JP2009041036A - バイオマス資源由来ポリエステル及びその製造方法 - Google Patents
バイオマス資源由来ポリエステル及びその製造方法 Download PDFInfo
- Publication number
- JP2009041036A JP2009041036A JP2008263163A JP2008263163A JP2009041036A JP 2009041036 A JP2009041036 A JP 2009041036A JP 2008263163 A JP2008263163 A JP 2008263163A JP 2008263163 A JP2008263163 A JP 2008263163A JP 2009041036 A JP2009041036 A JP 2009041036A
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- acid
- ppm
- derived
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/20—Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/46—Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L99/00—Compositions of natural macromolecular compounds or of derivatives thereof not provided for in groups C08L89/00 - C08L97/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/13—Brevibacterium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W90/00—Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
- Y02W90/10—Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Polyesters Or Polycarbonates (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
- Inorganic Chemistry (AREA)
Abstract
【解決手段】主たる繰り返し単位がジカルボン酸単位及びジオール単位であるポリエステルにおいて、該ポリエステルの原料であるジカルボン酸及びジオールの少なくとも一方がバイオマス資源から得られたものであって、該ポリエステル中の酸末端量が50当量/トン以下のバイオマス資源由来ポリエステルおよびバイオマス資源由来ポリエステルの製造方法。
【選択図】なし
Description
しかしながら、これらのプロセスは、発酵により一旦ジカルボン酸を有機酸塩として得た後に中和、抽出、晶析等の工程を経て目的とするジカルボン酸を製造するプロセスである為、ジカルボン酸中には、バイオマス資源に含まれる窒素元素の他、発酵菌由来の窒素元素やアンモニアならびに金属カチオン等の多くの不純物が混入する特徴がある。
また、バイオマス資源由来ポリエステルの製造方法が開示されている(特許文献2)。
未来材料,第1巻,第11号,31頁(2001)
即ち、本発明の要旨は、以下の通りである。
(1)主たる繰り返し単位がジカルボン酸単位及びジオール単位であるポリエステルにおいて、該ポリエステルの原料であるジカルボン酸及びジオールの少なくとも一方がバイオマス資源から得られたものであって、該ポリエステル中の酸末端量が50当量/トン以下であることを特徴とするバイオマス資源由来ポリエステル。
(2)ポリエステルの還元粘度(ηsp/c)が、1.0以上であることを特徴とする上記(1)に記載のバイオマス資源由来ポリエステル。
(3)ポリエステル中の水分量が、質量比で該ポリエステルに対して1ppm以上3000ppm以下であることを特徴とする、上記(1)又は(2)に記載のバイオマス資源由来ポリエステル。
(4)ポリエステルのYI値が、−10以上30以下であることを特徴とする上記(1)〜(3)いずれか1項に記載のバイオマス資源由来ポリエステル。
(6)ポリエステル中の硫黄原子含有量が、該ポリエステルに対して質量比で0.0001ppm以上50ppm以下であることを特徴とする上記(1)〜(5)いずれかに1項に記載のバイオマス資源由来ポリエステル。
(7)ポリエステルが、3官能以上の多価アルコール、3官能以上の多価カルボン酸および3官能以上のオキシカルボン酸からなる群から選ばれる少なくとも1種の3官能以上の多官能化合物単位を含有することを特徴とする上記(1)〜(6)のいずれか1項に記載のバイオマス資源由来ポリエステル。
(8)3官能以上の多官能化合物単位の含有量が、ポリエステルを構成する全単量体単位100モル%に対して、0.0001モル%以上0.5モル%以下であることを特徴とする上記(7)に記載のバイオマス資源由来ポリエステル。
(10)ジカルボン酸とジオールとの反応によりポリエステルを製造する方法において、反応に供するジカルボン酸原料及びジオール原料の少なくとも一方がバイオマス資源から誘導されたものであり,ジカルボン酸原料及びジオール原料中の窒素原子含有量が、原料の総和に対して質量比で0.01ppm以上2000ppm以下であり、該ポリエステル中の酸末端量が50当量/トン以下であることを特徴とするバイオマス資源由来ポリエステルの製造方法。
(11)ジカルボン酸とジオールとの反応によりポリエステルを製造する方法において、反応に供するジカルボン酸原料及びジオール原料の少なくとも一つがバイオマス資源から誘導されたものであり,ジカルボン酸原料及びジオール原料中の硫黄原子含有量が、原料の総和に対して質量比で0.01ppm以上100ppm以下であることを特徴とするバイオマス資源由来ポリエステルの製造方法。
(12)ジカルボン酸原料及び/又はジオール原料中の窒素原子含有量が、ジカルボン酸原料及びジオール原料中の窒素原子含有量が、原料の総和に対して質量比で0.01ppm以上2000ppm以下であることを特徴とする上記(11)に記載のバイオマス資源由来ポリエステルの製造方法。
(14)上記(10)〜(13)のいずれか一項に記載の製造方法により得られるバイオマス資源由来ポリエステル。
(15)上記(1)〜(9)及び(14)のいずれか1項に記載のポリエステル99.9〜0.1重量%に対して熱可塑性樹脂、生分解性樹脂、天然樹脂、または多糖類を0.1〜99.9重量%配合したことを特徴とするバイオマス資源由来ポリエステル樹脂組成物。
(16)上記(1)〜(9)及び(14)に記載のいずれか1項に記載のバイオマス資源由来ポリエステルを成形してなる成形体。
(17)上記(15)に記載のポリエステル樹脂組成物を成形してなる成形体。
(18)上記(1)〜(9)及び(14)に記載のいずれか1項に記載のバイオマス資源由来ポリエステルから得られるペレット。
<ポリエステル>
本発明の対象とするポリエステルは、ジカルボン酸単位およびジオール単位を必須成分とする。なお、本発明においてジカルボン酸単位およびジオール単位を構成するジカルボン酸及びジオールは、少なくともいずれかがバイオマス資源から誘導されたものであることが好ましい。
・ジカルボン酸単位
ジカルボン酸単位を構成するジカルボン酸としては、脂肪族ジカルボン酸又はそれらの混合物、若しくは、芳香族ジカルボン酸又はそれらの混合物、芳香族ジカルボン酸と脂肪族ジカルボン酸との混合物が挙げられる。これらの中でも脂肪族ジカルボン酸を主成分とするものが好ましい。本発明でいう主成分とは、全ジカルボン酸単位に対して、通常50モル%以上、好ましくは60モル%以上、より好ましくは70モル%以上、特に好ましくは90モル%以上を示す。
本発明において、これらのジカルボン酸は、バイオマス資源から誘導されるものが好ましい。
本発明でいうバイオマス資源とは、植物の光合成作用で太陽の光エネルギーがデンプンやセルロースなどの形に変換されて蓄えられたもの、植物体を食べて成育する動物の体や、植物体や動物体を加工してできる製品等が含まれる。この中でも、より好ましいバイオマス資源としては、植物資源であるが、例えば、木材、稲わら、籾殻、米ぬか、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、おから、コーンコブ、タピオカカス、バガス、植物油カス、芋、そば、大豆、油脂、古紙、製紙残渣、水産物残渣、家畜排泄物、下水汚泥、食品廃棄物等が挙げられる。この中でも木材、稲わら、籾殻、米ぬか、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、おから、コーンコブ、タピオカカス、バガス、植物油カス、芋、そば、大豆、油脂、古紙、製紙残渣等の植物資源が好ましく、より好ましくは、木材、稲わら、籾殻、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、芋、油脂、古紙、製紙残渣であり、最も好ましくはとうもろこし、さとうきび、キャッサバ、サゴヤシである。これらのバイオマス資源は、一般に、窒素元素やNa、K、Mg、Ca等の多くのアルカリ金属、アルカリ土類金属を含有する。
微生物変換に用いる微生物としては、ジカルボン酸の生産能を有すれば特に限定されないが、例えば、Anaerobiospirillum属 (米国特許第5143833号明細書)等の嫌気性細菌、Actinobacillus属(米国特許第5504004号明細書)、Escherichia属(米国特許第5770435号明細書)等の通性嫌気性細菌(E.coli(J.Bacteriol.,57:147−158)又はE.coliの株の変異体(特表2000−500333号公報、米国特許第6159738号明細書)など)、Corynebacterium属(特開平11−113588号公報)などの好気性細菌、Bacillus属、Rizobium属、Brevibacterium属、Arthrobacter属に属する好気性細菌(特開2003−235593号公報)、Bacteroidesruminicola、Bacteroidesamylophilus等の嫌気性ルーメン細菌などを用いることができる。これらの文献は、ここに参照として取り込まれる。
コリネ型細菌としては、コリネバクテリウム属に属する微生物、ブレビバクテリウム属に属する微生物又はアースロバクター属に属する微生物が挙げられ、このうち好ましくは、コリネバクテリウム属又はブレビバクテリウム属に属するものが挙げられ、更に好ましくは、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、ブレビバクテリウム・フラバム(Brevibacterium flavum)、ブレビバクテリウム・アンモニアゲネス(Brevibacterium ammoniagenes)又はブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)に属する微生物が挙げられる。
微生物変換においては、pHが低くなると微生物の代謝活性が低くなったり、或いは微生物が活動を停止するようになり、製造歩留まりが悪化したり、微生物が死滅するため、通常には中和剤を使用する。通常はpHセンサーによって反応系内のpHを計測し、所定のpH範囲となるように中和剤の添加によりpHを調節する。中和剤の添加方法については特に制限はなく、連続添加であっても間欠添加であってもよい。
発酵法を含む製造方法により得られるジカルボン酸の精製方法は電気透析を用いる方法、イオン交換樹脂を用いる方法、塩交換法等が知られている。例えばジカルボン酸塩を分離し純粋な酸を生成する電気透析および水分解工程を組み合わせて用いることによって製造し、更なる精製を、一連のイオン交換カラムに生成物ストリームを通すことによって達成しても良いし、ジカルボン酸の過飽和溶液に変換するための水分解電気透析を用いても良い(米国特許第5,034,105号明細書)。また、塩交換法としては、例えばジカルボン酸のアンモニア塩を硫酸水素アンモニウム及び/または硫酸と十分に低いpHで混合して反応させジカルボン酸及び硫酸アンモニウムを生成させても良い(特表2001−514900号公報)。イオン交換樹脂を用いる具体的方法としては、ジカルボン酸の溶液から遠心分離、濾過等により菌体等の固形分を除去した後、イオン交換樹脂で脱塩し、その溶液から結晶化或いはカラムクロマトグラフィーによりジカルボン酸を分離精製する方法が挙げられる。その他の精製方法としては、特開平3−30685号公報に記載のように水酸化カルシウムを中和剤として醗酵し、硫酸により硫酸カルシウムを析出させて除去した後、強酸性イオン交換樹脂、弱塩基性イオン交換樹脂を用いて処理する方法や特開平2−283289号公報に記載のように発酵法により生成した琥珀酸塩を、電気透析した後、強酸性イオン交換樹脂、弱塩基性イオン交換樹脂を用いて処理する方法が例示される。更には、USP6284904号明細書ならびに特開2004−196768号公報に記載の方法も好適に使用される。すなわち、本発明においては、精製方法はどのような方法を用いても良く、上記の、電気透析を用いる方法、イオン交換樹脂を用いる方法、硫酸等の酸で処理する方法、水、アルコール、カルボン酸或いはそれらの混合物を用いた晶析ならびに洗浄、ろ過、乾燥などの上記の公知文献や本発明の参考例に記載の任意の単位操作を任意の組み合わせで、必要に応じて繰り返し実施することにより本発明に適した精製されたモノマー原料を製造することができる。これらの中では、特に、コスト、効率の点でイオン交換法又は塩交換法が好ましく、工業的生産性の点で塩交換法が特に好ましい。
上述の方法にてバイオマス資源から誘導されたジカルボン酸には、バイオマス資源由来、発酵処理ならびに酸による中和工程を含む精製処理に起因して不純物として窒素原子が含まれてくる。具体的には、アミノ酸、たんぱく質、アンモニウム塩、尿素、発酵菌由来等の窒素原子が含まれてくる。
窒素原子含有量が上記の範囲にあるジカルボン酸を用いることで、得られるポリエステルの着色の減少に有利になる。また、ポリエステルの重合反応の遅延化を抑制する効果も併せ持つ。
また、発酵法により製造したジカルボン酸を用いる場合には、酸による中和工程を含む精製処理により硫黄原子が含まれてくる場合がある。具体的に、硫黄原子が含有される不純物としては、硫酸、硫酸塩、亜硫酸、有機スルホン酸、有機スルホン酸塩等が挙げられる。
酸素濃度を制御し原料を貯蔵するためには、通常タンクが用いられる。しかし、タンク以外でも酸素濃度を制御できる装置であれば特に限定されない。貯蔵タンクの種類は具体的には限定は無く、公知の金属製もしくはこれらの内面にガラス、樹脂などのライニングを施したもの、さらにはガラス製、樹脂製の容器などが用いられる。強度の面などから金属製もしくはそれらにライニングを施したものが好んで用いられる。金属製タンクの材としては、公知のものが使用され、具体的には、炭素鋼、フェライト系ステンレス鋼、SUS410等のマルテンサイト系ステンレス鋼、SUS310、SUS304、SUS316等のオーステナイト系ステンレス鋼、クラッド鋼、鋳鉄、銅、銅合金、アルミニウム、インコネル、ハステロイ、チタン等が挙げられる。
ジカルボン酸の貯蔵タンク内の圧力は、通常、大気圧(常圧)である。
(2)ジオール単位
本発明においてジオール単位とは、芳香族ジオール及び/又は脂肪族ジオールから誘導されるものであり、公知の化合物を用いることができるが、脂肪族ジオールを使用するのが好ましい。
脂肪族ジオールの具体例としては、例えば、エチレングリコール、1,3−プロピレングリコ−ル、ネオペンチルグリコール、1,6−ヘキサメチレングリコール、デカメチレングリコール、1,4−ブタンジオール及び1,4−シクロヘキサンジメタノール等が挙げられる。これらは、単独でも2種以上の混合物として使用してもよい。
両末端ヒドロキシポリエーテルの具体例としては、例えば、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ1,3−プロパンジオール及びポリ1,6−ヘキサメチレングリコール等が挙げられる。また、ポリエチレングリコールとポリプロピレングリコールとの共重合ポリエーテル等を使用することもできる。これらの両末端ヒドロキシポリエーテルの使用量は、ポリエステル中の含量として、通常90重量%以下、好ましくは50重量%以下、より好ましくは30重量%以下に計算される量である。
例えば発酵法により得られたコハク酸、コハク酸無水物、コハク酸エステル、マレイン酸、マレイン酸無水物、マレイン酸エステル、テトラヒドロフラン、γ−ブチロラクトン等から化学合成により1,4−ブタンジオールを製造しても良いし、発酵法により得られた1,3−ブタジエンから1,4−ブタンジオールを製造してもよい。この中でもコハク酸を還元触媒により水添して1,4−ブタンジオールを得る方法が効率的で好ましい。
バイオマス資源由来から誘導されたジオールには、バイオマス資源由来、発酵処理ならびに酸による中和工程を含む精製処理に起因して不純物として窒素原子が含まれてくる場合がある。この場合、具体的には、アミノ酸、蛋白質、アンモニア、尿素、発酵菌由来の窒素原子が含まれてくる。
ジオール中に含まれる硫黄原子含有量は、ジオール中に、該ジオールに対して質量比で、上限は通常100ppm以下、好ましくは、20ppm以下、より好ましくは、上限が10ppm以下、特に好ましくは、上限が5ppm以下、最も好ましくは、上限は0.5ppm以下である。一方、下限は特に制限されないが、通常、0.001ppm以上、好ましくは、0.01ppm以上、より好ましくは、0.05ppm以上、特に好ましくは、0.1ppm以上である。多すぎると、重合反応の遅延化や生成ポリマーの一部ゲル化、そして生成ポリマーのカルボキシル末端数量の増加や安定性の低下などが引き起こされる傾向がある。一方、硫黄原子含有量が少ない程、好ましい形態であるが、精製工程が煩雑となり経済的に不利になる。硫黄原子含有量は、公知の元素分析法により測定される値である。
本発明において、色相の良いポリマー製造に用いられるジオールの酸化生成物の含有量の上限は、通常、ジオール中、10000ppm以下、好ましくは、5000ppm以下、より好ましくは3000ppm以下、最も好ましくは2000ppm以下である。一方、下限は特に制限されないが、通常、1ppm以上、好ましくは、精製工程の経済性の理由から10ppm以上、より好ましくは100ppm以上である。
本発明においては、通常、ジオールは蒸留による精製工程を経てポリエステル原料として使用される。
シュウ酸を用いたポリエステルとしては、シュウ酸とエチレングリコールのポリエステル、シュウ酸と1,3−プロピレングリコ−ルのポリエステル、シュウ酸とネオペンチルグリコールのポリエステル、シュウ酸と1,6−ヘキサメチレングリコールのポリエステル、シュウ酸と1,4−ブタンジオールのポリエステル及びシュウ酸と1,4−シクロヘキサンジメタノールのポリエステルなどが例示できる。
その他、上記のジカルボン酸を組み合わせたポリエステルも好ましい組み合わせであり、コハク酸とアジピン酸とエチレングリコールのポリエステル、コハク酸とアジピン酸と1,4−ブタンジオールのポリエステル、テレフタル酸とアジピン酸と1,4−ブタンジオールのポリエステル及びテレフタル酸とコハク酸と1,4−ブタンジオールのポリエステルなどが例示できる。
2官能のオキシカルボン酸としては、具体的には、乳酸、グリコール酸、ヒドロキシ酪酸、ヒドロキシカプロン酸、2−ヒドロキシ3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−ヒドロキシイソカプロン酸、カプロラクトン等が挙げられるが、これらはオキシカルボン酸のエステルやラクトン、或いはオキシカルボン酸重合体等の誘導体であっても良い。また、これらオキシカルボン酸は単独でも、二種以上の混合物として使用することもできる。これらに光学異性体が存在する場合には、D体、L体、またはラセミ体のいずれでもよく、形態としては固体、液体、または水溶液であってもよい。これらの中では、入手の容易な乳酸またはグリコール酸が特に好ましい。形態は、30〜95%の水溶液のものが容易に入手することができるので好ましい。高重合度のポリエステルを容易に製造する目的で2官能のオキシカルボン酸を共重合成分として使用する場合、任意の2官能のオキシカルボン酸を重合時に添加すると所望の共重合ポリエステルが製造できる。具体的には、その効果が発現する使用量の下限としては、通常、原料モノマーに対して通常、0.02モル%以上、好ましくは0.5モル%以上、より好ましくは1.0モル%以上である。一方、使用量の上限は、通常30モル%以下、好ましくは20モル%以下、より好ましくは10モル%以下である。
具体的にそのポリエステルの態様を示すと、2官能のオキシカルボン酸として乳酸を用いると、例えば、コハク酸−1,4−ブタンジオール−乳酸の共重合ポリエステルやコハク酸−アジピン酸−1,4−ブタンジオール−乳酸の共重合ポリエステルとなる。グリコール酸を用いると、例えば、コハク酸−1,4−ブタンジオール−グリコール酸の共重合ポリエステルである。
共重合成分の3官能以上の多価アルコールとしてペンタエリスリトールを用いると、例えば、コハク酸−1,4−ブタンジオール−ペンタエリスリトールの共重合ポリエステルやコハク酸−アジピン酸−1,4−ブタンジオール−ペンタエリスリトールの共重合ポリエステルとなる。3官能以上の多価アルコールを任意に変えて、所望の共重合ポリエステルが製造できる。これらの共重合ポリエステルを鎖延長(カップリング)した高分子量のポリエステルも本発明のポリエステルの範疇に属する。
3官能以上の多価カルボン酸またはその無水物としては、具体的には、プロパントリカルボン酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、シクロペンタテトラカルボン酸無水物等が挙げられ、単独でも、二種以上の混合物として使用することもできる。
勿論、更に2官能のオキシカルボン酸との組み合わせで、例えば、コハク酸−1,4−ブタンジオール−リンゴ酸−乳酸の共重合ポリエステル、コハク酸−アジピン酸−1,4−ブタンジオール−リンゴ酸−乳酸の共重合ポリエステル、コハク酸−1,4−ブタンジオール−リンゴ酸−酒石酸−乳酸の共重合ポリエステル、コハク酸−アジピン酸−1,4−ブタンジオール−リンゴ酸−酒石酸−乳酸の共重合ポリエステル、コハク酸−1,4−ブタンジオール−リンゴ酸−クエン酸−乳酸の共重合ポリエステル、コハク酸−アジピン酸−1,4−ブタンジオール−リンゴ酸−クエン酸−乳酸の共重合ポリエステルとなる。
より具体的には、ジオールとジカルボン酸(またはその無水物)とを触媒反応させて得られる、末端基が実質的にヒドロキシル基を有し、重量平均分子量(Mw)が20,000以上、好ましくは40,000以上のポリエステルに上記鎖延長剤を反応させることにより、より高分子量化したポリエステル系樹脂を得ることができる。重量平均分子量が20,000以上のプレポリマーは、少量のカップリング剤の使用で、溶融状態といった苛酷な条件下でも、残存する触媒の影響を受けないので反応中にゲルを生ずることなく、高分子量のポリエステルを製造することができる。
鎖延長時の圧力は、通常、0.01MPa以上、1MPa以下、好ましくは、0.05MPa以上、0.5MPa以下、より好ましくは、0.07MPa以上、0.3MPa以下であるが、常圧が最も好ましい。
珪酸エステルは、環境保全ならびに安全性の面の理由からは、特にその使用量に制限はされないが、操作が煩雑になったり、重合速度に影響を与える可能性があるため、その使用量は少ない方が良い場合がある。従って、この含有量は、ポリエステルを構成する全単量体単位に対して、0.1モル%以下とするのが好ましく、10−5モル%以下とするのが更に好ましい。
尚、本発明においては実質上鎖延長剤を含有しないポリエステルが好ましい。但し、溶融テンションを高めるために、毒性の低い化合物を添加する限り、少量のパーオキサイドを添加してもよい。
また本発明においては、ポリエステル末端基をカルボジイミド、エポキシ化合物、単官能性のアルコール又はカルボン酸で封止しても良い。
カルボジイミド化合物としては、分子中に1個以上のカルボジイミド基を有する化合物(ポリカルボジイミド化合物を含む)が挙げられ、具体的には、モノカルボジイミド化合物として、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t−ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ−t−ブチルカルボジイミド、ジ−β−ナフチルカルボジイミド、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドなどが例示される。ポリカルボジイミド化合物としては、その重合度が、下限が通常2以上、好ましくは4以上であり、上限が通常40以下、好ましくは、30以下であるものが使用され、米国特許第2941956号明細書、特公昭47−33279号公報、J.Org.Chem.28巻、p2069−2075(1963)、及びChemical Review 1981、81巻、第4号、p.619−621等に記載された方法により製造されたものが挙げられる。
カルボジイミド化合物は単独で使用することもできるが、複数の化合物を混合して使用することもできる。
ジオール単位及びジカルボン酸単位を主体とするポリエステルの製造は、ポリエステルを製造する公知技術で行うことができる。このポリエステルを製造する際の重合反応は、従来から採用されている適切な条件を設定することができ、特に制限されない。具体的には、上記のジカルボン酸成分とジオール成分、更にオキシカルボン酸単位や3官能以上の成分を導入する場合には、それらの成分も含めたジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応を行った後、減圧下での重縮合反応を行うといった溶融重合の一般的な方法や、有機溶媒を用いた公知の溶液加熱脱水縮合方法によって製造することができるが、経済性ならびに製造工程の簡略性の観点から、無溶媒下で行う溶融重合法が好ましい。
製造反応中の反応槽中の酸素濃度は、反応槽全体積に対して、下限は、特に限定されないが通常1.0×10−9%以上、好ましくは1.0×10−7%以上であり、上限が通常10%以下、好ましくは1%以下、より好ましくは、0.1%以下、最も好ましくは、0.01%以下である。酸素濃度が低すぎる場合には、管理工程が煩雑となる傾向があり、また、高すぎる場合には、上記の理由で得られるポリエステルの着色が著しくなる傾向がある。
ここで言う“最終攪拌速度”とは、後述する縮重合反応中において、所望の粘度のポリマーを製造した際の攪拌装置の最低攪拌回転数を示す。但し、製造ポリマー抜き出し操作等に伴う攪拌装置の停止操作は、縮重合反応中の定義の中には含まれない。
エステル化反応時の攪拌速度は、下限が通常30rpm以上、好ましくは、50rpm以上、より好ましくは、80rpm以上であり、上限は、1000rpm以下、好ましくは500rpm以下である。攪拌速度が遅すぎる場合には、留去効率が悪く、エステル化反応が遅くなる傾向があり、例えばジオールの脱水反応や脱水環化等が引き起こされる傾向がある。それによりジオール/ジカルボン酸の比率が崩れて重合速度が低下したり、より過剰のジオールを仕込む必要が生じる等の欠点を有する、また、速すぎる場合には、余計な動力を消費するため経済的に不利である。
移送管内の圧力は、通常、0.1kPaから1MPaであるが、操作性の観点から0.05MPa以上0.3Mpa以下程度の圧力で使用される。
また、重縮合反応は、重合触媒の存在下に行うのが好ましい。重合触媒の添加時期は、重縮合反応以前であれば特に限定されず、原料仕込み時に添加しておいてもよく、減圧開始時に添加してもよい。
反応時間は、下限が通常1時間以上であり、上限が通常10時間以下、好ましくは、4時間以下である。
一方、芳香族ポリエステルを製造する際には上述のように過剰のジオールを用いて前者のジオールを留去しながらポリエステルの重合度を高める方法が好ましい製造法である。
重合反応槽より抜き出す際のポリエステルの温度は、重合終了後、反応槽の圧力を減圧からから常圧以上に復圧した際の樹脂温度をTeとしたとき、下限は、(Te−50)℃以上、好ましくは(Te−30)℃以上であり、より好ましくは、(Te−20)℃以上、最も好ましくは、(Te−10)℃以上であり、上限が(Te+20)℃以下、好ましくは(Te+10)℃以下、より好ましくは、Te℃以下である。温度が低すぎる場合には、抜き出し時のポリエステルの粘度が上昇し、抜き出し難くなり生産性に問題が生じる傾向があり、また、高すぎる場合には、ポリエステルの熱分解が顕著になる傾向がある。
また、本発明において、重合反応終了後、重合反応槽より抜き出されたストランド状のポリエステルを特定温度以下の水性媒体に接触させてもよい。これにより、高粘度のポリエステルの分解を抑制させたまま得ることができる。
また、溶媒の温度は、下限が通常−20℃以上、好ましくは−10℃以上であり、より好ましくは、0℃以上、最も好ましくは、4℃以上であり、上限が通常20℃以下、好ましくは15℃以下、より好ましくは、10℃以下である。温度が低すぎる場合には、媒体の冷却設備運転コストが高くなり経済的に不利になる傾向があり、また、高すぎる場合には、ストランドでの抜き出し時にポリエステルの熱分解が顕著になる傾向がある。
<ポリエステルペレット>
重合反応終了後、重合反応槽からストランド状で抜き出されたポリエステルは、水、空気、その他で冷却しながらもしくは冷却後、公知の固定式、回転式のカッターやペレタイザーを用いてペレット化され、貯蔵してもよい。
ポリエステルペレットの径は、重合槽からの抜出口径、ストランド抜き出し速度、引き取り速度ならびにカッティング速度等の調整により調整される。具体的には、例えば、ポリマー抜き出し時の反応槽の圧力を調整したり、回転式ストランドカッターのカッティング速度を調整することにより調整される。
本発明においては、貯蔵時のポリエステルペレット中の水含有量を調整してもよい。その水含有量は、質量比で該ポリエステルに対して下限は特に限定されないが、通常0.1ppm以上、好ましくは0.5ppm以上であり、より好ましくは、1ppm以上、最も好ましくは、10ppm以上であり、上限が通常3000ppm以下、好ましくは2000ppm以下、より好ましくは、1000ppm以下、特に好ましくは、800ppm以下、最も好ましくは、500ppm以下である。水含有量が少なすぎる場合には、設備や管理工程が煩雑となり経済的に不利になる傾向があるばかりでなく、乾燥時間に多大な時間を要するためポリエステルの着色やブツの生成等の劣化が引き起こされる傾向がある。一方、多すぎる場合には、ペレット保存時の加水分解によるポリエステルの劣化が顕著になる傾向がある。
密閉する方法は、密閉機能を備えた空間で貯蔵しておく方法、密閉機能を備えた袋に貯蔵しておく方法、密閉機能を備えたシートをポリエステルペレットに覆う方法、乾燥雰囲気下(乾燥空気、窒素流通下を含む)のサイロに貯蔵しておく方法等が挙げられる。この中でも、密閉機能を備えた袋に入れ、貯蔵することが好ましい。
包装袋の形状は特に制限はなく、平袋、ガゼット袋、角底袋、フレコンなどのフレキシブル容器等公知の包装袋形状を採用することができる。これらの内、包装体としたときの胴部断面形状を概ね矩形とすることを考慮すると底面を有することが好ましく、ガゼット袋、角底袋、フレキシブル容器などが好ましい。そして、底面形状が概ね矩形であると容易に断面形状が概ね矩形の包装体とすることができるのでより好ましい。
遮光する方法としては、ポリエステルが遮光されている状態であれば特に制限されないが、具体的には、遮光機能を備えた空間で貯蔵しておく方法、遮光機能を備えた袋に貯蔵しておく方法、遮光機能を備えたシートをポリエステルペレットに覆う方法等が挙げられる。この中でも、遮光機能を備えた袋に入れ、貯蔵することが好ましい。
ポリエステルペレットを貯蔵する際の温度は、下限が−50℃以上、好ましくは、−30℃以上であり、より好ましくは、0℃以上であり、上限が80℃以下、好ましくは、50℃以下、より好ましくは、30℃以下であるが、管理工程が必要ではない理由から、室温で保存するのが最も好ましい。温度が低すぎる場合には、管理工程が煩雑となり経済的に不利である傾向があり、また、高すぎる場合には、ポリエステルの劣化が著しくなる傾向がある。
後述するポリエステル組成物をペレット化して上述の条件にて保存してもよい。
<ポリエステルの物性>
なお、本発明のポリエステルペレットは、以下のような物性を示すポリエステルから得られるものであり、貯蔵した場合においてもその物性の劣化は少ない。
本発明のポリエステルの物性特性は、ポリブチレンサクシネートやポリブチレンサクシネートアジペートのような脂肪族ジオールと脂肪族ジカルボン酸のポリエステルを例に説明すると、密度が1.2〜1.3g/cm3、融点は80〜120℃、引張強度30〜80Mpa、極限伸び300〜600%、引張弾性率400〜700Mpa、衝撃試験強度5〜20kJ/m2程度、ガラス転移点−45〜−25℃というような汎用のポリマーが有する特性を保有する。また、特定の用途を対象とした場合には、前記のような範囲の域を超えた、任意の広範囲の特性を保有するポリエステルとすることができる。さらに各種成形手段により成形品を製造することができる程度の融点、メルトインデックス、溶融粘弾性の特性を有することができる。これらの特性は、使用目的に応じて、ポリエステル原料や添加物の種類、重合条件或いは成形条件等を変えることにより任意に調整することができる。
本発明のポリエステルの数平均分子量は、ポリスチレン換算で通常、下限が通常5000以上、好ましくは1万以上、より好ましくは、1.5万以上であり、上限が通常50万以下、好ましくは30万以下である。
本発明のポリエステル中に共有結合された官能基以外で含まれる窒素原子含有量は該ポリエステル質量に対して1000ppm以下である。ポリエステル中に共有結合された官能基以外で含まれる窒素原子含有量は好ましくは500ppm以下、より好ましくは100ppm以下、更に好ましくは50ppm以下であり、その中でも40ppm以下が好ましく、更には30ppm以下が好ましく、20ppm以下が最も好ましい。重合体中のポリエステル中に共有結合された官能基以外で含まれる窒素原子含有量は主に原料中の窒素原子に由来するものであるが、ポリエステル中に共有結合された官能基以外で含まれる窒素原子含有量が1000ppm以下であると成型時の着色や異物の発生が少なく、成型後製品の熱または光等の劣化や加水分解が起こりにくく好ましい。
〔還元粘度(ηsp/c)測定条件〕
粘度管:ウベローデ粘度管
測定温度:30℃
溶媒:フェノール/テトラクロロエタン(1:1重量比)溶液
ポリエステル濃度:0.5g/dl
本発明のポリエステルは、ポリエステル(0.5g)をフェノール/テトラクロロエタン(1:1重量比)溶液(容量:1dl)に室温で溶解させた際、均一に溶解するポリエステルが好ましく、ポリエステルの不溶成分が生じる場合、通常、不溶成分量は全ポリエステル中、1重量%以下、より好ましくは、0.1重量%以下、特に好ましくは0.01重量%以下であることが好ましい。
上記のジカルボン酸及び/またはジオール中に含まれる窒素含有化合物や硫黄含有化合物が多量に存在するとこれらの不純物がポリマーの架橋点となる或いはこれらの窒素含有化合物や硫黄含有化合物によりポリマーの熱分解反応が促進される為にポリマー中のカルボキシル基末端濃度が増加する傾向がある。その様な理由から、カルボキシル基末端濃度を上記の範囲内に制御するためには、上述のような範囲内に窒素含有化合物量や硫黄含有化合物量を制御する、使用する触媒量を低減する、或いはより低い重合温度でポリマーの製造を実施する方法が好適に使用される
末端カルボキシル基量は、通常、公知の滴定方法により算出されるが、本発明においては、得られたポリエステルをベンジルアルコールに溶解し0.1N NaOHにて滴定した値であり、1×106g当たりのカルボキシル基当量である。
上述の方法で得られた脂肪族ポリエステルは、従来公知の各種の樹脂とブレンド(混練)することにより、ポリエステル組成物が得られる。このような樹脂としては、従来公知の各種の汎用の熱可塑性樹脂、生分解性樹脂、天然樹脂を用いることができ、好ましくは生分解性高分子や汎用の熱可塑性樹脂が挙げられる。これらを単独で用いても、2種類以上ブレンドして用いてもよい。各種樹脂はバイオマス資源から得られる樹脂であってもよい。
本発明の脂肪族ポリエステルは公知の各種の樹脂とブレンド(混練)により、任意の広範囲の特性を保有するポリエステル組成物とすることができる。例えば、ブレンド比によりその物性値は大きく変動するため特には限定されないが、後述するポリブチレンサクシネートとポリ乳酸とをブレンドさせた系では、引張強度30〜60Mpa、極限伸び3〜400%、引張弾性率500〜3000Mpa、引張降伏点強度30〜50Mpa、曲げ強度30〜100Mpa、曲げ弾性率600〜4000Mpa、衝撃試験強度5〜20kJ/m2程度というような汎用のポリマーが有する特性を保有できる。同様に、軟質系の芳香族系ポリエステルとのブレンド系では、引張強度30〜70Mpa、極限伸び400〜800%、引張降伏点強度10〜30Mpaというような汎用のポリマーが有する特性を保有できる。更には、ナイロン、ポリカーボネート、ポリアセタール、ABS、PET、ポリスチレン等の汎用樹脂との組み合わせにより密度が1〜1.4g/cm3、融点は150〜270℃、引張強度30〜80Mpa、極限伸び100〜600%、ガラス転移点−85〜150℃というような汎用のポリマーが有する特性を保有できる。これらの特性は、使用目的に応じて、ポリエステル原料や各種樹脂の種類、ブレンド量比や成形条件等を変えることにより任意に調整することができる。
本発明のバイオマス由来のポリエステルへ配合する汎用の熱可塑性樹脂としては、後述の石油由来のポリエステル、ポリ酢酸ビニル、ポリビニルアルコール、ポリエステル、ポリカーボネート、ポリアミドの汎用の熱可塑性樹脂を任意に選択できる。この場合には、バイオマス由来のポリエステルとの相溶性を考慮する必要がある。さらに、本発明のバイオマス由来のポリエステルの性質を適正に維持するためには、配合量も重要になる。通常は、バイオマス由来のポリエステルが99.9〜20重量%であり、汎用の可塑性樹脂が0.1〜80重量%程度のブレンドが可能である。しかし、バイオマス由来のポリエステルの生分解性の特性などを維持することを目的とする場合には、汎用の熱可塑性樹脂のブレンド量を50〜1重量%、目的にもよるが、好ましくは30〜3重量%程度とすると生分解性特性を維持しながら所定の物性が得られる。
これらの生分解性高分子のブレンド量は、単に生分解という目的では、両者がいずれも生分解性樹脂である場合には、本発明のバイオマス由来のポリエステル99.9〜0.1重量%に対して、生分解性高分子が0.1〜99.9重量%程度ブレンドしても適正に生分解性特性が発現するので、最も適正な特性の発現が可能な組成物である。しかし、本発明のバイオマス由来のポリエステルの観点からは、バイオマス由来のポリエステルが99.9〜40重量%であり、生分解性高分子が0.1〜60重量%程度のブレンドが好ましく、特に、生分解性高分子を5〜50重量%程度のブレンドがより好ましい。
本発明のバイオマス由来のポリエステルと天然樹脂、多糖類との相溶性の問題もある。これらを解決すれば、本発明のバイオマス由来のポリエステルと天然樹脂の組成物からなる材料は、使用済後の材料を投棄すれば、早期生分解消失はないにしても、天然樹脂、多糖類は腐敗して、土壌改良剤、堆肥としても有効である場合がある。この種のポリエステル組成物は、積極的に自然に、特に土壌に投棄することが推奨される場合があり、まさに、グリーンプラ製品としての有意性を高めることになる。以下に各樹脂の具体的な組成物を開示するが、特に限定されるものではない。
脂肪族ポリエステル系樹脂としては、脂肪族及び/又は脂環式ジオール単位並びに脂肪族及び/又は脂環式ジカルボン酸単位を必須成分とする脂肪族ポリエステル系樹脂、脂肪族オキシカルボン酸系樹脂等が挙げられる。
上記脂肪族オキシカルボン酸系樹脂を構成する脂肪族オキシカルボン酸単位の具体例としては、例えば、グリコール酸単位、乳酸単位、3−ヒドロキシ酪酸単位、4−ヒドロキシ酪酸単位、4−ヒドロキシ吉草酸単位、5−ヒドロキシ吉草酸単位、6−ヒドロキシカプロン酸単位を挙げることができる。また、これらは2種以上混合して用いることもできる。
上記脂肪族ポリエステル系樹脂には3官能以上のアルコール又はカルボン酸が共重合されていても良い。具体的にはトリメチロールプロパン、グリセリン、ペンタエリスリトール、プロパントリカルボン酸、リンゴ酸、クエン酸、酒石酸、ヒドロキシグルタル酸、ヒドロキシメチルグルタル酸、ヒドロキシイソフタル酸、ヒドロキシテレフタル酸等の3官能以上の多価アルコール、多価カルボン酸、多価オキシカルボン酸が共重合されていても良い。上記の3官能以上の多官能化合物単位の量は、ゲルの発生原因となるため通常、ポリエステルを構成する全単量体単位100モル%に対して、上限値が通常、5モル%以下、好ましくは1モル%以下、更に好ましくは、0.50モル%以下、特に好ましくは0.3モル%以下である。一方、高重合度のポリエステルを容易に製造する目的で3官能以上の化合物を共重合成分として使用する場合、その効果が発現する使用量の下限値としては、通常、0.0001モル%以上、好ましくは、0.001モル%以上、より好ましくは、0.005モル%以上、特に好ましくは0.01モル%以上である。また、脂肪族オキシカルボン酸系樹脂には、1,4−ブタンジオール単位、コハク酸単位、アジピン酸単位等の脂肪族及び/又は脂環式ジオール単位並びに脂肪族及び/又は脂環式ジカルボン酸単位、トリメチロールプロパン単位、グリセリン単位、ペンタエリスリトール単位、プロパントリカルボン酸単位、リンゴ酸単位、クエン酸単位、酒石酸単位等の3官能以上の脂肪族多価アルコール単位、脂肪族多価カルボン酸単位、脂肪族多価オキシカルボン酸単位が共重合されていても良い。上記記載の単位の量は、ポリエステルを構成する全単量体単位100モル%に対して、上限は通常90モル%以下、好ましくは70モル%以下、より好ましくは、50モル%以下である。
多糖類としては、セルロース、酢酸セルロースの様な変性セルロース、キチン、キトサン、澱粉、変性澱粉が挙げられる。
その他の分解性樹脂としては、ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール等が挙げられる。
また、従来公知の各種添加剤を配合して組成物にすることも出来る。
添加剤としては、例えば、結晶核剤、酸化防止剤、アンチブロッキング剤、紫外線吸収剤、耐光剤、可塑剤、熱安定剤、着色剤、難燃剤、離型剤、帯電防止剤、防曇剤、表面ぬれ改善剤、焼却補助剤、顔料、滑剤、分散助剤や各種界面活性剤などの樹脂用添加剤が挙げられる。これらの添加量は、全組成物重量に対して、通常0.01〜5重量%である。これ等は一種又は二種以上の混合物として用いる事もできる。
無機系フィラーとしては、無水シリカ、雲母、タルク、酸化チタン、炭酸カルシウム、ケイ藻土、アロフェン、ベントナイト、チタン酸カリウム、ゼオライト、セピオライト、スメクタイト、カオリン、カオリナイト、ガラス、石灰石、カーボン、ワラステナイト、焼成パーライト、珪酸カルシウム、珪酸ナトリウム等の珪酸塩、酸化アルミニウム、炭酸マグネシウム、水酸化カルシウム等の水酸化物、炭酸第二鉄、酸化亜鉛、酸化鉄、リン酸アルミニウム、硫酸バリウム等の塩類等が挙げられる。無機系フィラーの含有量は、全組成物重量に対して、通常1〜80重量%であり、好ましくは3〜70重量%、より好ましくは5〜60重量%である。無機系フィラーの中には、炭酸カルシウム、石灰石のように、土壌改良剤の性質を持ちものもあり、これらの無機系フィラーを特に多量に含むバイオマス由来のポリエステル組成物を、土壌に投棄すれば、生分解後の無機系フィラーは残存して、土壌改良剤としても機能するので、グリーンプラとしての有意性を高める。農業資材、土木資材のように、土壌中に投棄するような用途の場合には、化成肥料、土壌改良剤、植物活性剤のようなものを添加したポリエステルを成形品とすることは、本発明のポリエステルの有用性を高めることになる。
組成物の調製は、従来公知の混合/混練技術は全て適用できる。混合機としては、水平円筒型、V字型、二重円錐型混合機やリボンブレンダー、スーパーミキサーのようなブレンダー、また各種連続式混合機等を使用できる。また混錬機としては、ロールやインターナルミキサーのようなバッチ式混錬機、一段型、二段型連続式混錬機、二軸スクリュー押し出し機、単軸スクリュー押し出し機等を使用できる。混練の方法としては、加熱溶融させたところに各種添加剤、フィラー、熱可塑性樹脂を添加して配合する方法などが挙げられる。また、前記の各種添加剤を均一に分散させる目的でブレンド用オイル等を使用することも出来る。
また、化学的機能、電気的機能、磁気的機能、力学的機能、摩擦/磨耗/潤滑機能、光学的機能、熱的機能、生体適合性等の表面機能等の付与を目的として、各種合目的的二次加工を施すことも可能である。二次加工の例としては、エンボス加工、塗装、接着、印刷、メタライジング(めっき等)、機械加工、表面処理(帯電防止処理、コロナ放電処理、プラズマ処理、フォトクロミズム処理、物理蒸着、化学蒸着、コーティング、等)等が挙げられる。
希薄溶液粘度(還元粘度):ポリエステルを濃度0.5g/dLとなるようにフェノール/テトラクロロエタン(1/1(質量比)混合液)に溶解し、溶液が30℃の恒温槽中で粘度管を落下する時間t(sec)を測定した。また溶媒のみの落下する時間t0(sec)を測定し30℃での還元粘度ηsp/C(=(t−t0)/t0・C)を算出した(Cは溶液の濃度)。
水含有量(水分量):水分気化装置(三菱化学株式会社製VA−100型)を用いて0.5gの試料を200℃で加熱溶融させて試料中の水を気化させた後、気化した全水分量を、微量水分測定装置(三菱化学株式会社製CA−100型)を用いてカール・フィッシャー反応の原理に基づく電量滴定法により定量することにより試料中の水分量を決定した。
YI値:JIS K7105の方法に基づいて測定した。
参考例1
<遺伝子破壊用ベクターの構築>
(A)枯草菌ゲノムDNAの抽出
LB培地[組成:トリプトン10g、イーストエキストラクト5g、NaCl 5gを蒸留水1Lに溶解]10mLに、枯草菌(Bacillus subtilis ISW1214)を対数増殖期後期まで培養し、菌体を集めた。得られた菌体を10mg/mLの濃度にリゾチームを含む10mM NaCl/20mMトリス緩衝液(pH8.0)/1mM EDTA・2Na溶液0.15mLに懸濁した。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、68℃で2分からなるサイクルを35回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの68℃での保温は5分とした。
大腸菌プラスミドベクターpHSG396(宝酒造:クロラムフェニコール耐性マーカー)500ngに制限酵素PshBI10ユニットを37℃で一時間反応させた後、フェノール/クロロフォルム抽出およびエタノール沈殿により回収した。クレノウフラグメント(Klenow Fragment:宝酒造製)により両末端を平滑化した後、ライゲーションキットver.2(宝酒造製)を用いてMluIリンカー(宝酒造)を連結、環状化させ、大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を34μg/mLクロラムフェニコールを含むLB寒天培地に塗抹した。得られたクローンから常法によりプラスミドDNAを調製し、制限酵素MluIの切断部位を有するクローンを選抜し、pHSG396Mluと命名した。
カナマイシン耐性遺伝子の取得は、大腸菌プラスミドベクターpHSG299(宝酒造:カナマイシン耐性マーカー)のDNAを鋳型とし、配列番号3および配列番号4で示した合成DNAをプライマーとしたPCR法によって行った。
反応液組成:鋳型DNA1ng、PyrobestDNAポリメラーゼ(宝酒造) 0.1μL、1倍濃度添付バッファー、0.5μM各々プライマー、0.25μMdNTPsを混合し、全量を20μLとした。
増幅産物の確認は、0.75%アガロース(SeaKem GTG agarose:FMCBioProducts製)ゲル電気泳動により分離後、臭化エチジウム染色により可視化することにより行い、約1.1kbの断片を検出した。ゲルからの目的DNA断片の回収は、QIAQuick Gel Extraction Kit(QIAGEN製)を用いて行った。回収したDNA断片は、T4 ポリヌクレオチドキナーゼ(T4 Polynucleotide Kinase:宝酒造製)により5’末端をリン酸化した。
上記(C)で構築したpCMB1を制限酵素Van91IおよびScaIで切断して得られた約3.5kbのDNA断片を0.75%アガロースゲル電気泳動により分離、回収した。これを上記(D)で調製したカナマイシン耐性遺伝子と混合し、ライゲーションキットver.2(宝酒造製)を用いて連結し、得られたプラスミドDNAで大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLカナマイシンを含むLB寒天培地に塗抹した。
<LDH遺伝子破壊株の作製>
(A)ブレビバクテリウム・フラバムMJ233−ES株ゲノムDNAの抽出
A培地[尿素 2g、(NH4)2SO4 7g、KH2PO4 0.5g、K2HPO40.5g、MgSO4・7H2O 0.5g、FeSO4・7H2O 6mg、MnSO4・4−5H2O 6mg、ビオチン 200μg、チアミン 100μg、イーストエキストラクト 1g、カザミノ酸 1g、グルコース 20g、蒸留水1Lに溶解]10mLに、ブレビバクテリウム・フラバムMJ−233株を対数増殖期後期まで培養し、得られた菌体から上記参考例1の(A)に示す方法にてゲノムDNAを調製した。
MJ233株ラクテートデヒドロゲナーゼ遺伝子の取得は、上記(A)で調製したDNAを鋳型とし、特開平11−206385号公報に記載の該遺伝子の塩基配列を基に設計した合成DNA(配列番号5および配列番号6)を用いたPCRによって行った。
反応液組成:鋳型DNA 1μL、TaqDNAポリメラーゼ(宝酒造) 0.2μL、1倍濃度添付バッファー、0.2μM各々プライマー、0.25μMdNTPsを混合し、全量を20μLとした。
増幅産物の確認は、0.75%アガロース(SeaKem GTG agarose:FMCBioProducts製)ゲル電気泳動により分離後、臭化エチジウム染色により可視化することにより行い、約0.95kbの断片を検出した。ゲルからの目的DNA断片の回収は、QIAQuick Gel Extraction Kit(QIAGEN製)を用いて行った。
(C)ラクテートデヒドロゲナーゼ遺伝子破壊用プラスミドの構築
上記(B)で作製したpGEMT/CgLDHを制限酵素EcoRVおよびXbaIで切断することにより約0.25kbからなるラクテートデヒドロゲナーゼのコーディング領域を切り出した。残った約3.7kbのDNA断片の末端をクレノウフラグメントにて平滑化し、ライゲーションキットver.2(宝酒造製)を用いて環状化させ、大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLアンピシリンを含むLB寒天培地に塗抹した。この培地上で生育した株を、常法により液体培養した後、プラスミドDNAを精製した。得られたプラスミドDNAを制限酵素SacIおよびSphIで切断することにより、約0.75kbの挿入断片が認められたクローンを選抜し、これをpGEMT/ΔLDHと命名した。
(D)ブレビバクテリウム・フラバムMJ233−ES株由来ラクテートデヒドロゲナーゼ遺伝子破壊株の作製
ブレビバクテリウム・フラバムMJ−233株の形質転換に用いるプラスミドDNAは、pKMB1/ΔLDHを用いて塩化カルシウム法(Journal of Molecular Biology,53,159,1970)により形質転換した大腸菌JM110株から調製した。
この様にして得られた株の中には、そのラクテートデヒドロゲナーゼ遺伝子がpKMB1/ΔLDHに由来する変異型に置き換わったものと野生型に戻ったものが含まれる。ラクテートデヒドロゲナーゼ遺伝子が変異型であるか野生型であるかの確認は、LBG培地にて液体培養して得られた菌体を直接PCR反応に供し、ラクテートデヒドロゲナーゼ遺伝子の検出を行うことによって容易に確認できる。ラクテートデヒドロゲナーゼ遺伝子をPCR増幅するためのプライマー(配列番号7および配列番号8)を用いて分析すると、野生型では720bp、欠失領域を持つ変異型では471bpのDNA断片を認めるはずである。
(E)ラクテートデヒドロゲナーゼ活性の確認
上記(D)で作製したブレビバクテリウム・フラバムMJ233/ΔLDH株をA培地に植菌し、30℃で15時間好気的に振とう培養した。得られた培養物を遠心分離(3,000×g、4℃、20分間)して菌体を回収後、ナトリウム−リン酸緩衝液[組成:50mMリン酸ナトリウム緩衝液(pH7.3)]で洗浄した。
<コリネ型細菌発現ベクターの構築>
(A)コリネ型細菌用プロモーター断片の調製
コリネ型細菌で強力なプロモーター活性を有することが報告された特開平7−95891号公報の配列番号4に記載のDNA断片(以降TZ4プロモーターと称する)を利用することとした。本プロモーター断片の取得は、参考例2の(A)で調製したブレビバクテリウム・フラバムMJ233ゲノムDNAを鋳型とし、特開平7−95891の配列番号4に記載の配列を基に設計した合成DNA(配列番号9および配列番号10)を用いたPCRによって行った。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、60℃で20秒、72℃で30秒からなるサイクルを35回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの72℃での保温は2分とした。
次に、pUC/TZ4を制限酵素BamHIおよびPstIで切断して調製したDNA断片に、5’末端がリン酸化された合成DNA(配列番号11および配列番号12)から成り、両末端にそれぞれBamHIとPstIに対する粘着末端を有するDNAリンカーを混合し、ライゲーションキットver.2(宝酒造製)を用いて連結後、得られたプラスミドDNAで大腸菌(DH5α株)を形質転換した。本DNAリンカーには、リボソーム結合配列(AGGAGG)およびその下流に配したクローニングサイト(上流から順に、PacI、NotI、ApaI)が含まれている。
この様にして構築したpUC/TZ4−SDを制限酵素PstIで切断後、クレノウフラグメントにて末端を平滑化し、次いで制限酵素KpnIで切断することにより生じた約0.3kbのプロモーター断片を、2.0%アガロースゲル電気泳動により分離、回収した。
コリネ型細菌にて安定的に自立複製可能なプラスミドとして、特開平12−93183記載のpHSG298par−repを利用する。本プラスミドは、ブレビバクテリウム・スタチオニスIFO12144株が保有する天然型プラスミドpBY503の複製領域および安定化機能を有する領域と大腸菌ベクターpHSG298(宝酒造)に由来するカナマイシン耐性遺伝子および大腸菌の複製領域を備える。pHSG298par−repを制限酵素SseIで切断後、クレノウフラグメントにて末端を平滑化し、次いで制限酵素KpnIで切断することによって調製したDNAを、上記(A)で調製したTZ4プロモーター断片と混合し、ライゲーションキットver.2(宝酒造製)を用いて連結後、得られたプラスミドDNAで大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLカナマイシンを含むLB寒天培地に塗抹した。
<ピルベートカルボキシラーゼ活性増強株の作製>
(A)ピルベートカルボキシラーゼ遺伝子の取得
ブレビバクテリウム・フラバムMJ233株由来ピルベートカルボキシラーゼ遺伝子の取得は、参考例2の(A)で調製したDNAを鋳型とし、全ゲノム配列が報告されているコリネバクテリウム・グルタミカム ATCC13032株の該遺伝子の配列(GenBank Database Accession No.AP005276)を基に設計した合成DNA(配列番号13および配列番号14)を用いたPCRによって行った。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、68℃で4分からなるサイクルを35回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの68℃での保温は10分とした。PCR反応終了後、Takara Ex Taq(宝酒造)を0.1μL加え、さらに72℃で30分保温した。
pGEM/MJPCの挿入断片の塩基配列は、アプライドバイオシステム社製塩基配列解読装置(モデル377XL)およびビックダイターミネーターサイクルシークエンスキットver3を用いて決定した。その結果得られたDNA塩基配列および推測されるアミノ酸配列を配列番号15に記載する。また、アミノ酸配列のみを配列番号16に記載する。本アミノ酸配列はコリネバクテリウム・グルタミカムATCC13032株由来のそれと極めて高い相同性(99.4%)を示すことから、pGEM/MJPCの挿入断片がブレビバクテリウム・フラバムMJ233株由来のピルベートカルボキシラーゼ遺伝子であると断定した。
上記(A)で作製したpGEM/MJPCを制限酵素PacIおよびApaIで切断することにより生じる約3.7kbからなるピルベートカルボキシラーゼ遺伝子断片を、0.75%アガロースゲル電気泳動により分離、回収した。
このDNA断片を、制限酵素PacIおよびApaIにて切断した、参考例3にて構築したpTZ4と混合し、ライゲーションキットver.2(宝酒造製)を用いて連結後、得られたプラスミドDNAで大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLカナマイシンを含むLB寒天培地に塗抹した。
(C)ブレビバクテリウム・フラバムMJ233/ΔLDH株への形質転換
ブレビバクテリウム・フラバムMJ233株内で複製可能なpMJPC1による形質転換用のプラスミドDNAは、上記(B)で形質転換した大腸菌(DH5α株)から調製した。
(D)ピルベートカルボキシラーゼ酵素活性
上記(C)で得られた形質転換株ブレビバクテリウム・フラバムMJ233/PC/ΔLDH株をグルコース2%、カナマイシン25mg/Lを含むA培地100mlで終夜培養を行った。得られた菌体を集菌後、50mM リン酸カリウム緩衝液(pH7.5)50mlで洗浄し、同組成の緩衝液20mlに再度懸濁させた。懸濁液をSONIFIER350(BRANSON製)で破砕し、遠心分離した上清を無細胞抽出液とした。得られた無細胞抽出液を用いピルベートカルボキシラーゼ活性を測定した。酵素活性の測定は100mM Tris/HCl緩衝液(pH7.5)、 0.1mg/10mlビオチン、5mM 塩化マグネシウム、50mM 炭酸水素ナトリウム、5mM ピルビン酸ナトリウム、5mM アデノシン三リン酸ナトリウム、0.32mM NADH、20units/1.5mlリンゴ酸デヒドロゲナーゼ(WAKO製、酵母由来)及び酵素を含む反応液中で25℃で反応させることにより行った。1Uは1分間に1μmolのNADHの減少を触媒する酵素量とした。ピルベートカルボキシラーゼを発現させた無細胞抽出液における比活性は 0.2U/mg蛋白質であった。なお親株であるMJ233/△LDH株をA培地を用いて同様に培養した菌体では、本活性測定方法によりピルベートカルボキシラーゼ活性は検出されなかった。
<発酵液の調製>
尿素:4g、硫酸アンモニウム:14g、リン酸1カリウム:0.5g、リン酸2カリウム0.5g、硫酸マグネシウム・7水和物:0.5g、硫酸第一鉄・7水和物:20mg、硫酸マンガン・水和物:20mg、D−ビオチン:200μg、塩酸チアミン:200μg、酵母エキス:1g、カザミノ酸:1g、及び蒸留水:1000mLの培地100mLを500mLの三角フラスコにいれ、120℃、20分加熱滅菌した。これを室温まで冷やし、あらかじめ滅菌した50%グルコース水溶液を4mL、無菌濾過した5%カナマイシン水溶液を50μL添加し、参考例4(C)で作製したブレビバクテリウム・フラバムMJ233/PC/ΔLDH株を接種して24時間30℃にて種培養した。
上記のようにして得られたコハク酸発酵液上清を103L(琥珀酸含有量5.87kg)を、減圧しながらジャケット付き攪拌槽にて濃縮し、琥珀酸の濃度が32.9%、アンモニア11.9%の濃縮液:17.8kg(計算値)を得た。これに酢酸(ダイセル化学社製)を8.58kg加えて30℃まで冷却し、更にメタノール(キシダ化学社製)を4.0kg加えて15℃まで冷却し1時間攪拌した後、20℃にて4時間攪拌を継続した。
酢酸11.3kgに得られた結晶4.9kgをいれ、85℃にて溶解し、直ちに20℃まで冷却した。既に結晶は析出していたが、そのまま更に3時間攪拌を続けた後、遠心ろ過器にてろ過を行い、琥珀酸87.9%、酢酸8.4%、アンモニア0.6%を含有する結晶2.44kgを得た。
この粗琥珀酸結晶2.0kgを28.5Lの脱塩水に溶解し、1Lのイオン交換樹脂(三菱化学社製SK1BH)をつめた塔にSV=2にて通液し、約33Lの処理液を得た。これを減圧したロータリーエバポレータに連続フィードしながら、およそ5.2Lまで濃縮した。この段階で既に結晶が析出していた。更に、5℃に冷却し、2時間攪拌を継続した後、これをろ過すると、琥珀酸96.7%の結晶1.76kgを得た。これを真空乾燥機にて乾燥すると1.68kgの琥珀酸を得る事が出来た。
上記のような方法で得られたバイオマス資源由来コハク酸を用いて、公知の方法で1,4−ブタンジオールを得た。そのような1,4−ブタンジオールは、例えば以下の方法で得られた。
バイオマス資源由来コハク酸100重量部、メタノール317重量部ならびに濃硫酸(97%)2重量部の混合液を、還流下で2時間攪拌させた。反応液を冷却後、炭酸水素ナトリウム3.6重量部を添加して60℃で30分間反応液を攪拌させた。常圧下での蒸留ならびにその蒸留残をろ過後、減圧蒸留することによりコハク酸ジメチル(収率93%)を得た。得られたコハク酸ジメチル100重量部をCuO−ZnO触媒(ズードケミー社製、T−8402)15重量部存在下、仕込みコハク酸ジメチルに対して約4倍の体積容量を持つオートクレーブ(ハステロイC)を用いて水素5MPa加圧下で攪拌させながら1時間かけて230℃まで昇温させた。その後、230℃で15MPaの水素加圧下9時間反応液を攪拌させた。反応液を冷却後、脱ガスを行った。反応液からろ過により触媒を除去した。ろ液を減圧蒸留することにより精製1,4−ブタンジオールを得た(収率81%)。製造された精製1,4−ブタンジオール中には窒素原子が0.7ppm含まれたが、硫黄原子は含まれていなかった。また、1,4−ブタンジオール中には酸化生成物である2−(4−ヒドロキシブチルオキシ)テトラヒドロフランが1000ppm含有されていた。
実施例1
攪拌装置、窒素導入口、加熱装置、温度計及び減圧用排気口を備えた反応容器に、窒素原子含有量 5ppm、硫黄原子含有量 0.2ppmのバイオマス資源由来コハク酸100重量部(YI=2.5)、三菱化学社製工業グレードの1,4−ブタンジオール88.5重量部、リンゴ酸0.37重量部ならびに触媒として二酸化ゲルマニウムを予め0.98重量%溶解させた88%乳酸水溶液5.4重量部を仕込み、減圧(到達減圧度0.2kPa)後、窒素ガスで大気圧まで復圧する操作を三回繰り返す方法によって系内を窒素雰囲気下にした。
次に、系内を150rpmで撹拌しながら220℃に昇温し、この温度で1時間反応させた。次に、30分かけて230℃まで昇温し、同時に1.5時間かけて0.07×103Paになるように減圧し、同減圧度で1.8時間反応を行った。ここで、減圧後の攪拌装置の攪拌回転数は150rpm、60rpm、40rpmと段階的に下げ、重合終了前30分間の回転数を6rpmとした。得られたポリエステルを220℃で反応槽の底部からストランドとして抜き出し、10℃の水中を潜らせた後、カッターでストランドをカットすることにより白色のペレット(黄色度YIは11)を得た。得られた白色のポリエステルペレットの最小径は2mm、最大径は3.5mmであった。本ペレットを真空下、80℃で8h加熱乾燥させことにより358ppmの含水量のペレットを得た。乾燥後のポリエステル中の窒素原子含有量ならびに硫黄原子含量は、それぞれ2ppm、0.1ppmであり、ポリエステルの還元粘度(ηsp/c)は2.5、末端カルボキシル基量は26当量/トンであった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
この乾燥ペレットを光の遮光下でポリエステル/アルミ/ポリエチレンの複合フィルム袋中に半年間貯蔵したが、ペレットの引っ張り伸び特性の顕著な劣化は観測されなかった。
一方、本ペレットの含水量を更に下げる目的で、真空下、100℃で72時間加熱乾燥させるとポリマーの着色が観測され、長期間の乾燥は好ましくないことが判った。
原料として、実施例1の窒素原子含有量 5ppm、硫黄原子含有量 0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部、旭化成(株)社製工業グレードのアジピン酸32重量部、三菱化学(株)社製工業グレードの1,4−ブタンジオール111.6重量部、リンゴ酸0.48重量部ならびに触媒として二酸化ゲルマニウムを予め0.98重量%溶解させた88%乳酸水溶液7.2重量部を使用した以外は実施例1と同様の方法によって実施例1と同様の白いポリエステルのペレット(黄色度YIは13)を得た (還元粘度(ηsp/c)は2.4。末端カルボキシル基量は22当量/トン。)。0.07×103Paの減圧下での重合反応時間は1.6時間かかった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
原料として、実施例1の窒素原子含有量 5ppm、硫黄原子含有量 0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部、三菱化学(株)社製工業グレードの1,4−ブタンジオール81.4重量部、エチレングリコール6.3重量部、リンゴ酸0.37重量部ならびに触媒として二酸化ゲルマニウムを予め0.98重量%溶解させた88%乳酸水溶液5.4重量部を使用した以外は実施例2と同様の条件によって実施例1と同様の白いポリエステルのペレットを得た (還元粘度(ηsp/c)は2.4。末端カルボキシル基量は21当量/トン。)。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
原料として、実施例1の窒素原子含有量 5ppm、硫黄原子含有量 0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部、三菱化学(株)社製工業グレードの1,4−ブタンジオール81.4重量部、1,4−シクロヘキサンジメタノール12.3重量部、リンゴ酸0.37重量部ならびに触媒として二酸化ゲルマニウムを予め0.98重量%溶解させた88%乳酸水溶液5.4重量部を使用した以外は実施例1と同様の条件によって実施例1と同様の白いポリエステルペレットを得た(還元粘度(ηsp/c)は2.6。末端カルボキシル基量は17当量/トン。)。0.07×103Paの減圧下での重合反応時間は3.8時間かかった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
実施例5
原料として、実施例1の窒素原子5ppm、硫黄原子含有量 0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部の代わりに窒素原子12ppm、硫黄原子含有量 5ppmを含有するバイオマス資源から誘導したコハク酸(黄色度YIは7)100重量部を使用した以外は実施例1と同様の条件によって実施例1と同様の白いポリエステルのペレットを製造した。0.07×103Paの減圧下での重合反応時間は2時間であった。
得られたポリエステル(黄色度YIは22)中の窒素原子含量は、3.6ppm、硫黄原子含有量は 2.6ppm、ポリエステルの還元粘度(ηsp/c)は2.3、末端カルボキシル基量は19当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
実施例6
原料として、実施例1の窒素原子5ppm、硫黄原子含有量0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部の代わりに窒素原子16ppm、硫黄原子含有量 2ppmを含有するバイオマス資源から誘導したコハク酸(黄色度YIは3)100重量部を使用した以外は実施例1と同様の条件によって実施例1と同様の白いポリエステルのペレットを製造した。0.07×103Paの減圧下での重合反応時間は2.1時間であった。
得られたポリエステル(黄色度YIは19)中の窒素原子含量は、3.4ppm、硫黄原子含有量は 1.4ppm、ポリエステルの還元粘度(ηsp/c)は2.4、末端カルボキシル基量は15当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
実施例7
原料として、実施例1の窒素原子5ppm、硫黄原子含有量 0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部の代わりに窒素原子115ppm、硫黄原子含有量 0.3ppmを含有するバイオマス資源から誘導したコハク酸100重量部を使用した以外は実施例1と同様の条件によって実施例1と同様のポリエステルのペレットを製造した。0.07×103Paの減圧下での重合反応時間は2.9時間であった。
得られたポリエステル(黄色度YIは23)中の窒素原子含量は、19ppm、硫黄原子含有量は0.2ppmポリエステルの還元粘度(ηsp/c)は2.5、末端カルボキシル基量は19当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
実施例8
原料として、実施例1の窒素原子5ppm、硫黄原子含有量 0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部の代わりに窒素原子180ppm、硫黄原子含有量 1ppmを含有するバイオマス資源から誘導したコハク酸100重量部を使用した以外は実施例1と同様の条件によって実施例1と同様のポリエステルペレットを製造した。0.07×103Paの減圧下での重合反応時間は2.6時間であった。
得られたポリエステル(黄色度YIは37)中の窒素原子含量は、22ppm、硫黄原子含有量は 0.6ppmポリエステルの還元粘度(ηsp/c)は2.5、末端カルボキシル基量は19当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
実施例9
原料として、実施例1の窒素原子5ppm、硫黄原子含有量 0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部の代わりに窒素原子230ppm、硫黄原子含有量1ppmを含有するバイオマス資源から誘導したコハク酸(黄色度YIは11)100重量部を使用した以外は実施例1と同様の条件によって実施例1と同様のポリエステルのペレットを製造した。0.07×103Paの減圧下での重合反応時間は2.6時間であった。
得られたポリエステル(黄色度YIは39)中の窒素原子含量は、27ppm、硫黄原子含有量 0.6ppmポリエステルの還元粘度(ηsp/c)は2.4、末端カルボキシル基量は19当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
実施例10
原料として、実施例1の窒素原子5ppm、硫黄原子0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部の代わりに窒素原子30ppm、硫黄原子18ppmを含有するバイオマス資源から誘導したコハク酸100重量部を使用した以外は実施例1と同様の条件によって実施例1と同様のポリエステルペレットを製造した。0.07×103Paの減圧下での重合反応時間は3.3時間であった。
得られた褐色のポリエステル(黄色度YIは42)の還元粘度(ηsp/c)は2.4、末端カルボキシル基量は18当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温でほぼ均一に溶解したが、微量の不溶物が観測された。
実施例11
原料として、実施例1の三菱化学社製工業グレードの1,4−ブタンジオール88.5重量部の代わりに窒素原子0.7ppmを含有するバイオマス資源から誘導した1,4−ブタンジオール88.5重量部を使用した以外は実施例1と同様の条件によって実施例1と同様のポリエステルのペレットを製造した。0.07×103Paの減圧下での重合反応時間は3時間であった。
得られたポリエステル(黄色度YIは−1)の還元粘度(ηsp/c)は2.5、末端カルボキシル基量は21当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
攪拌装置、窒素導入口、加熱装置、温度計及び減圧用排気口を備えた反応容器に、実施例1の窒素原子含有量 5ppm、硫黄原子含有量 0.2ppmを含有するバイオマス資源から誘導したコハク酸100重量部、窒素原子0.7ppmを含有するバイオマス資源から誘導した1,4−ブタンジオール80.4重量部ならびにリンゴ酸0.37重量部を仕込み、減圧(到達減圧度0.2kPa)後、窒素ガスで大気圧まで復圧する操作を三回繰り返す方法によって系内を窒素雰囲気下にした。
次に、系内を撹拌しながら220℃に昇温し、この温度で1時間反応させた。次に、0.11重量部のテトラ−n−ブチルチタネートを0.4重量部のブタノールに希釈した触媒液を反応系へ添加後、30分かけて230℃まで昇温し、同時に1.5時間かけて0.07×103Paになるように減圧し、同減圧度で2時間反応を行った。得られたポリエステルを樹脂の温度として220℃で反応槽の底部からストランドとして抜き出し、10℃の水中を潜らせた後、カッターでストランドをカットすることにより実施例1と同様のペレットを得た(還元粘度(ηsp/c)は2.5。末端カルボキシル基量は12当量/トン。)。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
実施例13
原料として、実施例1のコハク酸の代わりに窒素原子及び硫黄原子を含まない石油由来コハク酸(川崎化成(株)社製工業グレード(黄色度YIは2)100重量部に、実施例1の石油由来1,4−ブタンジオールの代わりに、バイオマス資源から誘導した1,4−ブタンジオール88.5重量部を使用した以外は実施例1と同様の条件によって実施例1と同様のポリエステルのペレットを製造した。0.07×103Paの減圧下での重合反応時間は3.4時間であった。
得られたポリエステル(黄色度YIは7)中の窒素原子含量は、0.5ppm、ポリエステルの還元粘度(ηsp/c)は2.5、末端カルボキシル基量は28当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
実施例14
原料として、実施例1のコハク酸の代わりに窒素原子3ppm、硫黄原子含有量34ppmを含有するバイオマス資源から誘導したコハク酸100重量部を使用した以外は実施例1と同様の条件によって実施例1と同様のポリエステルのペレットを製造した。0.07×103Paの減圧下での重合反応時間は7時間であった。
得られたポリエステル(黄色度YIは38)の還元粘度(ηsp/c)は2.4、末端カルボキシル基量は30当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で溶解させたが、少量の不溶物が観測された。
実施例15
攪拌装置、窒素導入口、加熱装置、温度計及び減圧用排気口を備えた反応容器に、ジメチルテレフタレート132重量部、窒素原子0.7ppmを含有するバイオマス資源から誘導した1,4−ブタンジオール74重量部及び触媒としてテトラブチルチタネートを予め6重量%溶解させた1,4−ブタンジオール溶液1.7重量部を仕込み、窒素―減圧置換によって系内を窒素雰囲気下にした。
次に、系内を撹拌しながら150℃まで加温後、215℃に昇温させながら3時間反応させた。次に、245℃まで昇温し、同時に1.5時間かけて0.07×103Paになるように減圧し、同減圧度で1.5時間反応を行い重合を終了し、得られたポリエステルを反応槽の底部からストランドとして抜き出し、10℃の水中を潜らせた後、カッターでストランドをカットすることにより実施例1と同様のペレット(黄色度YIは0.4)を得た。
得られたポリエステル中の窒素原子含有量は、0.4ppm、ポリエステルの還元粘度(ηsp/c)は1.2、末端カルボキシル基量は21当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温で均一に溶解した。
比較例1
原料として、実施例1のコハク酸の代わりに窒素原子含有量 660ppm、硫黄原子330ppmを含有するバイオマス資源から誘導したコハク酸(黄色度YIは8)100重量部を使用した以外は実施例1と同様の重縮合反応条件によってポリエステルを製造した。0.07×103Paの減圧下で2.5時間重合反応を実施したが、得られたポリエステルはこげ茶に着色した(黄色度YIは60以上)。
得られたこげ茶のポリエステル中の窒素原子含量は、54ppm、硫黄原子含量は、16ppm、ポリエステルの還元粘度(ηsp/c)は0.7、末端カルボキシル基量は139当量/トンあった。
比較例2
原料として、実施例1のコハク酸の代わりに窒素原子含有量 850ppm、硫黄原子290ppmを含有するバイオマス資源から誘導したコハク酸(黄色度YIは8)100重量部を使用した以外は実施例1と同様の条件によって実施例1と同様のポリエステルペレットを製造した。0.07×103Paの減圧下で2.5時間重合反応を実施したが得られたポリエステルはこげ茶に着色した(黄色度YIは60以上)。
得られたこげ茶のポリエステル中の窒素原子含有量 51ppm、硫黄原子含量は、16ppm、ポリエステルの還元粘度(ηsp/c)は1.1、末端カルボキシル基量は69当量/トンあった。
実施例12において、テトラ−n−ブチルチタネートのブタノール希釈触媒液添加後の反応温度を230℃から240℃に変更した以外は製造例2と同様の重縮合反応条件によってポリエステル及びそのペレットを製造した。0.07×103Paの減圧下での重合反応時間は3時間であった。乾燥後のポリエステル(黄色度YIは19)の還元粘度(ηsp/c)は2.4、末端カルボキシル基量は54当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温でほぼ均一に溶解したが、微量の不溶物が観測された。
実施例1において、リンゴ酸0.37重量部の代わりにリンゴ酸0.74重量部を仕込んだ以外は実施例1と同様の条件によって実施例1と同様の白いポリエステルのペレットを製造した。0.07×103Paの減圧下での重合反応時間は1.1時間であった。得られたポリエステルの還元粘度(ηsp/c)は3.2、末端カルボキシル基量は63当量/トンあった。尚、得られたポリエステル(0.5g)は、1dLのフェノール/テトラクロロエタン(1/1(質量比)混合液)に室温でほぼ均一に溶解したが、少量の不溶物が観測された。
実施例1において発酵法で製造したコハク酸に替えて、窒素原子及び硫黄原子が含まれない石油由来の市販品原料を用いてポリエステルの製造を行った。コハク酸は川崎化成(株)社製工業グレードを使用し、1,4−ブタンジオールは三菱化学(株)社製工業グレードを使用した以外は実施例1と同様の方法で実施例1と同様のポリエステルを製造した。製造されたポリエステル中には窒素原子及び硫黄原子は検出されなかった。
<ペレット中の含水量による保存安定性評価>
実施例1で製造されたポリエステルペレットを用いてポリエステル/アルミ/ポリエチレンの複合フィルム袋(Al袋)中に密封保管時の保存安定性評価を行った。保存安定性評価は、それぞれの含水量のペレットをポリエステル/アルミ/ポリエチレンの複合フィルム袋(Al袋)中に密閉して40℃のオーブンに保持し、一定期間毎にサンプルの溶液粘度(還元粘度(ηsp/c))を測定する手法を用いた。過熱保管時の加水分解反応による所定の還元粘度(ηsp/c)への到達時間を表1に示した。
実施例16
実施例1で製造されたポリエステルペレットを23℃、50%R.H.条件下でペレットを一定期間保持することにより、ポリエステルペレット中の含水量を358ppmに調製した。調整したペレットをポリエステル/アルミ/ポリエチレンの複合フィルム袋(Al袋)中に密閉して40℃のオーブンに保持し、一定期間毎にサンプルの溶液粘度(還元粘度(ηsp/c))を測定する手法を用いた。過熱保管時の加水分解反応による所定の還元粘度(ηsp/c)への到達時間を表1に示した。
実施例17
実施例16と同様に、実施例1で製造されたポリエステルペレット中の含水量を472ppmに調整し保存安定性評価を行った。結果を表1に示した。
実施例18
実施例16と同様に、実施例1で製造されたポリエステルペレット中の含水量を796ppmに調整し保存安定性評価を行った。結果を表1に示した。
実施例19
実施例16と同様に、実施例1で製造されたポリエステルペレット中の含水量を1086ppmに調整し保存安定性評価を行った。結果を表1に示した。
比較例6
実施例16と同様に、実施例1で製造されたポリエステルペレット中の含水量を3151ppmに調整し保存安定性評価を行った。結果を表1に示した。
表1より保管時のペレット中の含水量は3000ppmを超えると保管時の還元粘度(ηsp/c)の低下が著しいことが判る。尚、還元粘度(ηsp/c)の低下に伴うフィルム物性の劣化を表2に示した。
実施例1で製造されたポリエステルを用いてインフレ成形を実施した。成形温度160℃、ブロー比2.5の成形条件で20μm厚みのフィルムを成形した。成形したフィルムの粘度低下に伴う物性(引っ張り破断伸び)の劣化挙動を表2に示した。還元粘度が低下すると引っ張り破断伸びの低下が引き起こされる為、粘度の低下したポリエステルの成形性は悪くなると考えられる。
<末端カルボン酸量に依る耐加水分解性への影響>
実施例1、実施例12及び比較例3で得られたポリエステルペレットを50℃、90%R.H.の恒温恒湿機に入れ、一定間隔毎にサンプリングし、溶液粘度及び末端カルボン酸量の測定を行った。結果を表3に示す。これらの結果から末端カルボン酸量が50当量/トンを超えるとポリエステルの耐加水分解性が著しく悪くなることが明らかとなり、ポリエステルとして低い保存特性など実用性に乏しいことがわかる。
<生分解性評価>
実施例1及び比較例5で製造されたポリエステルを、インフレ成形機を用いて成形温度160℃、ブロー比2.5、厚み20μmとしフィルム成形を行った。成形したフィルムを5cm×18cmの大きさに切り取り、土壌に埋設した。1ヶ月、2ヶ月、3ヶ月、6ヶ月のフィルムの重量減少率を測定し、生分解試験を行った。結果を表4に示す。表4より、発酵系コハク酸を用いたポリエステルは、土壌中での生分解速度が速いことが確認された。
上記の方法で製造したフィルムを5cm×18cmの大きさに切り取り、土壌に埋設した。1ヶ月、2ヶ月、3ヶ月、6ヶ月のフィルムの重量減少率を測定した。結果を表4に示す。
以下に参考例として、実施例1で製造されたポリエステルおよび各種組成物の成形例および諸物性例を示す。
<組成物の調製>
表5に示す配合割合(重量%)で組成物1および2を調製した。組成物の調製は、テクノベル社製二軸押し出し機(KZW15)を用い、混練温度190℃で実施した。
また表6に示す配合割合(重量%)で組成物3〜5を調製した。組成物の調製は、東洋精機社製ラボプラストミルを用い、混練温度190℃で実施した。
表7に示すサンプルをCSI社製卓上射出成形機、ミニマックス成形機を用いて射出成形を行った。成形温度200℃とした。物性評価結果も併せて表7に示す。評価はいずれも23℃、50%RH環境下で実施した。
Tダイ成形機を用い、表8に示すサンプルのシート成形を行った。成形温度200℃、ロール温度30℃、シート厚みは500μmとした。物性評価結果も併せて表8に示す。評価はいずれも23℃、50%RH環境下で実施した。
表9に示すサンプルを用いてインフレ成形を行った。成形温度160℃、ブロー比2.5、フィルムの厚みは20μmとした。物性評価結果も併せて表9に示す。評価はいずれも23℃、50%RH環境下で実施した。
実施例1で製造されたポリエステルを190℃、10MPaでプレス成形し、厚み1mmのシートを作製した。得られたシートを固体状態において,バルブ付き圧力容器内に仕込み、圧力容器内の温度を、外部熱源を用いて100℃まで加熱すると同時に圧力容器内に二酸化炭素を仕込んだ。この際ポンプで加圧することにより15MPaまで昇圧した。その後2時間,100℃の一定温度,15MPaの一定圧力を保持し、2時間後、圧力容器のバルブを全開放して,急速に圧力容器内の圧力を解放することで発泡体を得た。得られた発泡体は水中で押しても泡が出てこない、独立気泡率の高いものであった。
本発明のポリエステルの特徴は、従来の地下の化石燃料依存型、例えば石油資源の依存型のポリエステルに対比して、その地球環境におけるその存在意義において、従来型の認識とは全く異なる理由が成立する。
特に、現在の大気圏という地球環境下で植生した天然材料から発酵等の手法により入手した、いわゆるジオール単位またはジカルボン酸単位をポリエステルのモノマーとして使用するために、原料が非常に安価に入手できる。また、人為的に植物増産を計画的に任意にできるために、植物原料生産が各地、各国に分散して多様化できるので、原料供給にリスクが少なく安定して供給ができる。さらに、モノマーの入手、ポリエステルの合成および生分解という、ポリエステルの原料の段階から使用済みの廃棄という最終段階に至るサイクルが、専ら大気圏下という地球環境の自然プロセスに準拠したものである故に、本発明のポリエステルは信頼性ならびに安心感を与えるサイクルとなる。これは、ポリエステルの技術開発、産業の発展および消費社会の拡充において、無視することができない、重要な背景であることが明らかである。
Claims (16)
- 主たる繰り返し単位がジカルボン酸単位及びジオール単位であるポリエステルにおいて、該ポリエステルの原料であるジカルボン酸及びジオールの少なくとも一方がバイオマス資源から得られたものであって、該ポリエステル中の酸末端量が50当量/トン以下であることを特徴とするバイオマス資源由来ポリエステル。
- ポリエステルの還元粘度(ηsp/c)が、1.0以上であることを特徴とする請求項1に記載のバイオマス資源由来ポリエステル。
- ポリエステル中の水分量が、質量比で該ポリエステルに対して1ppm以上3000ppm以下であることを特徴とする、請求項1又は2に記載のバイオマス資源由来ポリエステル。
- ポリエステルのYI値が、−10以上30以下であることを特徴とする請求項1〜3いずれか1項に記載のバイオマス資源由来ポリエステル。
- ポリエステルの分子内に共有結合されている官能基に含まれる窒素原子を除いたポリエステル中の窒素原子含有量が、該ポリエステルに対して質量比で0.01ppm以上1000ppm以下であることを特徴とする請求項1〜4いずれか1項に記載のバイオマス資源由来ポリエステル。
- ポリエステル中の硫黄原子含有量が、該ポリエステルに対して質量比で0.0001ppm以上50ppm以下であることを特徴とする請求項1〜5いずれか1項に記載のバイオマス資源由来ポリエステル。
- ポリエステルが、3官能以上の多価アルコール、3官能以上の多価カルボン酸および3官能以上のオキシカルボン酸からなる群から選ばれる少なくとも1種の3官能以上の多官能化合物単位を含有することを特徴とする請求項1〜6のいずれか1項に記載のバイオマス資源由来ポリエステル。
- 3官能以上の多官能化合物単位の含有量が、ポリエステルを構成する全単量体単位100モル%に対して、0.0001モル%以上0.5モル%以下であることを特徴とする請求項7に記載のバイオマス資源由来ポリエステル。
- ポリエステルの主たる繰り返し単位を構成するジカルボン酸単位が、バイオマス資源から誘導されるコハク酸単位であることを特徴とする請求項1〜8のいずれか1項に記載のバイオマス資源由来ポリエステル。
- ジカルボン酸とジオールとの反応によりポリエステルを製造する方法において、反応に供するジカルボン酸原料及びジオール原料の少なくとも一方がバイオマス資源から誘導されたものであり,ジカルボン酸原料及びジオール原料中の窒素原子含有量が、原料の総和に対して質量比で0.01ppm以上2000ppm以下であり、該ポリエステル中の酸末端量が50当量/トン以下であることを特徴とするバイオマス資源由来ポリエステルの製造方法。
- ジカルボン酸とジオールとの反応によりポリエステルを製造する方法において、反応に供するジカルボン酸原料及びジオール原料の少なくとも一つがバイオマス資源から誘導されたものであり,ジカルボン酸原料及びジオール原料中の硫黄原子含有量が、原料の総和に対して質量比で0.01ppm以上100ppm以下であることを特徴とする請求項10に記載のバイオマス資源由来ポリエステルの製造方法。
- 3官能以上の多価アルコール、3官能以上の多価カルボン酸および3官能以上のオキシカルボン酸からなる群から選ばれる少なくとも1種の3官能以上の多官能化合物の存在下で反応させることを特徴とする請求項10〜11のいずれか1項に記載のバイオマス資源由来ポリエステルの製造方法。
- 請求項10〜12のいずれか一項に記載の製造方法により得られるバイオマス資源由来ポリエステル。
- 請求項1〜9及び13のいずれか1項に記載のポリエステル99.9〜0.1重量%に対して熱可塑性樹脂、生分解性樹脂、天然樹脂、または多糖類を0.1〜99.9重量%配合したことを特徴とするバイオマス資源由来ポリエステル樹脂組成物。
- 請求項1〜9及び13に記載のいずれか1項に記載のバイオマス資源由来ポリエステルを成形してなる成形体。
- 請求項14に記載のポリエステル樹脂組成物を成形してなる成形体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008263163A JP5303237B2 (ja) | 2005-04-22 | 2008-10-09 | バイオマス資源由来ポリエステル及びその製造方法 |
Applications Claiming Priority (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005125318 | 2005-04-22 | ||
JP2005125319 | 2005-04-22 | ||
JP2005125319 | 2005-04-22 | ||
JP2005125321 | 2005-04-22 | ||
JP2005125318 | 2005-04-22 | ||
JP2005125320 | 2005-04-22 | ||
JP2005125320 | 2005-04-22 | ||
JP2005125321 | 2005-04-22 | ||
JP2005127757 | 2005-04-26 | ||
JP2005127761 | 2005-04-26 | ||
JP2005127761 | 2005-04-26 | ||
JP2005127757 | 2005-04-26 | ||
JP2005128886 | 2005-04-27 | ||
JP2005128886 | 2005-04-27 | ||
JP2005375354 | 2005-12-27 | ||
JP2005375353 | 2005-12-27 | ||
JP2005375355 | 2005-12-27 | ||
JP2005375354 | 2005-12-27 | ||
JP2005375353 | 2005-12-27 | ||
JP2005375355 | 2005-12-27 | ||
JP2008263163A JP5303237B2 (ja) | 2005-04-22 | 2008-10-09 | バイオマス資源由来ポリエステル及びその製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006524976A Division JP4380704B2 (ja) | 2005-04-22 | 2006-04-21 | バイオマス資源由来ポリエステル及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009041036A true JP2009041036A (ja) | 2009-02-26 |
JP5303237B2 JP5303237B2 (ja) | 2013-10-02 |
Family
ID=37214841
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006524976A Active JP4380704B2 (ja) | 2005-04-22 | 2006-04-21 | バイオマス資源由来ポリエステル及びその製造方法 |
JP2008263163A Active JP5303237B2 (ja) | 2005-04-22 | 2008-10-09 | バイオマス資源由来ポリエステル及びその製造方法 |
JP2009117246A Active JP5390255B2 (ja) | 2005-04-22 | 2009-05-14 | バイオマス資源由来ポリエステル及びその製造方法 |
JP2012286185A Pending JP2013079395A (ja) | 2005-04-22 | 2012-12-27 | バイオマス資源由来ポリエステル及びその製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006524976A Active JP4380704B2 (ja) | 2005-04-22 | 2006-04-21 | バイオマス資源由来ポリエステル及びその製造方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009117246A Active JP5390255B2 (ja) | 2005-04-22 | 2009-05-14 | バイオマス資源由来ポリエステル及びその製造方法 |
JP2012286185A Pending JP2013079395A (ja) | 2005-04-22 | 2012-12-27 | バイオマス資源由来ポリエステル及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (8) | US7985566B2 (ja) |
EP (11) | EP3919543A3 (ja) |
JP (4) | JP4380704B2 (ja) |
CN (5) | CN103183813A (ja) |
DE (1) | DE602006013810D1 (ja) |
WO (1) | WO2006115226A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9080009B2 (en) | 2005-04-22 | 2015-07-14 | Mitsubishi Chemical Corporation | Biomass-resource-derived polyester and production process thereof |
WO2022158876A1 (ko) * | 2021-01-22 | 2022-07-28 | 한국화학연구원 | 폴리부틸렌숙시네이트-카보네이트 가교공중합체, 상기 가교공중합체와 나노셀룰로오스의 복합소재 및 이의 제조방법 |
Families Citing this family (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4380653B2 (ja) * | 2005-04-22 | 2009-12-09 | 三菱化学株式会社 | ポリエステル及びその製造方法 |
JP2006321997A (ja) * | 2005-04-22 | 2006-11-30 | Mitsubishi Chemicals Corp | ポリエステルの製造方法 |
JP2006321996A (ja) * | 2005-04-22 | 2006-11-30 | Mitsubishi Chemicals Corp | ポリエステルの製造方法 |
JP4380654B2 (ja) * | 2005-04-22 | 2009-12-09 | 三菱化学株式会社 | ポリエステル及びその製造方法 |
JP5600861B2 (ja) * | 2006-10-06 | 2014-10-08 | 三菱化学株式会社 | バイオマス資源由来ポリエステル製フィルム及びその製造方法 |
JP5504551B2 (ja) * | 2006-10-06 | 2014-05-28 | 三菱化学株式会社 | バイオマス資源由来ポリエステル製シート及びその製造方法 |
US8063145B2 (en) * | 2006-12-28 | 2011-11-22 | Sri Sports Limited | Golf ball |
JP5379352B2 (ja) * | 2007-02-13 | 2013-12-25 | 古河電気工業株式会社 | 導体もしくは光ファイバの絶縁被覆材、絶縁電線またはケーブル、および、光ファイバコードまたは光ファイバケーブル |
WO2008104541A1 (de) * | 2007-02-28 | 2008-09-04 | Basf Se | Verfahren zur herstellung von polyesteralkoholen |
JP4987512B2 (ja) * | 2007-03-06 | 2012-07-25 | 株式会社オートネットワーク技術研究所 | 絶縁電線およびワイヤーハーネス |
JP4983339B2 (ja) * | 2007-03-29 | 2012-07-25 | 凸版印刷株式会社 | 化粧シートおよび化粧材 |
JP2008264038A (ja) * | 2007-04-16 | 2008-11-06 | Sri Sports Ltd | ゴルフボール |
US8450397B2 (en) | 2007-09-25 | 2013-05-28 | Dunlop Sports Co. Ltd. | Golf ball |
JP5223322B2 (ja) * | 2007-12-12 | 2013-06-26 | 三菱化学株式会社 | 脂肪族ポリエステル樹脂組成物及びその成形体並びに樹脂容器 |
US20090246430A1 (en) * | 2008-03-28 | 2009-10-01 | The Coca-Cola Company | Bio-based polyethylene terephthalate polymer and method of making same |
US10087316B2 (en) | 2008-04-29 | 2018-10-02 | The Procter & Gamble Company | Polymeric compositions and articles comprising polylactic acid and polyolefin |
IT1387503B (it) | 2008-05-08 | 2011-04-13 | Novamont Spa | Poliestere biodegradabile alifatico-aromatico |
JP5185691B2 (ja) * | 2008-05-21 | 2013-04-17 | 日東電工株式会社 | ポリエステル系マスキングシート |
BRPI0919388B1 (pt) * | 2008-09-29 | 2019-02-19 | Mitsubishi Chemical Corporation | Método para produzir ácido succínico derivado de recursos de biomassa |
US8946472B2 (en) | 2008-12-31 | 2015-02-03 | Sabic Innovative Plastics Ip B.V. | Bio-based terephthalate polyesters |
RU2707890C2 (ru) | 2009-03-03 | 2019-12-02 | Дзе Кока-Кола Компани | Упаковка из полиэтилентерефталата, содержащего биологический материал, и способ его получения |
EP2241307A1 (en) * | 2009-04-17 | 2010-10-20 | E. I. du Pont de Nemours and Company | Micronized polymer powder and cosmetic composition thereof |
WO2010139056A1 (en) * | 2009-06-01 | 2010-12-09 | The University Of Guelph | Lignin based materials and methods of making those |
PL2438036T3 (pl) | 2009-06-04 | 2017-09-29 | Genomatica, Inc. | Sposób oddzielania składników brzeczki fermentacyjnej |
CA2763177C (en) | 2009-06-13 | 2017-08-01 | Thomas R. Boussie | Production of glutaric acid and derivatives from carbohydrate-containing materials |
BRPI1010708B1 (pt) | 2009-06-13 | 2018-04-03 | Rennovia, Inc. | "processos para preparar um produto de ácido adípico, e ácido adípico ou derivado do mesmo" |
US8669397B2 (en) | 2009-06-13 | 2014-03-11 | Rennovia, Inc. | Production of adipic acid and derivatives from carbohydrate-containing materials |
WO2010148070A2 (en) | 2009-06-16 | 2010-12-23 | Draths Corporation | Biobased polyesters |
US20110135912A1 (en) * | 2009-06-16 | 2011-06-09 | Meadwestvaco Corporation | Biodegradable packaging materials with enhanced oxygen barrier performance |
US8367859B2 (en) | 2009-06-16 | 2013-02-05 | Amyris, Inc. | Cyclohexane 1,4 carboxylates |
MX2011014007A (es) | 2009-06-16 | 2012-06-01 | Amyris Inc | 1, 4-carboxilatos de ciclohexeno. |
WO2011064151A1 (en) * | 2009-11-24 | 2011-06-03 | Dsm Ip Assets B.V. | Process for the crystallization of succinic acid |
US8669393B2 (en) | 2010-03-05 | 2014-03-11 | Rennovia, Inc. | Adipic acid compositions |
US9770705B2 (en) | 2010-06-11 | 2017-09-26 | Rennovia Inc. | Oxidation catalysts |
JP5517842B2 (ja) * | 2010-08-31 | 2014-06-11 | 株式会社ジェイエスピー | ポリカーボネート樹脂押出発泡体の製造方法及びポリカーボネート樹脂押出発泡体 |
JP5811526B2 (ja) * | 2010-10-29 | 2015-11-11 | 大日本印刷株式会社 | ポリエステル樹脂組成物の積層体 |
JP2012097163A (ja) * | 2010-10-29 | 2012-05-24 | Dainippon Printing Co Ltd | ポリエステル樹脂組成物 |
JP2012097164A (ja) * | 2010-10-29 | 2012-05-24 | Dainippon Printing Co Ltd | ポリエステル樹脂組成物 |
FR2967156B1 (fr) | 2010-11-09 | 2012-11-16 | Faurecia Interieur Ind | Nouveaux composes, leur procede de preparation et leur utilisation pour la preparation de polymeres utiles pour augmenter la tenue thermique de compositions polymeriques |
FR2967161B1 (fr) | 2010-11-09 | 2014-02-28 | Faurecia Interieur Ind | Nouveaux oligomeres, leur procede de preparation et leur utilisation pour fluidifier et/ou ameliorer la stabilite de compositions polymeriques |
KR101163924B1 (ko) * | 2011-01-31 | 2012-07-09 | 에스엔폴 주식회사 | 생분해성 수지 및 그 제조방법 |
US10696785B2 (en) * | 2011-02-22 | 2020-06-30 | Toray Industries, Inc. | Diol composition and polyester |
CN102120870A (zh) * | 2011-02-28 | 2011-07-13 | 殷正福 | 一种可降解塑料及其生产方法 |
US20120238170A1 (en) | 2011-03-15 | 2012-09-20 | Paul Thomas Weisman | Fluid Permeable Structured Fibrous Web |
US20120238982A1 (en) | 2011-03-15 | 2012-09-20 | Paul Thomas Weisman | Structured Fibrous Web |
US20120238979A1 (en) | 2011-03-15 | 2012-09-20 | Paul Thomas Weisman | Structured Fibrous Web |
US20120238981A1 (en) | 2011-03-15 | 2012-09-20 | Paul Thomas Weisman | Fluid Permeable Structured Fibrous Web |
US20120238978A1 (en) | 2011-03-15 | 2012-09-20 | Paul Thomas Weisman | Fluid Permeable Structured Fibrous Web |
US20120237718A1 (en) | 2011-03-15 | 2012-09-20 | Paul Thomas Weisman | Structured Fibrous Web |
US20120322970A1 (en) * | 2011-06-17 | 2012-12-20 | Toray Industries, Inc. | Biomass resource-derived polyester and method for producing same |
CN103635469B (zh) | 2011-07-04 | 2015-05-06 | 三菱化学株式会社 | 四氢呋喃的制造方法 |
WO2013005748A1 (ja) | 2011-07-04 | 2013-01-10 | 三菱化学株式会社 | 1,4-ブタンジオールの製造方法 |
CA2841059C (en) | 2011-07-08 | 2019-02-19 | Mitsubishi Chemical Corporation | 1,4-butanediol-containing composition |
WO2013012047A1 (ja) | 2011-07-20 | 2013-01-24 | 三菱化学株式会社 | 炭素原子数4の不飽和化合物を原料とする水素化物の製造方法 |
CO6350195A1 (es) * | 2011-09-23 | 2011-12-20 | Univ Del Cauca | Peliculas y empaques biodegradables obtenidos a partir de almidon de yuca y proceso de fabricacion de los mismos |
FR2981355B1 (fr) | 2011-10-17 | 2013-11-08 | Roquette Freres | Composites a base de pbs et de silice |
EP2781351B1 (en) * | 2011-11-11 | 2021-11-24 | Mitsubishi Chemical Corporation | Biodegradable laminate |
ITMI20112181A1 (it) * | 2011-11-30 | 2013-05-31 | Es Laminati Estrusi Termoplasti Ci S P A | Materiale plastico biodegradabile a base di acetato di cellulosa e relativi manufatti |
ES2548528T3 (es) | 2011-12-13 | 2015-10-19 | Uhde Inventa-Fischer Gmbh | Procedimiento de preparación de poliésteres alifáticos |
FR2987678B1 (fr) | 2012-03-02 | 2016-04-15 | Roquette Freres | Methode de mesure de la stabilite thermique d'un acide succinique cristallin destine a la fabrication de polymeres |
FR2988724B1 (fr) | 2012-03-30 | 2014-04-25 | Roquette Freres | Polymeres, leur procede de synthese et compositions les comprenant |
WO2013183593A1 (ja) * | 2012-06-05 | 2013-12-12 | 三菱化学株式会社 | ポリエステル及びポリウレタンの製造方法 |
CN103665353B (zh) * | 2012-09-19 | 2017-08-04 | 上海杰事杰新材料(集团)股份有限公司 | 一种生物可降解共聚酯及其制备方法 |
CN104640982A (zh) | 2012-09-24 | 2015-05-20 | 昭和电工株式会社 | 基因、微生物、转换方法及制造方法 |
US20150252390A1 (en) | 2012-09-24 | 2015-09-10 | Showa Denko | Manufacturing method for a butanediol |
JP6102201B2 (ja) * | 2012-11-15 | 2017-03-29 | 三菱化学株式会社 | 変性脂肪族ポリエステル共重合体およびその製造方法 |
JPWO2014080683A1 (ja) | 2012-11-26 | 2017-01-05 | 昭和電工株式会社 | 1,4−ブタンジオールの製造方法及び微生物 |
WO2014080687A1 (ja) | 2012-11-26 | 2014-05-30 | 昭和電工株式会社 | 1,4-ブタンジオールの製造方法及び微生物 |
US20150291985A1 (en) | 2012-11-27 | 2015-10-15 | Showa Denko K.K. | Method of manufacturing 1,4-butanediol and microbe |
WO2014087921A1 (ja) | 2012-12-05 | 2014-06-12 | 昭和電工株式会社 | 1,4-ブタンジオールの製造方法、微生物及び遺伝子 |
EP2933339A4 (en) | 2012-12-12 | 2016-06-22 | Showa Denko Kk | PROCESS FOR PREPARING BUTANEDIOLS, METHOD FOR PRODUCING MICRO-ORGANISMS FOR THE PRODUCTION OF BUTANEOLS AND MICRO-ORGANISMS |
NZ706072A (en) | 2013-03-08 | 2018-12-21 | Xyleco Inc | Equipment protecting enclosures |
US20160060385A1 (en) * | 2013-03-08 | 2016-03-03 | Dsm Ip Assets B.V. | Polyester |
US9745446B2 (en) * | 2013-03-25 | 2017-08-29 | Teijin Limited | Resin composition |
US9346922B2 (en) | 2013-11-26 | 2016-05-24 | International Business Machines Corporation | Flame retardant block copolymers from renewable feeds |
US9284414B2 (en) | 2013-11-26 | 2016-03-15 | Globalfoundries Inc. | Flame retardant polymers containing renewable content |
US20150197667A1 (en) | 2014-01-15 | 2015-07-16 | Ppg Industries Ohio, Inc. | Polyester polymers comprising lignin |
US10316140B2 (en) | 2014-03-21 | 2019-06-11 | Furanix Technologies B.V. | Polyesters comprising 2,5-furandicarboxylate and saturated diol units having a high glass transition temperature |
CN103923951B (zh) * | 2014-05-05 | 2016-03-16 | 哈尔滨工业大学 | 一种超声/酸预处理强化餐厨垃圾厌氧发酵产酸的方法 |
FR3020811B1 (fr) | 2014-05-09 | 2016-06-10 | Roquette Freres | Polyesters aromatiques thermoplastiques comprenant des motifs tetrahydrofuranedimethanol et acide furanedicarboxylique |
FR3020812B1 (fr) | 2014-05-09 | 2016-06-10 | Roquette Freres | Polyesters aromatiques thermoplastiques comprenant des motifs tetrahydrofuranedimethanol |
KR20170045305A (ko) | 2014-08-25 | 2017-04-26 | 신비나 씨.브이. | 폴리(에틸렌-2,5-푸란디카르복실레이트)을 포함하는 배향된 필름 제조를 위한 공정 |
US10554280B2 (en) * | 2015-05-01 | 2020-02-04 | Futurewei Technologies, Inc. | Device, network, and method for CSI feedback of hybrid beamforming |
FR3036400B1 (fr) | 2015-05-22 | 2019-04-26 | Roquette Freres | Polyester de haute viscosite aux proprietes choc ameliorees |
US10828801B2 (en) | 2015-06-04 | 2020-11-10 | Ra Energy Corporation | Advanced microfibers and related methods |
EP3310858B1 (de) | 2015-06-18 | 2019-02-20 | Covestro Deutschland AG | Flammgeschütze polycarbonat-polyester-zusammensetzungen |
US10400105B2 (en) | 2015-06-19 | 2019-09-03 | The Research Foundation For The State University Of New York | Extruded starch-lignin foams |
FR3052454B1 (fr) | 2016-06-10 | 2018-06-29 | Roquette Freres | Polyester thermoplastique amorphe pour la fabrication de corps creux |
FR3052455B1 (fr) | 2016-06-10 | 2018-06-29 | Roquette Freres | Polyester thermoplastique amorphe pour la fabrication de feuilles thermoformables |
FR3054244B1 (fr) | 2016-07-22 | 2019-09-06 | Roquette Freres | Polyester thermoplastique semi-cristallin pour la fabrication de fibres |
FR3054475B1 (fr) | 2016-07-29 | 2018-09-07 | Roquette Freres | Polyester thermoplastique pour la fabrication d'objet d'impression 3d |
FR3054551B1 (fr) | 2016-07-29 | 2019-08-02 | Roquette Freres | Composition polymere comprenant un polyester thermoplastique |
FR3054830B1 (fr) | 2016-08-02 | 2020-12-11 | Roquette Freres | Polyester thermoplastique semi-cristallin pour la fabrication de corps creux bi-etires |
FR3054831B1 (fr) | 2016-08-02 | 2020-11-06 | Roquette Freres | Polyester thermoplastique semi-cristallin pour la fabrication de contenant d'aerosol |
FR3070677B1 (fr) | 2016-08-03 | 2021-11-12 | Roquette Freres | Procede d'emballage a partir de polyester thermoplastique semi-cristallin |
FR3054838B1 (fr) | 2016-08-03 | 2018-09-07 | Roquette Freres | Polyester thermoplastique semi-cristallin pour la fabrication de films bi-orientes |
FR3054891B1 (fr) | 2016-08-05 | 2021-01-29 | Roquette Freres | Polyester thermoplastique amorphe pour la fabrication d'articles optiques |
FR3054804B1 (fr) | 2016-08-05 | 2019-07-12 | Roquette Freres | Utilisation d'un polyester thermoplastique pour la fabrication de pieces injectees |
BR112019014273B1 (pt) | 2017-01-26 | 2023-01-17 | Roquette Freres | Poliéster, processo de preparação do poliéster, composição, e, artigo plástico |
JP2018139560A (ja) * | 2017-02-28 | 2018-09-13 | 三菱ケミカルアグリドリーム株式会社 | 農業用生分解性フィルム |
JP2018145221A (ja) * | 2017-03-01 | 2018-09-20 | 三菱ケミカル株式会社 | ポリエステルの製造方法 |
FR3065958B1 (fr) | 2017-05-05 | 2020-09-04 | Roquette Freres | Procede de fabrication d'un materiau composite |
FR3065957B1 (fr) | 2017-05-05 | 2019-07-12 | Roquette Freres | Composite thermoplastique |
EA202090192A1 (ru) | 2017-07-06 | 2020-05-27 | Технип Циммер Гмбх | Способ и установка, предназначенные для получения биологически разлагающихся сложных полиэфиров |
JP2018034513A (ja) * | 2017-10-10 | 2018-03-08 | 大日本印刷株式会社 | ポリエステル樹脂組成物の積層体 |
FR3072094B1 (fr) | 2017-10-11 | 2020-09-04 | Roquette Freres | Polyester thermoplastique hautement incorpore en motif 1,4 : 3,6-dianhydro-l-iditol |
FR3078069B1 (fr) | 2018-02-19 | 2020-09-04 | Roquette Freres | Polyester thermoplastique presentant une resistance amelioree au phenomene de fissuration |
JP7235762B2 (ja) | 2018-03-01 | 2023-03-08 | テファ, インコーポレイテッド | ポリ(ブチレンスクシネート)およびそのコポリマーを含む医用デバイス |
US20210046212A1 (en) | 2018-03-01 | 2021-02-18 | Tepha, Inc. | Medical devices containing compositions of poly(butylene succinate) and copolymers thereof |
CN108384210B (zh) * | 2018-04-04 | 2020-07-28 | 中国科学院长春应用化学研究所 | 一种丙酮酸盐类的应用和改性聚乳酸 |
CN108727789A (zh) * | 2018-05-21 | 2018-11-02 | 金晖兆隆高新科技股份有限公司 | 一种生物基生物降解地膜及其制备方法 |
US11338985B2 (en) | 2018-08-28 | 2022-05-24 | Cellulose Material Solutions, LLC | Repulpable container insulation products and methods of making and using same |
FR3086663B1 (fr) | 2018-10-02 | 2020-11-13 | Roquette Freres | Procede de preparation d'un polyester de type poly(1,4:3,6-dianhydrohexitol-cocyclohexylene terephtalate) |
KR102206266B1 (ko) * | 2018-11-12 | 2021-01-22 | 주식회사 안코바이오플라스틱스 | 바이오매스 유래 성분을 이용한 기능성 수지 조성물 |
BR102018075225B1 (pt) * | 2018-12-05 | 2023-11-28 | Suzano S.A. | Composição termoplástica biodegradável e/ou compostável compreendendo lignina, uso da referida composição e produto que a compreende |
TWI708844B (zh) * | 2019-05-30 | 2020-11-01 | 行政院原子能委員會核能研究所 | 生產聚羥基鏈烷酸酯類之方法 |
CN110591227B (zh) * | 2019-09-23 | 2020-07-31 | 南京航空航天大学 | 一种智能防覆冰材料及其制备方法和应用 |
CN112717940B (zh) * | 2019-10-28 | 2023-07-21 | 中国石油化工股份有限公司 | 用于制γ-丁内酯的催化剂及其制备方法和应用 |
TWI806290B (zh) * | 2019-11-25 | 2023-06-21 | 星歐光學股份有限公司 | 塑化劑及塑膠產品 |
EP4050055A4 (en) * | 2020-01-09 | 2023-08-16 | Ankor Bioplastics Co., Ltd. | BIODEGRADABLE RESIN COMPOSITION WITH IMPROVED MECHANICAL PROPERTIES, MOLDABILITY AND WEATHER RESISTANCE AND PROCESS FOR PRODUCTION THEREOF |
KR102331340B1 (ko) * | 2020-03-18 | 2021-11-26 | 주식회사 안코바이오플라스틱스 | 기계적 물성, 성형성 및 내후성이 향상된 생분해성 수지 조성물 및 그 제조방법 |
MX2023000090A (es) * | 2020-07-02 | 2023-02-23 | Univ Louisville Res Found Inc | Pretratamiento de fibras para mejorar la produccion de materia prima compuesta de fibras naturales y polimeros. |
FR3112306B1 (fr) | 2020-07-10 | 2023-05-26 | Roquette Freres | Polyester thermoplastique pour la fabrication d’objet d’impression 3D |
FR3112305B1 (fr) | 2020-07-10 | 2023-05-12 | Roquette Freres | Polyester thermoplastique pour la fabrication d’objet d’impression 3D |
FR3116533B1 (fr) | 2020-11-26 | 2023-08-04 | Roquette Freres | Produit de déshydratation interne du sorbitol de haute pureté |
EP4267516A1 (en) | 2020-12-23 | 2023-11-01 | Kintra Fibers, Inc. | Polyester polymer nanocomposites |
US11535729B2 (en) * | 2021-02-08 | 2022-12-27 | Enviro Cast, LLC | Degradable fishing lines and nets |
CN113307959A (zh) * | 2021-06-02 | 2021-08-27 | 徐州工程学院 | 一种海水可降解丁二酸丁二醇共聚酯及制备方法 |
EP4414404A1 (en) | 2021-10-06 | 2024-08-14 | Mitsubishi Chemical Corporation | Resin, resin composition, and shaped object |
CN115044573B (zh) * | 2022-04-25 | 2024-03-26 | 北京化工大学 | 2-羟基对苯二甲酸的生物合成途径及方法 |
CN114752084B (zh) * | 2022-04-25 | 2024-02-23 | 东莞市冠亿新材料科技有限公司 | 一种用于吹塑膜的可降解母粒的生产工艺及可降解母粒 |
EP4438652A1 (de) | 2023-03-30 | 2024-10-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur herstellung von aliphatischen polyestern |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02283239A (ja) * | 1989-04-21 | 1990-11-20 | Daiwa Jitsugyo Kk | 農産物の鮮度保持方法 |
JPH09110971A (ja) * | 1995-10-24 | 1997-04-28 | Mitsubishi Chem Corp | 脂肪族ポリエステル共重合体の製造法 |
JP2001323056A (ja) * | 2000-05-17 | 2001-11-20 | Toray Ind Inc | 脂肪族ポリエステル樹脂および成形品 |
JP2001335626A (ja) * | 2000-05-26 | 2001-12-04 | Toray Ind Inc | 脂肪族ポリエステル樹脂および成形品 |
JP2004124087A (ja) * | 2002-09-09 | 2004-04-22 | Mitsubishi Chemicals Corp | ポリエステルの製造方法 |
JP2005065641A (ja) * | 2003-08-27 | 2005-03-17 | Mitsubishi Chemicals Corp | 非アミノ有機酸の製造方法 |
WO2005030973A1 (ja) * | 2003-09-30 | 2005-04-07 | Ajinomoto Co., Inc. | 発酵液からのコハク酸の精製方法 |
JP2005095169A (ja) * | 2003-08-28 | 2005-04-14 | Mitsubishi Chemicals Corp | コハク酸の製造方法 |
JP4380704B2 (ja) * | 2005-04-22 | 2009-12-09 | 三菱化学株式会社 | バイオマス資源由来ポリエステル及びその製造方法 |
Family Cites Families (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2941956A (en) | 1956-08-15 | 1960-06-21 | Socony Mobil Oil Co Inc | Regeneration of contact material |
DE1092899B (de) | 1956-08-22 | 1960-11-17 | Union Rheinische Braunkohlen | Verfahren zur Reinigung von Terephthalsaeure sowie deren monomeren und polymeren Estern |
JPS4733279Y1 (ja) | 1964-12-29 | 1972-10-06 | ||
NL6806471A (ja) | 1967-05-15 | 1968-11-18 | ||
JPS4733279B1 (ja) | 1968-12-20 | 1972-08-24 | ||
DE1912497A1 (de) | 1969-03-12 | 1970-10-01 | Kalk Chemische Fabrik Gmbh | Verfahren zur Herstellung reiner Terephthalsaeure |
US3544455A (en) | 1969-06-16 | 1970-12-01 | Pfizer & Co C | Itaconic acid purification process using reverse osmosis |
JPS5013373Y2 (ja) | 1971-02-08 | 1975-04-24 | ||
US4013624A (en) | 1972-03-20 | 1977-03-22 | E. I. Du Pont De Nemours And Company | Branched thermoplastic copolyesters |
US3903152A (en) | 1972-07-04 | 1975-09-02 | Toa Gosei Chem Ind | Process for producing highly pure 1,12-dodecanedioic acid |
JPS5530010B2 (ja) * | 1973-11-19 | 1980-08-07 | ||
DE2420765C3 (de) | 1974-04-29 | 1981-02-12 | Chemische Werke Huels Ag, 4370 Marl | Verfahren zur Reinigung von Decandicarbonsäure- (l,lo) |
US4086270A (en) | 1976-10-18 | 1978-04-25 | Suntech, Inc. | Process for making terephthalic acid |
US4447595A (en) | 1982-09-07 | 1984-05-08 | The Goodyear Tire & Rubber Company | Polyterephthalates and copolymers thereof having high clarity and process for making same |
JPS62285779A (ja) * | 1986-06-04 | 1987-12-11 | Chiyoda Chem Eng & Constr Co Ltd | 1,4−ブタンジオ−ル産生バチルス属細菌及びそれを用いる1,4−ブタンジオ−ルの製造方法 |
JPS62286779A (ja) | 1986-06-05 | 1987-12-12 | Nec Corp | シリアルプリンタ |
US5143834A (en) | 1986-06-11 | 1992-09-01 | Glassner David A | Process for the production and purification of succinic acid |
ES2036188T3 (es) | 1986-06-11 | 1993-05-16 | Michigan Biotechnology Institute | Un procedimiento para la produccion de acido succinico por fermentacion anaerobia. |
US5168055A (en) | 1986-06-11 | 1992-12-01 | Rathin Datta | Fermentation and purification process for succinic acid |
JPS63136520A (ja) | 1986-11-27 | 1988-06-08 | Oki Electric Ind Co Ltd | X線マスクの製造方法 |
JPH01293183A (ja) | 1988-05-18 | 1989-11-27 | Meidensha Corp | 膜分離固定化メタン発酵方法 |
US6323307B1 (en) | 1988-08-08 | 2001-11-27 | Cargill Dow Polymers, Llc | Degradation control of environmentally degradable disposable materials |
JP2810068B2 (ja) | 1988-11-11 | 1998-10-15 | 株式会社日立製作所 | プロセッサシステム、コンピュータシステム及び命令処理方法 |
ATE149412T1 (de) | 1988-12-27 | 1997-03-15 | Varitech Ind Inc | Verfahren zum einkapseln eines spannankers eines vorspanngliedes |
JPH02263289A (ja) | 1989-04-03 | 1990-10-26 | Toshiba Corp | 自動販売機 |
JP2996671B2 (ja) | 1989-07-10 | 2000-01-11 | 東レ株式会社 | ポリエステル組成物 |
US5034105A (en) | 1989-07-27 | 1991-07-23 | Michigan Biotechnology Institute | Carboxylic acid purification and crystallization process |
US5693781A (en) | 1991-06-03 | 1997-12-02 | Mitsubishi Chemical Corporation | Promoter DNA fragment from coryneform bacteria |
JP3024030B2 (ja) | 1992-12-07 | 2000-03-21 | ポリプラスチックス株式会社 | 加水分解安定性の優れたポリブチレンテレフタレート重合体の製造方法 |
US5266725A (en) | 1992-12-17 | 1993-11-30 | E. I. Du Pont De Nemours And Company | Copper-modified high purity adipic acid |
US5536793A (en) * | 1993-01-29 | 1996-07-16 | Amoco Corporation | Concentrate for use in the melt fabrication of polyester |
JP3206183B2 (ja) * | 1993-02-17 | 2001-09-04 | 三菱化学株式会社 | 1,4−ブタンジオールの製造方法 |
JPH06267878A (ja) | 1993-03-10 | 1994-09-22 | Fuji Electric Co Ltd | 半導体集積回路装置の製造方法 |
JP3248597B2 (ja) | 1993-04-07 | 2002-01-21 | 東洋紡績株式会社 | 脂肪族ポリエステルの製造方法 |
JPH0782188A (ja) * | 1993-09-14 | 1995-03-28 | Tosoh Corp | 1,4−ブタンジオールの製造方法 |
JP3499599B2 (ja) | 1994-05-17 | 2004-02-23 | 帝人ファイバー株式会社 | テレフタル酸ジメチルの回収方法 |
US5504004A (en) | 1994-12-20 | 1996-04-02 | Michigan Biotechnology Institute | Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms |
JP3377143B2 (ja) | 1995-03-28 | 2003-02-17 | 三菱化学株式会社 | 脂肪族ポリエステル共重合体の製造法 |
US6428767B1 (en) | 1995-05-12 | 2002-08-06 | E. I. Du Pont De Nemours And Company | Method for identifying the source of carbon in 1,3-propanediol |
JP2807428B2 (ja) | 1995-06-28 | 1998-10-08 | 株式会社ヤスダ | 自転車変速機用ワイヤ操作装置 |
US5869301A (en) | 1995-11-02 | 1999-02-09 | Lockhead Martin Energy Research Corporation | Method for the production of dicarboxylic acids |
US5770435A (en) | 1995-11-02 | 1998-06-23 | University Of Chicago | Mutant E. coli strain with increased succinic acid production |
WO1997018528A1 (en) | 1995-11-13 | 1997-05-22 | Synaptics, Inc. | Stylus input capacitive touchpad sensor |
JPH09227666A (ja) | 1996-02-20 | 1997-09-02 | Mitsubishi Chem Corp | ポリエステルフィルム |
CH690628A5 (de) | 1996-03-22 | 2000-11-15 | Intex Pharmazeutische Produkte | Testbesteck, bestehend aus einem Blister, und seine Verwendung. |
DE19715682A1 (de) * | 1996-04-16 | 1997-10-30 | Mitsubishi Chem Corp | Polyester, Verfahren zu dessen Herstellung und Formprodukt daraus |
US5661193A (en) * | 1996-05-10 | 1997-08-26 | Eastman Chemical Company | Biodegradable foamable co-polyester compositions |
JPH1021687A (ja) | 1996-07-03 | 1998-01-23 | Sony Corp | 半導体記憶装置 |
US5840866A (en) | 1996-07-10 | 1998-11-24 | Incyte Pharmaceuticals, Inc. | Human ubiquitin-conjugating enzyme |
DE69734688T2 (de) | 1996-08-30 | 2006-08-10 | Mitsubishi Polyester Film Corp. | Verfahren zur Herstellung einer Polyesterzusammensetzung |
DE19638277A1 (de) | 1996-09-19 | 1998-03-26 | Bosch Gmbh Robert | Vorrichtung und Verfahren zum Betrieb eines Umschlingungsgetriebes |
JPH10185626A (ja) | 1996-12-25 | 1998-07-14 | Ando Electric Co Ltd | 信号記録再生装置 |
EP0859077A1 (fr) | 1997-02-14 | 1998-08-19 | Sommer S.A. | Procédé et dispositif de fabrication de produits textiles et produits textiles obtenus |
GB9703194D0 (en) | 1997-02-15 | 1997-04-02 | Philips Electronics Nv | Television |
TW415843B (en) | 1997-02-28 | 2000-12-21 | Ishihara Sangyo Kaisha | Anti-cancer pharmaceutical compositions comprising a diaminotrifluoromethylpyridine derivatives or the pharmaceutically acceptable salts thereof |
US20020137890A1 (en) | 1997-03-31 | 2002-09-26 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
JPH1120638A (ja) | 1997-07-08 | 1999-01-26 | Toyota Motor Corp | 制動力制御装置 |
US5958744A (en) | 1997-08-18 | 1999-09-28 | Applied Carbochemicals | Succinic acid production and purification |
JP4197754B2 (ja) | 1997-10-09 | 2008-12-17 | 三菱化学株式会社 | 乳酸又はコハク酸の製造方法 |
KR100389899B1 (ko) | 1997-12-18 | 2003-07-04 | 미크론 테크놀로지,인코포레이티드 | 핫-캐리어 효과 제한 트랜지스터 게이트 형성 및 그 트랜지스터 |
JP4074365B2 (ja) | 1998-01-28 | 2008-04-09 | 三菱化学株式会社 | ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株 |
US6350531B1 (en) | 1998-02-23 | 2002-02-26 | Keiichi Sugimoto | Biodegradable plastic molded article |
CA2321759A1 (en) | 1998-03-02 | 1999-09-10 | Elankovan Ponnampalam | Purification of organic acids using anion exchange chromatography |
US6159738A (en) | 1998-04-28 | 2000-12-12 | University Of Chicago | Method for construction of bacterial strains with increased succinic acid production |
WO2000008090A1 (fr) | 1998-08-06 | 2000-02-17 | Mitsui Chemicals, Incorporated | Polyimide contenant un groupe reticulable et son procede de production |
JP2000212268A (ja) * | 1999-01-26 | 2000-08-02 | Nippon Ester Co Ltd | 共重合ポリエステルの乾燥方法 |
US6245879B1 (en) | 1999-01-29 | 2001-06-12 | Shell Oil Company | Purification of 1,3-propanediol in carbonyl-containing stream |
GB9904386D0 (en) | 1999-02-25 | 1999-04-21 | Pharmacia & Upjohn Spa | Antitumour synergistic composition |
JP2000302724A (ja) | 1999-04-20 | 2000-10-31 | Kawaguchi Yakuhin Kk | α,ω−ジカルボン酸及びその精製方法、並びに、これを用いた熱硬化性粉体塗料組成物 |
JP2001028842A (ja) | 1999-07-13 | 2001-01-30 | Toyota Autom Loom Works Ltd | バッテリ車の充電制御装置 |
JP2001026642A (ja) * | 1999-07-16 | 2001-01-30 | Mitsubishi Chemicals Corp | 脂肪族芳香族ポリエステル |
JP3622894B2 (ja) | 1999-07-30 | 2005-02-23 | 東洋紡績株式会社 | ポリエステル、それからなる中空成形体、シ−ト状物及び延伸フイルム |
US6376223B1 (en) | 1999-08-04 | 2002-04-23 | Cognis Corporation | Process for purifying polycarboxylic acids |
KR100785997B1 (ko) | 1999-08-18 | 2007-12-14 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 1,3-프로판디올을 높은 역가로 생물학적으로 생산하는 방법 |
EP1220914A1 (en) | 1999-09-16 | 2002-07-10 | Solvay Pharmaceuticals B.V. | Human g-protein coupled receptor |
US6361983B1 (en) * | 1999-09-30 | 2002-03-26 | E. I. Du Pont De Nemours And Company | Process for the isolation of 1,3-propanediol from fermentation broth |
US6528617B1 (en) | 1999-10-27 | 2003-03-04 | Mitsui Chemicals, Inc. | Process for producing aliphatic polyester excellent in stability |
EP1243573B1 (en) | 1999-11-05 | 2014-01-01 | Asahi Kasei Kabushiki Kaisha | Process for the preparation of diol mixtures |
AU2001230913B2 (en) | 2000-01-14 | 2005-06-30 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Methanocarba cycloalkyl nucleoside analogues |
WO2001058864A1 (en) | 2000-02-07 | 2001-08-16 | Rhone-Poulenc Animal Nutrition | Process for the preparation of 2-hydroxy-4-methylthio butyric acid esters |
US6353062B1 (en) * | 2000-02-11 | 2002-03-05 | E. I. Du Pont De Nemours And Company | Continuous process for producing poly(trimethylene terephthalate) |
US20050060059A1 (en) | 2003-09-15 | 2005-03-17 | Klein Robert J. | System and method for processing batches of documents |
JP3488173B2 (ja) | 2000-04-04 | 2004-01-19 | 新日本製鐵株式会社 | 耐リジング性に優れるCr含有薄鋼板およびその製造方法 |
JP2001323066A (ja) | 2000-05-19 | 2001-11-20 | Mitsui Chemicals Inc | 架橋基含有ポリイミド前駆体、架橋基含有ポリイミド、及び、耐熱性接着剤 |
JP4626012B2 (ja) | 2000-05-25 | 2011-02-02 | 井関農機株式会社 | 車両の変速制御装置 |
US6838529B2 (en) | 2000-11-22 | 2005-01-04 | Toray Industries, Inc. | Polyester composition and connector |
JP2002212830A (ja) | 2001-01-11 | 2002-07-31 | Unitika Ltd | 生分解性ポリエステル繊維 |
JP2002232830A (ja) | 2001-01-30 | 2002-08-16 | Fuji Photo Film Co Ltd | 画像処理装置、画像処理プログラム及び画像処理方法 |
US6743610B2 (en) | 2001-03-30 | 2004-06-01 | The University Of Chicago | Method to produce succinic acid from raw hydrolysates |
US6746779B2 (en) | 2001-08-10 | 2004-06-08 | E. I. Du Pont De Nemours And Company | Sulfonated aliphatic-aromatic copolyesters |
KR20040041170A (ko) | 2001-09-21 | 2004-05-14 | 브리티쉬 텔리커뮤니케이션즈 파블릭 리미티드 캄퍼니 | 혼잡 제어를 위한 전송률을 계산하기 위해 수신 버퍼 크기를 사용하는 데이터 통신 방법 및 시스템 |
JP2003113171A (ja) | 2001-10-05 | 2003-04-18 | Nippon Shokubai Co Ltd | 無水コハク酸の精製方法 |
JP4032765B2 (ja) | 2002-02-13 | 2008-01-16 | 三菱化学株式会社 | 有機酸の製造方法 |
JP3627017B2 (ja) * | 2002-03-05 | 2005-03-09 | 独立行政法人産業技術総合研究所 | 機能性ポリブチレンサクシネート樹脂組成物 |
US6608167B1 (en) * | 2002-03-26 | 2003-08-19 | E. I. Du Pont De Nemours And Company | Bis(2-hydroxyethyl isosorbide); preparation, polymers derived therefrom, and enduses thereby |
MY137537A (en) | 2002-05-10 | 2009-02-27 | Mitsubishi Chem Corp | Method for producing organic acid |
JP4061426B2 (ja) | 2002-05-10 | 2008-03-19 | 三菱化学株式会社 | 有機酸の製造方法 |
JP4363101B2 (ja) | 2002-08-05 | 2009-11-11 | 三菱化学株式会社 | ポリエステル樹脂及びその製造方法 |
US7210524B2 (en) | 2002-11-07 | 2007-05-01 | Baker Hughes Incorporated | Perforating gun quick connection system |
JP3922174B2 (ja) | 2002-12-19 | 2007-05-30 | 富士ゼロックス株式会社 | 画像形成装置 |
JP2004198788A (ja) | 2002-12-19 | 2004-07-15 | Fuji Xerox Co Ltd | 画像形成装置 |
JP2004307794A (ja) * | 2003-02-18 | 2004-11-04 | Mitsubishi Chemicals Corp | ポリブチレンテレフタレート及びその組成物 |
JP2004249623A (ja) | 2003-02-21 | 2004-09-09 | Hitachi Printing Solutions Ltd | 印刷装置操作方法 |
JP4329567B2 (ja) | 2003-02-28 | 2009-09-09 | 三菱化学株式会社 | ポリブチレンテレフタレート及びポリブチレンテレフタレート組成物 |
KR100712167B1 (ko) | 2003-03-03 | 2007-04-27 | 가네보 트리니티 홀딩스 가부시키가이샤 | 폴리에스테르 중합체 및 그의 성형체 및 폴리에스테르중합체의 제조 방법 |
KR101105957B1 (ko) * | 2003-05-06 | 2012-01-18 | 테이트 앤드 라일 인그레디언츠 아메리카스, 인크. | 생물학적으로 생성된 1,3-프로판디올의 정제 |
US20040225107A1 (en) * | 2003-05-06 | 2004-11-11 | Sunkara Hari Babu | Polytrimethylene ether glycol with excellent quality from biochemically-derived 1,3-propanediol |
JP2005027633A (ja) | 2003-07-07 | 2005-02-03 | Yujiro Totsuka | 室内外用排泄物処置具。 |
JP4469568B2 (ja) | 2003-07-09 | 2010-05-26 | 三菱化学株式会社 | 有機酸の製造方法 |
US7220815B2 (en) | 2003-07-31 | 2007-05-22 | E.I. Du Pont De Nemours And Company | Sulfonated aliphatic-aromatic copolyesters and shaped articles produced therefrom |
JP2005065841A (ja) | 2003-08-21 | 2005-03-17 | Aruze Corp | スロットマシン |
BRPI0413403A (pt) | 2003-08-28 | 2006-10-17 | Mitsubishi Chem Corp | método para produzir ácido succìnico |
JP4578080B2 (ja) | 2003-09-05 | 2010-11-10 | 三菱鉛筆株式会社 | 流動性のよいフォロワー及びこれを有するボールペン |
JP2005113127A (ja) * | 2003-09-16 | 2005-04-28 | Mitsubishi Chemicals Corp | 脂肪族ポリエステルの製造方法および脂肪族ポリエステル |
WO2005026232A1 (ja) * | 2003-09-16 | 2005-03-24 | Mitsubishi Chemical Corporation | 脂肪族ポリエステルの製造方法および脂肪族ポリエステル |
EP1672067B1 (en) | 2003-09-17 | 2015-11-11 | Mitsubishi Chemical Corporation | Process for producing non-amino organic acid |
EP1669409B1 (en) * | 2003-09-22 | 2012-11-14 | Panasonic Corporation | Flame-retardant resin composition, process for producing the same, and method of molding the same |
JP4771195B2 (ja) | 2003-09-29 | 2011-09-14 | 日立金属株式会社 | セラミックハニカムフィルタ及びその製造方法、セラミックハニカムフィルタ用目封止材 |
JP2005125320A (ja) | 2003-09-30 | 2005-05-19 | Ebara Corp | 有機性廃棄物の処理方法及び装置 |
JP4461209B2 (ja) | 2003-09-30 | 2010-05-12 | 荏原エンジニアリングサービス株式会社 | 有機性廃棄物による発電方法及び装置 |
DE10349381B4 (de) | 2003-10-21 | 2005-08-25 | Groz-Beckert Kg | Webschaft mit neuartigem Eckverbinder |
JP2005127761A (ja) | 2003-10-22 | 2005-05-19 | Canon Inc | エンコーダ信号処理装置 |
JP2005127757A (ja) | 2003-10-22 | 2005-05-19 | Hitachi High-Technologies Corp | 自動分析装置 |
JP4453813B2 (ja) | 2003-10-24 | 2010-04-21 | キヤノンマーケティングジャパン株式会社 | 情報処理装置、情報処理装置によるデータ送信方法、プログラム及び記憶媒体 |
JP2005125321A (ja) | 2003-10-25 | 2005-05-19 | Tae Hyung Kim | 振動モータ |
US7005552B2 (en) | 2003-11-03 | 2006-02-28 | Bayer Materialscience Llc | Single reactor synthesis of KOH-capped polyols based on DMC-synthesized intermediates |
JP4301918B2 (ja) * | 2003-11-06 | 2009-07-22 | 三菱化学株式会社 | ポリエステルの製造方法 |
JP4645019B2 (ja) * | 2003-11-07 | 2011-03-09 | 東洋紡績株式会社 | 樹脂積層フィルム、および包装体 |
JP4649589B2 (ja) | 2003-11-13 | 2011-03-09 | 独立行政法人産業技術総合研究所 | コハク酸アンモニウムを用いるポリエステルの製造方法 |
JP2005162801A (ja) | 2003-12-01 | 2005-06-23 | Mitsubishi Chemicals Corp | 脂肪族ポリエステルの製造方法 |
US20050137918A1 (en) | 2003-12-17 | 2005-06-23 | International Business Machines Corporation | Method, system and program product for assessing an enterprise architecture |
CN1246465C (zh) | 2004-04-29 | 2006-03-22 | 清华大学 | 微生物两段发酵法由甘油生产1,3-丙二醇和2,3-丁二醇 |
JP2006027623A (ja) | 2004-07-13 | 2006-02-02 | Nihon Tetra Pak Kk | 包材及び包装容器 |
JP4549763B2 (ja) | 2004-07-14 | 2010-09-22 | 三光機械株式会社 | 2列式自動包装機用包装フィルム供給機構 |
JP2006035169A (ja) | 2004-07-29 | 2006-02-09 | Nec Engineering Ltd | 無洗米加工装置 |
JP4304497B2 (ja) | 2004-08-26 | 2009-07-29 | パナソニック電工株式会社 | 半導体素子 |
KR100580657B1 (ko) | 2004-11-11 | 2006-05-16 | 삼성전기주식회사 | 마이크로 미러 어레이 및 그 제조 방법 |
US8202591B2 (en) | 2004-11-30 | 2012-06-19 | Asahi Kasei Chemicals Corporation | Polyester resin, molded object thereof, and processes for producing these |
KR20070092279A (ko) | 2004-12-16 | 2007-09-12 | 아이싸이언스 인터벤셔날 코포레이션 | 녹내장 치료를 위한 안과 이식물 |
JP2006236643A (ja) | 2005-02-23 | 2006-09-07 | Seiko Epson Corp | 発光管、光源ランプ、プロジェクタ及び光源ランプの製造方法 |
JP4206390B2 (ja) | 2005-03-07 | 2009-01-07 | ヤマハ株式会社 | 遺伝子検査用温度調節装置 |
JP2006238843A (ja) | 2005-03-07 | 2006-09-14 | Mitsubishi Heavy Ind Ltd | コハク酸の製造方法、コハク酸、生分解性プラスチックの製造方法および生分解性プラスチック |
US7518359B2 (en) | 2005-03-09 | 2009-04-14 | General Electric Company | Inspection of non-planar parts using multifrequency eddy current with phase analysis |
JP4380654B2 (ja) | 2005-04-22 | 2009-12-09 | 三菱化学株式会社 | ポリエステル及びその製造方法 |
JP2009077719A (ja) * | 2005-04-22 | 2009-04-16 | Mitsubishi Chemicals Corp | ポリエステル及びその製造方法 |
JP4380653B2 (ja) | 2005-04-22 | 2009-12-09 | 三菱化学株式会社 | ポリエステル及びその製造方法 |
EP1862712B1 (en) | 2006-06-02 | 2010-01-06 | Emech Control Limited | Mixing valve and mixing device |
ES2272194A1 (es) | 2006-08-28 | 2007-04-16 | Universidad Politecnica De Madrid | Caldera de energia solar. |
CN101132260B (zh) | 2006-08-22 | 2010-06-23 | 中兴通讯股份有限公司 | 增强上行链路异步混合自动重传请求的重传控制方法 |
WO2008118228A2 (en) | 2006-12-05 | 2008-10-02 | Stonybrook Water Purification | Articles comprising a fibrous support |
CN101896533B (zh) | 2007-12-12 | 2012-08-22 | 三菱化学株式会社 | 脂肪族聚酯树脂及其制造方法 |
US8234004B2 (en) | 2008-02-27 | 2012-07-31 | Optricity Corporation | Systems and methods for efficiently determining item slot assignments |
JP5682104B2 (ja) | 2008-09-05 | 2015-03-11 | 三菱化学株式会社 | 蛍光体及びその製造方法と、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、その発光装置を用いた画像表示装置及び照明装置 |
JP4360654B1 (ja) | 2008-10-08 | 2009-11-11 | 長谷川香料株式会社 | 香酸柑橘様香味増強剤 |
-
2006
- 2006-04-21 EP EP21178703.1A patent/EP3919543A3/en not_active Withdrawn
- 2006-04-21 WO PCT/JP2006/308472 patent/WO2006115226A1/ja active Application Filing
- 2006-04-21 EP EP21178729.6A patent/EP3909998A3/en not_active Withdrawn
- 2006-04-21 EP EP20110158680 patent/EP2402383A3/en not_active Withdrawn
- 2006-04-21 EP EP20110158666 patent/EP2366726A3/en not_active Withdrawn
- 2006-04-21 JP JP2006524976A patent/JP4380704B2/ja active Active
- 2006-04-21 EP EP21178711.4A patent/EP3925997B1/en active Active
- 2006-04-21 CN CN2013100699153A patent/CN103183813A/zh active Pending
- 2006-04-21 CN CN201310069896.4A patent/CN103183812B/zh active Active
- 2006-04-21 EP EP06732230A patent/EP1882712B1/en not_active Revoked
- 2006-04-21 CN CN201310070534.7A patent/CN103183814B/zh active Active
- 2006-04-21 EP EP11158665.7A patent/EP2365017B1/en not_active Revoked
- 2006-04-21 US US11/912,212 patent/US7985566B2/en active Active
- 2006-04-21 EP EP21178732.0A patent/EP3925998B1/en active Active
- 2006-04-21 EP EP10002323.3A patent/EP2204396B1/en active Active
- 2006-04-21 CN CN200680013513XA patent/CN101163729B/zh active Active
- 2006-04-21 CN CN201310070301.7A patent/CN103172840B/zh active Active
- 2006-04-21 EP EP21178708.0A patent/EP3925996A3/en active Pending
- 2006-04-21 EP EP20110158675 patent/EP2366727A3/en not_active Withdrawn
- 2006-04-21 DE DE602006013810T patent/DE602006013810D1/de active Active
-
2008
- 2008-10-09 JP JP2008263163A patent/JP5303237B2/ja active Active
-
2009
- 2009-05-14 JP JP2009117246A patent/JP5390255B2/ja active Active
-
2010
- 2010-08-17 US US12/858,046 patent/US8021864B2/en active Active
-
2011
- 2011-06-24 US US13/168,513 patent/US9080009B2/en active Active
-
2012
- 2012-08-16 US US13/586,916 patent/US20130030145A1/en not_active Abandoned
- 2012-12-27 JP JP2012286185A patent/JP2013079395A/ja active Pending
-
2017
- 2017-09-01 US US15/693,646 patent/US10287393B2/en active Active
-
2019
- 2019-03-01 US US16/290,140 patent/US10870727B2/en active Active
-
2020
- 2020-10-30 US US17/085,666 patent/US11560449B2/en active Active
-
2022
- 2022-06-16 US US17/841,898 patent/US11732087B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02283239A (ja) * | 1989-04-21 | 1990-11-20 | Daiwa Jitsugyo Kk | 農産物の鮮度保持方法 |
JPH09110971A (ja) * | 1995-10-24 | 1997-04-28 | Mitsubishi Chem Corp | 脂肪族ポリエステル共重合体の製造法 |
JP2001323056A (ja) * | 2000-05-17 | 2001-11-20 | Toray Ind Inc | 脂肪族ポリエステル樹脂および成形品 |
JP2001335626A (ja) * | 2000-05-26 | 2001-12-04 | Toray Ind Inc | 脂肪族ポリエステル樹脂および成形品 |
JP2004124087A (ja) * | 2002-09-09 | 2004-04-22 | Mitsubishi Chemicals Corp | ポリエステルの製造方法 |
JP2005065641A (ja) * | 2003-08-27 | 2005-03-17 | Mitsubishi Chemicals Corp | 非アミノ有機酸の製造方法 |
JP2005095169A (ja) * | 2003-08-28 | 2005-04-14 | Mitsubishi Chemicals Corp | コハク酸の製造方法 |
WO2005030973A1 (ja) * | 2003-09-30 | 2005-04-07 | Ajinomoto Co., Inc. | 発酵液からのコハク酸の精製方法 |
JP4380704B2 (ja) * | 2005-04-22 | 2009-12-09 | 三菱化学株式会社 | バイオマス資源由来ポリエステル及びその製造方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9080009B2 (en) | 2005-04-22 | 2015-07-14 | Mitsubishi Chemical Corporation | Biomass-resource-derived polyester and production process thereof |
US10287393B2 (en) | 2005-04-22 | 2019-05-14 | Mitsubishi Chemical Corporation | Biomass-resource-derived polyester and production process thereof |
US10870727B2 (en) | 2005-04-22 | 2020-12-22 | Mitsubishi Chemical Corporation | Biomass-resource-derived polyester and production process thereof |
US11560449B2 (en) | 2005-04-22 | 2023-01-24 | Mitsubishi Chemical Corporation | Biomass-resource-derived polyester and production process thereof |
US11732087B2 (en) | 2005-04-22 | 2023-08-22 | Mitsubishi Chemical Corporation | Biomass-resource-derived polyester and production process thereof |
WO2022158876A1 (ko) * | 2021-01-22 | 2022-07-28 | 한국화학연구원 | 폴리부틸렌숙시네이트-카보네이트 가교공중합체, 상기 가교공중합체와 나노셀룰로오스의 복합소재 및 이의 제조방법 |
KR20220106505A (ko) * | 2021-01-22 | 2022-07-29 | 한국화학연구원 | 폴리부틸렌숙시네이트-카보네이트 가교공중합체, 상기 가교공중합체와 나노셀룰로오스의 복합소재 및 이의 제조방법. |
KR102454215B1 (ko) | 2021-01-22 | 2022-10-14 | 한국화학연구원 | 폴리부틸렌숙시네이트-카보네이트 가교공중합체, 상기 가교공중합체와 나노셀룰로오스의 복합소재 및 이의 제조방법. |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5390255B2 (ja) | バイオマス資源由来ポリエステル及びその製造方法 | |
JP4380654B2 (ja) | ポリエステル及びその製造方法 | |
JP5600861B2 (ja) | バイオマス資源由来ポリエステル製フィルム及びその製造方法 | |
JP5454638B2 (ja) | バイオマス資源由来ポリエステル製発泡体及びその製造方法 | |
JP5428127B2 (ja) | ポリエステルの製造方法 | |
JP5120729B2 (ja) | ポリエステル及びその製造方法 | |
JP5378063B2 (ja) | ポリエステル及びその製造方法 | |
JP5572908B2 (ja) | バイオマス資源由来ポリエステル製延伸フィルム及びその製造方法 | |
JP5573921B2 (ja) | バイオマス資源由来ポリエステル製シート | |
JP4380653B2 (ja) | ポリエステル及びその製造方法 | |
JP4967578B2 (ja) | バイオマス資源由来ポリエステル製モノフィラメント及びその製造方法 | |
JP5572909B2 (ja) | バイオマス資源由来ポリエステル製射出成形体及びその製造方法 | |
JP2014139325A (ja) | バイオマス資源由来ポリエステル製フィルム | |
JP2006328380A (ja) | ポリエステルの製造方法 | |
JP2014133900A (ja) | バイオマス資源由来ポリエステル製射出成形体 | |
JP5652986B2 (ja) | ポリエステルペレット及びその貯蔵方法 | |
JP5168072B2 (ja) | ポリエステルの製造方法 | |
JP2014133899A (ja) | バイオマス資源由来ポリエステル製延伸フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20110218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110804 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20110804 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110818 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20110819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110907 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20111222 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20111228 |
|
C141 | Inquiry by the administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C141 Effective date: 20121024 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20121024 |
|
C54 | Written response to inquiry |
Free format text: JAPANESE INTERMEDIATE CODE: C54 Effective date: 20121218 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20130218 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20130315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130513 |
|
C27B | Notice of submission of publications, etc. [third party observations] |
Free format text: JAPANESE INTERMEDIATE CODE: C2714 Effective date: 20130514 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20130607 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20130607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130624 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5303237 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |