JP5191622B2 - 波面分析システムおよびその合焦方法 - Google Patents
波面分析システムおよびその合焦方法 Download PDFInfo
- Publication number
- JP5191622B2 JP5191622B2 JP2001557456A JP2001557456A JP5191622B2 JP 5191622 B2 JP5191622 B2 JP 5191622B2 JP 2001557456 A JP2001557456 A JP 2001557456A JP 2001557456 A JP2001557456 A JP 2001557456A JP 5191622 B2 JP5191622 B2 JP 5191622B2
- Authority
- JP
- Japan
- Prior art keywords
- eye
- wavefront
- sensor
- light
- wavefront analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/103—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
- A61B3/15—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
- A61B3/156—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking
- A61B3/158—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking of corneal reflection
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/024—Methods of designing ophthalmic lenses
- G02C7/027—Methods of designing ophthalmic lenses considering wearer's parameters
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Eye Examination Apparatus (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Prostheses (AREA)
Description
(発明の技術分野)
本発明は、眼の屈折誤差測定に関し、特に屈折誤差のトポグラフィ図作成を編集するための方法および技術に関する。
【0002】
(発明の背景)
眼の収差(aberrations)測定は、視覚上の欠陥および視力評価の診断にとって重要である。これらの測定および精度は、収差を矯正できる外科的および非外科的な方法の数が増大するにつれて、ますます重要になる。これらの矯正は、視覚(ocular)システム全体の正確で精密な測定に依存しており、スクリーニング、治療、継続管理(follow-up)の好結果をもたらす。視覚測定の精度向上は、矯正が必要な患者の識別および矯正自体の性能を改善するのに役立つ。
【0003】
多くの現行方法が視覚システムの性能を測定するのに使用されている。最も広く使用され、充分に定着したものは、精神物理学的(psycho-physical)方法、即ち、主観的な患者フィードバックに依存する方法である。精神物理学的方法の最も旧式のものは、フォアオプター(foreopter)、即ち、試しレンズ方法であり、必要な矯正を決定するための試行錯誤に頼るものである。視力(visual acuity)、視覚変調伝達関数(ocular modulation transfer function)、コントラスト感受性、その他の興味あるパラメータを測定するための精神物理学的方法がある。
【0004】
これらの主観的方法に加えて、視覚システムの性能を評価するための客観的な方法もある。こうした客観的方法は、角膜トポグラフィ、波面収差測定法(aberrometry)、角膜干渉法、自動屈折法(auto-refraction)などである。これらの方法の多くは、全体の屈折誤差に対する特定要因の寄与を測定するに過ぎない。例えば、作業の大部分は、角膜のトポグラフィを測定したり、角膜層を特徴付けたりするものに関する。しかしながら、角膜の形状は、多くの場合、全体の屈折誤差のうちの約30〜40%しか寄与していない。屈折誤差の大部分を測定して、診断用および矯正用に完全な地図形成を用意するためには、追加の情報および測定が必要になる。
【0005】
眼の屈折を決定する他の方法は自動屈折法であり、種々の技術を使用して、必要な矯正処方を自動的に決定する。これらの自動化技術は、1つ以上のスポット又はパターンを網膜(retina)上に投影して、所望の応答が得られるまで自動屈折器内の光学素子を自動的に調整して、この調整から必要な矯正を決定する。しかしながら、自動屈折法は格別に信頼性が高いわけではない。さらに、自動屈折法は収差の低次成分、例えば焦点や非点収差(astigmatic)誤差だけを測定するに過ぎない。
【0006】
近年、眼が光学システムとして考えられるようになり、他の光学システム用に従前使用されていた方法が眼の測定へ応用されつつある。これらの方法は、干渉計と、シャック−ハルトマン(Shack-Hartmann)波面センシングとを含む。これらの技術は、眼の完全な収差を測定することから、特別な重要性がある。この追加情報によって、視力に影響を及ぼす不均一で非対称な誤差の測定が可能になる。さらに、この情報は、種々の矯正技術のいずれにも関係して、改善された視力を提供することができる。例えば、ウイリアムス(Williams)による米国特許第5777719号は、シャック−ハルトマン波面センシングの応用と、超分解能網膜スコープ(super-resolution retina-scope)を構成して、眼の収差を矯正するために適応した光学系とを記述している。ウイリアムス等による米国特許第5949521号は、この情報を用いてコンタクトレンズ、眼内レンズ、他の光学レンズ等を改善することについて記述している。
【0007】
波面収差測定法は、眼の光学系全体を通じて、完全で、端から端までの(end-to-end)収差を測定する。これらの測定では、スポットが網膜上に投影され、結果としての戻り光が光学システムによって測定され、その結果、眼の収差についての完全で統一的な視野方向(line-of-sight)測定が得られる。これらの測定で用いられる機器の重要な限界は全分解能(total resolution)であり、これは究極的に機器の小型レンズアレイによって制限される。しかし、小型レンズアレイの選択は、それ自体幾つかの要因によって制限され、最も重要なものでは網膜上に投影されたスポットのサイズによって制限される。
【0008】
シャック−ハルトマン波面センサの2次元的な具体例の基本的素子の概略図は、図2に示される。網膜から到来する波面110の一部が、2次元の小型レンズアレイ112に入射する。小型レンズアレイ112は、到来する波面110を数多くの小さなサンプルに切り刻む。小型レンズは小さいほど、センサの空間分解能が高くなる。しかしながら、小さな小型レンズによるスポットサイズは、回折効果に起因して、使用可能な焦点距離を制限するようになり、そしてより低い感度をもたらす。このようにこれら2つのパラメータは、所望の測定性能に従ってバランスさせる必要がある。
【0009】
数学的には、検出面114での像は、図3に示すように、焦点距離fの小型レンズ112によって作られる規則的な間隔dを有する焦点スポット116のパターンで構成される。これらのスポットは明確で分離していなければならず、容易に識別可能である必要がある。そして、スポットサイズρは、スポット間隔の1/2を超えてはならない。スポット間隔パラメータNFRは、小型レンズアレイ112を特徴付けるために用いることができ、次のように示される。
【0010】
【数1】
【0011】
レンズサイズとこれによる焦点スポットとの関係は、λを光の波長として、次のように示され、丸レンズについては、
【0012】
【数2】
【0013】
となり、角レンズについては、
【0014】
【数3】
【0015】
となる。角レンズでは、間隔パラメータは次のように示される。
【0016】
【数4】
【0017】
これは小型レンズのフレネル数としても知られている。焦点スポットの重なりを回避するためには、NFR>2となる。実際には機器のダイナミックレンジを考慮すると、フレネル数は2より少し大きい必要がある。シャック−ハルトマン波面センサのダイナミックレンジは、スポットエッジが投影した小型レンズ境界に接するようになる焦点スポットの限界道程(limiting travel)として定義することができ、次のように示される。
【0018】
【数5】
【0019】
こうしてダイナミックレンジは、間隔パラメータおよび小型レンズのサイズに対して正比例する。
【0020】
シャック−ハルトマン波面センサ眼科測定システムのための特に有用な配置は、像リレー光学システムにおいて瞳孔(pupil)または角膜表面に対して共役な面に小型レンズアレイを置くものである。この構成において、波面センサの検出器上でのスポットサイズは次のように示される。
【0021】
【数6】
【0022】
ここで、Mは結像光学の倍率、fL は小型レンズアレイの焦点距離、fe は眼の焦点距離、ρ1 は網膜上のスポットサイズである。
【0023】
式(5)と式(7)とを比べると、波面センサのダイナミックレンジが、網膜上に投影されたスポットサイズρ1 によって制限されることが明らかである。実際のシステムでは、ダイナミックレンジは光学システムでの誤差を解決できるものでなければならない。このようにダイナミックレンジは、システム全体設計の重要な制限パラメータとなる。眼科測定用に用いられるシャック−ハルトマン波面センサの従前の手法では、各小型レンズのサイズを増加させることによってダイナミックレンジを増加させていた。しかしながら、眼自体がかなりの収差を持つことがある。すると、眼の中に投影されるビームのいずれもが収差を持つようになり、焦点スポットを広げて、網膜上のスポットサイズρ1 を増加させてしまう。
【0024】
この問題に対処するため、種々の技術が実施されている。入射ビームに関して全波面誤差が最小となるように、小さな直径のビームが使用される。他に提案された解法は、眼中の長焦点距離レンズの焦点に光を投影して、焦点スポットサイズが眼の収差による影響を受けないように、視野レンズとして機能させるものである。実際、これらの場合、ビームは少しだけ大きくなり、視覚システムの収差によってサイズが増加する。
【0025】
システムのダイナミックレンジに関する他の制限は、サンプリングサイズである。網膜上の大きなスポットを用いると、波面センサのサンプリングサイズは増加してしまい、最小のダイナミックレンジでさえ実現してしまう。大きな乱視(astigmatism)を有する人々や近視レーザ治療(LASIK)を受けた人々に見られるような強い収差を伴う視覚システムに関して、各小型レンズでの収差は、小型レンズの焦点スポットを劣化させるのに充分である。システムは、焦点スポットの重なりによって制限されるのではなく、焦点スポット自体が消失したり、追跡困難になったりすることによって制限される。小さなサンプリングサイズを用いると、網膜によって光が散乱され、多数の焦点スポットになってしまうため、充分な光を集めることができなくなる。安全性に配慮すると、入力パワーを増加させて、この散乱を補償することはできない。
【0026】
(発明の概要)
本発明は、関連先行技術での測定の制限および不具合による1つ以上の問題を実質的に克服するような眼の屈折誤差の測定に関するものである。
【0027】
本発明の目的は、実際の手法において充分な精度およびダイナミックレンジで眼の端から端までの(end-to-end)収差を測定することである。
【0028】
本発明の更なる目的は、網膜上の焦点スポットのサイズを最小化するように、光ビームを視覚システムの中に投影することである。
【0029】
本発明の別の目的は、この小さな焦点スポットを用いて、視覚システムのサンプリング密度をより高くして、精度およびダイナミックレンジを向上させることである。
【0030】
本発明の更に別の目的は、実用的で低コストで、臨床段階での使用が可能なシステムを構成することである。
【0031】
上記および他の目的の少なくとも1つは、眼の誤差を測定するためのシステムを提供することによって達成され、該システムは、眼の網膜上に光を供給する投影光学システムと、投影光学システムと眼との間に位置決めされ、眼の収差に関して眼中に入る光ビームを補償する前補正(pre-correction)システムと、網膜によって散乱した光を集める結像システムと、結像システムによって集められた網膜からの光を受け取る検出器とを含む。
【0032】
検出器は、シャック−ハルトマン波面センサ、シアリング(shearing)干渉計、モアレ・デフレクトメータ(Moire deflectometer)、又は他の受動的な位相測定システムなどが可能である。前補正システムは、少なくとも1つの可動レンズと、中間像面に挿入された固定レンズと、適合した光学素子とを有する望遠鏡、及び/又はシリンドリカル望遠鏡を含んでもよい。前補正システムは、眼の焦点誤差及び/又は非点収差について矯正してもよい。望遠鏡は、望遠鏡の固定レンズが眼から一方の焦点距離だけ離れるように配置してもよい。前補正システムで用いられる構成部品はまた結像システムでも使用してもよい。
【0033】
前補正システムは、前補正システムによって供給されるべき適切な前補正を決定するフィードバックループを含んでもよい。フィードバックループは、網膜からの戻り光を受ける検出器と、検出光と所望な特性の光とを比較して、比較結果に従って前補正システムの少なくとも1つのパラメータを調整するプロセッサとを含んでもよい。フィードバックループは更に、網膜からの光を集めるための戻り光学システムを含んでもよい。戻り光学システムは、前補正システムを含んでもよい。所望な特性とは、網膜上で最小化されたスポットサイズでもよい。
【0034】
システムは、システムの角度的なダイナミックレンジを制限する絞り(aperture)を含んでもよい。システムは更に、眼と波面センサとの間に偏光ビームスプリッタを含んでもよい。システムは、システムの適切な眼アライメントを決定するアライナー(aligner)を含んでもよい。投影光学システムは、眼の中心軸に対してある角度で光を眼中に供給してもよい。システムは、検出器と眼との間に追加の光学システムを含んでもよい。システムは、眼中に入る光ビームのパワーを監視するパワーモニタを含んでもよい。システムは、眼に投影されたターゲットと、眼を検知する位置検出器と、眼が検出器上で合焦となるまで、眼を基準としてシステムの位置を調整する調整システムとを含む眼位置検出システムを含んでもよい。
【0035】
本発明のこれら及び他の目的は、後述する詳細な説明からより容易に明らかになるであろう。しかしながら、本発明の精神および範囲内での種々の変化や変形は、詳細な説明から当業者にとって明らかになることから、詳細な説明および具体例は発明の好ましい実施形態を示しつつ、図示だけで供与されると理解されるべきである。
【0036】
前述および他の目的、態様および利点は、図面を参照しながら説明される。
【0037】
(発明の詳細な説明)
上述のように、実用的な視覚波面センサシステムを設計するのに重要なことは、どのようにして光を眼の中に入射させるかである。視覚の屈折誤差は、例えば20ジオプター(diopters)まで大きくなり得るものであり、入射ビームの劣化が重要になる。さらに、極度に大きな屈折誤差を直接に測定するのに充分な範囲を持つ波面センサを設計することは困難である。本発明に従えば、視覚システム上に投影されたスポットは、眼の基本的な収差を補償するようにして前歪み(predistort)を受ける。このことは、波面センサへ戻るスポットが良好に形成され、屈折誤差による影響を最小化するのを可能にする。小さなスポットサイズは、小さな小型レンズの使用を可能にし、一方、大きくて高次の収差でさえ測定できる充分なダイナミックレンジを維持する。光が網膜上にきちんと焦点を結ぶと、光は小さい領域から散乱するだけになる。この小さい領域が、波面センサの焦点面に結像すると、光は小さいグループの画素の上に集光される。すると、反射した光が多数の小型レンズ間で分割されても、各焦点スポットは従来の方法よりも明るくなる。さらに、サンプリング密度が高くなるほど、各小型レンズの開口についての波面収差がより小さくなる。
【0038】
こうした前補正を採用した誤差測定のためのシステムは、図1に示される。ここで示した視覚波面測定システムは、一般に、眼中に光を投影する投影システムと、視覚収差のため入射光を前補正するためのシステムと、光を集めるためのシステムと、前補正を決定するためのシステムと、集められた光を測定するためのシステムとを含む。
【0039】
図1に示した投影システムは、例えばレーザ、レーザダイオード、LED、スーパールミネセンスダイオードなどの光源12を含み、光ファイバ14が用意されている。安全性の理由から、光源は好ましくはパルス光源であり、小さいパワーに制限され、通常の視覚検知の範囲外のもの、例えば赤外線であり、及び/又は適切なレンズを用いて直接にコリメート(平行化)するものでもよい。光ファイバは、偏光保存ファイバでもよい。光ファイバ14から出た光は、コリメートレンズ16に供給される。光源12からの光を配給するために光ファイバ14を使用することは、ファイバの出口モードが回折限界の点光源として機能することから、コリメートレンズ16を簡素化する。コリメートレンズ16は、好ましくはファイバ14に固定的に搭載される。コリメートされた光は、絞り18によって所望のサイズに整形される。必要であれば、コリメート光を偏光するための偏光子20を設けてもよい。偏光ビームスプリッタ22は、投影システムからの光を視覚測定システムへ仕向ける。
【0040】
代わりに、光源12を単独で設けてもよく、即ち、ファイバ14を使用しなくてもよい。光源12からの光はそれ自体、コリメートレンズによってコリメートされる。眼科測定用に使用する光源は、ビームの一部のみ、例えば典型的にはビーム中心から10〜25%を使用することによって、典型的には高次の非点収差を有するが、ビームに関する波面誤差は、眼科測定システム中で横断する距離に渡ってビームサイズが実質的に安定する程度に小さいものとなる。言換えると、ビームが非点収差になったとしても、この非点収差に起因して眼科測定システムを横断する際にもビーム形状は変化しなくなり、非点収差は測定に影響を及ぼさない。光は必要に応じて偏光してもよい。
【0041】
投影システムからの光は偏光ビームスプリッタ22によって反射され、図1に望遠鏡30として示すような前補正システムへ向けられる。望遠鏡30は、レンズ32,34を含み、両者間の絞り36を伴う。望遠鏡30は、レンズを互いに移動させることによって調整可能になる。この調整は、測定される視覚システムの球面等価デフォーカス(spherical equivalent defocus)を補償するデフォーカスを追加することによって、入射ビームに対して所望の矯正を提供する。望遠鏡からの光は、ビームスプリッタ38によって測定中の視覚システム40へ向けられる。入射したビームは、視覚システム40によって焦点を結び、視覚システム40の網膜上での焦点スポット42となる。焦点スポット42からの光は、網膜によって散乱したり、あるいは反射する。
【0042】
戻った光は、視覚システム40の角膜およびレンズによって集められ、ほぼコリメートされる。ビームスプリッタ38は、視覚システムからのビームを望遠鏡30へ戻す。望遠鏡30のレンズ32,34の同じ位置は、視覚システム40のデフォーカス収差について矯正し、光は波面センサ50に到達して、センサのダイナミックレンジの範囲内にコリメートされるようになる。絞り36は、波面センサ50の角度的なダイナミックレンジ外にある光線を阻止して、混合や測定混同が生じないようにする。波面センサ50がシャック−ハルトマンセンサである場合、焦点スポットは、隣りのスポットとの衝突や干渉、混同は生じ得ない。望遠鏡からの光は、網膜との相互作用によって入力偏光から光の偏光が回転しているため、偏光ビームスプリッタ22を通過する。波面センサ50は、シャック−ハルトマン波面センサ、シアリング干渉計、モアレ・デフレクトメータ、又は他の受動的な位相測定センサでも構わない。波面センサ50がシャック−ハルトマン波面センサである場合、波面センサ50は、図2に示す素子を含んでいる。
【0043】
望遠鏡30のレンズ32,34の適切な位置は、多くの方法で決定できる。好ましい実施態様では、追加のセンサ60がビームスプリッタ62および焦点レンズ64とともに用いられ、網膜上に入射した光の像を作成する。望遠鏡30のレンズ32,34の適切な位置は、望遠鏡30のレンズ32,34の異なる位置によるスポットサイズを比較することで、網膜の背面でのスポットサイズ42を最小化することによって決定される。視覚システム40が、対物レンズ34の一方の焦点距離分だけレンズ34から離れるように配置された場合は、望遠鏡30は倍率変化や他の誤差に関して鈍感になるであろう。波面センサ50は、視覚システム40に対して共役像面に配置されるべきである。好ましくは、波面センサ50、網膜撮像センサ60、投影光学16,18,20、偏光ビームスプリッタ22、ビームスプリッタ62および焦点レンズ64は、移動ステージ72内に搭載されたプラットホーム70の上に搭載される。これによって望遠鏡レンズ32,34の相対位置が可変となり、一方、プラットホーム70上の残りの光学素子の位置は固定される。光ファイバ14の使用によって、光源をプラットホーム70から取り外すことが可能になり、移転ステージ72によって移動する光学素子の質量を最小化できる。プロセッサ68は、移転ステージ72の移動を制御したり、データ処理、解析及び/又は表示を可能にするために、設けてもよい。
【0044】
追加の安全対策として、ビームスプリッタ38に入射するビームの小さい部分は、パワーモニタ46の上に焦点を結ぶレンズ44に送られる。このパワーモニタ46の出力は、もしパワーがシステムの安全限界を超えた場合にシステムを停止するため、あるいは光源12に供給される電力を変更して周知の方法で光源によるパワー出力を減少させるために使用してもよい。
【0045】
測定システムに対する適切な眼の相対位置を測定するために、追加の検出器80が組み込まれる。結像光学素子82は、虹彩(iris)または角膜が空間の狭い領域だけ合焦状態となるように設計される。ミラー84は、光を虹彩検出器80の上に向けるために使用してもよい。眼に対するシステムの相対的な位置は、虹彩または角膜が検出されるまで調整される。検出は、インジケータ86上で使用者に表示してもよい。好ましくは、この検出は患者整列中に用いられ、そして例えば光の10%未満という小さな割合だけを使用する。
【0046】
患者が正しい視野方向を見るのを保証するため、ターゲット90がビームスプリッタ94を通して見えるようにする。ターゲット90は、レンズ92によって無限点に結像される。ターゲット位置は、ターゲットを合焦状態か、あるいは軽い焦点ずれ(out-of-focus)に位置させて、レンズ92に対してターゲットを移動することによって変化させてもよく、患者の遠近調節(accommodation)を最小化している。ターゲット90のレンズ92に接近する移動は、近視野(near vision)の遠近調節を刺激して、近視野での視力測定を可能にしたり、あるいはターゲットを無限点を通り過ぎた像となるように配置して、遠視野を測定してもよい。患者は単にターゲット上に焦点を合わせようとする。ターゲットの背面にある光源は、ターゲットの明るさを調節するように電気的に制御され、ターゲットの位置もまた電気的に調節可能である。
【0047】
こうして望遠鏡30が、入射光を前補正するために使用され、戻り波面を補償して波面センサに入射する全波面誤差を最小化する。関連する技術では、望遠鏡は波面センサ上の光像を中継して、強度の球面収差およびシリンドリカル収差を補償するために使用されていたが、光は別々に入射していた。この別々の取扱いは、表面に反射防止コートを有するレンズでさえも発生する強い背面反射の要因となる。網膜からの戻り光はとても微弱であるため、レンズからの微小な反射ですら簡単に測定を優越して、波面センサ50を飽和させてしまう。この問題を扱う方法は幾つかある。まず、図1に示すように、偏光した光および偏光ビームスプリッタを1/4波長板と共に使用することができる。光を望遠鏡へ向けるために軸外の放物ミラーや他の曲面ミラーを使用してもよい。光が軸外で入射すると、図5Aと図5Bに示すように、角膜からの反射光のいずれもがシステムの絞りによって除外されてしまう。図5Bは、眼40の角膜によって反射した光が波面センサに入って測定に影響を与えるのを絞り36によってどのようにして阻止されるかを示している。これらの機構の1つ以上の使用は、本発明に従って入射ビームの前補正を行うのに足りるものであり、不要な反射を導入しなくなる。
【0048】
代替として、第1の望遠鏡とともに第2の望遠鏡を使用してもよく、フィルタリング絞りを代わりの場所に設けることによって、ダイナミックレンジを増加させることができる。一方の望遠鏡は完全に固定することができ、他方は、2つの望遠鏡のレンズが接触するまで移動が可能な自由度を有する。こうした構成は、図6に示されており、レンズ52,54と絞り56を有する固定望遠鏡51は、波面センサ50に光を供給するために使用される。これは、図1に関して上述した光学素子に関連している。簡潔さのため、光配給システム14、コリメートレンズ16、偏光ビームスプリッタ22、調整可能な望遠鏡30および眼40という本質的な光学素子だけを示している。
【0049】
視覚システム及び入射ビームの非点収差の補償は、次のようにして達成される。望遠鏡30は、シリンドリカルレンズ望遠鏡、または一対の正レンズおよび負レンズでも構わない。こうしたシリンドリカルレンズ構成は、図8に示しており、一対のシリンドリカルレンズ132,134は、レンズ32,34の場所に用いられる。レンズ間隔sは、望遠鏡の屈折パワーを増加または減少させるために、調整してもよい。一対120,122の角度は、伝送パス軸に対して調整される。これは機器を複雑にするが、眼中に投影されるより良いビームのために設けられ、限定されたダイナミックレンジのみの波面センサを必要とする。球面収差およびシリンドリカル収差の両方とも波面から引き算されて、高次の項だけが残るようになるからである。
【0050】
代わりに、高いダイナミックレンジの波面センサも使用できる。本発明に従えば、小さいビームだけが眼に入射すると、絞りを横切る小さな波面収差だけを取り上げるようになり、いくらかの収差を伴うものの眼の焦点スポットは極めて小さいままとなる。すると、シリンドリカル補償は、通常は必要としない。何らかの歪みが発生しても、サイズが限定され、充分に小さいスポットを実現できるようになる。高いダイナミックレンジの波面センサは、式(3)と式(7)で示したように、波面センサ小型レンズアレイに関してより小さい焦点距離の使用に対応する。球面レンズのみの使用は精度の損失という結果になるが、より小さな小型レンズアレイによって測定数がより多くなることは、この劣化について充分な補償を行う。
【0051】
図1に示すように、可動レンズ付き望遠鏡を使用する代わりは、入射波面および反射波面における眼の基本的収差を矯正するため、眼の前に矯正レンズを配置することである。このレンズがコンタクトレンズでない場合は、実際の瞳孔面に配置できず、図9に示すように、矯正レンズ35は眼40に近接して配置される。こうして通常は、眼および矯正レンズの屈折誤差の組合せによって何らかの倍率が導入される。矯正レンズの頂点(vertex)距離を設定したり把握することが困難であるため、この倍率はせいぜい不完全に把握され、測定全体に誤差をもたらすことになろう。
【0052】
他の代替は、固定式または可変式のレンズを使用することである。理想的には、これらのレンズは、眼の表面に対して共役な光学面に配置される。波面センサをこの面に置くことも望ましいが、第2の望遠鏡を第1の望遠鏡とともに直列的に使用することが必要になるであろう。さらに、全てのレンズが固定されていると、適切な結果を得るためには様々な前補正レンズを周知の方法で変化させるための手段が必要になるであろう。図7中のレンズ37は、試しレンズキットからのものでもよく、例えば患者の顕在的屈折を測定するために広く用いられているものであるが、処方精度に限界がある。代わりに、図7中のレンズ37は、例えば補償光学(adaptive optics)、液晶ディスプレイ、可変鏡(deformable mirrors)などの焦点距離可変レンズでもよい。これらの光学素子の焦点距離は、移動式ではなく、電気的に制御してもよく、例えば図1に示したプロセッサ68による制御でもよい。これらの各構成は図7に示され、レンズ37は試しレンズや焦点距離可変レンズであってもよい。これらの構成および望遠鏡の応用は図4A〜図4Cに示されており、近視(myopic)眼単独のスポットサイズは図4Aに示され、レンズ37で矯正されたスポットサイズは図4Bに示され、調整可能な望遠鏡30によるスポットサイズは図4Cに示されている。明らかなように、図4Bおよび図4Cの両構成は、本発明に係る所望の小さなスポットサイズが得られている。
【0053】
本発明に従って入射ビームにおける眼の収差に関する前補償によって、小さい焦点スポットを網膜上に形成することができる。この小さい焦点スポットは光をより集光するようになり、光はより多数の焦点スポットに分割されるようになる。このことは、より高い空間分解能およびより低い入射光パワーの使用を可能にする。より高い空間分解能は、各小型レンズは傾き(tilt)だけを測定するという仮定がより広い範囲に渡って有効であることを意味する。より高いダイナミックレンジは、測定の大きな劣化なしで、収差の高次項の測定でさえ正確に達成可能であることを意味する。
【0054】
本発明は、特定の応用に関する図示の実施形態を参照しながら説明したが、本発明はこれに限定されないと理解すべきである。当業者およびここで提供された教示へのアクセスは、追加の変形や応用、当該範囲内の実施形態、および本発明が過度の実験なしで大きな有用性をもつような追加的分野を認識するであろう。こうして発明の範囲は、供与された実施例だけでなく、添付したクレームおよびこれらの法的に等価なものによって決定されるべきである。
【図面の簡単な説明】
【図1】 本発明の測定システムの概略的な上面図である。
【図2】 シャック−ハルトマン波面センサの基本的な構成部品の概略的な側面図である。
【図3】 レンズのサイズ、焦点距離およびスポットサイズの関係を概略的に示す図である。
【図4】 図4A〜図4Cは、異なる構成についてスポットサイズを概略的に示す図である。
【図5】 図5A、図5Bは、眼中への光の軸外(off-axis)入射と、反射光が波面センサに入るのを阻止する様子を概略的に示す図である。
【図6】 固定式望遠鏡および調整可能望遠鏡を用いた本発明の構成の概略図である。
【図7】 可変レンズを用いた本発明の構成の概略図である。
【図8】 本発明で使用するシリンドリカル望遠鏡の概略図である。
【図9】 矯正レンズを用いた本発明の構成の概略図である。
Claims (51)
- 眼中の収差を測定するための波面分析システムであって、
眼(40)の網膜上に供給される干渉性の光を生成する投影光学システム(12,14,16,18)と、
網膜によって散乱された光を集める結像システム(30)と、
網膜によって戻された光を結像システムから受けて、受けた光の波面の振幅および位相を検出する波面センサ(50)と、
投影光学システムと眼(40)との間の光路中に位置決めされ、さらに眼(40)と波面センサ(50)との間の光路中に位置決めされた、眼(40)の収差に関して眼(40)の網膜上に供給される干渉性の光を補償する前補正システム(30)と、
波面センサ(50)が波面センサ(50)の角度的なダイナミックレンジ内にある光のみを受けるように位置決めされたダイナミックレンジ制限絞り(36)とを備えるシステム。 - 波面センサ(50)は、シャック−ハルトマン波面センサである請求項1のシステム。
- 波面センサ(50)は、シアリング干渉計である請求項1のシステム。
- 波面センサ(50)は、モアレ・デフレクトメータである請求項1のシステム。
- 前補正システム(30)は、少なくとも1つの固定レンズ(34)と、該固定レンズ(34)に対して位置調整可能であって、眼(40)の網膜上に供給される光にデフォーカスを追加して、眼(40)の球面等価デフォーカスを補償する少なくとも1つの可動レンズ(32)とを有する調整可能望遠鏡を備える請求項1のシステム。
- 前補正システム(30)は、補償光学素子を備える請求項1のシステム。
- 眼(40)と波面センサ(50)との間に偏光ビームスプリッタ(22)をさらに備える請求項1のシステム。
- 波面分析システムの適切な眼(40)アライメントを決定するアライナーシステム(80,82,84,86)をさらに備える請求項1のシステム。
- 投影光学システム(12,14,16,18)は、眼(40)の中心軸に対してある角度で干渉性の光を眼中に供給するようにした請求項1のシステム。
- 波面センサと眼(40)との間に追加の光学システム(51)をさらに備える請求項1のシステム。
- 眼(40)の網膜上に供給される干渉性の光のパワーを監視するパワーモニタ(46)をさらに備える請求項1のシステム。
- 眼(40)に投影されたターゲット(90)と、眼(40)を検知する位置検出器(86)と、眼(40)が波面センサ(50)上で合焦となるまで、眼(40)を基準として波面分析システムの位置を調整する調整システム(72)とを含む眼位置検出システム(72,80,82,84,86,90,92,94)をさらに備える請求項1のシステム。
- 前補正システム(30)は、シリンドリカル望遠鏡である請求項1のシステム。
- 前補正システム(30)で用いられる構成部品は、結像システム(30)でも用いられるようにした請求項1のシステム。
- 前補正システムは、前補正システム(30)によって供給されるべき適切な前補正を決定するフィードバックループ(60,68,72)を含む請求項1のシステム。
- 前記フィードバックループ(60,68,72)は、網膜からの戻り光を受ける検出器(60)と、検出光と所望な特性の光とを比較して、比較結果に従って前補正システムの少なくとも1つのパラメータを調整するプロセッサ(68)とを含むようにした請求項15のシステム。
- 前記フィードバックループは、網膜からの光を集めるための戻り光学システム(30)をさらに含むようにした請求項16のシステム。
- 前記戻り光学システム(30)は、前記前補正システム(30)を含むようにした請求項17のシステム。
- 前記所望な特性は、網膜上で最小化されたスポットサイズである請求項16のシステム。
- 前記調整可能望遠鏡(30)は、調整可能望遠鏡の固定レンズ(34)が眼(40)から一方の焦点距離だけ離れるように配置されるようにした請求項5のシステム。
- 波面センサ(50)は、調整可能望遠鏡の最適な調整を見つけるために用いるようにした請求項18のシステム。
- 望遠鏡位置の収束を最適化するために、フィルタリングアルゴリズムが用いられる請求項18のシステム。
- 眼(40)の波面収差を決定するための波面分析システムであって、
眼(40)の網膜上に供給される光を生成する投影光学システム(12,14,16,18)と、
眼(40)の網膜上に投影光学システム(12,14,16,18)によって生成された光スポット像を受けるように構成され、光スポットの空中像を作成するための小型レンズアレイ(112)と、
小型レンズアレイ(112)から空中像を受けるように構成されたセンサ(116)と、
空中像に対応したセンサ(116)からの信号を受けて、該信号から波面収差を決定するように構成されたプロセッサ(68)と、
小型レンズアレイ(112)からの空中像をセンサ(116)上で結像させるのを支援するように構成された調整カメラ(60)と、
投影光学システム(12,14,16,18)と眼(40)との間の光路中に位置決めされ、さらに眼(40)と小型レンズアレイ(112)との間の光路中に位置決めされた、眼(40)の収差に関して眼(40)の網膜上に供給される光を補償する前補正システム(30)と、
センサ(116)がセンサ(116)の角度的なダイナミックレンジ内にある小型レンズアレイ(112)からの空中像のみを受けるように位置決めされたダイナミックレンジ制限絞り(36)とを備える波面分析システム。 - 空中像を結像させるのを支援するように構成された焦点調整レンズシステム(30)をさらに備える請求項23の波面分析システム。
- 波面センサの光路中に、波長板(22)をさらに備える請求項23の波面分析システム。
- 波長板(22)は、4分の1波長板である請求項25の波面分析システム。
- 波面センサの光路中に、偏光ビームスプリッタ(22)をさらに備える請求項23の波面分析システム。
- 調整カメラ(60)が受けた光スポット像の全体像部分を反射するように構成された偏光ビームスプリッタ(62)をさらに備える請求項23の波面分析システム。
- 小型レンズアレイ(112)は、小型レンズカメラ(50)と連結しており、調整カメラ(60)は、小型レンズカメラ(50)から分離している請求項23の波面分析システム。
- 光源(12)は、レーザを含む請求項23の波面分析システム。
- 光源(12)は、パルスレーザを含む請求項23の波面分析システム。
- 波面センサ(50)は、眼(40)の波面収差を測定するように構成されている請求項23の波面分析システム。
- 調整カメラ(60)は、空中像を鮮鋭化するのを支援するように構成されている請求項23の波面分析システム。
- 調整カメラ(60)が空中像の合焦を支援する際に、患者が凝視して結像できるように構成された眼固定ターゲット(90)をさらに備える請求項23の波面分析システム。
- 光スポット像は、網膜から後方散乱した光の像を含む請求項23の波面分析システム。
- 患者が遠近調節なしで凝視できるように構成された眼固定ターゲット(90)をさらに備える請求項23の波面分析システム。
- 患者が無限遠で結像できるように構成された眼固定ターゲット(90)をさらに備える請求項23の波面分析システム。
- 固定ターゲットは、眼に対して遠方に見える物体像を含む請求項23の波面分析システム。
- 固定ターゲット(90)は、眼の遠近調節なし状態を維持するように構成されている請求項23の波面分析システム。
- 患者が遠近調節なしで無限遠で結像できるように構成された眼固定ターゲット(90)をさらに備える請求項23の波面分析システム。
- 患者が少ない遠近調節とともに無限遠で結像できるように構成された眼固定ターゲット(90)をさらに備える請求項23の波面分析システム。
- 空中像の合焦を支援するように構成された調整デバイス(72)をさらに備える請求項23の波面分析システム。
- 重心を形成する空中像を作成する波面分析システムを合焦させる方法であって、
眼(40)の網膜上に供給される光を生成する投影光学システム(12,14,16,18)を採用するステップと、
波面分析システムの角度的なダイナミックレンジ内にあり、眼の網膜によって戻された光のみが空中像を形成するように位置決めされた、ダイナミックレンジ制限絞り(36)を設けるステップと、
重心の間隔を監視するステップと、
投影光学システム(12,14,16,18)から眼(40)までの光路中に位置決めされ、さらに眼(40)から波面センサ(50)までの間の光路中に位置決めされた、空中像を形成する合焦光学系(30)によって、波面分析システムの合焦を調整するステップと、
平均重心間隔が、結像したセンサの重心間隔と等しくなる場合を決定することによって、波面分析システムが合焦状態にある場合を決定するステップと、を含む方法。 - 波面分析システムであって、
眼(40)の網膜上に供給される光を生成する投影光学システム(12,14,16,18)と、
眼(40)の網膜上で光スポット像を受けるように構成され、光スポットの空中像を作成するための小型レンズアレイ(112)と、
小型レンズアレイ(112)から空中像を受けるように構成されたセンサ(116)と、
センサ(116)がセンサ(116)の角度的なダイナミックレンジ内にある小型レンズアレイ(112)からの空中像のみを受けるように位置決めされたダイナミックレンジ制限絞り(36)と、
波面分析システムの合焦を調整する合焦光学系(30)であって、投影光学システム(12,14,16,18)と眼(40)との間の光路中に位置決めされ、さらに眼(40)から小型レンズアレイ(112)までの間の光路中に位置決めされた合焦光学系(30)と、
空中像に対応したセンサ(116)からの信号を受けて、該信号から波面収差を決定するように構成されたプロセッサ(68)と、
コンピュータ上で実行されるステップを実施することによって、波面センサの合焦を調整する合焦制御システム(68,72)とを備え、
前記ステップは、空中像の間隔を監視するステップと、
波面センサの合焦を調整するステップと、
空中像の平均間隔が、結像したセンサの空中像間隔と等しくなる場合を決定することによって、波面センサ(116)が合焦状態にある場合を決定するステップを含む波面分析システム。 - 合焦制御システムは、プロセッサ(68)を使用する請求項44の波面分析システム。
- ダイナミックレンジ制限絞りは、前補正システム(30)に含まれており、投影光学システム(12,14,16,18)から眼(40)までの光路中に配置されている請求項1の波面分析システム。
- ダイナミックレンジ制限絞りは、前補正システム(30)において固定レンズ(34)と1つの可動レンズ(32)の間に配置されている請求項5の波面分析システム。
- 固定ターゲット(90)と、波面センサ(50)が搭載される可動ステージとをさらに備え、
固定ターゲット(90)、可動レンズ(32)および可動ステージは、固定レンズ(34)および眼(40)に対して移動可能である請求項47の波面分析システム。 - ダイナミックレンジ制限絞りは、前補正システム(30)に含まれており、投影光学システム(12,14,16,18)から眼(40)までの光路中に配置されている請求項23の波面分析システム。
- ダイナミックレンジ制限絞りは、前補正システム(30)に含まれており、投影光学システム(12,14,16,18)から眼(40)までの光路中に配置されている請求項43の波面分析システム。
- ダイナミックレンジ制限絞りは、前補正システム(30)に含まれており、投影光学システム(12,14,16,18)から眼(40)までの光路中に配置されている請求項44の波面分析システム。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18208800P | 2000-02-11 | 2000-02-11 | |
US60/182,088 | 2000-02-11 | ||
US09/692,483 | 2000-10-20 | ||
US09/692,483 US6550917B1 (en) | 2000-02-11 | 2000-10-20 | Dynamic range extension techniques for a wavefront sensor including use in ophthalmic measurement |
PCT/US2001/040053 WO2001058339A2 (en) | 2000-02-11 | 2001-02-08 | Dynamic range extension techniques for a wavefront sensor |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004500195A JP2004500195A (ja) | 2004-01-08 |
JP2004500195A5 JP2004500195A5 (ja) | 2007-11-08 |
JP5191622B2 true JP5191622B2 (ja) | 2013-05-08 |
Family
ID=26877770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001557456A Expired - Fee Related JP5191622B2 (ja) | 2000-02-11 | 2001-02-08 | 波面分析システムおよびその合焦方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US6550917B1 (ja) |
EP (2) | EP2952954A1 (ja) |
JP (1) | JP5191622B2 (ja) |
KR (2) | KR20080069716A (ja) |
AU (1) | AU5168101A (ja) |
WO (1) | WO2001058339A2 (ja) |
Families Citing this family (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6619799B1 (en) * | 1999-07-02 | 2003-09-16 | E-Vision, Llc | Optical lens system with electro-active lens having alterably different focal lengths |
JP2003511207A (ja) * | 1999-10-21 | 2003-03-25 | テクノラス ゲーエムベーハー オフタルモロギッシェ システム | 眼の屈折誤差の複数工程レーザ矯正 |
DE19950792A1 (de) * | 1999-10-21 | 2001-04-26 | Technolas Gmbh | Wellenfrontsensor mit Mehrleistungsstrahlmodi und unabhängiger Abgleichkamera |
US7455407B2 (en) * | 2000-02-11 | 2008-11-25 | Amo Wavefront Sciences, Llc | System and method of measuring and mapping three dimensional structures |
US6565209B2 (en) * | 2000-04-25 | 2003-05-20 | Alcon Universal Ltd. | Range-extending system and spatial filter for enhancing Hartmann-Shack images and associated methods |
AU2002305045A1 (en) * | 2001-03-15 | 2002-10-03 | Wavefront Sciences, Inc. | Tomographic wavefront analysis system |
US6572230B2 (en) | 2001-06-05 | 2003-06-03 | Metrologic Instruments, Inc. | Ophthalmic instrument having an integral wavefront sensor and display device that displays a graphical representation of high order aberrations of the human eye measured by the wavefront sensor |
EP1408815A2 (en) * | 2001-07-23 | 2004-04-21 | Visual Pathways, Inc. | Instruments and methods for examining and quantifying cataracts |
EP1427328B1 (en) * | 2001-08-30 | 2014-07-02 | University Of Rochester | Adaptive optics in a scanning lase ophtalmoscope |
US6631991B2 (en) | 2001-08-31 | 2003-10-14 | Adaptive Optics Associates, Inc. | Ophthalmic instrument having hartmann wavefront sensor deriving location of spots with spot fitting techniques |
US6827442B2 (en) * | 2001-09-12 | 2004-12-07 | Denwood F. Ross | Ophthalmic wavefront measuring devices |
US6575572B2 (en) * | 2001-09-21 | 2003-06-10 | Carl Zeiss Ophthalmic Systems, Inc. | Method and apparatus for measuring optical aberrations of an eye |
DE10154194A1 (de) * | 2001-11-07 | 2003-05-22 | Asclepion Meditec Ag | Verfahren und Vorrichtung zur Messung des Dynamischen Verhaltens eines optischen Systems |
US7034949B2 (en) * | 2001-12-10 | 2006-04-25 | Ophthonix, Inc. | Systems and methods for wavefront measurement |
US6637884B2 (en) * | 2001-12-14 | 2003-10-28 | Bausch & Lomb Incorporated | Aberrometer calibration |
DE10202509A1 (de) * | 2002-01-23 | 2003-07-31 | Leica Microsystems | Ophthalmo-Operationsmikroskop |
US20050174535A1 (en) * | 2003-02-13 | 2005-08-11 | Lai Shui T. | Apparatus and method for determining subjective responses using objective characterization of vision based on wavefront sensing |
US6761454B2 (en) * | 2002-02-13 | 2004-07-13 | Ophthonix, Inc. | Apparatus and method for determining objective refraction using wavefront sensing |
FR2837373A1 (fr) * | 2002-03-20 | 2003-09-26 | Luneau Sa | Dispositif de mesure des proprietes optiques de l'oeil |
WO2003102519A1 (en) * | 2002-05-31 | 2003-12-11 | Wavefront Sciences, Inc. | Methhod and system for sensing and analyzing a wavefront of an optically transmissive system |
US7494220B2 (en) * | 2002-06-27 | 2009-02-24 | Advanced Medical Optics, Inc. | Method and system for improving accuracy in autorefraction measurements by including measurement distance between the photorecptors and the scattering location in an eye |
US7288106B2 (en) * | 2002-10-03 | 2007-10-30 | Light Sciences Oncology, Inc. | System and method for excitation of photoreactive compounds in eye tissue |
US7195354B2 (en) | 2002-10-04 | 2007-03-27 | The Regents Of The University Of California | Adaptive ophthalmologic system |
DE10258142A1 (de) * | 2002-12-04 | 2004-06-24 | Carl Zeiss Smt Ag | Vorrichtung zur optischen Vermessung eines Abbildungssystems |
US8911086B2 (en) | 2002-12-06 | 2014-12-16 | Amo Manufacturing Usa, Llc | Compound modulation transfer function for laser surgery and other optical applications |
US7338165B2 (en) * | 2003-06-20 | 2008-03-04 | Visx, Incorporated | Systems and methods for prediction of objective visual acuity based on wavefront measurements |
US7276025B2 (en) | 2003-03-20 | 2007-10-02 | Welch Allyn, Inc. | Electrical adapter for medical diagnostic instruments using LEDs as illumination sources |
US6988801B2 (en) * | 2003-03-25 | 2006-01-24 | University Of Rochester | Compact portable wavefront sensor |
US7341348B2 (en) * | 2003-03-25 | 2008-03-11 | Bausch & Lomb Incorporated | Moiré aberrometer |
US7556378B1 (en) | 2003-04-10 | 2009-07-07 | Tsontcho Ianchulev | Intraoperative estimation of intraocular lens power |
US8596787B2 (en) | 2003-06-20 | 2013-12-03 | Amo Manufacturing Usa, Llc | Systems and methods for prediction of objective visual acuity based on wavefront measurements |
US20050122473A1 (en) * | 2003-11-24 | 2005-06-09 | Curatu Eugene O. | Method and apparatus for aberroscope calibration and discrete compensation |
WO2005057252A2 (en) * | 2003-12-02 | 2005-06-23 | Wavetec Vision Systems, Inc. | Interactive refractor incorporating wavefront sensing and adaptive optics |
US7343099B2 (en) | 2004-02-12 | 2008-03-11 | Metrologic Instruments, Inc. | Free space optical (FSO) laser communication system employing fade mitigation measures based on laser beam speckle tracking and locking principles |
US7547102B2 (en) * | 2004-03-03 | 2009-06-16 | Amo Manufacturing Usa, Llc | Wavefront propagation from one plane to another |
US7296893B2 (en) * | 2004-03-03 | 2007-11-20 | Visx, Incorporated | Transformation methods of wavefront maps from one vertex distance to another |
RU2268637C2 (ru) * | 2004-03-22 | 2006-01-27 | Андрей Викторович Ларичев | Аберрометр с системой тестирования остроты зрения (варианты), устройство и способ его настройки |
WO2005102200A2 (en) | 2004-04-20 | 2005-11-03 | Wavetec Vision Systems, Inc. | Integrated surgical microscope and wavefront sensor |
DE102004037558A1 (de) * | 2004-08-03 | 2006-02-23 | Iroc Ag | System zur Wellenfrontmessung |
US20060126018A1 (en) * | 2004-12-10 | 2006-06-15 | Junzhong Liang | Methods and apparatus for wavefront sensing of human eyes |
US20060279699A1 (en) * | 2005-06-14 | 2006-12-14 | Advanced Vision Engineering, Inc | Wavefront fusion algorithms for refractive vision correction and vision diagnosis |
DE102005031496B4 (de) * | 2005-07-06 | 2007-07-05 | Carl Zeiss Surgical Gmbh | Vorrichtung zum Bestimmen der Wellenfront von Licht- und Operationsmikroskop mit Vorrichtung zum Bestimmen der Wellenfront von Licht |
DE102005042436C5 (de) * | 2005-09-07 | 2010-05-27 | Carl Zeiss Surgical Gmbh | Ophthalmo-Operationsmikroskop mit Messeinrichtung |
DE102005046141A1 (de) * | 2005-09-27 | 2007-04-05 | Iroc Ag | Gerät für binokulare Visusprüfung |
DE102005053297A1 (de) * | 2005-11-08 | 2007-05-10 | Bausch & Lomb Inc. | System und Verfahren zur Korrektur von ophthalmischen Brechungsfehlern |
US8158917B2 (en) * | 2005-12-13 | 2012-04-17 | Agency For Science Technology And Research | Optical wavefront sensor and optical wavefront sensing method |
JP2007252402A (ja) | 2006-03-20 | 2007-10-04 | Topcon Corp | 眼科測定装置 |
CA2648305C (en) * | 2006-04-07 | 2012-10-16 | Amo Wavefront Sciences, Llc | Geometric measurement system and method of measuring a geometric characteristic of an object |
US7639369B2 (en) * | 2006-04-13 | 2009-12-29 | Mette Owner-Petersen | Multi-object wavefront sensor with spatial filtering |
JP4776450B2 (ja) * | 2006-06-16 | 2011-09-21 | 株式会社トプコン | 眼科撮影装置 |
JP4783219B2 (ja) * | 2006-06-16 | 2011-09-28 | 株式会社トプコン | 眼科撮影装置 |
DE102006036086A1 (de) * | 2006-08-02 | 2008-02-07 | Bausch & Lomb Incorporated | Verfahren und Vorrichtung zur Berechnung einer Laserschußdatei zur Verwendung in einem refraktiven Excimer-Laser |
DE102006036085A1 (de) | 2006-08-02 | 2008-02-07 | Bausch & Lomb Incorporated | Verfahren und Vorrichtung zur Berechnung einer Laserschußdatei zur Verwendung in einem Excimer-Laser |
US20080084541A1 (en) * | 2006-10-06 | 2008-04-10 | Ming Lai | Ophthalmic system and method |
US7728961B2 (en) * | 2006-10-31 | 2010-06-01 | Mitutoyo Coporation | Surface height and focus sensor |
US7575322B2 (en) * | 2007-05-11 | 2009-08-18 | Amo Development Llc. | Auto-alignment and auto-focus system and method |
US8016420B2 (en) | 2007-05-17 | 2011-09-13 | Amo Development Llc. | System and method for illumination and fixation with ophthalmic diagnostic instruments |
DE102007023270A1 (de) * | 2007-05-18 | 2008-11-20 | Linos Photonics Gmbh & Co. Kg | Funduskamera |
US7988290B2 (en) * | 2007-06-27 | 2011-08-02 | AMO Wavefront Sciences LLC. | Systems and methods for measuring the shape and location of an object |
US7976163B2 (en) | 2007-06-27 | 2011-07-12 | Amo Wavefront Sciences Llc | System and method for measuring corneal topography |
WO2009024981A2 (en) | 2007-08-21 | 2009-02-26 | Visionix Ltd. | Multifunctional ophthalmic measurement system |
US8333474B2 (en) | 2007-10-19 | 2012-12-18 | Wavetec Vision Systems, Inc. | Optical instrument alignment system |
US7594729B2 (en) | 2007-10-31 | 2009-09-29 | Wf Systems, Llc | Wavefront sensor |
US7723657B2 (en) * | 2007-11-16 | 2010-05-25 | Mitutoyo Corporation | Focus detection apparatus having extended detection range |
US7802883B2 (en) | 2007-12-20 | 2010-09-28 | Johnson & Johnson Vision Care, Inc. | Cosmetic contact lenses having a sparkle effect |
US8126246B2 (en) * | 2008-01-08 | 2012-02-28 | Amo Wavefront Sciences, Llc | Systems and methods for measuring surface shape |
US8049873B2 (en) | 2008-03-19 | 2011-11-01 | Carl Zeiss Meditec Ag | Surgical microscopy system having an optical coherence tomography facility |
DE102008028509A1 (de) * | 2008-06-16 | 2009-12-24 | Technolas Gmbh Ophthalmologische Systeme | Behandlungsmusterüberwachungsvorrichtung |
WO2010005458A1 (en) * | 2008-07-10 | 2010-01-14 | Indiana University Research & Technology Corporation | Ophthalmic apparatuses, systems and methods |
DE102008035995A1 (de) * | 2008-08-01 | 2010-02-04 | Technolas Perfect Vision Gmbh | Kombination einer Excimer-Laserablation und Femtosekundenlasertechnik |
CN102137617A (zh) * | 2008-08-28 | 2011-07-27 | 泰克诺拉斯完美视觉股份有限公司 | 眼睛测量和建模技术 |
US8459795B2 (en) | 2008-09-16 | 2013-06-11 | Carl Zeiss Meditec Ag | Measuring system for ophthalmic surgery |
DE102008047400B9 (de) * | 2008-09-16 | 2011-01-05 | Carl Zeiss Surgical Gmbh | Augenchirurgie-Messsystem |
WO2010035139A2 (en) | 2008-09-29 | 2010-04-01 | Sifi Diagnostic Spa | Systems and methods for designing and implanting customized biometric intraocular lens |
DE102008053827A1 (de) | 2008-10-30 | 2010-05-12 | Technolas Perfect Vision Gmbh | Vorrichtung und Verfahren zum Bereitstellen einer Laserschussdatei |
WO2010054268A2 (en) | 2008-11-06 | 2010-05-14 | Wavetec Vision Systems, Inc. | Optical angular measurement system for ophthalmic applications and method for positioning of a toric intraocular lens with increased accuracy |
US8254724B2 (en) | 2008-11-06 | 2012-08-28 | Bausch & Lomb Incorporated | Method and apparatus for making and processing aberration measurements |
US7980698B2 (en) | 2008-11-19 | 2011-07-19 | Bausch & Lomb Incorporated | Power-adjusted aberrometer |
KR200453632Y1 (ko) * | 2009-02-24 | 2011-05-16 | 김형도 | 건식습식 겸용 히팅장치 |
WO2013013175A1 (en) | 2011-07-20 | 2013-01-24 | Amo Development, Llc. | Manifest refraction treatment systems and methods |
US8876290B2 (en) | 2009-07-06 | 2014-11-04 | Wavetec Vision Systems, Inc. | Objective quality metric for ocular wavefront measurements |
JP5837489B2 (ja) | 2009-07-14 | 2015-12-24 | ウェーブテック・ビジョン・システムズ・インコーポレイテッドWavetec Vision Systems, Inc. | 眼科装置 |
ES2653970T3 (es) * | 2009-07-14 | 2018-02-09 | Wavetec Vision Systems, Inc. | Determinación de la posición efectiva de la lente de una lente intraocular utilizando potencia refractiva afáquica |
US8836928B2 (en) | 2009-10-20 | 2014-09-16 | Nikon Corporation | Method for measuring wavefront aberration and wavefront aberration measuring apparatus |
JP5574670B2 (ja) * | 2009-10-30 | 2014-08-20 | キヤノン株式会社 | 補償光学装置、撮像装置および補償光学方法 |
US9504376B2 (en) | 2009-12-22 | 2016-11-29 | Amo Wavefront Sciences, Llc | Optical diagnosis using measurement sequence |
US8786210B2 (en) | 2010-06-30 | 2014-07-22 | Welch Allyn, Inc. | Drive circuit for light emitting diode |
US8459844B2 (en) | 2010-07-01 | 2013-06-11 | Welch Allyn, Inc. | Replacement light assembly |
US10132925B2 (en) | 2010-09-15 | 2018-11-20 | Ascentia Imaging, Inc. | Imaging, fabrication and measurement systems and methods |
WO2012037343A1 (en) * | 2010-09-15 | 2012-03-22 | Ascentia Imaging, Inc. | Imaging, fabrication, and measurement systems and methods |
US10583039B2 (en) | 2010-12-30 | 2020-03-10 | Amo Wavefront Sciences, Llc | Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries |
US10582847B2 (en) | 2010-12-30 | 2020-03-10 | Amo Wavefront Sciences, Llc | Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries |
WO2012092584A1 (en) | 2010-12-30 | 2012-07-05 | AMO Wavefront Sciences LLC. | Improved treatment planning method and system for controlling laser refractive surgery |
US10582846B2 (en) | 2010-12-30 | 2020-03-10 | Amo Wavefront Sciences, Llc | Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries |
FR2971693B1 (fr) * | 2011-02-22 | 2013-03-08 | Imagine Eyes | Methode et dispositif d'imagerie retinienne a haute resolution |
EP2680738A1 (de) * | 2011-03-04 | 2014-01-08 | Eyesight & Vision GMBH | Projektorvorrichtung sowie medizingerät mit der projektorvorrichtung |
US8622546B2 (en) | 2011-06-08 | 2014-01-07 | Amo Wavefront Sciences, Llc | Method of locating valid light spots for optical measurement and optical measurement instrument employing method of locating valid light spots |
WO2013103725A1 (en) | 2012-01-03 | 2013-07-11 | Ascentia Imaging, Inc. | Coded localization systems, methods and apparatus |
US9739864B2 (en) | 2012-01-03 | 2017-08-22 | Ascentia Imaging, Inc. | Optical guidance systems and methods using mutually distinct signal-modifying |
EP2656781A1 (en) * | 2012-04-24 | 2013-10-30 | Popovic, Zoran | Guide star generation |
US9072462B2 (en) | 2012-09-27 | 2015-07-07 | Wavetec Vision Systems, Inc. | Geometric optical power measurement device |
EP2727516B1 (en) * | 2012-10-30 | 2020-01-01 | Canon Kabushiki Kaisha | Ophthalmologic apparatus |
US10228561B2 (en) * | 2013-06-25 | 2019-03-12 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism and gaze-detection light |
US9625723B2 (en) * | 2013-06-25 | 2017-04-18 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism |
JP2015072136A (ja) * | 2013-10-01 | 2015-04-16 | 株式会社 光コム | 光学式計測装置 |
JP2015072137A (ja) * | 2013-10-01 | 2015-04-16 | 株式会社 光コム | 光学式計測装置 |
ITFI20130229A1 (it) * | 2013-10-02 | 2015-04-03 | Strumenti Oftalmici C S O S R L Costruzioni | Apparato e metodo per la misura di aberrazioni del sistema ottico di un essere vivente |
CA2916561A1 (en) | 2013-11-26 | 2015-06-04 | Abbott Medical Optics Inc. | System and method for measuring dysphotopsia |
US9706912B2 (en) | 2014-07-02 | 2017-07-18 | Amo Wavefront Sciences, Llc | Optical measurement system and method including blink rate monitor and/or tear film breakup detector |
US10952606B2 (en) | 2014-07-02 | 2021-03-23 | Amo Development, Llc | Optical measurement system and method including blink rate monitor and/or tear film breakup detector |
EP3420888B1 (en) | 2014-07-03 | 2024-10-23 | AMO Development, LLC | Optical measurement system and method with target brightness level adjustment |
CN104236856B (zh) * | 2014-09-10 | 2017-01-18 | 中国科学院上海光学精密机械研究所 | 物镜成像系统的波像差检测装置及其系统误差校正方法 |
US10092179B2 (en) | 2014-09-19 | 2018-10-09 | Carl Zeiss Meditec Ag | System for optical coherence tomography, comprising a zoomable kepler system |
US10085634B2 (en) | 2015-02-06 | 2018-10-02 | Amo Wavefront Sciences, Llc | Systems and methods of optical coherence tomography with a multi-focal delay line |
EP3258828B1 (en) * | 2015-02-20 | 2024-03-06 | Rebiscan, Inc. | Method and apparatus for fixation measurement and refraction error measurement using wave-front error |
US10126114B2 (en) | 2015-05-21 | 2018-11-13 | Ascentia Imaging, Inc. | Angular localization system, associated repositionable mechanical structure, and associated method |
DE102015008922B4 (de) | 2015-07-10 | 2019-03-07 | Carl Zeiss Meditec Ag | Vorrichtung zur Bestimmung einer Ametropie eines Auges |
EP3328265A1 (en) | 2015-07-27 | 2018-06-06 | AMO WaveFront Sciences, LLC | Optical imaging and measurement systems and methods for cataract surgery and treatment planning |
CN104993357B (zh) * | 2015-08-11 | 2018-09-18 | 京东方科技集团股份有限公司 | 不可见激光器系统及其光路可视化方法 |
US10188287B2 (en) | 2015-10-01 | 2019-01-29 | Amo Wavefront Sciences, Llc | Optical measurement systems and methods with custom chromatic aberration adjustments |
AU2015415430A1 (en) | 2015-11-23 | 2018-07-05 | Amo Wavefront Sciences, Llc. | Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries |
WO2017180914A1 (en) | 2016-04-13 | 2017-10-19 | Amo Wavefront Sciences, Llc | Apparatus, system, and method for intraocular lens power calculation using a regression formula incorporating corneal spherical aberration |
CA3030002A1 (en) | 2016-07-07 | 2018-01-11 | Amo Development, Llc | Lenticular laser incision using wavefront guided maps |
EP3506813B1 (en) * | 2016-08-31 | 2024-03-13 | Nikon Corporation | Wide-angle pupil relay for cellphone-based fundus camera |
EP3509473B1 (en) | 2016-09-06 | 2020-07-08 | AMO Development, LLC | Optical measurement systems and processes with wavefront aberrometer having variable focal length lens |
EP3522771B1 (en) | 2016-10-25 | 2022-04-06 | Amo Groningen B.V. | Realistic eye models to design and evaluate intraocular lenses for a large field of view |
DE102017105580A1 (de) * | 2016-11-04 | 2018-05-09 | Carl Zeiss Meditec Ag | Operationsmikroskop |
US10555669B2 (en) | 2016-11-09 | 2020-02-11 | Amo Wavefront Sciences, Llc | Optical coherence tomography systems and methods with dispersion compensation |
WO2018160711A1 (en) | 2017-02-28 | 2018-09-07 | Amo Wavefront Sciences, Llc | Method and system for pupil retro illumination using sample arm of oct interferometer |
US10739227B2 (en) | 2017-03-23 | 2020-08-11 | Johnson & Johnson Surgical Vision, Inc. | Methods and systems for measuring image quality |
DE102017117925A1 (de) | 2017-08-07 | 2019-02-07 | Carl Zeiss Meditec Ag | Konfokales Refraktometer zur Bestimmung der Refraktion eines Auges eines Patienten |
CA3082053A1 (en) | 2017-11-30 | 2019-06-06 | Amo Groningen B.V. | Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof |
WO2019145843A1 (en) | 2018-01-23 | 2019-08-01 | Amo Wavefront Sciences, Llc | Methods and systems of optical coherence tomography with fiducial signal for correcting scanning laser nonlinearity |
US11311187B2 (en) | 2018-04-06 | 2022-04-26 | Amo Development, Llc | Methods and systems for corneal topography with in-focus scleral imaging |
US10942369B2 (en) * | 2018-07-17 | 2021-03-09 | International Business Machines Corporation | Smart contact lens control system |
DE102018118352A1 (de) | 2018-07-30 | 2020-01-30 | Carl Zeiss Meditec Ag | Ophthalmologisches Operationsmikroskop |
US11246484B2 (en) | 2018-08-20 | 2022-02-15 | Amo Development, Llc | Methods and systems for eye measurement with in-focus iris and scleral imaging |
US11006823B2 (en) | 2019-01-28 | 2021-05-18 | Amo Development, Llc | Methods and systems for optical coherence tomography scanning of cornea and retina |
US20220225875A1 (en) | 2019-05-23 | 2022-07-21 | Amo Development, Llc | Method and system for making optical measurement of eye |
CN110702032B (zh) * | 2019-11-20 | 2021-04-06 | 中国科学院长春光学精密机械与物理研究所 | 一种望远镜主镜检测与标定的对准系统及对准方法 |
EP4076134A1 (en) * | 2019-12-20 | 2022-10-26 | AMO Development, LLC | Optical measurement systems and processes with non-telecentric projection of fixation target to eye |
EP4081093A1 (en) | 2019-12-23 | 2022-11-02 | AMO Development, LLC | Optical measurement systems and processes with fixation target having cylinder compensation |
WO2021137032A1 (en) | 2019-12-30 | 2021-07-08 | Amo Development, Llc | Optical measurement systems and processes with fixation target having bokeh compensation |
WO2021144795A1 (en) * | 2020-01-14 | 2021-07-22 | Pxe Computation Imaging Ltd. | System and method for optical imaging and measurement of objects |
US20210263338A1 (en) * | 2020-02-21 | 2021-08-26 | James Copland | WideField Dynamic Aberrometer Measurements for Myopia Control with Customized Contact Lenses |
TW202211862A (zh) * | 2020-07-16 | 2022-04-01 | 美商愛奎有限公司 | 測量折射的裝置和方法 |
WO2022079560A1 (en) * | 2020-10-16 | 2022-04-21 | Amo Development, Llc | Laser focal spot size measurement using a built-in camera for an ophthalmic laser system |
CN112790895B (zh) * | 2020-12-28 | 2022-12-27 | 上海美沃精密仪器股份有限公司 | 一种人工晶体补偿校正系统及方法 |
US11963722B2 (en) | 2021-04-13 | 2024-04-23 | Amo Development, Llc | Methods and systems for determining change in eye position between successive eye measurements |
US20220330813A1 (en) | 2021-04-15 | 2022-10-20 | Amo Development, Llc | Methods and systems for thickness measurements using spectrally resolved full gradient topography |
US12048484B2 (en) | 2021-04-21 | 2024-07-30 | Amo Development, Llc | Compact autocylinder compensation module for autorefractor and autorefractor with autocylinder compensation module |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3819256A (en) | 1972-08-11 | 1974-06-25 | H Borough | Apparatus for refracting the eye |
JPS5313113B2 (ja) | 1973-11-26 | 1978-05-08 | ||
US4471447A (en) * | 1981-09-08 | 1984-09-11 | Hughes Aircraft Company | Method for aligning an optical system utilizing focal plane image intensity data |
DE3204876C2 (de) | 1982-02-12 | 1986-10-16 | Helmut Dr.rer.nat. 8000 München Krueger | Vorrichtung zur Bestimmung des Refraktionszustandes des menschlichen Auges |
JPS59101129A (ja) * | 1982-11-30 | 1984-06-11 | キヤノン株式会社 | 眼科器械の位置合わせ精度判定装置 |
US4725138A (en) | 1985-05-22 | 1988-02-16 | Adaptive Optics Associates Incorporated | Optical wavefront sensing system |
US4729652A (en) * | 1985-11-04 | 1988-03-08 | Eye Research Institute Of Retina Foundation | Apparatus and method for determining angular orientation of eye |
US4960327A (en) * | 1987-07-15 | 1990-10-02 | Kabushiki Kaisha Topcon | Optical system in a lasar scanning eye fundus camera |
EP0373788B1 (en) | 1988-12-06 | 1995-06-07 | Kabushiki Kaisha TOPCON | Ocular refracting power measuring system |
US4996412A (en) * | 1989-12-07 | 1991-02-26 | United Technologies Corporation | Optical system for wavefront compensation |
US5258791A (en) | 1990-07-24 | 1993-11-02 | General Electric Company | Spatially resolved objective autorefractometer |
DE4222395A1 (de) | 1992-07-08 | 1994-01-13 | Amtech Ges Fuer Angewandte Mic | Vorrichtung und Verfahren zur Messung der Augenrefraktion |
US5526072A (en) * | 1993-04-14 | 1996-06-11 | Alcon Laboratories, Inc. | Apparatus and technique for automatic centering and focusing a corneal topographer |
JP3219534B2 (ja) | 1993-04-16 | 2001-10-15 | キヤノン株式会社 | 光学装置 |
GB9323065D0 (en) * | 1993-11-09 | 1994-01-05 | Besca Ltd | A wide field retinal scanning ophthalmoscope |
US5617157A (en) * | 1994-06-15 | 1997-04-01 | Metaphase Ophthalmic Corp. | Computer controlled subjective refractor |
US5493391A (en) | 1994-07-11 | 1996-02-20 | Sandia Corporation | One dimensional wavefront distortion sensor comprising a lens array system |
JPH08136852A (ja) * | 1994-11-02 | 1996-05-31 | Olympus Optical Co Ltd | 接眼光学系を有する光学装置 |
US5978053A (en) | 1995-07-07 | 1999-11-02 | New Mexico State University Technology Transfer Corporation | Characterization of collimation and beam alignment |
US6052180A (en) | 1996-07-10 | 2000-04-18 | Wavefront Sciences, Inc. | Apparatus and method for characterizing pulsed light beams |
US6130419A (en) | 1996-07-10 | 2000-10-10 | Wavefront Sciences, Inc. | Fixed mount wavefront sensor |
US5936720A (en) | 1996-07-10 | 1999-08-10 | Neal; Daniel R. | Beam characterization by wavefront sensor |
JPH1090117A (ja) * | 1996-09-11 | 1998-04-10 | Ricoh Co Ltd | 屈折率分布の測定方法及び装置 |
US6271914B1 (en) | 1996-11-25 | 2001-08-07 | Autonomous Technologies Corporation | Objective measurement and correction of optical systems using wavefront analysis |
US5777719A (en) * | 1996-12-23 | 1998-07-07 | University Of Rochester | Method and apparatus for improving vision and the resolution of retinal images |
US5929970A (en) | 1997-05-13 | 1999-07-27 | Kabushiki Kaisha Topcon | Optical characteristic measuring apparatus |
JPH11137522A (ja) * | 1997-11-11 | 1999-05-25 | Topcon Corp | 光学特性測定装置 |
EP1032809B1 (en) * | 1997-11-21 | 2007-01-10 | Alcon Inc. | Objective measurement and correction of optical systems using wavefront analysis |
EP1105037B1 (en) | 1998-08-19 | 2002-08-14 | Autonomous Technologies Corporation | Apparatus and method for measuring vision defects of a human eye |
DE19950792A1 (de) | 1999-10-21 | 2001-04-26 | Technolas Gmbh | Wellenfrontsensor mit Mehrleistungsstrahlmodi und unabhängiger Abgleichkamera |
US6199986B1 (en) | 1999-10-21 | 2001-03-13 | University Of Rochester | Rapid, automatic measurement of the eye's wave aberration |
MXPA01012938A (es) | 2000-04-19 | 2002-07-30 | Alcon Universal Ltd | Sensor de frente de onda para medicion de objetivos en un sistema optico y metodos asociados. |
US6598973B2 (en) | 2000-04-25 | 2003-07-29 | Alcon, Inc. | Spatial filter for enhancing Hartmann-Shack images and associated methods |
US6382795B1 (en) | 2000-05-20 | 2002-05-07 | Carl Zeiss, Inc. | Method and apparatus for measuring refractive errors of an eye |
US6394605B1 (en) | 2001-05-23 | 2002-05-28 | Alcon Universal Ltd. | Fogging method for a wavefront sensor |
-
2000
- 2000-10-20 US US09/692,483 patent/US6550917B1/en not_active Expired - Lifetime
-
2001
- 2001-02-08 KR KR1020087016170A patent/KR20080069716A/ko not_active Application Discontinuation
- 2001-02-08 AU AU5168101A patent/AU5168101A/xx active Pending
- 2001-02-08 WO PCT/US2001/040053 patent/WO2001058339A2/en active Application Filing
- 2001-02-08 JP JP2001557456A patent/JP5191622B2/ja not_active Expired - Fee Related
- 2001-02-08 EP EP15175012.2A patent/EP2952954A1/en not_active Withdrawn
- 2001-02-08 EP EP01925086.9A patent/EP1255483B1/en not_active Expired - Lifetime
- 2001-02-08 KR KR1020027010362A patent/KR100883739B1/ko active IP Right Grant
-
2003
- 2003-04-21 US US10/419,072 patent/US20030193647A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
KR100883739B1 (ko) | 2009-02-12 |
US20030193647A1 (en) | 2003-10-16 |
EP1255483B1 (en) | 2015-08-05 |
KR20020086519A (ko) | 2002-11-18 |
AU5168101A (en) | 2001-08-20 |
JP2004500195A (ja) | 2004-01-08 |
KR20080069716A (ko) | 2008-07-28 |
WO2001058339A9 (en) | 2003-02-06 |
WO2001058339A2 (en) | 2001-08-16 |
EP1255483A2 (en) | 2002-11-13 |
WO2001058339A3 (en) | 2002-07-04 |
US6550917B1 (en) | 2003-04-22 |
EP2952954A1 (en) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5191622B2 (ja) | 波面分析システムおよびその合焦方法 | |
US20100045934A1 (en) | Dynamic range extension techniques for a wavefront sensor including use in ophthalmic measurement | |
CA2338060C (en) | Apparatus and method for measuring vision defects of a human eye | |
US9931033B2 (en) | System and method for controlling a fundus imaging apparatus | |
US6439720B1 (en) | Method and apparatus for measuring optical aberrations of the human eye | |
US7044603B2 (en) | Compact portable wavefront sensor | |
JP3706940B2 (ja) | 眼特性測定装置 | |
US20080018855A1 (en) | Aberrometer Provided with a Visual Acuity Testing System | |
MXPA01013364A (es) | Filtro especial para mejorar las imagenes hartmann-shack, y metodos asociados. | |
JP4509591B2 (ja) | 収差補正機能付き画像形成装置 | |
JP4252288B2 (ja) | 眼特性測定装置 | |
JP4606559B2 (ja) | 眼光学特性測定装置 | |
US20020063849A1 (en) | Eye characteristic measuring apparatus | |
JP2004159779A (ja) | 眼特性測定装置 | |
JP4562234B2 (ja) | 眼特性測定装置 | |
JP2005224327A (ja) | 収差補正機能付き画像形成装置 | |
US20030156256A1 (en) | Eye's optical characteristic measuring system | |
US20220225875A1 (en) | Method and system for making optical measurement of eye | |
JP7021540B2 (ja) | 自覚式検眼装置 | |
JP2006081841A (ja) | 画像形成装置、波面補正光学装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070920 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20101006 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20101014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110509 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110516 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110608 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110615 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120806 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5191622 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160208 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |