145836A1 (ja) * 2012-03-30 2015-12-10 ソニー株式会社 マイクロチップ型光学測定装置及び該装置における光学位置調整方法
WO2014014805A1 (en) * 2012-07-16 2014-01-23 Trustees Of Boston University Solid immersion microscopy system with deformable mirror for correction of aberrations
JP5993250B2 (ja) * 2012-08-29 2016-09-14 オリンパス株式会社 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
JP6274952B2 (ja) * 2013-04-24 2018-02-07 オリンパス株式会社 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
JP6377319B2 (ja) * 2013-05-24 2018-08-22 株式会社タムロン ズームレンズ及び撮像装置
JP2015045773A (ja) * 2013-08-29 2015-03-12 富士フイルム株式会社 走査光学系、光走査装置および放射線画像読取装置
JP6223115B2 (ja) * 2013-10-18 2017-11-01 オリンパス株式会社 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
JP6596001B2 (ja) * 2013-12-24 2019-10-23 ティシュヴィジョン、インコーポレーテッド 多焦点多光子イメージングシステム及び方法
CN105445824B (zh) * 2014-08-20 2017-02-22 清华大学 Led光通信接收透镜及led光通信系统
WO2016050383A1 (en) * 2014-09-29 2016-04-07 Asml Netherlands B.V. High numerical aperture objective lens system
WO2016141339A1 (en) * 2015-03-04 2016-09-09 Aramco Services Company Adaptive optics for imaging through highly scattering media in oil reservoir applications
EP3268715B1 (en) 2015-03-11 2024-09-25 TissueVision, Inc. System and methods for serial staining and imaging
EP3387481B1 (en) * 2015-12-07 2024-09-25 ASML Holding N.V. Objective lens system
DE202016008115U1 (de) * 2016-07-01 2017-03-01 Carl Zeiss Ag Anordnung zur Mikroskopie und zur Korrektur von Aberrationen
JP2018066912A (ja) * 2016-10-20 2018-04-26 オリンパス株式会社 対物レンズ
JP6906923B2 (ja) 2016-10-20 2021-07-21 オリンパス株式会社 液浸系対物レンズ
WO2018094290A1 (en) 2016-11-18 2018-05-24 Tissuevision, Inc. Automated tissue section capture, indexing and storage system and methods
DE102017108593B4 (de) * 2017-04-21 2019-03-14 Leica Microsystems Cms Gmbh Korrektionsobjektiv für ein Mikroskop, Immersionsobjektiv und Mikroskop
DE102017108595B3 (de) * 2017-04-21 2018-05-09 Leica Microsystems Cms Gmbh Immersionsobjektiv für ein Mikroskop
DE102017208615A1 (de) 2017-05-22 2018-11-22 Carl Zeiss Microscopy Gmbh Verfahren und Adapter zur Adaption eines Mikroskopobjektivs an ein Digitalmikroskop
EP4209169A1 (en) 2018-03-30 2023-07-12 Nikon Corporation Ophthalmic optical system, ophthalmic objective lens, and ophthalmic device
JP2019191272A (ja) 2018-04-19 2019-10-31 オリンパス株式会社 液浸系の顕微鏡対物レンズ
JP2019191273A (ja) * 2018-04-19 2019-10-31 オリンパス株式会社 対物レンズ
JP2019191274A (ja) * 2018-04-19 2019-10-31 オリンパス株式会社 撮像光学系、及び、顕微鏡システム
DE102019204285A1 (de) 2019-03-27 2020-10-01 Carl Zeiss Microscopy Gmbh Objektiv für ein Mikroskop
CN110262025B (zh) * 2019-07-01 2024-07-02 达科为(深圳)医疗设备有限公司 一种数字化病理成像设备
DE102020108333B3 (de) 2020-03-26 2021-07-15 Technische Universität Ilmenau Verfahren und Vorrichtung zur Kompensation von instationären Aberrationen bei der konfokalen Vermessung einer Probenoberfläche
EP4375724A4 (en) * 2021-07-21 2024-11-13 Sony Group Corp OBJECTIVE LENS AND SAMPLE ANALYSIS DEVICE
CN114185151B (zh) * 2021-12-01 2024-04-30 苏州中科全象智能科技有限公司 一种具有长入瞳距的双波段像方远心扫描物镜
CN115452783B (zh) * 2022-08-22 2023-12-22 深圳赛陆医疗科技有限公司 检测装置及基因测序仪

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700311A (en) 1971-11-22 1972-10-24 American Optical Corp Eight component 100x microscope objective
US4373785A (en) 1981-04-22 1983-02-15 Warner Lambert Technologies, Inc. Microscope objective
JPH07117647B2 (ja) 1992-05-25 1995-12-18 シーメンス アクチエンゲゼルシヤフト 走査対物レンズ
JPH06160720A (ja) * 1992-11-20 1994-06-07 Olympus Optical Co Ltd 液浸系顕微鏡対物レンズ
JP3299808B2 (ja) * 1993-03-29 2002-07-08 オリンパス光学工業株式会社 液浸系顕微鏡対物レンズ
JP3318060B2 (ja) * 1993-07-19 2002-08-26 オリンパス光学工業株式会社 液浸系顕微鏡対物レンズ
JPH07230038A (ja) * 1994-02-17 1995-08-29 Nikon Corp 顕微鏡対物レンズ
JP3457992B2 (ja) 1994-04-13 2003-10-20 オリンパス光学工業株式会社 液浸系顕微鏡対物レンズ
JPH08292373A (ja) * 1995-04-21 1996-11-05 Olympus Optical Co Ltd 液浸系顕微鏡対物レンズ
US5646411A (en) * 1996-02-01 1997-07-08 Molecular Dynamics, Inc. Fluorescence imaging system compatible with macro and micro scanning objectives
JPH10274742A (ja) 1997-01-28 1998-10-13 Nikon Corp 液浸系顕微鏡対物レンズ
US6562128B1 (en) * 2001-11-28 2003-05-13 Seh America, Inc. In-situ post epitaxial treatment process
JP3283499B2 (ja) 1999-03-18 2002-05-20 オリンパス光学工業株式会社 レーザ顕微鏡
US7187503B2 (en) * 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
JP4754675B2 (ja) 2000-07-14 2011-08-24 オリンパス株式会社 顕微鏡対物レンズ
JP4692698B2 (ja) * 2000-11-14 2011-06-01 株式会社ニコン 液浸系顕微鏡対物レンズ
JP4786027B2 (ja) * 2000-12-08 2011-10-05 オリンパス株式会社 光学系及び光学装置
JP4098492B2 (ja) * 2001-05-23 2008-06-11 オリンパス株式会社 液浸系顕微鏡対物レンズ
JP2003015047A (ja) * 2001-06-29 2003-01-15 Nikon Corp 液浸系顕微鏡対物レンズ
JP3985937B2 (ja) 2001-07-10 2007-10-03 オリンパス株式会社 蛍光用顕微鏡対物レンズ
JP4751533B2 (ja) 2001-07-16 2011-08-17 オリンパス株式会社 顕微鏡用液浸レンズ
JP4082015B2 (ja) * 2001-10-17 2008-04-30 株式会社ニコン 液浸系顕微鏡対物レンズ
IL148664A0 (en) * 2002-03-13 2002-09-12 Yeda Res & Dev Auto-focusing method and device
US7196843B2 (en) * 2002-03-27 2007-03-27 Olympus Optical Co., Ltd. Confocal microscope apparatus
JP3944099B2 (ja) 2003-03-07 2007-07-11 オリンパス株式会社 液浸系顕微鏡対物レンズ
JP4383080B2 (ja) 2003-04-15 2009-12-16 オリンパス株式会社 対物レンズ
JP4554174B2 (ja) 2003-07-09 2010-09-29 オリンパス株式会社 顕微鏡システム、顕微鏡の制御方法、及びプログラム
JP2005043624A (ja) 2003-07-28 2005-02-17 Nikon Corp 顕微鏡制御装置、顕微鏡装置、及び顕微鏡対物レンズ
JP2005099131A (ja) 2003-09-22 2005-04-14 Olympus Corp 顕微鏡用対物レンズ
JP4457666B2 (ja) 2003-12-26 2010-04-28 株式会社ニコン 顕微鏡対物レンズ
JP4496524B2 (ja) * 2004-03-17 2010-07-07 株式会社ニコン 液浸系顕微鏡対物レンズ
JP4646551B2 (ja) 2004-06-09 2011-03-09 オリンパス株式会社 顕微鏡用対物レンズ
US7336430B2 (en) * 2004-09-03 2008-02-26 Micron Technology, Inc. Extended depth of field using a multi-focal length lens with a controlled range of spherical aberration and a centrally obscured aperture
US7199938B2 (en) 2005-01-13 2007-04-03 Olympus Corporation Immersion objective lens system for microscope
JP5165195B2 (ja) * 2005-10-25 2013-03-21 オリンパス株式会社 液浸系顕微鏡対物レンズ
DE102005027423B4 (de) 2005-06-10 2013-03-28 Carl Zeiss Microscopy Gmbh Apochromatisch korrigiertes Mikroskopobjektiv
DE102005051025B4 (de) * 2005-10-21 2018-08-30 Carl Zeiss Microscopy Gmbh Hochaperturiges, optisches Abbildungssystem, insbesondere für Mikroskope mit apochromatischer Korrektion in einem weiten Wellenlängenbereich
JP2007133071A (ja) * 2005-11-09 2007-05-31 Nikon Corp 液浸系の顕微鏡対物レンズ
US20070121338A1 (en) * 2005-11-29 2007-05-31 Hsiang-Chen Wu Light guiding device for vehicle lighting
US7215478B1 (en) * 2006-03-06 2007-05-08 Olympus Corporation Immersion objective optical system
JP2008040154A (ja) 2006-08-07 2008-02-21 Olympus Corp 共焦点レーザ顕微鏡
JP5112832B2 (ja) * 2006-12-11 2013-01-09 オリンパス株式会社 顕微鏡対物レンズ及びそれを用いた蛍光観察装置
JP4994826B2 (ja) * 2006-12-25 2012-08-08 オリンパス株式会社 レーザ顕微鏡
US20090174935A1 (en) * 2008-01-09 2009-07-09 Szulczewski Michael J Scanning microscope having complementary, serial scanners

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709790B2 (en) 2013-10-17 2017-07-18 Olympus Corporation Immersion microscope objective and microscope using the same

Also Published As

Publication number Publication date
US20110043924A1 (en) 2011-02-24
US8508856B2 (en) 2013-08-13
EP2573608B1 (en) 2017-08-30
US20090027769A1 (en) 2009-01-29
US8576482B2 (en) 2013-11-05
US20110043906A1 (en) 2011-02-24
EP2017663A2 (en) 2009-01-21
EP2017663A3 (en) 2012-07-11
EP2573608A3 (en) 2013-04-17
EP2573608A2 (en) 2013-03-27
EP2573609B1 (en) 2017-02-01
EP2017663B1 (en) 2014-10-01
US7869132B2 (en) 2011-01-11
EP2573609A2 (en) 2013-03-27
EP2573609A3 (en) 2013-04-17
JP2010008989A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5536995B2 (ja) 顕微鏡対物レンズおよびレーザー走査型顕微鏡システム
JP5112832B2 (ja) 顕微鏡対物レンズ及びそれを用いた蛍光観察装置
EP2453286B9 (en) Imersion microscope objective
JP5474579B2 (ja) 液浸顕微鏡対物レンズ、及び、それを備えた顕微鏡
US9323036B2 (en) Immersion microscope objective and microscope using the same
JP5596810B2 (ja) 液浸系顕微鏡対物レンズ、及び、レーザー走査型顕微鏡システム
US20150109681A1 (en) Immersion microscope objective and microscope using the same
JP4504153B2 (ja) 液浸対物光学系
JP5993250B2 (ja) 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
US9195040B2 (en) Immersion microscope objective and microscope using the same
JP2019191273A (ja) 対物レンズ
JP2007310264A (ja) ズーム顕微鏡
JP5385442B2 (ja) 顕微鏡対物レンズ及びそれを用いた蛍光観察装置
JP2006227310A (ja) 小型対物光学系
JP2006195125A (ja) 液浸顕微鏡対物レンズ
JP2006178440A (ja) ズーム顕微鏡
JP5387960B2 (ja) 平行系実体顕微鏡用対物レンズ
JP2009037060A (ja) 液浸系顕微鏡対物レンズ
JP2010014856A (ja) 顕微鏡対物レンズ
JP2013083688A (ja) コンデンサレンズ及び顕微鏡装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R151 Written notification of patent or utility model registration

Ref document number: 5536995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250