Nothing Special   »   [go: up one dir, main page]

JP5581722B2 - Method for manufacturing foam insulated wire - Google Patents

Method for manufacturing foam insulated wire Download PDF

Info

Publication number
JP5581722B2
JP5581722B2 JP2010029298A JP2010029298A JP5581722B2 JP 5581722 B2 JP5581722 B2 JP 5581722B2 JP 2010029298 A JP2010029298 A JP 2010029298A JP 2010029298 A JP2010029298 A JP 2010029298A JP 5581722 B2 JP5581722 B2 JP 5581722B2
Authority
JP
Japan
Prior art keywords
foaming
polymer material
base resin
foam
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010029298A
Other languages
Japanese (ja)
Other versions
JP2011162721A (en
Inventor
達也 笹村
秀幸 鈴木
明成 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010029298A priority Critical patent/JP5581722B2/en
Priority to CN201010226858.1A priority patent/CN102153799B/en
Priority to US12/886,598 priority patent/US9115254B2/en
Publication of JP2011162721A publication Critical patent/JP2011162721A/en
Application granted granted Critical
Publication of JP5581722B2 publication Critical patent/JP5581722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/0461Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities by having different chemical compositions in different places, e.g. having different concentrations of foaming agent, feeding one composition after the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • B29C44/3453Feeding the blowing agent to solid plastic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/06Electrical wire insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Insulating Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、ベース樹脂に異種の高分子材料を混練した発泡絶縁電線の製造方法に関するものである。
The present invention relates to a method for manufacturing a foam insulated wire obtained by kneading a different polymer material in a base resin.

近年の情報通信網の発達に伴い、通信用電線は高速化、大容量化が求められている。   With the development of information communication networks in recent years, communication wires are required to have higher speed and larger capacity.

高速化、大容量化を実現するため、高速伝送用電線では、外来ノイズに強い2芯1組の電線に正と負の電圧をかける差動伝送方式が採用されることが多い。   In order to achieve high speed and large capacity, high-speed transmission wires often employ a differential transmission method in which positive and negative voltages are applied to a pair of two-core wires that are resistant to external noise.

このような高速伝送用電線では、高周波での遅延時間差などの特性を向上させるため、絶縁体の低誘電率化が求められており、絶縁体を発泡させて、誘電率を低くする方法が一般に用いられている。   In such high-speed transmission wires, in order to improve characteristics such as a delay time difference at high frequencies, it is required to lower the dielectric constant of the insulator. Generally, a method of lowering the dielectric constant by foaming the insulator is generally required. It is used.

発泡絶縁体の誘電率は発泡度が高いほど低くなるため、高い発泡度が要求されている。   Since the dielectric constant of the foamed insulator is lower as the foaming degree is higher, a higher foaming degree is required.

差動伝送方式では、2本の芯線が信号を伝達するのに要する時間の差(遅延時間差:スキュー)を小さくすることが求められている。   In the differential transmission method, it is required to reduce a time difference (delay time difference: skew) required for two core wires to transmit a signal.

2本の芯線が信号を伝達する速度は、導体を被覆している発泡絶縁体の誘電率に依存するため、誘電率が均一すなわち発泡度が均一であることが必要になる。   The speed at which the two core wires transmit a signal depends on the dielectric constant of the foamed insulator covering the conductor, and therefore it is necessary that the dielectric constant is uniform, that is, the degree of foaming is uniform.

理想的な発泡体は、気泡径が均一な気泡が均等に分布しているものである。   An ideal foam is one in which bubbles having a uniform cell diameter are evenly distributed.

発泡度が同じならば、気泡径が小さいほど、発泡数は大きくなるため、個々の気泡の発泡度に対する寄与が小さくなる。   If the degree of foaming is the same, the smaller the bubble diameter, the larger the number of foams, so the contribution to the degree of foaming of each individual bubble becomes smaller.

すなわち気泡径が小さく、気泡数が多い発泡体であれば、わずかな気泡数の変動は無視し得ることになる。   That is, if the foam has a small bubble diameter and a large number of bubbles, slight fluctuations in the number of bubbles can be ignored.

そのため、気泡径を均一に小さく揃えた気泡で構成された発泡体ほど、発泡度が均一なすなわち誘電率が均一な発泡絶縁体が得られると考えられている。   For this reason, it is considered that a foamed body having a uniform bubble size, that is, a dielectric constant having a uniform dielectric constant, can be obtained with a foam composed of bubbles having a uniform cell diameter.

副次的な効果として、発泡径を均一に小さく揃えるほど、屈曲時の応力が分散しやすいため、機械的強度の安定性も向上すると期待できる。   As a secondary effect, it can be expected that as the foam diameter is uniformly reduced, the stress at the time of bending is more easily dispersed, so that the stability of the mechanical strength is also improved.

以上のように、差動伝送方式に用いる電線用の発泡絶縁体は気泡径を小さく揃えて、発泡度を均一にすることが有効である。   As described above, it is effective that the foamed insulator for electric wires used in the differential transmission system has a uniform bubble size by making the bubble diameters small.

上述のように、高速伝送のためには、導体を被覆する発泡絶縁体の誘電率が低いことが求められ、差動伝送方式では誘電率が均一であることを求められる。   As described above, for high-speed transmission, the foamed insulator covering the conductor is required to have a low dielectric constant, and the differential transmission method is required to have a uniform dielectric constant.

更に、電線は曲げて使われることが多いため、発泡絶縁体には機械的強度が求められる。   Furthermore, since electric wires are often used by bending, the foamed insulator is required to have mechanical strength.

以上から、差動伝送方式を採用する高速伝送用電線に用いられる発泡絶縁体は発泡度が高く、発泡度が均一で、気泡径が小さいことが求められる。   From the above, the foamed insulator used for the high-speed transmission wire adopting the differential transmission method is required to have a high foaming degree, a uniform foaming degree, and a small bubble diameter.

発泡絶縁体を形成する際の発泡方式としては、一般に、化学発泡剤を用いる方法(化学発泡)と、成形機(発泡押出機)の中で溶融樹脂中にガスを注入して成形機内外の圧力差によって発泡させる方法(物理発泡)がある。   As a foaming method for forming a foam insulator, generally, a method using a chemical foaming agent (chemical foaming), and a gas is injected into a molten resin in a molding machine (foaming extruder), inside and outside the molding machine. There is a method of foaming by a pressure difference (physical foaming).

化学発泡は簡便に発泡度変動の少ない発泡絶縁体が得られる利点はあるが、高い発泡度を達成することが困難なこと、発泡剤の残渣は誘電率が高いことが多いため発泡度に比較して発泡絶縁体の誘電率が大きくなるなどの問題がある。   Chemical foaming has the advantage of easily obtaining a foam insulation with little variation in the degree of foaming, but it is difficult to achieve a high degree of foaming, and the residue of the foaming agent often has a high dielectric constant, so it is compared to the degree of foaming. As a result, the dielectric constant of the foamed insulator increases.

このため、高速伝送用の電線やケーブルでは、物理発泡方式で製造された発泡絶縁体を用いることが多くなっている。   For this reason, foamed insulators manufactured by a physical foaming method are frequently used for electric wires and cables for high-speed transmission.

特開2005−271504号公報JP 2005-271504 A

物理発泡においては、発泡核剤と呼ばれる有機物・無機物の粒子をベース樹脂中に混合することが多いが、発泡核剤は、ベース樹脂よりも誘電率が高いことが多く、発泡度に比較して発泡絶縁体の誘電率が大きくなる、微粒子の発泡核剤は凝集力が強く、ベース樹脂中で凝集したまま存在するため、添加量と比較して、発泡核剤の粒子数が減少する、などの問題がある。   In physical foaming, organic and inorganic particles called foaming nucleating agents are often mixed into the base resin. However, foaming nucleating agents often have a higher dielectric constant than the base resin, compared to the degree of foaming. The dielectric constant of the foam insulation is increased, the fine foam nucleating agent has a strong cohesive force and exists in the base resin in an aggregated state, so the number of foam nucleating agent particles is reduced compared to the amount added, etc. There is a problem.

そのため、添加量に比較して気泡径が大きく、発泡度が低く、発泡度が不均一になってしまう問題が生じてしまうことがあった。   Therefore, the bubble diameter is large compared with the amount added, the foaming degree is low, and the problem that the foaming degree becomes uneven may occur.

そこで、本発明の目的は、上記課題を解決し、気泡径が小さく、発泡度が高く、発泡度が均一で低誘電率な発泡絶縁体を製造可能な発泡絶縁電線の製造方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and provide a method for producing a foam insulated wire capable of producing a foam insulator having a small bubble diameter, a high foaming degree, a uniform foaming degree and a low dielectric constant. It is in.

上記課題を達成するために、前記発泡核剤に比べて低誘電率であり、混練によってベース樹脂中に均一に分散する異種の高分子材料をベース樹脂に混練し、両者の物性の違いを利用しその界面で気泡を発生させ、気泡径が小さく、発泡度が高く、発泡度が均一で低誘電率である発泡絶縁体を製造することを鋭意検討し、本発明に至ったものである。   In order to achieve the above-mentioned problem, different polymer materials that have a lower dielectric constant than the above-mentioned foam nucleating agent and are uniformly dispersed in the base resin by kneading are kneaded into the base resin, and the difference in physical properties between the two is utilized. The present inventors have intensively studied to produce a foamed insulator that generates bubbles at the interface, has a small bubble diameter, a high foaming degree, a uniform foaming degree, and a low dielectric constant, and has achieved the present invention.

請求項1の発明は、ベース樹脂に対して異種の高分子材料を前記ベース樹脂に混練してなり、所定の加工温度で加工すると共に発泡ガスを注入することで、前記ベース樹脂中に分散した前記異種の高分子材料の周囲から発泡させて発泡体を形成するための発泡樹脂組成物を発泡押出し、導体の外周に発泡絶縁体を被覆した発泡絶縁電線の製造方法であって、前記ベース樹脂は、ポリオレフィン樹脂からなり、前記異種の高分子材料は、ポリブチレン、セルロース、酢酸セルロース、酪酢酸セルロース、ポリ乳酸のうちのいずれかからなり、前記異種の高分子材料の融点が前記ベース樹脂の融点と前記加工温度の範囲内にあることを特徴とする発泡絶縁電線の製造方法である。
The invention of claim 1 is formed by kneading a polymer material different from the base resin into the base resin, and is dispersed in the base resin by processing at a predetermined processing temperature and injecting a foaming gas. foamed resin composition foaming extrusion to form a foam by foaming from the surrounding polymeric material of said heterologous to a process for the preparation of foam insulated wire coated with a foamed insulation on the outer periphery of the conductor, the base resin Is made of polyolefin resin, and the different polymer material is any one of polybutylene, cellulose, cellulose acetate, cellulose butylacetate, and polylactic acid, and the melting point of the different polymer material is the melting point of the base resin. a method for producing a foam insulated wire, characterized in that within the scope of the processing temperature.

請求項2の発明は、ベース樹脂に対して異種の高分子材料を前記ベース樹脂に混練してなり、所定の加工温度で加工すると共に発泡ガスを注入することで、前記ベース樹脂中に分散した前記異種の高分子材料の周囲から発泡させて発泡体を形成するための発泡樹脂組成物を発泡押出し、導体の外周に発泡絶縁体を被覆した発泡絶縁電線の製造方法であって、前記ベース樹脂は、ポリオレフィン樹脂からなり、前記異種の高分子材料は、ポリブチレン、セルロース、酢酸セルロース、酪酢酸セルロース、ポリ乳酸のうちのいずれかからなり、前記異種の高分子材料のガラス転移点が前記ベース樹脂の融点と前記加工温度の範囲内にあることを特徴とする発泡絶縁電線の製造方法である。
The invention of claim 2 is formed by kneading a polymer material different from the base resin into the base resin, and is dispersed in the base resin by processing at a predetermined processing temperature and injecting a foaming gas. foamed resin composition foaming extrusion to form a foam by foaming from the surrounding polymeric material of said heterologous to a process for the preparation of foam insulated wire coated with a foamed insulation on the outer periphery of the conductor, the base resin Is made of polyolefin resin, the different polymer material is any one of polybutylene, cellulose, cellulose acetate, cellulose butylacetate, and polylactic acid, and the glass transition point of the different polymer material is the base resin a method for producing a foam insulated wire, characterized in that the melting point within the range of the processing temperature.

請求項3の発明は、前記ベース樹脂と前記異種の高分子材料全体100mass%に対して、前記異種の高分子材料が0.1mass%以上45mass%以下である請求項1又は2に記載の発泡絶縁電線の製造方法である。
The invention according to claim 3 is the foam according to claim 1 or 2, wherein the dissimilar polymer material is 0.1 mass% or more and 45 mass% or less with respect to 100 mass% of the base resin and the dissimilar polymer material as a whole. It is a manufacturing method of an insulated wire .

請求項4の発明は、前記発泡絶縁体の発泡度が50%以上90%以下である請求項1〜3に記載の発泡絶縁電線の製造方法である。
Invention of Claim 4 is a manufacturing method of the foam insulated wire of Claims 1-3 whose foaming degree of the said foam insulation is 50% or more and 90% or less.

本発明によれば、気泡径が小さく、発泡度が高く、発泡度が均一で低誘電率な発泡絶縁体を製造可能な発泡絶縁電線の製造方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the foam insulated wire which can manufacture the foam insulation with a small bubble diameter, high foaming degree, uniform foaming degree, and a low dielectric constant can be provided.

本発明の一実施の形態に係る発泡絶縁電線の横断面図である。It is a cross-sectional view of the foam insulated wire which concerns on one embodiment of this invention. 本発明の発泡樹脂組成物を用いて発泡絶縁体を形成した同軸ケーブルの横断面図である。It is a cross-sectional view of the coaxial cable which formed the foaming insulator using the foamed resin composition of this invention.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

まず、本発明の発泡樹脂組成物を説明する。   First, the foamed resin composition of the present invention will be described.

本実施の形態に係る発泡樹脂組成物は、ベース樹脂に対して異種の高分子材料を混練したものである。   The foamed resin composition according to the present embodiment is obtained by kneading a different polymer material with a base resin.

ベース樹脂としては、ポリオレフィン樹脂やフッ素系樹脂を用いるとよい。   As the base resin, a polyolefin resin or a fluorine resin may be used.

ポリオレフィン樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、インプラント型TPO、エチレン−プロピレン−ブテン共重合体、エチレン−ブテン共重合体、エチレン−オクテン共重合体、エチレン−ヘキセン共重合体、エチレン−ペンテン共重合体などを用いるとよい。   Polyolefin resins include polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, implant type TPO, ethylene-propylene-butene copolymer, ethylene-butene copolymer, ethylene-octene copolymer, ethylene A hexene copolymer or an ethylene-pentene copolymer may be used.

PEとしては、超高分子PE、高密度PE、中密度PE、低密度PE、直鎖状低密度PE、超低密度PEなどが挙げられる。PPとしては、ブロックポリプロピレン、ランダムポリプロピレン、アタクチックポリプロピレン、シンジオタクチックポリプロピレン、イソタクチックポリプロピレンなどが挙げられる。   Examples of PE include ultra high molecular PE, high density PE, medium density PE, low density PE, linear low density PE, and ultra low density PE. Examples of PP include block polypropylene, random polypropylene, atactic polypropylene, syndiotactic polypropylene, and isotactic polypropylene.

フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ペルフルオロアルコキシエチレン共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリビニリデンフロライド(PVDF)、ポリビニルフロライド(PVF)が挙げられる。これらを単独または複数種類組み合わせて用いるとよい。   Examples of fluororesins include polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkoxyethylene copolymer. (PFA), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF). These may be used alone or in combination.

特に低密度PEと高密度PEを混合した樹脂が好適である。   In particular, a resin in which low density PE and high density PE are mixed is suitable.

ベース樹脂としては、例えば、全樹脂組成物に対してHDPE10〜90mass%程度、LDPE90〜10mass%程度を混合したものを用いるとよい。   As the base resin, for example, a mixture of HDPE of about 10 to 90 mass% and LDPE of about 90 to 10 mass% may be used with respect to the total resin composition.

本実施の形態では、全樹脂組成物に対してHDPE0〜99.9mass%、LDPE99.9〜0mass%を混合したものを用いた。   In this Embodiment, what mixed HDPE0-99.9 mass% and LDPE99.9-0mass% was used with respect to all the resin compositions.

ベース樹脂には、電気絶縁用途として添加可能な着色剤、酸化防止剤、粘度調整剤、補強材、充填剤、可塑剤(軟化剤)、加硫剤、加硫促進剤、架橋剤、架橋助剤、発泡助剤、加工助剤、老化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、滑剤、紫外線吸収剤、光安定剤、難燃剤、界面活性剤、相容化剤(相溶化剤)、その他の添加剤を適宜加えてもよい。   Base resins include colorants, antioxidants, viscosity modifiers, reinforcing materials, fillers, plasticizers (softeners), vulcanizing agents, vulcanization accelerators, crosslinking agents, crosslinking aids that can be added for electrical insulation applications. Agent, foaming aid, processing aid, anti-aging agent, heat stabilizer, weather stabilizer, antistatic agent, lubricant, UV absorber, light stabilizer, flame retardant, surfactant, compatibilizer (compatibility) Agent) and other additives may be added as appropriate.

難燃剤としては、金属水酸化物、リン系難燃剤、シリコーン系難燃剤、窒素系難燃剤、ホウ酸化合物、モリブデン化合物などを挙げることができ、環境配慮の観点から金属水酸化物が好適である。金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウムが挙げられ、難燃化効果の高い水酸化マグネシウムが好適である。   Examples of the flame retardant include metal hydroxides, phosphorus flame retardants, silicone flame retardants, nitrogen flame retardants, boric acid compounds, molybdenum compounds, and metal hydroxides are preferable from the viewpoint of environmental considerations. is there. Examples of the metal hydroxide include magnesium hydroxide, aluminum hydroxide, and calcium hydroxide, and magnesium hydroxide having a high flame retarding effect is preferable.

ベース樹脂をポリオレフィン樹脂とした場合には、異種の高分子材料としては、ポリブチレン、セルロース、酢酸セルロース、酪酢酸セルロース、ポリ乳酸が挙げられるが、これら以外であってもガラス転移点または融点がベース樹脂の融点から発泡樹脂組成物の加工温度の範囲内にあるものであれば用いることができる。   When the base resin is a polyolefin resin, examples of the different polymer material include polybutylene, cellulose, cellulose acetate, cellulose butylacetate, and polylactic acid. Any resin can be used as long as it is within the range from the melting point of the resin to the processing temperature of the foamed resin composition.

ここで、発泡樹脂組成物の加工温度とは、発泡押出機のネック部に穴を開け、熱電対を挿入して測定した押出機内の樹脂の温度のことである。   Here, the processing temperature of the foamed resin composition refers to the temperature of the resin in the extruder measured by opening a hole in the neck portion of the foaming extruder and inserting a thermocouple.

異種の高分子材料は、混合される全樹脂組成物100mass%に対して、0.1mass%以上45mass%以下添加されるとよい。   The dissimilar polymer material may be added in an amount of 0.1 mass% to 45 mass% with respect to 100 mass% of the total resin composition to be mixed.

これは、異種の高分子材料の添加量(濃度)が0.1mass%未満であると、気泡径および発泡度が異種の高分子材料未添加の場合と同等となることが多く、45mass%を超えると、電気特性や機械的強度に悪影響を与えることが多いためである。   This is because when the amount (concentration) of the different polymer material is less than 0.1 mass%, the bubble diameter and the foaming degree are often the same as when the different polymer material is not added, and 45 mass% is reduced. This is because exceeding the range often has an adverse effect on electrical properties and mechanical strength.

異種の高分子材料の添加量は、全樹脂組成物に対して、好ましくは0.5mass%以上40mass%以下であり、より好ましくは1mass%以上25mass%以下であるが、これに限られず、発泡樹脂組成物を用いて作製する発泡絶縁体の厚さ、発泡度、要求される各種特性に応じて適宜選択するようにすればよい。   The addition amount of the different polymer material is preferably 0.5 mass% or more and 40 mass% or less, more preferably 1 mass% or more and 25 mass% or less, but is not limited to this. What is necessary is just to make it select suitably according to the thickness of the foaming insulator produced using a resin composition, a foaming degree, and various required characteristics.

本実施の形態に係る発泡樹脂組成物の製造方法を説明する。   The manufacturing method of the foamed resin composition which concerns on this Embodiment is demonstrated.

本実施の形態に係る発泡樹脂組成物の製造方法では、異種の高分子材料を、ベース樹脂に混練する。   In the method for producing a foamed resin composition according to the present embodiment, different types of polymer materials are kneaded into the base resin.

異種の高分子材料のベース樹脂への添加方法については多数の方法が考えられるが、一例として、ドライブレンド方式、マスターバッチ(MB)方式やフルコンパウンド方式が挙げられる。   There are many methods for adding different types of polymer materials to the base resin, and examples include a dry blend method, a master batch (MB) method, and a full compound method.

ドライブレンド方式では、異種の高分子材料とベース樹脂を直接、成形機(例えば、発泡押出機)へ供給する。   In the dry blend method, different types of polymer material and base resin are directly supplied to a molding machine (for example, a foaming extruder).

MB方式では、例えば、異種の高分子材料をベース樹脂の一部またはベース樹脂を構成する樹脂材料の一部またはベース樹脂と全く別の樹脂に混練機などを用いて混合してMBを作製し、作製したMBと異種の高分子材料を含まないベース樹脂とを成形機(例えば、発泡押出機)内で混合して発泡樹脂組成物を得る。   In the MB method, for example, a MB is prepared by mixing different types of polymer materials into a part of the base resin or a part of the resin material constituting the base resin or a completely different resin from the base resin using a kneader or the like. The prepared MB and a base resin not containing a different polymer material are mixed in a molding machine (for example, a foaming extruder) to obtain a foamed resin composition.

フルコンパウンド方式では、任意の方法でベース樹脂に異種の高分子材料が所定量混練されたフルコンパウンドを作製し、作製したフルコンパウンドを成形機(例えば、発泡押出機)へ供給する。   In the full compound method, a full compound in which a predetermined amount of different polymer materials are kneaded with a base resin is produced by an arbitrary method, and the produced full compound is supplied to a molding machine (for example, a foaming extruder).

以上に挙げたものが代表的な異種の高分子材料とベース樹脂の混練方法であるが、異種の高分子材料とベース樹脂の混練方法について特に規定するものではない。   The above-described typical kneading methods for different kinds of polymer materials and base resins are not particularly defined for the method for kneading different kinds of polymer materials and base resins.

本実施の形態に係る発泡樹脂組成物の作用を説明する。   The operation of the foamed resin composition according to the present embodiment will be described.

異種の高分子材料とベース樹脂を混練することで、ベース樹脂と異種の高分子材料の界面が生じる。   By kneading the different polymer material and the base resin, an interface between the base resin and the different polymer material is generated.

発泡樹脂組成物の加工時には、発泡ガスが異種の高分子材料とベース樹脂に溶解する。   During processing of the foamed resin composition, the foaming gas is dissolved in the different polymer material and the base resin.

発泡樹脂組成物が発泡押出機から押し出されて冷却される際には、異種の高分子材料のガラス化または結晶化はベース樹脂の結晶化よりも早く生じる。   When the foamed resin composition is extruded from the foaming extruder and cooled, the vitrification or crystallization of the different polymer material occurs earlier than the crystallization of the base resin.

異種の高分子材料のガラス化または結晶化に伴い、異種の高分子材料に溶解していた発泡ガスは異種の高分子材料から追い出される。   With the vitrification or crystallization of the different polymer material, the foaming gas dissolved in the different polymer material is expelled from the different polymer material.

その結果、異種の高分子材料との界面付近のベース樹脂の発泡ガス濃度が高まる。そのため、この領域において気泡が発生しやすくなり、界面が気泡の発生する起点となると考えられる。   As a result, the foaming gas concentration of the base resin near the interface with the different polymer material is increased. Therefore, bubbles are likely to be generated in this region, and the interface is considered to be a starting point for generating bubbles.

すなわち、従来有機物・無機物の微粒子を発泡核剤に用いていた場合に生じていた微粒子の添加量に比較して気泡径が大きく、発泡度が不均一で、発泡度が低くなってしまう問題が生じることなく、気泡径が小さく、発泡度が均一で、発泡度が高く、低誘電率である、発泡樹脂体(発泡絶縁体)を製造することが可能である。   That is, there is a problem that the bubble diameter is large, the foaming degree is not uniform, and the foaming degree is low compared to the amount of the fine particles added when the organic / inorganic fine particles are conventionally used as the foam nucleating agent. Without generation, it is possible to produce a foamed resin body (foamed insulator) having a small cell diameter, a uniform foaming degree, a high foaming degree, and a low dielectric constant.

次に、本発明の発泡樹脂組成物を用いた発泡絶縁電線を説明する。   Next, a foam insulated wire using the foamed resin composition of the present invention will be described.

図1は、本実施の形態に係る発泡絶縁電線の横断面図である。   FIG. 1 is a cross-sectional view of a foam insulated wire according to the present embodiment.

図1に示すように、発泡絶縁電線1は、導体2と、導体2の外周に被覆された発泡絶縁体3とからなる。   As shown in FIG. 1, the foam insulated wire 1 includes a conductor 2 and a foam insulator 3 coated on the outer periphery of the conductor 2.

導体2は、単線あるいは撚線の銅線からなる。導体2としては、銅線以外にもアルミニウム線、銀線、各種合金線や、場合によってはチューブ状導体も用いることができる。また、表面にアルミニウム、銀、錫、その他任意の種類のめっきを施してもよい。アルミニウム線の表面に銅を被覆した銅被覆アルミニウム線を用いることも可能である。   The conductor 2 is made of a single wire or a stranded copper wire. As the conductor 2, besides a copper wire, an aluminum wire, a silver wire, various alloy wires, and a tube-like conductor can be used depending on the case. The surface may be plated with aluminum, silver, tin, or any other kind. It is also possible to use a copper-coated aluminum wire in which the surface of the aluminum wire is coated with copper.

発泡絶縁体3は、本発明の発泡樹脂組成物を成形機(例えば、発泡押出機)に投入すると共に、発泡ガスを成形機の内部に圧入して発泡押出をして、導体2の外周に押出被覆したものであり、多数の気泡を含有する。   The foamed insulator 3 is supplied to a molding machine (for example, a foaming extruder) with the foamed resin composition of the present invention, and a foaming gas is press-fitted into the molding machine to perform foaming extrusion. Extruded and contains a large number of bubbles.

発泡絶縁体3は、単一層でも複数の発泡層を組み合わせてもかまわない。更に、発泡絶縁体3の内周部、外周部に、発泡していない、または発泡層と比較して発泡度が小さい被覆層を形成してもよい。   The foamed insulator 3 may be a single layer or a combination of a plurality of foamed layers. Furthermore, you may form the coating layer which is not foamed or has a small foaming degree compared with a foamed layer in the inner peripheral part of the foamed insulator 3, and an outer peripheral part.

発泡絶縁体3の発泡度は、50%以上90%以下であるとよい。これは、発泡絶縁体3の発泡度が50%未満であると、発泡絶縁体3の誘電率が高くなってしまい、90%を超えると機械的強度が低くなることが多いためである。しかしながら、本発明はこれに限らず、発泡絶縁体3の要求される各種特性に応じて適宜変更可能である。   The foaming degree of the foamed insulator 3 is preferably 50% or more and 90% or less. This is because if the foaming degree of the foamed insulator 3 is less than 50%, the dielectric constant of the foamed insulator 3 increases, and if it exceeds 90%, the mechanical strength often decreases. However, the present invention is not limited to this, and can be appropriately changed according to various characteristics required of the foamed insulator 3.

本実施の形態に係る発泡絶縁電線1では、発泡絶縁体3は、本発明の発泡樹脂組成物からなるため、気泡径が小さく、発泡度が均一で、発泡度が高く、低誘電率である。   In the foam insulated wire 1 according to the present embodiment, since the foam insulation 3 is made of the foamed resin composition of the present invention, the bubble diameter is small, the foaming degree is uniform, the foaming degree is high, and the dielectric constant is low. .

すなわち、本実施の形態に係る発泡絶縁電線1は、低スキューであり、高速伝送用電線として好適である。   That is, the foam insulated wire 1 according to the present embodiment has a low skew and is suitable as a high-speed transmission wire.

また、本発明は、発泡絶縁電線1に限らずケーブル(例えば、同軸ケーブル)にも適用である。   Moreover, this invention is applicable not only to the foam insulated wire 1 but to a cable (for example, a coaxial cable).

図2に示すように、本実施の形態に係る同軸ケーブル21は、発泡絶縁体3の内周部、外周部に、発泡していないまたは発泡絶縁体3と比較して発泡度が小さい内部スキン層22、外部スキン層23をそれぞれ形成し、外部スキン層23の外周に外部導体24、シース25を順次形成したものである。   As shown in FIG. 2, the coaxial cable 21 according to the present embodiment has an inner skin that is not foamed or has a lower degree of foaming than the foamed insulator 3 at the inner and outer peripheral parts of the foamed insulator 3. A layer 22 and an outer skin layer 23 are formed, and an outer conductor 24 and a sheath 25 are sequentially formed on the outer periphery of the outer skin layer 23.

外部導体24は、用途や必要性能に応じて極細金属線による横巻、編組、金属微粒子の焼付け、あるいは金属箔・金属板の巻付けなどを任意に選択することができる。   The outer conductor 24 can be arbitrarily selected from horizontal winding, braiding, metal fine particle baking, metal foil / metal plate winding, etc. according to the application and required performance.

また、内部スキン層22、あるいは外部スキン層23を省略することも可能である。   Further, the inner skin layer 22 or the outer skin layer 23 can be omitted.

シース25の材質は、ポリエチレン、ポリプロピレンといったポリオレフィンやフッ素樹脂、ポリ塩化ビニルなど任意の材料を用いることができ、必要に応じて着色剤、酸化防止剤、粘度調整剤、補強材、充填剤、可塑剤(軟化剤)、加硫剤、加硫促進剤、架橋剤、架橋助剤、発泡助剤、加工助剤、老化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、滑剤、紫外線吸収剤、光安定剤、難燃剤、界面活性剤、相容化剤(相溶化剤)、その他の添加剤を適宜加えてもよい。   The material of the sheath 25 can be any material such as polyolefin such as polyethylene or polypropylene, fluororesin, or polyvinyl chloride, and if necessary, a colorant, antioxidant, viscosity modifier, reinforcing material, filler, plastic (Softener), vulcanizing agent, vulcanization accelerator, crosslinking agent, crosslinking aid, foaming aid, processing aid, anti-aging agent, heat stabilizer, weathering stabilizer, antistatic agent, lubricant, UV absorption Agents, light stabilizers, flame retardants, surfactants, compatibilizers (compatibilizers), and other additives may be added as appropriate.

本実施の形態に係る同軸ケーブル21は、その発泡絶縁体3に本発明の発泡樹脂組成物を用いているため、図1の発泡絶縁電線1と同様に、低スキューである。   Since the coaxial cable 21 according to the present embodiment uses the foamed resin composition of the present invention for the foamed insulator 3, the coaxial cable 21 has a low skew similarly to the foamed insulated wire 1 of FIG. 1.

ここでは、一例として同軸ケーブル21を説明したが、これに限定されるものではなく、その構造は任意である。   Here, although the coaxial cable 21 was demonstrated as an example, it is not limited to this, The structure is arbitrary.

本発明の実施例と比較例を以下に示す。   Examples of the present invention and comparative examples are shown below.

実施例および比較例で試作した発泡絶縁電線の製造条件と目標値を表1に示す。   Table 1 shows the manufacturing conditions and target values of the foam insulated wires experimentally produced in the examples and comparative examples.

Figure 0005581722
Figure 0005581722

実施例、比較例で使用している単軸混練機については、以下の通りである。
口径:40mm
L/D:29
The single-screw kneaders used in the examples and comparative examples are as follows.
Diameter: 40mm
L / D: 29

「気泡径」については、まず、試作した発泡絶縁電線から、十分に間隔(1000m以上)を空けて採取した5試料断面をSEM(日立ハイテクノロジーズ社製:SN−3000)にて撮影する。   Regarding the “bubble diameter”, first, five sample cross sections taken from a prototype foam insulated wire with a sufficient interval (1000 m or more) are taken with an SEM (manufactured by Hitachi High-Technologies Corporation: SN-3000).

その後、画像解析ソフト(三谷商事製:WinROOF)に基準スケールを読み込ませて、画素(ピクセル)あたりの長さを算出させた上で、撮影したSEM画像を読み込ませ、主に手動で気泡外郭を指定し、気泡面積を算出させると共に、同面積の円を仮定した場合の直径(円相当径)を計算した。   After that, let the image analysis software (Mitani Corporation: WinROOF) read the reference scale, calculate the length per pixel (pixel), and then read the SEM image that was taken, mainly manually to create the bubble outline The bubble area was calculated, and the diameter (equivalent circle diameter) when a circle with the same area was assumed was calculated.

撮影した5枚のSEM画像のそれぞれに含まれる気泡の平均円相当径と、5枚のSEM画像全てに含まれる気泡の平均円相当径を算出した。   The average equivalent circle diameter of bubbles included in each of the five photographed SEM images and the average equivalent circle diameter of bubbles included in all five SEM images were calculated.

気泡径100μm以下を合格(○)とし、それ以外を不合格(×)とした。   The bubble diameter of 100 μm or less was accepted (◯), and the others were rejected (×).

「発泡度変動」については、電線試作時の発泡度データから、全て同一の長さ(10000m)部分の発泡度の変動値を比較した。   About "foaming degree fluctuation | variation", the fluctuation value of the foaming degree of the part (10000m) of the same length was compared from the foaming degree data at the time of electric wire trial manufacture.

具体的には、発泡絶縁電線の試作時に、静電容量と外径を1s間隔で測定しておき、導体径、外径、静電容量、ベース樹脂の比誘電率より、各瞬間の発泡度を算出する。   Specifically, at the time of trial production of a foam insulated wire, the capacitance and outer diameter are measured at intervals of 1 s, and the foaming degree at each moment is determined from the conductor diameter, outer diameter, capacitance, and relative dielectric constant of the base resin. Is calculated.

算出した発泡度の最大値と最低値が、平均値に対してどの程度変動しているかを求め、これを発泡度の変動値とした。   To what extent the calculated maximum value and minimum value of the foaming degree fluctuated with respect to the average value was determined and used as the fluctuation value of the foaming degree.

実施例と比較例では、平均発泡度が60%になるように製造していることから、変動値のみを表示した。   In the example and the comparative example, since the average foaming degree is 60%, only the variation value is displayed.

発泡度59.0〜61.0%を合格(○)とし、それ以外を不合格(×)とした。   The foaming degree of 59.0 to 61.0% was determined to be acceptable (◯), and the others were regarded as unacceptable (x).

実施例、比較例の構成と評価結果を表2、表3に示す。   Tables 2 and 3 show configurations and evaluation results of Examples and Comparative Examples.

Figure 0005581722
Figure 0005581722

Figure 0005581722
Figure 0005581722

ベース樹脂の融点が異種の高分子材料の融点を下回る実施例1とベース樹脂の融点が異種の高分子材料の融点を上回る比較例1とを比べると気泡径、発泡度変動の全てにおいて実施例1が優れている。   Comparing Example 1 in which the melting point of the base resin is lower than the melting point of the different polymer material and Comparative Example 1 in which the melting point of the base resin is higher than the melting point of the different polymer material, the example in all the bubble diameter and foaming degree fluctuations 1 is excellent.

これは実施例1では、樹脂の押出成形の際に、異種の高分子材料の結晶化がベース樹脂の結晶化よりも早く生じ、異種の高分子材料から発泡ガスが追い出されて、異種の高分子材料との界面付近のベース樹脂の発泡ガス濃度が高まり、気泡が発生するのに対し、比較例1では、異種の高分子材料とベース樹脂の結晶化の順序が逆であるために界面付近で気泡が発生しなかったためであると考えられる。   In Example 1, during the resin extrusion, the crystallization of the different polymer material occurs earlier than the crystallization of the base resin, and the foaming gas is expelled from the different polymer material. While the foaming gas concentration of the base resin in the vicinity of the interface with the molecular material increases and bubbles are generated, in Comparative Example 1, the order of crystallization of the different polymer material and the base resin is reversed, so the vicinity of the interface This is probably because no bubbles were generated.

樹脂核剤濃度を1mass%とした実施例2と比較例2,樹脂核剤濃度を20mass%とした実施例3と比較例3、樹脂核剤濃度を45mass%とした実施例4と比較例4を比較しても、同様のことが言える。   Example 2 and Comparative Example 2 with a resin nucleating agent concentration of 1 mass%, Example 3 and Comparative Example 3 with a resin nucleating agent concentration of 20 mass%, Example 4 and Comparative Example 4 with a resin nucleating agent concentration of 45 mass% The same can be said even if these are compared.

発泡樹脂組成物の加工温度が異種の高分子材料の融点を上回る実施例5と発泡樹脂組成物の加工温度が異種の高分子材料の融点を下回る比較例5とを比べると気泡径、発泡度変動の全てにおいて実施例5が優れている。   Comparing Example 5 in which the processing temperature of the foamed resin composition exceeds the melting point of the different polymer material and Comparative Example 5 in which the processing temperature of the foamed resin composition is lower than the melting point of the different polymer material, the cell diameter and the degree of foaming Example 5 is superior in all variations.

これは実施例5では、樹脂の押出成形の際に、異種の高分子材料に発泡ガスが溶解し、気泡が発生するのに対して、比較例5では、異種の高分子材料に発泡ガスが溶解せず気泡が発生しないためであると考えられる。   In Example 5, foaming gas dissolves in different polymer materials and bubbles are generated during resin extrusion, whereas in Comparative Example 5, foaming gas is generated in different polymer materials. It is thought that this is because no bubbles are generated without being dissolved.

樹脂核剤濃度を1mass%とした実施例6と比較例6、樹脂核剤濃度を20mass%とした実施例7と比較例7、樹脂核剤濃度を45mass%とした実施例8と比較例8を比較しても、同様のことが言える。   Example 6 and Comparative Example 6 with a resin nucleating agent concentration of 1 mass%, Example 7 and Comparative Example 7 with a resin nucleating agent concentration of 20 mass%, Example 8 and Comparative Example 8 with a resin nucleating agent concentration of 45 mass% The same can be said even if these are compared.

以上から、混練によってベース樹脂中に均一に分散する異種の高分子材料をベース樹脂に混練し、両者の物性の違いを利用してその界面で気泡を発生させる本発明によれば、簡便な方法で、低コストで、発泡度が高く、気泡径が小さい発泡樹脂(発泡絶縁体)を製造可能な発泡樹脂組成物が得られることがわかる。   From the above, according to the present invention, a simple method is used in which different types of polymer materials that are uniformly dispersed in the base resin by kneading are kneaded into the base resin, and bubbles are generated at the interface using the difference in physical properties between the two. Thus, it can be seen that a foamed resin composition capable of producing a foamed resin (foamed insulator) with a low cost, a high degree of foaming, and a small cell diameter can be obtained.

したがって、本発明の発泡樹脂組成物を用いて発泡絶縁体を形成することにより、高速伝送用電線を製造することができる。   Therefore, an electric wire for high-speed transmission can be produced by forming a foamed insulator using the foamed resin composition of the present invention.

1 発泡絶縁電線
2 導体
3 発泡絶縁体
1 Foam insulated wire 2 Conductor 3 Foam insulator

Claims (4)

ベース樹脂に対して異種の高分子材料を前記ベース樹脂に混練してなり、所定の加工温度で加工すると共に発泡ガスを注入することで、前記ベース樹脂中に分散した前記異種の高分子材料の周囲から発泡させて発泡体を形成するための発泡樹脂組成物を発泡押出し、導体の外周に発泡絶縁体を被覆した発泡絶縁電線の製造方法であって、
前記ベース樹脂は、ポリオレフィン樹脂からなり、前記異種の高分子材料は、ポリブチレン、セルロース、酢酸セルロース、酪酢酸セルロース、ポリ乳酸のうちのいずれかからなり、前記異種の高分子材料の融点が前記ベース樹脂の融点と前記加工温度の範囲内にあることを特徴とする発泡絶縁電線の製造方法
A different polymer material is kneaded into the base resin with respect to the base resin, processed at a predetermined processing temperature and injected with a foaming gas, so that the different polymer material dispersed in the base resin A foamed resin composition for foaming and forming a foam by foaming from the surroundings is a method for producing a foam insulated wire in which a foam insulation is coated on the outer periphery of a conductor ,
The base resin is made of a polyolefin resin, and the dissimilar polymer material is one of polybutylene, cellulose, cellulose acetate, cellulose butylacetate, and polylactic acid, and the melting point of the dissimilar polymer material is the base. A method for producing a foam insulated wire, characterized by being within the range of the melting point of the resin and the processing temperature.
ベース樹脂に対して異種の高分子材料を前記ベース樹脂に混練してなり、所定の加工温度で加工すると共に発泡ガスを注入することで、前記ベース樹脂中に分散した前記異種の高分子材料の周囲から発泡させて発泡体を形成するための発泡樹脂組成物を発泡押出し、導体の外周に発泡絶縁体を被覆した発泡絶縁電線の製造方法であって、
前記ベース樹脂は、ポリオレフィン樹脂からなり、前記異種の高分子材料は、ポリブチレン、セルロース、酢酸セルロース、酪酢酸セルロース、ポリ乳酸のうちのいずれかからなり、前記異種の高分子材料のガラス転移点が前記ベース樹脂の融点と前記加工温度の範囲内にあることを特徴とする発泡絶縁電線の製造方法
A different polymer material is kneaded into the base resin with respect to the base resin, processed at a predetermined processing temperature and injected with a foaming gas, so that the different polymer material dispersed in the base resin A foamed resin composition for foaming and forming a foam by foaming from the surroundings is a method for producing a foam insulated wire in which a foam insulation is coated on the outer periphery of a conductor ,
The base resin is made of a polyolefin resin, and the dissimilar polymer material is any one of polybutylene, cellulose, cellulose acetate, cellulose butylacetate, and polylactic acid, and the glass transition point of the dissimilar polymer material is A method for producing a foam insulated wire, wherein the melting point of the base resin is within the range of the processing temperature.
前記ベース樹脂と前記異種の高分子材料全体100mass%に対して、前記異種の高分子材料が0.1mass%以上45mass%以下である請求項1又は2に記載の発泡絶縁電線の製造方法The method for producing a foam insulated wire according to claim 1 or 2, wherein the dissimilar polymer material is 0.1 mass% or more and 45 mass% or less with respect to 100 mass% of the base resin and the dissimilar polymer material as a whole. 前記発泡絶縁体の発泡度が50%以上90%以下である請求項1〜3に記載の発泡絶縁電線の製造方法The method for producing a foam insulated wire according to claim 1 , wherein the foam insulation has a foaming degree of 50% or more and 90% or less.
JP2010029298A 2010-02-12 2010-02-12 Method for manufacturing foam insulated wire Expired - Fee Related JP5581722B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010029298A JP5581722B2 (en) 2010-02-12 2010-02-12 Method for manufacturing foam insulated wire
CN201010226858.1A CN102153799B (en) 2010-02-12 2010-07-08 Foamed resin composition and use its foamex body and foam insulated wire
US12/886,598 US9115254B2 (en) 2010-02-12 2010-09-21 Resin composition, foamed resin using same, and electric wire insulated with foamed resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029298A JP5581722B2 (en) 2010-02-12 2010-02-12 Method for manufacturing foam insulated wire

Publications (2)

Publication Number Publication Date
JP2011162721A JP2011162721A (en) 2011-08-25
JP5581722B2 true JP5581722B2 (en) 2014-09-03

Family

ID=44368843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029298A Expired - Fee Related JP5581722B2 (en) 2010-02-12 2010-02-12 Method for manufacturing foam insulated wire

Country Status (3)

Country Link
US (1) US9115254B2 (en)
JP (1) JP5581722B2 (en)
CN (1) CN102153799B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486502B2 (en) * 2010-05-12 2013-07-16 Nexans PVDF/PVC alloys for plenum cable applications
US20130087361A1 (en) * 2011-10-11 2013-04-11 Hitachi Cable, Ltd. Foamed resin composition, wire and cable
CN103247368A (en) * 2012-02-03 2013-08-14 富士康(昆山)电脑接插件有限公司 Foaming wire material
JP2013214499A (en) * 2012-03-07 2013-10-17 Hitachi Cable Ltd Differential transmission cable and manufacturing method therefor
WO2013170021A1 (en) * 2012-05-11 2013-11-14 General Cable Technologies Corporation Light weight braid for cable shielding applications
BE1020760A3 (en) * 2012-06-21 2014-04-01 Nmc Sa FOAMS BASED ON BUTENE AND ETHYLENE.
JP5975334B2 (en) * 2012-09-13 2016-08-23 日立金属株式会社 Foamed resin molded body, foamed insulated wire and cable, and method for producing foamed resin molded body
JP2014058625A (en) * 2012-09-18 2014-04-03 Hitachi Metals Ltd Foamed resin molded article, foam insulated wire, cable and method of manufacturing foamed resin molded article
JP6044501B2 (en) * 2012-10-03 2016-12-14 日立金属株式会社 Differential signal transmission cable and method of manufacturing the same
JP5920278B2 (en) * 2013-04-15 2016-05-18 日立金属株式会社 Differential signal transmission cable and multi-pair differential signal transmission cable
JP5931097B2 (en) * 2014-01-22 2016-06-08 古河電気工業株式会社 Insulated wire and method for manufacturing the same, rotating electric machine and method for manufacturing the same
US10026522B1 (en) * 2014-08-19 2018-07-17 Superior Essex International LP Flame retardant insulation material for use in a plenum cable
JP6056041B1 (en) 2015-08-20 2017-01-11 株式会社潤工社 Cable core and transmission cable
CN105161194A (en) * 2015-09-30 2015-12-16 国网山东蓬莱市供电公司 Formulation of composite material of protective layer of underground power cable
CN105482189A (en) * 2015-12-11 2016-04-13 中冠电缆有限公司 Modified titanaugite for high heat-resistance and anti-aging butadiene-acrylonitrile rubber cable material and preparation method thereof
CN105504576A (en) * 2015-12-11 2016-04-20 中冠电缆有限公司 Modified pyrophyllite for high-weather-resistance polyethylene cable material and preparation method thereof
CA3015980C (en) * 2016-04-06 2023-05-16 Hexagon Technology As Damage resistant indicator coating
JP6394721B2 (en) 2017-03-03 2018-09-26 日立金属株式会社 coaxial cable
CN108437320B (en) * 2018-03-19 2020-10-09 苏州易诺贝新材料科技有限公司 Preparation method of aramid fiber optical cable reinforced core
CN108530752B (en) * 2018-04-24 2020-09-18 中广核俊尔新材料有限公司 Micro-foaming continuous long glass fiber reinforced polypropylene composite material and preparation method and application thereof
JP6504489B2 (en) * 2018-08-24 2019-04-24 日立金属株式会社 coaxial cable
JP6852725B2 (en) * 2018-11-26 2021-03-31 日立金属株式会社 Cables and harnesses
JP6691672B2 (en) * 2019-03-22 2020-05-13 日立金属株式会社 coaxial cable
JP2024054679A (en) * 2022-10-05 2024-04-17 矢崎総業株式会社 Foamed electric wire, communication cable, and method for manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL176505C (en) * 1974-06-27 1985-04-16 Philips Nv THIN, SMOOTH ELECTRICAL CONNECTION WIRE AND METHOD FOR MANUFACTURING SUCH WIRE.
JPS5284482A (en) * 1976-01-06 1977-07-14 Ube Industries Method of covering insulator for core used for marine coaxial cable
US4216101A (en) * 1978-09-20 1980-08-05 Canada Wire And Cable Limited Electrical insulating composition based on polyolefin containing dye additives as voltage stabilizers
US4637955A (en) * 1983-11-07 1987-01-20 High Voltage Engineering Corporation Wire insulated with a fluorocarbon polymer composition
JPS63254619A (en) * 1987-04-10 1988-10-21 日立電線株式会社 Manufacture of foam fluorocarbon resin insulated wire
JPH02165516A (en) * 1988-12-16 1990-06-26 Sumitomo Electric Ind Ltd Dc high voltage wire
JP3049249B2 (en) * 1989-12-25 2000-06-05 古河電気工業株式会社 Thin foam insulated wire
JPH1112381A (en) * 1997-06-27 1999-01-19 Sekisui Chem Co Ltd Thermoplastic resin-based foam
JP3448758B2 (en) * 1997-07-14 2003-09-22 積水化成品工業株式会社 Method for producing polycarbonate resin foam
JP3344307B2 (en) 1998-01-20 2002-11-11 住友電気工業株式会社 Fine-diameter foamed electric wire and method of manufacturing the same
US7241826B2 (en) 2001-06-26 2007-07-10 Daikin Industries, Ltd. Resin composition, process for production thereof, and foam-insulated electric wire
JP4620374B2 (en) 2004-03-26 2011-01-26 三菱樹脂株式会社 Method for producing resin foam molded body and resin foam molded body
CN101309951B (en) * 2005-11-18 2011-09-07 纳幕尔杜邦公司 Fluoropolymer blending process
JP5274845B2 (en) 2006-01-19 2013-08-28 旭化成ケミカルズ株式会社 Foam
JP5096045B2 (en) * 2007-06-05 2012-12-12 三菱樹脂株式会社 Foam and production method thereof
JP5308013B2 (en) * 2007-12-03 2013-10-09 Dmノバフォーム株式会社 Olefin resin composition

Also Published As

Publication number Publication date
JP2011162721A (en) 2011-08-25
US20110198106A1 (en) 2011-08-18
CN102153799A (en) 2011-08-17
CN102153799B (en) 2015-08-26
US9115254B2 (en) 2015-08-25

Similar Documents

Publication Publication Date Title
JP5581722B2 (en) Method for manufacturing foam insulated wire
JP5573364B2 (en) Electric wires and cables with foam insulation
JP5187214B2 (en) Foamed resin composition and electric wire / cable using the same
JP2013100486A (en) Foamed resin composition, wire and cable
JPWO2015119053A1 (en) Tetrafluoroethylene / hexafluoropropylene copolymer and electric wire
EP2065155B1 (en) High processing temperature foaming polymer composition
CN103839622A (en) Halogen-free crosslinked resin composition and insulated wire and cable using the same
KR20080058259A (en) High processing temperature foaming polymer composition
JP2010513676A (en) Extrusion of foamable fluoropolymer
US20190276625A1 (en) Foamable compositions and methods for fabricating foamed articles
US11643487B2 (en) Heat-resistant crosslinked fluororubber formed body and method of producing the same, and heat-resistant product
KR20060094440A (en) Insulating material composition for cable and a cable having insulating layer made therefrom
JP2010215796A (en) Foaming resin composition, method for producing the same and foam-insulated wire using the same
JP5545179B2 (en) Foam insulated wire and manufacturing method thereof
US11541573B2 (en) Thermoplastic resin pellet and method for manufacturing electric cable
JP6182315B2 (en) Resin composition with excellent surface smoothness
JP5426948B2 (en) Foamed electric wire and transmission cable having the same
US8822825B2 (en) Foamed electric wire and transmission cable having same
JP5420662B2 (en) Foamed electric wire and transmission cable having the same
JP5303639B2 (en) Manufacturing method of foamed wire
JP5212265B2 (en) Foamed resin composition and electric wire / cable using the same
JP2020140771A (en) Method for manufacturing electric wire and method for manufacturing cable
JP2020035660A (en) Cable and manufacturing method therefor
KR101141064B1 (en) Low loss coaxial cable and manufacturing method thereof
JP2018090703A (en) Method for producing resin composition and method for producing insulated wire using resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5581722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees