JP5096045B2 - Foam and production method thereof - Google Patents
Foam and production method thereof Download PDFInfo
- Publication number
- JP5096045B2 JP5096045B2 JP2007149500A JP2007149500A JP5096045B2 JP 5096045 B2 JP5096045 B2 JP 5096045B2 JP 2007149500 A JP2007149500 A JP 2007149500A JP 2007149500 A JP2007149500 A JP 2007149500A JP 5096045 B2 JP5096045 B2 JP 5096045B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- foam
- transition temperature
- glass transition
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明は、発泡体及びその製造方法に関する。詳しくは、フレキシブルなどのエレクトロニクス用部材として好適な耐熱性、低誘電率性に優れる基板用途の発泡体に関する。
The present invention relates to a foam and a method for producing the same. More specifically, the present invention relates to a foam for a substrate that is excellent in heat resistance and low dielectric constant, which is suitable as an electronic member such as flexible.
従来よりプラスチックフィルムは、高い絶縁性能を有するため信頼性の必要な部品、部材として、ケーブル被覆絶縁、プリント配線基板、回転機のスロット絶縁などの電子・電気機器や、フィルムコンデンサなど電子部品に応用されている。このようなプラスチック絶縁フィルムの開発の経緯は、耐熱性に優れたエンジニアプラスチックの合成開発により進められてきた。また、フィルムコンデンサなど電子部品としては、耐熱性のあるプラスチック材料の開発に加えて、更に高い静電容量を得るため誘電率の大きな材料の開発が進められてきた。 Conventionally, plastic film has high insulation performance, so it must be applied to electronic and electrical equipment such as cable insulation, printed wiring board, slot insulation of rotating machines, and electronic parts such as film capacitors as parts and members that require high reliability. Has been. The history of development of such plastic insulating films has been advanced by the synthesis development of engineer plastics with excellent heat resistance. As electronic parts such as film capacitors, in addition to the development of heat-resistant plastic materials, development of materials having a high dielectric constant has been promoted in order to obtain higher capacitance.
最近では、高度情報化社会に対応した大量の情報を蓄積し、高速に処理、高速に伝達するための電子機器では、プラスチック材料にも高性能化が要求されている。特に、高周波化に対応した電気的特性として、低誘電率化、低誘電正接化が求められている。さらに、モーター等の回転機を有する機器では、高効率化、高機能化のために精密制御できるインバータ制御が行われている。そのため絶縁部品における高周波成分の漏洩電流の増加が生じるために、電気的特性としてそれを防ぐ低誘電率化が求められている。 In recent years, plastic materials are required to have high performance in electronic devices that store a large amount of information corresponding to an advanced information society, and can process and transmit them at high speed. In particular, low electrical permittivity and low dielectric loss tangent are required as electrical characteristics corresponding to higher frequencies. Furthermore, in an apparatus having a rotating machine such as a motor, inverter control that can be precisely controlled for higher efficiency and higher functionality is performed. For this reason, an increase in leakage current of high-frequency components in the insulating component occurs, and therefore, a low dielectric constant that prevents this is required as an electrical characteristic.
また、電子材料分野特に回路基板の用途においては、例えば半田耐熱性といった高耐熱性を有し、かつ低誘電率の材料が望まれている。このうち、誘電特性は材料の分子構造から決定される固有の基本物性であるため、要求される誘電特性を得るためには相応の材料を選択しなければならない。例えば、半田耐熱性を有する材料として用いられているポリエチレンテレフタレート(PET)の誘電率は約3.1、液晶ポリマーの誘電率は約2.8であり、通常の材料でこれより優れた低誘電率特性を得ることは困難であった。 In the field of electronic materials, particularly for circuit boards, materials having high heat resistance such as solder heat resistance and low dielectric constant are desired. Among these, the dielectric characteristics are inherent basic physical properties determined from the molecular structure of the material, and therefore a corresponding material must be selected in order to obtain the required dielectric characteristics. For example, polyethylene terephthalate (PET), which is used as a material having solder heat resistance, has a dielectric constant of about 3.1, and a liquid crystal polymer has a dielectric constant of about 2.8. It was difficult to obtain rate characteristics.
そこで、樹脂材料の低誘電率化を図る手段の1つとして、樹脂材料を発泡体として用いることが考えられる。高耐熱性を有する材料を用いたこのような技術として、例えば特許文献1には結晶化度が20%以上、発泡倍率が2倍以上であるポリアーレンスルフィド発泡体が開示されている。また、特許文献2には、加圧下において芳香族ポリエーテルスルホンからなる樹脂成形体に炭酸ガスを接触させて炭酸ガスを浸透させる工程と、圧力を開放した後、前記樹脂成形体を発泡開始以上、前記樹脂のTg未満に加熱して発泡させる工程と、得られた樹脂発泡体を冷却する工程とを具備したことを特徴とするポリエーテルスルホン樹脂発泡体の製造方法が開示されている。 Thus, as one means for reducing the dielectric constant of the resin material, it is conceivable to use the resin material as a foam. As such a technique using a material having high heat resistance, for example, Patent Document 1 discloses a polyarene sulfide foam having a crystallinity of 20% or more and an expansion ratio of 2 or more. Patent Document 2 discloses a step of bringing carbon dioxide gas into contact with a resin molded body made of aromatic polyethersulfone under pressure and infiltrating the carbon dioxide gas, and after releasing the pressure, the resin molded body is not less than the start of foaming. There is disclosed a method for producing a polyethersulfone resin foam, comprising the steps of heating and foaming to less than Tg of the resin and cooling the resulting resin foam.
しかし、前述したいずれの製造方法も樹脂組成物単体を発泡させており、耐熱性を有する樹脂組成物を発泡させようとすると、発泡させる温度が高温になったり、発泡させる温度領域が狭くなるといった発泡条件の制約があり、耐熱性と発泡特性を両立化できる製造方法は未だ確立されていない。 However, any of the above-described manufacturing methods foams the resin composition alone, and if the resin composition having heat resistance is to be foamed, the foaming temperature becomes high or the foaming temperature range becomes narrow. There are restrictions on foaming conditions, and a production method capable of achieving both heat resistance and foaming characteristics has not been established yet.
本発明は、上記問題点を解決すべくなされたものであり、本発明の目的は、耐熱性と発泡特性との両立化を図り、発泡特性および耐熱性に優れた発泡体及びその製造方法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to achieve a balance between heat resistance and foaming characteristics, and to provide a foam having excellent foaming characteristics and heat resistance and a method for producing the same. It is to provide.
本発明者らは、鋭意検討を重ねた結果、特定の材料をブレンドした成形体に加圧ガスを含浸し、発泡化することにより上記課題を解消できることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の通りである。
[1]結晶融解温度、ガラス転移温度、液晶転移温度のうち少なくとも1つが260℃以上である(a)成分と、ガラス転移温度が230℃以下の非晶性樹脂である(b)成分とを主成分とし、その質量比が(a)/(b)=70/30〜30/70の範囲で構成される成形体を、加圧ガスを含浸させた後に発泡させてなる発泡体であって、誘電率が2.5より大きく3.0以下であり、かつ、平均気孔径が3μm以下であることを特徴とする基板用発泡体。
[2]前記(b)成分のガラス転移温度以上であって、かつ、前記(a)成分の結晶融解温度、ガラス転移温度、液晶転移温度のうち最も高い温度以下の温度条件にて発泡させてなる[1]記載の基板用発泡体。
[3]前記(a)成分は、結晶性樹脂であり、かつ、結晶融解温度が260℃以上であって、ガラス転移温度が前記(b)成分のガラス転移温度よりも低いことを特徴とする[1]または[2]に記載の基板用発泡体。
[4]前記(a)成分はポリアリールケトン樹脂からなり、(b)成分はポリエーテルイミド樹脂からなることを特徴とする[1]〜[3]のいずれかに記載の基板用発泡体。
As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by impregnating a molded product blended with a specific material with a pressurized gas and foaming, and have completed the present invention. .
That is, the present invention is as follows.
[1] A component (a) in which at least one of a crystal melting temperature, a glass transition temperature, and a liquid crystal transition temperature is 260 ° C. or higher, and a component (b) that is an amorphous resin having a glass transition temperature of 230 ° C. or lower. It is a foam formed by foaming a molded body composed of a main component and having a mass ratio of (a) / (b) = 70/30 to 30/70 after impregnating with a pressurized gas. A foam for a substrate, wherein the dielectric constant is larger than 2.5 and 3.0 or less, and the average pore diameter is 3 μm or less.
[2] Foaming is performed at a temperature condition not lower than the glass transition temperature of the component (b) and not higher than the crystal melting temperature, glass transition temperature, and liquid crystal transition temperature of the component (a). The foam for a substrate according to [1].
[3] The component (a) is a crystalline resin, the crystal melting temperature is 260 ° C. or higher, and the glass transition temperature is lower than the glass transition temperature of the component (b). The foam for a substrate according to [1] or [2].
[4] The foam for a substrate according to any one of [1] to [3], wherein the component (a) comprises a polyaryl ketone resin, and the component (b) comprises a polyetherimide resin.
本発明の基板用発泡体は、耐熱性を有する(a)成分と、発泡特性を付与する(b)成分とのブレンドからなる成形体を加圧ガスを用いて発泡させるものである。このため、背反特性である耐熱性と発泡特性との両立化できる発泡体を得ることができる。 The foam for a substrate of the present invention foams a molded body made of a blend of a component (a) having heat resistance and a component (b) that imparts foaming characteristics using a pressurized gas. For this reason, the foam which can make heat resistance and foaming characteristics which are contradictory characteristics compatible can be obtained.
以下、本発明を詳しく説明する。
なお、本発明における数値範囲の上限値及び下限値は、本発明が特性する数値範囲内から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の均等範囲に包含するものである。また、本発明における主成分とは、最も多量に含有されている成分のことであり、通常50質量%以上、好ましくは70質量%以上、更に好ましくは80質量%以上含有する成分のことである。
The present invention will be described in detail below.
It should be noted that the upper limit and lower limit of the numerical range in the present invention are the same as those in the present invention as long as they have the same effects as those in the numerical range, even if they are slightly outside the numerical range characterized by the present invention. It is included in the equivalent range. In addition, the main component in the present invention is a component that is contained in the largest amount, and is usually a component that is 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. .
また、本発明においては、特に断りのない限り、発泡前の状態は成形体、発泡後の状態は発泡体と称して両者を区別している。 In the present invention, unless otherwise specified, the state before foaming is referred to as a molded body, and the state after foaming is referred to as a foam to distinguish them.
本発明の基板用発泡体は、結晶融解温度、ガラス転移温度、液晶転移温度のうち少なくとも1つが260℃以上である(a)成分と、ガラス転移温度が230℃以下の非晶性樹脂である(b)成分とを主成分とし、その質量比が(a)/(b)=70/30〜30/70の範囲で構成される成形体を得る工程と、成形体中に加圧ガスを含浸させる工程と、加圧ガスを含有した後に発泡させる工程により得られる。
また、本発明の基板用発泡体は、上記基板用発泡体からなる耐熱性フィルム又はシートを含み、更に、上記フィルム又はシートの少なくとも片面に導電箔を設けたことを特徴とする積層板を含むものである。
The foam for a substrate of the present invention is a component (a) in which at least one of crystal melting temperature, glass transition temperature, and liquid crystal transition temperature is 260 ° C. or higher, and an amorphous resin having a glass transition temperature of 230 ° C. or lower. (B) a step of obtaining a molded product comprising a component as a main component and a mass ratio of (a) / (b) = 70/30 to 30/70; and a pressurized gas in the molded product. It is obtained by the impregnation step and the step of foaming after containing the pressurized gas.
In addition, the foam for a substrate of the present invention includes a heat-resistant film or sheet made of the foam for a substrate, and further includes a laminate having a conductive foil provided on at least one surface of the film or sheet. It is a waste.
本発明における基板用発泡体は、結晶融解温度、ガラス転移温度、液晶転移温度のうち少なくとも1つが260℃以上である(a)成分を含有する。(a)成分は結晶融解温度が260℃以上ある結晶性熱可塑性樹脂、ガラス転移温度が260℃以上である非晶性熱可塑性樹脂、及び液晶転移温度が260℃以上である液晶ポリマーを使用することができる。 The foam for a substrate in the present invention contains a component (a) in which at least one of a crystal melting temperature, a glass transition temperature, and a liquid crystal transition temperature is 260 ° C. or higher. The component (a) uses a crystalline thermoplastic resin having a crystal melting temperature of 260 ° C. or higher, an amorphous thermoplastic resin having a glass transition temperature of 260 ° C. or higher, and a liquid crystal polymer having a liquid crystal transition temperature of 260 ° C. or higher. be able to.
結晶融解温度(以下、「Tm」と表記する場合もある。)が260℃である結晶性熱可塑性樹脂としては、例えばポリエーテルエーテルケトン(PEEK:Tg=145℃、Tm=335℃)、ポリエーテルケトン(PEK:Tg=165℃、Tm=355℃)等のポリアリールケトン(PAr)、ポリフェニレンサルファイド(PPS:Tg=100℃、Tm=265℃)、ポリエチレンテレフタレート(PET:Tg=80℃、Tm=265℃)等を用いることができる。 Examples of the crystalline thermoplastic resin having a crystal melting temperature (hereinafter sometimes referred to as “Tm”) of 260 ° C. include polyether ether ketone (PEEK: Tg = 145 ° C., Tm = 335 ° C.), poly Polyaryl ketones (PAr) such as ether ketone (PEK: Tg = 165 ° C., Tm = 355 ° C.), polyphenylene sulfide (PPS: Tg = 100 ° C., Tm = 265 ° C.), polyethylene terephthalate (PET: Tg = 80 ° C., Tm = 265 ° C.) or the like can be used.
ガラス転移温度(以下、「Tg」と表記する場合もある。)が260℃以上である非晶性熱可塑性樹脂としては、ポリアミドイミド(PAI:Tg=280℃)を用いることができ、また液晶転移温度(以下、「Tl」と表記する場合もある。)が260℃以上である液晶ポリマーとしては、全芳香族ポリエステル(PE:Tl=330℃)などを用いることができる。 As an amorphous thermoplastic resin having a glass transition temperature (hereinafter sometimes referred to as “Tg”) of 260 ° C. or higher, polyamideimide (PAI: Tg = 280 ° C.) can be used. As the liquid crystal polymer having a transition temperature (hereinafter sometimes referred to as “Tl”) of 260 ° C. or higher, wholly aromatic polyester (PE: Tl = 330 ° C.) or the like can be used.
次に、本発明における基板用発泡体は、ガラス転移温度が230℃以下の非晶性樹脂である(b)成分を含有する。本発明における(b)成分は、以下に特定されるものではないが、例えばポリスルホン(PSF:Tg=190℃)、ポリアクリレート(PAr:Tg=175℃)、ポリエーテルスルホン(PES:Tg=230℃)、ポリエーテルイミド(PEI:Tg=216℃)、ポリカーボネート(PC:Tg=150℃)、変性ポリフェニレンエーテル(変性PPE:Tg=145℃)、ポリフェニルサルホン(PPSU:Tg=220℃)等を使用することができる。 Next, the foam for a substrate in the present invention contains the component (b) which is an amorphous resin having a glass transition temperature of 230 ° C. or lower. The component (b) in the present invention is not specified below. For example, polysulfone (PSF: Tg = 190 ° C.), polyacrylate (PAr: Tg = 175 ° C.), polyether sulfone (PES: Tg = 230) ° C), polyetherimide (PEI: Tg = 216 ° C), polycarbonate (PC: Tg = 150 ° C), modified polyphenylene ether (modified PPE: Tg = 145 ° C), polyphenylsulfone (PPSU: Tg = 220 ° C) Etc. can be used.
本発明においては、結晶融解温度、ガラス転移温度、液晶転移温度のうち少なくとも1つが260℃以上である(a)成分と、ガラス転移温度が230℃以下の非晶性樹脂である(b)成分とを主成分とすることが重要である。本発明において(a)成分は耐熱性と発泡体の構造を安定化させるための支持体の役割を果たし、(b)成分は加圧ガスを含浸させ発泡する際の発泡開始温度の調整と発泡開始点及び発泡領域を形成させるための役割を主に果たす。このことから(a)成分を結晶融解温度、ガラス転移温度、液晶転移温度のうち少なくとも1つが260℃以上とすることで発泡体に耐熱性を付与することができる。また、(b)成分をガラス転移温度が230℃以下となる非晶性樹脂とすることで、(b)成分のガラス転移温度と、(a)成分の結晶融解温度、ガラス転移温度、液晶転移温度のうち最も高い温度以下の温度範囲において、発泡化させることが可能となる。 In the present invention, at least one of crystal melting temperature, glass transition temperature, and liquid crystal transition temperature is 260 ° C. or higher, and component (b) is an amorphous resin having a glass transition temperature of 230 ° C. or lower. It is important to have as a main component. In the present invention, the component (a) serves as a support for stabilizing the heat resistance and the structure of the foam, and the component (b) is used to adjust the foaming start temperature and foam when impregnating the pressurized gas and foaming. It mainly plays the role of forming the starting point and the foamed region. From this, heat resistance can be imparted to the foam by setting at least one of the component (a) of crystal melting temperature, glass transition temperature, and liquid crystal transition temperature to 260 ° C. or higher. In addition, by making the component (b) an amorphous resin having a glass transition temperature of 230 ° C. or lower, the glass transition temperature of the component (b), the crystal melting temperature, the glass transition temperature, the liquid crystal transition of the component (a) Foaming can be performed in a temperature range below the highest temperature.
次に、(a)成分と(b)成分の質量比は(a)/(b)=70/30〜30/70の範囲であることが重要である。(a)成分がかかる質量比の範囲内であれば、耐熱性を有する発泡体を得ることができる。耐熱性を重視する場合には、両成分の合計中、(a)成分を50〜70質量%とすることが好ましく、60〜70質量%とすることが特に好ましい。また(b)成分がかかる質量比の範囲内であれば、発泡特性や低誘電率性を有する発泡体を得ることができる。発泡倍率を重視する場合には、両成分の合計中、(b)成分を50〜70質量%とすることが好ましく、60〜70質量%とすることが特に好ましい。 Next, it is important that the mass ratio of the component (a) and the component (b) is in the range of (a) / (b) = 70/30 to 30/70. If the component (a) is within such a mass ratio, a heat-resistant foam can be obtained. When importance is attached to heat resistance, the component (a) is preferably 50 to 70% by mass and particularly preferably 60 to 70% by mass in the total of both components. If the component (b) is within the range of the mass ratio, a foam having foaming characteristics and low dielectric constant can be obtained. When emphasizing the expansion ratio, the component (b) is preferably 50 to 70% by mass, particularly preferably 60 to 70% by mass in the total of both components.
次に本発明の基板用発泡体は誘電率が2.5より大きく3.0以下であることが重要である。プラスチック材料に求められる高周波化に対応した電気物性として、低誘電率性がある。プラスチックフィルムが交流機器の絶縁部に用いられる場合には、その絶縁部で漏洩する電気損失は、周波数、誘電率、誘電正接の積に比例する。よって、周波数が高くなると電力損失が増加する。それを防ぐためには、比誘電率を低くするか、誘電正接を小さくする必要がある。 Next, it is important that the foam for a substrate of the present invention has a dielectric constant of more than 2.5 and 3.0 or less. As an electrical property corresponding to the high frequency required for plastic materials, there is a low dielectric constant. When a plastic film is used for an insulating part of an AC device, the electrical loss leaking at the insulating part is proportional to the product of frequency, dielectric constant, and dielectric loss tangent. Therefore, power loss increases as the frequency increases. In order to prevent this, it is necessary to reduce the relative dielectric constant or the dielectric loss tangent.
高周波化による損失を低減するに効果のある誘電率の値としては3.0以下が有効であり、好ましくは2.9以下、特に好ましくは2.8以下である。また、本発明の基板用発泡体の誘電率としては2.5より大きいことが好ましい。基板用発泡体の誘電率が2.5より大きければ、得られる基板用発泡体の比強度が良好となるため好ましい。 The value of the dielectric constant effective for reducing the loss due to the high frequency is effectively 3.0 or less, preferably 2.9 or less, particularly preferably 2.8 or less. Further, the dielectric constant of the foam for a substrate of the present invention is preferably larger than 2.5. If the dielectric constant of the foam for a substrate is larger than 2.5, it is preferable because the specific strength of the obtained foam for a substrate becomes good.
また、本発明の基板用発泡体の平均気孔径が3μm以下となることが重要である。発泡体の平均気泡径が3μm以下となれば、得られる基板用発泡体に貫通孔を形成させ、バイアホールとし、次いでバイアホール内に導電ペーストを充電する場合に、導電ペーストが発泡体内の気泡を通じて別のバイアホール内に流した導電ペーストと接触する内部短絡が生じない。この点から平均気泡径は3μmから5nmが好ましく、2μmから10nmが特に好ましく、更に好ましくは1μm〜20nmである。 In addition, it is important that the average pore diameter of the foam for a substrate of the present invention is 3 μm or less. If the average cell diameter of the foam is 3 μm or less, when the through-hole is formed in the obtained foam for the substrate to form a via hole, and then the conductive paste is charged in the via hole, the conductive paste is a bubble in the foam. An internal short circuit that contacts the conductive paste that has flowed into another via hole through does not occur. In this respect, the average bubble diameter is preferably 3 μm to 5 nm, more preferably 2 μm to 10 nm, and still more preferably 1 μm to 20 nm.
次に、本発明における(a)成分は結晶融解温度が260℃以上であり、かつガラス転移温度が、(b)成分である非晶性樹脂のガラス転移温度よりも低いことが好ましい。本発明における(a)成分は耐熱性と発泡体の構造を安定化させるための支持体の役割を果たし、(b)成分は加圧ガスを含浸させ発泡する際の発泡開始温度の調整と発泡開始点及び発泡領域を形成させるための役割を主に果たす。よって(a)成分の結晶融解温度が260℃以上であり、かつガラス転移温度が、(b)成分である非晶性樹脂のガラス転移温度よりも低い結晶性樹脂であれば、
(a)成分のガラス転移温度から(a)成分の結晶融解温度の範囲で発泡させることが可能となり、発泡化させた後に(a)成分を結晶化させることで耐熱性を有する発泡体を得ることが可能となるため好ましい。
Next, the component (a) in the present invention preferably has a crystal melting temperature of 260 ° C. or higher, and the glass transition temperature is lower than the glass transition temperature of the amorphous resin as the component (b). In the present invention, the component (a) serves as a support for stabilizing the heat resistance and the structure of the foam, and the component (b) is used to adjust the foaming start temperature and foam when impregnated with a pressurized gas. It mainly plays the role of forming the starting point and the foamed region. Therefore, if the crystalline melting temperature of the component (a) is 260 ° C. or higher and the glass transition temperature is lower than the glass transition temperature of the amorphous resin as the component (b),
It is possible to foam within the range of the glass transition temperature of the component (a) to the crystal melting temperature of the component (a), and after foaming, the foam having heat resistance is obtained by crystallizing the component (a). It is preferable because it becomes possible.
本発明において、中でも好ましい(a)成分としてはポリアリールケトン樹脂であり、(b)成分としてはポリエーテルイミド樹脂である。 In the present invention, the (a) component is preferably a polyaryl ketone resin, and the (b) component is a polyetherimide resin.
これは、(a)成分であるポリアリールケトン樹脂と(b)成分であるポリエーテルイミド樹脂との混合組成物は相溶性が良好であり、ミクロ相分離構造を有し、(b)成分が微細で緻密な構造を有する成形体を得ることが可能となるためである。また結晶融解温度が260℃以上であるポリアリールケトン樹脂に非晶性ポリエーテルイミド樹脂をブレンドすると、ポリエーテルイミドのブレンド比率の増加に伴い、ポリアリールケトン樹脂の結晶化速度が遅くなる。このため、加圧ガスを含浸させる前の成形体の結晶化度を比較的任意に制御でき、(a)成分のガラス転移温度から(a)成分の結晶融解温度までの温度範囲で発泡させることが可能となる。また、発泡させた後に(a)成分を結晶化させることで、得られる発泡体の多孔構造と耐熱性に優れる発泡体を得ることが可能となる。 This is because the mixed composition of the polyaryl ketone resin as the component (a) and the polyetherimide resin as the component (b) has good compatibility, has a microphase separation structure, and the component (b) This is because a molded body having a fine and dense structure can be obtained. In addition, when an amorphous polyetherimide resin is blended with a polyaryl ketone resin having a crystal melting temperature of 260 ° C. or higher, the crystallization rate of the polyaryl ketone resin becomes slow as the blend ratio of the polyetherimide increases. For this reason, the crystallinity of the molded product before impregnation with the pressurized gas can be controlled relatively arbitrarily, and foaming is performed in a temperature range from the glass transition temperature of the component (a) to the crystal melting temperature of the component (a). Is possible. Moreover, it becomes possible to obtain the foam excellent in the porous structure and heat resistance of the foam obtained by crystallizing (a) component after making it foam.
次に本発明の成形体の製造方法について説明する。本発明の成形体の製造方法としては、公知の方法、例えばTダイを用いる押出キャスト法やカレンダー法等を採用することができ、特に限定されるものではないが、成形体の安定生産性等の面から、Tダイを用いる押出キャスト法が好ましい。Tダイを用いる押出キャスト法での成形温度は、(a)成分と(b)成分の流動特性等の面で適宜調整されるが、概ね流動開始温度以上、好ましくは流動開始温度+20℃から430℃の範囲が好適である。 Next, the manufacturing method of the molded object of this invention is demonstrated. As a method for producing the molded product of the present invention, a known method such as an extrusion casting method using a T-die or a calender method can be adopted, and although not particularly limited, stable productivity of the molded product, etc. From this aspect, the extrusion casting method using a T die is preferable. The molding temperature in the extrusion casting method using a T die is appropriately adjusted in terms of the flow characteristics of the component (a) and the component (b), but is generally higher than the flow start temperature, preferably the flow start temperature + 20 ° C. to 430 ° C. A range of ° C is preferred.
また、本発明における成形体の厚みは10μm以上が好適である。成形体の厚みが10μm以上であれば、加圧ガスを含有させた成形体を加熱させる工程時において、含有した加圧ガスが成形体表面から拡散してしまうことがなく、良好な多孔構造が発現でき生産性も良好である。特に好ましい成形体の厚みは50μm〜1mmであり、更に好ましくは75〜500μmである。 In addition, the thickness of the molded body in the present invention is preferably 10 μm or more. If the thickness of the molded body is 10 μm or more, the pressurized gas contained does not diffuse from the surface of the molded body during the step of heating the molded body containing the pressurized gas, and a good porous structure is obtained. It can be expressed and has good productivity. The thickness of the especially preferable molded object is 50 micrometers-1 mm, More preferably, it is 75-500 micrometers.
次の工程として、成形体に加圧ガスを含浸させる。この工程で言う含浸とは、例えば、成形体中に加圧ガスが溶解したのと同様の状態をいう。含浸条件は、成形体を構成する成分によるが、加圧ガスが含浸できる条件であれば良く、特に制限は無い。成形体に加圧ガスを含浸させる具体的な方法は公知の方法に従って良い。例えば、成形体をオートクレーブ等の耐圧容器に入れ、成形体と、気体状または液体状のガスとを封入する。づいて耐圧容器内の圧力を高めるバッチ式に処理する方法や、樹脂成形体を加圧ガスの処理帯内に導入して連続的に処理する方法などを採用できる。 As the next step, the compact is impregnated with a pressurized gas. The impregnation referred to in this step means, for example, the same state as when the pressurized gas is dissolved in the molded body. The impregnation conditions depend on the components constituting the molded body, but are not particularly limited as long as the pressurized gas can be impregnated. A specific method for impregnating the molded body with the pressurized gas may be in accordance with a known method. For example, the compact is placed in a pressure-resistant container such as an autoclave, and the compact and a gaseous or liquid gas are enclosed. Accordingly, a batch processing method for increasing the pressure in the pressure vessel, a method in which a resin molded body is introduced into a processing zone for pressurized gas and continuously processed, and the like can be adopted.
本発明に使用できる加圧ガスは、以下のものに限定されるものではないが、例えば、二酸化炭素、窒素、ヘリウム、アルゴン、亜酸化窒素、エチレン、エタン、テトラフルオロエチレン、パーフルオロエタン、テトラフルオロメタン、トリフルオロメタン、1,1−ジフルオロエチレン、トリフルオロアミドオキシド、シス−ジフルオロジアミン、トランス−ジフルオロジアミン、塩化二フッ化窒素、三重水素化リン、四フッ化二窒素、オゾン、ホスフィン、ニトロシルフルオライド、三フッ化窒素、塩化重水素、キセノン、六フッ化硫黄、フルオロメタン、ペンタフルオロエタン、1,1−ジフルオロエテン、ジボラン、水、テトラフルオロヒドラジン、シラン、四フッ化ケイ素、四水素化ゲルマニウム、三フッ化ホウ素、フッ化カルボニル、クロロトリフルオロメタン、ブロモトリフルオロメタン及びフッ化ビニル等が挙げられる。 The pressurized gas that can be used in the present invention is not limited to the following, but for example, carbon dioxide, nitrogen, helium, argon, nitrous oxide, ethylene, ethane, tetrafluoroethylene, perfluoroethane, tetra Fluoromethane, trifluoromethane, 1,1-difluoroethylene, trifluoroamide oxide, cis-difluorodiamine, trans-difluorodiamine, nitrogen difluoride, tritiated phosphorus, dinitrogen tetrafluoride, ozone, phosphine, nitrosyl Fluoride, nitrogen trifluoride, deuterium chloride, xenon, sulfur hexafluoride, fluoromethane, pentafluoroethane, 1,1-difluoroethene, diborane, water, tetrafluorohydrazine, silane, silicon tetrafluoride, tetrahydrogen Germanium fluoride, boron trifluoride, carbon fluoride fluoride , Chlorotrifluoromethane, bromotrifluoromethane and vinyl fluoride, and the like.
なかでも好ましい加圧ガスとしては、二酸化炭素、窒素、亜酸化窒素、エチレン、エタン、テトラフルオロエチレン、パーフルオロエタン、テトラフルオロメタン、トリフルオロメタン及び1,1−ジフルオロエチレンが挙げられる。 Among these, preferred pressurized gases include carbon dioxide, nitrogen, nitrous oxide, ethylene, ethane, tetrafluoroethylene, perfluoroethane, tetrafluoromethane, trifluoromethane, and 1,1-difluoroethylene.
このうち不活性ガスである二酸化炭素、窒素、ヘリウム、アルゴンは非可燃性であり好ましい。更に無毒性、安価、ほとんどの樹脂組成物に対して非反応であるという点から二酸化炭素や窒素が更に好ましく、中でも樹脂組成物への溶解度が比較的高い二酸化炭素が特に好ましい。 Of these, carbon dioxide, nitrogen, helium, and argon, which are inert gases, are nonflammable and are preferable. Further, carbon dioxide and nitrogen are more preferable from the viewpoint of non-toxicity, low cost, and non-reactivity with most resin compositions, and carbon dioxide having a relatively high solubility in the resin composition is particularly preferable.
加圧ガスを含浸させる温度は、(a)成分と(b)成分のガラス転移温度以下であることが好ましい。(a)成分と(b)成分のガラス転移温度以下であれば、成形体に加圧ガスを含浸させる際に成形体が変形することが無いため好ましい。 The temperature at which the pressurized gas is impregnated is preferably equal to or lower than the glass transition temperature of the component (a) and the component (b). If it is below the glass transition temperature of (a) component and (b) component, when a molded object is impregnated with pressurized gas, it is preferable because a molded object does not deform | transform.
加圧ガスを含浸させる時間は、(a)成分と(b)成分の組成、及び/又は混合割合や成形体の厚みなどにより異なるので一概には言えないが、5分以上であることが好ましく、より好ましくは30分以上である。5分未満であると、成形体への加圧ガスの拡散の関係で成形体の中心部までに十分含浸させることができない場合がある。上限値は、加圧ガスの含浸温度、及び/または含有圧力に影響されるが、生産効率の観点から48時間以下、好ましくは24時間以下、より好ましくは12時間以下である。 The time for impregnating the pressurized gas varies depending on the composition of component (a) and component (b), and / or the mixing ratio, the thickness of the molded article, etc. More preferably, it is 30 minutes or more. If it is less than 5 minutes, there may be a case where the central part of the molded body cannot be sufficiently impregnated due to the diffusion of the pressurized gas to the molded body. The upper limit is influenced by the impregnation temperature of the pressurized gas and / or the contained pressure, but is 48 hours or less, preferably 24 hours or less, more preferably 12 hours or less from the viewpoint of production efficiency.
次の工程は、加圧ガス中から成形体を開放させて、加圧ガスを含浸した成形体を発泡化させる。本工程では、(b)成分のガラス転移温度以上であって、かつ、(a)成分の結晶融解温度、ガラス転移温度、結晶転移温度のうち最も高い温度以下の温度条件に加熱することにより発泡させることが好ましい。 In the next step, the molded body is released from the pressurized gas, and the molded body impregnated with the pressurized gas is foamed. In this step, foaming is performed by heating to a temperature condition that is equal to or higher than the glass transition temperature of component (b) and not higher than the crystal melting temperature, glass transition temperature, and crystal transition temperature of component (a). It is preferable to make it.
本発明において、成形体を発泡させる温度を(b)成分のガラス転移温度以上、かつ、(a)成分の結晶融解温度、ガラス転移温度、結晶転移温度のうちで最も高い温度以下に設定することが好ましい理由は以下の通りである。 In the present invention, the temperature at which the molded body is foamed is set to be equal to or higher than the glass transition temperature of component (b) and not higher than the highest temperature among the crystal melting temperature, glass transition temperature, and crystal transition temperature of component (a). The reason why is preferable is as follows.
かかる温度範囲で発泡すれば、(a)成分の剛性が高く、(b)成分が発泡化するに十分な弾性率となるため、(b)成分が主に発泡するためである。(a)成分の結晶融解温度、ガラス転移温度、結晶転移温度のうちで最も高い温度以下の温度で発泡させることにより、(a)成分の剛性が低下することがなく、(b)成分だけでなく(a)成分も発泡して、気泡が破裂したり、巨大になりすぎるようなことがない。 This is because if the foaming is performed in such a temperature range, the rigidity of the component (a) is high and the elasticity of the component (b) is sufficient for foaming, so that the component (b) is mainly foamed. By foaming at a temperature below the highest temperature among the crystal melting temperature, glass transition temperature, and crystal transition temperature of component (a), the rigidity of component (a) does not decrease, and only component (b) In addition, the component (a) does not foam, and the bubbles do not burst or become too large.
本発明における(a)成分が結晶融解温度が260℃以上であり、かつ、ガラス転移温度が、(b)成分である非晶性樹脂のガラス転移温度よりも低い結晶性樹脂である場合には、成形体を発泡させる温度を(a)成分のガラス転移温度以上、かつ(a)成分の結晶融解温度以下にすることで発泡化が可能となる。 When the component (a) in the present invention is a crystalline resin having a crystal melting temperature of 260 ° C. or higher and a glass transition temperature lower than the glass transition temperature of the amorphous resin as the component (b) Foaming can be achieved by setting the temperature at which the molded body is foamed to a temperature not lower than the glass transition temperature of component (a) and not higher than the crystal melting temperature of component (a).
発泡化させる方法としては、加圧ガスから成形体を開放し、非加圧下において加圧ガスを含有した成形体を加熱することにより非平衡状態を作り出し、含浸したガスを気化させることにより発泡化させる方法(加熱法)を用いる。 As a method of foaming, the molded body is released from the pressurized gas, and the molded body containing the pressurized gas is heated under non-pressurization to create a non-equilibrium state, and the impregnated gas is vaporized to foam. Method (heating method) is used.
このような加熱法を用れば、加圧ガス中から取り出し、非加圧下において再加熱により発泡させるため、発泡させる温度の制御が容易となる。 If such a heating method is used, it is taken out from the pressurized gas and foamed by reheating under non-pressurized, so that the foaming temperature can be easily controlled.
加熱法を用いる場合の加熱手段としては、公知の手段で良く、例えば熱風循環式熱処理炉、オイルバス、溶融塩バスなどが挙げられる。取り扱い性の観点から熱風循環熱処理炉が好ましい。加熱時間は発泡化が完了する時間を設定すれば良く、例えば0.2mm厚み程度の成形体であれば、60秒以内が適当である。 As a heating means in the case of using the heating method, a known means may be used, and examples thereof include a hot air circulation heat treatment furnace, an oil bath, a molten salt bath and the like. A hot-air circulating heat treatment furnace is preferable from the viewpoint of handleability. What is necessary is just to set the time for which foaming is completed as the heating time.
上記発泡化後、所望の多孔構造に制御するためには冷却することが好ましい。冷却温度は(a)成分と(b)成分のガラス転移温度、及び/又は(a)成分と(b)成分の混合割合や成形体の厚みなどにより異なるので一概には言えないが、室温付近まで急速に冷却するのが好ましい。 After the foaming, it is preferable to cool in order to control to a desired porous structure. The cooling temperature varies depending on the glass transition temperature of the component (a) and the component (b) and / or the mixing ratio of the component (a) and the component (b) and the thickness of the molded body. It is preferable to cool rapidly.
また(a)成分が結晶性樹脂である場合、上記冷却後、(a)成分を結晶化するために熱処理を施しても構わない。(a)成分を結晶化させるための熱処理条件としては、(a)成分の結晶化が完了する温度と時間であれば特に制限はない。好ましくは(a)成分の結晶化速度が速い温度域で処理するのが好ましい。 When the component (a) is a crystalline resin, heat treatment may be performed after the cooling to crystallize the component (a). The heat treatment conditions for crystallizing the component (a) are not particularly limited as long as the temperature and time are sufficient to complete the crystallization of the component (a). Preferably, the treatment is performed in a temperature range where the crystallization speed of the component (a) is high.
本発明の成形体は、単層であっても構わないし、また成形体表面に平滑性、耐熱性、耐溶剤性、加圧ガスの拡散性などの特性を付与する目的で、積層構成としても良い。積層構成の場合には、樹脂組成や添加剤の異なる層を適宜組み合わせて構成することができる。また、各層の積層比は用途、目的に応じて適宜調整することができる。 The molded body of the present invention may be a single layer, or may have a laminated structure for the purpose of imparting properties such as smoothness, heat resistance, solvent resistance, and pressure gas diffusibility to the surface of the molded body. good. In the case of a laminated structure, layers having different resin compositions and additives can be appropriately combined. Moreover, the lamination ratio of each layer can be suitably adjusted according to a use and the objective.
上記の積層体を形成する方法としては、共押出法、各層のフィルムを形成した後に、重ね合わせて熱融着する方法、接着剤等で接合する方法等が挙げられる。 Examples of the method for forming the laminate include a co-extrusion method, a method of forming a film of each layer, and then superposing and heat-sealing, a method of bonding with an adhesive, and the like.
本発明の成形体には、その性質を損なわない程度に他の樹脂や各種添加剤、例えば、無機充填材、熱安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜適合してもかまわない。またその性質を損なわない程度に他の樹脂組成物を含んでも良い。
特に、本発明をフレキシブルプリント配線基板などのエレクトロニクス用部材に適用する場合には、無機充填材を混合し、寸法安定性を向上させることが好ましい。この場合、無機充填材の混合量は(a)成分と(b)成分の合計100質量部に対し、10〜40質量部が好ましい。ここで無機充填材がかかる範囲内であれば、成形体の可とう性を保持しつつ寸法安定性を向上できることから好ましい。
In the molded product of the present invention, other resins and various additives such as inorganic fillers, heat stabilizers, ultraviolet absorbers, light stabilizers, nucleating agents, coloring agents, lubricants, difficult to the extent that the properties are not impaired. A flame retardant etc. may be appropriately adapted. Moreover, you may contain another resin composition to such an extent that the property is not impaired.
In particular, when the present invention is applied to an electronic member such as a flexible printed wiring board, it is preferable to improve the dimensional stability by mixing an inorganic filler. In this case, the mixing amount of the inorganic filler is preferably 10 to 40 parts by mass with respect to 100 parts by mass in total of the components (a) and (b). If the inorganic filler is within such a range, it is preferable because the dimensional stability can be improved while maintaining the flexibility of the molded body.
また、用いる無機充填材としては、特に制限は無く、公知のものを使用することができる。例えば、タルク、マイカ、クレー、ガラス、アルミナ、シリカ、窒化アルミニウム、窒化珪素などが挙げられる。 Moreover, there is no restriction | limiting in particular as an inorganic filler to be used, A well-known thing can be used. Examples include talc, mica, clay, glass, alumina, silica, aluminum nitride, and silicon nitride.
本発明の基板用発泡体は、フレキシブルプリント配線基板などのエレクトロニクス用部材に好適に使用することができる。ここで、少なくとも片面に導体箔を設けることができ、この場合、単層(片面、両面)基板でも多層基板でも良い。 The foam for a substrate of the present invention can be suitably used for an electronic member such as a flexible printed circuit board. Here, the conductive foil can be provided on at least one side, and in this case, a single layer (single side, double side) substrate or a multilayer substrate may be used.
また、導体箔に導電性回路を形成させる場合には、公知のいかなる方法も採用することができ、特に限定されるものではない。例えば、サブトラクティブ法(エッチング)、アディティブ法(メッキ)、ダイスタンプ法(金型)、導体印刷法(導電ペースト)などの公知の方法が適用できる。 Moreover, when forming a conductive circuit in conductor foil, any well-known method can be employ | adopted and it does not specifically limit. For example, a known method such as a subtractive method (etching), an additive method (plating), a die stamp method (mold), or a conductor printing method (conductive paste) can be applied.
以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、発泡体についての種々の測定値及び評価は次のようにして行った。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the various measured values and evaluation about a foam were performed as follows.
(1)誘電率測定
インピーダンスアナライザー(HEWLETT製:HP4291B)を用いて、1GHzの周波数にて発泡体(比較例1においては成形体)の誘電率を測定した。
(1) Dielectric constant measurement The dielectric constant of the foam (molded body in Comparative Example 1) was measured at a frequency of 1 GHz using an impedance analyzer (manufactured by HEWLETT: HP4291B).
(2)気泡径観察(平均気泡径測定)
走査電子顕微鏡(日立製作所製:S−4500)を用いて、得られた発泡体の断面の中心付近の観察を行い、得られた観察像を画像処理ソフト(日本ビジュアルサイエンス(株)製:Image−Pro Plus)を用いて50個の気泡の径を測定し、平均値を求めた。
(2) Bubble diameter observation (average bubble diameter measurement)
Using a scanning electron microscope (manufactured by Hitachi, Ltd .: S-4500), the vicinity of the center of the cross section of the obtained foam was observed, and the obtained observation image was image processing software (manufactured by Nippon Visual Science Co., Ltd .: Image). -Pro Plus) was used to measure the diameter of 50 bubbles and determine the average value.
(3)発泡倍率測定
電子天秤((株)エー・アンド・デイ製:GR−300)に比重測定キット((株)エー・アンド・デイ製:AD−1653)を設置した天秤を用いて成形体の密度と発泡体の密度を測定し、成形体の密度と発泡体の密度の比から発泡倍率を算出した。
(3) Foaming ratio measurement Molding using a balance in which a specific gravity measurement kit (A & D: AD-1653) is installed on an electronic balance (A & D: GR-300). The density of the body and the density of the foam were measured, and the foaming ratio was calculated from the ratio of the density of the molded body and the density of the foam.
(参考例1)
(a)成分としてポリエーテルエーテルケトン樹脂(ビクトレックス社製:PEEK
381G(Tg=166℃、Tm=334℃))40質量部、(b)成分として非晶性ポリエーテルイミド樹脂(ゼネラルエレクトリックス社製:Ultem1000(Tg=232℃))60質量部とをドライブレンドしたものをTダイを備えた押出機を用いて、設定温度380℃で押出し、厚さ250μmの成形体を得た。得られた成形体を60℃に温調された圧力容器に投入し、炭酸ガス(二酸化炭素)で20MPaに加圧し、ガス含有前シートに炭酸ガス(二酸化炭素)を含有させた。シートへの炭酸ガス(二酸化炭素)の含浸時間は9時間とした。その後、圧力容器のリークバルブを全開放し、減圧速度=1MPa/secで容器内の圧力を開放し、容器内から成形体を取り出し、ガスが含浸した成形体を180℃に設定した熱風循環式熱処理炉内に1分間投入し、投入後圧空エアーで表面を冷却し基板用発泡体を得た。
得られた結果を表1に示す。誘電率が2.6となり平均気泡径が約1.5μmとなる基板用発泡体を得ることができた。尚、得られた基板用発泡体の発泡倍率は約1.6倍であった。
(Reference Example 1)
(A) Polyetheretherketone resin (manufactured by Victrex: PEEK) as component
40 parts by mass of 381G (Tg = 166 ° C., Tm = 334 ° C.), 60 parts by mass of amorphous polyetherimide resin (manufactured by General Electric Co., Ltd .: Ultem 1000 (Tg = 232 ° C.)) as component (b) The blended product was extruded at a preset temperature of 380 ° C. using an extruder equipped with a T die to obtain a molded product having a thickness of 250 μm. The obtained molded body was put into a pressure vessel adjusted to 60 ° C., pressurized to 20 MPa with carbon dioxide (carbon dioxide), and carbon dioxide (carbon dioxide) was contained in the pre-gas-containing sheet. The sheet was impregnated with carbon dioxide (carbon dioxide) for 9 hours. Thereafter, the leak valve of the pressure vessel is fully opened, the pressure in the vessel is released at a pressure reduction rate of 1 MPa / sec, the molded product is taken out from the vessel, and the molded product impregnated with gas is set to 180 ° C. It was put into a heat treatment furnace for 1 minute, and after the charging, the surface was cooled with compressed air to obtain a substrate foam.
The obtained results are shown in Table 1. A foam for a substrate having a dielectric constant of 2.6 and an average cell diameter of about 1.5 μm could be obtained. In addition, the foaming ratio of the obtained foam for substrates was about 1.6 times.
(実施例1)
(b)成分として非晶性ポリエーテルイミド樹脂(ゼネラルエレクトリックス社製:UltemCRS5001(Tg=241℃))とした以外は、参考例1と同様の方法で基板用発泡体を得た。次いで得られた基板用発泡体を280に設定した熱風循環式熱処理炉内に10分間投入し、投入後圧空エアーで表面を冷却し基板用発泡体を得た。
得られた結果を表1に示す。誘電率が2.7となり、平均気泡径が約1.3μmとなる基板用発泡体を得ることができた。尚得られた基板用発泡体の発泡倍率は約1.4倍であった。
Example 1
A foam for a substrate was obtained in the same manner as in Reference Example 1 except that amorphous polyetherimide resin (manufactured by General Electric Co., Ltd .: Ultem CRS 5001 (Tg = 241 ° C.)) was used as the component (b). Next, the obtained foam for a substrate was put into a hot-air circulating heat treatment furnace set at 280 for 10 minutes, and after the charging, the surface was cooled with compressed air to obtain a foam for a substrate.
The obtained results are shown in Table 1. A foam for a substrate having a dielectric constant of 2.7 and an average cell diameter of about 1.3 μm could be obtained. In addition, the foaming ratio of the obtained foam for a substrate was about 1.4 times.
(参考例2)
実施例1と同様の方法で成形体を作製し、得られた成形体を240℃で1時間熱処理した後、参考例1と同様の方法で基板用発泡体を得た。
得られた結果を表1に示す。誘電率が2.9となり、平均気泡径が約0.3μmとなる基板用発泡体を得ることができた。尚、得られた基板用発泡体の発泡倍率は約1.2倍であった。
(Reference Example 2)
A molded body was produced in the same manner as in Example 1, and the obtained molded body was heat-treated at 240 ° C. for 1 hour, and then a foam for a substrate was obtained in the same manner as in Reference Example 1 .
The obtained results are shown in Table 1. A foam for a substrate having a dielectric constant of 2.9 and an average cell diameter of about 0.3 μm could be obtained. In addition, the foaming ratio of the obtained foam for a substrate was about 1.2 times.
(参考例3)
(a)成分がポリエーテルエーテルケトン樹脂(ビクトレックス社製:PEEK
381G(Tg=166℃、Tm=334℃))70質量%、(b)成分がポリフェニルサルホン樹脂(PPSU:ソルベイアドバンストポリマー社製:レーデルR−5000(Tg=220℃))30質量%とした以外は参考例1と同様の方法で基板用発泡体を得た。
得られた結果を表1に示す。誘電率が2.7となり、発泡倍率が1.4倍となり、平均気泡径が0.5μmとなる基板用発泡体を得ることができた。尚、得られた基板用発泡体の発泡倍率は約1.4倍であった。
(Reference Example 3)
(A) The component is a polyetheretherketone resin (manufactured by Victrex: PEEK
381G (Tg = 166 ° C., Tm = 334 ° C.) 70% by mass, component (b) is a polyphenylsulfone resin (PPSU: Solvay Advanced Polymer, Inc .: Radel R-5000 (Tg = 220 ° C.)) 30% by mass A foam for a substrate was obtained in the same manner as in Reference Example 1 except that.
The obtained results are shown in Table 1. A foam for a substrate having a dielectric constant of 2.7, an expansion ratio of 1.4, and an average cell diameter of 0.5 μm could be obtained. In addition, the foaming ratio of the obtained foam for a substrate was about 1.4 times.
(比較例1)
参考例1で得られた成形体を発泡させずに用いた。該成形体の誘電率は3.3であった。
(Comparative Example 1)
The molded body obtained in Reference Example 1 was used without foaming. The molded article had a dielectric constant of 3.3.
(比較例2)
参考例1において、(b)成分を100質量%とした以外は同様の方法で成形体を作製し、ガスが含浸した成形体を350℃に設定した熱風循環式熱処理炉内に1分間投入した以外は参考例1と同様の方法で基板用発泡体を得た。
得られた基板用発泡体は熱処理炉内に投入時の変形がひどく、誘電率を測定できなかった。尚得られた基板用発泡体のセルサイズは破泡がひどく測定できなかった。
(Comparative Example 2)
In Reference Example 1 , a molded body was prepared in the same manner except that the component (b) was changed to 100% by mass, and the molded body impregnated with the gas was put into a hot-air circulating heat treatment furnace set at 350 ° C. for 1 minute. Except for the above, a foam for a substrate was obtained in the same manner as in Reference Example 1 .
The obtained foam for a substrate was severely deformed when put into a heat treatment furnace, and the dielectric constant could not be measured. In addition, the cell size of the obtained foam for a substrate could not be measured due to severe bubble breakage.
参考例1〜3及び実施例1の基板用発泡体は、誘電率が2.6〜2.9の範囲であり、気泡径が3μm以下と良好な低誘電率特性と多孔構造を有する発泡体であることが確認できる。これに対して、未発泡体である場合(比較例1)には、誘電率が3.3となり低誘電率特性に劣ることが確認できる。また、成形体が(b)成分のみである場合には発泡させることができても破孔がひどく、発泡特性が悪いことが確認できる。 The foams for substrates of Reference Examples 1 to 3 and Example 1 have a dielectric constant in the range of 2.6 to 2.9, a bubble diameter of 3 μm or less, a good low dielectric constant characteristic, and a porous structure. It can be confirmed that On the other hand, when it is an unfoamed material (Comparative Example 1), it can be confirmed that the dielectric constant is 3.3 and the low dielectric constant characteristics are inferior. Moreover, when a molded object is only (b) component, even if it can be made to foam, it can confirm that a torn hole is severe and a foaming characteristic is bad.
Claims (3)
前記(b)成分のガラス転移温度以上であって、かつ、前記(a)成分の結晶融解温度、ガラス転移温度、液晶転移温度のうち最も高い温度以下の温度条件にて発泡させることを特徴とする発泡体の製造方法。 Crystalline melting temperature, glass transition temperature, at least one of the liquid crystal transition temperature but is 260 ° C. or more, consisting of polyaryl ketone resin and component (a), a glass transition temperature of amorphous resin 230 ° C. or less, poly A molded body composed mainly of (b) component made of etherimide resin and having a mass ratio of (a) / (b) = 70/30 to 30/70 is impregnated with pressurized gas. And then foaming to produce a foam having a dielectric constant of more than 2.5 and 3.0 or less, and an average pore diameter of 3 μm or less,
The foaming is carried out under a temperature condition that is not lower than the glass transition temperature of the component (b) and not higher than the crystal melting temperature, glass transition temperature, and liquid crystal transition temperature of the component (a). A method for producing foam.
The foam obtained by the manufacturing method of the foam of Claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007149500A JP5096045B2 (en) | 2007-06-05 | 2007-06-05 | Foam and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007149500A JP5096045B2 (en) | 2007-06-05 | 2007-06-05 | Foam and production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008303247A JP2008303247A (en) | 2008-12-18 |
JP5096045B2 true JP5096045B2 (en) | 2012-12-12 |
Family
ID=40232253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007149500A Active JP5096045B2 (en) | 2007-06-05 | 2007-06-05 | Foam and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5096045B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100300725A1 (en) * | 2009-05-28 | 2010-12-02 | Akinari Nakayama | Electric-wire cable equipped with foamed insulator |
JP5581722B2 (en) * | 2010-02-12 | 2014-09-03 | 日立金属株式会社 | Method for manufacturing foam insulated wire |
JP6968601B2 (en) * | 2017-06-15 | 2021-11-17 | 信越ポリマー株式会社 | Manufacturing method of foam molded product |
KR20240072186A (en) | 2021-09-22 | 2024-05-23 | 포리푸라 에보닉쿠 가부시키가이샤 | Foam, foamed film and laminated film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3228349B2 (en) * | 1992-08-10 | 2001-11-12 | 古河電気工業株式会社 | Method for producing thermoplastic resin foam |
JP4117986B2 (en) * | 1999-06-07 | 2008-07-16 | 日東電工株式会社 | Heat resistant polymer foam, method for producing the same, and foam substrate |
JP4557376B2 (en) * | 2000-06-19 | 2010-10-06 | 日東電工株式会社 | Method for producing porous body and porous body |
JP2007056148A (en) * | 2005-08-25 | 2007-03-08 | Shin Etsu Polymer Co Ltd | Manufacturing process of resin foamed body and resin foamed body |
-
2007
- 2007-06-05 JP JP2007149500A patent/JP5096045B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008303247A (en) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6373884B2 (en) | Polyimide resin precursor | |
EP3045309A1 (en) | Ductile metal laminate and method of manufacturing same | |
US10418151B2 (en) | Enamel resin-insulating laminate, inverter surge-resistant insulated wire using the same and electric/electronic equipment | |
EP2886589A1 (en) | Soft metal laminate and method for manufacturing same | |
JP2018150544A (en) | Polyimide resin precursor | |
JP5096045B2 (en) | Foam and production method thereof | |
JP3115215B2 (en) | Low dielectric constant plastic insulating film and method of manufacturing the same | |
JP2002053749A (en) | Heat-resistant resin composition and heat-resistant film or sheet composed thereof, and laminate comprising the same as substrate | |
JP2018083415A (en) | Laminate film, and production method thereof | |
WO2015178365A1 (en) | Release film | |
WO2019176756A1 (en) | Polyarylene sulfide film | |
JP4904794B2 (en) | Porous membrane and flexible printed circuit board using the same | |
JP2007056148A (en) | Manufacturing process of resin foamed body and resin foamed body | |
JP2002105221A (en) | Heat-resistant film and print circuit board using it as substrate, and method of manufacturing them | |
WO2023047914A1 (en) | Foamed body, foamed film, and laminated film | |
JP2003082123A (en) | Polyarylketone film and flexible printed circuit board using the same | |
JP7553751B1 (en) | Fluororesin film, method for producing fluororesin film, sheet-like attachment film for flexible copper-clad laminates, flexible copper-clad laminates and circuit boards | |
TWI851813B (en) | Biaxially stretched laminated film, laminated body and method for manufacturing the same | |
WO2022209753A1 (en) | Method for producing porous liquid crystal polymer | |
JP2024128384A (en) | Porous liquid crystal polymer sheet and method for producing the same | |
JP2020083989A (en) | Base material film, insulator film and flat cable or antenna | |
JP2010129964A (en) | Sheet for flexible printed wiring board reinforcement, and flexible printed wiring board using the same | |
KR20230130570A (en) | Resin composition-impregnated glass cloth, and copper clad laminate and printed board using the same | |
WO2013141109A1 (en) | Porous body and method for producing same | |
KR20240158208A (en) | Polyimide resin precursor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120307 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120822 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5096045 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |