Nothing Special   »   [go: up one dir, main page]

JP4198709B2 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
JP4198709B2
JP4198709B2 JP2005324625A JP2005324625A JP4198709B2 JP 4198709 B2 JP4198709 B2 JP 4198709B2 JP 2005324625 A JP2005324625 A JP 2005324625A JP 2005324625 A JP2005324625 A JP 2005324625A JP 4198709 B2 JP4198709 B2 JP 4198709B2
Authority
JP
Japan
Prior art keywords
optical waveguide
interaction
optical
polarization
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005324625A
Other languages
English (en)
Other versions
JP2006259686A (ja
Inventor
健治 河野
雅也 名波
宏明 仙田
武 本藤
靖二 内田
勇治 佐藤
中平  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005324625A priority Critical patent/JP4198709B2/ja
Priority to EP06713874A priority patent/EP1850167A1/en
Priority to PCT/JP2006/302733 priority patent/WO2006088093A1/ja
Priority to CA002598092A priority patent/CA2598092A1/en
Priority to CN2006800101275A priority patent/CN101151571B/zh
Priority to US11/884,407 priority patent/US8311371B2/en
Publication of JP2006259686A publication Critical patent/JP2006259686A/ja
Application granted granted Critical
Publication of JP4198709B2 publication Critical patent/JP4198709B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/07Materials and properties poled
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、小型で消費電力の小さい光変調器に関する。
リチウムナイオベート(LiNbO)のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、LN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光伝送システムに適用されている。最近はさらに40Gbit/sの超大容量光伝送システムにも適用が検討されており、キーデバイスとして期待されている。
[第1従来例]
図7にz−カットLN基板1を用いて構成したLN光変調器について第1従来例の斜視図を示す。図8は図7のA−A’における断面図である。ここで、1はz−カットLN基板、2はSiOバッファ層、3はマッハツェンダ光導波路であり、金属Tiを1050℃で約10時間熱拡散して形成した光導波路であり、マッハツェンダ干渉系(あるいは、マッハツェンダ光導波路)を構成している。なお、3a、3bは電気信号と光が相互作用する部(相互作用部と言う)における光導波路(あるいは、相互作用光導波路)、つまりマッハツェンダ光導波路の2本のアームであり、相互作用部における第1の光導波路、第2の光導波路と呼ぶ。
進行波電極4としては、1つの中心導体4aと2つの接地導体4b、4cを有するコプレーナウェーブガイド(CPW)を用いることを想定する。
光導波路を伝搬する光が中心導体4aと接地導体4b、4cからなる進行波電極4を構成する金属(一般に、Auを用いる)から受ける吸収損を抑えるためと、進行波電極4を伝搬する電気信号のマイクロ波等価屈折率(あるいは、進行波電極のマイクロ波等価屈折率)nを低減し第1の光導波路3aと第2の光導波路3bを伝搬する光の等価屈折率(あるいは、光導波路の等価屈折率)nに近づけるとともに、特性インピーダンスをなるべく50Ωに近づけるために、進行波電極とz−カットLN基板1との間には、通常、400nm〜1μm程度の厚いSiOバッファ層2を堆積する。
図9に進行波電極の中心導体4aと接地導体4b、4c間に電界を印加した際における電気力線5の分布を示している。この図からわかるように、第1の光導波路3aと第2の光導波路3bを横切る電気力線5の向きは逆向きである。そのため、中心導体4aの下にある第2の光導波路3bを伝搬する光の位相変化量をΔφ1、接地導体4bの下にある第1の光導波路3aを伝搬する光の位相変化量をΔφ2とすると、Δφ1とΔφ2の符号は異なっている。マッハツェンダ光導波路では第1の光導波路3aと第2の光導波路3bを伝搬する光の位相差Δφt(=|Δφ1|+|Δφ2|)をπとすることにより、光のOFF状態を実現でき、光信号パルスを形成できる。
ところが、この第1従来例に示したz−カットLN光変調器で形成した光信号パルスには数10Kmの長さの単一モード光ファイバー内を伝搬した際に、パルスの形が崩れる、いわゆるチャーピングという問題点がある。次にこれについて説明する。
図9からわかるように、中心導体4aの幅は接地導体4b、4cの幅より小さく、その幅はほぼ第2の光導波路3bの幅と同じで6μm〜11μm程度である。従って中心導体4aの下にある第2の光導波路3bを伝搬する光と電気力線5との相互作用の効率は高い。一方、接地導体4b、4cは広いので中心導体4aから出た電気力線5は接地導体4b、4cに広く分布し、接地導体4b側の第1の光導波路3aと電気力線5との相互作用の効率は低い。近似的には|Δφ1|≒5|Δφ2|となる。そのため、この従来の実施例の光変調器を用いて形成した光パルスにはチャーピングが生じる。ちなみに、チャーピングの度合いを表すアルファパラメータ(あるいは、αパラメータ)は光信号パルスが有する位相φと振幅Eを用いて(1)式のように表現できる(非特許文献1)。
α=[dφ/dt] /[(1/E)(dE/dt)] (1)
このように、αパラメータは、出力される光信号パルスが有する位相変化量と強度変化量を用いて表現できる。
さらに、具体的には、αパラメータは(1)式を発展させた(2)式で表現できる。
α=(Γ1−Γ2)/(Γ1+Γ2) (2)
Γ1:電気信号(振幅)と第1の光導波路3aを伝搬する光(パワー)との1で規格化した重なり積分で示した効率
Γ2:電気信号(振幅)と第2の光導波路3bを伝搬する光(パワー)との1で規格化した重なり積分で示した効率
以上のように、図7に示した第1従来例において形成されたパルスにチャーピングが発生する原因は中心導体4a側の第2の光導波路3bと接地導体4b側の第1の光導波路3aに発生する位相変化量の絶対値が同じでないことに起因する。
[第2従来例]
図7に示した第1従来例における問題点を解決するために使用されている第2従来例のLN光変調器を図10に示す。なお、第1従来例と同じ構成要素をさす番号の説明を省略する。
図中、6a、6bは2つの中心導体、7a、7b及び7cは接地導体である。この第2従来例ではいわば第1従来例に示したCPW電極が2つ使用されており、2電極型、あるいはプッシュプル型CPW進行波電極と呼ばれている。8は電気力線である。この第2従来例においては、第1の光導波路3aと第2の光導波路3bは各々幅の等しい2つのCPW電極の中心導体6a、6bの直下にあるので、第1の光導波路3aと第2の光導波路3bを伝搬する光の位相変化量は絶対値が等しく符号が逆となり、原理的にゼロのチャーピングを実現できる。
ところが、前述のように、第1の光導波路3aと第2の光導波路3bを伝搬する光の位相変化量は絶対値が等しく符号が逆でなければならないため、本実施例を動作するには、図10に示した第2従来例の中心導体6a、6bには正確に正、負逆位相の電気信号を加える必要があり、極めて難しい問題を生じる。つまり、集積回路(Integrated Circuit:IC)の異なるポートから出る2つの逆位相の電気信号が、ICを出た後に中心導体6a、6bに加わる際の位相を正確に正、負逆位相とすることは、ICからの出力後、相互作用部までの電気的長さを完全に同じにするとともに、電気波形の立上り、立下りの形状まで同じにすることを意味しており、実際には技術的に大変苦労しているのが実状である。
[第3従来例]
図10に示した第2従来例における問題点を解決するために提案されている第3従来例のLN光変調器の上面図を図11に、そのB−B’における断面図を図12に示す(特許文献1)。なお、第1従来例と同じ構成要素をさす番号の説明を省略する。
図中、9はマッハツェンダ光導波路で、9a、9bはマッハツェンダ光導波路のアームを構成する2本の光導波路、つまり第1の光導波路、第2の光導波路である。10a、10bは中心導体、11a、11b、及び11cは接地導体である。z−カットLN基板1において、1aと1bは各々分極を反転していない領域(分極非反転領域)と分極を反転した領域(分極反転領域)である。12は電気力線である。
本従来例の動作原理について説明する。まずマッハツェンダ光導波路9に入射した光は、第1の光導波路9aと第2の光導波路9bを伝搬するように2分岐される。一方、中心導体10も10a、10bに2分岐されているので、電気信号は図12に示すように、第1の光導波路9aと第2の光導波路9bに同方向に印加される。
通常、z−カット光変調器は光導波路を製作するための金属Tiの拡散状態から基板表面として−z面が使用される。従って、分極を反転していない領域1aでは−z面を、分極を反転した領域1bでは+z面を使用している。電気光学的には−z面と+z面に電界を印加すると、生じる屈折率変化は絶対値が等しく符号が逆である。
この第3従来例では、z−カットLN基板1はマッハツェンダ光導波路の中心付近を境界として分極を反転しているので、図12に示す同方向の電気力線12によっても、第1の光導波路9aと第2の光導波路9bを伝搬する光の位相変化は符号が逆となる。従って第1の光導波路9aと第2の光導波路9bを伝搬する光の位相変化を絶対値が同じで符号が逆とすることにより、光信号のチャーピングをゼロとしようとするものである。
さて、本従来例の問題点について考察する。
一般に、LN光変調器は3インチから4インチの大きさのz−カットLN基板に製作するが、各LN光変調器は15μm〜30μm程度のギャップを有する第1の光導波路9aと第2の光導波路9bを有している。図11に示した従来の実施例の光変調器を製作する工程のうち、光導波路を実際に製作する工程について考える。
まず、マッハツェンダ光導波路9の第1の光導波路9aと第2の光導波路9b間の中央を境界として分極を反転する。この分極を反転する工程には、z−カットLN基板1における所望の位置の上面と下面全面に電極をパターニングした後、高電界を印加して分極ドメインを反転させ、その後、上下に形成した電極をエッチングはく離する。次に、分極反転した境界が第1の光導波路9aと第2の光導波路9b間の中央に合うようにマッハツェンダ光導波路用のフォトレジストパターンを形成するとともに、金属Tiを蒸着・リフトオフする。最後に、形成された金属Tiパターンを熱拡散し、マッハツェンダ光導波路9を形成する。
分極を反転していない領域1aと分極を反転した領域1bでは基板の物性が異なるため、光導波路を形成するための金属Tiがz−カットLN基板へ拡散する状態も異なってくる。その結果、光のスポットサイズや伝搬損失について、分極を反転していない領域1aと分極を反転した領域1bとでは異なる。
分極を反転していない領域1aに形成した第1の光導波路9aを伝搬する光のスポットサイズが分極を反転した領域1bに形成した第2の光導波路9bを伝搬する光のスポットサイズと異なるということは、中心導体10a、10bと接地導体11a、11bからなる進行波電極を伝搬する電気信号と第1の光導波路9aと第2の光導波路9bを伝搬する光の相互作用の効率(一般には、電気信号と光のパワーの重なり積分で表される)が第1の光導波路9aと第2の光導波路9bとで異なることになる。
第1従来例である図9において説明したように、第1の光導波路9aと第2の光導波路9bを伝搬する光の位相変化量の絶対値が異なると、LN変調器から出射された光がチャーピング特性を持つことになり、チャーピングを極めて小さくするという課題の充分な解決にはなってはいない。
また、分極を反転していない領域1aと分極を反転した領域1bでは伝搬損失も異なるので、第1の光導波路9aと第2の光導波路9bを伝搬する光のパワーに差が生じ、結果的にOFF時の消光比が劣化するという問題もあった。
さらに何よりも大きな問題点は、図11からわかるように、本従来例では電気信号と光との相互作用部において中心導体10を10a、10bに2分割する必要がある。ここで、10a、10bの部分において50Ω系とすると分割前は25Ω程度と低くなるし、分割部において50Ω系とすると、分割後の10a、10bの部分においては100Ω程度と高くなるというインピーダンス不整合という重大な問題を原理的に持っている。また、中心導体10を10a、10bに2分割する分岐部は電気信号の流れ、つまり電流にとっても不連続形状であるために、電気的な反射が生じる。さらに、この分岐部の出来・不出来が反射特性(S11特性)に大きく影響し、結果的にLN光変調器の歩留まりに大きな影響があるという難しい問題を抱えていた。
[第4従来例]
図13は特許文献2において提唱された第4従来例のLN変調器の上面図である。
この第4従来例のLN変調器においては、マッハツェンダ光導波路13を構成する第1の光導波路13aと第2の光導波路13bが分極を反転していない領域(分極非反転領域)15aから分極を反転している領域(分極反転領域)15bを通過している。
図13に示した第4従来例において特徴的なことは、中心導体14aや接地導体14b、14cと第1の光導波路13aと第2の光導波路13bの相対位置である。つまり、分極を反転していない領域15aにおいては、第2の光導波路13bの上に中心導体14aがあり、第1の光導波路13aの上に接地導体14bがある。ここで、16aの領域を分極が反転していない領域15aにおける相互作用部と呼ぶ。
一方、遷移領域16cにおいては、中心導体14aと接地導体14b、14cからなる進行波電極はLN基板表面方向に位置的にシフトする。その結果、分極を反転している領域15bにおいては、中心導体14aは第1の光導波路13aの上にあり、第2の光導波路13bの上には接地導体14cがある。ここで、16bの領域を分極が反転している領域15bにおける相互作用部と呼ぶ。
また、この第4従来例のLN変調器においては、分極を反転していない領域15aにおける中心導体14aの長さと分極を反転している領域15bにおける中心導体14aの長さをL/2と等しくしている。つまり、第1の光導波路13aと第2の光導波路13bを伝搬する各々の光が分極を反転していない領域15aと分極を反転している領域15bを伝搬する距離を等しくすることにより、光変調器から出射される光のチャーピングをゼロにしようとする試みである。
ところが、この第4従来例は遷移領域16cが存在するために生じる製作ノウハウの高度化と電気信号特性(あるいはマイクロ波特性)の劣化という2つの大きな問題点を持っている。つまり、分極が反転していない領域15aにおける相互作用部16aと、分極が反転している領域15bにおける相互作用部16bにおいては、中心導体14aの幅は6〜11μm程度と細く、また中心導体14aと接地導体14b、14cの間のギャップは15μm程度と狭い。さらに、中心導体14aと接地導体14b、14cの厚みは20μmから30μmと厚い。
この厚い進行波電極を形成するにはこの電極よりも厚いレジストを塗布後、電極パターンを形成した後、メッキを行う。このように、アスペクト比(中心導体14aの高さと幅の比として定義され、この場合は2から5になる)が大きく、かつ、中心導体14aと接地導体14b、14cの間のギャップが小さな電極を製作するには高度の技術を必要とするが、さらに遷移領域ではこれらが位置的にシフトしているので、厚膜レジストの露光と現像の工程を含むパターン形成が難しくなる。その結果、進行波電極を製作する際の歩留まりが低下する。
また遷移領域16cは電気信号にとっては不連続部である。中心導体14aと接地導体14b、14cを電気信号であるマイクロ波が伝搬するということは、高周波電流が流れることであるから、細い中心導体14aに形成された不連続部である遷移領域16cにおいて電気的な反射が生じ易い。
実際に製作したLN光変調器について、中心導体14aと接地導体14b、14cからなる進行波電極を伝搬する電気信号の透過特性であるS21を測定した結果を図14に示す。図中、一点鎖線で示したIは光変調器を挿入しないスルーの場合に対応し、これを規準レベルとする。破線により示したIIは進行波電極の出来(形成状態)があまり良くなかった場合、点線により示したIIIは進行波電極の出来が比較的良かった場合に対応している。
図からわかるように、進行波電極の出来があまり良くない場合であるIIでは、大きな電気的な反射のために、マイクロ波のS21に大きなディップが生じている。なお、進行波電極の出来が比較的良かった場合でさえも、S21に若干のうねりが観測されるとともに、マイクロ波伝搬損失(S21の周波数に対する傾斜)がやや大きいと言わざるを得ない。また、同様に反射特性を表わすS11にも劣化が生じることは言うまでもない。
このように、S21が劣化するということは第1の光導波路13aと第2の光導波路13bに有効に電気信号が印加されないことを意味しており、最終的に広い光変調帯域を実現できないことになる。よく知られているように、電気信号と光の速度が整合されている場合には、電気信号の6dB劣化の帯域が3dBダウンの光変調帯域となる。従って、遷移領域16cという不連続部のためにS21が劣化すると、光変調帯域が著しく狭くなり、光伝送システムに適用可能な光信号パルスを生成することが難しくなる。更に、40Gbit/sのような高速伝送方式では、遷移領域16cにおける電気的反射や電気信号の伝搬損失の増加が著しくなる。
なお、第4従来例においては第1の光導波路13aと第2の光導波路13bを伝搬する各々の光が分極を反転していない領域15aと分極を反転している領域15bを伝搬する距離を等しくすることにより、光変調器から出射される光信号パルスについてチャーピングゼロを実現しようとしている。
しかしながら、一般に、電気信号の周波数が高くなると金属が持つ導体損失のために、14a、14b、14cからなる進行波電極を伝搬する電気信号は伝搬とともに弱くなる。そのため、この電気信号の伝搬損失のために、分極を反転していない領域15aと分極を反転している領域15bの長さをL/2と等しくても、分極を反転している領域15bにおいて進行波電極を伝搬する電気信号の強度は分極を反転していない領域15aよりも弱い。その結果、周波数が高くなると、第1の光導波路13aと第2の光導波路13bを伝搬する光の位相差の絶対値は異なってしまい、光変調器から出射された光信号パルスはチャーピングを持つことになる。
特開2003−202530号公報 特開2002−350796号公報 Fumio Koyama et al "Frequency Chirping in External Modulators" IEEE Journal of Lightwave Technology, vol. 6, pp. 87-93, Jan. 1988.
以上のように、LN基板に対して分極反転を用いる従来例としては、中心導体を2分割しマッハツェンダ光導波路を構成する2本のアーム(光導波路)の上方に位置させる構成と、中心導体と接地導体をLN基板の表面方向にシフトさせることにより、中心導体及び接地導体と第1の光導波路及び第2の光導波路の相対位置を入れ替える構成がある。前者の場合には、中心導体を2分割する箇所においてインピーダンスの不整合があり、さらにこの分岐部は電気信号である電流にとっては不連続な形状であるために、電気的な反射が生じる。また、後者の場合には、中心導体及び接地導体とマッハツェンダ光導波路のアームを構成する2本の光導波路との相対位置を入れ替えるための遷移領域が必要となる。この遷移領域でアスペクト比の大きな中心導体が位置的にシフトしているので、製作が難しくなる。さらに、遷移領域は電気信号にとっては不連続部であるために、電気信号が反射されS21にディップが生じ易い、あるいはマイクロ波伝搬損失が大きくなるなど、マイクロ波特性が劣化し、その結果、光変調帯域が狭くなるという問題があった。
上記課題を解決するために、本発明の請求項1の光変調器は、電気光学効果を有する材料からなるとともに、分極を反転しない領域と分極を反転する領域を有する基板と、前記基板の一面側に形成され、入射した光を分岐するための分岐光導波路と、分岐された前記光を伝搬するための第1の光導波路及び第2の光導波路と、前記第1の光導波路と前記第2の光導波路を伝搬する前記光を合波するための合波光導波路を備えた光導波路を具備し、前記第1の光導波路と前記第2の光導波路を伝搬する光と、中心導体及び接地導体からなる進行波電極を伝搬する電気信号が相互作用する相互作用部が、互いに異なる方向に分極した第1の相互作用部と第2の相互作用部を含み、前記中心導体は前記第1の相互作用部と前記第2の相互作用部で前記第1の光導波路もしくは前記第2の光導波路に対向し、前記第1の相互作用部及び前記第2の相互作用部で前記第1の光導波路と前記第2の光導波路を伝搬する前記光の位相を変調して光信号パルスを生成する光変調器において、前記第1の相互作用部と前記第2の相互作用部の間に光導波路シフト部を設けることにより、前記第1の相互作用部における前記第1の光導波路の光軸と前記第2の相互作用部における前記第1の光導波路の光軸とを異ならしめるとともに、前記第1の相互作用部における前記第2の光導波路の光軸と前記第2の相互作用部における前記第2の光導波路の光軸とを異ならしめ、前記第1の相互作用部と前記第2の相互作用部にて、前記中心導体及び前記接地導体と、前記第1の光導波路と前記第2の光導波路の相対位置が入れ替わっており、また、前記相互作用部における前記中心導体は直線でなっており、前記相互作用部では前記進行波電極に電気的な不連続部を有さないことを特徴とする。
本発明の請求項2の光変調器は、電気光学効果を有する材料からなるとともに、分極を反転しない領域と分極を反転する領域を有する基板と、前記基板の一面側に形成され、入射した光を分岐するための分岐光導波路と、分岐された前記光を伝搬するための第1の光導波路及び第2の光導波路と、前記第1の光導波路と前記第2の光導波路を伝搬する前記光を合波するための合波光導波路を備えた光導波路を具備し、前記第1の光導波路と前記第2の光導波路を伝搬する光と、中心導体及び接地導体からなる進行波電極を伝搬する電気信号が相互作用する相互作用部が、互いに異なる方向に分極した第1の相互作用部と第2の相互作用部を含み、前記中心導体は前記第1の相互作用部と前記第2の相互作用部で前記第1の光導波路もしくは前記第2の光導波路に対向し、前記第1の相互作用部及び前記第2の相互作用部で前記第1の光導波路と前記第2の光導波路を伝搬する前記光の位相を変調して光信号パルスを生成する光変調器において、前記第1の相互作用部と前記第2の相互作用部の間に光導波路シフト部を設けることにより、前記第1の相互作用部における前記第1の光導波路の光軸と前記第2の相互作用部における前記第1の光導波路の光軸とを異ならしめるとともに、前記第1の相互作用部における前記第2の光導波路の光軸と前記第2の相互作用部における前記第2の光導波路の光軸とを異ならしめ、前記第1の相互作用部と前記第2の相互作用部にて、前記中心導体及び前記接地導体と、前記第1の光導波路と前記第2の光導波路の相対位置が入れ替わっており、また、前記光導波路シフト部にて前記中心導体の一部が前記第1の光導波路と前記第2の光導波路の少なくとも一方と略平行に形成されており、前記中心導体のシフト量が前記第1の光導波路と前記第2の光導波路の中心間距離よりも小さいことを特徴とする。
本発明の請求項3の光変調器は、前記第1の相互作用部の長さと前記第2の相互作用部の長さが略等しいことを特徴とする。
本発明の請求項4の光変調器は、前記第1の相互作用部の長さが前記第2の相互作用部の長さよりも短いことを特徴とする。
本発明の請求項5の光変調器は、前記相互作用部における前記分極を反転しない領域及び前記分極を反転した領域の少なくとも一方が複数個あり、該それぞれの領域の境界に前記光導波路シフト部を設けたことを特徴とする。
本発明の請求項6の光変調器は、前記相互作用部における前記分極を反転しない領域及び前記分極を反転した領域の数の和が奇数個であることを特徴とする。
本発明の請求項7の光変調器は、前記相互作用部における前記分極を反転しない領域及び前記分極を反転した領域の各々の長さの和が互いに略等しいことを特徴とする。
本発明の請求項8の光変調器は、前記基板が前記分極を反転しない領域及び前記分極を反転した領域のどちらか一方である場合よりも、前記光信号パルスのチャーピングが小さくなることを特徴とする。
本発明においては、進行波電極において高度な製作技術が必要となる相互作用部をほぼまっすぐにすることにより、マイクロ波である電気信号の特性の劣化を極力抑えることができる。また、光導波路を位置的にシフトさせることにより、中心導体及び接地導体と2本の光導波路との相対位置を電気信号と光との複数の相互作用部において逆転させている。つまり、本発明を適用すれば、電気信号の劣化を抑えることにより広い光変調帯域を実現するとともに、進行波電極に対し2本の光導波路の相対位置を入れ替えることができ、光信号パルスのチャーピングを極力抑えることが可能となる。
[第1実施形態]
図1に本発明の第1実施形態の上面図を示す。また、図2には図1におけるC−C’の断面を示す。なお、本実施形態ではz−カットLN基板を想定しているので、図7の第1従来例に示したようにSiOなどからなるバッファ層が必要であるが、ここでは説明の簡単のために、SiOバッファ層を省いている。また、図2ではSiOバッファ層の他、進行波電極や光導波路を省略し、z−カットLN基板についてのみ示している。
図中、17aはz−カットLN基板の分極を反転していない領域(分極非反転領域)、17bはz−カットLN基板の分極を反転した領域(分極反転領域)である。18はマッハツェンダ光導波路、18a、18bはマッハツェンダ光導波路を構成する2本のアームであり、各々、第1の光導波路、第2の光導波路、あるいは簡単に、光導波路と呼ぶ。マッハツェンダ光導波路18は、更に、マッハツェンダ光導波路18に入射された光を、第1の光導波路18a及び第2の光導波路18bに分岐するための分岐光導波路と、第1の光導波路18a及び第2の光導波路18bを伝搬する光を合波するための合波光導波路とを備えている。19aはCPW進行波電極の中心導体、19bと19cはCPW進行波電極の接地導体である。
図1に示した本発明の第1実施形態において特徴的なことは、充分に広い光変調帯域を実現するために、光変調帯域を決定する電気信号の特性を最大限に生かす構造としていることである。つまり、光変調特性を決める相互作用部において、幅やギャップなど寸法が小さい中心導体19aと接地導体19b、19cに不連続部が生じないようにほぼまっすぐとし、その代わりに第1の光導波路18aと第2の光導波路18bをシフトさせている。ここで、20aは分極を反転していない領域17aにおける電気信号と光との相互作用部であり、第1の相互作用部と呼ぶ。20bは分極を反転した領域17bにおける電気信号と光との相互作用部であり、第2の相互作用部と呼ぶ。20cは第1の相互作用部20aと第2の相互作用部20bの間に設けた光導波路シフト部である。
図1からわかるように、分極が反転していない第1の相互作用部20aにおいては、第2の光導波路18bの上に中心導体19aがあり、第1の光導波路18aの上に接地導体19bがある。すなわち、中心導体19aは、第2の光導波路18bに対向している。一方、分極が反転した第2の相互作用部20bにおいては、第1の光導波路18aの上に中心導体19aがあり、第2の光導波路18bの上に接地導体19cがある。すなわち、中心導体19aは、第1の光導波路18aに対向している。つまり、本実施形態では、z−カットLN基板の表面方向に第1の光導波路18aと第2の光導波路18bを第1の相互作用部20aと第2の相互作用部20bの間で位置的にシフトさせることにより、中心導体19a及び接地導体19b、19cと、第1の光導波路18aと第2の光導波路18bとの相対位置を入れ替えており、LN光変調器により生成する光信号パルスのチャーピングを極めて小さくすることが可能である。
本実施形態では、進行波電極をまっすぐとしているので、幅が6〜11μm程度と狭い中心導体19aと、中心導体19aから15μm程度のギャップを介して形成した接地導体19b、19cには光と電気信号が相互作用する領域において電気的な不連続部はなく、遷移領域16cという進行波電極の不連続部を有する第4従来例と比較してその製作の歩留まりが格段に向上する。また、電気信号と光との相互作用部20a、20bに電気的な不連続部がないので、電気信号の透過特性であるS21について不連続部に起因した伝搬損失や電気的反射の増加がない。
本発明の効果を示すために、実際に製作した本実施形態の光変調器と図14に示した第4従来例の電気的透過特性S21を図3に重ねて示す。ここで、実線IVが本実施形態の特性である。なお、図中のI、II、IIIは図14中のI、II、III、即ち、Iはスルーを表す規準レベル、IIは図14に示した第4従来例において遷移領域16cの出来があまり良くなかった場合、IIIは遷移領域16cの出来が比較的良かった場合に各々対応している。図からわかるように、進行波電極に不連続部を有する第4従来例と比較すると、本実施形態におけるS21は周波数に対するうねりも少なく、その特性は第4従来例の出来が良い場合よりも改善されていることがわかる。
ここで、本発明の実施形態が優れた特性を持つ理由について考える。前述のように、電気信号、すなわちマイクロ波が伝搬する際には電流が細い中心導体を流れており、かつ図14に示した第4従来例の不連続部である遷移領域16cを流れる際に電流は電極から染み出すことはできない。つまり、電気信号であるマイクロ波は反射され易く、不連続部の影響を受けがちと言える。一方、光は光導波路の不連続部の形状が緩やかであれば、光導波路から若干染み出しても、元の光導波路に戻ることができるので、ほとんど損失なしに伝搬することが知られている。つまり、光が第1の光導波路18aと第2の光導波路18bを伝搬する場合、第1の相互作用部20aから第2の相互作用部20bに第1の光導波路18aと第2の光導波路18bがシフトする光導波路シフト部20cにおいて、ある程度の大きさの曲率半径を持つ曲げ光導波路を使用することにより、ほぼ損失無しに第1の相互作用部20aから第2の相互作用部20bに移行することができる。このように本発明では、不連続部におけるマイクロ波と光の振る舞いの違いを利用している。さらに、光変調器では電極の透過特性S21が劣化すると直ちに光変調特性が劣化するが、光については例え損失があっても、光の挿入損失が増えるだけで、光変調器として最も重要な特性である光変調帯域には何ら影響がないという特徴を用いている。
なお、光導波路シフト部20cの長さは数100μmから1mm程度あれば充分である。光導波路シフト部20cでは第1の光導波路18aと第2の光導波路18bを伝搬する光の位相を変化させることはできないが、通常、電気信号と光の相互作用長の総和(ここでは、第1の相互作用部20aの長さと第2の相互作用部20bの長さの和)は30mmから50mm程度あるので光導波路シフト部20cが駆動電圧に与える影響は極めて小さい。
なお、図1においてはマイクロ波の出力ポートは第1の光導波路18aと第2の光導波路18bをはさんでマイクロ波の入力ポートと反対側に有るが、図7に示した第1従来例と同様にマイクロ波の出力ポートはマイクロ波の入力ポートと同じ側にあっても良いことは言うまでもない。また、図1における分極に関しては、第2の相互作用部20bを含むz−カットLN基板の半分の領域についてその全体の分極を反転しているが、第2の相互作用部20bとその近傍のみの分極を反転しても良い。さらに、図2ではz−カットLN基板の表面から裏面まで分極を反転しているが、z−カットLN基板のマッハツェンダ光導波路18が形成されている表面のみの分極を反転しても良い。なお、これらのことは本発明の他の実施形態についても成り立つ。
本実施形態の最もシンプルな構造は、第1の相互作用部20aの長さL1と第2の相互作用部20bの長さL2をほぼ等しくした場合である。この場合においても、第2の相互作用部20bを設けることにより、図7に示した第1従来例と比較して生成される光信号パルスのチャーピングを大幅に小さくすることが可能となる。
さて、一般に、電気信号の周波数が高くなると金属が持つ導体損失のために、中心導体19a、接地導体19b、19cからなる進行波電極を伝搬する電気信号は伝搬とともに弱くなる。この電気信号の伝搬損失のために、第2の相互作用部20bにおいて進行波電極を伝搬する電気信号の強度は第1の相互作用部20aでの値より弱い。その結果、第1の相互作用部20aの長さL1と第2の相互作用部20bの長さL2がL/2に等しい場合、電気信号の周波数が高くなると、第1の光導波路18aと第2の光導波路18bを伝搬する光の位相差の絶対値は、第1の相互作用部20aと第2の相互作用部20bにおいて異なってしまう。
従って、チャーピングを極力小さくするための第1の考え方としては、分極が反転していない第1の相互作用部20aの長さL1を分極が反転している第2の相互作用部20bの長さL2よりも短く(L1<L2)することにより、光変調器により生成される光信号パルスのチャーピングを小さくすることがあげられる。
次に、チャーピングを極力小さくするための第2の考え方としては、分極を反転していない第1の相互作用部20aの長さL1と、分極を反転した第2の相互作用部20bの長さL2を適切に設定することにより、DC付近の低周波領域と高周波領域においてチャーピング量を表すαパラメータの符号が入れ替わり、所定の周波数においてαパラメータをゼロとすることがあげられる。ここで、光信号パルスとして必要な所定の周波数帯域内においてαパラメータを平均的にゼロとすることが重要であるので、αパラメータが常に正、あるいは常に負で、ある周波数でのみゼロとなる場合は光信号パルスのチャーピングを充分小さくすることは難しい。
また、チャーピングを極力小さくするための第3の考え方としては、チャーピング量を表すαパラメータについて、周波数を変数としてDC付近から光信号パルスが含んでいる所定の最大周波数まで積分し、その積分値がほぼゼロとなるようにすることによって、よりチャーピングを抑えることがあげられる。このことは、分極を反転していない領域における第1の相互作用部20aの長さL1と、分極を反転した第2の相互作用部20bの長さL2を適切に設定することにより実現できる。
チャーピングを抑えるためのこれらの3つの考え方は、中心導体と接地導体に対する光導波路の相互位置を入れ替えた回数が1回である本発明の第1実施形態のみでなく、その回数を複数回としたその他の実施形態を含め、本発明のあらゆる実施形態に適用可能である。
以上の説明においては、相互作用部において進行波電極はまっすぐとし、光導波路のみ光導波路シフト部20cにおいて位置的にずらしている。しかしながら、第1の光導波路18aと第2の光導波路18bをシフトするとともに、マイクロ波の透過特性(S21)や反射特性(S11)の観点から実用上問題がない程度に進行波電極をシフトすることも本発明の範疇に入る。なお、その構造は第3実施形態として後述する。
チャーピングを極力抑えるためには、分極を反転していない領域と分極を反転した領域において、中心導体及び接地導体と光導波路との相対位置を入れ替える必要があるが、光導波路をシフトさせるという本発明の基本的な考えを用いることにより、チャーピングを極力抑えるために必要な進行波電極のシフト量を小さくすることができる。従って、光導波路を位置的にシフトさせることにより、第4従来例のように進行波電極をシフトさせる場合においてもマイクロ波特性の劣化を抑え、広い光変調帯域を実現することが可能となる。このことは本発明の全ての実施形態について成り立つ。
[第2実施形態]
図4に本発明の第2実施形態の上面図を示す。また、図5には図4におけるD−D’の断面を示す。なお、説明の簡単のために、図4では図7には図示しているSiOバッファ層を省いている。また、図5ではSiOバッファ層の他、進行波電極や光導波路を省略し、z−カットLN基板についてのみ示している。
図中、21aと21cはz−カットLN基板の分極を反転していない領域(分極非反転領域)、21bはz−カットLN基板の分極を反転した領域(分極反転領域)である。22はマッハツェンダ光導波路、22a、22bはマッハツェンダ光導波路を構成する2本のアーム(第1の光導波路と第2の光導波路)である。19aはCPW進行波電極の中心導体、19bと19cはCPW進行波電極の接地導体であることは図1に示した本発明の第1実施形態と同じである。
図4に示した本発明の第2実施形態においても、幅やギャップなど寸法が小さい中心導体19aと接地導体19b、19cに不連続部が生じないようにほぼまっすぐとし、その代わりに第1の光導波路22aと第2の光導波路22bを位置的に2回シフトさせている。ここで、23aは分極を反転していない領域21aにおける電気信号と光との相互作用部であり、第1の相互作用部と呼ぶ。23bは分極を反転した領域21bにおける電気信号と光との相互作用部であり、第2の相互作用部と呼ぶ。23cは分極を反転していない領域21cにおける電気信号と光との相互作用部であり、第3の相互作用部と呼ぶ。23dは第1の相互作用部23aと第2の相互作用部23bの間に設けた光導波路シフト部、23eは第2の相互作用部23bと第3の相互作用部23cの間に設けた光導波路シフト部である。
このように、光導波路をシフトさせるという本発明を適用することにより、進行波電極に不連続部である遷移領域を作ることがないので、電気信号、すなわちマイクロ波の伝搬損失の増加や反射を極力抑えることができる。また、中心導体19a、及び接地導体19b、19cと第1の光導波路22aと第2の光導波路22bの相対位置を各相互作用部において入れ替えることができるので、前述のように広い光変調帯域を確保しつつ光変調器により生成された光信号パルスのチャーピングを極めて小さくすることが可能となる。
前述のように、電気信号の周波数が高くなると金属が持つ導体損失が増加する。従って、第1の光導波路22aと第2の光導波路22bに作用する電気信号の電界の強度は、第1の相互作用部23aにおいて最も強く、第3の相互作用部23cで最も弱く、また第2の相互作用部23bでは第1の相互作用部と第3の相互作用部の中間となる。
従って、チャーピングを小さくするためのL1、L2、L3の決定の仕方については、L1=L3=L2/2としても効果があるが、さらに改善するには図1の第1実施形態と同様の考え方を適用できる。
つまり、分極を反転していない領域における第1の相互作用部23aの長さL1と、分極を反転した領域における第2の相互作用部23bの長さL2と、分極を反転していない領域における第3の相互作用部23cの長さL3とを適切に設定することにより、DC付近の低周波領域と高周波領域においてチャーピング量を表すαパラメータの符号が入れ替わり、所定の周波数においてαパラメータをゼロとすることができる。
ここで、光信号パルスとして必要な所定の周波数帯域内においてαパラメータを平均的にゼロとすることが重要であるので、αパラメータが常に正、あるいは常に負で、ある周波数でのみゼロとなる場合は光信号パルスのチャーピングを充分小さくすることは難しい。
また、他の考え方としては、チャーピング量を表すαパラメータについて、周波数を変数としてDC付近から光信号パルスが含んでいる所定の最大周波数まで積分し、その積分値がほぼゼロとなるようにすれば、よりチャーピングを抑えることが可能となる。このことは、分極を反転していない領域(分極非反転領域)における相互作用部23aの長さL1と、分極を反転した領域(分極反転領域)における相互作用部23bの長さL2と、分極を反転していない領域(分極非反転領域)における相互作用部23cの長さL3とを適切に設定することにより実現できる。
[第3実施形態]
図6に本発明の第3実施形態の上面図を示す。また、図6におけるE−E’の断面は図2と同じとなる。なお、本実施形態ではz−カットLN基板を想定しているので、図7の第1従来例に示したようにSiOなどからなるバッファ層が必要であるが、ここでは説明の簡単のために、SiOバッファ層を省いている。
先に述べたように、図1に示した本発明の第1実施形態では相互作用部において進行波電極はまっすぐとし、光導波路のみ光導波路シフト部20cにおいて位置的にずらしている。しかしながら、この第3実施形態においては、第1の光導波路18aと第2の光導波路18bをシフトするとともに、電極の製作性とマイクロ波の透過特性(S21)や反射特性(S11)の観点から実用上問題がない程度に中心導体24a、接地導体24b、24cからなる進行波電極をシフトさせている。こうすることにより、光導波路シフト部25cの一部においても光変調を行うことができるので、事実上、第1の相互作用部25aの長さLと第2の相互作用部25bの長さLをより長くすることが可能となる。従って、進行波電極がまっすぐな本発明の第1実施形態と比較してより効率の良い光変調を実現できることになる。
なお、以上の説明においては、各相互作用部での中心導体の幅や中心導体と接地導体の間のギャップは一定としたが、これらを各領域において異ならしめても良い。
分岐光導波路の例としてマッハツェンダ光導波路を用いたが、方向性結合器などその他の分岐合波型の光導波路にも本発明を適用可能であることは言うまでもないし、考え方は3本以上の光導波路にも適用可能である。また光導波路の形成法としてはTi熱拡散法の他に、プロトン交換法など光導波路の各種形成法を適用できるし、バッファ層としてSiO以外の各種材料も適用できる。
電極構成としてはCPW電極を用いた構成について説明したが、非対称コプレーナストリップ(ACPS)あるいは対称コプレーナストリップ(CPS)など、その他の構成でも良い。また、相互作用部におけるz−カットLN基板の分極を反転した領域は1箇所として説明したがそれ以上とし、分極を反転しない領域と分極を反転させた領域を交互に組み合わせた構造でも良いことは言うまでもない。
さらに、従来使用されている進行波電極を厚くする、あるいはバッファ層を厚くするなど電気信号と光の速度差を小さくする手法はそのまま本発明にも適用可能である。また電気信号の出力側を40Ωや50Ωなどの終端器で終端しても良いことは言うまでもない。
以上のように、本発明にかかる光変調器は、第1の相互作用部と第2の相互作用部において、中心導体及び接地導体と、第1の光導波路と第2の光導波路の相対位置が入れ替わるよう光導波路シフト部を設けることによって、高度な製作技術が必要となる進行波電極を大きく変形して製作する必要がない。従って、マイクロ波である電気信号の特性の劣化を極力抑えることができるという効果を有し、光信号パルスのチャーピングを極力抑えることが可能な光変調器として有用である。
本発明の第1実施形態に係る光変調器の上面図 図1のC−C’における断面図 本発明の効果を説明する図 本発明の第2実施形態に係る光変調器の上面図 図4のD−D’における断面図 本発明の第3実施形態に係る光変調器の上面図 第1従来例 図7のA−A’における断面図 第1従来例における望ましい電気力線の分布 第2従来例 第3従来例の上面図 図11のB−B’における断面図 第4従来例 第4従来例の問題点を説明する図
符号の説明
1:z−カットLN基板
2:SiOバッファ層
3、9、13、18、22:マッハツェンダ光導波路
3a、9a、13a、18a、22a:第1の光導波路
3b、9b、13b、18b、22b:第2の光導波路
4:進行波電極
4a、6a、6b、10、10a、10b、14a、19a、24a:中心導体
4b、4c、7a、7b、7c、11a、11b、11c、14b、14c、19b、19c、24b、24c:接地導体
5、8、12:電気力線
1a、15a、17a、21a、21c:分極非反転領域
1b、15b、17b、21b:分極反転領域
16a、20a、23a、25a:分極非反転領域における相互作用部(第1の相互作用部)
16b、20b、23b、25b:分極反転領域における相互作用部(第2の相互作用部)
16c:遷移領域
20c、23d、23e、25c:光導波路シフト部
23c:分極非反転領域における相互作用部(第3の相互作用部)

Claims (8)

  1. 電気光学効果を有する材料からなるとともに、分極を反転しない領域と分極を反転する領域を有する基板と、
    前記基板の一面側に形成され、入射した光を分岐するための分岐光導波路と、分岐された前記光を伝搬するための第1の光導波路及び第2の光導波路と、前記第1の光導波路と前記第2の光導波路を伝搬する前記光を合波するための合波光導波路を備えた光導波路を具備し、
    前記第1の光導波路と前記第2の光導波路を伝搬する光と、中心導体及び接地導体からなる進行波電極を伝搬する電気信号が相互作用する相互作用部が、互いに異なる方向に分極した第1の相互作用部と第2の相互作用部を含み、
    前記中心導体は前記第1の相互作用部と前記第2の相互作用部で前記第1の光導波路もしくは前記第2の光導波路に対向し、
    前記第1の相互作用部及び前記第2の相互作用部で前記第1の光導波路と前記第2の光導波路を伝搬する前記光の位相を変調して光信号パルスを生成する光変調器において、
    前記第1の相互作用部と前記第2の相互作用部の間に光導波路シフト部を設けることにより、
    前記第1の相互作用部における前記第1の光導波路の光軸と前記第2の相互作用部における前記第1の光導波路の光軸とを異ならしめるとともに、前記第1の相互作用部における前記第2の光導波路の光軸と前記第2の相互作用部における前記第2の光導波路の光軸とを異ならしめ、
    前記第1の相互作用部と前記第2の相互作用部にて、前記中心導体及び前記接地導体と、前記第1の光導波路と前記第2の光導波路の相対位置が入れ替わっており、
    また、前記相互作用部における前記中心導体は直線でなっており、
    前記相互作用部では前記進行波電極に電気的な不連続部を有さないことを特徴とする光変調器。
  2. 電気光学効果を有する材料からなるとともに、分極を反転しない領域と分極を反転する領域を有する基板と、
    前記基板の一面側に形成され、入射した光を分岐するための分岐光導波路と、分岐された前記光を伝搬するための第1の光導波路及び第2の光導波路と、前記第1の光導波路と前記第2の光導波路を伝搬する前記光を合波するための合波光導波路を備えた光導波路を具備し、
    前記第1の光導波路と前記第2の光導波路を伝搬する光と、中心導体及び接地導体からなる進行波電極を伝搬する電気信号が相互作用する相互作用部が、互いに異なる方向に分極した第1の相互作用部と第2の相互作用部を含み、
    前記中心導体は前記第1の相互作用部と前記第2の相互作用部で前記第1の光導波路もしくは前記第2の光導波路に対向し、
    前記第1の相互作用部及び前記第2の相互作用部で前記第1の光導波路と前記第2の光導波路を伝搬する前記光の位相を変調して光信号パルスを生成する光変調器において、
    前記第1の相互作用部と前記第2の相互作用部の間に光導波路シフト部を設けることにより、
    前記第1の相互作用部における前記第1の光導波路の光軸と前記第2の相互作用部における前記第1の光導波路の光軸とを異ならしめるとともに、前記第1の相互作用部における前記第2の光導波路の光軸と前記第2の相互作用部における前記第2の光導波路の光軸とを異ならしめ、
    前記第1の相互作用部と前記第2の相互作用部にて、前記中心導体及び前記接地導体と、前記第1の光導波路と前記第2の光導波路の相対位置が入れ替わっており、
    また、前記光導波路シフト部にて前記中心導体の一部が前記第1の光導波路と前記第2の光導波路の少なくとも一方と略平行に形成されており、前記中心導体のシフト量が前記第1の光導波路と前記第2の光導波路の中心間距離よりも小さいことを特徴とする光変調器。
  3. 前記第1の相互作用部の長さと前記第2の相互作用部の長さが略等しいことを特徴とする請求項1または2に記載の光変調器。
  4. 前記第1の相互作用部の長さが前記第2の相互作用部の長さよりも短いことを特徴とする請求項1または2に記載の光変調器。
  5. 前記相互作用部における前記分極を反転しない領域及び前記分極を反転した領域の少なくとも一方が複数個あり、該それぞれの領域の境界に前記光導波路シフト部を設けたことを特徴とする請求項1または2に記載の光変調器。
  6. 前記相互作用部における前記分極を反転しない領域及び前記分極を反転した領域の数の和が奇数個であることを特徴とする請求項に記載の光変調器。
  7. 前記相互作用部における前記分極を反転しない領域及び前記分極を反転した領域の各々の長さの和が互いに略等しいことを特徴とする請求項に記載の光変調器。
  8. 前記基板が前記分極を反転しない領域及び前記分極を反転した領域のどちらか一方である場合よりも、前記光信号パルスのチャーピングが小さくなることを特徴とする請求項1乃至に記載の光変調器。
JP2005324625A 2005-02-17 2005-11-09 光変調器 Expired - Fee Related JP4198709B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005324625A JP4198709B2 (ja) 2005-02-17 2005-11-09 光変調器
EP06713874A EP1850167A1 (en) 2005-02-17 2006-02-16 Optical modulator
PCT/JP2006/302733 WO2006088093A1 (ja) 2005-02-17 2006-02-16 光変調器
CA002598092A CA2598092A1 (en) 2005-02-17 2006-02-16 Optical modulation device
CN2006800101275A CN101151571B (zh) 2005-02-17 2006-02-16 光调制器
US11/884,407 US8311371B2 (en) 2005-02-17 2006-02-16 Optical modulation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005040883 2005-02-17
JP2005324625A JP4198709B2 (ja) 2005-02-17 2005-11-09 光変調器

Publications (2)

Publication Number Publication Date
JP2006259686A JP2006259686A (ja) 2006-09-28
JP4198709B2 true JP4198709B2 (ja) 2008-12-17

Family

ID=36916494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324625A Expired - Fee Related JP4198709B2 (ja) 2005-02-17 2005-11-09 光変調器

Country Status (6)

Country Link
US (1) US8311371B2 (ja)
EP (1) EP1850167A1 (ja)
JP (1) JP4198709B2 (ja)
CN (1) CN101151571B (ja)
CA (1) CA2598092A1 (ja)
WO (1) WO2006088093A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055947B2 (ja) * 2006-10-20 2012-10-24 富士通オプティカルコンポーネンツ株式会社 光変調器および送信装置
GB2452505A (en) * 2007-09-05 2009-03-11 Univ Kent Canterbury Optical external modulator and method of modulating a light beam
JP2011191346A (ja) * 2010-03-12 2011-09-29 Anritsu Corp 光変調器
CN103852917B (zh) * 2012-11-30 2018-10-26 陈伟民 电光调制器
JP6107869B2 (ja) * 2015-03-31 2017-04-05 住友大阪セメント株式会社 光変調器
CN105098296B (zh) * 2015-09-11 2018-12-14 中国科学技术大学 一种基于共面波导的电磁辐射结构
US9915849B2 (en) * 2016-02-08 2018-03-13 Mitsubishi Electric Corporation Optical modulator
CN106500741A (zh) * 2016-11-01 2017-03-15 中国科学院西安光学精密机械研究所 一种基于铌酸锂相位调制器的相位生成载波解调装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3701041B2 (ja) * 1994-10-12 2005-09-28 住友大阪セメント株式会社 導波路型光変調器
FR2816719B1 (fr) * 2000-11-16 2003-03-28 Centre Nat Rech Scient Modulateurs electro-optiques large bande
US6501867B2 (en) * 2001-04-17 2002-12-31 Lucent Technologies Inc. Chirp compensated Mach-Zehnder electro-optic modulator
US7027668B2 (en) * 2002-05-02 2006-04-11 Covega Corporation Optical modulators with coplanar-waveguide-to-coplanar-strip electrode transitions
JP2005091698A (ja) * 2003-09-17 2005-04-07 Ngk Insulators Ltd 光変調器

Also Published As

Publication number Publication date
US20100054654A1 (en) 2010-03-04
CN101151571B (zh) 2010-11-10
US8311371B2 (en) 2012-11-13
WO2006088093A1 (ja) 2006-08-24
CN101151571A (zh) 2008-03-26
CA2598092A1 (en) 2006-08-24
JP2006259686A (ja) 2006-09-28
EP1850167A1 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US7088875B2 (en) Optical modulator
JP2603437B2 (ja) 周期的ドメイン反転電気・光変調器
US7394950B2 (en) Optical modulator
JP4151798B2 (ja) 光変調器
JP4278586B2 (ja) 光変調器
US7058241B2 (en) Optical modulator
WO2006088093A1 (ja) 光変調器
JP2009205154A (ja) 光変調デバイス
JP5493670B2 (ja) 光変調器および光送信器
US8606053B2 (en) Optical modulator
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP4812476B2 (ja) 光変調器
JP2848454B2 (ja) 導波型光デバイス
JP2006189773A (ja) 対称構造を有する低電圧型光変調器
JP4138760B2 (ja) 光変調器
WO2004086126A1 (ja) 導波路型光変調器
JP2008009314A (ja) 光導波路素子、光変調器および光通信装置
JP4926423B2 (ja) 光変調器
JP4544479B2 (ja) 光導波路型変調器
JP2005141171A (ja) 光変調器
JP5271294B2 (ja) リッジ光導波路とそれを用いた光変調器
JP4519436B2 (ja) 反射型光変調器
KR20040017535A (ko) 저 유전율 기판을 이용한 저전압 광 변조기
JP2011191346A (ja) 光変調器
JP2015059994A (ja) 光変調器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080610

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees